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Abstract

This thesis is investigating the level of market integration, as well as the

volatility and inter-relationship in the Nordic spot market. The empirical anal-

ysis is using spot prices from 13 regions in the Nordic energy exchange. The

purpose of the study is to find evidence of market integration between the

system price and the regional price. Further, an assessment of the volatility in

the regions will support the notion of market integration. A bivariate Autore-

gressive (AR) model is applied to the price series, and residuals is run through

a Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model.

Inference tests are run for hypothesis regarding dynamics and long run inte-

gration.

The results show that Nord Pool is not perfectly integrated. The regions in

Scandinavia show strong market integration with the system price. Low aver-

age price and a large, unpredictable price volatility is seen in all the regional

prices in Norway, Sweden, Denmark, and Finland. The Baltic regions show

signs of internal market power, indicating monopolistic production of electri-

cal energy. The Baltic regions are not fully integrated with the system price.

The results of the AR model support the findings of low market integration in

the Baltic regions and high integration in Scandinavia.

The persistence in the volatility effects in Scandinavia show that volatility

in previous observations have a permanent effect on the volatility level today.

For the Baltic regions, the persistence show a mean-reverting structure where

volatile price movement dampen down until it reaches a stable equilibrium.

Capacity constraints during bottleneck periods cause the area price to devi-

ate from the system price. Better transmission capacity will lead to a closer

integration between the markets within Nord Pool Spot (NPS).
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1 Introduction

The Nordic Energy market is an open, competitive market for sale and purchase of

electrical energy. The energy market in Norway was deregulated in January 1991

following the implementation of the Energy Act of 1990. In 1996 the Norwegian

power exchange merged with Sweden, forming Nord Pool as the world’s first inter-

national power exchange. Since then the scope of the power exchange has grown,

now including wholesale electricity trading in Scandinavian and the Baltic region.

Electrical energy as a commodity is presumed to be monopolistic by default, as the

owner of the electrical grid and the owners of power production have control over

the supplied energy. The motivation for deregulating the market was to separate

the production and sale of electrical energy from the transmission. The goal for

Nord Pool Spot (NPS) is to act as a liquid and transparent market where free com-

petition forces the price towards a social optimum and removes the possibility of

market power being exercised by participants.

Spot electricity trading is conducted in the physical market. Nord Pool also has

a financial market where trading in financial assets, like bilateral contracts, allow

customers to hedge risk. Both the financial and the physical market trade across

international borders. This indicates that production in one area of the market

can reduce volatile price spikes in more risk exposed sections. The different bid-

ding areas need a strong market integration in order to combat fluctuations in the

area price. Bottlenecks in transmission capacity will create almost perfect inelastic

prices. This lead to large differences between regional and system price. Regulatory

mechanisms are in place to support the development of an efficient international

market. To prove that the market is integrated a better understanding of the inter-

relationships is necessary.

Several studies have been conducted on electrical markets in order to determine

volatile relationships and market integration. Energy prices are known to have un-

certain price movement, and as a result multiple studies have been conducted on

markets both internally and externally. The internal price volatility was conducted

for the Australian power market by Higgs (2009); Becker et al. (2007); Worthington

et al. (2005). The internal relationship in NPS will be analysed the same way as
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Higgs (2009) has analysed the Australian National Electricity Market (NEM). Sea-

sonality and spillover effects are strong in electrical spot prices due to the practical

problem of storage. Several studies (Becker et al., 2007; Lucia and Schwartz, 2002)

assume that electric energy is non-storable; once the power is produced it must

be consumed. However, there are many ways to store the resources needed to pro-

duce electricity. The Norwegian hydro power section is an example of this. Johnsen

(2001) present a relationship between price and exogenous variables like inflow,

temperature and snowfall. Norway has a large storage of water due the the many

reservoirs (Johnsen, 2001). This can be view as “stored electrical energy”. Further,

this reduces potential volatile effects of dry periods and force the producers to

question the profitability of producing power. Still, the amount of precipitation

will affect the price movement; increasing or decreasing both the price and the

price variation. The finding of Higgs (2009) show that temperature gives a good

representation of the price movement during seasonal changes. Like in NEM, the

interconnector between certain regions in NPS have large capacity, whereas for

some it does not exist. Strozzi et al. (2008) states that when there is no congestion

in the transmission interconnector, the area price will be equal to the system price.

The volatile characteristics of the price during bottleneck periods can be seen when

comparing the system price to the area price of the stressed region. Solibakke (2002)

has analysed the price movement in the system price for the Nordic market and

found significant patterns of volatile behaviour. Sotiriadis et al. (2014) have investi-

gated the relationship between five major power exchanges in Europe, where NPS

are one of the analysed markets. De Vany and Walls (1999) have analysed the US

power market and how deregulation has affected the shocks in price during off-

peak and peak periods. The strength of the interconnector and the effectiveness of

the western transmission grid is then evaluated. These studies have the same goal,

to understand the volatility in electrical energy prices during congestion in trans-

mission capacity. The level of market integration can be seen as a direct link to the

markets ability to handle volatile periods. Commodities traded at converging price

in a market should, following theory, indicate market integration. Several studies

have been conducted for market integration. Ravallion (1986) investigate market

integration in the rice market in Bangladesh, Asche et al. (2004) test the degree of

market integration in the French whitefish-market, and Slade (1991) investigate the

2



international mineral market. Goodwin et al. (1990) define the Law of One Price

(LOP) and test the US agriculture market.

The main objective of this thesis is to investigate the degree of market integration,

and how volatility behaves in the system and area price movements in NPS. First,

the thesis will determine whether there is market integration between the system

price and area price for the different regions in Nord Pool. The analysis will also

investigate if the expanded market has an effect on the stability of the system price.

How the effect of the system price influences the different area prices will then be

analysed in order to understand the relationship. Ideally, the LOP should apply,

and this must be verified.

To parameterize the patterns of the price formation the region prices will be anal-

ysed using an AR model. The variables in the AR model will include the system

price and lagged values of the area price under inspection. Analysing patterns of

seasonality and mean-reversion, both between the regions own price and cross-

area price, will answer the question if market integration exist. Dummy variables

will be used to respond to trends set by seasonal components. This follows the

methodology of several studies into the dynamics of electricity prices (Chevallier,

2012; Sotiriadis et al., 2014; Higgs, 2009; Worthington et al., 2005). The GARCH

model proposed by Bollerslev (1986) will then be applied on the residuals of the AR

model to estimate volatility parameters. The parameters will then be analysed in

order to understand how the ARCH and GARCH effects vary in the different regions.

The investigation of market integration draw on work by Asche et al. (2004); Raval-

lion (1986); Slade (1986); empirical tests will be performed on a dynamic model

compromised of lagged values from both the region under investigation and the

system price. The motivation for choosing this subject is to investigating the mar-

ket integration between the different regions and countries in NPS. Further, an aim

of the thesis is to see if the market integration affects the volatility level in NPS. As

far as the author knows, a similar investigation into the internal relationships of

NPS have not been conducted at the present day’s structure.

The thesis will be organized as following: Section 2 will give an introduction to

the organisation of NPS and its history. Section 3 will describe the theory behind

price formation and market integration, before a brief description of the statistical
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elements of analysing data will be presented. In section 4, the methods applied to

the data will be presented. A detailed description will be shown for each method.

In section 5, summary statistics for the data used in the thesis will be shown. This

will also include statistics describing the shape and stability of the price series. In

section 6, the empirical results will be summarized and discussed. Section 7 will

contain a conclusion.
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2 Nord Pool

Nord Pool is Europe’s largest energy exchange and was the first of its kind (Stavseth,

2013). NPS operate under the criterion that customer surplus is the key objective

to maximize. Demand and supply sets the price of energy in a way that creates the

most efficient market. Nord Pool is divided into two separate segments; Nord Pool

Spot AS and Nord Pool ASA. Nord Pool Spot handle day-ahead (Elspot) and intra-

day (Elbas) trades. Nord Pool ASA handle bilateral contracts and other financial

assets. NASDAQ bought Nord Pool ASA in 2007, and run this market segment today.

2.1 History

The Norwegian spot market was established in 1993 as result of the Norwegian

Energy Act; issued in 1990 and implemented 01. Jan 1991 by the Norwegian Parlia-

ment. The Ministry stated that the marketplace should have two main functions:

(i) Administration of the marketplace for physical power by facilitating daily bidding

and price determination, and (ii) clearing of all contracts entered on the marketplace,

i.e. enter as the central counter party in all trades, guaranteeing settlement for trade

and anonymity for participants (Drønnem, 2010).

The System Operator (TSO) in Norway, Statnett SF, established Statnett Market in

1993. The framework for an integrated Nordic market was developed during 1995,

with both the Norwegian Parliament and Norwegian Water Resources and Energy

Administration (NVE) included in the process. Norway and Sweden combined

to form a cross-border power exchange in 1996. The exchange was named Nord

Pool. NPS became the world’s first international power exchange. The scope of the

marked expanded quickly; Finland joined in 1998, the western part of Denmark

connected in 1999, and in 2000 Denmark East joined Nord Pool. Elbas trading was

launched in 1999 to function as a balancing tool for adjusting imbalance in Sweden

and Finland. Since then it has been expanded to function for all regions. In 2002

Nord Pool was divided into two separate sections; Nord Pool Spot AS and Nord Pool

ASA. Nord Pool Spot opened a bidding area in Estonia in 2010, as well as prepared

to launch a market in Lithuania, which opened in 2012. Latvia was included as a
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bidding area in 2013.

2.2 Bidding Areas

As of 31. Dec 2015, NPS consist of 15 different bidding areas, also referred to as

regions, see Figure 1. The scope has changed during the sample period, beginning

with only six bidding areas, and ending with 15 areas. Norway has five different

bidding areas; Oslo, Kristiansand, Bergen, Trondheim and Tromso. Sweden was a

single bidding area until 01. Nov 2011, when it was divided into four bidding areas.

Denmark is divided into two regions and joined separately. Finland, Latvia and

Lithuania have one bidding area each. The system price is calculated to mimic

the optimal price based on supply and demand while ignoring any constraints in

transmission. Capacity congestion in the transmission line cause the area price

to differ from the system price. Area price is set for each individual bidding area,

with the system price as basis. If demand is high and capacity pressured, the area

price will increase in order to reduce demand and in turn reduce the congestion

in transmission. I.e. the transmission capacity of the interconnectors between

regions determine the threshold between the system price and extreme area prices.

The financial market in Nord Pool, now run by NASDAQ, handle trading of bilateral

contracts and derivatives. The financial market run separate with the spot market.

In 2005 Nord Pool opened for trading in Germany; the trade route is named KON-

TEK. In 2010, NASDAQ started to operate the power market in UK. Other countries

managed by NASDAQ include France, Austria and several more. In early 2016 Nord

Pool was appointed Nominated Electricity Market Operator (NEMO) in Bulgaria

and in Germany. As NEMO, Nord Pool is from 2015 allowed to handle trade as a

coupler in ten different European power markets. This is not a part of the spot

market, which this thesis base its data on.

2.3 The physical market

The physical market handle trading of spot electricity; orders are placed for physical

power traded the following day. The physical market has two sections; day-ahead
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Figure 1: Nord Pool area prices 25. May 2016. Prices in NOK/MWh (Nord-Pool, 2016)

trade (Elspot) and intra-day (Elbas) trade. The NPS is jointly owned by the Nordic

TSOs; Statnett (30 %), Svenska Kraftnät (30 %), Fingrid Oyj (20 %) and Energinet.dk

(20 %). The system price in the spot market work as the principle guide for the

financial market. The spot price and the financial derivative price is shown by Hoff

(2010) to correlate at a significant level. NPS calculate the price of energy every

hour, for delivery the next day. A synthetic equilibrium is created based on data and

reports from producers, TSO’s, and consumers. The bidding ends at 12:00 CET the

day before the transaction will take place. Elspot is the main tool for trading energy

in the day-ahead market, with Elbas available to balance market irregularities.

Contracts are placed for each hour, i.e. one must place one bid per hour of the day.

The contract is physically delivered, which is why this called the physical market.

From 00:00 CET and onward the power is transferred to the buyer at the hour ac-
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cording to the contract. Capacity constraints are solved by introducing different

area prices. If there are bottlenecks in the power transmission, the price is increased

in order to reduce demand. The intra-day market, Elbas, is a supplement to the

day-ahead trading at Nord Pool. It helps to secure the necessary balance between

supply and demand that cannot be adequately be covered by the day-ahead pric-

ing. Unforeseen events between closing of bidding at 12:00 CET and delivery at

00:00 CET can happen. The main objective of Elbas is to prevent such events from

affecting the efficiency of the market and to minimize losses due to irregular power

supply. Using Elbas, the sellers and buyers can trade volumes close to real time

with trading continuously through the day. Contracts are being negotiated an hour

before delivery and this help reverting the market back in balance should there be

any irregularities.

2.4 The financial market

The financial part offers market participants trading in bilateral contracts and

derivatives in order to hedge away risk with regards to price volatility (Drønnem,

2010). There is no physical delivery in the financial market. The financial products

are contracts, which vary in length between days and as much as five years into

the future. The inclusion of speculation into the market will increase the detail of

information, and may lead to a larger price stability, as noted by Cox (1976). How-

ever, Slade (1991) tests this hypothesis for the mineral market and concludes that

exchange prices are more unstable than producer prices. Future work could be to

conduct an analysis of the variability of spot prices before and after the financial

market was established.

Nord Pool Clearing provides settlement for the different contracts traded in the

financial market. By establishing a neutral interception between buyer and seller,

the risk is reduced for the various market players. It is the overall key to the effi-

ciency displayed in the Nordic power market. The Ministry of Finances oversee

that the rules of free competition are not violated (Drønnem, 2010). Kredittilsynet,

a subordinate of the Norwegian Ministry of Finances, manages Nord Pool’s license

to operate the derivative exchange.
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There are several different products in the Financial market. These financial prod-

ucts do not result in a physical delivery, instead the trader is compensated finan-

cially for price movements (Kroken, 2009). Options, Forwards, Futures, Contracts

for Difference and Carbon Emission are some of the derivatives for sale in the fi-

nancial market. In the financial market in NASDAQ OMX, either a forward or a

future contract is the underlying product (Regjeringen, 2008). This segment is not

a part of the thesis, but is mentioned due to its importance in creating an effective

market. See Botterud et al. (2010); Weron and Zator (2014); Solibakke (2006); Lucia

and Schwartz (2002); Vehviläinen and Keppo (2003) for a more thorough analysis

on interaction between the financial and the physical market.

2.5 Power Generation

In Norway, approximately 96 percent of the power generation stems from hydro

power. With 1510 different hydro power plants spread across the country; total

production from hydro power per 01.01.2015 yield a yearly production of 136.18

TWh (SSB, 2015). Other power productions in Norway are wind power (1.9 %) and

thermal power (2.5 %). These figures show that Norway is dependent on hydro

power; the seasonal cycle and weather affect the output of energy which then lead

to volatile energy prices. Figure 2 show the produced electrical energy in NPS.

Sweden’s main source of energy is hydro power and nuclear power, the former is

represented by 42.4 % while the latter have a share of 40.9 % of the indigenous

production in 2014. Else, Sweden have 9 % combustible fuels and 7.7 % of wind,

solar etc. Annual production is 150.6 TWh. Sweden, like Norway, export more

energy than they import (IEA, 2016). In Denmark, the energy production is divided

between combustible and wind/solar energy. 44.6 % of the production stems from

wind, which makes production very difficult to predict. This leads to a dependency

for imported energy, and unstable price behavior. As a result of this Denmark

import more energy than they export. When the wind is strong, Denmark have

excess energy which in turn lead to profitable export.

The Baltic states mainly produce electricity using thermal power. This has a higher

marginal cost than hydro power. It can be seen using the merit order chart that
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Figure 2: Nord Pool Nordic production (Nord-Pool, 2016)

hydro- and nuclear-power are lowest in cost per produced quantity, with thermal,

gas and oil power at a higher marginal cost per produced quantity (Nord-Pool,

2016). Change in demand can be adjusted using hydro power, since it has a low

marginal cost and can be regulated quickly by the producers. Nuclear power lays

the foundation in NPS, as it is difficult to adjust and must be kept stable. The

variability comes from hydro power, which move in seasonal patterns.

2.6 Turnover and trade in Nord Pool Spot

The total traded energy in 2014 amounted to 501 TWh. Of this, 361 TWh was traded

in the Nordic/Baltic area, 135.5 TWh was traded in the UK market and 4.9 TWh

was traded in the Intra-day (Elbas) Nordic/Baltic market (NPS, 2015). Nord Pool

does make a profit on the transaction of electrical energy. Nord Pool does not add

a fee per transaction conducted between buyer and seller. The only income Nord

Pool has is earned via annual-fees, volume dependent fees and FX (for traders

who operate with a different currency than EUR)-fees. With a revenue of NOK

310.1mill for Nord Pool Group and NOK 301.5mill for Nord Pool Spot the net income

is respectably NOK 45.3mill and NOK 49.3mill per section of Nord Pool. The figures

from 2014 are used, as the yearly report for 2015 is not yet ready. In 2014 Norway
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imported 6.123 TWh and exported 21.6 TWh (Statnett, 2016a). With an indigenous

production of 141.7 TWh the electricity supplied from Norwegian power plants to

the Norwegian market was a total of 126.1 TWh (SSB, 2015). With the outlook of a

future with a higher degree of export, the volatility of the energy prices will require

risk management to account for unstable price fluctuations.

There is an ongoing discussion about Norway being Europe’s “Green Battery”. North

Europe, with Germany leading, is rapidly expanding the capacity of renewable en-

ergy (sun and wind). Due to the unpredictable nature of both wind and solar power,

there will be a need for a back-up source of energy (Lindberg, 2008). Norway, with

its vast hydro resources, can supply electrical energy when there is a need to main-

tain stability in the German grid. In return, when excess power is produced in

Europe this can be sold to Norway. The Norwegian hydro plants can use this excess

power as a mean to pump water into the reservoirs, thus storing water for future

use. Dry years can create a lack of energy in Norway; the interconnection will then

provide energy from the continent, stabilizing the prices in the Nordic region. Stat-

nett has received concession from the Norwegian Parliament, and work has begun

on the transmission line between Norway and Germany, named Nordlink (Overton

et al., 2015). The plan is to connect the two countries by 2019, with commercial

operations in 2020. There is also several plans for interconnectors between Norway

and UK, Sweden and Germany among other (Statnett, 2016b).

Stability in the electrical grid means keeping a stable frequency, the set level is 50

HZ in Europe. Frequency drift is the main indicator of imbalance between genera-

tion and demand for electrical energy. If power generation exceeds consumption,

the frequency rises. Likewise, if demand is bigger than supply, the frequency falls.

Short et al. (2007) states that frequency control of a power system endeavours to

match power supply as closely as possible to the time varying demand. Norway,

with vast hydropower supply, can deliver a sufficient quantity of spinning reserve

generation on the electrical grid when the frequency is dropping. Thus the hydro

power plants can stabilize the frequency in a way that is not possible with volatile

energy resources, like wind and solar.

Given the huge development of wind and solar energy in Europe, Norway can act as

an available, renewable power supply to stabilize the grid, e.g. a green battery. Un-
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like thermal power plants, which require long start-up and shutdown time, hydro

generation can be brought up to full effect in less than five minutes. This indicates

that hydro is well suited to turn off and on to meet change in demand (Bergen and

Vittal, 2000, p. 11). The industry might in the future induce a cost to the spinning re-

serve, making the commodity an extra cost for the end-consumer. Especially when

a more integrated system leads to lower prices, e.g. smaller revenue for producers.
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3 Theory

This section will explain the basic principles of price formation and market integra-

tion. The theory will be connected to the factual description of the Nordic energy

market. Econometric methods are applied to financial data in order to use statistics

to explain relationships and shape of the distributions. A theoretical foundation

will be presented for the methods applied in the analysis.

3.1 Price Formation

NPS handle large quantities of trade, setting the price for both bilateral trading and

financial derivatives. The spot price is determined at the market clearing point, i.e.

where supply and demand meet to form the optimal price and quantity. Smith and

Garnier (1838) facilitated the notion of an “invisible hand” that force supply and

demand to meet at the point most efficient for both producer and consumer. This

is the rule for which the price is set in NPS. An algorithm calculates the equilibrium

point based on continuously updated data from the market, and determines the

best fit for the day-ahead price. The price is calculated for each hour of the day,

being valid for the next transaction day. Since the bidding area include several pro-

ducers it is difficult to exercise market power. Without the transmission constraints

and congestion between areas, the system price would be the region trading price

in each bidding area.

Figure 3: Market equilibrium when supply or demand shift position (Spaulding, 2016)
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Demand for a given commodity can be defined as a customer’s willingness and

ability to purchase the commodity at the current price. This can be further defined

using what is known as a demand equation. The price of the commodity is given

by:

P =D (q ), (1)

where P is the price of a unit determined by the demand equation and the need for

a given quantity Q of the commodity. The demand equation is a relationship be-

tween price and quantity per unit when other factors are being held fixed. (Tomek

and Kaiser, 2014, p.10). The demand equation has an inverse relationship, i.e. when

the price increase the demand for the commodity will fall. This is known as the

Law of Demand (McConnell et al., 1969, p.94). There are several other factors that

shift the shape of the demand curve. Income, taste, number of buyers, and related

goods all will have an impact on the curve. With related goods we have substitutes,

e.g. margarine versus butter. The customer may be indifferent to the brands and

let the price determine the choice. Increased price for a commodity such as lettuce

can decrease the demand for dressing. Wood, oil and gas, as primary commodities,

are theoretical substitutes for electrical energy. Taking the inverse of Equation 1

based on quantity, demand is shown to be:

q D = a + c Ps +d I + b P + y t (2)

where the quantity demanded is decided by the price of substitutes Ps , the income

I , the price of the given commodity P , and a factor for habit y t . The elasticity

coefficients c , d and b explain the level of power that is given to the different

components. In Norway, the majority of housing and industry are dependent on

electrical energy. The power industry in general tend to deliver unsteady supply

due to the costs of changing production (Nakajima, 2013). The reason to deregulate

the Nordic market was to reduce the arbitrage problem of supply versus demand.

Separating the grid, production and consumption reduced the issues and as a result

the price stabilize the market. The TSO inform producers when they need to change

production.
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The Law of Supply states; when the price increases, the quantity of supplied goods

increase (McConnell et al., 1969, p.89). The marginal costs and marginal revenues

determine the best amount of goods to produce. There are several input variables

to the supply equation that affect the amount produced. Technology, taxes and

subsidies, price of other goods, and expectations to the demand all have an impact

on how the producer plans the supply. The formula for price as a function of supply

is given by:

P = S (Q ) (3)

Still, the amount of costs invested in production can change. For electric power

it is difficult to price the value of the water in the reservoirs. Further, changes in

demand and uncertain prices makes the supply of electricity tricky to predict. The

composition of the supply equation can be described as follows:

q S =↵+µPx +�P +�t (4)

where the input variables are described by Px , the price of the electrical energy by

P , and the � represent the technical change in supply. Supply in NPS is aggregated

from all the producers. Johnsen (2001) offers an extensive guide to the development

of price and demand equations for the Norwegian power market. Hydro power is

known to be rational, i.e. high inflow is known to lead to lower prices. Exogenous

variables such as temperature, activity level, alternative fuel prices and time of year

are used by Johnsen (2001) in the development of the demand equation. Combin-

ing Equation 2 and 4 will give the exact quantum needed to meet the equilibrium

state of stability for the day ahead price:

q D = q S ,

a + c Ps +d I + b P + y t =↵+µPx +�P +�t
(5)

solving with regards to P :

P =
↵+µPx +�t

(a + c Ps +d I + y t )
1

(b �� ) (6)

Solving Equation 6 will give the optimal price for a given market. The equilibrium
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price will account for reported demand from consumers, availability of production,

the price of water, marginal costs of production, as well as other shocks in the

market. The Nordic energy market has several input factors to consider for both

supply and demand, but those factors will not be discussed further here. The price

is the only variable to consider.

The supply of electrical energy to NPS can be ranked after a merit order. This

shows the available energy sources ranked from lowest marginal cost to the highest

(Fiorenzani, 2006). By using this merit order curve we can see that the supply in

NPS has the shape of a “hockey stick”, i.e. the prices are stable and almost perfectly

elastic until demand force the capacity into a bottleneck situation, i.e. to the right

in Figure 4 where production cost increase rapidly. Not only weather, but the days

of the week also been proved to affect the price movement in a significant way

(Johnsen, 2001; Higgs, 2009; Solibakke, 2002).

Figure 4: Merit order and demand in Nord Pool (Nord-Pool, 2016)

There as been done a substantial amount of research in the formation and behavior

of energy prices. Electricity is a non-storable commodity, something that increase

volatility (Strozzi et al., 2008). Natural mean-reversion and positive skewness is

also a characteristic of the price formation. Furthermore, energy prices show signs

of strong seasonality and also volatility clustering during spikes in prices (Sotiriadis

et al., 2014). Higgs (2009) shows that own-mean spillover is present in the different

regions in NEM. In all instances, the spillover is positive, indicating that today’s
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level will have an impact on tomorrow. The area price is regulated according to

transmission capacity in the different regions; the demanded load will force the

price away from the system price. Higgs (2009); Worthington et al. (2005) have

found that integration between regions in NEM has reduced volatility although

not the critical peaks during bottleneck periods. The volatile movement is further

supported by Becker et al. (2007), who finds that price peaks tend to cluster around

other price peaks. Becker, like Higgs, concludes that the weather conditions and

load demand are important when explaining the shift in pressure. In a market of

several regions, the inclusion of an interconnection benefits the volatility during

normal periods but do not reduce the extreme price peaks during stressed periods.

Arbitrage conditions appear, as shown by De Vany and Walls (1999), to reduce and

smooth the difference between prices even when energy is transferred over great

distances.

Weron (2000) compare energy prices to other, extreme volatile commodities in or-

der to show the level of variation. While stocks can have a daily standard deviation

exceeding 4%, electrical energy can have a volatility of up to 50%. The volatility

is calculated as standard deviation of the logarithm price change per period. The

price formation depends on supply and demand, but during bottleneck periods the

possibility of large energy prices increase. Large price peaks are followed by similar

peaks, indicating volatility clustering. In addition, as NPS expands its working area

the prices will be affected by the native price level in new areas.

3.2 Market Integration

Trading one commodity for the same price in another region, accounting for trans-

portation costs and quality difference, gives strength to the assumption of market

integration. The Nordic energy market is an example of how market integration

have maximized the social optimum. Bottlenecks will prevent full price equal-

ization between regions and borders, and create a price difference between the

importing and exporting countries, preventing perfect market integration.

The equilibrium price in NPS, i.e. the system price, is accepted as the common

price when ignoring transmission constraints and other factors (taxes, currency,
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etc.). Electricity is a homogeneous commodity, i.e. it does not matter which source

is used to produce the electrical energy. This is shown by Asche et al. (2006) for the

UK energy market prior to the interconnection to Europe. In an efficient market

where two equal assets are traded, the LOP will apply if the assets sell at the same

price (Akram et al., 2009). However, constraints in transmission capacity, taxes, and

other factors creates differences between regions. This can be seen in the various

area prices. Still, this does not reduce the efficiency of the integration between

regions. Tangerås (2013) finds that national policies must support the market in-

tegration in order to increase the total surplus. Importing countries needs a clear

incentive when investing in cross-border transmission capacity. In order to obtain

maximum market integration, domestic objectives must not overshadow the needs

for investment in transmission. Subsidies into transmission can promote a better

utilization of resources, thus creating a more welfare-supporting market integra-

tion. Proposition 2 by Tangerås (2013) review objectives that are important when

supporting market integration of renewable energy under a decentralized policy.

There are many mechanisms that will distort the optimal trade-off between import

and export, as well as price, for renewable energy.

The European Union (EU) have imposed a national target for renewable energy

consumption, the RES-E, in 2009 (UNION, 2009). By promoting the production

and trade of renewable electrical energy, the consumer will have a surplus with

regards to both prices and environment. Market integration between two separate

markets will not only affect the investment in power plants but also in transmission

capacity. Market integration can be measured as the volume of trade and the level

of price stability. However, it is important to remember that a small price differ-

ences between regions is not sufficient evidence of market integration (Tangerås,

2013). The relationship between energy production, energy intensive industries,

and the European Union emission allowance are shown by Aatola et al. (2013) to be

able to predict the movement. NASDAQ OMX trade in Carbon Emission contracts;

this further strengthens the market integration between the Nordic and European

market.

Donaldson (2015) has analysed market integration between different countries, as

well as between regions internally in countries. The study shows that exogenous
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variation in openness (import and export as a factor divided by the GPA of the given

region or country) was biased, and that placement in regards to equator also af-

fected the level of openness. Whereas the trade across borders can be complicated

by policies and taxes, these can often be ignored between regions. Donaldson

(2015) states that it is natural to assume that transportation will be lower within a

country than outside its borders. Electrical energy demands a solid transmission

network, and the cost of building new lines can be substantial. In the Norwegian

sector, the different regions produce mostly hydro power energy and we can see

from Section 2.5 that it is the main source of energy. There are no common sub-

stitutes for hydro power in Norway, making market integration within the country

important in order to prevent power loss in critical periods when the water levels

in the reservoirs are low.

Slade (1991) states that when the market is organized and competitive it will make

trading more stable and reduce price volatility. However, by including speculators

the price was found to be more unstable. The risk of instability is still present but

the cost is minimized when considering the benefits of a market that handle large

volumes. By adding the brokerage in the exchange, the volatility of the price is

increased. Market integration is dependent on a well-functioning system that can

balance these unstable conditions. As shown by Higgs (2009), the interconnector

between regions in Australia have reduced the overall volatility, but not the critical

peaks. As more regions are embedded into NPS, the less market power is given

to the big producers. This is further implicated with the addition of exchanges,

introducing new actors such as speculators and brokers. All have different mo-

tives, and will try to shift the price in a way that suits their risk level. The level of

influence has an impact on the stability of the price, i.e. the level of volatility both

during bottleneck periods but when the conditions are normal. This will make

the trading competitive even if one would think that large actors could control the

price formation. Higgs (2009) found that a larger electricity market will reduce the

probability of price spikes. It will also handle external shocks well, given that the

interconnection between regions is in place and working.

Nord Pool Spot have a 20-year history, with a continuously rising number of par-

ticipants. As less and less of the northern energy market is perceived to be autarky
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and interconnections is increasing, investment and support for policies and devel-

opment across national borders is crucial in an effective energy exchange. The EU

have begun the process of supporting the development of renewable energy for its

members. The directive has presented the foundation for increased investment

focus in renewable energy. Despite the dependency on fossil fuel today, the plan of

the Price Coupling of Regions (PCR) is to have a single energy exchange for Europe

(Nord-Pool, 2016).

3.3 Econometric Analysis

In both the financial world and in other trades, statistical methods is used to analyse

sample data. Econometric uses statistical methods to develop and analyse models.

This can give valuable information about the relationship and how to best forecast

future values. Further more, it is used to test and evaluate theories, and to describe

the strength of them.

Empirical analysis on sample data is used to test the inference and establish con-

nections between the different variables. The composition of the regression model

is modeled to test relationships. The input and output variables tell something

about what the user aims to learn more about; e.g. weather versus gas prices or

smoking and male users. By choosing how to approach the models outputs and in-

puts we will form an opinion of which results we want to see. By looking at the kind

of buyer, income, and other factors we can form an understanding of what factors

that influence demand the most. Time series data is also an important element in

financial analysis. Price movement over time can give valuable information about

relationships and volatility. The notion ceteris paribus is important in economet-

rics; we hold all other relevant factors fixed as we analyse data (Wooldridge, 2015,

p.12).

3.3.1 General regression

Regression analysis is explained simply by saying that we want to describe y in

terms of x . The regression will yield an equation that fit as best as possible. Ordi-
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nary Least Squares (OLS) obtained using Gauss-Markov assumptions ensures that

we choose the equation that best fit our observed data. The difference between the

fitted estimate and the observed data is called a residual. OLS chooses the coeffi-

cients for the Sample Regression Function (SRF) that minimize the sum of squared

residuals, i.e. that choose the equation with the best fit. The general equation for a

multiple regression is a description of how we assume the actual values of the in-

put variables describe the output. This is sometimes referred to as the population

model or the true model.

y =�0+�1 x1+�2 x2+ ...+�k xk +u (7)

� is the coefficient for each variable; the level of influence the explanatory variable

has on the explained variable. u is random noise; the error term due to misspesifi-

cation. Generally assumed to be white noise, i.e. a mean equal zero and a constant

variance. However, the regression analysis only gives an estimate of what the true

coefficients are. We base our estimates on a sample of data, thus we do not know

exactly what the coefficient in the model should be. The regression analysis gives

a fitted value for what we expect to resemble the true model:

ŷi = �̂0+ �̂1 xi 1+ �̂2 xi 2+ ...+ �̂k xi k (8)

The fitted estimate will normally not yield the exact value of the observation. The

difference between the actual value and the estimated value is described as the

residuals of the regression:

ûi = yi � ŷi (9)

The residuals of an OLS fitted estimate has an average value of 0. This assumption

is known as the zero conditional mean. For homoskedasticity, the variance of the

residuals is constant. If it is changing through the sample, there is evidence of

heteroskedasticity (Wooldridge, 2015, p.93). The covariance between any of the

independent variables and the residuals is zero. The covariance between the fitted
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values and the residuals therefore also is zero (Wooldridge, 2015, p. 65).

R 2 is a measurement of the goodness-of-fit for the SRF. It is sometimes known as

the coefficient of determination, i.e. it gives a value between 0 and 1 for how much

of the sample that is explained by the estimates. It is also the square of the sample

correlation between the observed value and the estimated value. R 2 never decrease

when other variables are added to the regression. It therefore makes a poor tool for

determining if the model is misspecified. R 2 cast a light on the observed object; a

low value can also indicate that the observation is difficult to predict (Wooldridge,

2015).

The estimates for the different coefficients are obtained via the OLS estimation. We

have k +1 estimates from the OLS, where the +1 is the intercept for the regression

line, and k are the number of input variables. The power of the multiple regression

is that it allows the investigation of phenomena in a non-experimental environ-

ment, i.e. do tests similar to what is usually done in a controlled environment like a

laboratory (Wooldridge, 2015, p.65). This is achieved by keeping other factors fixed

and analysing the effects of a single variable. The estimated coefficients, � j , will

be subject to a t test. The estimated coefficient divided by its standard error will

produce the t value. This can be tested using the Student t table for its significance.

In order to determine if the regression result is valid we need to test the significance

of the estimates. As R 2 only quantify the goodness-of-fit for the collective estimate,

we need to look closer at the different variables in the model. The significance

of each coefficient will give an indication on the effect it has on the estimated

output. The OLS method estimates the model with the minimum variance among

the unbiased estimators. In order to determine the significance of the estimate � j

for a given regression we use the following equation:

(�̂ j �� j )

s e (�̂ j )
⇠ tn�k�1 = td f (10)

Here we test the estimate against our hypothesized value for the actual value. Nor-

mally our null hypothesis will be that the estimated coefficient is assumed to be

zero. The null hypothesis can be specified any way that suits the goal of the analysis.
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The normal null hypothesis, where assumed value � j is zero, is calculated like this:

t�̂ j
⌘ �̂ j

s e (�̂ j )
(11)

Where H0 :� j = 0 using Equation 10 leads to the t value in Equation 11. This value

is tested against the Student-t table, and reveals how probable the value is. The

probability given by the t table is a reflection on how often we find the estimated

value in a distribution with heavy tails. With a 5 % significance we find the estimate

to be true 95 out of 100 times. The better the estimate, the lower p value should we

expect. The p value tells us how strongly we can reject the null hypothesis. This is

an important value when addressing large regression results.

The error term is of key importance in regression analysis. The error term (u) is a

measurement for the accuracy of the estimate. When the variance of the error term

is constant we have homoskedasticity. This gives us a Best Linear Unbiased Esti-

mator (BLUE) specification. When the variance of the error term changes across

different parts of the sample we have heteroskedasticity. Heteroskedasticity does

not add any trouble when using the OLS estimators, but it creates faulty values

in the standard error of the estimated coefficients. Breusch and Pagan (1979) and

White (1980) both have developed tests for discovering heteroskedasticity. Het-

eroskedasticity will most likely appear in large sets of samples. Further more, we

can divide the explanatory variables into either exogenous and endogenous ex-

planatory variables. Whether or not the error is correlated with the explanatory

variables have an important effect on the interpretation of the result. Endogenous

variables are correlated with the error term, where as the expectation for the value

of the error is zero given exogenous explanatory variables.

Sample data is not consistent with perfect statistical data, and will not inhibit

the normal shape and distribution. Skewness, kurtosis and other characteristics

changes the shape of the distribution to that of a normal distribution. Several tests

are used in order to discover trends, seasonal patterns, non-stationary samples,

unit root and other noise. Including the correct variables can also be a challenge.

Over-specifying the model by including irrelevant variables will not affect the gen-

eral coefficients but it can create problems with the variance in the error term.
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Normality is not an assumption, but given large enough sample size the Gauss-

Markov assumption will hold and can justify the use of the central limit theorem

(Wooldridge, 2015, p. 143). The estimates need to be consistent, i.e. that more

data will lead us closer to the parameter of interest. Another problem can arise if

two explanatory variables are almost perfectly correlated, known as multicollinear-

ity. This can create fuzzy standard errors. Leaving one of the variables out of the

equation is optimal, as they behave in similar fashion and affect the output in a

similar way. A combination of endogenous and exogenous variables can be a good

solution. Many of the area price samples will show signs of multicollinearity, as

they move in the same pattern.

3.3.2 Autoregression

Time series tend to present a difficulty in finding a pattern between current and

lagged values. Random walk is often present in time series, i.e. that the relationship

between lagged values seemingly have no pattern but rather move at random. The

AR process tries to describe the relationship using lagged values. It is a stochastic

difference equation designed to specify the output based on its previous values.

The general formula for an AR(p) model is:

yt =�1 yt�1+ ...+�p yt�p + "t t = 1, ..., T (12)

It is important to establish that the stochastic process is stationary. See Harvey

(1993, p.15) for the correct procedure. The model consist of a moving average of

white noise variables and lagged values from the output variable. A goal of the

process is to predict the future value based on a weighted average of the previous

values. Below a AR(1) model is presented.

yt =�yt�1+ "t t = 1, ..., T (13)

The AR model have similarities to the multiple regression model. The only differ-

ence is that AR use lagged values of the output variable while the multiple regres-

sion model uses the explanatory variables to predict the output. For the electrical
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prices this will give an idea of the movement of the price. As the strong seasonal

factor apply, using monthly arithmetic aggregated average will show large differ-

ences between the lagged values. Using daily aggregated prices will require a larger

span of lagged values in order to discover patterns.

The more lagged values that are added, the more insight into more complicated

patterns are presented in the results. When analysing time-series one can analyse

univariate series, i.e. only a single time series, or multivariate series. With energy

prices, the relationship to the lagged values are very important. Seasonal patterns

are shown to have a great influence on the stability of energy prices (Higgs, 2009;

Becker et al., 2007; Sotiriadis et al., 2014). Understanding seasonal patterns and the

influence of the lagged values on today’s volatility is important in order to assess

the risk when dealing with energy spot prices.

3.3.3 ARCH & GARCH

Ordinary time series operate under the assumption of constant variance. Engle

(1982) introduced the Autoregressive Conditional Heteroskedasticity (ARCH) model,

which allowed the conditional variance to change during the course of the time

series. A common way to include past conditional variance into the current condi-

tional variance is to use the Generalized Autoregressive Conditional Heteroskedas-

ticity (GARCH)(p,q), as described by Bollerslev (1986). The GARCH model will allow

a much more flexible approach to the lag structure. The ARCH model specify the

conditional variance as a function of past variances in the sample. The main dif-

ference between ARCH and GARCH is that the latter also process the lagged condi-

tional variance. The "t denotes the real-value stochastic process and t describes

the information set through the time. The GARCH(p,q) model is describes as:

"t | t�1 ⇠N (0, ht ) (14)

ht =↵0+
qX

i=1

↵i"
2
t�i +

pX

i=1

�i ht�i (15)

where

p � 0, q > 0
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↵0 > 0, ↵i � 0, i = 1, ..., q ,

�i � 0, i = 1, ..., p .

With p = 0 we have a normal ARCH(q). If p = q = 0 the "t simply resembles white

noise. The GARCH model enables learning from previous lags to enter into the

current model. For a more detailed description, see Bollerslev (1986). The coef-

ficients given by the GARCH model reveals how shock and volatility affects the

observations.

3.4 Lag Length

A problem in time series data is the appearance of autocorrelation in the error terms

or more general dynamics. This correlation violates one or more of the assumptions

of the Gauss Markov theorem, that the residuals have no correlation or that the

model is correctly specified. The presence of autocorrelation will not affect the

parameter estimates, but the standard error will not be correct, invalidating regular

hypothesis testing. With more general dynamic misspecification, the estimated

parameters can be inconsistent. Breusch-Godfrey test (Breusch, 1978; Godfrey,

1978) and Durbin-Watson (Durbin and Watson, 1950) statistics are used to discover

autocorrelation in the first order. Depending on the level of lags and inclusion of

the dependent variable, one chooses between the two methods.

Hendry (1995) note that there are two main approaches when investigating dynam-

ics. The first and traditional method is the specific-to-general. Here one start with

a static model that display the long-run relationship. The goal is to provide the

most parsimonious model specification without dynamic misspecification. The

model is estimated, and tested for autocorrelation. If the null hypothesis is rejected,

one add a lag to the model and try again. There are a number of tests available,

where the Breusch-Godfrey is among the most general. A key problem with the

specific-to-general approach is the lack of information with regards to the cause

of symptoms detected by the diagnostic statistics. Adding variables to the model

might not fix the problem if the model requires joint modeling in order to get con-

sistent parameters. The functional form is essential in finding the root cause for

autocorrelation. The misspecification that leads to errors must be accounted for,
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re-specifying the model in order to remove error and get a BLUE estimate.

The next method is the general-to-specific method. Here the first model is specified

with a very generous lag structure, certainly long enough to capture all dynamics.

For daily data samples a reasonable start can be with 365 lags. One then use F-test

to remove insignificant lags or lags that contain no information. However, this

leads to quite complicated models, and one will often find that the data set is not

large enough, leading to what Hendry (1995) labels the “curse of dimensionality”.

A common alternative, but which is not based on statistical inference is to use an

information criterion like Akaike or Schwartz. These criterions acknowledge the

dimensionality challenge as they weight the improved explanatory power of the

model by increasing an extra lag against the loss in degrees of freedom. Hence,

the information criterions provide a pragmatic trade-off between the general-to-

specific and the specific-to-general approaches. It is worthwhile to note that as

long as one are accounting for the dynamics using lags, the approaches are all

asymptotically equivalent.

The Schwarz Criterion (SC) is an index that choose the optimal model specifica-

tion. The first term measure the increased explanatory power of the additional lag,

while the second term imposes a penalty associated with the additional lag. Akaike

information Criterion (AIC) is similar, but with a different penalty function it tends

to recommend a large number of lags. The general formula for calculating the SC

index is:

SC =�2 ⇤ Lm +m ⇤ l n (n ) (16)

The maximized log-likelihood, the number of samples (n) and the number of pa-

rameters (m) are used to calculate the index. The SC is simply a criterion used

selecting among formal econometric models (Schwarz et al., 1978). In order to cre-

ate a correct model that eliminates autocorrelation, the correct level of lags must

be chosen. Although asymptotically equivalent, the different methods can provide

different recommendations in small samples. Given the large number of models

to be estimated here and the high frequency of the data, the SC will be used.
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4 Method

This is a quantitative analysis, and will use raw data supplied by Nord Pool. To un-

derstand the degree of market integration, the different markets have been tested

using statistical inference tests on short and long term parameters. The dynamic

component will be subject to testing, as price movement in financial environments

must be view as non-normal and time-dependent. Tests for structural change are

conducted since price fluctuations give an indication on how the market integra-

tion is affecting the price. Granger Causality is used to analyse the feedback rela-

tionship between the region price and the system price. The AR model developed

is used to specify own-price spillover as well as cross-spillover between the sys-

tem and area price. The GARCH(1,1) model will analyse the volatility and shock

spillover from the residuals of the AR(8) model.

4.1 Collection of data

The quantitative nature of this thesis require only raw data to run tests for integra-

tion and volatility. It also require cross-referencing towards similar studies, since

comparison to other theories can validate the methods chosen (Eisenhardt, 1989).

Triangulation of result, data and theory must be present in order to verify the pro-

cess. The nature and integration of the Nordic energy prices can be analysed using

both quantitative and qualitative methods. The author chose to focus on a pure

quantitative approach, as the case study has several hypothesis present to test.

This can cause a biased view of the tests, but since the sample was different from

other comparable studies this is accepted. Eisenhardt (1989) states that it can be

wise to choose a study that are likely to replicate or expand the current theory. The

sampling in the thesis follow the description; statistical sampling done in order to

uncover evidence of distribution and relations between the variables within the

Nordic market. While the quantitative evidence speaks for itself, care has to be

taken when trying to interpret them in a qualitative fashion (Eisenhardt, 1989).

Anecdotes are needed when building theories, and soft data needs to be combined

with the hard data in order to explain the results (Mintzberg, 1979). The Nordic

energy market presents the opportunity to test conflicting hypothesis. There are
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much literature available, and this can be used to form a more creative approach

to the research (Eisenhardt, 1989), and to validate results.

Schneider (2005) describe four key statistical coefficients to include in data analysis;

the strength of relations between two series, tendency of a relation, percentage of

the variance explained and the significance level of the model. In order to produce

correct models the data will have to be cleaned for fuzziness, and missing data

must be accounted for. Nord Pool has a complete log of prices, and there were no

missing values. The cross-case approach meant that instead of testing the whole

region together the individual region was tested against the system price. This

was done because the system price is perceived to be the one price, and market

integration, theoretically, mean that these series should converge.

4.2 Structural Change

Since the Nordic market have expanded several times during the observational

period there is a need to examine the possibility of a structural change in the sys-

tem price. The fitted empirical fluctuation of the price will determine the level of

variation both in the given price series and in the residuals. Brown et al. (1975) de-

veloped the method known as the Cumulative Sum of Residuals (CUSUM). Chow

(1960) developed a test of the parameters in a model, searching for a single break

in the stability, known as the Chow test. This thesis will test the system price for

structural change using the OLS-CUSUM model. First, the system price for the en-

tire period (96-15) will be subject to the test for structural change. This will include

both the system price and the differentiated system price. Second, a historic period

will be selected, and the same test will be applied to the full span of the sample.

CUSUM is calculated:

Wn (t ) =
1
�̃
p
⌘

k+t⌘X

i=k+1

ũi (0 t  1), (17)

Where⌘ is the number of recursive residuals. The process is limited by the Standard

Brownian Motion, and the null hypothesis of no structural change is calculated

using a empirical fluctuation process. The Moving Sum of Residuals (MOSUM) is
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another way to detect structural change. Again, the process is calculated in the

same way as the CUSUM, albeit it includes a bandwidth parameter for the moving

window of data. See Kuan and Hornik (1995) for details. Independent of which test

used, the null hypothesis is that there is no structural change in the data series. If

the fluctuation gets too large the null is rejected, and we can conclude that we have

a structural change. The methods applied in this thesis follow the description by

Zeileis et al. (2001).

To test the system price for structural change two models will be proposed. The first

regression will have the system price as dependent variable, and the explanatory

variables will be the residuals of an AR process with three lags and the difference

between the daily system price. The OLS-CUSUM model is chosen to test for struc-

tural change in the system price. First an AR(3) model is calculated:

pt =�0+�1pt�1+�2pt�2+�3pt�3+ "t (18)

The residuals of the AR(3) model in Equation 18 is used in conjunction with the

squared differentiated value of the system price. The regression used for testing

the empirical fluctuation is:

pt = "t +�p 2
t

(19)

The same model will be specified for the differentiated system price, where the

residuals of the regression and the squared difference price will be used as explana-

tory variables. It is natural, given the shape of the system price, to assume that the

price experience structural change. By testing the difference, the test can deter-

mine whether the volatility is changing as time moves, or if it is stable through the

sample period.

The next model tested monitor the occurrence of a structural change based on a

historic sample. Leisch et al. (2000); Chu et al. (1996) have developed tests for recur-

sive and estimates tests using statistical tools such as R. The models presented by

Zeileis et al. (2001) will be applied to the OLS-CUSUM model. To test for structural

change using a historic period the approach is to use a sequential procedure. First

the model under investigation have to be developed based on the historical period
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for which we investigate. When this model is defined we can change the data-frame

from just the historical period to the whole sample. Structural change is detected

by monitoring the change between the parameters in the historical period against

the entire scope of sample.

4.3 Autoregressive Model

The AR use the conditional mean model for bivariate price series. Added lagged

values remove serial correlation and account for seasonal components. Adding

the correct lag-order to the model will filter the data and creating serial uncorre-

lated residuals (Sotiriadis et al., 2014). A lag order of eight is selected using the

SC criterion. Exogenous variables include dummy variables for days and months.

Temperature is a key variable in determining electrical energy prices, as shown by

Weron (2000); Johnsen (2001). However, as the lagged price observations and sea-

sonal dummies had a more profound impact, the temperature was dropped from

the equations in order to avoid overparameterization. This ensures that the most

efficient estimators are used and gives the best, parsimonious model.

The model consists of the full time-series for the system price and each region. In

addition to the prices and its lagged values, the model include dummy variables for

both weekdays and months. As energy prices have strong seasonality this will show

significance both in short term and for longer stretches. Harvey (1993, p.152) points

out how adding explanatory variables to an AR process gives the possibility to par-

tially account for the movement of the explained variable. The model is named

Autoregressive Distributed Lags. The disturbance in the model is considered white

noise, and therefore can be estimated using the OLS regression.

pt =↵+�⇥DVd +�⇥DVm +
mX

k=1

�(k )pt�k + "t (20)

Equation 20 show the general equation for the AR model applied. The� is a N ⇥1

vector for the coefficients of the weekday and month dummy variables, where

an estimated coefficient respond to the different day and month. The DVd is the

dummy variable vector for the days, and the DVm is the dummy variable for months.
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The�(k ) is the coefficient for the price at a given k lag of the AR model, where Pt�k is

the respective price. The innovation of the model is described in "t . The model will

take the following shape for each region, based on the model described by Slade

(1986). The model account for the dynamic adjustment present in time series. The

following regression is run:

pt =↵+
7X

a=1

�a DVd t +
12X

b=1

�b DVm t +
8X

i=0

�i p S
t�i +

8X

j=1

� j pt� j + "i t (21)

Where the DVm t and DVd t denotes the dummy variables for months and days at

time t . The model will run the selected amount of lags for each of the area price

series under investigation, and the system price. The intercept ↵ is included as

a baseline, accounting as a proportionality coefficient. For the system price, p S
t�i ,

observations range from t = 0 to lag eight. The region under consideration will

have lagged values from t = 1 to lag eight as explanatory variables. By regressing

the model using lagged values, it will be possible to see the effects of integration

over time, as well as the influence of seasonal components. The inference will show

significant relations and the result can be compared with other regions to form an

understanding of the difference in the price movement.

4.4 Long term stability and dynamic

Drawing on Ravallion (1986); Slade (1991); Asche et al. (2004), the next tests will test

for validity in the LOP. The system price is perceived to be the "one price" in NPS.

The LOP is used to describe a market that removes the notion of one-way arbitrage,

i.e. two identical assets in a efficient market should trade at the same price (Akram

et al., 2009). Stationary data is required to test for LOP using the methods described

here, as non-stationary data fail to give valid inference in linear regression.

4.4.1 Instantaneously Adjustment

The first model test whether there is instantaneously adjustment in the area price,

based on the movement of the system price. A linear regression is fitted for each
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region; the region price is the observation and the system price is the explanatory

variable. The relation between region and system price is:

p R
t =↵0p

� j
t (22)

Taking the logarithm and separating the factors, the model is as follows:

lnp R
t =↵+� j lnpt (23)

The general form for the estimated coefficients then become:

p R
t =↵+�p S

t + "t (24)

The constant, ↵, is a proportionality coefficient. Should the prices be identical this

would be close to zero. The more the two series deviate from each other, the larger

value ↵will inhibit. The region price, p R
t , is described by the system price p S

t and

its coefficient � . The results from this regression will be used to form the following

null hypothesis:

H0 :� = 1 (25)

The null specified in Equation 25 is a test for the constant relationship between

the two prices, and for the assumption of LOP. If the t test fails to reject the null

hypothesis and the test for dynamics (Equation 28) is rejected, the movement of

the area price is integrated with the system price for one time period, i.e. the "one

price" holds short term (Ravallion, 1986). With the null hypothesis H0 : � = 0, the

assumption is that there is no possible substitution between the two regions (Asche

et al., 2004). This means that the system price does not influence the price in the

given region.

4.4.2 Dynamics in the price series

The next test will test whether there are dynamics in the price series. To test the

null hypothesis of no dynamics, a F test must be applied to the residuals of both a
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restricted and an unrestricted model. First, an unrestricted model will be applied

to the price series under investigation. The model described in Asche et al. (2004)

is used to form the regression:

p R
t =↵+

8X

j=1

� j p R
t� j +

8X

i=0

�i p S
t�i + "t (26)

The region price will be explained by estimates from the system price at time t ,

and eight lagged periods from both the investigated area and the system price. The

constant, ↵ is a term describing the arbitrage between the explained and explana-

tory variable. The coefficients �i demonstrate the relationship between the region

price and the lagged value p S
t�i for the system price. � j is the elasticity of the lagged

region price at time t � j . Next, a restricted regression is run:

p R
t =↵+�p S

t + "t (27)

The null hypothesis assume that the lagged values are insignificant, and equal to

zero. The null hypothesis is formulated:

H0 :�1 = ...=�i = �1 = ...= � j = 0 (28)

Thus, the restricted model will only include the system price at time t . The Sum of

Squared Residuals (SSR) and degree of freedom will be used in formulating the F

statistics; see Equation 29, as described by Wooldridge (2015, p.122).

F ⌘ (SSRr �SSRu r )/q
SSRu r /(n �k �1)

(29)

Where q denotes the restriction imposed on the model. The denominator is the

SSR unrestricted divided by the unrestricted degree of freedom. The F -value will

be tested against the F distribution; F ⇠ Fq ,n�k�1. If the F value is below our chosen

significance level, we cannot reject the null hypothesis of no dynamics. If H0 is

rejected, we have jointly statistically significant variables.
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4.4.3 Long run parameter

The last test evaluate the short and long run LOP inference. The regressive element

is added to combat serial correlation. While the assumption of the residuals acting

as white noise still holds, there can still be unexplained variations in the residuals.

The same AR model as in the test for dynamics is applied to the region price. See

Equation 26. In order to find a suitable null hypothesis the long term price must

be described:

p R =
↵

1�
Pm

j=1� j

+
p S
Pn

i=0�i

1�
Pm

j=1� j

+
"t

1�
Pm

j=1� j

(30)

We formulate a t-test for the estimated coefficients, with the null hypothesis being

that the long term parameter is one, i.e. H0 :
P8

j=1� j +
P8

i=0�i = 1. Any misspe-

sification may be due to omitting of a key variable or lack of adequate regression

lag length. If the dependent explanatory variable inadequately account for the

observed variable, the model have functional form misspecification (Wooldridge,

2015, p.242). The goodness-of-fit can still be significant, but the variance of the

standard error are wrong. Since the lag selection is done using SC, the lag length is

chosen for a valid number of lags.

To find the t value for the test, the standard error of the entire range of coefficients

must be calculated. Once the error is found, the t value can be used to test the

significance of the null hypothesis. The value and degree of freedom for each re-

gression is used in the calculations. Should the long run hypothesis be rejected,

one has to re-evaluate the results from the short run models (Ravallion, 1986).

4.5 Granger Causality

The test for Granger Causality is a statistical method that test the relationship

between two or more variables to determine how the variables affect each other

(Granger, 1969). The causal inference tests the relationship between the variables

(Calhoun, 2002). The asymmetric relationship between X and Y is known as the

causality, and the Granger causality conclude whether X Granger-cause Y and
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opposite. The endogenous properties of the price series are tested to see if the

causality moves both ways. Should the movement be significant one way, the price

that does not adjust is believed to be the price leader (Asche et al., 2004).

The past and present values of y1,t should be part of explaining the forecasting

value of y2,t (Burda, 2001). For the test of causality between a bivariate time series,

the causality test in R use a Wald test to compare models. It compares the restricted

versus the unrestricted model of Y and X . Stationary data is required when testing

for LOP using the causal relationship. Lags are included in order to capture the

dynamic elements in the price movement. The lagged values of the test should

prove significant if there is a causal relationship between the two variables.

E (yt |It�1) 6= E (yt |Jt�1) (31)

where

It�1: information on past information about X and Y

Jt�1: information on past information of X

Equation 31 show the requirement for a Granger causality relationship between

two variables. This can be extended to apply for AR models as well as bivariate

time series. Granger (1969) claims that the feedback mechanism in a relationship

can be viewed as the sum of two separate causal mechanisms. By decomposing

and analysing cross relations and partial cross relations one can uncover direct

methods of predicting future values of a given variable based on the past behaviour

of another. Given two different equations for a time-series, a simple causal model

can be shown as:

Xt =
mX

j=1

a j Xt� j +
mX

j=1

bj Yt� j + "t ,

Yt =
mX

j=1

c j Xt� j +
mX

j=1

d j Yt� j +⌘t ,

(32)

Where "t and ⌘t are white noise that is uncorrelated. Equations 32 implies that

there is a relationship between X and Y . If these events take place as specified

above (bj and c j 6= 0) then we have a feedback relationship, see Granger (1969)
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for details. Equation 33 show how the causal relationship of Y Granger cause X .

Using all available information, U , will lower the variance as opposed to ignoring

the information from Y .

�2(X |U )<�2(X |U � Y ) (33)

Equation 33 have a feedback relationship if it is the same for Y as for X . How-

ever, this is based on the assumption of stationary data. The dynamic nature of

financial time series changes the causal relation over time. For time series that

are non-stationary we can discuss the notion of causality relation existing in this

moment of time. Cointegration tests by Johansen (1988) can be used to empirically

test for market integration when the data are non-stationary, even if traditional

econometric approaches cannot be applied (Asche et al., 2004).

To check for a causal relationship, the system price will be tested against the differ-

ent regions. The same test will be reversed, testing the different regions against the

system price. The SC criterion selected the number of lags to included equal p = 8.

The test in RStudio use the Wald test as a basis for examining the stochastic ele-

ments as well as the dynamic properties of the time series. Since the region prices

are based on the system price, there is a natural expectation for a relationship to

be present between the series.

4.6 Generalized Autoregressive Conditional Heteroskedasticity

The GARCH(1,1) process will be applied to the residuals of the AR model in Equa-

tion 21. The AR will describe the conditional mean of the different regions, and the

GARCH model describe the structure of the conditional volatility. This is the sim-

plest of the processes, but it suffices and give good results, as stated by Bollerslev

(1986). The innovations are then used to form a linear regression:

"t = yt � x
0
t b (34)

where yt is the dependent variable and x
0
t is a vector of explanatory variables. b

is a vector of unknown parameters. The innovation is then processed through the
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variance of the GARCH model. The estimated coefficients for the ARCH effect is

the parameter �1, and for the GARCH effect ↵1.

ht = z
0
t!,

z
0
t = (1,"2

t�1, ht�1),

!
0
= (↵0,↵1,�1)

(35)

Since the GARCH(1,1) model is employed, the variance will be as shown in Equation

(35). The log likelihood function is described as:

lt (✓ ) =�
1
2

log ht �
1
2
"2

t h�1
t (36)

The likelihood function is then differentiated for the various parameters to calcu-

late the maximum likelihood estimates. The! is tested against the null hypothesis

H0 : ! = 0. The statistical inference is tested using the Lagrange multiplier test

statistics, see Bollerslev (1986). The Box-Ljung test is applied to the squared resid-

uals. The null hypothesis is that the data is independently distributed, i.e. there

are no correlation between the data in the time-series (Box and Pierce, 1970). Any

correlation is due to the randomness of the sampling. Should this hypothesis be

rejected we have evidence of serial correlation.

The goal of the GARCH regression is to obtain the coefficients for variation due to

shock and innovation in the residuals from the autoregression. These estimated co-

efficients will provide information about how the price series in the regions handle

volatility. The coefficients will reveal the own-innovation of the price movements

and how lagged values of volatility affect the present level. A persistence coefficient

will be calculated; it is defined as the sum of the ARCH and GARCH effects. The

persistence will describe how the volatility process acts in the different regions.

4.7 Limitations

With financial statistical methods there are many aspects to consider when devel-

oping models. Exogenous and endogenous variables have a strong impact on the

residuals of a model. Serial correlation can distort the estimates and create biased
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values. Misspecification will remove the validity of the estimates. Non-stationary

data can distort the inference given by the OLS estimates.

The temperature has been shown by several studies to be dominant in the devel-

opment of electrical energy price (Weron, 2000; Johnsen, 2001). A limitation of the

tests is that temperature is not included in the autoregressive model. The price

series all have a different number of observations. The lack of similar time length

can reduce the strength of the analysis. The volatile movement seen in mid-2000

are not present in the analysed data for Lithuania, Latvia and Estonia. Also, outlier

observations in bottleneck periods create extreme price movement that have an

impact on the development of the model. The exchange rate between the Baltic

regions and the Northern regions can also introduce error. By introducing the ex-

change rate between EUR and NOK the results may be biased due to the different

currency in the regions.

Pragmatic limitations can account for the scope of the thesis. The sheer possibili-

ties for cross-testing and other methods, based on comparable literature, makes it

possible to construct several theoretical case studies. As such, theoretical satura-

tion is not the reason for limiting the thesis; the lack of time prevent further studies.

A parsimonious approach to the empirical analysis benefits both the reader and

the outcome.

40



4.8 Overview of methods

An overview of the methods applied are summarized in Table 1. The results are

presented in Section 6.

Table 1: Summary of methods applied

Method Description Parameter-restriction Results
Autoregression Autoregressiv model for the regions Eight lags Table 6, Appendix D

Structural Change
Test for structural change
in the system price

Table 4 and 5

Long term stability and
dynamics

a)
Tests if the region price is proportional
to the system price

H0 :� j = 1 Table 8 and 9

b) F-test for dynamic relationship. �0 = ...=�k = 0 Table 10

c) t test for the short and long term parameter
1: H0 :�0+ ...+�8 = 0
2: H0 :�0+ ...+�8 = 1

Table 11

Granger Causality Tests for a causal relationship E (yt |It�1) 6= E (yt |Jt�1) Table 12

GARCH Tests the volatility in the regions GARCH(1,1) Table 13
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5 Data

The data used consist of daily spot prices for each respective bidding area in NPS1.

The first sample begins 01. January 1996, and the last ends 31. Dec 2015. The spot

prices for Estonia, Latvia and Lithuania were only reported as Euro per MWh, and

were converted to NOK using currency data from Norges-Bank (2016). The natural

logarithm is applied to the daily spot price. There are 7305 observations for the

bidding areas that have been connected since the start. The lowest observational

data describes the price movement in Latvia, with an observation count of 942. The

spot price and the log spot price is reported, as well as corresponding statistics. See

Table 2 and 3 for the summary statistics. All the prices are denoted as NOK/MWh.

5.1 Summary statistics

The different bidding areas are named as following: In Norway there are five bid-

ding areas; NOR_Bergen, NOR_Oslo, NOR_Kristiansand, NOR_Trondheim, and

NOR_Tromso. Sweden had one region until 01. January 2011; then the Swedish

region was divided into four different bidding areas. The data for Sweden before

and after the split show a high correlation in descriptive properties2. The regions

will be aggregated, averaged and treated as one region for the remainder of the

thesis3. Denmark have two regions, DK_W and DK_E. Since the bidding areas are

included at different times, and don’t share similar descriptive data they must be

treated as two separate bidding areas. Both regions in Denmark have experienced a

negative spot price during certain dates. The negative, outlier observation is shown

as the minimum average daily price for DKW and DKE. Finland, Estonia, Latvia

and Lithuania all have one bidding area each.

NOR_Kristiansand has the overall lowest average price (239 NOK/MWh), and Latvia

has the highest average price (402.5NOK/MWh). The system price has an average

of 246.20 NOK/MWh for the entire sample period. The lowest price, ignoring the

1Data supplied via Nord Pool FTP server
2Summary statistics and correlation matrix for each region in Sweden are available in appendix
3The General Composite Commodities Theorem (GCCT) by Lewbel (1996), is used by Asche

et al. (1999) to allow product aggregation when the products move proportionally over time. If the
markets are well integrated, the validity of the aggregation should hold.
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Figure 5: System price Jan 1996 - Dec 2015

Source: Nord Pool FTP-server

negative value seen in Denmark, can be found in the southern Norwegian region

(Bergen, Oslo and Kristiansand) with a price of 16.61 NOK/MWh. The system price

has a minimum of 21.27 NOK/MWh, and Latvia have the highest minimum level

(165.8 NOK/MWh). The difference between Norway and Latvia is of course a time-

span of more than 16 years. The northern parts of NPS have the highest maximum

price (4089 NOK/MWh) whereas Bergen and Oslo have the lowest maximum price

(831.40 NOK/MWh). Denmark East have the highest standard deviation (141.59)

and Lithuania have the lowest standard deviation (97.68).

The Coefficient of Variation (CV) is calculated for each set of data. CV is the stan-

dard deviation divided by the mean of each sample. This is a measurement for how

volatile the price is during the sample period. Latvia have the lowest CV (0.25) and

Trondheim have the largest CV (0.5377). The boxplot in Figure 6 show the mean

and the variation most notably in each consecutive year for the system price.
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Figure 6: Boxplot for the system price 1996 - 2015

Source: Nord Pool FTP-server

The difference in length can challenge the robustness of the summary statistics.

Comparing Bergen against Latvia will not give concluding evidence of difference,

since the overall price level has shifted in the course of the sample section. However,

both the statistical properties in the tests and the selection criterion for the AR

model fail to give evidence of misspesification.

5.2 Statistical properties

The skewness and kurtosis have been analysed for each data set to see how the

distribution is shaped. Kurtosis is a measurement on the distribution of the values

across the mean. The value of kurtosis supplied in Table 2 and 3 are the excess

kurtosis. The normal distribution has a kurtosis of 3, and the excess kurtosis is
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Table 2: Summary statistics of daily spot electricity prices in Nord Pool; 1. Jan 1996 – 31. Dec 2015

Statistics Spot electricity prices

NPS_SYS NOR_Ber NOR_Osl NOR_Kri NOR_Trond NOR_Trom SE

Mean 246.2 239.3 240.7 239.0 253.5 252.0 254.6
Median 237.4 233.5 233.7 233.5 240.8 240 240.8
Maximum 1090 831.4 1226 831.4 4089 4089 4044
Minimum 21.27 16.61 16.61 16.61 21.17 21.17 21.17
Std. dev. 116.5361 116.8263 120.1752 114.8036 136.2992 133.9874 135.5121
Skewness 0.9701 0.8845 1.1117 0.8168 4.8741 5.0600 4.8215
Kurtosis 1.7576 1.3112 2.8570 0.9818 101.1409 108.3156 99.1822
CV 0.4733 0.4882 0.4993 0.4803 0.5377 0.5317 0.5323
J-B 2086.1 1475.7 3989.1 1105.6 3142500 3602200 3022500
J-B p � v a l ue 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ADF -4.205 -4.1577 -4.292 -4.0687 -5.2585 -5.1011 -5.4154
ADF p � v a l ue 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Observations 7305 7305 7305 7305 7305 7305 7305

Statistics Spot electricity prices

Denmark_West Denmark_East Finland Estonia Latvia Lithuania

Mean 276.3 303.5 270.5 319.6 402.5 384
Median 264 276.2 259 310.8 394.7 371.6
Maximum 3321 4089 4089 3665 1071 1071
Minimum -284.2 -283.8 21.17 58.49 165.8 123.9
Std. dev. 121.2447 141.5906 139.3778 103.0270 100.6163 97.6800
Skewness 3.5085 5.8009 4.8572 16.8017 1.6472 1.6957
Kurtosis 69.0293 112.8208 100.4105 529.8587 7.0653 7.3618
CV 0.4388 0.4665 0.5153 0.3224 0.2500 0.2544
J-B 1209200 2985300 2788800 24676000 2385.3 3536.7
J-B p � v a l ue 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ADF -5.6009 -6.6716 -6.4497 -8.1373 -5.0677 -5.8264
ADF p � v a l ue 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Observations 6028 5570 6577 2101 942 1292

Prices in NOK/MWh

Source: Nord Pool FTP server

simply the difference from 3. NOR_ Trondheim is an example with excess kurtosis

for the spot prices equal to 101.14, and a kurtosis then would be 104.14. This is

known as a leptokurtotic distribution. This means that there are fat tails in the data

distribution, leading to large, outlier values. Skewness explains how the curve of

the distribution is shaped. A positive skewness means that more of the distribution

leans towards an increase from the expectation of the distribution.

The Jarque-Bera test (JB) determines whether the data sample follow a normal or

non-normal distribution (Jarque and Bera, 1980). The null hypothesis is that the

series are normal distributed; should it be rejected the distribution is non-normal.

The responding p values will determine the strength of the null hypothesis. For
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Table 3: Summary statistics of logarithm of the daily spot electricity prices in Nord Pool; 1. Jan
1996 – 31. Dec 2015

Statistics Log spot electricity prices

NPS_SYS NOR_Ber NOR_Osl NOR_Kri NOR_Trond NOR_Trom SE

Mean 5.389 5.347 5.351 5.35 5.407 5.405 5.416
Median 5.47 5.453 5.454 5.453 5.484 5.48 5.484
Maximum 6.994 6.723 7.112 6.723 8.316 8.316 8.305
Minimum 3.057 2.81 2.81 2.81 3.053 3.053 3.053
Std. dev. 0.5049 0.5453 0.5432 0.5322 0.5280 0.5171 0.5109
Skewness -0.5059 -0.7702 -0.6722 -0.6926 -0.5861 -0.5264 -0.3968
Kurtosis 0.2379 1.0375 0.8462 0.7698 1.0555 0.8711 0.4594
CV 0.0937 0.1020 0.1015 0.0995 0.0977 0.0957 0,0943
J-B 328.78 1050 768.01 764.48 757.35 568.34 255.99
J-B p � v a l ue 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ADF -4.1006 -4.6132 -4.5577 -4.5009 -4.41 -4.052 -4.5185
ADF p � v a l ue 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Observations 7305 7305 7305 7305 7305 7305 7305

Statistics Log spot electricity prices

Denmark_West Denmark_East Finland Estonia Latvia Lithuania

Mean 5.5260 5.6310 5.4830 5.7380 5.9690 5.9220
Median 5.5760 5.6210 5.5570 5.7390 5.9780 5.9180
Maximum 8.1080 8.3160 8.3160 8.2060 6.9770 6.9770
Minimum -5.6500 -5.6480 3.0530 4.0690 5.1100 4.8200
Std. dev. 0.4985 0.4447 0.4997 0.2377 0.2354 0.2385
Skewness -4.5870 -4.4374 -0.4313 -0.2569 0.1488 0.1736
Kurtosis 83.5146 104.9370 0.3911 10.5668 1.5407 1.6330
CV 0.0902 0.0790 0.0911 0.0414 0.0394 0.0403
J-B 1772900 2573900 245.83 9797.7 96.6490 150.05
J-B p � v a l ue 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ADF -6.2232 -6.1515 -5.3914 -6.9742 -4.7606 -5.5850
ADF p � v a l ue 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Observations 6028 5570 6577 2101 942 1292

Prices in NOK/MWh

Source: Nord Pool FTP server

the daily spot prices and logarithmic values, we can reject the null hypothesis of a

normal distribution with a 1% significance.

The next initializing test is the Augmented Dickey-Fuller test (ADF), which test the

sample data against the null hypothesis of a unit root (Dickey and Fuller, 1979). The

test will answer whether the data are stationary or not. This is important in order

to create a complete model for prediction and identification of volatile elements.

To test the data for market integration using causal methods the data will need to

be stationary. If there is a presence of unit root the process will drift far differently

than a process without unit root (Wooldridge, 2015, p.505). The ADF include lagged
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elements in order to reduce serial correlation in the data. For all our daily spot price

and logarithm spot price we can reject the null hypothesis of a unit root. All the

data, both ordinary price and logarithm of the price, are stationary.

5.3 Seasonality

The seasonal component is defined using dummy variables. Dummy variables

will be assigned to the different months as well as the days of the week. Weekly

seasonality can be significant, and must be analysed. The price moves differently

throughout the day, and it is possible to see large changes in the price during the

course of a day. By using the average for each day the model will be simpler to use,

and the number of observations needed to process will be reduced.

Figure 7: Seasonality in the system price Jan 2008 - Jan 2010

Johnsen (2001) use both temperature and weather as input variables in the price

algorithm. The hydro power reservoirs in Norway and Sweden are dependent on

inflow. As a result, the weather influence the price level. Further, regulations with

regards to the level of water in the reservoirs are given by the concession for the field.

48



There are minimum and maximum levels in the dams that need to constantly be

regulated by the producer. When snow melts in the spring and summer the water

levels in the reservoirs rise. This means that electricity has to be produced in order

to gain an income from the excess water. As a result, in the summer a lower demand

and high supply lead to decreasing prices. This is a seasonal pattern that repeats

itself each year. The difference between a dry and a wet period can most notably

be seen in the fall and winter when dam levels are low and demand is high. Figure

7 show how a two-year cycle of the system price has a cyclical movement. Further,

there tends to be a correlation between the temperature and the consumption.

Higgs (2009) finds that demand increases during warm periods. In Australia, the

need for electric energy to cool down during warm periods is similar to the Nordic

use of energy to heat during cold periods4.

5.4 Summary

The initial analysis of the different data has given the following results. The sample

size for the daily data is sufficient, even for the newest additions into NPS. Sweden

is aggregated into one region, due to the similarities between the bidding areas.

Denmark experience negative price levels on four occasions. The data is confirmed

to be stationary by the ADF test. All the data are non-normal distributed and follow

the same seasonal pattern.

4In this thesis the use of temperature was considered, but as the market integration between
the bidding areas could be tested without the use of weather, the author has chosen not to include
the temperature data in any of the tests performed later. For further studies of the integration,
temperature can be a suitable variable to include.
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6 Empirical Results

This section present the empirical result of the tests for market integration and

investigation of volatile behaviour in the regional price series. An AR(8) model has

been run, and the residuals from this has been used in a GARCH(1,1) model to

find volatility parameters. The result of the tests and models will be presented in

the same structure as the methodology. The plots and tables not presented in this

section will be added to the appendix.

6.1 Structural Change

The tests for structural change was done using the methodology described by

Zeileis et al. (2001) using the OLS-CUSUM model developed by Brown et al. (1975).

Both the system price and the differentiated system price was tested. The results

of the tests are presented in Table 4 and 5.

Figure 8: Structural change for the system price

The result of the empirical fluctuation test reveal that the system price has multiple

structural changes throughout the entire period of the sample. This can be at-
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tributed to the constant expansion of markets and unstable production conditions.

Johnsen (2001) found that several of the years experienced changing precipitation,

and that this in turn lead to volatile price movement. The system price show signs

of multiple structural changes. The volatility of energy prices in the Nordic market

are shown to be higher than other commodities and equities (Solibakke, 2002). The

differentiated system price has no structural change. The variability of the price is

stable though the entire sample period.

Table 4: Results for tests of structural change

S0 p-value
Test 1: pt = res.sys+�p 2

t 23.955 0.0000
Test 2: �pt = res.sys+�p 2

t 0.610 0.8498

Table 5: Results for tests of structural change part 2

Historical Change: pt = res.sys+�p 2
t S0 B.P H.S L.P

Hist. period 1 – 365: 0.05 390 365 7300
Hist. period 390 – 550: 0.05 162 161 6756
Hist. period 712 – 800: 0.610 90 88 7305

B.P = Break Point, H.S =Historical Sample, L.P = Last point
Sample values range from 1 to 7305. B.P is calculated from last historical observation

Figure 8 show that the majority of the period under investigation is subject to a

structural change. Only a few periods seem to be stable, such as around 2004 -

2005. The system price show signs of stability for the first period, before it fluc-

tuates out of control for the next years. The last period also move out of bounds,

before it converge towards the null again. The conclusion is that the system price is

extremely volatile, and have multiple structural changes during the sample period.

The differentiated price shows no signs of structural change. This means that the

change between the daily prices are stable and that it stays so for the entire sample

period. Figure 9 show how the fluctuation moves around the center. It does not

violate the constraints set by the confidence interval, and thus the null hypothesis

of no structural shift cannot be rejected. The historical period does not adequately

describe the whole sample. Even with different periods, the system price break fast.

See Table 5.
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Figure 9: Structural change for differentiated system price

6.2 Autoregressive Model

The bivariate autoregressive procedure is applied to a conditional mean model.

The dummy variables for weekdays and months are added to the regression equa-

tion. The area price is the explained variable, with lagged values of both the speci-

fied area price and the system price as explanatory variables. The lag selection is

chosen using the SC criterion. Table 6 show the coefficients, standard error and

p values for the own mean spillover and cross spillover between the region under

investigation and the system price. The first table is presented in the text; the rest

are placed in the appendix. The goodness-of-fit is reported in Table 7 for all the

conditional mean models.

The result of the AR regression model show the effects and significance of lagged

values, both from own and from the system price. The intercept, ↵0, is a propor-

tionality coefficient, which determine the difference between the two price series

other than the strength of relation. Impact of transportation, production and qual-

53



Table 6: Summary of estimated AR coefficients Bergen, Oslo and Kristiansand

NOR_Bergen NOR_Oslo NOR_Kristiansand

Coefficients Std.error p-value Coefficients Std.error p-value Coefficients Std.error p-value

↵0 -0.0009 0.0093 0.92089 -2.975e-03 8.436e-03 0.724356 0.0011 0.0087 0.899315
�1 0,7313 0.0118 0.0000 0.7467 0.01177 0.0000 0.7343 0.0118 0.0000
�2 0.0244 0.0146 0.09394 0.004218 0.01467 0.773665 0.0300 0.0146 0.039967
�3 0.1236 0.0146 0.0000 0.1159 0.01471 0.0000 0.0986 0.0146 0.0000
�4 -0.0345 0.0147 0.01929 -0.02835 0.01478 0.055216 -0.0203 0.0147 0.167766
�5 0.0153 0.0147 0.30021 -0.02234 0.01479 0.130904 -0.0250 0.0147 0.088470
�6 0.0244 0.0147 0.09625 0.05344 0.01473 0.000288 0.0547 0.0146 0.000191
�7 0.0664 0.0147 5.94e-06 0.07566 0.01475 0.0000 0.0601 0.0147 4.12e-05
�8 -0.0110 0.0118 0.34995 -0.0004079 0.01179 0.972398 0.0123 0.0118 0.297980
�0 0.7722 0.0089 0.0000 0.7969 0.0080 0.0000 0.7778 0.0083 0.0000
�1 -0.4863 0.0142 0.0000 -0.5242 0.0136 0.0000 -0.5241 0.0138 0.0000
�2 -0.0168 0.0152 0.27150 -0.0066 0.0148 0.655231 -0.0103 0.0150 0.493916
�3 -0.1122 0.0153 0.0000 -0.0958 0.0149 0.0000 -0.1033 0.0151 0.0000
�4 0.0369 0.0154 0.01647 0.0150 0.0150 0.315940 0.0293 0.0152 0.053886
�5 -0.0217 0.0154 0.15888 0.0120 0.0150 0.424097 0.0144 0.0152 0.341556
�6 -0.0435 0.0152 0.00427 -0.0576 0.0148 0.000105 -0.0566 0.0150 0.000169
�7 -0.0788 0.0153 0.0000 -0.0951 0.0149 0.0000 -0.0789 0.0151 0.0000
�8 0.0111 0.0127 0.38249 0.0120 0.0124 0.333371 0.0072 0.0124 0.560355
�mo n -0.0020 0.0035 0.56593 -0.0023 0.0032 0.463902 -0.0032 0.0033 0.326685
�t ue -0.0054 0.0035 0.12090 -0.0056 0.0031 0.073304 -0.0023 0.0033 0.486226
�w e d -0.0057 0.0034 0.09722 -0.0047 0.0031 0.131047 -0.0057 0.0032 0.077670
�t h u -0.0076 0.0034 0.02655 -0.0076 0.0031 0.014789 -0.0035 0.0032 0.277114
� f r i -0.0076 0.0034 0.02793 -0.0056 0.0031 0.071272 -0.0039 0.0032 0.233949
�s a t 0,0014 0,0033 0.66251 0,0022 0,0030 0.468120 0,0036 0,0031 0.250259
� j a n -0.0025 0.0036 0.48476 -0.0017 0.0033 0.597789 -0.0019 0.0034 0.583338
� f e b -0.0016 0.0037 0.66529 -0.0008 0.0033 0.803855 -0.0016 0.0035 0.652036
�ma r -0.0013 0.0036 0.71909 -0.0022 0.0033 0.511623 -0.0012 0.0034 0.723415
�a p r -0.0023 0.0037 0.53363 -0.0024 0.0033 0.466517 -0.0023 0.0034 0.501510
�ma y -0.0075 0.0036 0.03876 -0.0076 0.0033 0.020918 -0.0074 0.0034 0.031689
� j un -0.0037 0.0037 0.32173 -0.0022 0.0033 0.501430 -0.0017 0.0035 0.627853
� j ul -0.0050 0.0037 0.17475 -0.0056 0.0033 0.090928 -0.0050 0.0035 0.150444
�a ug -0.0077 0.0037 0.03796 -0.0064 0.0034 0.055765 -0.0035 0.0035 0.318582
�s e p -0.0063 0.0037 0.08611 -0.0041 0.0033 0.221110 -0.0045 0.0035 0.194807
�o c t 0.0016 0.0036 0.66388 0.0009 0.0033 0.782987 0.0020 0.0034 0.553247
�no v 0.0006 0.0036 0.87478 0.0000 0.0033 0.992520 0.0005 0.0034 0.885530

↵0 is the intercept, �i is the coefficient for the regions lagged value, and �i is the coefficient for the
lagged values of the system price. � is the coefficient for the dummy variable.

ity can increase the difference between two regions, and will change the estimated

coefficients. In the Norwegian regions, the intercept is insignificant, and have a

very low estimated value. This could be due to the low production cost of hydro

power, and good possibilities for transmission between regions. For the Baltic re-

gions however, the intercept is significant and have a large value. This indicate

that Baltic area are less integrated with the system price, and that there are other

variables that could specify the model better. As expected, the significance of the

own and cross mean spillover is most significant in the lags closest to the present

time. The system price at time t is dominant and positive, as it should be according

to the theoretical specification of the spot price in NPS. All the regions experience

a significant and positive own spillover from its own lagged observation, at time

t �1. The first lagged value for the system price, t �1, is significant and negative.
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This can be seen in most of the results. The system price is significant for most

regions, showing signs of integration. The only deviation can be seen in Latvia

and Lithuania. The price in these regions are mainly determined by the current

system price and the first lagged value of its own price. Lagged values from the

system price behind time t is not significant, and this indicated that integration is

somewhat weaker. Lag five and six have a degree of significance but only in the 10

and 5 % range.

Figure 10: Fitted value and residuals for Bergen

The seasonal movement is captured using two sets of dummy variables. The first

dummy set tries to capture the weekly seasonality. In previous work by Sotiriadis

et al. (2014); Higgs (2009); Worthington et al. (2005) it is shown that the weekly sea-

sonal component is significant and has a large impact on the conditional mean

model. The result from the regression show that the weekly component is less sig-

nificant for the Norwegian regions than for the rest of the market sections. This can

be due to the close resemblance between the area price and system price in Norway.
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The southern parts (Bergen, Kristiansand and Oslo) have both mean, max and min

values similar to the system price. For the whole sample selection, it can be seen

that Monday are the most significant of the days in the week. This is previously

shown by Solibakke (2002) for the Nordic region. In the Baltic region, the weekly

dummy are significant, more so than lagged price observations. Due to the poor ex-

planatory ability of the lagged values, the weekly movement give more information

than the lagged regional price observations. The second seasonal dummy variable

test the significance of the monthly movement. Again, the Norwegian regions ex-

perience less impact of the monthly component. May is significant, with August

and September significant for Bergen and Oslo. During the spring the snow in the

mountains melt, creating an excess of water in the reservoirs. To reduce the loss

due to overflow the producers will generate more energy than what is necessary in

order to maintain the equilibrium in the market. This in turn, as described by the

Law of Supply, reduce the price.

Table 7: AR(8) estimation results

R 2 F-Statistic p-value
NOR_Bergen 0.9865 15600 0.0000
NOR_Oslo 0.9888 18910 0.0000
NOR_Kristiansand 0.9875 16840 0.0000
NOR_Trondheim 0.9857 14750 0.0000
NOR_Tromso 0.9866 15740 0.0000
Sweden 0.9853 14350 0.0000
Denmark West 0.6455 320.6 0.0000
Denmark East 0.7101 398.2 0.0000
Finland 0.9646 5244 0.0000
Estonia 0.6407 108 0.0000
Latvia 0.6682 53.1 0.0000
Lithuania 0.6459 67 0.0000

Diagnostic checking is an indispensable first step when establishing a model (Box

et al., 1976, p.289). Visual inspection of the residuals from an AR process give an

indication if randomness is present. Figure 10 show the ACF and PACF for the

residuals. The goodness-of-fit for the model is close to 1, and all the F-statistics

reject the null hypothesis that the coefficients are zero. Denmark and the Baltic

states have a lower goodness-of-fit, with a R 2 value between 0.60 and 0.70 for the

regions. The model appear to be correctly specified.
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6.3 Long term stability and dynamics

The level of market integration and the appearance of LOP is tested using infer-

ence on a dynamic model. The object of the tests is to detect the occurrence of

instantaneous market integration or a long run equilibrium. While correlation can

describe much about prices, the dynamic component shift due to seasonality and

technical change. The results from the tests for market integration and the LOP are

presented in each subsection.

6.3.1 Instantaneously Adjustment

The summary statistics for the test of instantaneous adjustment is presented in

Table 8 and 9. The estimated coefficient are tested against the null hypothesis of

�0 = 1. If the t test fails to reject the null hypothesis the assumption is that the

region price is moved entirely by the price movement of the system.

Table 8: Summary statistics for the static test

Estimate Std. Error t value p value

Bergen
b↵0 -0.2346 0.0194 -12.0900 0.0000
b�0 1.0357 0.0036 288.7500 0.0000
H0 : b�0 = 1 9.9626 0.0000

Oslo
b↵0 -0.2444 0.0179 -13.6900 0.0000
b�0 1.0384 0.0033 314.8400 0.0000
H0 : b�0 = 1 11.6325 0.0000

Kristiansand
b↵0 -0.1148 0.0182 -6.2960 0.0000
b�0 1.0141 0.0034 300.9540 0.0000
H0 : b�0 = 1 4.1840 0.0000

Trondheim
b↵0 -0.0984 0.0142 -6.9400 0.0000
b�0 1.0216 0.0026 390.0900 0.0000
H0 : b�0 = 1 8.2463 0.0000

Tromso
b↵0 0.0014 0.0132 0.1090 0.9130
b�0 1.0027 0.0024 409.9770 0.0000
H0 : b�0 = 1 1.1137 0.2654

Sweden
b↵0 0.0879 0.0136 6.4590 0.0000
b�0 0.9888 0.0025 393.2510 0.0000
H0 : b�0 = 1 38.8229 0.0000

The Scandinavian regions have a significant relationship to the system price. The

regions in Norway are closely connected with the system price, but the results reject

the hypothesis of a proportional relation. The results show that the Baltic regions

are less dependent on the system price. Further, for the Baltic regions, the constant

57



Table 9: Summary statistics for the static test cont’d

Estimate Std. Error t value p value

Denmark W
b↵0 1.3776 0.0524 26.2900 0.0000
b�0 0.7574 0.0095 79.4500 0.0000
H0 : b�0 = 1 25.4456 0.0000

Denmark E
b↵0 0.9758 0.0538 18.1300 0.0000
b�0 0.8388 0.0097 86.7200 0.0000
H0 : b�0 = 1 16.6648 0.0000

Finland
b↵0 0.5654 0.0243 23.2700 0.0000
b�0 0.9089 0.0045 203.3200 0.0000
H0 : b�0 = 1 20.3739 0.0000

Estonia
b↵0 4.0029 0.0583 68.7000 0.0000
b�0 0.3112 0.0104 29.8600 0.0000
H0 : b�0 = 1 66.0731 0.0000

Latvia
b↵0 5.2340 0.1204 43.4600 0.0000
b�0 0.1362 0.0223 6.1200 0.0000
H0 : b�0 = 1 38.8179 0.0000

Lithuania
b↵0 5.5125 0.0975 56.5510 0.0000
b�0 0.0755 0.0179 4.2060 0.0000
H0 : b�0 = 1 51.5279 0.0000

↵ indicate that additional costs are connected to the price movement. Tromso is

the only region that fail to reject the null hypothesis of �0 = 1, and the LOP applies

when examining the price movement in Tromso. The coefficient � indicate if the

prices share a relation, and if the LOP is valid (Asche et al., 2006).

6.3.2 Dynamics in the price series

The results for the F test on dynamic properties is shown in Table 10. The SSR

for the unrestricted and restricted model are used to form a F-statistics. The null

hypothesis is that there is no dynamic relationship in the price series. Testing the

inference of the coefficients will indicate if the market integration is present in

the short run. The null hypothesis of no dynamics is rejected at the 1% level for

all the regions. It can be concluded that the lagged values have significance and

must be applied when testing the series. All the regions are better specified using

lagged values. As shown in the AR results, the Nordic regions (Norway, Sweden,

and Finland) are more dependent on lagged values than the newer additions.
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Table 10: Test statistics for the AR model testing for dynamic relationship

SSR unrestricted SSR restricted d fu r d fr q F-statistics p-value
NOR_Bergen 29.445 174.923 7279 7303 24 1498.481 0.000
NOR_Oslo 24.159 147.884 7279 7303 24 1553.207 0.000
NOR_Kristiansand 25.993 154.372 7279 7303 24 1497.962 0.000
NOR_Trondheim 29.157 93.249 7279 7303 24 666.695 0.000
NOR_Tromso 26.299 81.330 7279 7303 24 634.622 0.000
Sweden 28.265 85.956 7279 7303 24 619.036 0.000
Denmark West 548.387 731.432 6002 6026 24 83.474 0.000
Denmark East 323.982 468.549 5544 5568 24 103.077 0.000
Finland 59.867 225.342 6551 6575 24 754.459 0.000
Estonia 44.477 83.316 2075 2099 24 75.499 0.000
Latvia 19.369 50.151 913 937 24 60.457 0.000
Lithuania 27.743 72.421 1266 1290 24 84.952 0.000

6.3.3 Long run parameter

This section provides results from tests of the appearance of a short or long run

equilibrium. The first null hypothesis check if the summed parameter equal to

zero, which test for the short run market integration. The second null specified

tests if the long term parameter for the sum of the coefficients is one. The results

from both hypothesis tests are presented in Table 11. The first hypothesis is re-

jected at a significant level for all regions. The short run market integration can

not be accepted, due to the variance of the prices. Both the AR model and the

test for a dynamic relationship has already shown that the lagged components are

significant. The second hypothesis for a long run integration cannot be rejected

for Tromso and Kristiansand. According to Ravallion (1986), this is an indication

of market integration in the long run. For Oslo, the null can be rejected at the 10 %

level. For Sweden at the 5% level and Bergen at the 1% level. The rest of the regions

rejects the null hypothesis at the 0.1% significance. The result concludes that for

the oldest regions the long term parameter converges towards one. The regions are

integrated with the system price, as hypothesized. For the newer additions to NPS,

the average value from previous periods dictate the price level at time t , and the

long term parameter does not converge towards one. While the hypothesis of mar-

ket integration in the long run is rejected for most regions, it cannot be concluded

that NPS is poorly integrated and noncompetitive. Transmission constraints pre-

vent full utilization of capacity, and prevents the validity of the LOP in both short

and long run.
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Table 11: Statistics for tests on the long term parameter

Long term parameter Std. Error t-value p-value

H0 :�0+ ...+�8 = 0

NOR_Bergen 1.0017 0.0007 1518.1937 0.0000
NOR_Oslo 1.0020 0.0007 1534.2208 0.0000
NOR_Kristiansand 1.0008 0.0007 1532.3966 0.0000
NOR_Trondheim 1.0021 0.0007 1522.1514 0.0000
NOR_Tromso 1.0004 0.0006 1583.6336 0.0000
Sweden 0.9973 0.0007 1346.8305 0.0000
Denmark West 0.9271 0.0018 501.5923 0.0000
Denmark East 0.9547 0.0016 589.0370 0.0000
Finland 0.9906 0.0009 1108.1567 0.0000
Estonia 0.8463 0.0016 522.4648 0.0000
Latvia 0.860305 0.0023 367.8681 0.0000
Lithuania 0.8682 0.0021 414.7625 0.0000

H0 :�0+ ...+�8 = 1

NOR_Bergen 1.0017 0.0007 2.5977 0.0094
NOR_Oslo 1.0020 0.0007 3.1173 0.0018
NOR_Kristiansand 1.0008 0.0007 1.3473 0.1779
NOR_Trondheim 1.0021 0.0007 3.2116 0.0013
NOR_Tromso 1.0004 0.0006 0.6733 0.5007
Sweden 0.9973 0.0007 -3.6178 0.0002
Denmark West 0.9271 0.0018 -39.4022 0.0000
Denmark East 0.9547 0.0016 -27.9391 0.0000
Finland 0.9906 0.0009 -10.4251 0.0000
Estonia 0.8463 0.0016 -94.8461 0.0000
Latvia 0.860305 0.0023 -59.7338 0.0000
Lithuania 0.8682 0.0021 -62.9424 0.0000

The tests show the difference between the old and new additions in NPS. The Baltic

and Danish regions have less integrated price movement. The consistency of this

observation can be linked to the more stable areas in Norway and Sweden. Both

the intercept and the lagged observations are significant, and the result of the AR

model confirms that some of the regions are integrated with the system price. From

the results it is clear that the old regions are more integrated with the system price

than newer additions. The high level of correlation between some of the region

clearly show that there are some form of integration in the market.

6.4 Granger Causality

The result of the test for causality between the various regions and the system price

shows that the relationship is significant both ways, and that the null hypothesis

of no relationship is rejected at the 1% level for all the regions. The test statistics

and p value is reported in Table 12.
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Table 12: Test results for Granger Causality test

R =R +S Y S S Y S =R +S Y S

F-statistics p-value F-statistics p-value

NOR_Bergen 43.6350 0.0000 34.0900 0.0000
NOR_Oslo 38.3500 0.0000 28.9200 0.0000
NOR_Kristiansand 41.6060 0.0000 24.8750 0.0000
NOR_Trondheim 48.1580 0.0000 5.9284 0.0000
NOR_Tromso 41.7230 0.0000 5.7126 0.0000
Sweden 44.8560 0.0000 4.4188 0.0000
Denmark West 51.4390 0.0000 7.5324 0.0000
Denmark East 48.0140 0.0000 6.0748 0.0000
Finland 25.5990 0.0000 22.9710 0.0000
Estonia 17.0090 0.0000 10.0820 0.0000
Latvia 5.4429 0.0000 5.6276 0.0000
Lithuania 7.9958 0.0000 6.2228 0.0000

The idea and goal of NPS is to deliver social optimum prices for all participants in

the Nordic and Baltic sector. The system price acts as the guideline for all trade,

and congestion in transmission lines force the area price to deviate from the given

level. Thus, the null hypothesis of no relation between system and area price is

unreasonable, and it comes as no surprise that it is rejected at a significant level.

The area prices mimic the system price, and moves in the same way. This means

that we should be able to describe the price in the system by looking at the area

price. Since the system price acts as the one price, and we have an arbitrage re-

lationship between region and system, it indicates that indeed NPS have market

integration between the bidding areas and the system price. The causal and sig-

nificant relationship between area and system price indicate that the market has

reached a mature, stable state.

6.5 Generalized Autoregressive Conditional Heteroskedasticity

The coefficients in the GARCH result shows the degree of innovation and volatility

spillover in each of the regions. The ARCH coefficient is a description on the level of

own innovation in the price series that spill over into the next period, and is denoted

by �1. The ARCH effects are present in all the price series and are significant. The

GARCH effects are denoted with the coefficient↵1, and describe the lagged volatility

effects on the current volatility. The results are presented in Table 13.
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Table 13: Summary statistics for the GARCH(1,1) model

Bergen Oslo Kristiansand
Estimate Std. Error p value Estimate Std. Error p value Estimate Std. Error p value

↵0 0.0001 0.0000 0.0000 0.0001 0.0000 0.0000 0.0001 0.0000 0.0000
↵1 0.5854 0.0108 0.0000 0.5969 0.0118 0.0000 0.5964 0.0119 0.0000
�1 0.5666 0.0057 0.0000 0.5491 0.0064 0.0000 0.5563 0.0063 0.0000
Loglik 9773.2180 10495.2600 10225.2700
Box-Ljung 0.0036664 0.9517 0.00022 0.9881 0.0000284 0.9957
persist 1.1520 1.1460 1.1527

Trondheim Tromso Sweden
Estimate Std. Error p value Estimate Std. Error p value Estimate Std. Error p value

↵0 0.0003 0.0000 0.0000 0.0002 0.0000 0.0000 0.0002 0.0000 0.0000
↵1 0.4502 0.0050 0.0000 0.4704 0.0056 0.0000 0.5174 0.0061 0.0000
�1 0.6173 0.0032 0.0000 0.6164 0.0031 0.0000 0.5886 0.0044 0.0000
Loglik 9806.2170 10192.1600 9948.6320
Box-Ljung 0.0090403 0.9243 0.0020033 0.9643 0.000307 0.986
persist 1.0675 1.0868 1.1060

Denmark West Denmark East Finland
Estimate Std. Error p value Estimate Std. Error p value Estimate Std. Error p value

↵0 0.0017 0.0001 0.0000 0.0010 0.0000 0.0000 0.0004 0.0000 0.0000
↵1 0.9510 0.0031 0.0000 1.1920 0.0076 0.0000 0.3604 0.0051 0.0000
�1 0.5807 0.0014 0.0000 0.4589 0.0048 0.0000 0.6874 0.0040 0.0000
Loglik -1224.8840 67.1513 6213.0280
Box-Ljung 0.056044 0.8129 0.038639 0.8442 0.00023964 0.9876
persist 1.5317 1.6509 1.0478

Estonia Latvia Lithuania
Estimate Std. Error p value Estimate Std. Error p value Estimate Std. Error p value

↵0 0.0055 0.0003 0.0000 0.0017 0.0003 0.0000 0.0020 0.0003 0.0000
↵1 0.1803 0.0164 0.0000 0.1587 0.0211 0.0000 0.1688 0.0162 0.0000
�1 0.5683 0.0270 0.0000 0.7684 0.0269 0.0000 0.7472 0.0211 0.0000
Loglik 1105.5490 536.0373 691.0141
Box-Ljung 0.0023462 0.9614 0.34273 0.5583 1.1309 0.2876
persist 0.7485 0.9271 0.9160

The effects of innovation is significant, both statistically and in effect, for all the

regions. Latvia and Lithuania have the largest ARCH effect; change in demand,

supply and other shocks have a profound effect on the volatility. The ARCH effects

are large for the rest of the regions as well, confirming the assertion of high volatility

in energy prices. The lagged volatility, the GARCH effects, is also significant in all

the price series. Denmark has the largest GARCH effects, with (0.951) for Denmark

West and (1.192) for Denmark East. The deviation from the mean of previous values

has a large impact on the current variation in the Danish prices. Similarly, the Baltic

regions have a small GARCH effect but a higher innovation impact. The sum of the

ARCH and GARCH effects are known as the persistence coefficient. A persistence

value less than one implies that the volatility shocks are transitory. The variation in

price is mean-reverting and any effects of volatility will dampen out until the mean

condition is reached. If the persistence coefficient is larger than one it implies

that the shocks have a permanent impact on the volatility. It does not dampen

out like it does if the coefficient is less than one. Only the Baltic regions have a
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persistence coefficient of less than one. The result show that volatility clustering

have a permanent impact on the majority of the regions in NPS.

Figure 11: Price movement March 2015 - September 2015

Source: Nord Pool FTP-server

The norther regions have a equal innovation and volatility effect. The persistence

is larger than one, indicating that the volatility have a permanent effect on the

future price movements. Both regions in Denmark have a large volatile effect, and

a smaller innovation effect. The GARCH model show that these two regions are

most affected by volatile prices. The Baltic regions have a low GARCH effect, and

uneven price movement is mostly due to shocks and innovation. This follows the

results of Slade (1991), who found a competitive market with speculators to have a

large volatility in the prices. persistence coefficient is lower than one, indicating a

mean-reverting state for the volatility. The result of the GARCH model concludes

with several studies of electrical energy prices; stating that electrical energy prices

are the most volatile commodity in the energy market, far more uncertain than gas

and oil (Weron, 2000; Higgs, 2009; Worthington et al., 2005; Vehviläinen and Keppo,
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2003). Risk management when facing electrical prices is difficult, and a direct

application of financial theory is not possible due to the non-storable condition

(Vehviläinen and Keppo, 2003). Figure 11 show the price movement of the system

price, Bergen, Denmark East and Latvia. Based on the results in Table 13 and Figure

11 it can be shown that large volatile shifts occur in the Danish price movement.

The transitory conditional volatility does not die down like it does in the Baltic

regions.
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7 Conclusion

The purpose of this study has been to review the level of market integration and

effects of price volatility in the Nordic energy spot market Nord Pool Spot. The

data set consist of daily average spot prices from 01. January 1996 to 31. Decem-

ber 2015. Through this period NPS has undergone large changes. From being a

power exchange between Norway and Sweden, it has grown to encompass whole-

sale electricity trading for the Scandinavian region and several countries in the

Baltic region. As such, one can question the efficiency of the market and whether

the regions encompassed are fully integrated with the system price.

To test for market integration and volatility, a dynamic approach was chosen to

remove serial correlation from the time series. A univariate AR(8) model has been

estimated on the data sets, both with and without dummy variables for seasonality.

Lag length was selected using the SC criterion. The residuals from the AR model

were used in a GARCH(1,1) model to estimate volatility effects. The sum of the

ARCH and GARCH effects gives the persistence of the volatile movement. Inference

was tested using static and dynamic models of bivariate price series, to analyse the

arbitrage conditions needed to have market integration and validity for LOP.

The results of the tests for market integration indicate a close to perfect integra-

tion in the Nordic regions. Due to capacity constraints during bottleneck periods

regional prices deviate from the system price under such circumstances. Norway,

Sweden, Finland and Denmark have energy prices with a low mean and extreme

volatility. This is consistent with Slade (1991), who found that exchange prices are

more volatile than producer prices. The long run market integration is valid for Kris-

tiansand and Tromso. For the Baltic regions, high prices and low volatility indicate

that the regions are not yet fully integrated with the system price. The AR model

for the Baltic region show a unidirectional relationship between the lagged Baltic

prices and the system price, indicating weak integration. Few large producers use

market power to increase stability, but at a higher price per quantity of electrical

energy. As these markets get more integrated with the rest of NPS, implications

from the rest of the regions would expect the prices in the Baltic regions to reduce

and the volatility to increase.
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The second part of the thesis consist of testing for volatility in NPS. The volatility

is largely driven by the available power in each region, and the congestion con-

straint between stressed and unstressed regions during bottleneck periods. The

seasonality has also proven to impact the volatile behavior of the energy prices.

Volatility clustering can be expected during shifts in weather, and during holidays.

Norway and Sweden have equal ARCH and GARCH effects, i.e. shock and previ-

ous volatility have a similar influence on the future volatility. The Danish market

exhibit extreme volatility due to unpredictable energy production, constraints in

transmission, and other unknown factors. This is seen in large GARCH effects, and

smaller ARCH effects. Innovation and shocks are more influential in the Baltic re-

gions and Finland. The persistence measures if volatile movement is permanently

induced into the price or if it is temporary. The Scandinavian regions all have a

persistence level indicating that volatile movement have a permanent effect on the

future volatility. The Baltic regions have a mean reverting persistence effect. Large

shocks dampen down until the volatility is back at a stable level. The difference in

volatility behaviour indicate difference in market integration.

Nord Pool Spot today is not fully integrated. Better transmission capacity between

regions and a more diverse set of producers will diminish market power and shift

the regions closer to the ideal state that is the system price. This concurs with the

findings of Higgs (2009) and Worthington et al. (2005), who states that a physical

connection is required should the markets be fully integrated.
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Abbreviations

ADF Augmented Dickey-Fuller test. 47

AR Autoregressive. iii, x, 3, 24, 29, 31–33, 36–38, 45, 51, 53, 56, 58–60, 65

ARCH Autoregressive Conditional Heteroskedasticity. 25, 26, 39, 61, 62

BLUE Best Linear Unbiased Estimator. 23

CUSUM Cumulative Sum of Residuals. 30, 31, 51

CV Coefficient of Variation. 44

EU European Union. 18, 20

GARCH Generalized Autoregressive Conditional Heteroskedasticity. iii, 25, 26, 29,

38, 39, 51, 61–63, 65

JB Jarque-Bera test. 46

LOP Law of One Price. 3, 18, 33, 34, 36, 37, 57–59, 65

MOSUM Moving Sum of Residuals. 30

NEM the Australian National Electricity Market. 2, 16, 17

NEMO Nominated Electricity Market Operator. 6

NPS Nord Pool Spot. iii, 1–3, 5–7, 9, 10, 13, 15–17, 19, 33, 43, 44, 49, 54, 59–61, 63,

65

OLS Ordinary Least Squares. 20–22, 30–32, 40, 51

PCR Price Coupling of Regions. 20
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SC Schwarz Criterion. 27, 32, 36, 53

SRF Sample Regression Function. 21, 22

SSR Sum of Squared Residuals. 35, 58

TSO The System Operator. 5, 7, 14
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A Correlation Matrix

Systempris Bergen Oslo Kristiansand Trondheim Tromso Sverige
Systempris 1.000 0.976 0.980 0.976 0.929 0.927 0.925
Bergen 0.976 1.000 0.988 0.997 0.862 0.862 0.849
Oslo 0.980 0.988 1.000 0.987 0.892 0.892 0.879
Kristiansand 0.976 0.997 0.987 1.000 0.860 0.860 0.848
Trondheim 0.929 0.862 0.892 0.860 1.000 0.996 0.989
Tromso 0.927 0.862 0.892 0.860 0.996 1.000 0.987
Sverige 0.925 0.849 0.879 0.848 0.989 0.987 1.000
Danmark V 0.723 0.654 0.643 0.661 0.660 0.653 0.680
Danmark O 0.789 0.670 0.712 0.671 0.883 0.880 0.903
Finland 0.882 0.794 0.828 0.794 0.954 0.950 0.967
Estland 0.378 0.334 0.340 0.338 0.375 0.367 0.399
Latvia 0.242 0.138 0.140 0.139 0.283 0.256 0.327
Litauen 0.136 0.039 0.040 0.040 0.182 0.162 0.234

Danmark V Danmark O Finland Estland Latvia Litauen
Systempris 0.723 0.789 0.882 0.378 0.242 0.136
Bergen 0.654 0.670 0.794 0.334 0.138 0.039
Oslo 0.643 0.712 0.828 0.340 0.140 0.040
Kristiansand 0.661 0.671 0.794 0.338 0.139 0.040
Trondheim 0.660 0.883 0.954 0.375 0.283 0.182
Tromso 0.653 0.880 0.950 0.367 0.256 0.162
Sverige 0.680 0.903 0.967 0.399 0.327 0.234
Danmark V 1.000 0.697 0.707 0.330 0.236 0.190
Danmark O 0.697 1.000 0.894 0.382 0.404 0.302
Finland 0.707 0.894 1.000 0.502 0.533 0.448
Estland 0.330 0.382 0.502 1.000 0.576 0.545
Latvia 0.236 0.404 0.533 0.576 1.000 0.664
Litauen 0.190 0.302 0.448 0.545 0.664 1.000
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B Plot

B.1 Bergen

B.2 Oslo
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B.3 Kristiansand
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B.4 Trondheim
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B.5 Tromso
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B.6 Sweden
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B.7 Denmark West
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B.8 Denmark East
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B.9 Finland
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B.10 Estonia
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B.11 Latvia
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B.12 Lithuania

84



C Sweden

C.1 Correlation internally

Correlation between the Swedish regions

SE1 SE2 SE3 SE4
SE1 1.0000 0.9999 0.9981 0.9943
SE2 0.9999 1.0000 0.9981 0.9943
SE3 0.9981 0.9981 1.0000 0.9964
SE4 0.9943 0.9943 0.9964 1.0000

C.2 Summary statistics Sweden

Summary statistics Sweden before and after split

Spot price
Sweden (96-11) SE1 SE2 SE3 SE4

Mean 247.200 273.300 273.400 276.700 283.400
Median 227.200 265.100 265.200 267.600 272.600
Maximum 4044.000 762.200 762.200 774.800 774.800
Minimum 21.170 31.650 31.650 31.650 31.650
Std. Dev 145.139 98.107 98.066 99.418 99.832
Skewness 5.244 0.705 0.703 0.709 0.628
Kurtosis 101.194 1.818 1.823 1.754 1.582
CV 0.587 0.359 0.359 0.359 0.352
JB test 2362900.000 403.000 403.410 386.850 310.420
JB p value 0.000 0.000 0.000 0.000 0.000
ADF test -5.561 -4.627 -4.642 -4.973 -5.534
ADF p value 0.010 0.010 0.010 0.010 0.010
Nr. Of observations 5479 1826 1826 1826 1826

Logarithm spot price
Sweden (96-11) SE1 SE2 SE3 SE4

Mean 5.371 5.537 5.538 5.550 5.575
Median 5.426 5.580 5.581 5.590 5.608
Maximum 8.305 6.636 6.636 6.653 6.653
Minimum 3.053 3.455 3.455 3.455 3.455
Std. Dev 0.534 0.411 0.410 0.409 0.407
Skewness -0.178 -1.229 -1.234 -1.211 -1.301
Kurtosis 0.188 3.001 3.012 3.010 3.341
CV 0.099 0.074 0.074 0.074 0.073
JB test 36.962 1145.400 1153.400 1135.500 1364.500
JB p value 0.000 0.000 0.000 0.000 0.000
ADF test -4.526 -4.164 -4.180 -4.454 -5.090
ADF p value 0.010 0.010 0.010 0.010 0.010
Nr. Of observations 5479 1826 1826 1826 1826
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D Results Autoregressive model

Summary of estimated AR coefficients Trondheim, Tromso and Sweden

NOR_Trondheim NOR_Tromso Sweden

Estimate Std.error p value Estimate Std.error p value Estimate Std.error p value

↵0 -0.0126 0.0093 0.1758 -6.06E-03 8.74E-03 0.4879 -0.0012 0.0090 0.8931
�1 0.5369 0.0117 <2e-16 0.5311 0.0117 <2e-16 0.5082 0.0117 <2e-16
�2 0.0912 0.0132 0.0000 0.0503 0.0131 0.0001 0.0489 0.0131 0.0002
�3 0.0831 0.0133 0.0000 0.0907 0.0131 0.0000 0.0879 0.0131 0.0000
�4 0.0617 0.0133 0.0000 0.0303 0.0132 0.0215 0.0371 0.0131 0.0046
�5 0.0003 0.0133 0.9797 0.0036 0.0132 0.7819 0.0285 0.0131 0.0297
�6 0.0651 0.0133 0.0000 0.0831 0.0131 0.0000 0.0835 0.0131 0.0000
�7 0.1110 0.0132 <2e-16 0.1534 0.0131 <2e-16 0.1099 0.0131 <2e-16
�8 -0.0407 0.0117 0.0005 -0.0288 0.0117 0.0137 0.0014 0.0117 0.9044
�0 0.9212 0.0087 <2e-16 0.8521 0.0083 <2e-16 1.1721 0.0085 <2e-16
�1 -0.4522 0.0155 <2e-16 -0.4013 0.0145 <2e-16 -0.6245 0.0178 <2e-16
�2 -0.1181 0.0161 0.0000 -0.0757 0.0150 0.0000 -0.1033 0.0191 0.0000
�3 -0.0441 0.0162 0.0064 -0.0556 0.0149 0.0002 -0.0687 0.0191 0.0003
�4 -0.0601 0.0162 0.0002 -0.0165 0.0150 0.2694 -0.0320 0.0192 0.0947
�5 0.0096 0.0162 0.5520 0.0120 0.0150 0.4212 -0.0376 0.0192 0.0496
�6 -0.0650 0.0162 0.0001 -0.0926 0.0150 0.0000 -0.0889 0.0192 0.0000
�7 -0.1571 0.0163 <2e-16 -0.1899 0.0151 <2e-16 -0.1658 0.0192 <2e-16
�8 0.0598 0.0140 0.0000 0.0544 0.0131 0.0000 0.0416 0.0161 0.0096
�mo n -0.0002 0.0035 0.9448 0.0081 0.0033 0.0134 0.0183 0.0034 0.0000
�t ue -0.0037 0.0034 0.2769 -0.0013 0.0033 0.7009 0.0096 0.0034 0.0048
�w e d -0.0014 0.0034 0.6772 0.0026 0.0032 0.4290 0.0165 0.0034 0.0000
�t h u 0.0010 0.0034 0.7734 0.0047 0.0032 0.1504 0.0136 0.0034 0.0001
� f r i -0.0033 0.0034 0.3415 -0.0012 0.0033 0.7010 0.0081 0.0034 0.0168
�s a t -0.0082 0.0033 0.0120 -0.0083 0.0031 0.0076 0.0013 0.0032 0.6956
� j a n 0.0015 0.0036 0.6805 0.0022 0.0034 0.5197 0.0050 0.0035 0.1597
� f e b 0.0033 0.0037 0.3689 0.0024 0.0035 0.4998 0.0040 0.0036 0.2629
�ma r 0.0003 0.0036 0.9238 0.0004 0.0034 0.8982 0.0013 0.0035 0.7023
�a p r 0.0059 0.0036 0.1057 0.0059 0.0034 0.0858 0.0007 0.0036 0.8373
�ma y 0.0087 0.0037 0.0178 0.0090 0.0035 0.0092 0.0132 0.0036 0.0002
� j un 0.0030 0.0037 0.4156 0.0014 0.0035 0.6815 0.0054 0.0036 0.1316
� j ul 0.0013 0.0037 0.7158 -0.0001 0.0035 0.9841 0.0049 0.0036 0.1741
�a ug 0.0022 0.0037 0.5517 0.0046 0.0035 0.1845 0.0108 0.0036 0.0030
�s e p -0.0007 0.0036 0.8393 0.0015 0.0034 0.6699 0.0050 0.0036 0.1634
�o c t 0.0048 0.0036 0.1836 0.0042 0.0034 0.2187 -0.0025 0.0035 0.4834
�no v 0.0008 0.0036 0.8204 0.0014 0.0034 0.6821 0.0032 0.0036 0.3635

↵0 is the intercept, �i is the coefficient for the regions lagged value, and �i is the coefficient for the
lagged values of the system price. � is the coefficient for the dummy variable.
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Summary of estimated AR coefficients Denmark West and East, and Finland

Denmark West Denmark East Finland

Estimate Std.error p value Estimate Std.error p value Estimate Std.error p value

↵0 0.23327 0.05619 3.35E-05 0.17343 0.05329 0.00114 0.0208 0.0149 0.1633
�1 0.23968 0.01291 <2e-16 0.26686 0.01343 <2e-16 0.5879 0.0124 <2e-16
�2 0.11791 0.01326 <2e-16 0.11844 0.01389 <2e-16 0.0288 0.0143 0.0438
�3 0.04172 0.01331 0.001732 0.06482 0.01392 3.31E-06 0.0846 0.0143 3.06E-09
�4 0.05993 0.01331 6.85E-06 0.07001 0.01393 5.16E-07 0.0352 0.0143 0.0137
�5 0.04269 0.01331 0.001346 0.05829 0.01392 2.88E-05 0.0179 0.0143 0.2101
�6 0.06814 0.01331 3.14E-07 0.08004 0.01392 9.41E-09 0.0989 0.0143 4.48E-12
�7 0.04428 0.01326 0.000848 0.05433 0.01388 9.18E-05 0.1151 0.0143 1.07E-15
�8 0.0517 0.01293 6.44E-05 0.03892 0.01345 0.00383 -0.0461 0.0124 2.01E-04
�0 1.10947 0.04383 <2e-16 1.14602 0.03742 <2e-16 1.0770 0.0134 <2e-16
�1 -0.39821 0.05839 1.00E-11 -0.40363 0.05090 2.65E-15 -0.6863 0.0223 <2e-16
�2 -0.18327 0.05819 0.001644 -0.20261 0.05084 6.83E-05 -0.0645 0.0238 0.0067
�3 -0.08958 0.05834 0.124715 -0.09930 0.05102 0.05168 -0.0810 0.0238 6.76E-04
�4 0.01173 0.05844 0.84091 -0.03949 0.05111 0.43977 -0.0202 0.0238 0.3960
�5 0.02276 0.05842 0.696932 0.00778 0.05112 0.87903 -0.0447 0.0238 0.0605
�6 -0.13944 0.0583 0.016789 -0.15993 0.05094 0.00170 -0.1064 0.0238 7.98E-06
�7 -0.15804 0.05876 0.007176 -0.15110 0.05131 0.00325 -0.0822 0.0239 5.89E-04
�8 0.08253 0.0461 0.073464 0.10633 0.04038 0.00848 0.0778 0.0188 3.62E-05
�mo n 0.17502 0.01812 <2e-16 0.10558 0.01516 3.70E-12 0.0639 0.0055 <2e-16
�t ue 0.15172 0.01814 <2e-16 0.05948 0.01512 8.42E-05 0.0254 0.0056 5.69E-06
�w e d 0.1718 0.01808 <2e-16 0.09135 0.01501 1.23E-09 0.0360 0.0055 7.52E-11
�t h u 0.17851 0.01808 <2e-16 0.09296 0.01502 6.55E-10 0.0286 0.0055 2.25E-07
� f r i 0.13987 0.01803 1.01E-14 0.06736 0.01499 7.19E-06 0.0325 0.0055 4.91E-09
�s a t 0.06746 0.0171 8.11E-05 0.00821 0.01432 0.56643 -0.0043 0.0053 0.4159
� j a n 0.05035 0.01876 0.007303 0.03073 0.01561 0.04903 0.0046 0.0057 0.4177
� f e b 0.05322 0.01915 0.005475 0.02690 0.01590 0.09079 0.0010 0.0058 0.8608
�ma r 0.04877 0.01869 0.009101 0.01102 0.01551 0.47752 0.0001 0.0057 0.9853
�a p r 0.07349 0.01895 0.000107 0.02161 0.01567 0.16796 -0.0045 0.0057 0.4316
�ma y 0.09602 0.0191 5.12E-07 0.03212 0.01562 0.03986 0.0091 0.0057 0.1099
� j un 0.11375 0.01949 5.57E-09 0.04510 0.01582 0.00438 0.0047 0.0057 0.4108
� j ul 0.1018 0.01928 1.34E-07 0.04014 0.01577 0.01093 0.0120 0.0058 0.0382
�a ug 0.10023 0.01919 1.81E-07 0.05442 0.01586 0.00061 0.0123 0.0059 0.0349
�s e p 0.10779 0.01909 1.71E-08 0.05126 0.01577 0.00116 0.0064 0.0058 0.2701
�o c t 0 0.07106 0.01877 0.000155 0.03295 0.01545 0.03297 -0.0024 0.0057 0.6785
�no v 1 0.05684 0.01862 0.002278 0.03252 0.01541 0.03486 0.0017 0.0057 0.7605

↵0 is the intercept, �i is the coefficient for the regions lagged value, and �i is the coefficient for the
lagged values of the system price. � is the coefficient for the dummy variable.
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Summary of estimated AR coefficients Estonia, Latvia and Lithuania

Estonia Latvia Lithuania

Estimate Std.error p value Estimate Std.error p value Estimate Std.error p value

↵0 1.0927 0.1200 <2e-16 1.4405 0.2297 5.54E-10 0.9027 0.1615 2.79E-08
�1 0.4510 0.0221 <2e-16 0.5130 0.0334 <2e-16 0.5317 0.0283 <2e-16
�2 0.0284 0.0240 0.236258 0.0260 0.0375 0.487876 0.0391 0.0319 0.220292
�3 0.0930 0.0239 0.000105 0.0789 0.0374 0.035266 0.0764 0.0316 0.015889
�4 -0.0110 0.0240 0.64791 -0.0230 0.0374 0.538835 0.0225 0.0316 0.47812
�5 0.0166 0.0240 0.489493 0.0564 0.0375 0.133224 0.0369 0.0317 0.244221
�6 0.0531 0.0239 0.02653 0.0669 0.0375 0.074697 0.0608 0.0317 0.055161
�7 0.1459 0.0240 1.50E-09 0.0343 0.0377 0.362577 0.0718 0.0318 0.023911
�8 -0.0724 0.0222 0.001147 -0.0253 0.0337 0.45261 -0.0215 0.0281 0.444326
�0 0.5183 0.0324 <2e-16 0.2929 0.0476 1.12E-09 0.2515 0.0439 1.24E-08
�1 -0.2115 0.0453 3.26E-06 -0.0863 0.0626 0.168338 -0.0477 0.0589 0.418732
�2 -0.0673 0.0455 0.139543 -0.0619 0.0627 0.323551 -0.0757 0.0591 0.200217
�3 -0.1343 0.0457 0.003297 0.0023 0.0631 0.971517 -0.0237 0.0593 0.690114
�4 0.0420 0.0458 0.359089 0.0131 0.0633 0.836081 0.0362 0.0596 0.543817
�5 -0.0714 0.0459 0.119783 -0.1059 0.0635 0.095488 -0.1307 0.0597 0.028751
�6 -0.0077 0.0458 0.866343 0.0275 0.0633 0.663938 0.0742 0.0596 0.213302
�7 0.0295 0.0459 0.520348 -0.0822 0.0635 0.195836 -0.0877 0.0598 0.142535
�8 -0.0010 0.0347 0.977359 0.0173 0.0494 0.726655 0.0239 0.0452 0.597239
�mo n 0.0939 0.0150 4.13E-10 0.1598 0.0224 2.07E-12 0.1374 0.0195 3.23E-12
�t ue 0.0513 0.0153 0.000788 0.1097 0.0233 2.94E-06 0.0713 0.0201 0.000394
�w e d 0.0410 0.0149 0.00617 0.1000 0.0233 1.89E-05 0.0736 0.0199 0.000229
�t h u 0.0483 0.0149 0.001193 0.0816 0.0234 0.000499 0.0499 0.0200 0.012601
� f r i 0.0475 0.0151 0.001714 0.0695 0.0233 0.002904 0.0399 0.0200 0.045819
�s a t -0.0072 0.0143 0.616169 -0.0212 0.0216 0.325615 -0.0350 0.0187 0.061624
� j a n 0.0139 0.0157 0.375993 0.0004 0.0232 0.987938 0.0019 0.0199 0.924248
� f e b 0.0125 0.0161 0.438413 -0.0058 0.0236 0.807885 -0.0034 0.0203 0.868284
�ma r 0.0100 0.0157 0.523812 -0.0455 0.0237 0.055201 -0.0138 0.0199 0.4904
�a p r -0.0166 0.0153 0.277422 -0.0105 0.0242 0.665511 -0.0021 0.0201 0.916047
�ma y 0.0104 0.0150 0.4879 0.0022 0.0231 0.922486 0.0069 0.0199 0.727199
� j un 0.0280 0.0152 0.066148 0.0579 0.0225 0.010333 0.0527 0.0204 0.00979
� j ul 0.0538 0.0159 0.00071 0.0507 0.0216 0.018876 0.0456 0.0198 0.021679
�a ug 0.0499 0.0158 0.001618 0.0351 0.0221 0.112281 0.0221 0.0202 0.274527
�s e p 0.0584 0.0158 0.000217 0.0758 0.0217 0.000488 0.0512 0.0189 0.006857
�o c t 0.0441 0.0156 0.004714 0.0714 0.0231 0.002055 0.0337 0.0193 0.080805
�no v 0.0204 0.0152 0.179175 0.0318 0.0210 0.131479 0.0139 0.0185 0.451878

↵0 is the intercept, �i is the coefficient for the regions lagged value, and �i is the coefficient for the
lagged values of the system price. � is the coefficient for the dummy variable.
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