
Faculty of Science and Technology

MASTER’S THESIS

Study program/ Specialization:

Master of Science in Computer Science
Spring semester, 2016

Open

Writer: Ole Tobiesen
…………………………………………

(Writer’s signature)

Faculty supervisor:

Reggie Davidrajuh

Thesis title:

Data Fingerprinting -- Identifying Files and Tables with Hashing Schemes

Credits (ECTS): 30

Key words:

Data Fingerprinting
Fuzzy Hashing
Machine Learning
Merkle Trees
Finite Fields
Mersenne Primes

 Pages: 145, including table of contents
 and appendix

 Enclosure: 4 7z archives

 Stavanger, 15 June 2016

Front page for master thesis
Faculty of Science and Technology

Decision made by the Dean October 30th 2009

Abstract

INTRODUCTION: Although hash functions are nothing new, these are not lim-
ited to cryptographic purposes. One important field is data fingerprinting. Here,
the purpose is to generate a digest which serves as a fingerprint (or a license plate)
that uniquely identifies a file. More recently, fuzzy fingerprinting schemes — which
will scrap the avalanche effect in favour of detecting local changes — has hit the
spotlight. The main purpose of this project is to find ways to classify text tables,
and discover where potential changes or inconsitencies have happened.
METHODS: Large parts of this report can be considered applied discrete math-
ematics — and finite fields and combinatorics have played an important part. Ra-
bin’s fingerprinting scheme was tested extensively and compared against existing
cryptographic algorithms, CRC and FNV. Moreover, a self-designed fuzzy hashing
algorithm with the preliminary name No-Frills Hash has been created and tested
against Nilsimsa and Spamsum. NFHash is based on Mersenne primes, and uses a
sliding window to create a fuzzy hash. Futhermore, the usefullness of lookup tables
(with partial seeds) were also explored. The fuzzy hashing algorithm has also been
combined with a k-NN classifier to get an overview over it’s ability to classify files.
In addition to NFHash, Bloom filters combined with Merkle Trees have been the
most important part of this report. This combination will allow a user to see where
a change was made, despite the fact that hash functions are one-way. Large parts of
this project has dealt with the study of other open-source libraries and applications,
such as Cassandra and SSDeep — as well as how bitcoins work. Optimizations have
played a crucial role as well; different approaches to a problem might lead to the
same solution, but resource consumption can be very different.
RESULTS: The results have shown that the Merkle Tree-based approach can track
changes to a table very quickly and efficiently, due to it being conservative when it
comes to CPU resources. Moreover, the self-designed algorithm NFHash also does
well in terms of file classification when it is coupled with a k-NN classifyer.
CONCLUSION: Hash functions refers to a very diverse set of algorithms, and not
just algorithms that serve a limited purpose. Fuzzy Fingerprinting Schemes can still
be considered to be at their infant stage, but a lot has still happened the last ten
years. This project has introduced two new ways to create and compare hashes that
can be compared to similar, yet not necessarily identical files — or to detect if (and
to what extent) a file was changed. Note that the algorithms presented here should
be considered prototypes, and still might need some large scale testing to sort out
potential flaws.
KEYWORDS: Fingerprinting, k-NN, Supervised Learning, Sliding Window, Rolling
Hash, Classification, fuzzy fingerprinting, locality-sensitive hashing, one-way func-
tion, Merkle Trees, collision resistance, hash functions, Galois fields, Mersenne
primes, Rabin’s Fingerprinting Scheme, CRC, Bloom Filters, Jaccard, Damerau-
Levenshtein

Page i

For my fiancee, Dongjing

Page ii

LIST OF FIGURES

List of Figures
1 Just like it is difficult and tedious to reassemble the shredded paper into a

complete document, it is also computationally infeasible to try to decipher
a hashed output . 15

2 A hash functions scrambles an input and then checks for a match among
other scrambled outputs . 16

3 How the Merkle-Damgård construction operates 18
4 Chosen-prefix attacks explained (this picture is public domain) 23
5 Two identical images, with two completely different SHA-256 digests, due

to a few bytes differing in the file header 24
6 A naive chunk-wise hashing approach might sometimes give good results

on two equally long inputs . 25
7 A naive chunkwise hashing approach will not give good results if there is

a length disparity (even by one character) 26
8 A rolling hash will utilize a sliding window to hash each byte individually.

If one of these digests matches or exceeds the predefined block boundariy,
a block boundary is defined. 26

9 Nilsimsa makes use of accumulators instead of taking the rolling hash
approach. 28

10 Example of a Merkle Tree with a depth of 3 34
11 Example of a Merkle Tree with an Odd Number of Terminal Nodes 35
12 Example of a Bloom Filter with m entries, 2 digests per entry, 3 bits per

digest, and n bits in the bitset . 36
13 Bloom Filters will tell if an element is probably in the dataset or data

structure being referenced . 37
14 Example of a two-class, two-dimensional approach with MLE 40
15 How a hypersphere in a two-dimensional k-NN approach with n = 9 and

various kn values operates . 41
16 Class ω1 is represented by the blue line, while class ω2 is represented by

the orange line. The purple line is where the two probability of the two
classes intersect . 44

17 Example of a two-dimensional dataset with three classes using the k-NN
approach . 46

18 Example of a two-dimensional dataset with three classes where overfitting
is avoided . 47

19 Left: Errors due to high variance. Right: Errors due to high bias (this
picture is public domain) . 48

20 NFHash explained in three steps . 54
21 How a change in node C will affect the traversal 60
22 Initial Approach: Comparing two Merkle Trees with a different number

of nodes (a depth of 4 and 2 for each tree respectively) 62
23 Final Approach when comparing two Trees of different depth 63

Page iii

LIST OF FIGURES

24 An example of how it can be applied in a table with 5 columns and 16 rows 64
25 Inserting a row and a column into a table (blue color) 66
26 Worst-case insertion compared to best-case insertion of a row or a column

when represented by Merkle Trees . 67
27 UML class diagram of the entire project 70
28 How the different fuzzy hashing schemes handle 50, 100, and 200 consec-

utive 30 KB tables. The times are given in ms 83
29 Time used by each algorithm to hash a single file of the respective sizes.

The times are given in ms . 85
30 Output when comparing two different SAAB 900 models 96
31 Comparing two Different-Length Tables 97
32 Two similar png images that have two different NFHash digests because

the latter is an inverted version of the former in terms of colors 104

Page iv

LIST OF TABLES

List of Tables
1 Important Acronmyms . viii
2 Arithmetic operations compared to their Boolean equivalents 8
3 Example of how a binary Galois field with a degree of 6 works 10
4 Addition and subtraction in GF (2) (top) can be considered identical to

an XOR operation. Multiplication (bottom) can be considered identical
to an AND operation . 11

5 Examples of irreducible polynomials of various degrees over GF(2) 12
6 Security requirements for a secure hashing scheme 17
7 Collisions risks and fingerprint sizes . 20
8 How a Cyclic Redundancy Check Operates (for illustrative purposes, the

four padded bits are not included) . 23
9 A Simplified Example Showcasing the Jaccard Coefficient Between Java

and C++ . 31
10 Examples of How to Calculate Levenshtein Distance (the bottom table is

the most efficient approach). Here, s means substitution, i means inser-
tion, and d means deletion . 31

11 Matrix representation of the most optimal solution in Table 10 32
12 Levenshtein and how it stacks up against Damerau-Levenshtein 32
13 A Two-Class Dataset . 43
14 Damerau-Levenshtein distance between test sample and samples in dataset 43
15 A confusion matrix explained . 45
16 Base64 Encoding Table . 57
17 NFHash compared to Nilsimsa and Spamsum 59
18 Different settings for each subtest in Test II 90

Page v

LISTINGS

Listings

1 FNV-1a (pseudocode) . 21
2 Damerau-Levenshtein Distance . 70
3 Terniary conditions no longer offer many advantages in terms of optimiza-

tions . 72
4 How an x86-64 CPU Does Division . 73
6 How CRC-64 is implemented in this library (the lookup table can be found

in the appendix). This is mostly based on the existing CRC-32 class in
the java.util.zip package . 74

7 How the table generator for Rabin’s Fingerprinting Scheme works 75
8 k-NN discriminant function . 76
9 Merkle Tree constructor . 77
10 Sorting one list according to another . 77
11 How the class representing nodes appears 78
12 Comparing Two Trees . 79
13 A small part of a CSV from the first class 90
14 A small part of a CSV from the second class 90
15 bloomFilter.java . g
16 CRC64.java . h
17 DamerauLevenshtein.java . j
18 kNN.java . k
19 NFHash.java . n
20 tableGenerator.java . o
21 Rabin.java . p
22 merkle.java . s
23 treeComparator.java . w

Page vi

LISTINGS

Acknowledgements

This project would not have been possible without the help and support from several peo-
ple. I would like to thank the supervisors in this project, Derek Göbel (Avito LOOPS),
Paolo Predonzani (Avito LOOPS) and Reggie Davidrajuh (UiS) for helping me with this
thesis, for providing me with feedback and tips, for helping me better test and debug the
library — and for offering good advice. Furthermore, I would also like to thank Chun-
lei Li (UiS) for providing me with good knowledge of hashing algorithms and applied
discrete mathematics. All pictures used in this report are public domain or created by
me.

No code in this project is subject to any patents or copyrights.

Page vii

LISTINGS

Acronyms

Table 1: Important Acronmyms

Abbrevation Meaning
BFS Breadth-First Search
CRC Cyclic Redundancy Check
CSV Comma Separated Value
DFS Depth-First Search
FNV Fowler-Noll-Vo
g(x) Discriminant function of x
GF (2) Binary Galois (Finite) Field
H(a) Hashed output from input a
kNN k-Nearest Neighbor
LSH Locality-Sensitive Hashing
MD Message Digest
MLE Most Likely Estimate
µOps Micro-Opearations
NFHash No-Frills Hash
ωi Class i in the field of machine learning
P (ωi) Prior distribution of class i
SHA Secure Hashing Algorithm

Page viii

CONTENTS

Contents

I Introduction 1

1 Objectives 1
1.1 Research Questions . 2

2 Outline 3

3 Used Software 3

4 Methods Used 4

5 Terminiology: Fuzzy or Locality-Sensitive Hashing? 5

II Literature Review 7

1 Introduction to Mathematical Prerequirements 7
1.1 Performance Improvements From Boolean Logic 7

1.1.1 Avoidng the Modulus Operands — If Possible 8
1.1.2 Benefits of Using Bitwise Shifts . 8
1.1.3 Mersenne Primes . 9

1.2 Finite Field Arithmetics . 9
1.2.1 Arithmetic Operations . 10
1.2.2 Irreducibility and a Probabilistic Algorithm for Testing This . . . 11
1.2.3 Implementing polynomials Over a Galois field 13

1.3 Pitfalls . 14

2 Background 14
2.1 Brief Introduction to Hash Functions . 15

2.1.1 Collision Resistance and Other Security Meassures 17
2.1.2 The Odds Put Into Perspective . 19

2.2 Currently Existing Fingerprinting Schemes 20
2.2.1 Current Status of MD5 . 23
2.2.2 Fuzzy Fingerprinting Algorithms — a Unique Approach to Hashing 24

3 Why Design two New Approaches? 28
3.1 The Current Relevance of Non-Fuzzy Fingerprinting Schemes 29

4 Chapter Summary 29

III Method and Design 30

Page ix

CONTENTS

1 Comparing Results After Hashing 30

2 Datastructures Being Introduced in this Chapter 33
2.1 Introduction to Merkle Trees . 33

2.1.1 Memory Usage May Become a Bottleeck 34
2.1.2 Odd Number Trees are Also Possible 35

2.2 Bloom Filters — and How They Differ from Hash Tables 35
2.2.1 A Bloom Filter Still has it’s Weaknesses 36
2.2.2 What are the Probabilities of a False Positive? 37
2.2.3 Ideal Number of Fingerprints and Bits per Element 37

2.3 Summary . 38

3 k-NN is used for Supervised Machine Learning 39
3.1 How a Non-parametric Classification Algorithm Works 40

3.1.1 How is This Implemented in the Project? 44
3.2 Precision and Recall . 44
3.3 Overfitting Might Lead to Undesireable Results 45

3.3.1 Avoiding Overfitting . 46
3.4 Other Potential Problems with the k-NN Algorithm 49
3.5 Summary . 50

4 Design I: Design of No-Frills Hash 50
4.1 Main Design Criteria: . 50

4.1.1 "Order Robustness" . 52
4.2 Outline of NFHash . 52

4.2.1 Setting a Good Sliding Window Size 55
4.3 Hashing and Mersenne Primes . 55
4.4 Larger Base Numbers are Not Necessarily Better 55
4.5 Potential Weaknesses . 57
4.6 Similarities and Differences Between Other Fuzzy Hashing Schemes 58
4.7 Summary . 59

5 59
5.1 Comparing two Merkle Trees . 60

5.1.1 Finding Out Where the Changes Happened 64
5.1.2 A Slightly Different Application of Bloom Filters 65
5.1.3 Merkle Trees Have One Significant Drawback With no Obvious

Solution . 65
5.1.4 Recognizing Rows that Have Been Shifted 66

5.2 What about other uses than tables? . 67
5.3 Limitations . 68

6 Merging the Two Approaches in This Project 68

Page x

CONTENTS

7 Chapter Summary 68

IV Implementation and Problem Solving 69

1 Intermodular Interaction 69

2 Matching Digests Based on Damerau-Levenshtein Distance 70

3 Optimizations on all Levels 71
3.1 Overview of the CRC-64 and Rabin’s Fingerprinting Scheme Class 72
3.2 Boolean Logic Revisited . 72
3.3 Big Integers are not Primitives . 73
3.4 Lookup Tables Speed Things Up Significantly — Even if it Leads to Larger

Classes . 74
3.5 Possible Advantages of Rewriting the Library in C 76

4 Implementing the k-NN Classifier 76

5 The Merkle Tree and it’s Uses 77
5.1 Traversing the Merkle Tree in a Recursive Manner 79

6 A Brief Overview of NFHash 80

7 Chapter Summary 80

V Testing, Analysis, and Results 82

1 Performance Tests 82
1.1 Testing Performance with Multiple Files 83

1.1.1 Initialization . 83
1.1.2 Results . 83
1.1.3 Analysis . 84

1.2 Testing Performance on Single Files of Varying Size 84
1.2.1 Initialization . 84
1.2.2 Results . 84
1.2.3 Analysis . 85

2 NFHash and Classifications 85
2.1 Test Setups . 86

2.1.1 Initializing Test I . 86
2.1.2 Results from Test I . 87
2.1.3 Analysis of the Results in Test I 89
2.1.4 Initializing Test II . 90

Page xi

CONTENTS

2.1.5 Results From Test II . 90
2.1.6 Analysis of the Results in Test II 93

3 Using the Merkle Tree-based Approach to Track Changes 94
3.1 Test I: Verifying That the Order of the Elements is Irrelevant 94
3.2 Test II: Tracking Localized Differences . 95
3.3 Test III: Different Length Tables . 96

4 Chapter Summary 97

VI Discussion 98

1 Originality 98

2 Why Study Open Standards and Open Source Code? 99
2.1 Old Mathematical Theorems Might be a Priceless Source 100
2.2 Datastructures and Algorithms Almost Always Have Many Uses 100

2.2.1 Security Might Present Exceptions 101

3 Can an Algorithm Really be One-Way? 102

4 No Fingerprinting Scheme is Inherently Superior 103
4.1 Limitations of the Two Approaches Presented in This Report 103

5 Further Works 103

6 Learning Experience 105

7 Conclusion 105

References a

A User Manual e
A.1 Creating and Using a Merkle Tree . e
A.2 How to Use NFHash . e
A.3 Classifying Content With k-NN . e

B Complete Code g
B.1 Bloom Filter . g
B.2 Cyclic Redundancy Check . h
B.3 Damerau-Levenshtein Distance Calculator j
B.4 k-Nearest Neighbor . k
B.5 No-Frills Hash . m
B.6 Table Generator . o
B.7 Rabin’s Fingerprinting Scheme . p

Page xii

CONTENTS

B.8 Merkle Trees . s
B.9 Tree Comparator . w

C Brief Example of Project Implemented with k-NN and NFHash z

Page xiii

I 1 OBJECTIVES

A mathematical formula should never
be "owned" by anybody! Mathematics
belong to God.

Donald Knuth

Chapter I

Introduction
This chapter will briefly introduce the project, it’s content, and what it is intended
for. Readers are encouraged to skim through this report quickly to get an overview
before reading it in detail, as it will introduce many new terminologies and concepts.
Furthermore, it is somewhat mathematically intensive. It’s main target group is people
with a master’s degree in computer science. However, the majority of this thesis is based
on principles and technologies that are not part of the mandatory curriculum in most
colleges and universities. Therefore, details should be given special consideration.

1 Objectives

To many people, hash-functions are a mysterious and uncharted branch of algorithms.
It is widely known that these are one-way, and that they are indeed useful. However,
people tend to underestimate the versatilitiy of these hash-functions, mainly associating
hash functions with hash tables and password authentication.

The primary motivation behind this thesis is to explore data fingerprinting algorithms
for indentifying tables and updates done on these — in addition to classifying them
using a machine learning tool. Data fingerprinting simply refers to high performance
hash functions, used to identify files quickly. These can be considered more accurate
checksums, with an especially high focus on collision resistance.

As described by Avito — the company responsible for this research — data fingerprinting
can be summarized as follows:

"Fingerprinting is a technique that analyses a document of an arbitrary size to
produce a much shorter string - the “fingerprint” - possibly of fixed size, that
almost uniquely identifies the original document. In a sense, a fingerprint is a
proxy for a document’s identity: if two documents have the same fingerprint,
we can infer that they are in fact the same document; if a document “changes”
its fingerprint, we can infer that the contents of the document have been
modified, effectively making it a different document. Fingerprinting can be
applied at different levels of granularity. In Excel files, a fingerprint can be

Page 1

I 1 OBJECTIVES

computed for a whole workbook, for a worksheet, for a row or even for a
single cell. In this way modifications in the file can be detected at different
levels, which has practical applications, e.g., in content versioning and change
tracking."

This report will also look at how well-known discrete mathematical properties can be
used to implement a new hash function, as well as how versatile hash functions can be
— in terms of chunkwise hashing, ordinary hashing, and of course fuzzy hashing. After
all, there is more to hashing than just finding exact matches; some approaches can be
taken to make them a well-suited tool for matching similar rather than just identical
content as well.

Currently existing fuzzy fingerprinting (hash functions changing the output to the same
degree as the input) algorithms tend to be cumbersome to use and slow — or they
are somewhat inaccurate and "rigid", and although they serve their purpose very well in
forensics and spam detection, they are not that well suited for identifying and classifying
large plaintext files or tables. To try to find a balance between pros and cons of each
fuzzy hashing scheme, a prototype called No-Frills Hash will be presented later on. The
other implementation presented in this report serves as a way to work around the fact
that a hash function is one-way; a two-way hash function is an oxymoron, so it does not
reverse the digest directly. Rather, it keeps track of which hash digest belongs where in
a document by storing each hashed element in a node. This can be combined with first
implementation, so that both implementations will complement each other.

The solutions presented here can also be used on other forms of plaintext rather than
just raw data tables. However, since this is the main reason behind the project and why
Avito requested this research, this is also what the report will mainly focus on.

1.1 Research Questions

In the project descriptions, the objectives were described as follows:

"There are two goals in this research topic. The first one is to investigate
fingerprinting algorithms that are computationally efficient. The second one
is to investigate fuzzy fingerprints, i.e. fingerprints that not only say if a
document has changed or not but also to which extent it has changed (e.g.
on a scale of 0 to 100%) while retaining some similarity of content."

The research questions serving as guidelines in this project have therefore been:

1. Where are fingerprinting algorithms better suited than cryptographic hash func-
tions — in the context of raw data tables?

2. How does fuzzy hashing work?

3. What can fuzzy hashing be used for — in terms of plaintext and tables?

Page 2

I 3 USED SOFTWARE

4. How does one continue the work of others to make a new fuzzy hashing scheme?

5. Is there any way to bypass the one-way properties of hash functions, so that one
can see where the changes or inconsistencies happened?

Most importantly: Is there any way to more efficiently, by the use of hashing,
tell to which extent two files were changed? Can hashing be used to detect
where the changes happened? Finally: Can fuzzy hashing be used in the
field of machine learning?. These three questions have different solutions, but they
can be merged into one solution, as will be seen later on in this report.

2 Outline

The literature review chapter (Chapter II) will contain the research of other mathemati-
cians and engineers — and will revolve around fundamental mathematical prerequisites,
what hash-functions are, what hash-functions do — and what hash functions are used
for. Of course, this will mainly be about fingerprinting uses and not that much about
the cryptographical uses. With that being said, some cryptographical uses will also be
presented; understanding data fingerprinting (both fuzzy and ordinary) without under-
standing the security-related or mathematical prerequirements, can be seen as analogous
to watching the second The Godfather movie without watching the first The Godfather
movie.

The "Method and Design" chapter will mainly focus on how the two main implementa-
tions are designed, how they work, what their virtues and vices are, and what datas-
tructures and algorithms were necessary to create them. This chapter will also present
all datastructures and algorithms used that are not part of the curriculum in a typical
master’s degree (i.e. it will explain Bloom Filters in detail, but not stacks and so on).
Chapter III is closely linked with Chapter IV, which explains the code and the steps
taken to make the library perform well.

The Testing and Verifications chapter will contain the testing part, including the results,
how the different algorithms compare to each other, and what conclusions can be drawn
from the tests. Lastly, everything will be summarized and discussed in the final chapter,
where further works will also be proposed.

3 Used Software

All software and algorithms used in the programming part of this project are open-
source and freely available. The enclosed library is written in Java, but the report
will also contain some x86-64 assembly code and pseudocode for illustrative purposes.
The software SSDeep is an existing example of fuzzy fingerprinting being employed for
practical tasks, but this is specifically designed for forensics. Nevertheless, studying

Page 3

I 4 METHODS USED

the source code to better understand rolling hashes proved useful. Also, studying the
noSQL tool Cassandra — and the technology behind Bitcoins was important. The
project has nothing to do with either of the two technologies, but they still contained
vital datastructures useful in this project.

Software Used for Writing the Report:

1. TeXworks

2. LaTeX

Programming Tools Used for Writing the Library and Testing it:

1. Java

2. IntellijIDE

3. NetBeans 8.1

4. JUnit

Open-Source Software Studied to get Inspiration:

1. Apache POI

2. Apache Cassandra

3. SSDeep

4. Bitcoins

Software Used for Drawings and Illustrations:

1. yED

2. 3DS Max Design 2013

3. GiMP

4. Macromedia Flash 8

5. MS Excel 2013

4 Methods Used

literature Review

The literature review part is where stuff done by others was studied extensively. This
was a corner stone in the project, due to the fact that this made it possible to see
what already existed, what could be improved on, and which problems already had
satisfactory solutions. Furthermore, different mathematical theorems were studied, so
that new solutions could be found.

Page 4

I 5 TERMINIOLOGY: FUZZY OR LOCALITY-SENSITIVE HASHING?

Analysis and Mathematical Reasoning

After the literature study, certain parts needed to be proven by "pen and paper" and by
mathematics before it could be used in the program code — to ensure that there were
no red herrings that could potentially lead to time being wasted.

Unit and Low-Level Testing

This can be seen as an extension of the previous phase. There was also some overlap
between this phase and the previous one. Here, which algorithms to use in the project and
which ones to discard was decided. Also, implementations of finite fields and Mersenne
primes were tested. Lastly, different data structures such as the Bloom Filter and the
Merkle Tree was put into use, while others (eg. the Trie) were shown to be not that
well-suited to this project.

Full-scale implementation

Everything that proved viable in the previous phase was implemented properly in this
phase. Also, No-Frills Hash was designed, based on the results from the previous phase
concerning (among others) CRC-64, lookup tables and Mersenne Primes.

GUI-testing — and Debugging

After most of the code was finished, a GUI was designed to test on a larger scale. Some
bugs were found and were subsequently corrected. This was done because a unit testing
environment is "artificial" and constructed. Moreover, with a GUI, it is easier to test the
approaches on many tables at the same time.

Full-scale testing and evaluation

The last phase is described in detail in Chapter V. Here, the performance of NFHash
was tested against the performance of Nilsimsa and Spamsum (two currently existing,
but very different approaches to fuzzy hashing), and the ability of the Merkle Tree-
based approach to detect changes was tested. Classification was tested with the k-NN
classifier.

5 Terminiology: Fuzzy or Locality-Sensitive Hashing?

The terms fuzzy hashing or locality-sensitive hashing roughly refer to the same thing,
and there is no universally accepted definition for the former (the term was first used
by dr. Andrew Tridgell in 2002, referring to his algorithm Spamsum) or the latter.
"Fuzzy hashing" is not a generic trademark similar to Frisbee, Thermos or Discman
— and thus it is often used to refer to any hash function with similar capabilities as
Spamsum. Typically, locality-sensitive hashing refers to hashing used to find nearest-
neighbors in high-dimensional data, with hash functions that changes in accordance with
the input. [1]

Page 5

I 5 TERMINIOLOGY: FUZZY OR LOCALITY-SENSITIVE HASHING?

The document Fuzzy Hashing for Digital Forensic Investigators, by Dustin Hurlbut,
defines fuzzy hashing as [2]:

"The fuzzy hash utility makes use of traditional hashing, but in pieces. The
document is hashed in segments depending on the size of the document.
These segments will contain fragments of traditional hashes joined together
for comparative purposes. Before this segmented hash can be done, a rolling
hash is used to begin the process."

There is a significant overlap between the two definitions, and fuzzy fingerprinting was
the term used in the project description published on It’s Learning. Thus, fuzzy hashing
(and fuzzy fingerprinting) will be used to describe all algorithms in this report who are
capable of changing just parts of the digest based on differences in the input — as an
unbrella term — to avoid confusion.

Page 6

II 1 INTRODUCTION TO MATHEMATICAL PREREQUIREMENTS

I say with Didacus Stella, a dwarf
standing on the shoulders of a giant
may see farther than a giant himself.

Robert Burton, 1621

Chapter II

Literature Review
This literature Review chapter will feature the material that was studied when starting
this project, in terms of hash functions and discrete mathematics. To avoid spending
time on finding a complex solution to something that had already been solved in an easy
manner, this material proved very useful.

This chapter has three main sections: one featuring prerequirements in discrete math-
ematics (can be skipped if the reader has good familiarity with this), one featuring
background material (concerning hash functions and their attributes) and one explain-
ing the need for two new approaches in a system based on plaintext and file classification
and identification — useful in more advanced enterprise tools, such as Avito Loops.

1 Introduction to Mathematical Prerequirements

To better understand this report and the enclosed Java code — as well as how the algo-
rithms and approaches in this report work, it is important with some knowledge about
discrete mathematics and Boolean algebra — in addition to how this can be applied
practically in code. In terms of algorithms and optimizations in general, mathematical
skills are just as important as programming skills. This section assumes familiarity with
Boolean operators, as well as an understanding of rudimentary discrete mathematics and
overall mathematical skills on par with the curriculum of a master’s degree graduate in
computer science.

This section is included due to the fact that discrete mathematics are not mandatory
in most colleges or universities. Readers who are familiar with finite fields, Mersenne
primes, and how Boolean operands can significantly improve performance may skip this
section, but are encouraged to look at the subsection on pitfalls.

1.1 Performance Improvements From Boolean Logic

Some arithmetic operations (most notably divisions and modulus operations) are com-
putationally expensive if done frequently. Dividing numbers is well-known to be a costly

Page 7

II 1 INTRODUCTION TO MATHEMATICAL PREREQUIREMENTS

operation, even on modern hardware — and most compilers will still not do optimiza-
tions at this level.

Various operations and their Boolean equivalents (m ∧ (n − 1) and m mod n does
exactly the same thing if n is a power of two) have been tested in the JUnit framework.
Here, a for loop with 10 billion iterations was used. The results can be seen in the table
below:

Table 2: Arithmetic operations compared to their Boolean equivalents

Function Time Used
m mod n 3s 471ms
m ∧ (n− 1) 711ms
m× n 696ms
m/n 3s 456ms
m >> 708ms
m << 694ms

1.1.1 Avoidng the Modulus Operands — If Possible

As seen in Table 2, division is a costly operation on even a modern CPU. Since the
modulus operand in most compilers is not compiled into faster Boolean operations, this
is therefore something that should be used by caution. [3] In the x86 architecture, the
integer division will also give the remainder after the division in a different register —
regardless of whether the remainder is needed or not.

Fortunately, a Boolean AND is computationally very cheap. If a number n is a power
of two, one can find the remainder after a division by simply doing an AND operation
with n− 1. As an example:

99 mod 8 = 3 (1)

99 ∧ 7 = 3 (2)

This principle is technically true for all cases where the divisor is a power of two. All
classes in this thesis are implemented without the modulus operand and without division
where this is possible. The reasons for this will be even more obvious in Chapter III,
where the designs are shown.

1.1.2 Benefits of Using Bitwise Shifts

Federal Standard 1037C defines arithmetic shifts the following way:

Page 8

II 1 INTRODUCTION TO MATHEMATICAL PREREQUIREMENTS

"A shift, applied to the representation of a number in a fixed radix numeration
system and in a fixed-point representation system, and in which only the
characters representing the fixed-point part of the number are moved. An
arithmetic shift is usually equivalent to multiplying the number by a positive
or a negative integral power of the radix, except for the effect of any rounding;
compare the logical shift with the arithmetic shift, especially in the case of
floating-point representation." [4]

While multiplications are not very expensive on the x86 architecture, divisions are. A
bitwise shift of one to the left or right (denoted by << and >> in Java), means moving
all the integers in a binary number to either left or right, followed by a leading or a
trailing zero, depending on the direction. The number 111 shifted two times to the left,
will for example become 11100, while 101 shifted to the right will become 010. Clearly,
this indicates that a shift to the left of m numbers is the same as multiplying by 2m, and
doing a shift to the left of m numbers is the same as dividing it by 2m, while discarding
the remainder.

1.1.3 Mersenne Primes

By definition, a Mersenne number is a number on the form 2n − 1 [5]. This means that
any integer that is a power of two, becomes a Mersenne number if it is decremented
by one. More specifically, all Mersenne numbers can be represented as binary numbers
with no zeroes, except for leading zeroes, meaning that they are repunits. Examples
of Mersenne numbers are 7, 255, 8191, who can be represented in binary numbers as
1112, 111111112 and 11111111111112 respectively. This also illustrates why hexadecimal
numbers are useful — as these are very easy to convert to binary form.

A Mersenne prime is simply a Mersenne number that is also a prime. The following
numbers are known Mersenne primes that will fit into a signed long integer or an unsigned
32 bit integer: 22 − 1, 23 − 1, 25 − 1, 27 − 1, 213 − 1, 217 − 1, 219 − 1 and 231 − 1 [6]. An
interesting feature about Mersenne primes, is that the modulus of any number divided
by a Mersenne prime can be found the following way:

m ∧ p+m >> s (3)

Where m is any number larger than p — and s is the bitnumber for p + 1. Since this
is a prime, there will always be a remainder as long as the prime is not a factor of the
dividend, making it a useful feature in one-way functions. This theorem will serve as a
basis for NFHash, which will be explained in detail in Chapter III.

1.2 Finite Field Arithmetics

A Galois Field (also called a Finite Field) refers to a polynomial with a finite set of
elements. These are on the form GF (pk) (there are several ways to write this, such as

Page 9

II 1 INTRODUCTION TO MATHEMATICAL PREREQUIREMENTS

Zpk , Fpk , etc.), where p is a prime and k is an integer > 0. If the field is binary (GF (2)),
then the only coefficients are either zero or one. While this may not seem intuitive at
first, the exponent m of each X in the polynomial will be treated by a computer as a
1 with m trailing numbers. This section will only focus on binary fields, but will deal
with arbritary degrees. The degree of the largest element determines the degree of the
polynomial. A polynomial p(X) = X4 + X + 1, will for example have a degree of four;
as will a polynomial P (X) = X4 + X3 + X2 + X — and a polynomial consisting of a
single X4.

Binary Galois fields have experienced a widespread use in RSA, CRCs, Reed-Solomon,
Elliptic Curve Cryptography and Rabin’s Fingerprinting Scheme, to mention a
few.

Table 3: Example of how a binary Galois field with a degree of 6 works

Possible Values X6 X5 X4 X3 X2 X1 X0

Bit String Representation 1 0 0 1 1 0 1
On/Off On Off Off On On Off On
P(X) X6+X3+X2+1
Decimal 77
Hexadecimal 4D

Table 3 shows the basic intuition between so-called binary Galois fields; that is Galois
fields on the form GF (2). In Rabin’s fingerprinting scheme, the polynomials should be
irreducible over GF (2) — i.e. the smallest finite field. This in turn means that it should
be irriducible modulo 2.

1.2.1 Arithmetic Operations

One interesting feature about finite field arithmetics over GF (2), is that addition, sub-
traction and exclusive OR operations are identical. The two former are done with a
modulo of 2, making them similar to binary number arithmetics, except without a car-
ryover. This means that X + X = 0 and that −X = X; likewise X2 + X2 = 0 and
X4 −X = X4 +X. The polynomial (X5 +X4 + 1)± (X4 +X3 +X) is therefore equal
to (X5 + X3 + X + 1) — not (X5 + 2X4 + X3 + X + 1) or (X5 −X3 −X + 1) like a
"typical" polynomial would be.

Page 10

II 1 INTRODUCTION TO MATHEMATICAL PREREQUIREMENTS

Table 4: Addition and subtraction in GF (2) (top) can be considered identical to an XOR opera-
tion. Multiplication (bottom) can be considered identical to an AND operation

± 0 X
0 0 X
X X 0

× 0 X
0 0 0
X 0 X

The intuition behind multiplication is quite simple, although it requires a little more
work than addition or subtraction. One good way to do this, is to simply multiply
the GF (2) polynomials as if they were conventional polynomials, and then perform a
reduction modulo 2 (essentially, delete any X that has a constant which is a power of
two). A step-by-step guide can be seen below:

1. Begin with two or more GF (2) polynomials: (X5 +X2 +X)(X4 +X3 +X + 1)

2. Multiply the two GF(2) polynomials as if they were ordinary polynomials: (X9 +
X8 + 2X6 + 3X5 +X4 +X3 + 2X2 +X)

3. Perform a reduction modulo 2, which will give the result: (X9 +X8 +X5 +X4 +
X3 +X). Remember that the same rule as in addition also apply in this final step

Division in the scope of GF (2) is for the most part irrelevant although it can be done
in conventional long division or by using the Newton-Raphson method. Since binary
numbers can be represented as decimal and hex numbers, using the builtin bitwise
operations in Java makes more sense. Netwon-Raphson will not be covered here, as
division of polynomials will not be used directly in this project.

1.2.2 Irreducibility and a Probabilistic Algorithm for Testing This

A polynomial is irreducible if it cannot be factored into nontrivial solutions over a
given field. [7] For this project, this given field is GF (2). Remember that the same
multiplication rule also applies when factoring over GF (2). If none of the polynomials
in GF(2) of a given degree divides a given polynomial f(x), it is irreducible over that
field.

x2 + x+ 1 is irreducible, since it cannot be factored into any nontrivial solution. x2 + 1
is not irreducible, as it can be factored into a nontrivial solution. An example of how to
check if a polynomial is irreducible over GF (2):

(x+ 1)(x+ 1) = x2 + 2x+ 1 ≡ x2 + 1 (mod 2) (4)

Page 11

II 1 INTRODUCTION TO MATHEMATICAL PREREQUIREMENTS

Table 5: Examples of irreducible polynomials of various degrees over GF(2)

Degree (n) Irreducible polynomials
1 1 + x, x
2 1 + x+ x2

3 1 + x+ x3, 1 + x2 + x3

4 1 + x+ x4, 1 + x+ x2 + x3 + x4, 1 + x3 + x4

The explanation behind this is that over GF (2), x2 + x+ 1 = (x+ 1)(x+ 1). x2 leaves
a remainder when divided by two; as does 1. 2x will, on the other hand, not leave a
remainder. If the remainder on the other hand is zero after factorization and division,
the polynomial is not irreducible over GF (2).

Rabin’s test of irreducibility is very similar to Distinct-degree factorization (it tests
every degree smaller than or equal to half the degree of the input polynomial). The
fraction of irreducible polynomials over a finite field of degree n, can be roughly estimated
as 1

n
. Rabin’s test of irreducibility is based on the fact that a polynomial C ∈ GF (p) of

degree n is irreducible if and only if xpd ≡ xmodC (d refers to the degrees being tested
and not the degree of the polynomial).

The numbers are tested with an irreducibility test to verify that they cannot be reduced.
Rabin’s test of irreducibility can be explained as follows [8], where n is degree, p is the
number of elements (in this case 2), q is power (in this case 1), p1, ..., pk is every prime
divisor of n:

Page 12

II 1 INTRODUCTION TO MATHEMATICAL PREREQUIREMENTS

Data: A random polynomial f of degree n
Result: Either a logical true if polynomial is irreducible—or a logical false if it is

reducible
for j = 1 to k do

for i = 1 to k do
int h = xxni − x mod f ; int g = gcd(f, h);
if g 6= 1 then

return false;
end

end
int g = xqn − x mod f
if g=0 then

return true;
end
else

return false;
end

end
Algorithm 1: Rabin’s Test of Irreducibility

This algorithm cannot tell with complete certainty is a polynomial is irreducible, but
it can still tell if it is probably irreducible. In other words, this is a probabilistic algo-
rithm.

1.2.3 Implementing polynomials Over a Galois field

Since a computer processes information in a different manner than the human brain, the
best way to implement these is by simply implement them with a hexadecimal number,
as seen in table 3. The advantages of using a hex number are as follows:

1. There is no overhead due to using a datastructure

2. It saves space. While a two digit decimal number can represent anything from 0
to 99, a hexadecimal number can represent any number from 0 to 255 (denoted as
FF or 0xFF in hex form) using no more space

3. The number 16 is the same as 24. This makes it computationally easier to convert
it to a binary number, which is used on the lowest level by a CPU

Because of this, this project will simply represent them as hexadecimal numbers. This
section is also meant to bridge the gap between mathematical prerequisites on paper
and mathematical prerequisites in the form of C-like code.

Polynomials can also be represented by datastructures or binary strings, but since this
adds a lot of overhead for arithmetic operations (not to mention that it will significantly
lead to more memory being used), it will not be employed in this project.

Page 13

II 2 BACKGROUND

1.3 Pitfalls

Mersenne Primes

Not all Mersenne numbers are Mersenne primes, and thus, not all Mersenne numbers
will leave a remainder just like that. Furthermore, it is important to note that just
because p is a prime does not necessarily mean that 2p − 1 is a prime. On the other
hand, if 2p− 1 is a prime, it means that p is also a prime. A total of 8 Mersenne primes
can be represented by a long integer.

Galois Fields

1. The bit string representation cannot be converted to a Galois field as if it were a
binary number. Instead of converting 10010 to X16 +X, it has to be converted to
X4 +X; i.e. the power of X depends on the position from right, starting from 0

2. "Keep it simple, stupid". An integer or a long integer as a hexadecimal or decimal
number is much easier on the computer hardware than an advanced datastructure
– and will result in fewer lines of code

3. The fact that a polynomial cannot be factored into roots does not mean that it is
irreducible.

Galois Fields have several properties in common with real numbers. These are:

• Addition has an identity element (which is 0) and an inverse for every element

• Multiplication also has an identity element (which is 1) and an inverse for every
element except 0

• Multiplication takes precedence over addition

• Addition and multiplication are both commutative and associative

There are also two noticable dissimmilarities, that are important to acknowledge:

• −x = x ⇐⇒ x+ x = 0

• x× x = x(the exponent here only determines this position in the binary represen-
tation)

2 Background

Hash functions are examples of applications of discrete mathematics and Boolean logic.
As such, it makes sense to explain this after a brief explanation of mathematical pre-
requisites. Hash functions are essentially what this entire project boils down to — but

Page 14

II 2 BACKGROUND

not the hash functions most readers will be familiar with (hash tables and cryptograph-
ical hash functions are typically what is part of the curriculum for a master’s degree in
computer science).

2.1 Brief Introduction to Hash Functions

A hash function (in the general sense) refers to a one-way function which compresses
an input of arbritary length to an output of fixed size. By definition, these are one-
way, in the sense that undoing the output is computationally infeasible, due to the fact
that information becomes lost in the process. Easy in this context means polynomial
as a function of input. [9] The entire process can be seen as analogous to what a paper
shredder does.

Figure 1: Just like it is difficult and tedious to reassemble the shredded paper into a complete
document, it is also computationally infeasible to try to decipher a hashed output. (This picture
is public domain)

The output (refered to at the digest in this report — or sometimes the fingerprint
when it is used to fingerprint content) from a hash function is not deciphered per se.
Rather, an input is scrambled — and if something needs authentication, the hashed
output is compared to other hashed outputs. This is because of the fact that a hash
function is deterministic; i.e. if the input and the settings are the same, the output will
also be the same. [10] The speed, efficiency and one-way properties of hash functions,
mean that they have many uses. An example (one of the most well-known uses) is
password authentication, where cryptographic hash functions such as SHA-2 can be
used to see if the password entered matches any existing passwords on the computer.
This is for instance used when loging into a computer, or when starting a car with an
immobilizer. [10] Hash functions also have their place in terms of generating passwords
from weak sources (eg. Bcrypt and Scrypt) – and when generating random (for example
when hashing sampling noise) or pseudorandom numbers.

Page 15

II 2 BACKGROUND

Figure 2: A hash functions scrambles an input and then checks for a match among other scram-
bled outpuds.

This project will focus on hash-functions used for fingerprinting files and fingerprinting
plain text in the form of unformatted tables. Each file hashed, will have an output that
is fixed for a given set of settings within a given algorithm. Just like you can identify
any person and his wheareabouts based on fingerprint matches (without reversing the
fingerprint and creating a new person), you can also do the same thing for any file and
text table.

While data fingerprinting itself is nothing new, it has only become a popular subject
during the past few years. The most well-known algorithm designed for this is Rabin’s
Fingerprinting Scheme (which will be cross-referenced a lot in this and subsequent
sections). This is an open and widely-used standard for fingerprinting, first presented
by the mathematician Michael Rabin in 1981. [11] Rabin’s Fingerprinting Scheme can
be considered a more accurate checksum. It’s main virtue is that the probability of
collision is very low (courtesy of irreducible polynomials over GF(2)) while at the same
time offering very good performance.

Fuzzy fingerprinting (or fuzzy hashing) is a different form of hashing that can be used for
similarity search and classifications, and is most commonly used in spam detection filters
and forensics applications. After the release of the forensics tool ssdeep in 2006, fuzzy
hashing has gotten more attention. This means that the so-called avalance effect, which
causes a significant part of the digest to change if only just one bit from the input changes,
is scrapped in favour of detecting local changes in a file. Just like twins will have similar,
but not identical fingerprints, two related files might have similar, but not identical
digests. Fuzzy hashing will be explored in later sections, but the difference between
fuzzy fingerprinting and ordinary fingerprinting can be seen as analogous to the difference
between the mean of a function and the running mean of the same function.

In some cases, it might be beneficial to know what was changed, rather than just how
much it was changed. An example might be which row or which column was changed
in a text table. Here, Merkle Trees will offer a lot of possibilities, and these will be
explored extensively later on in the report.

Page 16

II 2 BACKGROUND

2.1.1 Collision Resistance and Other Security Meassures

Since a hash function authenticates something by comparing outputs rather than by
deciphering, avoiding collisions becomes important. Otherwise, the system might acci-
dentally think that two different files or two different pieces from a table are the same [12],
which can become troublesome when merging files in a database query, when scanning
for viruses or in other file applications where hashing is used. Preimage resistance and
pseudorandomness are of lesser importance in terms of fingerprinting — since finger-
printing algorithms should not be used for sensitive information, except internally in an
already secure environment. A list of requirements for a secure hash function can be
seen below [13]:

Table 6: Security requirements for a secure hashing scheme

Requirement Description
Variable input size An input x can be of arbritary size
Fixed output size An output H(x) is compressed to a fixed size
Efficiency H(x) is computationally easy to compute

Preimage resistance H(x) cannot be reversed efficiently back to
the input x

Weak collision resistance
Also known as second preimage resistance.
For any given block x, it is computationally
infeasible to find H(y) = H(x) if x 6= y

Strong collision resistance
For any given pair of two inputs (x, y), it is
computationally infeasible to find two hashed
outputs H(x) = H(y)

Pseudorandomness The ouput H(x) meets the standard tests for
pseudorandomness

A crude example of a one-way function is finding the remainder after dividing a number
by a prime and doing an exclusive or with a number after that. As seen below, two
different inputs can indeed produce the same output, which is very unfortunate when
authenticating something.

211 mod 101 = 9 (5)

9⊕ 4 = 13

919 mod 101 = 10 (6)

10⊕ 7 = 13

This example consists of two equations. In both equations, an arbritary number is
divided by 101 — before the remainder is XORed with another arbritary number and
then returned. In both cases, the number returned is 13, despite the fact that the

Page 17

II 2 BACKGROUND

arbritary numbers used in both equations are completely different. Two less "artificial"
and more realistic examples are MD5 and CRC32, which will be explained in detail later
in this section.

An important aspect of hashing (even moreso in terms of fingerprinting than in terms
of cryptographic hashing) is the Pigeonhole Principle. This states that if there are
n n pigeons and m holes, one hole must necessarily contain more than one pigeon if
n > m. [14]

Figure 3: How the Merkle-Damgård construction operates. Here x[i] refers to blocks from the
input message, f refers to the compression function, and g refers to the finalization function.
IV refers to the initialization vector, while p is the padding

If this principle is extended, it can be proven that at least one hole will contain at least
d n
m
e pigeons. In the same manner, if we have n possible preimages and a bit size of

m, clearly, a collision may happen if n > m. Bit size in a hashing algorithm (whether
cryptographical or simply a fingerprinting algorithm) is therefore crucial.

Hashing algorithms use a fixed size output — and a 5 MB (5242880 bits) input will in
this case be mapped to a much smaller digest. There are 25242880 ways to assemble a
5 MB file, but only 2512 possible outputs for a SHA-512 digest. Clearly, this indicates
that there are a lot of possible collisions. However, it does not by any means mean
that a user is likely to find such a collision — whether it is deliberately or accidentaly.
Perfect collision resistance is impossible; rather, it is more important to make it difficult
to find these collisions. Since there is no theoretical upper limit to file sizes (ext4 has a
maximum size of 16 TiB), the number of possible collisions for a given digest must also
necessarily be infinite.

Many of the strong security capabilities of a cryptographic hash function are achieved
through the Merkle-Damgård construction. This splits an input file into smaller blocks,
hashes each block individually, and then runs a finalizing hash on all the hashed blocks.
[15] While this is what gives (or gave, in the case of the two latter) SHA-2, SHA-1,
and MD5 their security, it is also what makes these algorithms slower than a typical
fingerprinting scheme.

Rabin’s fingerprinting algorithm (which will be presented in detail shortly) only guar-
antees a very low probability of collisions, but cannot guarantee that these will never

Page 18

II 2 BACKGROUND

happen. The probability of two distinct strings colliding here is:

p ≤ n×m2

2k
(7)

where n is the number of unique strings, m is the string length and k is the bit length
of the fingerprint. [16] Since collisions are statistically independent occurences, Michael
O. Rabin suggests using two irreducible polynomials.

For fingerprinting algorithms that are being used internally (where security against ma-
licious attacks are not important) a digest size of 64 bits is enough. An example where
this will be used (as seen later on in the project) is in terms of hashing rows and columns.
A 64bit number size will still fit into a long integer, and will still offer a collision proba-
bility of 1

264 if the algorithm is perfectly balanced, since a bit can be eiether 0 or 1 (two
possible states) and there are 64 bits in total.

The increased performance of a fingerprinting scheme compared to a cryptographic hash
function also means that it is easier to deliberately find a collision (better performance
also means that more candidates can be tested in a given amount of time) in these
for malicious purposes, which is another reason why they should never be used for
security purposes. Note that a user is still very unlikely to stumble upon a collision by
accident.

2.1.2 The Odds Put Into Perspective

Assuming a perfectly balanced hashing scheme, the probability of generating two unique
fingerprints is [17]:

p = N − 1
N

(8)

Where N is the digest size (for a 64 bit hashing scheme, N = 264) and k is the number
of digests. For multiple numbers, due to statistical independence, this formula can be
modified into:

p =
k−1∏
i=0

N − i
N

(9)

This is tedious to calculate both for humans and computers, and instead, it can be
approximated as:

p = e
−k(k−1)

2N (10)

Reformulated, this can also be used to calculate the risk for one or more collisions, so
that the formula becomes

pcollision = 1− e
−k(k−1)

2N (11)

Page 19

II 2 BACKGROUND

The problem described here can be formalized as the birthday paradox, and deals
with the probability of two out of m people have the same birthday. [18] Since there
are only 365 days in a year, the odds of two people sharing the same birthday is thus
very high. If inserted into the formula above ((1− 1

365)× (1− 2
365 × ...× (1− m−1

365))), it
can be shown that if there are at least 23 people at a social gathering, in a school class
or in a workplace, there is more than 50% chance of two people sharing their birthday.
Table 7 shows the collision risk for different fingerprint sizes depending on the number
of fingerprints.

Table 7: Collisions risks and fingerprint sizes

No. 32-bit values No. 64-bit values Odds of a Collision
77163 5.06 billion 0.5
30084 1.97 billion 0.1
9292 609 million 0.01
2932 192 million 0.001
927 60.7 million 0.0001
294 19.2 million 0.00001
93 6.07 million 0.000001
30 1.92 million 0.0000001
10 607401 0.00000001

192077 0.000000001
60740 0.0000000001
19208 0.00000000001
6074 0.000000000001
1921 0.0000000000001
608 0.00000000000001

As seen from the table, a 32 bit fingerprint is clearly insufficient when fingerprinting
tables on a row-by-row or column-by-column basis (as the Merkle Trees in the next
chapter will do).

2.2 Currently Existing Fingerprinting Schemes

Universal hashing algorithms, checksums, and the most commonly used cryptographic
functions are all keyless hash functions, but that is where the similarities end.

In theory, any hash function can be used for fingerprinting files, large chunks of text and
so on. Cryptographic hash functions are powerful, but might seem a bit "overkill" in
terms of fingerprinting, especially given their performance. There are many lightweight
hash functions unsuitable for cryptographic purposes that still have potential in terms of
identifying data. The simplest hash function for this is probably Fowler-Noll-Vo, which
is used in combination with Adler’s checksum for the Spamsum algorithm. [19] It’s main
virtues are two things: it’s performance, and it’s ease of implementation [20].

Page 20

II 2 BACKGROUND

FNV-1a (pseudocode)

1 hash = FNV_offset_basis
for each byte_of_data to be hashed

3 hash = hash XOR byte_of_data
hash = hash * FNV_prime

5 return hash

There is no free lunch, however. The fact that the algorithm revolves around multipli-
cations and EXCLUSIVE OR operations, means that it is sensitive to zeroes. [20] If the
hash value of one round is zero, then the hash value of the next round will be XORed
with zero, and as such, the first line inside the for loop will make no difference what-
soever. In FNV-1, XOR and multiplication happens in the opposite order of FNV-1a.
The latter will have much better avalanche capabilities than the former, while using no
more power. FNV-1a will still have the same bias towards zeroes, and as such, it will
lead to a high collision risk if the numbers are not very large.

Two better suited alternatives are 64 bit cyclic redundancy check and Rabin’s Fin-
gerprinting Scheme.

Mathematical Basis of Rabin’s Fingerprinting Scheme

Rabin’s Fingerprinting Scheme is a hashing algorithm owing it’s collision resistance to
the use of irreducible polynomials over GF (2). This was first presented by Michael
O. Rabin in 1981. While any hash function can technically be used to fingerprint files
or tables, this is the most well-known algorithm that was designed specifically to do
so.

If random polynomials are used, it can be considered a universal hashing scheme. Gen-
erally speaking, Rabin’s Fingerprinting Scheme can be considered a more accurate and
a more large-scale checksum. While most checksums (for example Adler’s Checksum)
do not have to be accurate (it is enough that a small file or a message that is corrupted
differs from the original file or message), Rabin’s Fingerprinting Scheme was designed
to be robust against collisions.

Suppose A = (a1, a2, ..., am) is a binary string, which in turn can be represented as a
polynomial A(t) of degree m− 1. Now assume that P (t) is an irreducible (over GF (2))
polynomial of degree k, over the field GF (2). Note that A(t) does not have to be
irreducible.

With this in mind, a fingerprint according to Rabin’s Fingerprinting Scheme can be
found [16]:

f(A) = A(t) mod P (t) (12)

As an example, let P (t) = 1 + x+ x4 = 10011 and let A(t) = x4 + x3 + x+ 1 = 11011.
These are polynomials of degree 4. In finite field arithmetics, the modulus is calculated

Page 21

II 2 BACKGROUND

the same way as it would have been with ordinary binary numbers. The fingerprint
therefore becomes f(x) = x4 + x3 + 1 mod (x4 + x + 1) = x3 + 1=1001. Naturally,
the numbers used are typically much larger than five bits in practical applications. A
straightfoward, pen and paper implementation of Rabin’s fingerprinting is still slow on
modern hardware. Therefore, Andrei Z. Broder’s implementation is used in this project
(which among others uses a lookup table). This implementation is described in detail
in chapter III and IV. In Andrei Z. Broder’s impementation (which is most commonly
used), an input is not hashed byte-by-byte, but by splitting an input into fixed chunks
of four bytes. Each chunk is hashed and ANDed with a mask, before being XORed with
previous chunks.

Due to excellent performance, good collision resistance, and the ability to handle negative
numbers (Java only has signed long integers — not unsigned long integers), Rabin’s
Fingerprinting Scheme was an obvious candidate.

The Workings of CRC

A Cyclic Redundancy Check is a checksum type and a type of error-detection codes.
The difference between CRC and an ordinary checksum is that CRC is based on the
remainder (redundancy) after cyclic polynomial divisions, hence the name. This makes
CRC more accurate than for instance Fletcher’s or Adler’s Checksum, while only making
the CRC algorithms a little slower to calculate.

A CRC can have many sizes. The number usually refers to the order of the polynomial
used and not the bit size (CRC-32 is actually 33 bits, for instance).

Java’s CRC-32 implementation is specified in RFC-1952 [21], except that the Java im-
plementation does not use lookup tables. Due to it’s small digest size, CRC-32 has a
very high collision risk (as seen in table 7), and thus, CRC-64 is of greater interest.

NFHash (presented later on) will be using CRC64 as a rolling hash. A CRC needs
a generator (divisor) polynomial to work as a divisor in polynomial long division. In
NFHash, the polynomial x64 +x4 +x3 +x+1 (the smallest 64 bit generator) as specified
in the ISO-3309 standard [22], will be used as a divisor.

The formula for CRC can be summarized the following way:

R(x) = M(x)× xn mod G(x) (13)

Here, R(x) is the remainder, while M(x) is the input. G(x) is the generator (divisor).
The input string is padded with n bits, represented by xn, where n refers to the order
of the polynomial.

Generally, a rudimentary CRC is similar to Rabin’s Fingerprinting Scheme at first
glimpse (both can be considered more powerful checksums), apart from the fact that
Rabin’s Fingerprinting Scheme is not cyclic. In CRC, the divisor will "slide" underneath
the dividend, so that the trailing 1 in the divisor will align with the nearest 1 in the

Page 22

II 2 BACKGROUND

dividend. In other words, it does not necessarily move bit-by-bit. An example can be
seen below:

Table 8: How a Cyclic Redundancy Check Operates (for illustrative purposes, the four padded
bits are not included)

Remainder
Dividend 101000110000
Divisor 11001 0
Dividend 011010110000
Divisor 11001 0
Dividend 000011110000
Divisor 11001 0
Dividend 000000111000
Divisor 11001 1010

From the table, it can be seen that the process ends when the number that is left is
smaller than the generator. If this number is zero, then there is no remainder, but in
this case the remainder is 10102.

2.2.1 Current Status of MD5

MD5 is probably still the most used algorithm for fingerprinting large archives and ISO
files. In MD5, accidentally stumbling across collisions is not likely. However, an adver-
sary might put malicious content into a trusted file, without MD5 detecting it.

Figure 4: Chosen-prefix attacks explained (this picture is public domain)

The main reason why MD5 can be considered "outdated" is because of so-called chosen-
prefix collisions [23]. While this may look easy on paper and easy inside an artificial test

Page 23

II 2 BACKGROUND

case, it is usually difficult on large archives, ISO files and so on in real life. The reason
why MD5 was not used in this project, was mainly due to the fact that it is a lot slower
than Rabin’s Fingerprinting Scheme or CRC-64 — especially if it is going to be used as
a rolling hash, or to hash each row and column of a plaintext table.

2.2.2 Fuzzy Fingerprinting Algorithms — a Unique Approach to Hash-
ing

Figure 5: Two identical images, with two completely different SHA-256 digests, due to a few
bytes differing in the file header. (This picture is public domain)

49DDA8EB2095331CD704DDBA69AC5BA
300BE748995637685FD205E58D093595C

80CC19B81145DA1BACFB983E34AEDC6
9BA0981B46EF641810C40B6F1A1F1790B

In figure 5, it can be seen that two identical .PNG files (the PNG format being lossless,
without any artifacts or noise) will give two very different digests even if the headers are
only differing by one byte (with the rest of the files being identical). This effect is called
the Avalance effect. The Avalanche effect can be formalized as The Strict Avalanche
Criterion (SAC) [24]. SAC states that if one bit in the input changes, each output bit
will change with a probability of 50% or more. This will in turn lead to half or more of
the output bits being changed. The Avalanche Effect is extremely important in terms
of cryptography, but in terms of fingerprinting, it is less important. When detecting if
a file was changed or not (and the extent which it was changed) is the subject, it might
even become an obstacle.

Sometimes it might be useful to only let small changes in the input lead to small changes
in the output. Reasons for this might be if a user wants to match files that are similar,
but not identical (or files with identical content but different headers) — or discover if a
certain file is a newer or an obsolete version of another file. On a different level, it might
also be used to discover morphable malware, detecting spam or detecting plagiarism.
This concept is called fuzzy fingerprinting or fuzzy hashing. As seen in figure 5,

Page 24

II 2 BACKGROUND

most conventional hashing algorithms are useless for identifying nearly-similar content
(although nothing will beat them when it comes to matching identical content).

Two currently existing fuzzy fingerprinting schemes will be referenced a lot in this report.
These are called Nilsimsa (often referred to as a form of locality-sensitive hashing) and
Spamsum — and were designed to detect spam. While both are fuzzy hashing schemes
utilizing a sliding window, both are neverheless very different from each other. Both
will also be compared to NFHash in the next chapter. While these were not the only
ones that were investigated, they were the ones who were the most similar to the scope
of this project — and thus, both were major sources of inspiration. Moreover, the fact
that these algorithms are very different, yet serve the same purpose, means that there
are many ways to solve a problem.

Rabin-Karp (not the same as Rabin’s Fingerprinting Scheme), SAHash and rsync were
also studied, since these are other examples of rolling hashes. They were not studied
in the same degree as Nilsimsa or Spamsum, however. Rabin-Karp is a plagiarism-
detection algorithm and is not used for classification, and rsync is what Spamsum is
derived from [25]. SAHash is — on the other hand — somewhat similar to Spamsum,
but due to time constraints, this and TarsosLSH (more closely related to Nilsimsa) were
not studied in detail.

Chunkwise Hashing — A Cheap Way to Do Fuzzy Fingerprinting

Figure 6: A naive chunk-wise hashing approach might sometimes give good results on two equally
long inputs

When using a fingerprinting scheme with a low overhead (eg. Rabin’s Fingerprinting
Scheme with a lookup table), the marginal costs of generating yet another digest are
very low. Therefore, at first glimpse, it might make sense to simply cut an input into
several fixed size chunks, and hash each chunk individually.

In the picture above, only one byte will change, due to the fact that the changes are
confined to a single block. In the picture below, all the blocks change due to a shift, and
thus, all digests will change — even though they are hashed individually. Despite the
fact that the two strings only have one byte differing, they have no common characters
in the digest — even though it is technically a fuzzy hash. This is a significant drawback,

Page 25

II 2 BACKGROUND

considering that it has no advantage over a traditional fingerprinting scheme, while at
the same time being a little slower and more cumbersome.

Figure 7: A naive chunkwise hashing approach will not give good results if there is a length
disparity (even by one character)

Rolling Hashes — Doing Fuzzy Hashes More Efficiently

To make a fuzzy hashing scheme that is insertion robust [26] (i.e. it will resynchronize),
a sliding window is needed. When using a sliding window, a fuzzy hashing scheme can
utilize a rolling hash. Typically, this rolling hash is used in combination with another
hash function, such as FNV in Spamsum, but this is not a strict requirement.

A rolling hash produces a digest for every position in the file, and will only use the
last few bytes of each digest — since it will hash byte-by-byte. The size of the sliding
window will determine the size of the current input. A smaller input makes the result
more dependent on details; if it is too small, even very similar files will have a somewhat
different digest; if it is too large, files that are maybe 80% similar will have an identical
digest. Sliding window sizes are also crucial in classifications and machine learning,
which will be discussed in Chapter III.

Figure 8: A rolling hash will utilize a sliding window to hash each byte individually. If one of
these digests matches or exceeds the predefined block boundariy, a block boundary is defined.

The main purpose of the rolling hash is to find block boundaries (or reset points, as
they are referred to by Andrew Tridgell in the Spamsum source code). If the digest from
the rolling hash matches a predefined block boundary number, a boundary is defined
and a new block is started. If two hash functions are used, whenever a boundary is

Page 26

II 2 BACKGROUND

reached [19], the content between the current and the previous boundary is hashed (in
Spamsum, this is done by utilizing FNV).

In the case of Spamsum, this is done in two batches, calculating two halves of the digest
sequentially. The right part of the digest will have a block boundary number that is
twice as high as the left part. These block boundaries are also refered to as "block size"
in Spamsum, even though they do not technically represent the block size itself.

Spamsum can utilize a fixed block boundary number or a dynamic block boundary
number, which is calculated by iterating over the bytes before hashing and guessing
an appropriate block boundariy number. Unfortunately, it may not always guess the
right block boundary number, leading to a fixed block boundary number often being the
better option. Another drawback of this approach is that small changes in the input text
can cause the algorithm to choose a different block boundary number than previously,
meaning that it can be difficult to compare two files unless several digests from the same
file (with different block boundary numbers) are used.

As a rule of thumb (for all algorithms utilizing a rolling hash), the block boundary
number can be adjusted to match the file size. For smaller files, small block boundaries
are preferable; for large files, use large block boundaries.

What Nilsimsa Does Instead of a Rolling Hash

The other fuzzy hashing scheme studied in detail, Nilsimsa, also utilizes a sliding window.
However, it does not employ a rolling hash layout. Instead, it uses a five character
window size, and then computes all eight tri-grams that can be made from the characters
inside the window. The word "float" for example has the trigrams: "flo", "loa", "oat", "flt",
"fot", "fat", "lot", and "lat". When this is done, it utilizes the Trans53 hashing scheme
and maps every trigram to one (for each) out of 256 accumulators. The accumulators
that receive a trigram are then incremented. Finally, an expected number is calculated.
[27]

In the next step, the accumulators are grouped in groups of four, so that they can
represent binary numbers between 0 and 15. In total, there will be 64 groups, which in
turn leads to a 64 bit digest. This approach is faster than Spamsum, but it is also less
accurate. Moreover, it is more complex to implement.

It is also possible to expand Nilsimsa to Base-64, by utilizing 368 accumulators instead
of 256. This will in turn lead to more memory being used.

Nilsimsa does not utilize block boundaries, and does not use a hashing scheme to slide
the window. Therefore, it does not utilize a rolling hash.

Page 27

II 3 WHY DESIGN TWO NEW APPROACHES?

Figure 9: Nilsimsa makes use of accumulators instead of taking the rolling hash approach.

3 Why Design two New Approaches?

Clearly, one of the most important aspects in designing algorithms is to never reinvent
the wheel. Therefore, other existing fuzzy hashing schemes were studied carefully before
NFHash was developed. Nilsimsa and Spamsum were chosen because spam detec-
tion is somewhat similar to matchig files, because both are well-known (for people who
are familiar with fuzzy hashing algorithms), because both have different strengths and
weaknesses, and because both use a completely different approach for reaching their
goals. The fuzzy hashing scheme in this project seeks to achieve the performance of
Nilsimsa, while achieving the accuracy and the robustness of Spamsum.

One important issue of Spamsum, is that it is relatively slow and produces very large
fingerprints. Nilsimsa, on the other hand, has a higher character-wise collision risk
than spamsum, and is quite rigid, in the sense that there is not much room for differ-
ent settings without extensive modifications. Therefore, a new fuzzy hashing scheme
named NFHash, which is purpose-designed for table and plaintext classifications, was
created.

The second approach, by utilizing Merkle Trees, was chosen because of the fact that
while a fuzzy hashing scheme can tell you how much a file has changed — it cannot tell
directly where the change happened. Merkle Trees have already proven their usefulness
in cryptocurrency [28], noSQL systems and file sharing tools to detect inconsistencies.
Hence, it makes sense that they can also be used to detect updates or changes to a file.
Moreover, Merkle Trees are quite resource efficient, given that no resources are wasted
on comparing nodes that are the same in two or more trees.

In this project, the fuzzy hashing scheme will be coupled with k-nearest neighbor to
classify files. Afterwards, the Merkle Tree-based approach is intended to continue the
work, by finding out what causes the differences in each class. The two approaches here
are also designed so that they can be used individually — without depending on the

Page 28

II 4 CHAPTER SUMMARY

other part. This is why there are two main implementations instead of one.

3.1 The Current Relevance of Non-Fuzzy Fingerprinting Schemes

In the same manner as public-key encryption did not make symmetric key encryption
redundant, fuzzy hashing at it’s present stage will not make ordinary fingerprinting
(hashing) schemes redundant either. The main reason for this is performance. Even the
fastest fuzzy hashing schemes are much slower than a typical secure hashing scheme,
which in turn are much slower than Rabin’s Fingerprinting Scheme and typical check-
sums.

4 Chapter Summary

This chapter first begins with the mathematical prerequisites required to understand
how the algorithms work, namely Galois Fields and Mersenne Primes. The former are
binary polynomials that can be represented as base2 numbers; the latter are any prime
on the form 2n − 1.

Hash functions are also introduced here; most notably for data fingerprinting. Both
ordinary fingerprinting approaches and fuzzy fingerprinting schemes are described. Any
high-performance hashing scheme can be used to fingerprint files. With fuzzy finger-
printing it is a different story, due to the fact that the fingerprint has to change with
the same degree as the input.

The next chapter will present two new ways for fingerprinting unformatted tables, but
will first introduce the datastructures and algorithms (including the algorithm used for
classifications) these approaches are dependent on.

Page 29

III 1 COMPARING RESULTS AFTER HASHING

Simplicity is prerequisite for
reliability.

Edsger Dijkstra

Chapter III

Method and Design
This chapter will deal with the design of the two implementations, and the approaches
used. The two first sections concern string-matching and dataset matching algorithms
— as well as two datastructures, the third section explains machine learning, while
the rest will deal directly with the design of this project (including how the string-
matching/dataset matching algorithms and the datastructures are used). Readers fa-
miliar with string-matching algorithms, dataset matching algorithms, Bloom Filters, and
Merkle Trees, can skip the two first sections.

Note that in-depth regression analysis will not be covered here; mostly due to lack of
immediate relevance, but also due to time constraints.

1 Comparing Results After Hashing

Matching two string digests or two data sets essentially boils down to calculating how
similar they are. There are many ways to do this, but some commonly used methods are
Levenshtein (developed by Vladimir Levenshtein),Damerau-Levenshtein (improved
by Ferederick J. Damerau), and Jaccard (developed by Paul Jaccard). The two former
deal with the cost of transforming string A to string B, while the latter deals with the
similarities between two finite sample sets.

Jaccard describes Jaccard coefficients (also refered to as Jaccard indices) and Jaccard
distances. Instead of the discrete number of characters that differ, Jaccard is instead
used to calculate similarity based on the binary (an element is either inside the set
or it is not) difference between two sets. The Jaccard coefficient can be calculated as
follows [29]:

Sab = |a ∩ b|
|a ∪ b|

(14)

For calculating the Jaccard distance, simply subtract the coefficient from one, so that
Dab = 1− |a ∩ b|

|a ∪ b|
. The main intuition behind Jaccard is to find the number of elements

Page 30

III 1 COMPARING RESULTS AFTER HASHING

present in both datasets divided by all the elements (a AND b divided by a OR b) [30].
An example of a binary Jaccard approach can be seen below:

Table 9: A Simplified Example Showcasing the Jaccard Coefficient Between Java and C++

Classes Garbage Collector Compatible with C Multiple Inheritance
Java Yes Yes Yes (JNI) No
C++ Yes No Yes Yes

Java can in the aforementioned example be represented as the bit string 1110, while
C++ can be represented by the bit string 1011. This will in turn lead to both the
Jaccard distance and the Jaccard coefficient between Java and C++ being 1, since the
exact number of each element in both bit strings are the same. It does not take into
consideration that the 1s and 0s are in different positions, leading to the fact that C++
and Java would be classified as identical in this example.

Because of the high risk of misclassifications, the Jaccard index will not be used for
matching strings. The Jaccard algorithm will be revisited in the next chapter, where
Merkle Trees are discussed, and used for matching trees based on similar nodes.

An algorithm better suited for comparing strings is Levenshtein. The Levenshtein dis-
tance (or edit distance) between two strings refers to how many insertions, deletions
or substitutions that are required for transforming string a into string b [31]. The edit
distance between "wall" and "wolf" will for instance be 2, since two substitutions (a and
l are replaced by o and f , respectively) are required to transform the former into the
latter. Levenshtein differs from hamming code in that it can handle shifts; while the
hamming distance between "wall" and "wolf" is the same as the Levenshtein distance,
"1A84BA39" and "A84BA391" has a Levenshtein distance of 2, but a hamming distance
of 8, since Hamming distance only allows substitutions.

Table 10: Examples of How to Calculate Levenshtein Distance (the bottom table is the most
efficient approach). Here, s means substitution, i means insertion, and d means deletion

C O F F E E
s s i i Total=4

C A F F E I N E
C O F F E E

s d d Total=3
C A F F E I N E

Levenshtein takes insertions and deletions into consideration as well, and can handle
strings of arbritary lengths. This means that the Levenshtein distance is always at
least the length difference between the two strings — and always at most the length
of the longest string. The Levenshtein distance between "Airplane and "plane" will for
instance be 3, since the former is exactly three characters longer than the latter (it does
not matter which characters are added). Levenshtein is generally quite robust, since

Page 31

III 1 COMPARING RESULTS AFTER HASHING

it can handle insertions and deletions (and thus shifts). Nevertheless, it cannot handle
transpositions.

Table 11: Matrix representation of the most optimal solution in Table 10

C A F F E I N E
0 1 2 3 4 5 6 7 8

C 1 0 1 2 3 4 5 6 7
O 2 1 1 2 3 4 5 6 7
F 3 2 2 1 2 3 4 5 6
F 4 3 3 2 1 2 3 4 5
E 5 4 4 3 2 1 2 3 4
E 6 5 5 4 3 2 3 4 3

An improved version of Levenshtein, which allows transpositions, is called Damerau-
Levenshtein [32] (both fall under the umbrella term "edit distance"). While transposi-
tions are not as important as insertions, substitutions and deletions in terms of digests,
rolling hash functions nevertheless scramble the input on a character-by-character ba-
sis (every fingerprint is an x character string, made from x one character fingerprints),
meaning that this extra ability is still somewhat useful, while not consuming significantly
more resources. Note that most implementations of Levenstein-Damerau found on-
line are in fact ordinary Levenshtein or Optimal String Alignment distance.

As an example, the edit distance between "WINEISNOTANEMULATOR" and "WINEIS-
NTOANEMULATOR" will become 2 with ordinary Levenshtein, while it will become
just 1 with Damerau-Levenshtein. This is because ordinary Levenshtein counts the swap-
ping of "T" and "O" in "NOT" as two substitutions, while Damerau-Levenshtein will just
see it as a single operation. Because of the aforementioned virtue, Damerau-Levenshtein
is used in this project — since this will be useful with a more "order robust" hashing
scheme. Moreover, since Damerau-Levenshtein is not fundamentally different from or-
dinary Levenshtein in terms of performance (both have a running time of O(N ×M),
where N is the length of the first string and M is the length of the second string)
apart from one extra lookup and one extra calculation, there were really no significant
disadvantages to employing it in this project.

Table 12: Levenshtein and how it stacks up against Damerau-Levenshtein

W I N E I S N O T A N E M U L A T O R
s s Total=2

W I N E I S N T O A N E M U L A T O R
W I N E I S N O T A N E M U L A T O R

swap Total=1
W I N E I S N T O A N E M U L A T O R

Page 32

III 2 DATASTRUCTURES BEING INTRODUCED IN THIS CHAPTER

2 Datastructures Being Introduced in this Chapter

This section will briefly introduce every datastructure used in this project that is not
a part of the curriculum in most master’s degrees. Later on in this chapter, their uses
directly in this project will be described.

2.1 Introduction to Merkle Trees

With Rabin’s Fingerprinting scheme, generating "yet another" fingerprint when every-
thing else is initialized is computationally very cheap. Unfortunately, with chunk-wise
hashing, digests will become very large and cumbersome to work on. If a table has
2000 rows and each row becomes a chunk, a potential 8 byte fingerprint per row will
give a hash digest of 16 KB. For a table with 65,536 entries (the maximum number of
rows in Open Office Scalc), the digest becomes one large 524 KB string — which is very
cumbersome to store, use, and not to mention compare against another, equally long
string. The solution to this problem is the Merkle Tree (named after it’s creator, Ralph
Merkle), which is a derivative of the binary tree. [33] Here, the hash value of each chunk
— which for instance can represent each column or each row of a table — becomes a
terminal node in the tree.

A Merkle Tree will utilize the fact that in an ordinary (non-fuzzy) hash function, the
digest either changes completely or it does not change at all. Because of this, it has
become a popular tool for detecting inconsistencies, regardless of how small or insignifi-
cant these might seem. Changes or updates to a table are not really any different from
inconsistencies.

Merkle Trees are constructed from the bottom and up instead of from the top and down.
Each terminal node is grouped pairwise under a parent node; these parent nodes are
again grouped under other parent nodes, until there is only one node on top, namely the
root node. Each parent node contains the hashed digest of the two digests below it [34]
(i.e. the digests of the children become inputs for the hash function used to generate
the parents’ digests). In this project, a slightly different approach was taken, where
H(AB) = H(H(A) ⊕ H(B)). This is because H(H(A) ⊕ H(B)) = H(H(B) ⊕ H(A))
(i.e. if the sorting algorithm accidentally swaps the place of two children, it will not
matter) and the fact that it is much more computationally easy to simply to an exclusive
or operation than it is to first convert two long integers to strings and then merge
them.

The datastructure is known for being both robust and simple, which also makes it
versatile. The most famous use of Merkle Trees is probably in the scope of Bitcoins,
but it is also being used by Git repositories (although not for detecting updates) and
noSQL systems, such as Cassandra. Merkle Trees have very few loose parts and are
fundamentally similar to LinkedLists and Binary Trees. Generally, insertion, deletion,
traversal, and so on of a Tree structure is a very cheap affair — despite the fact that

Page 33

III 2 DATASTRUCTURES BEING INTRODUCED IN THIS CHAPTER

a datastructure for nodes add a slight overhead. The performance of the Merkle Tree
therefore relies heavily on the hash function used to fingerprint the content.

The Merkle Tree has many virtues. In this project, it is being employed for tables,
where it can not only be used to calculate the Jaccard index between two documents
(i.e. to what degree they have changed) — but also where the changes were made.
Due to the fact that this is to be used inside networks that are already secure from
outsiders, using processing power on other security meassures than collision security is
of lesser importance. As previously mentioned, fingerprinting algorithms belong where
purposeful data tampering is of little concern.

In this project, Rabin’s Fingerprinting Scheme proved to be the best option, due to
it’s simplicity, collision resistance and overall good performance. Of course, any hash
function can be used for this purpose. Merkle Trees generally excell in cases where the
chunk-size is fixed, or if the text has obvious separators and delimiters — making it a
suitable tool for CSV files, JSON files and so on.

Figure 10: Example of a Merkle Tree with a depth of 3

Merkle Trees are general purpose datastructures and also have uses outside of inconsis-
tency detection. An example of this is MD6, which uses the Merkle Tree instead of the
Merkle-Damgård construction used by SHA-1, SHA-2, and MD5.

2.1.1 Memory Usage May Become a Bottleeck

The most obvious drawback of using Merkle Trees is the memory consumption. A small
Merkle Tree with for example 24 terminal nodes can easily fit in the level 1 cache of the
CPU, since the number of nodes in total is 2n − 1 (where n is the number of nodes) —
and the hash digest using Rabin’s Fingerprinting Scheme is no more than 8 bytes. With
thait being said, a table used in Excel often has hundreds of rows, and CSV files used
in datasets are often kept as large as possible. Open Office Scalc has a maximum row
count of 65 535 (or 216− 1). A Merkle Tree with 65535 bytes of content + overhead will
fit in the L1 cache of a CPU core — but if a larger hash is used, such as a fuzzy hash, it

Page 34

III 2 DATASTRUCTURES BEING INTRODUCED IN THIS CHAPTER

will not. If there are many files being hashed, it might not even fit into the computer’s
main memory, meaning that the hard drive will have to be used for caching.

Because of the potential size of a Merkle Tree (in any case, it is larger than a hash of the
entire file as one chunk would be), lookup tables (these are described in detail in the next
chapter) for Rabin’s fingerprinting schemes, Bloom filters, a good traversal algorithm
and so on are very important.

2.1.2 Odd Number Trees are Also Possible

Since some tables have an odd number of rows an columns, it is also important that a
binary tree can be constructed with an odd number of terminal nodes. A Merkle Tree
having an odd number of terminal nodes is not fundamentally different from one with
an even number. However, it will have a duplicate of itself as a parent, which will in
turn have a duplicate of itself as parent, and so it continues until it reaches a level with
an even number of nodes.

Figure 11: Example of a Merkle Tree with an Odd Number of Terminal Nodes

2.2 Bloom Filters — and How They Differ from Hash Tables

Sometimes it is not necessary to retrieve the object itself, just to know whether it exists
or if it does not exist inside a dataset or a datastructure. This is where Bloom Filters
(first created by Burton Howard Bloom) play a vital role. A Bloom filter is a probabilistic
datastructure, containing bits from other objects. [35] While a Bloom filter cannot with
complete certainty say that an object is in a set or not, it can nevertheless say that
it probably is or that it definetely is not (i.e. there is always a small chance of a false
positive, but never any chance of a false negative). [36]

Page 35

III 2 DATASTRUCTURES BEING INTRODUCED IN THIS CHAPTER

A Bloom filter uses hashing to add a reference to an object, but differs from a hash table
in that it will only store a few bits from the objects it is referencing. In this project, the
bloom filter will be based on the hashes from the terminal nodes in the Merkle Tree. To
check if a file exists in a dataset or a datastructure, the very same aproach is taken (i.e.
the bit set is checked), but no bits are changed or overwritten. If there is no match in
all the bits being checked, then the elements do not exist.

Figure 12: Example of a Bloom Filter with m entries, 2 digests per entry, 3 bits per digest, and
n bits in the bitset

A Bloom filter is initialized with an all-zero bit set — with a length based on the expected
number of entries multiplied with the number of bits per element and multiplied with
the number of hash functions used per element. The higher the expected number, bits
per element, and hash functions, the larger the bit set (note that a larger bit set will use
more memory). Insertion and doing a lookup in a Bloom filter has a constant running
time of O(k), where k is the number of digests (in this project in the form of fingerprints)
used.

The main reason for using a Bloom filter instead of hash tables is that insertions and
lookups are computationally cheap, and at the same time, an entire bloom filter will
typically fit into the level 1 or level 2 cache of a CPU core. The Bloom Filter itself was
designed to avoid unnecessary disk or main memory accesses, meaning that it will be
useful later on in the Merkle Tree-based implementation.

2.2.1 A Bloom Filter Still has it’s Weaknesses

While a Bloom filter is very space and time efficient, it does not "know" anything about
the entries, apart from the fact that they either exist or they do not exist — and it cannot
be used to retrieve an object (or anything belonging to it). As previously mentioned,
it does not store the objects themselves — just bits from them. Furthermore, it is not
possible to delete an element from a Bloom filter.

The difference between a Bloom Filter and a tree, an ArrayList or any other datastruc-

Page 36

III 2 DATASTRUCTURES BEING INTRODUCED IN THIS CHAPTER

ture that actually holds the object, can be seen as analogous to the difference between a
hotel and asking the receptionist whether a given person lives in this hotel or not. This
receptionist will never say that someone who lives in this hotel does not live there, but
occasionally, he/she might say that someone who does not live there (but looks similar
to someone who does) is in fact there. Moreover, as in real life (in accordance with the
law), this receptionist is not allowed to tell where in the data structure or data set the
object is located.

Figure 13: Bloom Filters will tell if an element is probably in the dataset or data structure being
referenced

2.2.2 What are the Probabilities of a False Positive?

The probability of a false positive increases with the number of elements, but will de-
crease with the number of digests used per element or the number of bits per element.
This is because false positives are statistically independent events. The odds of a false
positive for an entry of one bit can be summarized in this formula [37]:

p =
(
1−

[
1− 1

m

]kn)k
≈ (1− e−kn/m)k (15)

Here, k is the number of hash digests per element used, n is the number of inserted
elements, m is the length of the bitset (in bits) and mx is the number of bits per
element. If there are more than one bit per element, then the formula becomes:

p =
(
1−

[
1− 1

m

]kn)kmx

≈ (1− e−kn/m)kmx (16)

2.2.3 Ideal Number of Fingerprints and Bits per Element

There is no "ideal" amount of bits per element. Rather, it becomes important to find
a trade-off between accuracy and space consumption. As a rule of thumb: the more
elements in a Bloom Filter, the higher the amount of bits per element needed to reduce
the rate of false positives. More technically, the rule of thumb can be formulated as:

Page 37

III 2 DATASTRUCTURES BEING INTRODUCED IN THIS CHAPTER

m = −n× ln(p)
ln(2)2 (17)

Where m is the number of bits in the filter, p is the acceptable false positive rate, and n
is the expected number of elements in the filter. If the expected number of elements is
100, and the acceptable false positive rate is 4%, then the equation above becomes:

m = −100× ln(0.04)
ln(2)2 ≈ 670 (18)

From the answer above, it can therefore be seen that 7 bits per element is a good number
for 100 entries.

The ratio of false positives can also be reduced by adding more digests. This does not
increase the space usage, but it will increase the CPU usage (the running time thus
becoming O(k)). The optimal number of digests k, can be calculated as:

k = m

n
× ln(2) (19)

If m and n from the previous equation on total number of bits used is inserted, the
answer becomes:

k = 670
100 × ln(2) ≈ 5 (20)

A different approach will be used in this project, due to the way the Merkle Trees are
implemented. This will be described in Section 5.

Note than ln(2) refers to the natural logarithm of 2, not the base 2 logarithm.

2.3 Summary

The section on data structures can be summarized as follows:

• A Merkle Tree is a binary tree containing nodes with hashes

• Each node in the Merkle Tree which is not a terminal node, contains the hashed
output of the two digests underneath it

• Merkle Trees were invented to detect inconsistencies

• Bloom filters are probabilistic datastructures, meaning that they can tell if an
element is probably in a dataset or a datastructure

• Bloom Filters only contain a few bits from each object, not the objects themselves

Page 38

III 3 K-NN IS USED FOR SUPERVISED MACHINE LEARNING

• Bloom Filters have a constant running time for insertions and lookups

3 k-NN is used for Supervised Machine Learning

While a system classifying few files with very clearly defined differences does not have
to be very intelligent, a system acting outside of an artificial test case and inside real
world applications should at least be able to "reason" or make a qualified guess rather
than just act on impulse. This is where machine learning and pattern recognition comes
into play.

There are different models one can use. This project will utilize supervized machine
learning, where one first trains the classifier using a training set with tables from each
class, and the tests it’s knowledge with a separate testing set [38] — with tables from
each class. Essentially, one is telling the computer "this is how class 1 looks", "this is how
class 2 looks" etc. and then one checks if the computer can recognize a new dataset with
new tables from the same classes. For numerical classification tasks where performance
and simplicity is important, the most-likely estimate (henceforth referred to as MLE),
the Parzen window and the K-nearest neighbor (henceforth referred to as k-NN) are
the most widely used (a decision tree is Boolean and not numerical).

In real life, outside of a controlled environment, the matrix/covariance and the expected
value (denoted as Σ or σ and µ) are rarely known — and there are often few reasons to
spend more resources on calculating these when doing classifications. Thus one cannot
usually assume or "know" anything about the shape of the discriminant function for
each sample or vector being classified. Therefore, a non-parametric (k-NN and Parzen)
approach is often better suited than a parametric approach (MLE). This project uses the
k-NN, due to the fact that the similarities are based on edit distance between text files
and not the Euclidean distance between vectors. Neither k-NN nor Parzen windows
need to know the coordinates (in this case, there are in fact no coordinates), just the
distance between the test vectors and the training vectors. The vectors in this thesis are
represented by plaintext tables.

Supervised machine learning demonstrated to humans typically deal with decision bound-
aries. These are boundaries that determine when a vector should be classified as belong-
ing to which class ωi. The boundaries themselves represent exactly where the probability
of two or more classes is equal. An example can be seen below:

In this example, a 2-dimensional approach with two classes is used, called ωred and ωblue

respectively. If the testing vector is on the left side of the boundary, it will be classified as
ωred. If it is on the right side, it will be classified as ωblue. This section will typically use
two-dimensional examples even though the classifier in this project is one-dimensional.
This is due to the fact that the working mechanisms of a classifier are easier to illustrate
with two dimensions rather than one dimension.

Page 39

III 3 K-NN IS USED FOR SUPERVISED MACHINE LEARNING

Figure 14: Example of a two-class, two-dimensional approach with MLE

It is a common misconception that the most advanced form of machine learning is
automatically the best one. When categorizing objects based on simple attributes (eg.
edit distance of fingerprints, color, shade, and so on) it is better to have a simple artificial
intelligence that thinks within clear boundaries, rather than to try to program something
that will make a lot of complex considerations before finally deciding; the latter will result
in a lot of resources being spent on something that is not necessarily more accurate or
"better" by any means.

A caterpillar will for example never think that "this rutabaga tastes so much better
than carrots" or "I do not like the color of these plants", or potential health benefits or
ethical concerns accociated with eating something that might belong to a farmer — yet
it will still have clearly defined boundaries of what to eat and what not to eat, what
it might eat when there is nothing else around — and of course what could potentially
eat it, signalling that it should crawl to safety. Despite not having an advanced brain,
a caterpillar excels at what a caterpillar is supposed to do, which is to feed on plants
and someday grow into an adult insect. Indeed, a complex brain capable of abstract
reasoning will not be of significant, evolutionary advantage while doing this; instead, it
might actually be a disadvantage, since an advanced brain requires much more energy
to function. In the same manner, a system that classifies hash digests based on edit
distance, whether the amount of money is enough based on weight, whether fruit can
be sold or not based on color and dents, and so on should be kept simple, with no more
loose parts than what is strictly necessary.

3.1 How a Non-parametric Classification Algorithm Works

In a non-parametric approach, one does not assume anything about the distribution; i.e.
one does not assume that it will look like a bell curve after n samples. A lot of resources
can be conserved this way, when the mean or the variance are simply not needed.

Non-parametric approaches have a probability density function function on the form

Page 40

III 3 K-NN IS USED FOR SUPERVISED MACHINE LEARNING

Figure 15: How a hypersphere in a two-dimensional k-NN approach with n = 9 and various kn

values operates

[39]:

pn(x) = kn/n

vn
. (21)

Both k-NN and Parzen Windows are non-parametric functions utilizing a hypercube, a
hypersphere or any other similar figure allowing a clearly defined voting scheme, created
around the vectors (samples) being classified. The size of the figure is denoted as vn in
equation 21, while the number of elements is denoted as kn. vn is the same as hd

n, where
hn is the length of each side of the hypercube, while d refers to number of dimensions.
Typically, hn is a function of the number n of samples in the dataset, eg. hn =

√
n.

The class with the most vectors inside the hypercube, hypersphere or any other repre-
sentation of the selection area (this can be seen as a window) "wins" [40], in the sense
that the probability of it belonging in that class is higher than it belonging in a different
class — and the vector becomes a member of their class. k-NN and Parzen windows
differ in they way they achieve this goal; the former has a fixed number of elements
inside the window, and will adjust the size of the window accordingly; the latter has a
fixed window size, and will adjust the number of elements inside accordingly.

In Parzen windows, the number of samples (kn) in the window is given by

kn =
n∑

i=1
φ

(x− xi)
hn

(22)

where x is the vector being classified, xi is a given sample in the dataset, and hn is
the length of each side of the hypercube, the radius of the hypersphere or any similar
abstraction. Recall that this number is fixed in k-NN. Inserted into equation 16, this
will lead to the probability being:

pn(x) = 1
n

n∑
i=1

1
Vn
φ
x− xi

hn
(23)

Page 41

III 3 K-NN IS USED FOR SUPERVISED MACHINE LEARNING

Typically, prior distribution is used as well in the form of discriminant functions, to even
out the odds some more. Discriminent functions with prior distributions are written the
following way:

gi(x) = P (ωi)
kn/ni

vn
. (24)

Here, ni is the number of elements in the given class. The prior distribution P (ωi) is
simply calculated as ni

n . Bayes theorem states that one should choose gi(x) if gi(x) >
gj(x), and gj(x) if gj(x) > gi(x).

For k-NN, with a kn = m, the hypercube or hypershpere size vn is calculated as
r2 or π ∗ r2 respectively, where r is the Euclidean distance between the vector being
classified and the m-th nearest vector in the dataset. Calculating the Euclidean distance
if the number of dimensions is more than one is normally quite expensive on the x86
architecture, but on some architectures (most famously on IBM’s PowerPC architecture),
the square root is not calculated directly, rather it is approximated discretely. This is,
however, of lesser importance here, as the edit distance between two digests is used
instead, The edit distance can be inserted into equation 24, so that:

gi(x) = P (ωi)
kn/ni

DamLev(x, xi)
(25)

Where, DamLev(x, xi) is the Damerau-Levenshtein distance between the vector being
classified and a given vector in the dataset. The classifyer used in this project will also
use prior distributions when classifying samples.

Due to the inherent simplicity of k-NN and due to the fact that it computes much more
rapidly than Parzen Windows when using a string matching algorithm, this approach
was chosen to do the classification in this project.

Apart from the fact that the prior distribution is used when calculating the discriminant
function in this project, the vectors are all uniformly weighted; that is, there are no
additional weights except for the prior distribution. In theory, nothing is "known" about
the files used for testing the classifyer and as such, going by Occam’s Razor makes the
most sense.

Example of How k-NN is Calculated in this Project

Consider an example where there is two classes, each with 8 samples, for a total of 16
samples in the dataset. Any number is possible, but it is preferred if there is an equal
number of samples in each class, since this is a file- and table matching tool using prior
distributions. Each class has the following digests:

The testing vector used in this case has the digest "1x4H1F+a". The real NFHash uses
64 characters in the digest, but the digests here are 8 characters for illistrative purposes.
Both classes have a prior distribution of P (ω1) = 4

8 and P (ω2) = 4
8 , respectively.

Page 42

III 3 K-NN IS USED FOR SUPERVISED MACHINE LEARNING

Table 13: A Two-Class Dataset

ω1 ω2
x\41F+aa \\4D76fa
x+41FHaa 3D76fa90
1x\41F+a 3D76ccJB
1x331F+a 5H76ccJB
x331F+aA 8H76cdJB
+aAx331F HH76cdJH
x+41FHaa H+41FdjH
x\41gHab H841gdjH

Table 14: Damerau-Levenshtein distance between test sample and samples in dataset

ω1 ω2
4 6
5 8
4 8
2 8
4 8
8 8
5 6
6 8

Normally, there are a lot more elements in a training set, and a lot more elements in a
testing set than this example might indicate. The numbers are kept low for illustrative
purposes in this example. A naive (but often efficient) way to choose kn, is to simply
set it equal to

√
n = 4. For illistrative purposes, in this example, kn = 3. With this, the

discriminant functions for each class can be calculated:

1. g1(x) = 4
8

3/4
4 = 0.09375 (vn = 4, which is the edit distance to the 3. nearest

sample. Consider it the radius of a one-dimensional window required to trap the
three nearest samples)

2. g2(x) = 4
8

3/4
8 = 0.046875

Since g1(x) > g2(x), the test vector is classified as a member of class ω1 in accordance
with Bayes’ theorem. A density function with the different values can be seen here:

In the aforementioned graph, point 0 is where the testing vector is. The coordinates
are not fixed; if a different testing sample was used, the graph would look completely
different.

Pitfall: k-NN and K-means Refer to Two Completely Different Things

k-NN is often confused with K-means, which is a clustering tool. Apart from the fact

Page 43

III 3 K-NN IS USED FOR SUPERVISED MACHINE LEARNING

Figure 16: Class ω1 is represented by the blue line, while class ω2 is represented by the orange
line. The purple line is where the two probability of the two classes intersect

that both algorithms are pattern recognition tools classifying samples based on ditance,
they have nothing in common. K-means does not use supervised learning; i.e. there
are no external classifications (nobody tells it how to tell the difference between several
buckets or classes). Instead, it groups a vector into the appropriate cluster based on
which cluster is the nearest one. K-means is not used in this project—and would not
work well since the classifier in this project does not use actual coordinates, just edit
distance.

Intuitively speaking, K-means has more in common with graph clustering based on peer
pressure than with k-NN.

3.1.1 How is This Implemented in the Project?

All that a Java function classifying a vector in this project needs to do, is to tell which
gi(x) has the highest probability by utilizing simple mathematics and rudimentary data
structures. This is described in detail in chapter IV.

3.2 Precision and Recall

The two most important ways to evaluate a simple classifier is by finding the precision
and recall rate. Precision is the percentage of retrieved elements that are actually
relevant, while recall is the percentage of releveant elements that are actually retrieved.
[41] Typically, a good way to evaluate a classifier after training is to use a confusion
matrix. [42] This will feature the times a prediction of a given class is right, and the
times it is wrong (and what the actual result was instead). Matrix dimensions represent

Page 44

III 3 K-NN IS USED FOR SUPERVISED MACHINE LEARNING

the number of classes in the dataset (a two-class dataset will be represented by a 2× 2
matrix, a three-class dataset by a 3× 3 matrix and so on).

The formulas for accuracy and recall can be generalized as:

Accuracy = (relevant entries) ∩ (retrieved entries)
retrieved entries

(26)

Recall = (relevant entries) ∩ (retrieved entries)
relevant entries

(27)

In table 15 an example of a two-class confusion matrix is shown. The cell a represents
the times when ω1 is both the predicted and actual result — while d represents the time
this is the case for ω2. b represents all the time what is predicted to be ω1 is really ω2,
while c represents vice versa.

Table 15: A confusion matrix explained

Predicted
ω1 ω2

ω1 a bActual
ω2 c d

For ω1, b is a false while c is a. From this, the accuracy AC can be calculated as:

AC = a+ d

a+ b+ c+ d
(28)

While the recall rate for each class becomes:

RCω1 = a

a+ b
(29)

RCω2 = d

d+ c
(30)

Accuracy and recall will serve as a leitmotif in the Testing and Analysis chapter.

3.3 Overfitting Might Lead to Undesireable Results

Overfitting refers to when a classifier that is trained in a manner that makes it take
exceptions, noise, inaccuracies and so on into consideration [43]. This can lead to un-
desireable results, leading to a sample being classified as something it is not, due to it’s
superficial resemblance to an exception from another class.

Page 45

III 3 K-NN IS USED FOR SUPERVISED MACHINE LEARNING

Figure 17: Example of a two-dimensional dataset with three classes using the k-NN approach.
The jagged, spiky appearance of the decision boundaries and the graph, can be both a fatal flaw
and an advantage. This picture shows an example of overfitting. The more elements that are
used inside the window, the less spiky the decission boundary will be

Overfitting can partially be overcome by using a fuzzy hashing scheme, since this will
also compress all the dimensions into one dimension. Nevertheless, it is not a cure for
overfitting if all other steps are ignored. These steps all work with k-NN, but different
appraoches may sometimes be taken with Parzen windows or MLE.

3.3.1 Avoiding Overfitting

Choose an appropriate kn value

The most important step is to choose a good kn number. Unless the dataset is very
separable (preferably linearly separable, with close to linear decision boundaries) — or
the number n of elements in the dataset is very small, one should not simply base the
classification on the nearest neighbor (kn = 1). The more elements inside the window,
the less the outliers and the noise among the samples will matter, and the more accurate
the result will be. At the same time, the higher the number of elements in the dataset,
the higher the amount of resources used. A tradeoff is therefore necessary. Generally,
the smaller the difference between n and kn (in terms of ratio), the more the density
function will resemble a continuous distribution.

Typically, kn is a function of n (the number of elements in the dataset). This could for
instance be

√
n, 3
√
n or n/10.

Use Enough Training Sets

Page 46

III 3 K-NN IS USED FOR SUPERVISED MACHINE LEARNING

Figure 18: Example of a two-dimensional dataset with three classes where overfitting is avoided

One of the most important theorems in basic statistics, is the Weak Law of Large Num-
bers, stating that after a large number of tries, the average should converge towards
the expected value. There are no expected values in k-NN, but the law will still apply
indirectly, since using enough datasets will mean that exceptions and outliers are of less
significance. Note that the larger the training set, the more important a correct kn

number becomes, meaning that using enough training sets is not a perfect "cure" against
overfitting.

Keep Dimensionality at a Reasonable Number

As previously mentioned, a classifier uses one dimension for each feature. Typically,
adding more features (and thus more dimensions) makes it easier to tell several classes
apart, since this will reduce the error rate P (e).

As an example, consider classifying combustion engines. In this example, there are two
classes in total ωpetrol, and ωdiesel. First, assume there is just one dimension, namely
compression ratio (this is lower for petrol and higher for diesel). Typically, a diesel engine
has a higher compression ratio than other engine types, but there are exceptions; a petrol-
powered race car will have a higher compression ratio than a diesel-powered tractor, and
accidentally filling petrol in a diesel-powered engine is an expensive mistake (which is
why loss functions can also be used as well). More dimensions can be added, such as
weight/cylinder volume ratio (diesel-powered engines are heavier and more robust than
petol-powered engines), rotations per minute of the crankshaft, and torque/horsepower
ratio (a diesel-powered engine usually has a higher torque). Four dimensions should in
theory give a better result than just one, but if the number is too high (typically over
20 dimensions), it will also lead to the machine learning exceptions that are specific to
the training dataset and that do not necessarily reflect the real world. This is called "the
Curse of Dimensionality". [44]

Page 47

III 3 K-NN IS USED FOR SUPERVISED MACHINE LEARNING

A fuzzy hashing scheme (such as NFHash) can compress a multidimensional table into
one string, that can be used in a one-dimensional case. This approach is already being
used in various forensic tools utilizing Spamsum or Nilsimsa. This does not make a
classifier immune to overfitting, but it will still significantly reduce the risk of this.

Use the Sliding Window Size Wisely

In this project, the k-NN classifyer is one-dimensional (it makes use of NFHash to flatten
the dimensions). However, this does not make it immune to overfitting. One important
factor is the sliding window size. The smaller this is, the more sensitive the algorithm is
in terms of details. If there are many training samples per class, then a coarse granularity
(large sliding window size) will lead to more misclassifications; if there are few samples
in the training set, a too small one might lead to misclassifications instead. Both are
examples of overfitting.

Resampling is Sometimes Necessary

Resampling simply refers to moving one element from one class in the training set over
to another, based on it’s discriminant function. This is no different than when a trained
classifier is given a fresh vector to classify, except that the vector is already from the
training set used to train the classifier. Resampling methods can be grouped into Boost-
ing and Bagging [45], among others. (bootstap aggregating). Bagging means that you
take samples (with replacement) at random from the training set and use them to fur-
ther improve the classifier. Bagging decreases the variance, and thus improves generality
and precision. Boosting trains a new classifyer (or trains the same one with completely
blank sheets), with special emphasis on the elements the previous classifier misclassified.
Boosting decreases the bias, and thus improves accuracy.

Note that there is a tradeoff between variance and bias. Errors due to bias are due
to how far off the predictions of the classifier are from the correct value. Errors due to
variance refers to how much the predictions for a given point xi differs from the expected
value. High variance will typically lead to overfitting, while high bias will typically lead
to underfitting (which means that the classifier is not trained to detect details on a
satisfactory level). Note that low bias and low variance are not mutually exclusive, but
this can often be hard to achieve.

Figure 19: Left: Errors due to high variance. Right: Errors due to high bias (this picture is
public domain)

Due to the fact that the aforementioned resampling meta-algorithms are computationally

Page 48

III 3 K-NN IS USED FOR SUPERVISED MACHINE LEARNING

expensive to do automatically, and the fact that the approach used in this project is based
on edit distance and not actuall coordinates, resampling needs to be done manually on
the datasets used in this library (i.e. no code doing it exists here), by filtering the
training set and reclassifying entries manually. Resampling is mostly relevant when the
sample sizes are very small.

3.4 Other Potential Problems with the k-NN Algorithm

Large ranges usually dominate smaller ones, so that some dimensions gain more influence
than others. In the aforementioned example on engines, the range between rotations
per minute for the crank shaft for a gasoline engine can be anything from 3000 (some
"malaise era" engines) to over 12,000 (high performance normally-aspirated engines).
By comparison, the torque-to-horsepower ratio is usually between 1 and 2.6. Clearly,
the former will have more influence than the latter. Without a fuzzy hashing scheme,
one can attach weights to certain dimensions to improve their ability to influence the
decision.

A high variance might make it difficult to tell classes apart, leading to the fact that a
very large sample size might be necessary. This is also a problem with Parzen windows
and MLE.

Some misclassifications are also more expensive to make than others. Misclassifying a
diesel engine as a gasoline engine is much more expensive than the other way around,
and if there is a close to equal chance of classifying a vector as either gasoline or diesel,
the decission boundary needs to be moved just in case (so that diesel becomes the more
likely class). This is done by loss functions.

Loss functions can be calculated in many ways, but will not be used in this project.
There are a number of reasons for this, but first and foremost, it is difficult to predict
how much more expensive it is to misclassify something as a table from class A when
it really is a table belonging in class B than it is to misclassify it as a table of class B
when it really should be in class A. A secondary reason is that it is computationally
costly, and complex to implement — meaning that it adds a lot of development time to
something the user might not even need.

In a few rare cases, k-NN might give an ambiguous result; imagine there are 3 classes,
akn value of 5 and a total of 24 samples in the dataset. Now imagine that each class
has 8 samples, leading to an identical prior distribution P (ωi) for all classes. Suppose
ω1 and ω2 has an equal number of samples within a hypercube or hypersphere, and that
the edit distance between the reference vector and each vector in ω1 corresponds to the
edit distance between the reference vector and each vector in ω2. This will lead to the
unfortunate situation where the classifier cannot decide which class to choose. Although
a very unlikely scenario if overfitting can be avoided, it is nevertheless an interesting
thought experiment.

Page 49

III 4 DESIGN I: DESIGN OF NO-FRILLS HASH

3.5 Summary

• For a non-parametric algorithm, one does not assume anything about the final
shape of the density function. MLE is a parametric algorithm — Parzen Windows
and k-NN are not

• Supervised learning means that a classifier is taught using external classification.
A programmer "shows" it a training set to teach it to classify correctly

• k-NN and Parzen Windows both use a hypercube (a so-called window) with a
majority vote to tell the classifier where to put the reference vector

• Overfitting means that a classifier is taught to pay too much attention to noise,
exceptions and other inaccuracies. This is not a desireable trait

• k-NN is inaccurate for small sample sizes

• A good way to test a classifier is to calculate the accuracy and the precision rate

4 Design I: Design of No-Frills Hash

The name of the fuzzy hahing scheme designed in this project is No-Frills Hash. This
was designed to better suit the needs of file and table classifications rather than spam
filtering and forensics — which is what most currently existing fuzzy hashing schemes
are used for. Some design criteria were needed before the algorithm could be designed.
While being heavily inspired by both Nilsimsa and Spamsum, NFHash is not based on
any of them.

4.1 Main Design Criteria:

The two most important properties in Spamsum, according to the creator Andrew
Tridgell, are defined as follows [26]:

"non-propogation

In most hash algorithms a change in any part of a plaintext will either change
the resulting hash completely or will change all parts of the hash after the
part corresponding with the changed plaintext. In the spamsum algorithm
only the part of the spamsum signature that corresponds linearly with the
changed part of the plaintext will be changed. This means that small changes
in any part of the plaintext will leave most of the signature the same. This is
essential for SPAM detection as it is common for varients of the same SPAM
to have small changes in their body and we need to ensure that the matching
algorithm can cope with these changes.

Page 50

III 4 DESIGN I: DESIGN OF NO-FRILLS HASH

alignment robustness

Most hash algorithms are very alignment sensitive. If you shift the plain-
text by a byte (say by inserting a character at the start) then a completely
different hash is generated. The spamsum algorithm is robust to alignment
changes, and will automatically re-align the resulting signature after inser-
tions or deletions. This works in combination with the non-propogation
property to make spamsum suitable for telling if two emails are ’similar’."

The aforementioned criteria has served as the main criteria when designing NFHash —
as they can be considered corner stones of any fuzzy hashing scheme. A table on the
form [A, B, C, D, E, F], needs to be recognized as "very similar to" a table on the form
[G, B, A, C, D, E, F].

Furthermore, performance and accuracy has been crucial. The secondary criteria are
listed below:

• Less overhead than Nilsimsa — due to the fact that typically, more than two files
are compared. The final version is similar in terms of overhead, leading to this
being the only criteria not met

• Customizability, so that a user can decide to which extent minor details affect the
digest. Spamsum already has this ability, Nilsimsa does not

• Better overall performance than Spamsum, hopefully close to Nilsimsa

• Signatures that are portable — and not dependent on any datastructure, keys or
deserialization mechanism

• Lower memory consumption than Nilsimsa

• To a lesser extent robust against shuffling of the elements. If several rows are
moved into new positions without any content being altered, the digest should at
least look recognizable, but not necessarily to the extent where one can pinpoint
exactly where the change was made

• Few loose parts, so that the result is predictable and the algorithm will perform
well — and the code will be easy to port and debug between various platforms and
various programming languages (hence the name "No-Frills Hash")

These criteria are also important, due to the fact that it will be used for classifying
multiple plaintext files at one — files that are often larger than a spam e-mail. Note
that this does not make NFHash "better" than Nilsimsa and Spamsum; it just means
that it is used for different things, and as such some features in Nilsimsa and Spamsum
are redundant for file and table classifications. NFHash is designed for plaintext files and
tables (for software similar to Avito Loops), and files with very little bytewise repetition
in them; Nilsimsa and Spamsum are designed for spam detection and forensics (NFHash
should not be used for the latter).

Page 51

III 4 DESIGN I: DESIGN OF NO-FRILLS HASH

4.1.1 "Order Robustness"

While Andrew Tridgell coined the terms "alignment robustness" and "non-propagation",
he makes little mention of the order of the elements. Obviously, this is less important
than the two main criteria, since the elements in a table are rarely moved without any
insertions or deletions.

This can be demonstrated with the two phrases "Stolen This Code Is" and "This Code Is
Stolen" (a digest in NFHash cannot be longer than it’s input string). These two strings
will give the digests "iRKJALxlFEOx2KBAx8OD" and "lFEOx2KBAx8OxiRKJALD",
where the two digests will have exactly the same content, but in different order. Note
that Damerau-Levenshtein will not take this into consideration if the substrings are too
many and too short. This problem can be solved by Jaccard, but since Jaccard does not
take into consideration where the characters are located, it might lead to a high collision
risk.

Spamsum, Rabin-Karp, and rsync also have this property, courtesy of utilizing rolling
hashes. Because of this order robustness, Damerau-Levenshtein will also serve it’s pur-
pose well in this project.

4.2 Outline of NFHash

Data: A byte array of arbritary length, window size and boundary size
Result: A 64 byte base64 digest
while Byte array has more bytes do

Slide n size window over input;
if CRC64 of elements inside window ∧ boundary size− 1 = boundary size− 1 then

Create a boundary and start a new block.;
if More than one boundary exists then

Hash elements between this and the previous boundary — as well as the
CRC-64 digest in the current window with Mersenne Primes; i := Mersenne
Prime digest ∧ base number - 1; Next byte in digest = base 64 alphabet[i];
if 64 blocks created ∧ input still has more bytes to visit then

Go back to beginning of fingerprint and start from there, but only
update 1/4 of the characters this time; If necessary, the algorithm will go
back to start again and update 1/16 of the characters.

end
end

end
end
return digest

Algorithm 2: NFHash explained

The non-propagation and the insertion robustness problem is solved by using a sliding

Page 52

III 4 DESIGN I: DESIGN OF NO-FRILLS HASH

window, that will automatically resynchronize to compensate for insertions or deletions
— and by having the hashing scheme create the digest character-by-character. Both are
non-issues in Spamsum and Nilsimsa (they handle this very well), but are nevertheless
important to remember.

NFHash revolves heavily around Boolean algebra and uses CRC-64 as a rolling hash.
This is more accurate than Adler’s Chekcsum, while at the same time only being a little
slower if lookup tables are used. In this project, a hard-coded lookup table with partial
seeds based on the ISO-3309 polynomials is used. This polynomial is:

x64 + x4 + x3 + x+ 1 (31)

Since NFHash utilizes a sliding window, all the elements inside the window will be used
as input for the CRC hashing. This sliding window will slide one byte at a time, as
demonstrated in figure 20. The size of the sliding window (use a power of 2 for best
results) will determine to which extent minor changes will affect the digest. A too large
sliding window will not catch small changes at all, while a window that is too small will
lead to a digest that changes very much due to small changes in the input file.

Whenever the digest ANDed with the predefined boundary number matches this bound-
ary number, a boundary is drawn. If there are more than one boundary, the bytes
between the current boundary and the previous boundary are hashed, together with the
digest from the CRC-64 algorithm. The digest each time will be one base64 character.
The risk of this byte matching another byte (regardless of input) is never better than
1
64 , meaning that even a very simple hash function is sufficient. The total digest size
of NFHash is 64 characters; the odds of the entire digest string colliding with another
digest string is therefore (1

64)64, due to statistical independence.

In NFHash, the rolling hash approach was chosen instead of accumulators, due to the fact
that while Nilsimsa is fast on larger filer, the accumulator approach nevertheless causes
a high overhead. If not implemented well, it will also be quite memory-intensive.

While not a strict requirement, NFHash works better if the boundary number and the
sliding window size are both a power of two. This is due to the fact that no rudimentary
arithmetic operations (except plus and minus) are used. Instead, it will make use of
bitwise shifts, AND operations and XOR operations. This greatly improves performance,
while not having any significant drawbacks, given that on a byte level, the collision risks
can never be better than 1/64 when using the base64 approach.

NFHash utilizes a fixed boundary number, rather than one that is guessed by an algo-
rithm. In Spamsum, if no boundary number is specified, it will try to approximate a
boundary number that is equal to the length of the input byte string divided by the
total digest length. It will do this by doubling the boundary number until it is bigger
than the input length divided by the digest length. Unfortunately, using an algorithm
that will guess the boundary number uses a lot of resources.

Page 53

III 4 DESIGN I: DESIGN OF NO-FRILLS HASH

Figure 20: NFHash explained in three steps

Even setting the boundary number equal to the input length divided by the digest length
cubed will give a fairly accurate result in a NFHash. Therefore, if the size differences
are not too big, it is best to set the boundary number to the smallest previous number
that is a power of two relative to the size of the smallest file in the dataset divided by
the digest length. If the smallest file is 100 KB, and the digest size is 64 bytes, a good
boundary number is 1024.

Page 54

III 4 DESIGN I: DESIGN OF NO-FRILLS HASH

4.2.1 Setting a Good Sliding Window Size

Let b denote the boundary number, n the input length, and h the digest length. b will
ideally be the largest power of two number smaller than n

h . For sliding windows, the
answer becomes a little more blurry. A small window size makes the algorithm more
sensitive to smaller changes, but might cause it to "miss the bigger picture". In other
words, if the window size is to small, it might give two very different digests for files that
are not that different; if the window size is too big, it might give very similar digests for
files that are somewhat different.

4.3 Hashing and Mersenne Primes

Take the character c from the byte array and the long h from the CRC-64 (the digest
from the current sliding window) as an input. If h > 2147483647 (the 31 bit Mersenne
prime), let h1 = h ∧ 2147483647 + h >> 31. If 2147483647 > h > 524287, let h1 =
h ∧ 524287 + h >> 19. Repeating this process with an even smaller number in Java
will unfortunately make it less collision resistant than 1/64, but due to the fact that C
allows twice as big positive primitives, it can be done here (the number 261 − 1 can be
used). Finally let the return value be h1 ⊕¬c, that is h1 XORed with the inverse of the
character c.

If p is the Mersenne prime largest mersenne prime smaller than h, and b is the bit size
of the Mersenne prime, the formula can be summarized as:

h1 = h ∧ p+ h >> b (32)

h1 ⊕ ¬c

Obviously, this is not a strong hash function, but it is very fast — and sufficient for
something that does not require (or allow) a better collision resistance than 1/64.

The digest from the internal hash is ANDed with 63 (base number − 1) to select the
character to be added to the fuzzy digest. As an example: 2765 ANDed with 63 will be
25, meaning that character 25 ("Y" in the RFC 4648 implementation) should be chosen
from the alphabet and added to the digest.

4.4 Larger Base Numbers are Not Necessarily Better

NFHash uses a base64 encoding for the fingerprint. While primitives such as longs or
integers are not capable of holding such numbers, no arithmetic operations are performed
directly on the strings after the hashing is done (Damerau-Levenshtein does not care
what a character represents, just if it is different or nonexistant in any of the two digests
currently compared). This also means that the digests can be represented by strings.

Page 55

III 4 DESIGN I: DESIGN OF NO-FRILLS HASH

The main advantages of a base64-based approach, is that significantly larger numbers
can be represented in a much smaller space — and that collision risks are lowered. A
base16 64 byte digest, can represent 1664 different values. At first glance, a base64
encoding might therefore seems very redundant — given that for reference the universe
itself is "only" 4.32 ∗ 1018 seconds old. However, a fuzzy hashing scheme is, as previously
mentioned, designed to match similar digests, not necessarily identical digests, meaning
that the false positive risks are always much higher than the collision risks. Base64
will therefore make the algorithm much more robust, since it can display 6464 unique
values.

In theory, there is no upper limit to the base number one can use in NFHash. It is
also fairly straightforward to modify Spamsum so that is uses an arbritary base number
higher than 64. One could potentially use base128, base256 or for that matter base512,
but there is one significant pitfall of doing this. The ASCII system has a total of 95
printable characters [46]. While UTF-8 has replaced ASCII, UTF-8 is also entirely
backwards compatible with ASCII, and so are most other standards. [47] In theory,
UTF-8 will allow an arbritary base number, but a hash digest has to be something that
will look the same in any operating system, any program, any forum, any language
and any database. For the very same reason, characters not found (or commonly used)
in the modern Latin alphabet or modern Arabic number set should be avoided in the
digest.

There are many standards for implementing a base64 encoding, but the most used is
RFC 4648. In accordance with RFC 4648, the Base64 alphabet is specified as follows
[48]:

Page 56

III 4 DESIGN I: DESIGN OF NO-FRILLS HASH

Table 16: Base64 Encoding Table

Value Encoding Value Encoding Value Encoding Value Encoding
0 A 17 R 34 i 51 z
1 B 18 S 35 j 52 0
2 C 19 T 36 k 53 1
3 D 20 U 37 l 54 2
4 E 21 V 38 m 55 3
5 F 22 W 39 n 56 4
6 G 23 X 40 o 57 5
7 H 24 Y 41 p 58 6
8 I 25 Z 42 q 59 7
9 J 26 a 43 r 60 8
10 K 27 b 44 s 61 9
11 L 28 c 45 t 62 +
12 M 29 d 46 u 63 /
13 N 30 e 47 v Pad =
14 O 31 f 48 w
15 P 32 g 49 x
16 Q 33 h 50 y

Note that base16 is not obsolete or outdated by any means. A numeric primitive—such
as an integer, a long integer, or a float—cannot hold base64 numbers, but they will in
fact hold a hexadecimal number while using no more memory than a decimal number.
Furthermore, since hexadecimal numbers are four bits while base64 numbers are six bits,
the former will scale better with the binary number system (six is not a power of two).
Fuzzy hash digests are too large to fit into a numerical primitive, and thus they are
required to use a string. A base64 string will use no more memory than a hexstring (it
does not matter what kind of characters the string is composed of).

The ASCII standard does not limit the digest to base64, however. Adobe uses a base85-
based approach for some of it’s applications (commonly referred to as ASCII85), and
there are open-source standards using base91 [49] with good results. The currently
existing base91 standard (named "basE91") is freely available under the BSD license.
Base91 is not as widely used as base64 (i.e. less is known about how well it performs on
a large scale) and lacks a unified standard, which is why it was not used in NFHash.

4.5 Potential Weaknesses

NFHash works best if the boundary number and the window size are both powers of
two. It will still work if they are not, but the result will not be optimal. The algorithm
is also sensitive to repeating patterns in the text, meaning that it is not suitable for
fingerprinting archives, compressed files, and so on.

Page 57

III 4 DESIGN I: DESIGN OF NO-FRILLS HASH

If the boundary number is too small for the file size, insignificant, but scattered changes
will have an impact that is too big on the digest. This is due to the fact that it will go
back to the first character of the fingerprint if the 64 character fingerprint is full before
all bytes from the input are traversed by the sliding window. If the opposite is true,
that is that the boundary number is too big, it might ignore minor changes completely.
A rule of thumb in a rolling hash, is to set the boundary number equal to the input
length divided by the digest length. Usually, setting it a little too small is less severe
than setting it a little too big. Note that in no algorithms utilizing rolling hashes can
digests with different boundary numbers be compared.

At it’s present stage, the algorithm can not create a fingerprint of a file shorter than
the fingerprint itself; if for example a 20 character string is hashed, then the fuzzy
fingerprint (if NFHash is configured correctly) will also be 20 characters. A significant
issue might also be that using NFHash requires some practice — and some knowledge
about the working mechanisms used by it. Therefore, the source code for a lightweight
classification tool using it is included as well — in addition to the main source code.

One final weakness is that it might run slow if the window size is set to a large number
(larger than 64). Fortunately, very large window sizes are not usually needed.

4.6 Similarities and Differences Between Other Fuzzy Hashing Schemes

Nilsimsa and NFHash have generally nothing in common apart from the outcome, the
digest size and the fact that both utilize a sliding window. Nevertheless, studying this
algorithm was important, as it was a reference point NFHash could be compared against
— and because it is one of the best fuzzy hashing schemes for spam detection.

Spamsum is somewhat similar in the sense that it utilizes a rolling hash, and an internal
hash (Adler’s checksum and FNV, respectively) — and in the sense that it utilizes the
base64 alphabet. Moreover, most practical applications (eg. SSDeep) will combine it
with Levenshtein.

On the other hand, a Spamsum digest consists of two halves: one left half at 70 characters
— one right half at 29 characters. The right half has twice the boundary number of the
left half. This approach seems redundant when comparing plaintext files rather than
e-mails (as long as the plaintext files are not deliberately written to confuse the hashing
scheme or the classifier), due to the fact that this approach also means that each half
needs to be compared individually to the other files in the set, doubling the time used for
comparisons. A 64 character digests therefore seemed sufficient for comparing plaintext
files. If the 64 character fingerprint is full in NFHash, it will go back to the first character
in the fingerprint and here on only update every 4. character. Should the same thing
happen again, it will update every 16. character. The sliding window will of course not
be sent back to the start in the input, but will continue. As such, setting the boundary
number too low in NFHash can also cause bytes early in the input to have a higher vote
than bytes later in the input.

Page 58

III 5

Table 17: NFHash compared to Nilsimsa and Spamsum

Nilsimsa Spamsum NFHash
Mechanism Accumulators Rolling Hash Rolling Hash
Rolling Hash NA Adler’s Checksum CRC-64
Internal Hash Trans53 FNV Mersenne Prime-based
Base Number 16 64 64
Digest Size (chars) 64 107 64
Parts 1 2 1
Sliding Window Size 5 Adjustable (default 7) Adjustable (power of 2)
Boundary Number NA Adjustable Adjustable (power of 2)

4.7 Summary

• NFHash used CRC64 as a rolling hash and Mersenne primes as an internal hash

• The digest size is 64 characters, with a base64 number system

• NFHash is designed for file and text table classifications, and will outperform
Soamsum and Nilsimsa on this

• It will, however, be less suited for blacklisting spam or for forensic uses

5 Design II: How Merkle Trees and non-Rolling Finger-
printing Schemes are Used in This Project

Merkle Trees in this project are used to detect changes or updates in a table. This
datastructure was chosen to do the job because it will not waste CPU power by visiting
similar nodes, and because nodes can represent clearly separated plaintext contect very
well. Moreover, the performance of Rabin’s fingerprinting scheme, means that the Merkle
Tree and Rabin’s fingerprinting scheme are a good match — leading to this scheme
being chosen. The main point of utilizing the Merkle Trees in this project, was so that
expensive brute-force searches would not be necessary.

In this project, 64 bit signed long integers are used for digests, since Rabin’s Finger-
printing Scheme can also handle negative numbers (it is entirely possible to represent
a polynomial with negative numbers, where negative numbers are larger polynomials).
The approach used in this report also works for larger numbers. The only modification
needed, is to use two digests per node (and thereby, two irreducible polynomials).

A datastructure with hashing in a hierarchical manner is necessary because a fuzzy
hashing scheme is still one-way, and because the digest sizes are fixed — leading to the
fact that in a large text table, a change in a single row might not even affect one byte
in the fingerprint. Furthermore, for a large table, a single byte in the fingerprint can

Page 59

III 5

be based on more than one thousand rows, making a change in a single byte difficult to
track.

The Merkle Trees in this project are constructed separately for rows and for columns,
and every table has one of each. Every Tree Object in this project also has a Bloom
Filter, that serves as a helping hand to get around some of the weaknesses of a Merkle
Tree. This Bloom filter only holds bits from the fingerprints of each terminal (leaf)
nodes, meaning that the Bloom filter will not take up much space.

In this project, the root node of the Merkle Tree can be considered a fingerprint for the
entire file or entire table.

5.1 Comparing two Merkle Trees

Figure 21: How a change in node C will affect the traversal. The blue nodes represent nodes that
are traversed, while the white nodes represent nodes that are ignored.

Comparison between two Merkle Trees can be classified as a recursive divide and con-
quer approach. Recursion will generally provide more clarity than an iterative approach,
will in some cases be easier to debug, and might sometimes require less information to
be stored in the computer’s memory. When using a recursive approach, one does not
strictly speaking have to keep anything else than the root node and some metadata
(number of terminal nodes, depth, and so on) in the Merkle Tree code; the children
nodes will simply be referenced internally by the parent nodes.

Since a Merkle Tree is traversed the same way as a binary tree, a comparison between
two Merkle Trees can be considered a depth first search in level-order. The differ-
ence between the approach used in this approach and an ordinary DFS, is that in this
approach, a node that is similar in both trees will not be traversed.

First, start with the root node of each tree. If these are identical, then clearly, the
rest of the nodes are with a high probability as well, meaning that no further traversal
is needed (best-case). If they are different, then the left and right child is checked in
a similar manner in both trees. If both the left and right node are different in both
trees, then proceed; if it is only different one one side, then just traverse this side. Both

Page 60

III 5

children nodes cannot be different in both trees if the parent node is similar in both
trees. Likewise, two identical nodes in both trees also indicate that their children are
similar in both trees. Traversal stops when all terminal nodes that do not have a match
in the Bloom filter of the other tree are pushed to a stack and counted. If no nodes are
similar, then all nodes in both trees are traversed (worst-case). Because of this, best-
case will have a complexity of O(1), while worst case will have a complexity of O(n2).
Average-case should in theory be O((log n)2). Here n is the number of rows or columns.
If each cell was used instead, a worst-case comparison would be no faster than a pure
brute-force search.

A possible alternative to the Bloom filter could be to do a DFS until the second last level
— and then do a BFS (breadth-first search) on the terminal nodes below the nodes that
have changes. The drawback of this approach is that it has poor worst-case performance,
which is why the Bloom Filter-based approach was chosen instead.

It should again be noted that the Big O notation is not an exact meassurement of how
long time something takes. Rather, it is a tool to show how an algorithm scales in
terms of execution time; even in the worst-case, comparing Merkle Trees is s very quick
operation.

Comparing Merkle Trees of different depths can pose a problem if the algorithm is not
implemented properly. Initially, there was one obvious, but naive solution to this. Since
a tree is basically nothing more than a collection of nodes organized in a hierarchy (i.e.
apart from the fact that each parent node contains references to two nodes rather than
one, it is no different from a Linked List), a tree can be split into smaller sub trees. If
there is a depth disparity of n between two trees, the traversal algorithm would go down
n levels in the largest tree from the root node — and start of at level n instead.

This initial approach splits the largest tree into 2n sub trees, which would not lead to
any information being lost, since only the terminal nodes contain the hash digests of
the actual entries (the other nodes only contain hash digests of other hash digests). The
aforementioned approach is how the problem was initially done in this project. After
the Bloom Filter approach was added, trees of different sizes were traversed as usual,
and if any of the digests of the terminal nodes in the largest tree was not referenced
in the Bloom filter in the smallest tree, these were counted and pushed onto a stack.
The current approach only increases the average- and worst-case performance minimally,
while at the same time significantly increasing the average- and worst-case accuracy. The
old approach is no longer present in the code.

Page 61

III 5

Figure 22: Initial Approach: Comparing two Merkle Trees with a different number of nodes (a
depth of 4 and 2 for each tree respectively)

Page 62

III 5

Figure 23: Final Approach when comparing two Trees of different depth: Bloom Filters are now
used, so that the position of the terminal nodes are of lesser importance. Parent nodes that are
similar (suppose both trees has H(AB) or H(CD) as a node) are still ignored

No dynamic programming is needed to implement methods for comparing two Merkle
Trees, due to the fact that there are no overlapping subproblems — since it is impossible
to traverse the same node twice in the same tree with a DFS. The principle of imposing
restrictions on which nodes to visit and which to ignore is similar in principle to a
bottoms-up dynamic programming approach, though.

Written as pseudocode, the entire algorithm can be summarized as follows:

Data: Two Merkle Trees
Result: The Number of Similar Nodes in Two Merkle Trees and their tags
initialization;
First Node of First Tree ← Root Node of First Tree
First Node of Second Tree ← Root Node of Second Tree
if First Node of First Merkle Tree = First Node of Second Merkle Tree then

Count=0
end
while First Node of First Tree 6= Second Node of Second Tree do

Get children of both root nodes and compare them. Repeat process in every node
with no identical equivalent if Terminal node is reached and no equivalent found in
other tree’s Bloom Filter then

Count ← 1
end

end
Algorithm 3: Comparing two Merkle Trees

The Merkle Tree approach implemented during this project also features a method for
calculating the Jaccard index, as mentioned in page 31. Since the nodes are sorted based
on their respective fingerprints, this will not lead to the same weaknesses as when using

Page 63

III 5

Jaccard for matching strings — due to the collision resistance of Rabin’s Fingerprinting
Scheme and the fact that a Table Y — which is a shuffled version of Table X — still
has the same content as Table X. Jaccard deals with similarities, while the algorithm
for comparing Merkle Trees deals with dissimilarities. The number of similar nodes is
equal to the number of terminal nodes minus the number of dissimilar nodes between
two trees.

The Jaccard method returns a double in this Java code. Since it is only calculated
once per Merkle Tree, the extra costs of using a double instead of an integer are almost
neglible. The main advantage of using Jaccard, is that it will put a coefficient the result,
to make it more comprehensible to the human eye.

5.1.1 Finding Out Where the Changes Happened

Figure 24: An example of how it can be applied in a table with 5 columns and 16 rows. Changes
are first discovered in row 6, 7 and 8 — and then secondly in column 2 and 4. Using Boolean
logic, this means that [6,2], [6,4], [7,2], [7,4], [8,2] and [8,4] are candidates for where the change
happened.

Since ordinary hash functions are indeed one-way functions, it is impossible to tell where
the change happened. For a large file, this can be troublesome enough with a fuzzy
hash, due to the fact that these are still very small compared to the vast majority of
files (NFHash has a fingerprint size of 64 bytes).

In hash trees, this problem can be solved easily, by labelling each terminal node a tag in
addition to the fingerprint. This does not have to be any more advanced than labelling
them with an integer based on the row or column number. As the changes are detected,
this tag can be added to an array or pushed to a stack. When the comparison is finished,
the array or the stack is returned. The implementation in this library will both count
the differing nodes and return their tags in a stack, so that the user will know where

Page 64

III 5

the changes happened. Note that the one-way properties of hash functions still makes
it impossible to find out what caused the change.

5.1.2 A Slightly Different Application of Bloom Filters

Recall Equation 19 in page 38 — together with the rule of thumb on bits per element.
Here, a slightly different approach is used. The bit set used to implement the filter in
Java, only allows digests that are no larger than what a 32 bit signed integer can hold.
Since the digests from the Merkle Tree are used (to prevent redundant hashing — and
to make use of Rabin’s Fingerprinting Scheme) in the Bloom Filter as well, the 64 bit
long integers from the terminal nodes are split into two 32 bit integers and used as two
different digests per element. Moreover, 64 bits (the entire initial hash) per element is
used in the Bloom Filter. The Bloom Filter is supposed to serve as a helping hand to
the Merkle Tree (and not the other way around). This approach conserves a lot of CPU
power (allowing for very fast comparisons) — and only adds a slight memory overhead,
due to the fact that the Merkle Tree itself is much less space efficient than the Bloom
Filter — almost regardless of size.

The number of digets k can therefore be summarized as 2, while m
n becomes 32.

5.1.3 Merkle Trees Have One Significant Drawback With no Obvious Solu-
tion

A deterministic algorithm cannot be "reasoned with" — and will therefore have a fixed
behaviour. This also means that a Merkle Tree in it’s rudimentary form can be tricked
easily.

Imagine a 10× 100 table. If one new column is inserted and one new row is inserted, all
the fingerprins for each row and each column will be changed into a set of completely
different fingerprints. Any matching algortihm, whether it is Levenhstein-Damerau,
brute-force or Jaccard, will think that all entries have been changed, while in reality,
only 111 entries (just shy of 10% of all the entries) have changed. This of course only
applies to cases where an entire row and an entire column has been inserted (or all entries
in a row or a column has been changed).

There are many slow solutions to this, but none of them are faster than an ordinary brute-
force search. The first solution to this problem is to use fuzzy hashes, while hashing rows
only. This is still easy to implement, but the fact that Damerau-Levenshtein is a lot
slower than just comparing two hash digests by content, means that the string matching
algorithm might become a bottleneck. As previously mentioned, it will also take much
longer time to create a Merkle Tree with this approach, due to the fact that fuzzy
hashing schemes are much slower than conventional hashing schemes. Generally, the
point of Merkle Trees is to detect changes faster than with a brute-force approach; if the

Page 65

III 5

creation or the traversal of these Merkle Trees become slower than this, then there would
be no reason for them to exist.

An insert of one or more rows will change all columns, and likewise, an insert of one or
more columns will change all rows. However, if one or more rows are inserted without
inserting any columns — or one or more columns are inserted without inserting any
rows, it is still fairly straightforward to see where the change happened. Clearly, if all
rows are different, but only one row at position x is different, this indicates that a new
row was inserted at position x. The same approach also holds water for columns; if all
rows were changed, but only one column at position y was changed, then obviously, a
column was inserted at position y.

Figure 25: Inserting a row and a column into a table (blue color). If a "common" hash function
with avalanche properties is used, a string matching algorithm will think all cells have been
changed.

5.1.4 Recognizing Rows that Have Been Shifted

An issue that could potentially render the Merkle Tree useless if not taken care of, is if
there is a shift in the table — for instance if a row or column is inserted other places
than at the end of the document. Special care has been taken to ensure that the Merkle
Tree is in fact alignment robust.

There are of course other ways to do a comparison of two or more Merkle Trees, with
the most obvious one being Levenhstein-Damerau on all the terminal nodes together as
a string, but this will cause the Merkle Tree to lose it’s main advantage, as this would
require too much resources. The best way to solve this is to sort the nodes based on their
hash values before constructing the tree.

If the nodes are tagged (eg. with row or column numbers) in addition to their hash
values, it does not matter if the nodes are not in the same order as the rows or the
columns in the table the tree is based on.

In the worst-case scenario, a newly inserted row or column is placed furthest to the
left after sorting the entries used to create the terminal nodes. This will shift all the
other nodes to the right. This is the primary reason for why each tree is also equipped
with a Bloom Filter. Without the Bloom Filter, a shift to the right at terminal node x,

Page 66

III 5

would also cause all nodes to the right of and including terminal node x to be counted
as changes, regardless of whether they had a match in the other tree or not.

Figure 26: Worst-case insertion compared to best-case insertion of a row or a column when
represented by Merkle Trees

5.2 What about other uses than tables?

The simplicity of the Merkle Trees, means that they have several uses. While this project
deals with hashing table entries, Merkle Trees can also be used in detecting changes in
general plaintext. A simple way to do this would be to split a document into many fixed
size chunks. Each chunk would then become a terminal node. This might make it easy to
roughly tell where a change was made, but it is still pretty much useless for inconsitency
detection. Moreover, it can make it troublesome if new sections, paragraphs or even
sentences are inserted (i.e. no alignment robustness). There are of course several ways
around this; if one only needs to detect changes on a course-grained level, it is enough
to be able recognize sections and henceforth assume that anything below the header is
part of that given section, until the next header starts.

This is very easy to do with a Latex document. First, the entire document can be read
into a string and the whitespaces trimmed. All sections start with \section{}. One
can then hash each section and add it into an array (the implementation in this library
uses ArrayLists for simplicity), before creating a Merkle Tree from this array. PDF
parsers are also improving, which means that text can be extracted from a pdf. Here, it
is necessary to look for "signs" of a new paragraph (such as larger fonts), since the parser
will still not decompile it into a Latex document or an MS Office document.

Page 67

III 7 CHAPTER SUMMARY

5.3 Limitations

In terms of data fingerprinting, the use of Merkle Trees should be limited to data with
clearly defined delimiters, breakpoints and so on — or data that can easily be broken
into fixed-size chunks.

6 Merging the Two Approaches in This Project

Both NFHash and the Merkle Tree-based approach have different strengths — and differ-
ent weaknesses. Since both are designed for good performance, they can also be merged
into one solution.

The most efficient way to do this is to first have NFHash deal with the inputs, then
classify it — and finally have the Merkle Tree-based approach take over, by detecting
where the changes happened, and by finding the Jaccard index on row-wise and column-
wise basis inside each class ωi.

7 Chapter Summary

This chapter has introduced two designs. The first one is called No-Frills Hash, and is a
self-designed fuzzy hashing scheme utilizing CRC-64 as a rolling hash. The other design
is based on Merkle Trees, and will be used to tell where the change in a table happened,
by hashing each row and each column into two separate trees, where the fingerprints are
placed in a hierarchy. The latter design also makes use of Bloom Filters to achieve it’s
goal. The trees are compared with a DFS, and every node not having a matching entry
in the Bloom Filter belonging to the other tree, will be pushed onto a stack and counted
as a change or an update.

Bloom Filters are a little similar to hash functions, but only stores a few bits from
the elements, not the elements themselves or their whereabouts. It is useful for telling
whether an element exists in a dataset or a different datastructure.

Fingerprints from NFHash are classified with k-NN, which will utilize Damerau-Levenshtein
to calculate the edit distance (cost of transforming one string into another) between a
given plaintext table and other plaintext tables used to train the classifier. This in turn
makes it possible to classify this given plaintext table accordingly.

Chapter IV will focus on how this is implemented in Java, as well as what has been done
to optimize the library. Furthermore, it will also show how the different parts of the
library can interact when used together.

Page 68

IV 1 INTERMODULAR INTERACTION

You might not think that
programmers are artists, but
programming is an extremely creative
profession. It’s logic-based creativity.

John Romero

Chapter IV

Implementation and Problem Solving
While the previous chapter dealt with the design phase of the project, this chapter deals
with the implementations, the connections between the classes and the problem solving.
The majority of this chapter consists of code listings in Java — and the corresponding
explanations. Definitions that are difficult to implement in a conventional language or
without very large figures (such as the difference between CRC and Rabin’s Finger-
printing Scheme), will hopefully be less blurry here as well. Due to the fact that all
implementations are explained theoretically in the previous chapter, this chapter will be
fairly brief and straight to the point.

This chapter can also serve as a precursor to the user manual in Appendix A, and as an
additional layer of documentations beyond the comments in the Java code. Readers that
are not interested in code and microoptimizations after reading the previous chapter,
may skip this chapter, as it is mostly intended for the thesis committee.

1 Intermodular Interaction

An overview of the intended usage of entire library can be seen in figure 27. The Merkle
Tree will work fine without the k-NN classifyer, and thus, it is not directly dependent
on it. For best results, it is better to track changes in files that are already classified,
however.

The classes in this project are coded to be modular, so that for example one can use
just a few modules without worrying about any dependency issues. To prevent large and
bloated classes, tree traversal and the Jaccard calculations are placed in a class called
TreeComparator — rather than in the Merkle Tree class itself. A complete Java code
can be found in Appendix B.

Page 69

IV 2 MATCHING DIGESTS BASED ON DAMERAU-LEVENSHTEIN DISTANCE

Figure 27: UML class diagram of the entire project

2 Matching Digests Based on Damerau-Levenshtein Dis-
tance

The method for calculating the Damerau-Levenshtein Distance in this project is based
on a matrix with the dimensions (N + 2)× (M + 2), where N is the length of the first
string and M is the length of the second string.

Damerau-Levenshtein Distance

1 public static int DamLev(String first, String second){
final int init = 0;

3 int[][] dist = new int[first.length()+2][second.length()+2];
dist[0][0]=init;

5

for(int i = 0; i<=first.length(); i++) {
7 dist[i+1][1] = i;

dist[i+1][0] = init;
9 }

for(int j = 0; j<=second.length(); j++) {
11 dist[1][j+1] = j;

Page 70

IV 3 OPTIMIZATIONS ON ALL LEVELS

dist[0][j+1] = init;
13 }

15 int[] DA = new int[256]; // 256 printable characters
Arrays.fill(DA, 0);

17

for(int i = 1; i<=first.length(); i++) {
19 int DB = 0;

for(int j = 1; j<=second.length(); j++) {
21 int i1 = DA[second.charAt(j-1)];

int j1 = DB;
23

int d=0;
25

if (first.charAt(i-1)==second.charAt(j-1)){
27 d=0;}

else d=1;
29

if(d==0) DB = j;
31 dist[i+1][j+1] =

Math.min(Math.min(dist[i][j]+d,
33 dist[i+1][j] + 1),Math.min(

dist[i][j+1]+1,
35 dist[i1][j1] + (i-i1-1) + 1 + (j-j1-1))); //

This line separates Damerau-Levenshtein
from Levenshtein

}
37 DA[first.charAt(i-1)] = i;

}
39 return dist[first.length()+1][second.length()+1];

}

This is done in accordance with Table 11. This approach is both simple and offers good
readability. Furthermore, it is easy to debug, platform neutral, and easy to port into
any other C-like language. Total running time becomes O(M ×N).

The final distance is returned as the lower right corner of the matrix dist.

To compare two digests from NFHash, simply pass them into the method as two strings.
The difference between Levenshtein and Damerau-Levenshtein can be seen in line 36 (
dist[i1][j1] + (i-i1-1) + 1 + (j-j1-1)));).

3 Optimizations on all Levels

A poorly optimized code can look very similar to a well-optimized code. Most mod-
ern compilers in any C-like language will do their best to optimize the code, allowing
the programmer to think about other things. Therefore, readability and performance
no longer have to be mutually exclusive. In the past, ternary conditions in C-like lan-
guages were faster than common if/else statements. Today, a modern compiler will treat

Page 71

IV 3 OPTIMIZATIONS ON ALL LEVELS

these in a similar manner. Clearly, it is easier to read Listing 3 than int number =
condition ? new value : other new value— especially if it is surrounded
by more code. Code is often worked on by many people, and according to the open/-
closed principle (part of the SOLID principles), a class should be open for extension.
There will be some terniary code in the NFHash class to keep the class short, but this
will be explained carefully with comments.

Terniary conditions no longer offer many advantages in terms of optimizations

1 if (condition is true) {
Do something.

3 } else {
Do something else.

5 }

In the past, statements such as final (denoting that a value is never changed) would
speed up the code, since the compiler would not assign any unneeded resources to a
value that would not change. Today, the compiler will check if the value is changed in
the code or in any other class using the value, optimizing it accordingly. It might be
better for the sake of readability to use it, though. This section will focus on things the
compiler cannot optimize on it’s own.

3.1 Overview of the CRC-64 and Rabin’s Fingerprinting Scheme Class

Both CRC-64 and Rabin’s Fingerprinting Scheme have a lot in common. To keep the
library clean and orderly, they nevertheless have their own classes. The former is based
on the CRC-32 class already present in the java.util.zip package, and the only
reason why it was created, is that there is no CRC-64 class already existing in any stock
Java library — and so that the project would not be directly dependent on any 3. party
library. Thus, it is implemented according to the RFC-1952 implementation of CRC-32
— but with the ISO-3309 polynomials. Rabin’s Fingerprinting Scheme in this project
is based on Andrei Z. Broder’s implementation, including the lookup tables. Details of
both algorithms are described in detail further on in this section.

3.2 Boolean Logic Revisited

As mentioned in Chapter I, Boolean operations are typically much faster than common
arithmetics when doing divisions or finding the remainder. Most algorithms utilizing
rolling hashes, such as Spamsum and the NFHash prototype presented here will only
slide one byte at a time (a necessary evil for accuracy). Even for a CSV file of a few
hundred kilobytes, a lot of performance gains can therefore be achieved by implementing
the rolling hash function in an efficient manner.

Page 72

IV 3 OPTIMIZATIONS ON ALL LEVELS

In the first section in Chapter II, it was shown that to most architectures, the modulus
operand is a costly operation. This can be further proven by x86 assembly code, which
is ultimately what all C-like programming languages are translated into before being
converted to binary numbers.

The example below is taken from NFHash, line 55, which initiates the input value sent
into both the rolling hash and the internal hash. This can either be written as int
character = (in[i] + 256) % 256; or int character = (in[i] + 256)
& 255;. This example assumes that in[i]+256 is equal to 281, but in the code, this
can be any number. 281 was chosen because it is a prime number.

How an x86-64 CPU Does Division

1 mov edx, 0 ; reset edx register
mov eax, 0x119 ; move the dividend 281 into the 32 bit register eax

3 mov ecx, 0x100 ; move the divisor 256 into the 32 bit register ecx
div ecx ; eax = 0x54, edx = 0x001

The register eax is an accumulator register, used for arithmetic operations. The quotient
can after division be found in the eax register, while the remainder can be found in the
edx register. Registers with the "e" prefix are used for 32 bit integers. In Java, all
primitive numbers are signed, meaning that an integer uses 32 bits or 4 bytes for both
positive and negative number (16 bits for each). The most expensive operation here is
the DIV operation.

How an x86-64 CPU does a Boolean AND

6 mov eax, 0x119 ; move the dividend 281 into the 32 bit register eax
and eax, 0x0FF ; AND the register eax with 256-1

The result will also be in the EAX register after the Boolean AND shown in Listing
5. Not only does this lead to fewer instructions for the CPU, but it also avoids the
expensive DIV instruction completely.

A good estimate of how well an instruction performs and scales, can be done by micro-
operations (hencefort denoted as µops). One differentiates between µops for the fused
domain and µops for the unfused domain. The former deals with issuing µops for an
operation, while the latter deals with retiring (or freeing) µops. Multiplications and
divisions in a CPU are not microoperations themselves, but are represented by additions
coupled with shifts and subtractions coupled with shifts, respectively. AND operations
often only require just one µop for issuing and one µop for freeing on Intel’s Skylake
architecture [50], making them much more efficient to implement.

3.3 Big Integers are not Primitives

Java comes with a builtin BigInteger library and the same goes for C# (furthermore,
many open-source implementations of this datastructure are available for C and C++).

Page 73

IV 3 OPTIMIZATIONS ON ALL LEVELS

This allows for numbers larger than 232−1 — without causing overflow. From a technical
point of view, Big Integers are not primitives. Rather, they are datastructures imple-
mented with strings and arrays. Since Big Integers are abstract data types, there is no
strict or "correct" way to implement them. In Java, big integers are represented by an
integer array, where the most significant bit is represented by the 0. element. [51]

BigIntegers can indeed be useful in cases where performance is not crucial, such as public
key encryption, online calculators and so on. For fingerprinting, however, they are too
slow to be a feasible alternative to integers or long integers.

For the reasons mentioned above, they are not used in NFHash, nor in the Merkle
Tree-based approach (or any classes used by these two implementations).

3.4 Lookup Tables Speed Things Up Significantly — Even if it Leads
to Larger Classes

When it comes to fingerprinting, an algorithm is only as good as it’s performance. One
good way to speed things up is to use lookup tables. While lookup tables will lead to
more code and larger classes, they will deload some work from the CPU, due to the fact
that much the work is already done. More importantly, it will significantly decrease the
overhead — which is important when fingerprinting multiple tables rather than just one
large table.

Lookup tables can either be generated when the object is initialized — or they can be
hardcoded. Which approach to take will of course depend on what kind of algorithm it
is. These lookup tables do not contain hashed values, but partial seeds, meaning that
the CRC digest can be calculated the following way:

How CRC-64 is implemented in this library (the lookup table can be found in the appendix). This is mostly
based on the existing CRC-32 class in the java.util.zip package

@Override
2 public void update(final byte[] bytes, int offset, int length) {

final int end = length - offset;
4 long crc = 0L;

while (offset < end) {
6 crc = lookup[(bytes[offset] ^ (int) crc) & 0xFF] ^ (crc >>> 8);

offset++;
8 }

this.crc = crc;
10 }

Rabin’s Fingerprinting Scheme is designed to make use of different irreducible polyno-
mials — hence it makes more sense to generate a table when the object is initialized.
This table can later be used to hash more files, making the "marginal cost" of hashing
another file or another chunk very low.

Page 74

IV 3 OPTIMIZATIONS ON ALL LEVELS

It is important that the lookup table is small, yet at the same time that it is large
enough to actually be useful. In the CRC-64 class, the lookup table has 256 entries, and
is based on the ISO polynomials as previously mentioned. In Rabin’s Fingerprinting
scheme, it is not hardcoded, but generated based on an irreducible polynomial sent
into the constructor of the class "TableGenerator". It can then be generated by the
method generateTable(). Here, the table size is 256×4 (in accordance with Broder’s
implementation). In both algorithms, the table is small enough to fit into the level 1
cache. The main virtue of using a lookup table, is that calculations can now be done
byte-by-byte rather than bit-by-bit. [52] In Broder’s Implementation, it is done chunk-
by-chunk, each chunk consisting of four bytes.

The code for Rabin’s Fingerprinting scheme (which is closely related to CRC) is found
in the appendix, due to the fact that the class is longer and more complex than the
CRC-64 class.

How the table generator for Rabin’s Fingerprinting Scheme works

public class tableGenerator {
2

private transient static long[][] superTable;
4

public long[][] generateTable(long prime) {
6 long X_degree = 1L << Long.bitCount(Long.MAX_VALUE);

8 final long[] preTable = new long[64];

10 preTable[0] = prime;
for (int i = 1; i < 64; i++) {

12 long poly = preTable[i - 1] << 1;
if ((preTable[i - 1] & X_degree) != 0) {

14 poly ^= prime;
}

16 preTable[i] = poly;
}

18 // superTable is the name of the lookup table returned
superTable = new long[8][256];

20

for (int i = 0; i < 256; i++) {
22 int c = i;

for (int j = 0; j < 8 && c > 0; j++) {
24 if ((c & 1) != 0) {

26 superTable[0][i] ^= preTable[j];
superTable[1][i] ^= preTable[j + 8];

28 superTable[2][i] ^= preTable[j + 16];
superTable[3][i] ^= preTable[j + 24];

30 superTable[4][i] ^= preTable[j + 32];
superTable[5][i] ^= preTable[j + 40];

32 superTable[6][i] ^= preTable[j + 48];
superTable[7][i] ^= preTable[j + 56];

34 }

Page 75

IV 4 IMPLEMENTING THE K-NN CLASSIFIER

c >>>= 1;
36 }

}
38 return superTable;

}
40

}

3.5 Possible Advantages of Rewriting the Library in C

The Java Virtual Machine can run C code by compiling it to bytecode (just like it does
with Java code). This is done via the Java Native Interface (JNI) framework. Due to
the fact that it still runs on the same virtual machine (contrary to popular belief, a
virtual machine that is not an emulator will not add much overhead [53]), there are
normally no advantages to doing this. However, one potential advantage C could have
over Java in this case, is that Java does not allow unsigned integers or unsigned long
integers; these are readily available in C (denoted as uint and ulong, respectively).
In Rabin’s Fingerprinting scheme this does not matter (negative numbers work just as
well for implementing polynomials as positive numbers), but in NFHash it might give a
modest performance gain, due to the fact that the internal hashing algorithm deals with
positive numbers (an unsigned integer only requires half the memory space of a signed
long integer).

4 Implementing the k-NN Classifier

Recall that decision regions, decision boundaries, hypercubes and so on are for human
eyes only. Therefore, a k-NN classifier can be implemented with the help of some Ar-
rayLists holding more ArrayLists (where each outer ArrayList represent classes and inner
ArrayLists represent vector number), two for loops which will iterate through this array
when calculating the edit distance from the input, and a function for calculating the
discriminant functions coupled with a for loop. This is of course a lot slower than the
hash function itself is, but fortunately, the digests are no more than 64 characters.

k-NN discriminant function

private static double discriminant(double knn, double editDist, double
numClass){

2

if (editDist>0){ // Do not divide by zero
4 double prior = numClass/(double)count;

double top = knn/numClass;
6 double pnx = top/editDist; // nth estimate of p(x) (PDF)

double disc = prior*pnx;
8 return disc;}

else return Double.MAX_VALUE;

Page 76

IV 5 THE MERKLE TREE AND IT’S USES

10 }
}

The code above shows the discriminant function. Here, prior is the prior distribution,
top is the divisor of the n-th estimate of the PDF, pnx is the PDF and disc is the
discriminant function. Unfortunately, there is not way around doubles or the division
operand in this case. One could potentially multiply the inputs with 100 and treat them
as integers, but this would cause inaccuracies when there is a remainder — and would
not solve the division problem. There is an if/else statement here, due to the fact that
the Damerau-Levenshtein distance in some cases might be 0. If this distance is zero,
it must necessarily mean that a file is being compared against it’s own duplicate in
the dataset. Therefore, the disciminant function returns the maximum double value, to
ensure that the file is more likely to be placed in the right class.

The rest of the k-NN code can be found in Appendix B.

5 The Merkle Tree and it’s Uses

The Merkle Tree is initialized by passing an ArrayList with fingerprints, an ArrayList
with tags and an instance of Rabin’s Fingerprinting Scheme into the constructor. Both
Array Lists are then sorted according to the Array List with the fingerprints. This can
be seen from the code below:

Merkle Tree constructor

1 public merkle(ArrayList<Long> fingerprints, RabinSingle rs, ArrayList<
Integer>tagList) {

this.tagList=sortTags(tagList, fingerprints);
3 this.fingerprints=fingerprints;

this.rs = rs;
5 terminalnodes=leafSignatures.size();

bf=new bloomFilter(512,terminalnodes);
7 create(leafSignatures);

}

Sorting one list according to another

private ArrayList<Integer> sortTags(ArrayList<Integer> results,ArrayList<Long
> digests){

2 int tmp2;
long tmp;

4 for (int k=0; k<digests.size()-1; k++) {

6 Boolean isSorted=true;
for (int i=1; i<digests.size()-k; i++) {

8

if (digests.get(i)>digests.get(i-1)) {
10 tmp=digests.get(i);

Page 77

IV 5 THE MERKLE TREE AND IT’S USES

digests.set(i,digests.get(i-1));
12 digests.set(i-1,tmp);

14 tmp2=results.get(i);
results.set(i,results.get(i-1));

16 results.set(i-1,tmp2);

18 isSorted=false;
}

20 }
if (isSorted) break;

22 }
return results;

24

}

This aforementioned method returns an ArrayList with the tags — sorted according to
the digests. The reason why this approach to sorting was chosen, was due to the fact
that sorting the nodes directly will lead to a higher overhead.

The class merkle has the inner class node. This is implemented in a very compact
manner, as it is only intended to hold a few primitives, plus references to it’s children
nodes.

Note that the ArrayList representing the fingerprints for the terminal nodes need to
be hashed "externally", that is outside of the Merkle Tree, before being sent into the
constructor. The recommended approach for doing so is by using the enclosed Rabin’s
Fingerprinting Scheme, which will also be used by the Merkle Tree when creating digests
for the parent nodes.

How the class representing nodes appears

1 public static class Node {
public byte type; // Terminal or not?

3 public long fingerprint; // Digest
public Node left;

5 public Node right;
public int tag; // ID

7 public int depth;
}

Avito Loops retrieves entries from databases either cell-by-cell, row-by-row or column-
by-column. If plaintext files are used instead, it might be an advantage to sort each
column based on cell contents before hashing. If a the order of the rows is shuffeled,
the traversal algorithm will not consider it as a change. However, since hash functions
typically exhibit avalance properties, a column on the form [adcb]t will look different
from a column on the form [abcd]t after hashing. This highlights why sorting the cells
in a column by content might be a good idea before hashing.

Page 78

IV 5 THE MERKLE TREE AND IT’S USES

5.1 Traversing the Merkle Tree in a Recursive Manner

Traversal is found in a different class named treeCompare, not in the class merkle.
This was done to make the library more modular, more convenient to study or work
with, and easier to debug.

Comparisons between two trees are done the following way:

Comparing Two Trees

public Stack<Integer> bloomCompare(merkle mfirst, merkle msecond){
2 equal=0;

nodeStack=new Stack<Integer>();
4 if (mfirst.root!=msecond.root){

6 int t1=mfirst.nnodes;
int t2=msecond.nnodes;

8 merkle referenceTree=mfirst;
bloomTree=msecond;

10 nodeStack= new Stack();

12 if (t2>t1){
referenceTree=msecond;

14 bloomTree=mfirst;
}

16 bloomTraverse(referenceTree.root.left,bloomTree.root.left);
bloomTraverse(referenceTree.root.right,bloomTree.root.right);

18 }
return nodeStack;

20 }

22 private void bloomTraverse(merkle.Node root, merkle.Node root2){
if (root!=root2)

24 {
if (root.left!=null && root2.left!=null)

26 bloomTraverse(root.left,root2.left);
if (root.right!=null && root2.right!=null)

28 bloomTraverse(root.right,root2.right);

30 if (root.left!=null && root2.left==null)
bloomTraverse(root.left);

32 if (root.right!=null && root2.right==null)
bloomTraverse(root.right);

34

if (root.type==0x00 && !bloomTree.bf.contains(root.sig))
36 {

nodeStack.push(root.tag);
38 equal++;

}}
40 }

Note that bloomTree is simply the name given to the largest tree. Comparisons and
traversals are done in separate methods to keep the methods compact and easy to deal

Page 79

IV 7 CHAPTER SUMMARY

with. bloomTraverse is a recursive method, so that less information is required to be
stored in the Merkle Tree, and that the working mechanisms are easier to illustrate.

The comparison only returns a stack containing the tags (IDs) of each note rather than
the nodes themselves directly. Furthermore, it also causes the integer equal to incre-
ment. This integer is public, so that it can be retrieved in classes elsewhere in the library.
The stack is used here instead of an array, due to the fact that insertion and retrieval
is an O(1) (constant speed) operation. When the tags for all the nodes are going to
be returned anyway, there are no advantages to returning an array or a list structure
instead.

6 A Brief Overview of NFHash

The entire code for NFHash is too long to be included other places than in the appendix.
Nevertheless, the code will still be explained here.

NFHash is initialized by passing two integers into the constructor. These are (in this
order) the sliding window size, and the boundary number. Digests can then be gener-
ated by passing a byte array into the method hashBytes(final byte[] in). This
method returns a 64 character base64 encoded string, which will serve as the fuzzy
fingerprint of the inputted byte array.

The rolling hash uses an instance of the CRC64.java class, while the internal hash
function based on Mersenne Primes is located directly in the NFHash class.

7 Chapter Summary

The main point of Chapter IV has been to explain Chapter III briefly by using Java
code, and by showing how the different modules interact. A complete set of code, a
user manual, and how to implement a simple classification tool based on the enclosed
code can be found in the appendix. Certain things are difficult to explain by simple
comments only, as such, this chapter has hopefully brought some more clarity to parts
of the design.

As seen in this chapter, lookup tables do not take up that much space — and will lead
to a much faster processing speed. Moreover, things that might seem insignificant (eg.
Boolean operands) can make everything more efficient if used correctly. This chapter
has also explained why (practical as the may be in other uses) Big Integers are not
used.

The next chapter will put everything described in this chapter and chapter III to use
in terms of testing. This will demonstrate among others the performance gains made
with Mersenne Primes and lookup tables. Moreover, it will demonstrate just how well

Page 80

IV 7 CHAPTER SUMMARY

the Merkle Tree and the Bloom Filter will work together for tracking changes in a
table.

Page 81

V 1 PERFORMANCE TESTS

To err is human — and to blame it on
a computer is even more so.

Robert Orben

Chapter V

Testing, Analysis, and Results
While the two previous chapters have described the two designs and how they are im-
plemented, what they will be used for and what their strong and weak points are, this
chapter will put them to practical use.

Some minor scale unit testing was done already at the start of the project, along with the
literature review, to ensure that there were no dead-ends or red herrings in the project.
These tests are not featured here, due to space constraints, and due to the fact that they
do not give a clear and concise picture suited for a thesis.

The tests here are the tests done after the library was more or less complete, to ensure
that the hypotheses were mostly true, and to prove that the two approaches would
perform as well in practical applications as they did on a theoretical level.

This chapter focuses on testing with plaintext tables in the CSV format. Excel files in
the format XLSX are basically archives holding many XML tables, and can be used as
well for the classifier if the contents are extracted from them. Furthermore, if parsed
appropriately, they can also be used to construct Merkle Trees. Due to time constraints,
this was not done here.

There are three sections in total in this chapter. The first concerns the performance of
NFHash compared to Spamsum and Nilsimsa; the second deals with NFHash coupled
with the k-NN classifier, while the last one will show the capabilities of the Merkle
Tree-based Implementation.

1 Performance Tests

The performance tests were set up in jUnit inside IntellijIDE. Due to the fact that
the testing was done with many background processes running, it was not possible to
test how many MB per second each hash function was capable of. Moreover, finding
open-source libraries for doing this proved difficult.

Because of this, the performance tests meassure how each algorithm scales, and how fast
they are in relation to each other. The times were logged with the builtin function in
jUnit. The times shown in the graphs are based on an average after ten runs.

Page 82

V 1 PERFORMANCE TESTS

1.1 Testing Performance with Multiple Files

A good meassure of an algorithms overhead resource usage, is to have it do many small
tasks instead of one large task. The first performance test will have Spamsum, NFHash
and Nilsimsa deal with 50, 100 and 200 consecutive 30 KB tables each, to see how the
much time each algorithm uses — and how each algorithm scales. The sliding window ap-
proach means that none of the three algorithms could potentially scale better than O(n).
Nevertheless, to a lesser extent it can be used to detect overhead consumption.

1.1.1 Initialization

The first test was initialized by pushing the given number (50, 100 or 200, depending on
the subtest) of CSV files to a stack holding byte arrays for each file.

The results given below are based on the average after 10 runs for each scenario (eg. 10
runs for 100 consecutive tables, 10 runs for 200, and so on).

The boundary number for Spamsum and NFHash was set to 512, while the sliding
window size for both was set to 4 (this is fixed to 5 in Nilsimsa by default). Spamsum also
ran without the boundary number guessing algorithm, which increased the performance
somewhat.

1.1.2 Results

Figure 28: How the different fuzzy hashing schemes handle 50, 100, and 200 consecutive 30 KB
tables. The times are given in ms

NFHash on average ran 43% quicker than Nilsimsa when considering all the scenarions

Page 83

V 1 PERFORMANCE TESTS

— and more than four times quicker than Spamsum — indicating that most of the
performance goals have been reached.

The average scale factor in time consumption for each algorithm when doubling the
number of tables, was 2.31, 2.19 and 2.13 for Spamsum, Nilsimsa and NFHash, respec-
tively.

1.1.3 Analysis

In Figure 28, it can be seen that NFHash outperforms both of it’s two main sources of
inspiration. All of the algorithms scale fairly linearly, giving a running time of O(n). The
overhead is difficult to tell from this test, but NFHash might have a lower overhead than
the other algorithms. Nevertheless, this test proves that NFHash is significantly faster
than both Nilsimsa and Spamsum. Ultimately, the final bottleneck for all algorithms
in terms of speed, is the same thing giving them their strength: The sliding window
approach.

1.2 Testing Performance on Single Files of Varying Size

To get a better overview over how much of the performance gains are due to a decreased
overhead consumption and how much was due to NFHash processing large inputs of
information quickly, a second test was done. Instead of hashing multiple files at once,
each algorithms instead was given progressively larger files, to meassure how much time
each of them would spend on a single large file.

1.2.1 Initialization

To get enough files of exact size (each file used in this test is exactly twice as big as
it’s predecessor), ten dummy files were created. These files contain nothing apart from
white spaces (this was not trimmed away before the algorithms received the files), and
were created with MyNikko.com’s Dummy File Creator. The settings for Spamsum and
NFHash in this test, were identical to the ones used in the previous test.

Each file size was tested ten times, before the average was calculated.

1.2.2 Results

Spamsum was on average 3.6 times slower than NFHash, while the ratio between Nilsimsa
and NFHash remained the same. This suggests that while NFHash has a lower overhead
than Spamsum, the overhead level is equal to that of Nilsimsa — thus meaning that the
overhead is still significant.

Page 84

V 2 NFHASH AND CLASSIFICATIONS

Figure 29: Time used by each algorithm to hash a single file of the respective sizes. The times
are given in ms

1.2.3 Analysis

This test shows that while NFHash is clearly the fastest algorithm, it nevertheless has a
significant overhead (still lower than Spamsum). This was the only design goal that did
not pass any of the tests. While NFHash does not have a lower overhead, it does not
have a higher overhead either, implying that they are fairly equal in terms of overhead.
Combined with the previous test, it can be concluded that NFHash is between 3.5 and 4
times faster than Spamsum — depending on the use. Compared to Nilsimsa, it is almost
40% faster — regardless of use.

2 NFHash and Classifications

While utilizing NFHash with machine learning has been shown to be theoretically possi-
ble in Chapter III, this test section will demonstrate that it is also a practically feasible
solution when using it to match plaintext tables. For the formulas required to better
understand this test section, refer to page 45.

A unit testing library was not used for this section. Instead, a GUI was made. This made
the testing both faster and easier. Furthemore, mistakes were easier to correct.

These two tests will deal with randomly generated, yet realistic data. This section can
be divided into two tests, one dealing with four clearly separable classes — the other
one dealing with two classes that are difficult to separate. Both tests will illustrate

Page 85

V 2 NFHASH AND CLASSIFICATIONS

the importance of a fuzzy hashing scheme that is customizable — and of course how
the problem of overfitting in k-NN can be tackled. Most importantly, however, the
subtests will illustrate just how well suited a fuzzy hashing scheme and a stirng matching
algorithm are to classify raw data from a spreadsheet.

In both tests, the initial hypothesis was that the classifyer would perform well on well-
separated classes, but not so well on classes that were difficult to tell apart. Furthermore,
part of the hypothesis was that the kn number would be the most significant number —
and not the sliding window size.

This hypothesis was only partially true, as will be demonstrated with the results.

2.1 Test Setups

In both tests, for each class, a total of 30 plaintext files with 1000 columns each were
generated with the tool found on Mockaroo.com. Realistic data is important, due to the
fact that in real life, this typically has a high variability (not the same as variance) and
tend to be quite unpredictable. Furthermore, to get accurate results, enough sets are
needed. These are time-consuming to create, and if created by a person for the purpose
of testing, they might be biased in favour of the hypothesis.

The first test utilizes a boundary number in NFHash of 512 — while the second test
utilizes a boundary number of 1024. The second test and it’s corresponding subtests
will test the training set again after classification to see if the classifier thinks any of
the training samples are misclassified. If the classifier "thinks" that some training tables
need to be reclassified, it might indicate a high variance (i.e. poor generality) with
the current settings, making accurate classifications in the designated testing set very
difficult.

While all subtests in each test had the same boundary number, the settingss kn, number
of training samples, and the size of the sliding window was adjusted to illistrate how
the settings impact the result. Test I and Test II have respectively 3 and 6 subtests
each.

Note that "Window Size" in these tests refer to the size of NFHash’s sliding window, not
the size of the one-dimensional "window" (representing the edit distance) containing the
kn number of samples.

2.1.1 Initializing Test I

The first test is based on clearly separable classes, without much in common, to illustrate
that in clearly separable testcases, different settings have a less significant impact. The
testcase has four different classes — all of which are very different. These classes are

Page 86

V 2 NFHASH AND CLASSIFICATIONS

ωtransactions

Wallet Amount Currency Currency Code Type Date
17Lj... $74029.85 Dinar IQD diners-club-enroute ’8/3/2015

ωcities

City Country Country Code Time Zone
Tomdibuloq Uzbekistan UZ Pacific/Auckland

ωemployees

First Name Last Name Employer Title
Phyllis Williams Trilith Honorable

ωmailserver

E-mail Address Last Used IPv4 Last Used IPv6 Last Used MAC Address
cbishop0@census.gov 44.26.167.198 8dcd:... F9-60-F9-62-02-75

named ωtransactions, ωcities, ωemployees, and ωmailserver. Tables from these classes look as
follows:

The settings for each subtest can be seen in the table below:

Different settings for each subtest in Test I

Subtest ni kn Window Size
A 20 11 8
B 10 3 8
C 3 1 8

2.1.2 Results from Test I

The results from each subtests in Test I are represented by confusion matrices. From
these, the accuracy and the recall rate has been classified as well — so that there exists
a normalized meassure indicating how well the classifier performs.

Subtest A

Accuracy:
AC = 10 + 10 + 10 + 10

10 + 10 + 10 + 10 = 1

Page 87

V 2 NFHASH AND CLASSIFICATIONS

Actual
ωtransactions ωcities ωemployees ωmailserver

Predicted

ωtransactions 10 0 0 0
ωcities 0 10 0 0
ωemployees 0 0 10 0
ωmailserver 0 0 0 10

Recall rate:
RCtransactions = 10

10 + 0 + 0 + 0 = 1

RCcities = 10
0 + 10 + 0 + 0 = 1

RCemployees = 10
0 + 0 + 10 + 0 = 1

RCmailserver = 10
0 + 0 + 0 + 10 = 1

Subtest B

Actual
ωtransactions ωcities ωemployees ωmailserver

Predicted

ωtransactions 10 0 0 0
ωcities 0 8 2 0
ωemployees 0 0 10 0
ωmailserver 1 0 0 9

Accuracy:
AC = 10 + 8 + 10 + 9

10 + 10 + 10 + 10 = 0.925

Recall rate:
RCtransactions = 10

10 + 0 + 0 + 0 = 1

RCcities = 8
0 + 8 + 2 + 0 = 0.8

RCemployees = 10
0 + 0 + 10 + 0 = 1

RCmailserver = 9
1 + 0 + 0 + 9 = 0.9

Page 88

V 2 NFHASH AND CLASSIFICATIONS

Subtest C

Actual
ωtransactions ωcities ωemployees ωmailserver

Predicted

ωtransactions 10 0 0 0
ωcities 0 6 4 0
ωemployees 0 0 10 0
ωmailserver 0 0 0 10

Accuracy:
AC = 10 + 36 + 10 + 10

10 + 10 + 10 + 10 = 0.9

Recall rate:
RCtransactions = 10

10 + 0 + 0 + 0 = 1

RCcities = 6
0 + 6 + 4 + 0 = 0.6

RCemployees = 10
0 + 0 + 10 + 0 = 1

RCmailserver = 10
0 + 0 + 0 + 10 = 1

2.1.3 Analysis of the Results in Test I

All the subtests demonstrate a good accuracy, even in the case of subtest C, where only
3 training samples are used to train the classifier and only the nearest neighbor has any
impact.

Recall rate is also good for almost all cases — except the recall rate for cities in Subtest
C. Here, 4/10 test tables will be misclassified as ωemployees — instead of being classified
as ωcities where they belong.

The results indicate that proper configurations are less important with clearly separated
classes, but at the same time, it also shows that good configurations still have a positive
impact, since the recall rate still suffered significantly in the last subtest for one of the
classes.

Page 89

V 2 NFHASH AND CLASSIFICATIONS

2.1.4 Initializing Test II

The second test matches tables that are not that easy to tell apart. These are classified as
either ωwallet or ωbank, representing either Bitcoin wallet details or bank account details
respectively. Many columns will look similar; three of them even contain exactly the same
type of information in both table classes. Furthermore, three other columns in ωwallet,
"wallet", "Credit Card Number" and "Balance (BTC)", will still have counterparts with a
strong resemblance in ωbank, namely "Account", "IPv4" nad "Balance (USD)". A classifier
without the proper settings should not be able to tell the differences apart.

The header and second row in a table from ωbank, can be written as:

A small part of a CSV from the first class

First Name,Last Name,Account,Balance (USD),Credit Card Number,Credit Card
Type,E-Mail

2 Andrew,Hanson,HU76 1253 8382 0373 6372 5504 8007,$357340.98,6333194148575331,
switch,ahanson0@mozilla.com

For the ωwallet class, a similar header and second row looks like this:

A small part of a CSV from the second class

First Name,Last Name,Wallet,Balance (BTC),IPv4,E-Mail
2 Thomas,Austin,13n7mxMNn8Hp4Mxcq8WC341ZkCgzxBMzu8,176.41,135.55.16.243,

taustin0@bigcartel.com

The first table has 7× 1000 entries, while the second one has 6× 1000 entries. This test
has six subtests, represented by their results in the next subsubsection.

Table 18: Different settings for each subtest in Test II

Subtest ni kn Window Size
A 20 7 2
B 10 3 2
C 3 1 2
D 20 7 32
E 10 3 32
F 3 1 32

2.1.5 Results From Test II

The outputs from each subtest can be shown in the corresponding confusion matrices
below. The results after classifying the designated testing set can be seen on the left,
while the results after trying to reclassify the training sets can be seen on the right.

Each matrix also features calculations regarding the accuracy, as well as the recall rate
for each class.

Page 90

V 2 NFHASH AND CLASSIFICATIONS

Subtest A

Actual Actual
ωwallet ωbank ωwallet ωbank

Predicted ωwallet 10 0 Predicted ωwallet 20 0
ωbank 0 10 ωbank 0 20

Accuracy for testing and training sets:

ACtesting = 10+10
10+0+0+10 = 1 ACtraining = 20+20

20+0+0+20 = 1

Recall rate for testing and training sets:

RCtestingwallet
= 10

10+0 = 1 RCtestingbank
= 10

0+10 = 1

RCtrainingwallet
= 20

20+0 = 1 RCtrainingbank
= 20

0+20 = 1

Subtest B

Actual Actual
ωwallet ωbank ωwallet ωbank

Predicted ωwallet 10 0 Predicted ωwallet 10 0
ωbank 0 10 ωbank 0 10

Accuracy for testing and training sets:

ACtesting = 10+10
10+0+0+10 = 1 ACtraining = 10+10

10+0+0+10 = 1

Recall rate for testing and training sets:

RCtestingwallet
= 10

10+0 = 1 RCtestingbank
= 10

0+10 = 1

RCtrainingwallet
= 10

10+0 = 1 RCtrainingbank
= 10

0+10 = 1

Subtest C

Actual Actual
ωwallet ωbank ωwallet ωbank

Predicted ωwallet 4 6 Predicted ωwallet 3 0
ωbank 7 3 ωbank 0 3

Accuracy for testing and training sets:

Page 91

V 2 NFHASH AND CLASSIFICATIONS

ACtesting = 4+3
4+6+7+3 = 0.35 ACtraining = 3+3

3+0+3+0 = 1

Recall rate for testing and training sets:

RCtestingwallet
= 4

4+6 = 0.4 RCtestingbank
= 7

7+3 = 0.7

RCtrainingwallet
= 3

3+0 = 1 RCtrainingbank
= 3

0+3 = 1

Subtest D

Actual Actual
ωwallet ωbank ωwallet ωbank

Predicted ωwallet 8 2 Predicted ωwallet 15 5
ωbank 1 9 ωbank 3 17

Accuracy for testing and training sets:

ACtesting = 8+9
8+2+1+9 = 0.85 ACtraining = 15+17

15+5+3+17 = 0.8

Recall rate for testing and training sets:

RCtestingwallet
= 8

8+2 = 0.8 RCtestingbank
= 9

9+1 = 0.9

RCtrainingwallet
= 15

15+5 = 0.75 RCtrainingbank
= 17

17+3 = 0.85

Subtest E

Actual Actual
ωwallet ωbank ωwallet ωbank

Predicted ωwallet 5 5
Predicted

ωwallet 4 6
ωbank 3 7 ωbank 2 8

Accuracy for testing and training sets:

ACtesting = 5+7
5+5+3+7 = 0.6 ACtraining = 4+8

4+6+2+8 = 0.6

Recall rate for testing and training sets:

RCtestingwallet
= 5

5+5 = 0.5 RCtestingbank
= 7

3+7 = 0.7

RCtrainingwallet
= 4

4+6 = 0.4 RCtrainingbank
= 8

2+8 = 0.8

Page 92

V 2 NFHASH AND CLASSIFICATIONS

Subtest F

Actual Actual
ωwallet ωbank ωwallet ωbank

Predicted ωwallet 2 8 Predicted ωwallet 3 0
ωbank 2 8 ωbank 0 3

Accuracy for testing and training sets:

ACtesting = 2+8
2+8+2+8 = 0.5 ACtraining = 3+3

3+0+3+0 = 1

Recall rate for testing and training sets:

RCtestingwallet
= 2

2+8 = 0.2 RCtestingbank
= 8

2+8 = 0.8

RCtrainingwallet
= 3

3+0 = 1 RCtrainingbank
= 3

0+3 = 1

2.1.6 Analysis of the Results in Test II

The results clearly show that the hypothesis was partially wrong; the classifyer can in
fact perform well on classes that are difficult to tell apart as well. The requirements for
this to be possible are of course good settings.

From Subtests A and B in Test II, it becomes fairly apparent that an appropriate sliding
window size is just as important as a good kn value and a sufficient number of training
samples. Subtest A has a perfect accuracy and a perfect recall rate, and the same goes
for Subtest B — both when trying the testing sets and when attempting to reclassify
the training tables. This is despite the fact that the classes are not easy to separate,
illustrating that a fuzzy hashing approach can indeed be used in machine learning with
good results. This is at least true if the input files are unformatted text.

Notice that with poor settings (leading to an extreme case of overfitting), the classifyer
will be no better than a random guess. Setting the sliding window size to a high number,
causes it to ignore changes on a smaller scale in favour of changes on a large scale. In
other words, it might not be able to detect what uniquely identifies two very similar
classes.

One interesting finding that can be seen from all subtests utilizing a kn of 1, is that
when trying to reclassify the training set, nothing changes. This is due to the fact that
with a kn of 1 (in which case the algorithm is simply called the "Nearest Neighbor"
algorithm), only the most similar plaintext table is taken into consideration. Since the

Page 93

V 3 USING THE MERKLE TREE-BASED APPROACH TO TRACK CHANGES

plaintext table already has an exact copy of itself in the original class, it will thus remain
there.

Note that a good sliding window size cannot "save" a classifier with a too small sample
size and a too small kn. The fuzzy hashing scheme is not instead of good settings, but
in addition to good settings. This can be seen from subtest C; while it utilized the same
sliding window size as the subtests with perfect results, it nevertheless performed no
better than a blind guess.

Finally, the second test also proves that the less separable the classes are, the more the
kn number, sliding window size and the number of samples in the training set matter.
This is evidenced by the accuracy and recall rate of Subtest A and Subtest B compared
to the rest of the subtests.

3 Using the Merkle Tree-based Approach to Track Changes

This section will utilize smaller test sets than the two previous sections, due to the fact
that it uses real data, and because the human tester needs to know where the updates in
the table are localized. The intented use of the Merkle Tree based approach is to track
changes in already classified tables. Any number of tables can be used; two are used
here for every test to keep things simple. The first test will test the order robustnes of
a merkle tree, by rearranging a table in two ways. The second test will change values in
a different table and compare the updated version with the original version.

The test tables used are enclosed in this project as "tables.7z". Testing has also been
done extensively with Avito’s own tables. However, as these are confidential, they cannot
be shown in this thesis or attached as enclosed sets. Cars were chosen because finding
data regarding this is quite convenient and straightforward.

These tests were done with a GUI — not by unit testing. Tests in this section are meant
to demonstrate the Merkle Trees ability to track changes, as well as verify it. As such,
the tests will not be divided like the previous tests — nor will they focus heavily on
arithmetics or feature any form of hypothesis or analysis part.

3.1 Test I: Verifying That the Order of the Elements is Irrelevant

The Merkle Tree-based approach in this project is designed to be "order robust", which
means that the order of the elements should not matter. This can be tested with the two
files "VolvoC70-2000" and "VolvoC70-2000-sorted". The elements here are in a different
order, but the Jaccard indices and the fingerprints of the root nodes will be the same,
indicating that nothing has changed.

The fingerprints can be seen in the following table:

Page 94

V 3 USING THE MERKLE TREE-BASED APPROACH TO TRACK CHANGES

Fingerprint, rows (root) Fingerprint, columns (root)
Volvo C70 100114697C2E0401 4A6DBDFF8DED9BFE
Volvo C70, order changed 100114697C2E0401 4A6DBDFF8DED9BFE1

Due to the fact that the fingerprints (taken from the root nodes) for both files are similar,
no tree traversal was done.

3.2 Test II: Tracking Localized Differences

This test will verify if the Merkle Tree can detect local changes well enough. Here, two
tables featuring data for the 1994 SAAB 900 will be used. The first table is based on the
2.0 turbocharged version, while the second table is based on the 2.5 V6 version. Both
CSV files are in the enclosed 7z file, under the names "Saab900-20-1994" and "Saab900-
25-1994", respectively.

The following fingerprints are given to each table, based on the root node of the corre-
sponding Merkle Trees:

Fingerprint, rows (root) Fingerprint, columns (root)
SAAB 900 2.0T BCFDD71F7CF5DF7C 15676DFEFDFDBEF5
SAAB 900 2.5 V6 F7FDE267BFF1BF9B 2C040B6888010191

Due to the fact that two columns feature headers and two columns hold the numerical
values (a change in a single entry will change the fingerprint for an entire row and
column), two columns are similar in this case, giving a Jaccard Coefficient of 0.33. The
Jaccard Coefficient for rows is 0.68.

The tree traversal algorithm correctly catches 12 out of 13 changes to the rows, the
exception being row 15, where the weight of the cars are described. This is probably
due to a false positive in the Bloom Filter.

Page 95

V 3 USING THE MERKLE TREE-BASED APPROACH TO TRACK CHANGES

Figure 30: Output when comparing two different SAAB 900 models

3.3 Test III: Different Length Tables

The Merkle Tree-based approach needs to be able to handle tables of different lengths,
which is the main reason for employing a Bloom Filter for every tree.

This test was done with the two files "Abarth" and "AbarthCut". Both deal with the
same car (the Autobianchi A112 Abarth), but the former is 20 rows longer than the
latter. A total of 17 rows were successfully identified, out of 20.

Not suprisingly, all columns changed, due to the avalanche effect. The Jaccard Coefficient
for rows and columns thus become 0.803 and 0, respectively.

Page 96

V 4 CHAPTER SUMMARY

Figure 31: Comparing two Different-Length Tables

4 Chapter Summary

The first test in this chapter was about performance. Here, NFHash performed faster
than the algorithms that inspired it. When hashing multiple files, it was more than four
times faster than Spamsum. In the next test section, it’s capabilities as a helping hand
for k-NN was demonstrated. On very separable classes, the settings hardly mattered.
For classes that were difficult to tell apart, however, correct settings — in terms of sliding
windows size, kn value and number of training samples — proved important. In cases
with high overfitting (as a result of the wrong settings), k-NN is no better than a random
guess. On the other hand, if the settings were correct, recall rate and accuracy was spot
on.

The final tests revolved around the Merkle Trees — and how these efficiently can dis-
cover updates or inconsistencies. Here, tables representing cars were used — and it was
shown that the algorithm works well on inputs of different lengths or if the nodes were
reorganized. Moreover, detecting changes was shown to be fairly straightforward.

The next chapter will conclude this report. It will be about discussion, and will feature
future works, various principles and so on. No new technical facts directly related to the
implementation or design are presented.

Page 97

VI 1 ORIGINALITY

Be able to defend your arguments in a
rational way. Otherwise, all you have
is an opinion.

Marilyn vos Savant

Chapter VI

Discussion
This final chapter will discuss the research and outcome of this project — as well as
summarize everything that was done. No new facts directly related to the project, nor
any background material will be presented here. Rather, this chapter is ment to wrap
things up. However, this chapter will include a section on further works, explaining
what can be done to improve the implementations here — as well as what can be done
to expand them.

1 Originality

The most recently developed data structure in this thesis, is the Merkle Tree, which
was designed back in 1979. Fuzzy hashing using rolling hashes have also been available
since 2002, while fuzzy hashing algorithms in general have been available since 2001 —
and probably even earlier. The target with this thesis has therefore been to make some-
thing new that builds on already existing concepts. In the same manner as Spamsum
was designed by studying Nilsimsa, NFHash was developed by studying both Spamsum
and Nilsimsa. Since it was designed to match files based on content rather than spam
recognition, it has fewer loose parts and is optimized for performance. Nevertheless, it
achieves good accuracy because of CRC64. The main goal of the algorithm has been to
combine Spamsum’s accuracy and reliability with the performance of Nilsimsa.

There are quite a few theses out there dealing with fuzzy hashing. The most famous one is
probably "mvHash — a new approach for fuzzy hashing", by Knut Petter Åstebøl (Gjøvik
University College, 2012). Here, an unusual, but very efficient approach is taken when a
file is hashed by majority votes and an RLE compression scheme — rather than by using
a rolling hash. The advantage of this approach is that performance is very efficient (it is
theoretically impossible to make a rolling hash that scales more quickly than O(n)), even
though the algorithm is very aligment robust. MVHash and MVHash-B were desgined
for forensic uses, but might offer a high collision risks due to producing small digests with
base-10 or base-16 numbers. Moreover, it might become problematic that comparison
time is very long. More about this can be found in Åstebøl’s thesis [54].

Example of how RLE combined with majority vote works in MVHash:

Page 98

VI 2 WHY STUDY OPEN STANDARDS AND OPEN SOURCE CODE?

• Output of majority vote: 0.0.FF.0.0.0.0.0.FF.FF.0.FF.FF.FF.FF

• Result after RLE compression: 1|1|4|2|1|4

If MVHash-B is as fast as described in Åstebøl’s thesis, it might in fact be a perfect tool
for hashing the nodes in a Merkle Tree.

No thesis on Merkle Trees to detect and track changes in a file were found. As previously
mentioned, the underlying principle is still the same as bitcoins, P2P applications, and
NoSQL systems. There are — hoewever — many theses dealing with cryptographic uses
of Merkle Trees. Moreover, the Merkle Tree itself, and several uses for it (most famously
as an alternative to DSA) was part of Ralph Merkle’s Ph. D. dissertation. [55]

2 Why Study Open Standards and Open Source Code?

A lot of time can be saved by not wasting time on reinventing the wheel. After all,
few (if any) scientific papers or discoveries are created out of thin air. Neither Coper-
nicus nor Galilei discovered the heliocentric model; they simply continued where others
(most notably Aristarchus of Samos) left of. Charles Darwin did not discover evolution,
he simply improved upon the research done by his grandfather, Erasmus Darwin. By
studying freely available content, one does not waste time on developing something that
already has a simple solution.

This project has very little to do with security, except in the fields of collisions. Nev-
ertheless, security is often the main reason for the misconception that something has
to be secret or hidden to be useful. There are many commonly used fallacies and mis-
conceptions concerning secret vs. open standards. The practice of using secrecy as a
mean to achieve security is referred to as security through obscurity. While keeping
part of the source code obfuscated and "hidden" can be a good thing to prevent bypass-
ing various security meassures, the algorithms themselves (hash functions, encryption
algorithms, and so on), should not rely on secrecy to achieve good security, good perfor-
mance or good accuracy. The security by design principle means that an algorithm
should be designed to be secure from the ground, and going by Linus’ law, a security
vulnerability, a performance bottleneck or other undesireable features will be discovered
more quickly if the algorithms are open. [56] Moreover, if an algorithm is freely available
and widely used, weaknesses and strengths are also more widely known — as well as
alternative uses for the algorithm.

Decompilers for C# and Java are easily available, and decompilers for C and C++ are
also improving. On a lower level it is also possible to disassemble the code, for more
experienced hackers. Secrecy for hash functions will at best stall the time an atacker
needs if it is a secure hashing scheme, although proprietary algorithms might have their
place in intranets, as demonstrated by Cisco. Keep in mind that secrecy and security
are not mutually exclusive, but if a hashing algorithm or something similar is secure

Page 99

VI 2 WHY STUDY OPEN STANDARDS AND OPEN SOURCE CODE?

from the ground, it does not matter if an attacker knows how it works or not, as long
as he/she does not have the necessary supplements (eg. keys, corresponding plain and
cipher texts and so on). The bottomline is that an algorithm should not depend on
keeping any functionality hidden to be efficient, easy to expand or secure — although
these traits are certainly not mutually exclusive with secrecy either.

This project had nothing to do with either cryptocurrency or noSQL systems. Nev-
ertheless, the open bitcoin standard and the Cassandra source code proved useful to
study.

Lastly, even if an open standard is brand new, one can still check the credentials of the
author. If a datastructure or an algorithm has not gained widespread usage yet, but is
merely a theory from a respected scientist, a concept from a high ranking member of the
open-source community or for that matter a beta version larger company like Google or
Microsoft, it might deserve a chance after all.

2.1 Old Mathematical Theorems Might be a Priceless Source

Clearly, a mechanic does not want to make the tools himself if there are already tools
out there that will get the job done; in the same manner, a baker does not wish to make
the oven himself and a hairdresser does not want to spend time designing the scissors
herself. Likewise, there is very little point trying to reinvent the wheel when trying to
design algorithms or designing new approaches in software-development. Mathematical
theories can be considered analogous to a toolbox. If something can be done efficiently
mathematically — without using division or remainders — then it can also be done
efficiently in a C-like programming language.

It does not matter if the mathematical theories are well-known or not. Asymmetric
cryptography did not get the recognition it deserved until the mid 1970’s, despite being
proven possible by pen and paper in the mid 1850s.. Mersenne Primes are widely-known
for anyone who look for them, but have not gained widespread use in fuzzy hashing
algorithms. Lastly, the theories of George Boole and Evariste Galois did not catch on
until the rise of digital technology, long after both had passed on.

2.2 Datastructures and Algorithms Almost Always Have Many Uses

A lot of the modern technologies found in 2016 either began their lives inside a very
limited scope or inside a very different scope. Several of the improvements of the diesel
engine (turbochargers, the common-rail fuel injection system, and so on) during the
last three decades began as technologies designed to make submarines in the early 20th
century more powerful without increasing the fuel consumption. And while there are
billions of smart phones out there, these all built upon technology that was initially

Page 100

VI 2 WHY STUDY OPEN STANDARDS AND OPEN SOURCE CODE?

developed for the military (ENIAC — the first Turing-complete digital computer — was
originally designed to calculate artillery firing tables).

Algorithms are no different. An example is Dijkstra’s algorithm for finding paths in a
graph; this was later developed into the Fast Marching Algorithm, which today is an
invaluable tool in many CAD programs and picture manipulation tools for detecting
boundaries. Merkle Trees were originally designed to detect inconsistencies and have
until now for the most part been used in peer-to-peer protocols, cryptocurrency and no
SQL database systems, such as Cassandra. With a sorting mechanism on the terminal
nodes and a Bloom filter to be used if potentially matching nodes are not in the same
place, a Merkle Tree can also be used to track changes in plaintext with clearly defined
boundaries and delimiters.

2.2.1 Security Might Present Exceptions

As demonstrated, hash functions are both versatile and very useful. There is, however,
no free lunch. The output will almost always be incomprehensible to human eyes —
which is a good thing in terms of security — but as previously mentioned, a hash-
function is one-way. Thus, a hash function cannot be used to encrypt large documents,
E-mails, and so on, just used to identify them. Moreover, since the output is irreversible
in a reasonable amount of time, it cannot be used for compressed archives.

Purpose-designed fingerprinting algorithms will not offer the same security as crypto-
graphic hash functions (except in the form of collision resistance). Typically, they are
much more vulnerable to preimage attacks — especially for algorithms that are be-
ing used for fuzzy fingerprinting. Generally, fingerprinting algorithms are kept simple
and no-frills, for the purpose of performance. Because of these properties, algorithms
typically used to identify files, such as CRC, Adler’s Checksum, Rabin’s Finger-
printing Algorithm, Fowler-Noll-Vo and so on should not be used to hash keys,
passwords, and sensitive information in general. They can, however (as previously men-
tioned), be used for sensitive information internally within a secure environment for
identification purposes.

An example of what might happen if a fuzzy fingerprinting scheme was used to hash
sensitive data:

1. Bob authenticates content from Alice based on the edit distance of file hashes
received by Alice and entries in his whitelist

2. If the edit distance is low, he will accept the file. Otherwise, he will reject it

3. Should Eve get hold of the whitelist Bob compares the files against, she could make
a malicious file with a similar digest (as in low edit distance), masquerade as Alice
and trick Bob into installing the file

Clearly, a whitelist (which contains digests of good or approved files) using nothing more

Page 101

VI 3 CAN AN ALGORITHM REALLY BE ONE-WAY?

than a simple fuzzy hash cannot tell the difference between a game file that has been
modified by a gamer for fun or a game file with a trojan trapped inside it. Moreover,
it cannot tell the difference between an excel file that has been updated or a similar
XLSX file that contains a macro virus. In theory, a blacklist (which contains hashes of
malicious files) can make use of preexisting fuzzy hashing algorithms such as Spamsum.
A simple example can be a keygenerator (an infamous source of malware) with a trojan
or a setup file that installs adware or spyware; if this keygenerator or this setup file has
a digest resembling that of a previous keygenerator or setup file with malware, a virus
program can then assume that it is, in fact, malware. Fuzzy hashing might be a viable
"medicine" against morphable malware. This can be taken further by using a k-nearest
neighbor or Parzen window approach.

NFHash is in theory secure against anti-blacklist attacks at first glimpse, but it has not
been tested for this, and therefore, it should be treated as if it is not safe for this purpose
(i.e. not used to filter out spam or malware). The simplicity of the algorithm means
that in practice, it might not be secure against these attacks. Any adversary who knows
how the algorithm works can gather enough spam (there is no shortage of this), train a
k-NN classifier and write a spam email that will trick the algorithm. Generally, spam
detection tools have to be lenient, as misclassifying important mails as spam is far worse
than letting a few spam mails slip through the cracks.

While some cryptographic algorithms such as SHA-2 will indeed offer strong collision
resitance (and of course excellent one-way properties), they are nevertheless too slow to
be able to fingerprint many files, rows, and columns in a short time, which is crucial
in a software tool similar to Avito Loops. Some older cryptographic hash functions
now considered "broken", such as MD5 and SHA-1 have nevertheless found new life in
terms of fingerprinting, due to being significantly faster than more modern cryptographic
algorithms.

3 Can an Algorithm Really be One-Way?

When discussing one-way functions, it does not refer to a function that is inherently one-
way. Indeed, the question of whether one-way functions really exist or not is an example
of an unsolved question. If one could prove that there was an efficient way to reverse the
output of a hash function, one would also have proved that there is a non-polynomial
problem that does have a polynomial (or "easy") solution. This is also an example of
one of the greater questions in computer science. Generally, a hash function can be
considered one-way "enough" when it is more computationally demanding to reverse the
output directly than it is to attack it by brute-force. Even in the case of the less secure
fingerprinting algorithms, reversing the output requires much resources.

Checksum and fingerprinting algorithms such as CRC and Rabin’s Fingerprinting Scheme
can be more accurately described as trapdoor functions rather than one-way functions.

Page 102

VI 5 FURTHER WORKS

The output from the paper shredder pictured in the beginning of this chapter can be
pasted together after hours of tedious work, and in theory, with sufficient computer
power, the output from Rabin’s Fingerprinting Scheme and CRC (as well as the output
several cryptographic algorithms if no salt is used) can indeed be reversed indirectly.
The most famous way to do this is probably with the help of rainbow tables.

4 No Fingerprinting Scheme is Inherently Superior

This report presents two designs. The first one is NFHash, while the second one is based
on Merkle Trees. These are not superior or inferior to each other, but have different
uses, NFHash’s intended usage is to classify plaintext tables, while the Merkle Tree-
based approach is intended to track changes in classified files. In other words, they
complement each other rather than substituting each other.

4.1 Limitations of the Two Approaches Presented in This Report

The limitations are presented earlier on in the report, but the most important aspects
will still be summarized here.

• The Merkle Tree is bottlenecked by the fact that a digest in a traditional hashing
scheme either changes completely or it does not change at all. Therefore, a row
insert and a column insert at the same time will result in the algorithm not being
able to track the changes.

• Before NFHash can be put to use, a person using it needs some practice in how to
set the different parameters.

5 Further Works

The elephant in the room in terms of further works, is to find a way to bypass the
"either this or the other" approach of the Merkle Tree; that is that it will perceive all
rows as different if there is a column insertion — or all columns as different if there is
a row insertion. MVHash-B — as presented in Åstebøl’s thesis — might be a possible
solution. The row or column inserted will still be transparent (that is, it will not be
possible for a user to pinpoint where it was inserted), but if Åstebøl’s thesis is correct,
it might nevertheless allow a user to tracck all other changes in a table. The drawback
here is that MVHash-B is not open-source nor is it used in any commercially available
applications (even if it was, it would have been copyrighted) — and thus, little is known
about the algorithm itself, how to implement it, and how well it performs on different
tasks. Another thing that could be added two the Merkle Tree, is two or three fingerprints

Page 103

VI 5 FURTHER WORKS

per node instead of just one. This would also help the Bloom Filter, but would probably
lead to a higher memory usage.

None of the two approaches presented in this paper looks at anything other than plaintext
or file content with little repetition (eg. PNG files). NFHash has already proven to be
efficient for files that are similar in size to a typical png file — by looking at the bytes only.
However, a hashing scheme alone does not care about what the picture represents.

Figure 32: Two similar png images that have two different NFHash digests because the latter is
an inverted version of the former in terms of colors (note: some bytes are similar due to the
pictures having similar size and similar file format)

8hf6rLeTCjcvL11118if5zfJfDfj3LnrlnX
hTxMM18qJDjZIMWUZ/B3V5ZqEMk7+

8hf6bTOmNBykqopZ+8Gg1NCnG111
18if5zfJfDgViDr70oaFoAvVB27aojI+3nhb
B

Recall the Fast Marching Algorithm earlier in this chapter. If figure 32 instead featured
contoures represented by 1 (black) and 0 (white) rather than the picture itself, NFHash
could potentially classify it based on what it represents — if the classifyer was trained
with many pictures. The Fast Marching Algorithm would play a vital role here, since it
traces edges, rather than decide whether to paint a pixel black or white based on the
initial colors. The key here is of course to make sure the 1s and 0s matrix does not get
too large.

On a lower level, a random polynomial generator based on Rabin’s Irreducibility Test
could be implemented, so that the user would not have to manually input the polynomials
himself/herself.

Lastly, expanding the k-NN classifyer to counter overfitting better would be one of
the top priorities. Fuzzy hashing helps a lot against overfitting since it flattens the

Page 104

VI 7 CONCLUSION

dimensions, but it is still not a perfect cure against it. Steps that can be taken to reduce
overfitting are described in pages 45–48. Examples could be mechanisms for resampling,
or letting the classifier decide the k-NN number based on heuristics.

Generally, due to the modular layout of the library, these changes can be implemented
by adding more classes; there is no need to modify any existing code, except for possible
microoptimizations.

6 Learning Experience

Arguably, the most important experience in this project has been non-cryptographic hash
functions and their uses — as well as thinking outside of the box by finding new uses for
content previously learned during the master’s studies and even the bachelor’s studies.
This also applies to subjects not directly linked to (but still relevant to) computer science,
such as discrete mathematics and pattern recognition.

One of the most valuable lessons learned in this project apart from data fingerprinting,
is that small scale testing (eg. unit testing) might not reveal the entire truth. Something
that looks and performs perfectly inside a small, artificial test case, might show several
bugs in real-world applications using actual tables. Optimizations and learning how to
do this at a lower level also proved a useful thing to learn.

Another important thing that proved to be more valuable than previously thought, is the
literature study — so that it became possible to avoid pitfalls other people had fallen
into, and possible to build upon research done by others. An important part of the
literature study was also to learn how to apply discrete mathematics to solve problems
that were not written on paper, but were actual, real-world problems.

Initially, the Merkle Tree led to some difficulties due to a lack of alignment- and insertion
robustness. The learning outcome here was to keep an open mind about datastructures
and different data structures were useful. If the Merkle Tree-based approach was not
proven possible for tracking updates with "pen and paper" before it was implemented in
Java code, it would probably be scrapped as soon as problems were encountered.

Lastly, the importance of good explanations, and good documentations were learned.
After all, a library nobody knows how to use, nobody knows how works, and everybody
finds confusing, is pretty much useless. At the end of the day, this is a project that might
be useful to somebody, and not just an exam dealing with artificial problems.

7 Conclusion

Since hash functions and discrete mathematics have been of interest for a long time,
this project proved to be a golden oportunity. Extensive work had already been done

Page 105

VI 7 CONCLUSION

by others in this subject of hash functions — highlighting that they in fact have many
uses. Moreover, the work done by mathematicians in the past, essentially ment that
the road taken in this project was already paved — even though it was challenging at
times.

Chapter 3 focused on the design part — as well as datastructures and algorithms not
typically part of the curriculum in most degrees. Two approaches were designed; on of
them was a fuzzy hashing scheme designed from scratch, but with heavy influence from
Spamsum and Nilsimsa. The other one was Merkle Tree-based, and was inspired by a lot
of things not related to fingerprinting files, such as Bitcoins. In this chapter, figures and
formulas proved more important than words. This might be especially true for the 2.
design, utilizing Merkle Trees. For the 4. chapter, explaining the previous chapter with
Java code was the most important part. Furthermore, Boolean algebra was revisited, so
that optimizations on all levels could be explained.

The "Testing and Analysis" chapter proved that NFHash is almost four times faster
than Spamsum on average — and 30% faster than Nilsimsa. What gives these three
algorithms their strength is also what ultimately holds them back performance-wise.
A sliding window requires a lot of resources, after all. The Merkle Tree would also
prove to be an excellent tool for finding out where the changes happened, as long as the
files compared had an equal number of rows or an equal number of columns. For this
purpose tables with car data was used. The Merkle Trees correctly produced the same
fingerprints for two table where the order of the elements was completely different, but
the elements themselves were identical. The algorithm also tracked most changes, and
was also able to do comparisons of two tables with an uneven length.

This chapter has focuses on discussing the outcome of the project — and giving a little
more depth to the background chapter. Overall, the project has been very interesting,
and has dealt with both computer science and discrete mathematics to a large degree.
The information in this report has largely been given by figures, tables and equations,
with the written words for the most part backing these up. Hopefully, this has made
the report interesting to read.

Page 106

VI REFERENCES

References

[1] Stanford lecture. URL:http://web.stanford.edu/class/cs345a/slides/04-
highdim.pdf
Retrieved: May 27. 2016.

[2] Dustin Hurlbut. Fuzzy hashing for digital forensic investigators. 2009.

[3] Agner Fog. Instruction tables. URL: http://www.agner.org/optimize/instruction_tables.pdf
Retrieved: February 26. 2016.

[4] Federal standard 1037c. URL: http://www.its.bldrdoc.gov/fs-1037/fs-1037c.htm
Retrieved:March 4. 2016.

[5] W. Sierpinski. Elementary Theory of Numbers: Second English Edition, volume 2.
PWN-Polish Scientific Publishers, 1988. Page: 360.

[6] Eric Temple Bell. The Queen of Mathematics, volume 3. Springer, 1964. Page: 227.

[7] Some irreducible polynomials. URL: http://www.math.umn.edu/ garrett/m/alge-
bra/notes/07.pdf
Retrieved: February 15. 2016.

[8] Michael O Rabin. Probabilistic algorithms in finite fields. SIAM Journal on Com-
puting, 9(2):273–280, 1980. Pages: 273–280.

[9] William Stallings. Cryptography and Network Security: Principles and Practice,
volume 5. Pearson Prentice Hall, 2011. Page: 276.

[10] William Stallings. Cryptography and Network Security: Principles and Practice,
volume 5. Pearson Prentice Hall, 2011. Page: 328.

[11] Michael O. Rabin. Fingerprinting by random polynomials. 1981.

[12] Thomas H. Cormen et. al. Introduction to Algorithms 3rd Edition, volume 3. The
MIT Press, 2009. Page: 257.

[13] William Stallings. Cryptography and Network Security: Principles and Practice,
volume 5. Pearson Prentice Hall, 2011. Page: 336.

[14] Fred B. Schneider David Gries. A Logical Approach to Discrete Math, volume 1.
Springer, 1993. Page: 355.

[15] Cliff Wang Mohammad Tehranipoor. Introduction to Hardware Security and Trust,
volume 1. Springer, 2012. Page: 28.

[16] Andrei Z. Broder. Some applications of rabin’s fingerprinting method. 1993.

[17] URL: http://betterexplained.com/articles/understanding-the-birthday-paradox/
Retrieved: 02.02.2016.

Page a

VI REFERENCES

[18] Antoine Joux. Algorithmic cryptanalysis. CRC Press, 2009. Page: 185.

[19] Andrew Tridgell. Spamsum source code (written in c), 2002. License: GNU General
Public Licese v. 2.

[20] Title: FNV hash history
Retrieved: February 28. 2016
Address: http://www.isthe.com/chongo/tech/comp/fnv/index.htmlFNV-1.

[21] LP Deutsch. Rfc 1952: Gzip file format specification version 4.3. Internet Engi-
neering Task Force, 1996.

[22] David P Schultz and Christopher D Ebeling. Method and apparatus for implement-
ing a cyclic redundancy check circuit, July 17 2012. US Patent 8,225,187.

[23] Marc Stevens, Arjen Lenstra, and Benne De Weger. Chosen-prefix collisions for md5
and colliding x. 509 certificates for different identities. In Advances in Cryptology-
EUROCRYPT 2007, pages 1–22. Springer, 2007. Pages: 1–22.

[24] Sheelagh Lloyd. Counting functions satisfying a higher order strict avalanche crite-
rion. In Advances in Cryptology—EUROCRYPT’89, pages 63–74. Springer, 1989.
Pages: 63–74.

[25] Jesse Kornblum. Identifying almost identical files using context triggered piecewise
hashing. Digital investigation, 3:91–97, 2006. Pages: 91–97.

[26] Andrew Tridgell. Spamsum readme, 2002. URL:
https://www.samba.org/ftp/unpacked/junkcode/spamsum/README.

[27] Ernesto Damiani, Sabrina De Capitani di Vimercati, Stefano Paraboschi, and
Pierangela Samarati. An open digest-based technique for spam detection. ISCA
PDCS, 2004:559–564, 2004.

[28] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system bitcoin: A peer-
to-peer electronic cash system.

[29] Hinrich Schütze Christopher D. Manning, Prabhakar Raghavan. Introduction to
Information Retrieval, volume 1. Cambridge University Press, 2008. Page: 56.

[30] Michael Levandowsky and David Winter. Distance between sets. Nature,
234(5323):34–35, 1971. Pages: 34–35.

[31] Jan Van Leeuwen. Handbook of theoretical computer science (vol. A): algorithms
and complexity. Mit Press, 1991. Page: 294.

[32] Gregory V Bard. Spelling-error tolerant, order-independent pass-phrases via the
damerau-levenshtein string-edit distance metric. In Proceedings of the fifth Aus-
tralasian symposium on ACSW frontiers-Volume 68, pages 117–124. Australian
Computer Society, Inc., 2007. Pages: 117–124.

Page b

VI REFERENCES

[33] Peter Eades and Petra Mutzel. Algorithms and theory of computation handbook.
1998. Section 30.5.1.

[34] Pedro Franco. Understanding Bitcoin: Cryptography, engineering and economics.
John Wiley & Sons, 2014. Page: 117.

[35] Kent D Lee and Steve Hubbard. Data Structures and Algorithms with Python.
Springer, 2015. Page: 206.

[36] Mahmoud Parsian. Data Algorithms: Recipes for Scaling Up with Hadoop and
Spark. " O’Reilly Media, Inc.", 2015. Page: 694.

[37] Bloom filters - the math, 1998. URL: http://pages.cs.wisc.edu/ cao/papers/summary-
cache/node8.html.

[38] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of ma-
chine learning. MIT press, 2012.

[39] Richard O Duda, Peter E Hart, and David G Stork. Pattern classification. John
Wiley & Sons, 2012. Page:174.

[40] Richard O Duda, Peter E Hart, and David G Stork. Pattern classification. John
Wiley & Sons, 2012. Page: 183.

[41] Lior Rokach. Pattern classification using ensemble methods, volume 75. World
Scientific, 2009. Page: 160.

[42] Ashish Gupta. Learning Apache Mahout Classification. Packt Publishing Ltd, 2015.
Page: 16.

[43] Henry Garner. Clojure for Data Science. Packt Publishing Ltd, 2015. Page: 226.

[44] David J Marchette. Random graphs for statistical pattern recognition, volume 565.
John Wiley & Sons, 2005. Page: 16.

[45] J Ross Quinlan. Bagging, boosting and c4.5. In AAAI/IAAI, Vol. 1, pages 725–730,
1996. Pages: 725–730.

[46] Reference: Nonprintable and printable ascii characters. URL:
http://www.juniper.net/documentation/en_US/idp5.1/topics/reference/general/intrusion-
detection-prevention-custom-attack-object-extended-ascii.html
Retrieved: May 12. 2016.

[47] Francois Yergeau. Utf-8, a transformation format of iso 10646. 2003.

[48] Simon Josefsson. The base16, base32, and base64 data encodings. 2006.

[49] base91 encoding. URL=http://base91.sourceforge.net/.

[50] Agner Fog. Instruction tables: Lists of instruction latencies, through-
puts and micro-operation breakdowns for intel, amd and via cpus. Den-

Page c

VI REFERENCES

mark (Lyngby): Technical University of Denmark, page 220, 2016. URL:
http://www.agner.org/optimize/instruction_tables.pdf.

[51] Oracle. java.math.biginteger class.

[52] Henry S Warren. Hacker’s delight. Pearson Education, 2013. Page: 328.

[53] GP Nikishkov, Yu G Nikishkov, and VV Savchenko. Comparison of c and java
performance in finite element computations. Computers & structures, 81(24):2401–
2408, 2003. Pages: 2401–2408.

[54] Knut Petter Åstebøl. mvhash: a new approach for fuzzy hashing. 2012.

[55] Ralph C Merkle. Secrecy, authentication, and public key systems Ph. D. PhD thesis,
dissertation Department of Electrical Engineering. PhD thesis, Stanford University,
1979. Page: 41B.

[56] Eric S. Raymond. The Cathedral and the Bazaar, volume 1. O’Reilly Media, 1999.
Page: 30.

Page d

VI A USER MANUAL

Appendix

A User Manual

To better understand how the code works, a simple user manual is included. This will
not explain every part of the code in detail, but it will show the simplest way to get the
implementations up and running.

A.1 Creating and Using a Merkle Tree

The easiest way to create a Merkle Tree in this project, is to pass an ArrayList holding
fingerprints of the terminal nodes, an irreducible polynomial and an ArrayList holding
the IDs of the nodes into the constructor, like this:
merkle mkl= new merkle(TerminalFingerPrints, 0xB, TagList);

It will then create an instance of Rabin’s Fingerprinting Scheme and a lookup table on
it’s own (transparent to the user if this approach is taken). Note that in a typical case,
an irreducible polynomial larger than B16 is preferred.

Two Merkle Trees can be compared the followig way:
1 treeComparator tc = new treeComparator();

Stack<Integer> differentNodes = tc.bloomCompare(mkl_a, mkl_b); // Comparing
two trees names mkl_a and mkl_b

3 int numDiff = tc.neq; // Number of differing nodes
double jacc = tc.jaccard(mkl_a.depth, mkl_b.depth, numDiff); // Jaccard

Coefficient

A.2 How to Use NFHash

NFHash requires some practice from the user to actually do a good job. An NFHash
object can be created the following way:

2 int windowSize = 4;
int boundaryNum = 128;

4 NFHash nfh = NFHash(windowSize, boundaryNum);
String fingerprint = nfh.hashByte(inputByteArray);

A.3 Classifying Content With k-NN

Page e

VI A USER MANUAL

kNN classifyer = new kNN();
2

for (int i=0; i<inputFiles.length(); i++){ // Train the classifyer with a
class

4 classifyer.add(inputFiles[i],i); // Array of input fingerprints
}

6

for (int j=0; j<inputFiles2.length(); j++){ // Train the classifyer with
another class

8 classifyer.add(inputFiles2[j],j); // Array of input fingerprints
}

10

int kNum = 9;
12 int classnum=classifyer.classify(testFingerprint, kNum); // Pass the testing

sample you want to classify into the classifyer

In the above case, classnum becomes the class as an integer. If there is a datastruc-
ture holding the class names as well, this number can be used to index it to get the
name.

Page f

VI B COMPLETE CODE

B Complete Code

Complete code can be found in the enclosed 7z file "sourcecode.7z". It is also included as
text in this appendix. Note: You need to specify a package name before you use these
classes.

B.1 Bloom Filter

bloomFilter.java

import java.io.Serializable;
2 import java.util.BitSet;

4 public class bloomFilter<E> implements Serializable {
private final BitSet bitset;

6 private final int bitSetSize;
private final int bitsPerElement;

8 private final int expN; // expected (maximum) number of elements to be
added

private int numberOfAddedElements; // number of elements actually added
to the Bloom filter

10 int mask=0;

12 /*
bitSize = amount of bits per element

14 expN = expected number of elements in bloom filter

*/
16

public bloomFilter(final int bitSize, final int expN) {
18 this.expN = expN;

this.bitsPerElement = bitSize;
20 this.bitSetSize = (bitSize * expN)*2;

this.bitset = new BitSet(bitSetSize);
22 }

24 // Reset filter

26 public void clear() {
bitset.clear();

28 numberOfAddedElements = 0;
}

30

// Add a digest
32

public void add(long num) {
34

int left = (int)(num >> 32); // Split the long into two
36 int right = (int)num;

38 System.out.println("adding");

Page g

VI B COMPLETE CODE

bitset.set((left & bitSetSize-1), true);
40 bitset.set((right & bitSetSize-1), true);

numberOfAddedElements ++;
42 }

44 // Check if the Bloom Filter contains a digest:

46 public Boolean contains(long num) {

48 int left = (int)(num >> 32); // Split the long into two
int right = (int)num;

50

if (!bitset.get(left & bitSetSize-1) && !bitset.get(right &
bitSetSize-1)) {

52 System.out.println("not retrieving");
return false;

54 }
System.out.println("retrieving");

56 return true;
}

58 }

B.2 Cyclic Redundancy Check

CRC64.java

import java.util.zip.Checksum;
2

public final class CRC64 implements Checksum {
4

// Based on ISO polynomial:
6

private static final long[] lookup = new long[]{
8 0x0000000000000000L, 0x01b0000000000000L, 0x0360000000000000L,

0x02d0000000000000L, 0x06c0000000000000L, 0x0770000000000000L,
10 0x05a0000000000000L, 0x0410000000000000L, 0x0d80000000000000L,

0x0c30000000000000L, 0x0ee0000000000000L, 0x0f50000000000000L,
12 0x0b40000000000000L, 0x0af0000000000000L, 0x0820000000000000L,

0x0990000000000000L, 0x1b00000000000000L, 0x1ab0000000000000L,
14 0x1860000000000000L, 0x19d0000000000000L, 0x1dc0000000000000L,

0x1c70000000000000L, 0x1ea0000000000000L, 0x1f10000000000000L,
16 0x1680000000000000L, 0x1730000000000000L, 0x15e0000000000000L,

0x1450000000000000L, 0x1040000000000000L, 0x11f0000000000000L,
18 0x1320000000000000L, 0x1290000000000000L, 0x3600000000000000L,

0x37b0000000000000L, 0x3560000000000000L, 0x34d0000000000000L,
20 0x30c0000000000000L, 0x3170000000000000L, 0x33a0000000000000L,

0x3210000000000000L, 0x3b80000000000000L, 0x3a30000000000000L,
22 0x38e0000000000000L, 0x3950000000000000L, 0x3d40000000000000L,

0x3cf0000000000000L, 0x3e20000000000000L, 0x3f90000000000000L,
24 0x2d00000000000000L, 0x2cb0000000000000L, 0x2e60000000000000L,

0x2fd0000000000000L, 0x2bc0000000000000L, 0x2a70000000000000L,
26 0x28a0000000000000L, 0x2910000000000000L, 0x2080000000000000L,

0x2130000000000000L, 0x23e0000000000000L, 0x2250000000000000L,

Page h

VI B COMPLETE CODE

28 0x2640000000000000L, 0x27f0000000000000L, 0x2520000000000000L,
0x2490000000000000L, 0x6c00000000000000L, 0x6db0000000000000L,

30 0x6f60000000000000L, 0x6ed0000000000000L, 0x6ac0000000000000L,
0x6b70000000000000L, 0x69a0000000000000L, 0x6810000000000000L,

32 0x6180000000000000L, 0x6030000000000000L, 0x62e0000000000000L,
0x6350000000000000L, 0x6740000000000000L, 0x66f0000000000000L,

34 0x6420000000000000L, 0x6590000000000000L, 0x7700000000000000L,
0x76b0000000000000L, 0x7460000000000000L, 0x75d0000000000000L,

36 0x71c0000000000000L, 0x7070000000000000L, 0x72a0000000000000L,
0x7310000000000000L, 0x7a80000000000000L, 0x7b30000000000000L,

38 0x79e0000000000000L, 0x7850000000000000L, 0x7c40000000000000L,
0x7df0000000000000L, 0x7f20000000000000L, 0x7e90000000000000L,

40 0x5a00000000000000L, 0x5bb0000000000000L, 0x5960000000000000L,
0x58d0000000000000L, 0x5cc0000000000000L, 0x5d70000000000000L,

42 0x5fa0000000000000L, 0x5e10000000000000L, 0x5780000000000000L,
0x5630000000000000L, 0x54e0000000000000L, 0x5550000000000000L,

44 0x5140000000000000L, 0x50f0000000000000L, 0x5220000000000000L,
0x5390000000000000L, 0x4100000000000000L, 0x40b0000000000000L,

46 0x4260000000000000L, 0x43d0000000000000L, 0x47c0000000000000L,
0x4670000000000000L, 0x44a0000000000000L, 0x4510000000000000L,

48 0x4c80000000000000L, 0x4d30000000000000L, 0x4fe0000000000000L,
0x4e50000000000000L, 0x4a40000000000000L, 0x4bf0000000000000L,

50 0x4920000000000000L, 0x4890000000000000L, 0xd800000000000000L,
0xd9b0000000000000L, 0xdb60000000000000L, 0xdad0000000000000L,

52 0xdec0000000000000L, 0xdf70000000000000L, 0xdda0000000000000L,
0xdc10000000000000L, 0xd580000000000000L, 0xd430000000000000L,

54 0xd6e0000000000000L, 0xd750000000000000L, 0xd340000000000000L,
0xd2f0000000000000L, 0xd020000000000000L, 0xd190000000000000L,

56 0xc300000000000000L, 0xc2b0000000000000L, 0xc060000000000000L,
0xc1d0000000000000L, 0xc5c0000000000000L, 0xc470000000000000L,

58 0xc6a0000000000000L, 0xc710000000000000L, 0xce80000000000000L,
0xcf30000000000000L, 0xcde0000000000000L, 0xcc50000000000000L,

60 0xc840000000000000L, 0xc9f0000000000000L, 0xcb20000000000000L,
0xca90000000000000L, 0xee00000000000000L, 0xefb0000000000000L,

62 0xed60000000000000L, 0xecd0000000000000L, 0xe8c0000000000000L,
0xe970000000000000L, 0xeba0000000000000L, 0xea10000000000000L,

64 0xe380000000000000L, 0xe230000000000000L, 0xe0e0000000000000L,
0xe150000000000000L, 0xe540000000000000L, 0xe4f0000000000000L,

66 0xe620000000000000L, 0xe790000000000000L, 0xf500000000000000L,
0xf4b0000000000000L, 0xf660000000000000L, 0xf7d0000000000000L,

68 0xf3c0000000000000L, 0xf270000000000000L, 0xf0a0000000000000L,
0xf110000000000000L, 0xf880000000000000L, 0xf930000000000000L,

70 0xfbe0000000000000L, 0xfa50000000000000L, 0xfe40000000000000L,
0xfff0000000000000L, 0xfd20000000000000L, 0xfc90000000000000L,

72 0xb400000000000000L, 0xb5b0000000000000L, 0xb760000000000000L,
0xb6d0000000000000L, 0xb2c0000000000000L, 0xb370000000000000L,

74 0xb1a0000000000000L, 0xb010000000000000L, 0xb980000000000000L,
0xb830000000000000L, 0xbae0000000000000L, 0xbb50000000000000L,

76 0xbf40000000000000L, 0xbef0000000000000L, 0xbc20000000000000L,
0xbd90000000000000L, 0xaf00000000000000L, 0xaeb0000000000000L,

78 0xac60000000000000L, 0xadd0000000000000L, 0xa9c0000000000000L,
0xa870000000000000L, 0xaaa0000000000000L, 0xab10000000000000L,

80 0xa280000000000000L, 0xa330000000000000L, 0xa1e0000000000000L,

Page i

VI B COMPLETE CODE

0xa050000000000000L, 0xa440000000000000L, 0xa5f0000000000000L,
82 0xa720000000000000L, 0xa690000000000000L, 0x8200000000000000L,

0x83b0000000000000L, 0x8160000000000000L, 0x80d0000000000000L,
84 0x84c0000000000000L, 0x8570000000000000L, 0x87a0000000000000L,

0x8610000000000000L, 0x8f80000000000000L, 0x8e30000000000000L,
86 0x8ce0000000000000L, 0x8d50000000000000L, 0x8940000000000000L,

0x88f0000000000000L, 0x8a20000000000000L, 0x8b90000000000000L,
88 0x9900000000000000L, 0x98b0000000000000L, 0x9a60000000000000L,

0x9bd0000000000000L, 0x9fc0000000000000L, 0x9e70000000000000L,
90 0x9ca0000000000000L, 0x9d10000000000000L, 0x9480000000000000L,

0x9530000000000000L, 0x97e0000000000000L, 0x9650000000000000L,
92 0x9240000000000000L, 0x93f0000000000000L, 0x9120000000000000L,

0x9090000000000000L
94 };

96

98 @Override
public void update(final byte[] bytes, int offset, int length) {

100 final int end = length - offset;
long crc = 0L;

102 while (offset < end) {
crc = lookup[(bytes[offset] ^ (int) crc) & 0xFF] ^ (crc >>> 8);

104 offset++;
}

106 this.crc = crc;
}

108

long crc = 0L;
110

@Override
112 public long getValue() {

return (crc ^ 0xFFFFFFFFFFFFFFFFL); // Invert the output
114 }

116 // Redundant methods (only present because this class implements an
interface):

118 @Override
public void reset() {

120 crc = 0;
}

122 @Override
public void update(int i) {

124 }
}

B.3 Damerau-Levenshtein Distance Calculator

DamerauLevenshtein.java

1 import java.util.Arrays;

Page j

VI B COMPLETE CODE

3 public class DamerauLevenshtein {
public static int DamLev(String first, String second){

5 final int init = 0;
int[][] dist = new int[first.length()+2][second.length()+2];

7 dist[0][0]=init; // This is the matrix holding the edit distance for
each letter

9 for(int i = 0; i<=first.length(); i++) {
dist[i+1][1] = i;

11 dist[i+1][0] = init;
}

13 for(int j = 0; j<=second.length(); j++) {
dist[1][j+1] = j;

15 dist[0][j+1] = init;
}

17

int[] DA = new int[256]; // 256 printable characters
19 Arrays.fill(DA, 0);

21 for(int i = 1; i<=first.length(); i++) {
int DB = 0;

23 for(int j = 1; j<=second.length(); j++) {
int i1 = DA[second.charAt(j-1)];

25 int j1 = DB;

27 int d=0;

29 if (first.charAt(i-1)==second.charAt(j-1)){
d=0;}

31 else d=1;

33 if(d==0) DB = j;
dist[i+1][j+1] =

35 Math.min(Math.min(dist[i][j]+d,
dist[i+1][j] + 1),Math.min(

37 dist[i][j+1]+1,
dist[i1][j1] + (i-i1-1) + 1 + (j-j1-1))); //

This line separates Damerau-Levenshtein
from

39 //ordinary Levenshtein
}

41 DA[first.charAt(i-1)] = i;
}

43 return dist[first.length()+1][second.length()+1];
}

45 }

B.4 k-Nearest Neighbor

kNN.java

1 package knn;

Page k

VI B COMPLETE CODE

3 import java.util.ArrayList;
import java.util.Arrays;

5 import java.util.Collections;

7 /**
* Created by Ole on 06.06.2016.

9 */
public class kNN {

11

static DamerauLevenshtein cmp = new DamerauLevenshtein();
13 static ArrayList<ArrayList<String>> classes = new ArrayList<ArrayList<

String>>();
static ArrayList<ArrayList<Integer>> distances = new ArrayList<ArrayList<

Integer>>();
15 static double prior;

int numClass;
17

// Create Class Based on Input Files:
19

public void createClass(String[] digests){
21 ArrayList<String> digestArray = new ArrayList<String>(Arrays.asList(

digests));
classes.add(digestArray);

23 }

25 // Remove Class:

27 public void remove(int classNum){
classes.remove(classNum);

29 try {
distances.remove(classNum);

31 }
catch (Exception e){

33 e.printStackTrace();
}

35 }

37 // Add element to class:

39 public void add(String digest, int classNum){
ArrayList<String> temp= classes.get(classNum);

41 classes.remove(classNum);
temp.add(digest);

43 classes.add(classNum,temp);
}

45

// Classify digest:
47

public static int classify(final String candidate, final int knn){
49

count();
51 distances = new ArrayList<ArrayList<Integer>>();

Page l

VI B COMPLETE CODE

53 for (int i=0; i<classes.size(); i++){
ArrayList<String> aList = classes.get(i);

55 ArrayList<Integer> theClass = new ArrayList<Integer>();

57 for (int j=0; j<aList.size(); j++){
int leve = cmp.DamLev(candidate,aList.get(j));

59 theClass.add(leve);
}

61 Collections.sort(theClass);
distances.add(theClass);

63 }

65 int classify=0;
double edit=0.0;

67

for (int i=0; i<distances.size();i++){
69 ArrayList<Integer> aList = distances.get(i);

double newEdit = discriminant((double)knn, (double)aList.get(knn
-1), (double)aList.size());

71

if (newEdit>edit) {
73 edit = newEdit;

classify=i;
75 }

}
77 return classify;

}
79

static int count=0;
81

// Count all elements in data set:
83

private static void count(){
85 for (int i=0; i<classes.size(); i++)

count+=classes.get(i).size();
87 }

89 // Calculate Discriminant Function:

91 private static double discriminant(double knn, double editDist, double
numClass){
if (editDist>0){ // Do not divide by zero

93 double prior = numClass/(double)count;
double top = knn/numClass;

95 double pnx = top/editDist; // nth estimate of p(x) (PDF)
double disc = prior*pnx;

97 return disc;}
else return Double.MAX_VALUE;

99 }
}

B.5 No-Frills Hash

Page m

VI B COMPLETE CODE

NFHash.java

public class NFHash {
2

4 // This makes it faster to do a base 64 number:
protected static final char[] alphabet = "

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/".
toCharArray();

6

final protected int digestSizeBytes = 64;
8 final protected int chars = 64;

10 protected char[] fingerprint;

12 //Mersenne number

14 protected static long hash(final long c, long h) {

16 long h1=(h)&p4+((h)>>31);
h1=h<p4 ? (h)&p5+((h)>>19) : h1; // If h<p2 then (h)&p+((h)>>13),

else h1=h1
18

return ((h1)^(~c));
20 }

22 protected static long p5=524287; // Mersenne primes
protected static long p4=2147483647;

24

final int cutpoint;
26

public String hashBytes(final byte[] in) {
28 int iter=1;

int length = in.length;
30 fingerprint = new char[digestSizeBytes];

32 int j = 0;
long h2 = 0L;

34 long h = setReset();

36 for (int i = 0; i < length; i++) {

38 int character = (in[i]) & 255;
h= rollingCRC(character,in);

40 h2 = this.hash(character,h);
long cmp = h & (cutpoint-1);

42

if (cmp == (cutpoint - 1)) {
44 // Boundary reached

fingerprint[j] = alphabet[(int) (h2 & (chars-1))];
46

if (j < digestSizeBytes - iter) {
48 h2 = 0x28021967;

j+=iter;

Page n

VI B COMPLETE CODE

50

}
52

else {
54 j=0;

iter*=4;
56 }

}
58 }

60 if (h != 0) {
fingerprint[j] = alphabet[(int) (h2 & (chars-1))];

62 }

64 return String.valueOf(fingerprint);
}

66

final int winSize;
68 protected long[] rolling_window;

70 public NFHash(final int windowsize, final int cutpoint){
this.cutpoint=cutpoint;

72 this.winSize=windowsize;
newByte=new byte[winSize+1];

74 }

76 int start=0;
byte[] newByte;

78 private long rollingCRC(long c, byte[] b) {
CRC64 c64 = new CRC64();

80 System.arraycopy(b,start,newByte,0,winSize);
c64.update(newByte,0,winSize);

82 if (start<b.length-winSize)
start++;

84 return c64.getValue();
}

86

protected long setReset() {
88 rolling_window = new long[winSize];

start=0;
90 return 0L;

}
92

}

B.6 Table Generator

tableGenerator.java

2 /**
* Created by Ole on 10.02.2016.

4 *

Page o

VI B COMPLETE CODE

* Generates an 8x256 table for use in Rabin fingerprints.
6 *

*/
8 public class tableGenerator {

10 private transient static long[][] superTable;

12 // Generate a lookup table by passing an irreducible polynomial into
generateTable():

14 public long[][] generateTable(long poly) {
long X_degree = 1L << Long.bitCount(Long.MAX_VALUE);

16

final long[] preTable = new long[64];
18

preTable[0] = poly;
20 for (int i = 1; i < 64; i++) {

long poly = preTable[i - 1] << 1;
22 if ((preTable[i - 1] & X_degree) != 0) {

poly ^= poly;
24 }

preTable[i] = poly;
26 }

28 superTable = new long[8][256];

30 for (int i = 0; i < 256; i++) {
int c = i;

32 for (int j = 0; j < 8 && c > 0; j++) {
if ((c & 1) != 0) {

34

superTable[0][i] ^= preTable[j];
36 superTable[1][i] ^= preTable[j + 8];

superTable[2][i] ^= preTable[j + 16];
38 superTable[3][i] ^= preTable[j + 24];

superTable[4][i] ^= preTable[j + 32];
40 superTable[5][i] ^= preTable[j + 40];

superTable[6][i] ^= preTable[j + 48];
42 superTable[7][i] ^= preTable[j + 56];

}
44 c >>>= 1;

}
46 }

return superTable;
48 }

50 }

B.7 Rabin’s Fingerprinting Scheme

Rabin.java

import java.util.Stack;

Page p

VI B COMPLETE CODE

2

/*
4

This class can use a precalculated table, or generate one on the fly. The
former is far more efficient, as Rabin’s algorithm

6 on it’s own is very simple and efficient.

8

*/
10

public final class Rabin {
12

private static final int degree = Long.bitCount(Long.MAX_VALUE) + 1; //
Degree is always 64 bits

14 private static final long X_degree = 1L << Long.bitCount(Long.MAX_VALUE);
private final long Prime;

16 private transient static long[][] superTable;

18 public Rabin(final long Prime) {
this.Prime = Prime;

20 initializeTables();
}

22

public Rabin() {
24 Prime=0L;

}
26

public void setSuperTable(final long[][] superTable){
28 this.superTable=superTable;

}
30

32 // This is the easiest constructor to use:

34 public Rabin(final long[][] superTable) {
this.superTable=superTable;

36 Prime=0;
}

38

private void initializeTables() {
40 final long[] preTable = new long[degree];

42 preTable[0] = Prime;
for (int i = 1; i < degree; i++) {

44 long poly = preTable[i - 1] << 1;
if ((preTable[i - 1] & X_degree) != 0) {

46 poly ^= Prime;
}

48 preTable[i] = poly;
}

50

superTable = new long[8][256];
52

Page q

VI B COMPLETE CODE

for (int i = 0; i < 256; i++) {
54 int c = i;

for (int j = 0; j < 8 && c > 0; j++) {
56 if ((c & 1) != 0) {

58 superTable[0][i] ^= preTable[j];
superTable[1][i] ^= preTable[j + 8];

60 superTable[2][i] ^= preTable[j + 16];
superTable[3][i] ^= preTable[j + 24];

62 superTable[4][i] ^= preTable[j + 32];
superTable[5][i] ^= preTable[j + 40];

64 superTable[6][i] ^= preTable[j + 48];
superTable[7][i] ^= preTable[j + 56];

66 }
c >>>= 1;

68 }
}

70

}
72

// Using an AND mask of 255 keeps the last 8 bits while discarding the rest:
74

private static long shiftDigest(final long digest) {
76

long sD = superTable[0][(int) (digest & 0xFF)] ^
78 superTable[1][(int) ((digest >>> 8) & 0xFF)] ^

superTable[2][(int) ((digest >>> 16) & 0xFF)] ^
80 superTable[3][(int) ((digest >>> 24) & 0xFF)] ^

superTable[4][(int) ((digest >>> 32) & 0xFF)] ^
82 superTable[5][(int) ((digest >>> 40) & 0xFF)] ^

superTable[6][(int) ((digest >>> 48) & 0xFF)] ^
84 superTable[7][(int) ((digest >>> 56) & 0xFF)];

86 return sD;
}

88

public long hash(final byte[] preImage) {
90 return hash(preImage, 0, 0);

}
92

private static int pad(final int length) {
94 final int starterBytes = length & 7;

return starterBytes;
96 }

98

static long hash(final byte[] preImage, int offset, final int footOffset)
{

100

final int length = preImage.length;
102 long digest = 0L;

104 final int initOffset = offset;

Page r

VI B COMPLETE CODE

final int pad = pad(length);
106 if (pad != 0) {

final int max = initOffset + pad - footOffset;
108 while (offset < max) {

digest = (digest << 8) ^ (preImage[offset] & 0xFF);
110 offset++;

}
112 }

114

final int max = initOffset + length - footOffset;
116 while (offset < max) {

digest = shiftDigest(digest) ^
118 (preImage[offset] << 56) ^

((preImage[offset + 1] & 0xFF) << 48) ^
120 ((preImage[offset + 2] & 0xFF) << 40) ^

((preImage[offset + 3] & 0xFF) << 32) ^
122 ((preImage[offset + 4] & 0xFF) << 24) ^

((preImage[offset + 5] & 0xFF) << 16) ^
124 ((preImage[offset + 6] & 0xFF) << 8) ^

(preImage[offset + 7] & 0xFF);
126 offset += 8;

}
128 return digest;

}
130

132 }

B.8 Merkle Trees

merkle.java

import java.io.Serializable;
2 import java.util.ArrayList;

import java.util.Collections;
4 import java.util.List;

6 /**
*

8 * @author Ole

*/
10 public class merkle implements Serializable {

12 bloomFilter bf;
public static final byte typeTerminal = 0x0;

14 public static final byte typeParent = 0x01;

16 tableGenerator tg = new tableGenerator();
private Rabin rs;

18 public Node root;
public int depth;

20 public int nnodes;

Page s

VI B COMPLETE CODE

public int terminalnodes;
22

void setRabin(Rabin rs){
24 this.rs=rs;

}
26

public merkle(ArrayList<Long> fingerprints, Rabin rs, ArrayList<Integer>
tagList) {

28 this.rs = rs;
this.tagList=sortNames(tagList, fingerprints);

30 terminalnodes=fingerprints.size();
bf=new bloomFilter(32,terminalnodes);

32 create(fingerprints);
}

34

// Using this constructor is the simplest approach:
36

public merkle(ArrayList<Long> fingerprints, final long galois, ArrayList
<Integer>tagList) {

38 this.rs = new Rabin(tg.generateTable(galois));
this.tagList=sortNames(tagList, fingerprints);

40 terminalnodes=fingerprints.size();
bf=new bloomFilter(32,terminalnodes); // Adjust the Bloom Filter as

needed for accuracy
42 create(fingerprints);

}
44

46 /*
Sort one list according to another:

48 */

50 public ArrayList<Integer> sortNames(ArrayList<Integer> results,ArrayList<
Long> digests){
int tmp2;

52 long tmp;
for (int k=0; k<digests.size()-1; k++) {

54

boolean isSorted=true;
56 for (int i=1; i<digests.size()-k; i++) {

58 if (digests.get(i)>digests.get(i-1)) {
tmp=digests.get(i);

60 digests.set(i,digests.get(i-1));
digests.set(i-1,tmp);

62

64 tmp2=results.get(i);
results.set(i,results.get(i-1));

66 results.set(i-1,tmp2);

68 isSorted=false;
}

Page t

VI B COMPLETE CODE

70 }
if (isSorted) break;

72 }
return results;

74

}
76

78 ArrayList<Integer>tagList;

80 void setTags(ArrayList<Integer>tagList){
this.tagList=tagList;

82 }

84 public merkle(ArrayList<Long> fingerprints, final long galois) {
rs = new Rabin(tg.generateTable(galois));

86 create(fingerprints);
}

88

public merkle(Node treeRoot, int numNodes, int height, ArrayList<Long>
fingerprints) {

90 root = treeRoot;
nnodes = numNodes;

92 depth = height;
fingerprints = fingerprints;

94

}
96

ArrayList<Long> fingerprints;
98

void create(ArrayList<Long> signatures) {
100 if (signatures.size() <= 1) {

// throw new IllegalArgumentException("Must be at least two
signatures to construct a Merkle tree");

102 }

104 fingerprints = signatures;
nnodes = signatures.size();

106 ArrayList<Node> parents = bottomsUp(signatures);
nnodes += parents.size();

108 depth = 1;

110 while (parents.size() > 1) {
parents = internalLevel(parents);

112 depth++;
nnodes += parents.size();

114 }

116 root = parents.get(0);
}

118

120 public int getNumNodes() {

Page u

VI B COMPLETE CODE

return nnodes;
122 }

124 public Node getRoot() {
return root;

126 }

128 public int getDepht() {
return depth;

130 }

132

ArrayList<Node> internalLevel(ArrayList<Node> children) {
134 ArrayList<Node> parents = new ArrayList<Node>(children.size() / 2);

136 for (int i = 0; i < children.size() - 1; i += 2) {
Node child1 = children.get(i);

138 Node child2 = children.get(i+1);

140 Node parent = createParent(child1, child2);
parents.add(parent);

142 }

144 if (children.size() % 2 != 0) {
Node child = children.get(children.size()-1);

146 Node parent = createParent(child, null);
parents.add(parent);

148 }

150 return parents;
}

152

ArrayList<Node> bottomsUp(List<Long> signatures) {
154 ArrayList<Node> parents = new ArrayList<Node>(signatures.size() / 2);

156 for (int i = 0; i < signatures.size() - 1; i += 2) {
Node leaf1 = createTerminalNode(signatures.get(i),tagList.get(i))

;
158 Node leaf2 = createTerminalNode(signatures.get(i+1),tagList.get(i

+1));

160

Node parent = createParent(leaf1, leaf2);
162 parents.add(parent);

164 }

166 // in case of odd number of terminal nodes:

168 if (signatures.size() % 2 != 0) {
Node leaf = createTerminalNode(signatures.get(signatures.size() -

1),tagList.get(tagList.size()-1));
170 Node parent = createParent(leaf, null);

Page v

VI B COMPLETE CODE

parents.add(parent);
172 }

174 return parents;
}

176

178 private Node createParent(Node child1, Node child2) {
Node parent = new Node();

180 parent.type = typeParent;
parent.depth=depth+1;

182

if (child2 == null) {
184 parent.sig = child1.sig;

} else {
186 parent.sig = internalHash(child1.sig, child2.sig)|internalHash(

child2.sig, child1.sig);
}

188 parent.left = child1;
parent.right = child2;

190 return parent;
}

192

194 private Node createTerminalNode(long fingerprint,int tag) {
Node leaf = new Node();

196 leaf.type = typeTerminal;
leaf.sig = fingerprint;

198 leaf.tag=tag;
bf.add(fingerprint);

200 return leaf;
}

202

long internalHash(long leftChildSig, long rightChildSig) {
204 String it=(new String((leftChildSig+""+rightChildSig).getBytes()));

long h=rs.hash(it.getBytes());
206

return h;
208 }

210 public static class Node {
public byte type; // Terminal or not?

212 public long sig; // Digest
public Node left;

214 public Node right;
public int tag; // ID

216 public int depth;
}

218 }

B.9 Tree Comparator

Page w

VI B COMPLETE CODE

treeComparator.java

1 import java.util.ArrayList;
import java.util.Stack;

3

/**
5 * Created by Ole on 27.02.2016.

*/
7 public class treeComparator {

9 // Get the binary Jaccard (for instance by using the number of terminal
// nodes in each Merkle Tree

11

public double Jaccard(int lengthA, int lengthB, int differ){
13

int m=Math.max(lengthA,lengthB);
15

int AnB = m-differ;
17

if (AnB<0)
19 AnB=0;

21 double AuB=(double)lengthA+(double)lengthB-(double)AnB;
double jaccard = AnB/AuB;

23 if (jaccard<0)
jaccard=0;

25 return jaccard;
}

27

// Compare two Merkle Trees -- regardless of height
29

31 public static int count =0;

33 // Tag with name, but order by hash

35 public static ArrayList<Integer> differingOne=new ArrayList<Integer>();
public static ArrayList<Integer> differingTwo=new ArrayList<Integer>();

37

39

static ArrayList<merkle.Node> alNode = new ArrayList<merkle.Node>();
41

43 merkle bloomTree;
int terminalcount=0;

45

public Stack<Integer> bloomCompare(merkle mfirst, merkle msecond){
47 neq=0; // Number of different nodes

49 nodeStack=new Stack<Integer>();
if (mfirst.root!=msecond.root){

51

int t1=mfirst.nnodes;

Page x

VI B COMPLETE CODE

53 int t2=msecond.nnodes;
merkle referenceTree=mfirst;

55 bloomTree=msecond;
nodeStack= new Stack();

57

if (t2>t1){
59 referenceTree=msecond;

bloomTree=mfirst;
61 }

bloomTraverse(referenceTree.root.left,bloomTree.root.left);
63 bloomTraverse(referenceTree.root.right,bloomTree.root.right);

65

}
67

return nodeStack;
69

}
71

73 public void bloomTraverse(merkle.Node root){

75

if (root.left!=null)
77 bloomTraverse(root.left);

if (root.right!=null)
79 bloomTraverse(root.right);

81 if (root.type==0x00 && !bloomTree.bf.contains(root.sig))
{

83 neq++;
nodeStack.push(root.tag);

85 }
}

87

int neq=0;
89

public void bloomTraverse(merkle.Node root, merkle.Node root2){
91

if (root!=root2)
93 {

if (root.left!=null && root2.left!=null)
95 bloomTraverse(root.left,root2.left);

if (root.right!=null && root2.right!=null)
97 bloomTraverse(root.right,root2.right);

99

if (root.left!=null && root2.left==null)
101 bloomTraverse(root.left);

if (root.right!=null && root2.right==null)
103 bloomTraverse(root.right);

105

Page y

VI
C BRIEF EXAMPLE OF PROJECT IMPLEMENTED WITH K-NN AND

NFHASH

if (root.type==0x00 && !bloomTree.bf.contains(root.sig))
107 {

nodeStack.push(root.tag);
109 neq++;

}}
111

}
113

public Stack<Integer> nodeStack;
115

117 }

C Brief Example of Project Implemented with k-NN and
NFHash

A simple implementation can be found in the enclosed class "knn.7z". This archive
features both a runnable jar file — and the NetBeans source code.

Page z

	Faculty of Science and Technology

Abarth.csv

Basic (general) data;;;

Marque (make);Autobianchi;Issued from;1979

Model;A112 Abarth;Issued until;

Serie;A112;Number made;

Model family;;Body construction;

Model code;;Body designation;

Manufacturer;Autobianchi;Country;IT

;;;

Bodywork;;;

Base platform;;Number of doors;3

Bodywork type;hatchback (liftback) sedan;Number of seats;5

Bodywork designer;;Cargo capacity (volume);

Passenger space (volume);2460 l;Max. cargo capacity (volume);

;;;

Dimensions & Weight;;;

Length;3230 mm;Total (curb) weight;675 kg

Width;1490 mm;Dry weight;

Height;1370 mm;Load capacity;

Wheelbase;2040 mm;Gross (max.) weight;

Track front;;Towing weight;

Track rear;;Weight distribution (front);

Ground clearance;150 mm;Fuel capacity;30 l

Length/wheelbase ratio;1.58;;

;;;

Aerodynamics;;;

Drag coefficient (Cd, Cx, Cw);;Frontal area (A);1.74 m2 (est.)

Aerodynamic coefficient (Cd×A);;Aerodynamic resistance (Aero horse power) at 100 km/h (62 mph);

;;;

Engine;;;

Engine Code;;Total number of cylinders;4

Engine Type;straight (inline) (Inline, 4 cylinder);Total number of valves;

Engine Manufacturer;;Valves per cylinder;

Engine construction;;Bore;65.0 mm

Fuel;;Stroke;74.0 mm

Fuel details;;Bore/Stroke ratio;0.88

Fuel supply;Carburettor;Engine displacement;928 cm3

Engine Main bearings;;Unitary capacity;245.55 cm3/cylinder

Cam Design;;Compression ratio;10.0 : 1

Sump;;Max. output power;43.0 kW at 6600 rpm

Aspiration;natural;Max. torque;73.0 N·m at 3800 rpm

Compressor type;;Maximum rpm;

Intercooler;;Max. net output (power at the wheels);17.2 kW (est.)

Coolant;water;Specific output;46.3 kW/l

Catalytic converter;;Specific torque;78.7 N·m/l

;;;

Transmission;;;

Transmission type;manual;Number of gears;4

Wheel drive;front wheel drive;Top gear (drive) ratio;

;;Final gear (drive) ratio;

;;;

Performance;;;

Acceleration 0-50 mph (80 km/h);;Top (maximal) speed;150 km/h

Acceleration 0-60 mph (97 km/h);;Power-to-weight ratio;85.9 kW/ton

Acceleration 0-100 km/h;;Fuel consumption, City (urban);

Acceleration 0-100 mph (160 km/h);;Fuel consumption, Road (extra-urban);

Acceleration 80-120 km/h (50-70 mph) in top;;Fuel consumption, Mixed (combined);

Standing ¼mile time;;Fuel consumption, Euro;

Standing kilometer time;;CO2 emissions;

;;Range;

;;;

Chassis;;;

Engine location;front;Engine alignment;transverse

Steering;;Steering details;

Turns lock-to-lock;;Turning circle;9.0 m

Suspension front;;Suspension rear;

Wheels front;;Wheels rear;

Tyres front;155-13;Tyres rear;125/80-R12

Brakes front;disc;Brakes rear;drum

Brake diameter front;;Brake diameter rear;

Brakes details;;Braked area;

AbarthCut.csv

Basic (general) data;;;

Marque (make);Autobianchi;Issued from;1979

Model;A112 Abarth;Issued until;

Serie;A112;Number made;

Model family;;Body construction;

Model code;;Body designation;

Manufacturer;Autobianchi;Country;IT

;;;

Bodywork;;;

Base platform;;Number of doors;3

Bodywork type;hatchback (liftback) sedan;Number of seats;5

Bodywork designer;;Cargo capacity (volume);

Passenger space (volume);2460 l;Max. cargo capacity (volume);

;;;

Dimensions & Weight;;;

Length;3230 mm;Total (curb) weight;675 kg

Width;1490 mm;Dry weight;

Height;1370 mm;Load capacity;

Wheelbase;2040 mm;Gross (max.) weight;

Track front;;Towing weight;

Track rear;;Weight distribution (front);

Ground clearance;150 mm;Fuel capacity;30 l

Length/wheelbase ratio;1.58;;

;;;

Aerodynamics;;;

Drag coefficient (Cd, Cx, Cw);;Frontal area (A);1.74 m2 (est.)

Aerodynamic coefficient (Cd×A);;Aerodynamic resistance (Aero horse power) at 100 km/h (62 mph);

;;;

Engine;;;

Engine Code;;Total number of cylinders;4

Engine Type;straight (inline) (Inline, 4 cylinder);Total number of valves;

Engine Manufacturer;;Valves per cylinder;

Engine construction;;Bore;65.0 mm

Fuel;;Stroke;74.0 mm

Fuel details;;Bore/Stroke ratio;0.88

Fuel supply;Carburettor;Engine displacement;928 cm3

Engine Main bearings;;Unitary capacity;245.55 cm3/cylinder

Cam Design;;Compression ratio;10.0 : 1

Sump;;Max. output power;43.0 kW at 6600 rpm

Aspiration;natural;Max. torque;73.0 N·m at 3800 rpm

Compressor type;;Maximum rpm;

Intercooler;;Max. net output (power at the wheels);17.2 kW (est.)

Coolant;water;Specific output;46.3 kW/l

Catalytic converter;;Specific torque;78.7 N·m/l

;;;

Transmission;;;

Transmission type;manual;Number of gears;4

Wheel drive;front wheel drive;Top gear (drive) ratio;

;;Final gear (drive) ratio;

Saab900-20-1994.csv

Basic (general) data;;;

Marque (make);Saab;Issued from;1994

Model;05.02.900;Issued until;

Serie;900;Number made;

Model family;;Body construction;

Model code;;Body designation;

Manufacturer;Saab;Country;SE

Bodywork;;;

Base platform;;Number of doors;03.05.2016

Bodywork type;;Number of seats;5

Bodywork designer;;Cargo capacity (volume);

Passenger space (volume);4320 l;Max. cargo capacity (volume);

Dimensions & Weight;;;

Length;4640 mm;Total (curb) weight;1330 kg

Width;1720 mm;Dry weight;

Height;1440 mm;Load capacity;

Wheelbase;2530 mm;Gross (max.) weight;

Track front;;Towing weight;

Track rear;;Weight distribution (front);

Ground clearance;140 mm;Fuel capacity;

Length/wheelbase ratio;01.01.1983; ;

Aerodynamics;;;

Drag coefficient (Cd, Cx, Cw);0.3;Frontal area (A);2.11 m2 (est.)

Aerodynamic coefficient (Cd×A);0.63 m2 (est.);Aerodynamic resistance (Aero horse power) at 100 km/h (62 mph);15.7 kW (est.)

Engine;;;

Engine Code;;Total number of cylinders;4

Engine Type;straight (inline) (Inline, 4 cylinder);Total number of valves;16

Engine Manufacturer;;Valves per cylinder;4

Engine construction;;Bore;

Fuel;petrol (gasoline);Stroke;

Fuel details;;Bore/Stroke ratio;

Fuel supply;Injection;Engine displacement;1983 cm3

Engine Main bearings;;Unitary capacity;

Cam Design;;Compression ratio;

Sump;;Max. output power;136.0 kW at 5500 rpm

Aspiration;;Max. torque;263.0 N·m at 2100 rpm

Compressor type;;Maximum rpm;

Intercooler;;Max. net output (power at the wheels);54.4 kW (est.)

Coolant;;Specific output;68.6 kW/l

Catalytic converter;;Specific torque;132.6 N·m/l

Transmission;;;

Transmission type;manual;Number of gears;5

Wheel drive;front wheel drive;Top gear (drive) ratio;

 ; ;Final gear (drive) ratio;

Performance;;;

Acceleration 0-50 mph (80 km/h);;Top (maximal) speed;

Acceleration 0-60 mph (97 km/h);;Power-to-weight ratio;139.1 kW/ton

Acceleration 0-100 km/h;;Fuel consumption, City (urban);

Acceleration 0-100 mph (160 km/h);;Fuel consumption, Road (extra-urban);

Acceleration 80-120 km/h (50-70 mph) in top;;Fuel consumption, Mixed (combined);

Standing ¼mile time;;Fuel consumption, Euro;

Standing kilometer time;;CO2 emissions;

 ; ;Range;

Chassis;;;

Engine location;front;Engine alignment;transverse

Steering;;Steering details;

Turns lock-to-lock;;Turning circle;11.0 m

Suspension front;;Suspension rear;

Wheels front;;Wheels rear;

Tyres front;;Tyres rear;

Brakes front;;Brakes rear;

Brake diameter front;;Brake diameter rear;

Brakes details;;Braked area;

Saab900-25-1994.csv

Basic (general) data;;;

Marque (make);Saab;Issued from;1994

Model;05.02.900;Issued until;

Serie;900;Number made;

Model family;;Body construction;

Model code;;Body designation;

Manufacturer;Saab;Country;SE

Bodywork;;;

Base platform;;Number of doors;03.05.2016

Bodywork type;;Number of seats;5

Bodywork designer;;Cargo capacity (volume);

Passenger space (volume);4320 l;Max. cargo capacity (volume);

Dimensions & Weight;;;

Length;4640 mm;Total (curb) weight;1345 kg

Width;1720 mm;Dry weight;

Height;1440 mm;Load capacity;

Wheelbase;2530 mm;Gross (max.) weight;

Track front;;Towing weight;

Track rear;;Weight distribution (front);

Ground clearance;140 mm;Fuel capacity;

Length/wheelbase ratio;01.01.1983; ;

Aerodynamics;;;

Drag coefficient (Cd, Cx, Cw);0.3;Frontal area (A);2.11 m2 (est.)

Aerodynamic coefficient (Cd×A);0.63 m2 (est.);Aerodynamic resistance (Aero horse power) at 100 km/h (62 mph);15.7 kW (est.)

Engine;;;

Engine Code;;Total number of cylinders;6

Engine Type;straight (inline) (Inline, 6 cylinder);Total number of valves;24

Engine Manufacturer;;Valves per cylinder;4

Engine construction;;Bore;81.6 mm

Fuel;petrol (gasoline);Stroke;79.6 mm

Fuel details;;Bore/Stroke ratio;01.03.2016

Fuel supply;Injection;Engine displacement;2497 cm3

Engine Main bearings;;Unitary capacity;416.28 cm3/cylinder

Cam Design;;Compression ratio;

Sump;;Max. output power;125.0 kW at 5900 rpm

Aspiration;;Max. torque;227.0 N·m at 4200 rpm

Compressor type;;Maximum rpm;

Intercooler;;Max. net output (power at the wheels);50.0 kW (est.)

Coolant;;Specific output;50.1 kW/l

Catalytic converter;;Specific torque;90.9 N·m/l

Transmission;;;

Transmission type;manual;Number of gears;5

Wheel drive;front wheel drive;Top gear (drive) ratio;

 ; ;Final gear (drive) ratio;

Performance;;;

Acceleration 0-50 mph (80 km/h);;Top (maximal) speed;

Acceleration 0-60 mph (97 km/h);;Power-to-weight ratio;126.4 kW/ton

Acceleration 0-100 km/h;;Fuel consumption, City (urban);

Acceleration 0-100 mph (160 km/h);;Fuel consumption, Road (extra-urban);

Acceleration 80-120 km/h (50-70 mph) in top;;Fuel consumption, Mixed (combined);

Standing ¼mile time;;Fuel consumption, Euro;

Standing kilometer time;;CO2 emissions;

 ; ;Range;

Chassis;;;

Engine location;front;Engine alignment;transverse

Steering;;Steering details;

Turns lock-to-lock;;Turning circle;11.0 m

Suspension front;;Suspension rear;

Wheels front;;Wheels rear;

Tyres front;;Tyres rear;

Brakes front;;Brakes rear;

Brake diameter front;;Brake diameter rear;

Brakes details;;Braked area;

VolvoC70-2000.csv

Basic (general) data;;;

Marque (make);Volvo;Issued from;2000

Model;C70;Issued until;

Serie;C70;Number made;

Model family;;Body construction;

Model code;;Body designation;

Manufacturer;Volvo;Country;SE,NL

;;;

Bodywork;;;

Base platform;;Number of doors;4

Bodywork type;;Number of seats;4

Bodywork designer;;Cargo capacity (volume);

Passenger space (volume);4530 l;Max. cargo capacity (volume);

;;;

Dimensions & Weight;;;

Length;4730 mm;Total (curb) weight;1404 kg

Width;1830 mm;Dry weight;

Height;1420 mm;Load capacity;

Wheelbase;2670 mm;Gross (max.) weight;

Track front;;Towing weight;

Track rear;;Weight distribution (front);

Ground clearance;;Fuel capacity;68 l

Length/wheelbase ratio;1.77;;

;;;

Aerodynamics;;;

Drag coefficient (Cd, Cx, Cw);0.3;Frontal area (A);2.21 m2 (est.)

Aerodynamic coefficient (Cd×A);0.66 m2 (est.);Aerodynamic resistance (Aero horse power) at 100 km/h (62 mph);16.5 kW (est.)

;;;

Engine;;;

Engine Code;;Total number of cylinders;5

Engine Type;straight (inline) (Inline, 5 cylinder);Total number of valves;20

Engine Manufacturer;;Valves per cylinder;4

Engine construction;;Bore;81.0 mm

Fuel;petrol (gasoline);Stroke;77.0 mm

Fuel details;;Bore/Stroke ratio;1.05

Fuel supply;Injection;Engine displacement;1984 cm3

Engine Main bearings;;Unitary capacity;396.78 cm3/cylinder

Cam Design;;Compression ratio;9.5 : 1

Sump;wet;Max. output power;120.0 kW at 5100 rpm

Aspiration;;Max. torque;230.0 N·m at 1800 rpm

Compressor type;;Maximum rpm;

Intercooler;;Max. net output (power at the wheels);48.0 kW (est.)

Coolant;water;Specific output;60.5 kW/l

Catalytic converter;;Specific torque;115.9 N·m/l

;;;

Transmission;;;

Transmission type;manual;Number of gears;5

Wheel drive;front wheel drive;Top gear (drive) ratio;

;;Final gear (drive) ratio;

;;;

Performance;;;

Acceleration 0-50 mph (80 km/h);;Top (maximal) speed;

Acceleration 0-60 mph (97 km/h);;Power-to-weight ratio;116.4 kW/ton

Acceleration 0-100 km/h;;Fuel consumption, City (urban);

Acceleration 0-100 mph (160 km/h);;Fuel consumption, Road (extra-urban);

Acceleration 80-120 km/h (50-70 mph) in top;;Fuel consumption, Mixed (combined);

Standing ¼mile time;;Fuel consumption, Euro;

Standing kilometer time;;CO2 emissions;

;;Range;

;;;

Chassis;;;

Engine location;front;Engine alignment;transverse

Steering;;Steering details;

Turns lock-to-lock;;Turning circle;12.0 m

Suspension front;;Suspension rear;

Wheels front;;Wheels rear;

Tyres front;205/55-R16;Tyres rear;205/55-R16

Brakes front;disc;Brakes rear;

Brake diameter front;;Brake diameter rear;295 mm

Brakes details;;Braked area;

VolvoC70-2000sorted.csv

Acceleration 0-100 km/h;;Fuel consumption, City (urban);

Acceleration 0-100 mph (160 km/h);;Fuel consumption, Road (extra-urban);

Acceleration 0-50 mph (80 km/h);;Top (maximal) speed;

Acceleration 0-60 mph (97 km/h);;Power-to-weight ratio;116.4 kW/ton

Acceleration 80-120 km/h (50-70 mph) in top;;Fuel consumption, Mixed (combined);

Aerodynamic coefficient (Cd×A);0.66 m2 (est.);Aerodynamic resistance (Aero horse power) at 100 km/h (62 mph);16.5 kW (est.)

Aerodynamics;;;

Aspiration;;Max. torque;230.0 N·m at 1800 rpm

Base platform;;Number of doors;4

Basic (general) data;;;

Bodywork;;;

Bodywork designer;;Cargo capacity (volume);

Bodywork type;;Number of seats;4

Brake diameter front;;Brake diameter rear;295 mm

Brakes details;;Braked area;

Brakes front;disc;Brakes rear;

Cam Design;;Compression ratio;9.5 : 1

Catalytic converter;;Specific torque;115.9 N·m/l

Chassis;;;

Compressor type;;Maximum rpm;

Coolant;water;Specific output;60.5 kW/l

Dimensions & Weight;;;

Drag coefficient (Cd, Cx, Cw);0.3;Frontal area (A);2.21 m2 (est.)

Engine;;;

Engine Code;;Total number of cylinders;5

Engine construction;;Bore;81.0 mm

Engine location;front;Engine alignment;transverse

Engine Main bearings;;Unitary capacity;396.78 cm3/cylinder

Engine Manufacturer;;Valves per cylinder;4

Engine Type;straight (inline) (Inline, 5 cylinder);Total number of valves;20

Fuel;petrol (gasoline);Stroke;77.0 mm

Fuel details;;Bore/Stroke ratio;1.05

Fuel supply;Injection;Engine displacement;1984 cm3

Ground clearance;;Fuel capacity;68 l

Height;1420 mm;Load capacity;

Intercooler;;Max. net output (power at the wheels);48.0 kW (est.)

Length;4730 mm;Total (curb) weight;1404 kg

Length/wheelbase ratio;1.77;;

Manufacturer;Volvo;Country;SE,NL

Marque (make);Volvo;Issued from;2000

Model;C70;Issued until;

Model code;;Body designation;

Model family;;Body construction;

Passenger space (volume);4530 l;Max. cargo capacity (volume);

Performance;;;

Serie;C70;Number made;

Standing ¼mile time;;Fuel consumption, Euro;

Standing kilometer time;;CO2 emissions;

Steering;;Steering details;

Sump;wet;Max. output power;120.0 kW at 5100 rpm

Suspension front;;Suspension rear;

Track front;;Towing weight;

Track rear;;Weight distribution (front);

Transmission;;;

Transmission type;manual;Number of gears;5

Turns lock-to-lock;;Turning circle;12.0 m

Tyres front;205/55-R16;Tyres rear;205/55-R16

Wheel drive;front wheel drive;Top gear (drive) ratio;

Wheelbase;2670 mm;Gross (max.) weight;

Wheels front;;Wheels rear;

Width;1830 mm;Dry weight;

;;;

;;;

;;;

;;;

;;;

;;Final gear (drive) ratio;

;;;

;;;

;;Range;

knn/src.zip

src/knn/CRC64.java

 src/knn/CRC64.java

src/knn/CRC64.javapackage knn;

import java.util.zip.Checksum;

/**
 * Created by Ole on 09.02.2016.
 *
 * Blatant ripoff of the builtin CRC32 function, except scaled up to 64 bits and with a lookup table.
 *
 */

public final class CRC64 implements Checksum {

 // Based on ISO polynomial:

 private static final long[] lookup = new long[]{
 0x0000000000000000L, 0x01b0000000000000L, 0x0360000000000000L,
 0x02d0000000000000L, 0x06c0000000000000L, 0x0770000000000000L,
 0x05a0000000000000L, 0x0410000000000000L, 0x0d80000000000000L,
 0x0c30000000000000L, 0x0ee0000000000000L, 0x0f50000000000000L,
 0x0b40000000000000L, 0x0af0000000000000L, 0x0820000000000000L,
 0x0990000000000000L, 0x1b00000000000000L, 0x1ab0000000000000L,
 0x1860000000000000L, 0x19d0000000000000L, 0x1dc0000000000000L,
 0x1c70000000000000L, 0x1ea0000000000000L, 0x1f10000000000000L,
 0x1680000000000000L, 0x1730000000000000L, 0x15e0000000000000L,
 0x1450000000000000L, 0x1040000000000000L, 0x11f0000000000000L,
 0x1320000000000000L, 0x1290000000000000L, 0x3600000000000000L,
 0x37b0000000000000L, 0x3560000000000000L, 0x34d0000000000000L,
 0x30c0000000000000L, 0x3170000000000000L, 0x33a0000000000000L,
 0x3210000000000000L, 0x3b80000000000000L, 0x3a30000000000000L,
 0x38e0000000000000L, 0x3950000000000000L, 0x3d40000000000000L,
 0x3cf0000000000000L, 0x3e20000000000000L, 0x3f90000000000000L,
 0x2d00000000000000L, 0x2cb0000000000000L, 0x2e60000000000000L,
 0x2fd0000000000000L, 0x2bc0000000000000L, 0x2a70000000000000L,
 0x28a0000000000000L, 0x2910000000000000L, 0x2080000000000000L,
 0x2130000000000000L, 0x23e0000000000000L, 0x2250000000000000L,
 0x2640000000000000L, 0x27f0000000000000L, 0x2520000000000000L,
 0x2490000000000000L, 0x6c00000000000000L, 0x6db0000000000000L,
 0x6f60000000000000L, 0x6ed0000000000000L, 0x6ac0000000000000L,
 0x6b70000000000000L, 0x69a0000000000000L, 0x6810000000000000L,
 0x6180000000000000L, 0x6030000000000000L, 0x62e0000000000000L,
 0x6350000000000000L, 0x6740000000000000L, 0x66f0000000000000L,
 0x6420000000000000L, 0x6590000000000000L, 0x7700000000000000L,
 0x76b0000000000000L, 0x7460000000000000L, 0x75d0000000000000L,
 0x71c0000000000000L, 0x7070000000000000L, 0x72a0000000000000L,
 0x7310000000000000L, 0x7a80000000000000L, 0x7b30000000000000L,
 0x79e0000000000000L, 0x7850000000000000L, 0x7c40000000000000L,
 0x7df0000000000000L, 0x7f20000000000000L, 0x7e90000000000000L,
 0x5a00000000000000L, 0x5bb0000000000000L, 0x5960000000000000L,
 0x58d0000000000000L, 0x5cc0000000000000L, 0x5d70000000000000L,
 0x5fa0000000000000L, 0x5e10000000000000L, 0x5780000000000000L,
 0x5630000000000000L, 0x54e0000000000000L, 0x5550000000000000L,
 0x5140000000000000L, 0x50f0000000000000L, 0x5220000000000000L,
 0x5390000000000000L, 0x4100000000000000L, 0x40b0000000000000L,
 0x4260000000000000L, 0x43d0000000000000L, 0x47c0000000000000L,
 0x4670000000000000L, 0x44a0000000000000L, 0x4510000000000000L,
 0x4c80000000000000L, 0x4d30000000000000L, 0x4fe0000000000000L,
 0x4e50000000000000L, 0x4a40000000000000L, 0x4bf0000000000000L,
 0x4920000000000000L, 0x4890000000000000L, 0xd800000000000000L,
 0xd9b0000000000000L, 0xdb60000000000000L, 0xdad0000000000000L,
 0xdec0000000000000L, 0xdf70000000000000L, 0xdda0000000000000L,
 0xdc10000000000000L, 0xd580000000000000L, 0xd430000000000000L,
 0xd6e0000000000000L, 0xd750000000000000L, 0xd340000000000000L,
 0xd2f0000000000000L, 0xd020000000000000L, 0xd190000000000000L,
 0xc300000000000000L, 0xc2b0000000000000L, 0xc060000000000000L,
 0xc1d0000000000000L, 0xc5c0000000000000L, 0xc470000000000000L,
 0xc6a0000000000000L, 0xc710000000000000L, 0xce80000000000000L,
 0xcf30000000000000L, 0xcde0000000000000L, 0xcc50000000000000L,
 0xc840000000000000L, 0xc9f0000000000000L, 0xcb20000000000000L,
 0xca90000000000000L, 0xee00000000000000L, 0xefb0000000000000L,
 0xed60000000000000L, 0xecd0000000000000L, 0xe8c0000000000000L,
 0xe970000000000000L, 0xeba0000000000000L, 0xea10000000000000L,
 0xe380000000000000L, 0xe230000000000000L, 0xe0e0000000000000L,
 0xe150000000000000L, 0xe540000000000000L, 0xe4f0000000000000L,
 0xe620000000000000L, 0xe790000000000000L, 0xf500000000000000L,
 0xf4b0000000000000L, 0xf660000000000000L, 0xf7d0000000000000L,
 0xf3c0000000000000L, 0xf270000000000000L, 0xf0a0000000000000L,
 0xf110000000000000L, 0xf880000000000000L, 0xf930000000000000L,
 0xfbe0000000000000L, 0xfa50000000000000L, 0xfe40000000000000L,
 0xfff0000000000000L, 0xfd20000000000000L, 0xfc90000000000000L,
 0xb400000000000000L, 0xb5b0000000000000L, 0xb760000000000000L,
 0xb6d0000000000000L, 0xb2c0000000000000L, 0xb370000000000000L,
 0xb1a0000000000000L, 0xb010000000000000L, 0xb980000000000000L,
 0xb830000000000000L, 0xbae0000000000000L, 0xbb50000000000000L,
 0xbf40000000000000L, 0xbef0000000000000L, 0xbc20000000000000L,
 0xbd90000000000000L, 0xaf00000000000000L, 0xaeb0000000000000L,
 0xac60000000000000L, 0xadd0000000000000L, 0xa9c0000000000000L,
 0xa870000000000000L, 0xaaa0000000000000L, 0xab10000000000000L,
 0xa280000000000000L, 0xa330000000000000L, 0xa1e0000000000000L,
 0xa050000000000000L, 0xa440000000000000L, 0xa5f0000000000000L,
 0xa720000000000000L, 0xa690000000000000L, 0x8200000000000000L,
 0x83b0000000000000L, 0x8160000000000000L, 0x80d0000000000000L,
 0x84c0000000000000L, 0x8570000000000000L, 0x87a0000000000000L,
 0x8610000000000000L, 0x8f80000000000000L, 0x8e30000000000000L,
 0x8ce0000000000000L, 0x8d50000000000000L, 0x8940000000000000L,
 0x88f0000000000000L, 0x8a20000000000000L, 0x8b90000000000000L,
 0x9900000000000000L, 0x98b0000000000000L, 0x9a60000000000000L,
 0x9bd0000000000000L, 0x9fc0000000000000L, 0x9e70000000000000L,
 0x9ca0000000000000L, 0x9d10000000000000L, 0x9480000000000000L,
 0x9530000000000000L, 0x97e0000000000000L, 0x9650000000000000L,
 0x9240000000000000L, 0x93f0000000000000L, 0x9120000000000000L,
 0x9090000000000000L
 };

 @Override
 public void update(final byte[] bytes, int offset, int length) {
 final int end = length - offset;
 long crc = 0L;
 while (offset < end) {
 crc = lookup[(bytes[offset] ^ (int) crc) & 0xFF] ^ (crc >>> 8);
 offset++;
 }
 this.crc = crc;
 }

 long crc = 0L;

 @Override
 public long getValue() {
 return (crc ^ 0xFFFFFFFFFFFFFFFFL); // Invert the output
 }

 // Redundant methods (only present because this class implements an interface):

 @Override
 public void reset() {
 crc = 0;
 }

 @Override
 public void update(int i) {

 }

}

src/knn/doStuff.java

 src/knn/doStuff.java

src/knn/doStuff.java/*
 * To change this license header, choose License Headers in Project Properties.
 * To change this template file, choose Tools | Templates
 * and open the template in the editor.
 */
package knn;

import java.io.File;
import java.io.FileInputStream;
import java.nio.MappedByteBuffer;
import java.nio.channels.FileChannel;
import javax.swing.JFileChooser;
import javax.swing.JOptionPane;

/**
 * This class is here to make the driver class less bloated
 * @author Ole
 */
public class doStuff {

 public kNN classifyer = new kNN();
 NFHash nfh = new NFHash(16,64);
 /*
 Actions performed by GUI elements
 */

 // Reset the No Frills Hash object:

 public void resetNFH(int sliding, int cut){
 nfh = new NFHash(sliding,cut);
 }

 // Set name of class

 public void setName(){

 }

 // Delete a class

 void delete(int num){
 classifyer.remove(num);
 }

 // Hash a byte array:

 public void createNewNFHash(int cutpoint, int windowsize){
 nfh = new NFHash(cutpoint, windowsize);
 }

 // Upload multiple files for training a new class:

 public String loadFiles(){
 JFileChooser chooser = new JFileChooser();
chooser.setMultiSelectionEnabled(true);
chooser.showOpenDialog(driverClass.getFrames()[0]);
File[] files = chooser.getSelectedFiles();

 FileInputStream fin = null;
 FileChannel ch = null;
 byte[] bytes = new byte[0];
 if (files.length>0){
 String[] preDigest = new String[files.length];

 for (int i=0; i<files.length;i++){
 File refFile = files[i];
 System.out.println(refFile);

 try {
 fin = new FileInputStream(refFile);
 ch = fin.getChannel();
 int size = (int) ch.size();
 bytes = new byte[size];
 MappedByteBuffer buf = ch.map(FileChannel.MapMode.READ_ONLY, 0, size);
 buf.get(bytes);
 preDigest[i]=nfh.HashString(bytes);
 ch.close();
 } catch (Exception e){

 e.printStackTrace();
 };

 }

 classifyer.createClass(preDigest);
String str = (String)JOptionPane.showInputDialog(
 driverClass.getFrames()[0],
 "",
 "Enter Class Name",
 JOptionPane.PLAIN_MESSAGE,
 null,
 null,
 "");
return str;
}
return "";
 }

 // Upload file for testing:

 public int addTestingFile(int knn){

 JFileChooser chooser = new JFileChooser();
chooser.showOpenDialog(driverClass.getFrames()[0]);
File refFile = chooser.getSelectedFile();

 FileChannel ch = null;
 byte[] bytes = new byte[0];
String digest;
 int cn=0;
 try {
 FileInputStream fin = new FileInputStream(refFile);
 ch = fin.getChannel();
 int size = (int) ch.size();
 bytes = new byte[size];
 MappedByteBuffer buf = ch.map(FileChannel.MapMode.READ_ONLY, 0, size);
 buf.get(bytes);
 digest=nfh.HashString(bytes);
 ch.close();
 cn=classifyer.classify(digest,knn);

 } catch (Exception e){
 cn=-1;
 e.printStackTrace();
 };
 return cn;
 }

}

src/knn/driverClass.form

src/knn/driverClass.java

 src/knn/driverClass.java

src/knn/driverClass.java/*
 * To change this license header, choose License Headers in Project Properties.
 * To change this template file, choose Tools | Templates
 * and open the template in the editor.
 */
package knn;

import java.util.logging.Level;
import java.util.logging.Logger;
import javax.swing.JOptionPane;
import javax.swing.UIManager;
import javax.swing.UnsupportedLookAndFeelException;

/**
 *
 * @author Ole
 */
public class driverClass extends javax.swing.JFrame {

 /**
 * Creates new form driverClass
 */
 public driverClass() {

 try {
 UIManager.setLookAndFeel(
 UIManager.getSystemLookAndFeelClassName());
 } catch (ClassNotFoundException ex) {
 Logger.getLogger(driverClass.class.getName()).log(Level.SEVERE, null, ex);
 } catch (InstantiationException ex) {
 Logger.getLogger(driverClass.class.getName()).log(Level.SEVERE, null, ex);
 } catch (IllegalAccessException ex) {
 Logger.getLogger(driverClass.class.getName()).log(Level.SEVERE, null, ex);
 } catch (UnsupportedLookAndFeelException ex) {
 Logger.getLogger(driverClass.class.getName()).log(Level.SEVERE, null, ex);
 }

 initComponents();
 }
doStuff ds = new doStuff();
 /**
 * This method is called from within the constructor to initialize the form.
 * WARNING: Do NOT modify this code. The content of this method is always
 * regenerated by the Form Editor.
 */
 @SuppressWarnings("unchecked")
 // <editor-fold defaultstate="collapsed" desc="Generated Code">//GEN-BEGIN:initComponents
 private void initComponents() {

 jPanel1 = new javax.swing.JPanel();
 jButton1 = new javax.swing.JButton();
 jComboBox1 = new javax.swing.JComboBox<>();
 jButton2 = new javax.swing.JButton();
 jButton4 = new javax.swing.JButton();
 jLabel1 = new javax.swing.JLabel();
 jLabel2 = new javax.swing.JLabel();
 jLabel3 = new javax.swing.JLabel();
 jTextField1 = new javax.swing.JTextField();
 jTextField2 = new javax.swing.JTextField();
 jTextField3 = new javax.swing.JTextField();

 setDefaultCloseOperation(javax.swing.WindowConstants.EXIT_ON_CLOSE);
 setTitle("k-NN Tech Demo");

 jPanel1.setBorder(javax.swing.BorderFactory.createEtchedBorder());

 jButton1.setText("Add class");
 jButton1.addActionListener(new java.awt.event.ActionListener() {
 public void actionPerformed(java.awt.event.ActionEvent evt) {
 jButton1ActionPerformed(evt);
 }
 });

 jButton2.setText("Remove class");
 jButton2.addActionListener(new java.awt.event.ActionListener() {
 public void actionPerformed(java.awt.event.ActionEvent evt) {
 jButton2ActionPerformed(evt);
 }
 });

 jButton4.setText("Upload test item");
 jButton4.addActionListener(new java.awt.event.ActionListener() {
 public void actionPerformed(java.awt.event.ActionEvent evt) {
 jButton4ActionPerformed(evt);
 }
 });

 javax.swing.GroupLayout jPanel1Layout = new javax.swing.GroupLayout(jPanel1);
 jPanel1.setLayout(jPanel1Layout);
 jPanel1Layout.setHorizontalGroup(
 jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)
 .addGroup(jPanel1Layout.createSequentialGroup()
 .addContainerGap()
 .addGroup(jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)
 .addGroup(jPanel1Layout.createSequentialGroup()
 .addComponent(jButton1)
 .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)
 .addComponent(jComboBox1, javax.swing.GroupLayout.PREFERRED_SIZE, 287, javax.swing.GroupLayout.PREFERRED_SIZE))
 .addGroup(jPanel1Layout.createSequentialGroup()
 .addComponent(jButton2)
 .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)
 .addComponent(jButton4)))
 .addContainerGap(javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE))
);
 jPanel1Layout.setVerticalGroup(
 jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)
 .addGroup(jPanel1Layout.createSequentialGroup()
 .addContainerGap()
 .addGroup(jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.BASELINE)
 .addComponent(jButton1)
 .addComponent(jComboBox1, javax.swing.GroupLayout.PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE))
 .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)
 .addGroup(jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.BASELINE)
 .addComponent(jButton2)
 .addComponent(jButton4))
 .addContainerGap(javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE))
);

 jLabel1.setText("Sliding Window Size");

 jLabel2.setText("k-number");

 jLabel3.setText("Cut Point");

 jTextField1.setText("16");
 jTextField1.addActionListener(new java.awt.event.ActionListener() {
 public void actionPerformed(java.awt.event.ActionEvent evt) {
 jTextField1ActionPerformed(evt);
 }
 });

 jTextField2.setText("64");
 jTextField2.addCaretListener(new javax.swing.event.CaretListener() {
 public void caretUpdate(javax.swing.event.CaretEvent evt) {
 jTextField2CaretUpdate(evt);
 }
 });
 jTextField2.addActionListener(new java.awt.event.ActionListener() {
 public void actionPerformed(java.awt.event.ActionEvent evt) {
 jTextField2ActionPerformed(evt);
 }
 });

 jTextField3.setText("5");

 javax.swing.GroupLayout layout = new javax.swing.GroupLayout(getContentPane());
 getContentPane().setLayout(layout);
 layout.setHorizontalGroup(
 layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)
 .addComponent(jPanel1, javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)
 .addGroup(layout.createSequentialGroup()
 .addContainerGap()
 .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING, false)
 .addGroup(layout.createSequentialGroup()
 .addComponent(jLabel1)
 .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)
 .addComponent(jTextField1, javax.swing.GroupLayout.PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE))
 .addGroup(layout.createSequentialGroup()
 .addComponent(jLabel3)
 .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)
 .addComponent(jTextField2)))
 .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.UNRELATED)
 .addComponent(jLabel2)
 .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)
 .addComponent(jTextField3, javax.swing.GroupLayout.PREFERRED_SIZE, 27, javax.swing.GroupLayout.PREFERRED_SIZE)
 .addGap(0, 0, Short.MAX_VALUE))
);
 layout.setVerticalGroup(
 layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)
 .addGroup(layout.createSequentialGroup()
 .addComponent(jPanel1, javax.swing.GroupLayout.PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE)
 .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)
 .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.BASELINE)
 .addComponent(jLabel1)
 .addComponent(jLabel2)
 .addComponent(jTextField1, javax.swing.GroupLayout.PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE)
 .addComponent(jTextField3, javax.swing.GroupLayout.PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE))
 .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)
 .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.BASELINE)
 .addComponent(jLabel3)
 .addComponent(jTextField2, javax.swing.GroupLayout.PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE))
 .addGap(0, 0, Short.MAX_VALUE))
);

 pack();
 }// </editor-fold>//GEN-END:initComponents

 private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {//GEN-FIRST:event_jButton1ActionPerformed
 String str=ds.loadFiles();
 if (str.length()>0)
 jComboBox1.addItem(str);
 }//GEN-LAST:event_jButton1ActionPerformed

 private void jButton2ActionPerformed(java.awt.event.ActionEvent evt) {//GEN-FIRST:event_jButton2ActionPerformed
 jComboBox1.removeItemAt(jComboBox1.getSelectedIndex());
 }//GEN-LAST:event_jButton2ActionPerformed

 private void jButton4ActionPerformed(java.awt.event.ActionEvent evt) {//GEN-FIRST:event_jButton4ActionPerformed
 int cn=ds.addTestingFile(Integer.parseInt(jTextField3.getText()));
 if (cn!=-1)
 JOptionPane.showMessageDialog(driverClass.getFrames()[0], "This element belongs in Class "+cn+", "+jComboBox1.getItemAt(cn));

 }//GEN-LAST:event_jButton4ActionPerformed

 private void jTextField1ActionPerformed(java.awt.event.ActionEvent evt) {//GEN-FIRST:event_jTextField1ActionPerformed
 // TODO add your handling code here:
 }//GEN-LAST:event_jTextField1ActionPerformed

 private void jTextField2CaretUpdate(javax.swing.event.CaretEvent evt) {//GEN-FIRST:event_jTextField2CaretUpdate
 int bound = Integer.parseInt(jTextField2.getText());
 int slide = Integer.parseInt(jTextField1.getText());
 ds.resetNFH(slide, bound);
 }//GEN-LAST:event_jTextField2CaretUpdate

 private void jTextField2ActionPerformed(java.awt.event.ActionEvent evt) {//GEN-FIRST:event_jTextField2ActionPerformed
 // TODO add your handling code here:
 }//GEN-LAST:event_jTextField2ActionPerformed

 /**
 * @param args the command line arguments
 */
 public static void main(String args[]) {
 /* Set the Nimbus look and feel */
 //<editor-fold defaultstate="collapsed" desc=" Look and feel setting code (optional) ">
 /* If Nimbus (introduced in Java SE 6) is not available, stay with the default look and feel.
 * For details see http://download.oracle.com/javase/tutorial/uiswing/lookandfeel/plaf.html
 */
 try {
 for (javax.swing.UIManager.LookAndFeelInfo info : javax.swing.UIManager.getInstalledLookAndFeels()) {
 if ("Nimbus".equals(info.getName())) {
 javax.swing.UIManager.setLookAndFeel(info.getClassName());
 break;
 }
 }
 } catch (ClassNotFoundException ex) {
 java.util.logging.Logger.getLogger(driverClass.class.getName()).log(java.util.logging.Level.SEVERE, null, ex);
 } catch (InstantiationException ex) {
 java.util.logging.Logger.getLogger(driverClass.class.getName()).log(java.util.logging.Level.SEVERE, null, ex);
 } catch (IllegalAccessException ex) {
 java.util.logging.Logger.getLogger(driverClass.class.getName()).log(java.util.logging.Level.SEVERE, null, ex);
 } catch (javax.swing.UnsupportedLookAndFeelException ex) {
 java.util.logging.Logger.getLogger(driverClass.class.getName()).log(java.util.logging.Level.SEVERE, null, ex);
 }
 //</editor-fold>

 /* Create and display the form */
 java.awt.EventQueue.invokeLater(new Runnable() {
 public void run() {
 new driverClass().setVisible(true);
 }
 });
 }

 // Variables declaration - do not modify//GEN-BEGIN:variables
 private javax.swing.JButton jButton1;
 private javax.swing.JButton jButton2;
 private javax.swing.JButton jButton4;
 private javax.swing.JComboBox<String> jComboBox1;
 private javax.swing.JLabel jLabel1;
 private javax.swing.JLabel jLabel2;
 private javax.swing.JLabel jLabel3;
 private javax.swing.JPanel jPanel1;
 private javax.swing.JTextField jTextField1;
 private javax.swing.JTextField jTextField2;
 private javax.swing.JTextField jTextField3;
 // End of variables declaration//GEN-END:variables
}

src/knn/EditDist.java

 src/knn/EditDist.java

src/knn/EditDist.javapackage knn;

import java.util.ArrayList;
import java.util.Stack;

/**
 * Created by Ole on 27.02.2016.
 */
public class EditDist {

 public static int DamLev(String first, String second){

 int[] firstArray = new int[first.length()+1];
 int[] secondArray = new int[second.length()+1];

 for (int i = 0; i < first.length()+1; i++)
 firstArray[i] = i;
 for (int i = 0; i < first.length(); i++)
 {
 secondArray[0] = i + 1;
 for (int j = 0; j < second.length(); j++)
 {
 int cost = (first.charAt(i) == second.charAt(j)) ? 0 : 1;
 secondArray[j + 1] = Math.min(secondArray[j] + 1, Math.min(firstArray[j + 1] + 1, firstArray[j] + cost));
 }

 for (int j = 0; j < firstArray.length; j++)
 firstArray[j] = secondArray[j];
 }

 return secondArray[first.length()];

 }

}

src/knn/kNN.java

 src/knn/kNN.java

src/knn/kNN.javapackage knn;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;

/**
 * Created by Ole on 06.06.2016.
 */
public class kNN {

 static EditDist cmp = new EditDist();
 static ArrayList<ArrayList<String>> classes = new ArrayList<ArrayList<String>>();
 static ArrayList<ArrayList<Integer>> distances = new ArrayList<ArrayList<Integer>>();
 static double prior;
 int numClass;

 // Create Class Based on Input Files:

 public void createClass(String[] digests){
 ArrayList<String> digestArray = new ArrayList<String>(Arrays.asList(digests));
 classes.add(digestArray);
 }

 // Remove Class:

 public void remove(int classNum){
 classes.remove(classNum);
 try {
 distances.remove(classNum);
 }
 catch (Exception e){
 e.printStackTrace();
 }
 }

 // Add element to class:

 public void add(String digest, int classNum){
 ArrayList<String> temp= classes.get(classNum);
 classes.remove(classNum);
 temp.add(digest);
 classes.add(classNum,temp);
 }

 // Classify digest:

 public static int classify(final String candidate, final int knn){

 count();
 distances = new ArrayList<ArrayList<Integer>>();

 for (int i=0; i<classes.size(); i++){
 ArrayList<String> aList = classes.get(i);
 ArrayList<Integer> theClass = new ArrayList<Integer>();

 for (int j=0; j<aList.size(); j++){
 int leve = cmp.DamLev(candidate,aList.get(j));
 theClass.add(leve);
 }
 Collections.sort(theClass);
 distances.add(theClass);
 }

 int classify=0;
 double edit=0.0;

 for (int i=0; i<distances.size();i++){
 ArrayList<Integer> aList = distances.get(i);
 double newEdit = discriminant((double)knn, (double)aList.get(knn-1), (double)aList.size());

 if (newEdit>edit) {
 edit = newEdit;
 classify=i;
 }
 }
 return classify;
 }

 static int count=0;

 // Count all elements in data set:

 private static void count(){
 for (int i=0; i<classes.size(); i++)
 count+=classes.get(i).size();
 }

 // Calculate Discriminant Function:

 private static double discriminant(double knn, double editDist, double numClass){

 if (editDist>0){ // Do not divide by zero
 double prior = numClass/(double)count;
 double top = knn/numClass;
 double pnx = top/editDist; // nth estimate of p(x) (PDF)
 double disc = prior*pnx;
 return disc;}
 else return Double.MAX_VALUE;
 }

}

src/knn/NFHash.java

 src/knn/NFHash.java

src/knn/NFHash.javapackage knn;

/**
 * Created by Ole on 20.02.2016.
 *
 * This is a basic Base-64 fuzzy hash prototype named No-Frills Hash.
 *
 */
public class NFHash {

 // This makes it faster to do a base 64 number:
 protected static final char[] alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/".toCharArray();

 final protected int digestSizeBytes = 64;
 final protected int chars = 64;

 protected char[] fingerprint;

 //Mersenne number

 protected static long hash(final long c, long h) {

 long h1=(h)&p4+((h)>>31);
 h1=h<p4 ? (h)&p5+((h)>>19) : h1; // If h<p2 then (h)&p+((h)>>13), else h1=h1

 return ((h1)^(~c));
 }

 protected static long p5=524287;
 protected static long p4=2147483647;

 final int cutpoint;

 public String HashString(final byte[] in) {
 int iter=1;
 int length = in.length;
 fingerprint = new char[digestSizeBytes];

 int j = 0;
 long h2 = 0L;
 long h = setReset();

 for (int i = 0; i < length; i++) {

 int character = (in[i]) & 255;
 h= rollingCRC(character,in);
 h2 = this.hash(character,h);
 long cmp = h & (cutpoint-1);

 if (cmp == (cutpoint - 1)) {
 // Boundary reached
 fingerprint[j] = alphabet[(int) (h2 & (chars-1))];

 if (j < digestSizeBytes - iter) {
 h2 = 0x28021967;
 j+=iter;

 }

 else {
 j=0;
 iter*=4;
 }
 }
 }

 if (h != 0) {
 fingerprint[j] = alphabet[(int) (h2 & (chars-1))];
 }

 return String.valueOf(fingerprint);
 }

 final int winSize;
 protected long[] rolling_window;

 public NFHash(final int windowsize, final int cutpoint){
 this.cutpoint=cutpoint;
 this.winSize=windowsize;
 newByte=new byte[winSize+1];
 }

 int start=0;
 byte[] newByte;
 private long rollingCRC(long c, byte[] b) {
 CRC64 c64 = new CRC64();
 System.arraycopy(b,start,newByte,0,winSize);
 c64.update(newByte,0,winSize);
 if (start<b.length-winSize)
 start++;
 return c64.getValue();
 }

 protected long setReset() {
 rolling_window = new long[winSize];
 start=0;
 return 0L;
 }

}

knn.jar

META-INF/MANIFEST.MF

Manifest-Version: 1.0

Ant-Version: Apache Ant 1.9.4

Created-By: 1.7.0_21-b11 (Oracle Corporation)

Class-Path:

X-COMMENT: Main-Class will be added automatically by build

Main-Class: knn.driverClass

knn/CRC64.class

package knn;
public final synchronized class CRC64 implements java.util.zip.Checksum {
 private static final long[] lookup;
 long crc;
 public void CRC64();
 public void update(byte[], int, int);
 public long getValue();
 public void reset();
 public void update(int);
 static void <clinit>();
}

knn/EditDist.class

package knn;
public synchronized class EditDist {
 public void EditDist();
 public static int DamLev(String, String);
}

knn/NFHash.class

package knn;
public synchronized class NFHash {
 protected static final char[] alphabet;
 protected final int digestSizeBytes;
 protected final int chars;
 protected char[] fingerprint;
 protected static long p5;
 protected static long p4;
 final int cutpoint;
 final int winSize;
 protected long[] rolling_window;
 int start;
 byte[] newByte;
 protected static long hash(long, long);
 public String HashString(byte[]);
 public void NFHash(int, int);
 private long rollingCRC(long, byte[]);
 protected long setReset();
 static void <clinit>();
}

knn/doStuff.class

package knn;
public synchronized class doStuff {
 public kNN classifyer;
 NFHash nfh;
 public void doStuff();
 public void resetNFH(int, int);
 public void setName();
 void delete(int);
 public void createNewNFHash(int, int);
 public String loadFiles();
 public int addTestingFile(int);
}

knn/driverClass$1.class

package knn;
synchronized class driverClass$1 implements java.awt.event.ActionListener {
 void driverClass$1(driverClass);
 public void actionPerformed(java.awt.event.ActionEvent);
}

knn/driverClass$2.class

package knn;
synchronized class driverClass$2 implements java.awt.event.ActionListener {
 void driverClass$2(driverClass);
 public void actionPerformed(java.awt.event.ActionEvent);
}

knn/driverClass$3.class

package knn;
synchronized class driverClass$3 implements java.awt.event.ActionListener {
 void driverClass$3(driverClass);
 public void actionPerformed(java.awt.event.ActionEvent);
}

knn/driverClass$4.class

package knn;
synchronized class driverClass$4 implements java.awt.event.ActionListener {
 void driverClass$4(driverClass);
 public void actionPerformed(java.awt.event.ActionEvent);
}

knn/driverClass$5.class

package knn;
synchronized class driverClass$5 implements javax.swing.event.CaretListener {
 void driverClass$5(driverClass);
 public void caretUpdate(javax.swing.event.CaretEvent);
}

knn/driverClass$6.class

package knn;
synchronized class driverClass$6 implements java.awt.event.ActionListener {
 void driverClass$6(driverClass);
 public void actionPerformed(java.awt.event.ActionEvent);
}

knn/driverClass$7.class

package knn;
final synchronized class driverClass$7 implements Runnable {
 void driverClass$7();
 public void run();
}

knn/driverClass.class

package knn;
public synchronized class driverClass extends javax.swing.JFrame {
 doStuff ds;
 private javax.swing.JButton jButton1;
 private javax.swing.JButton jButton2;
 private javax.swing.JButton jButton4;
 private javax.swing.JComboBox jComboBox1;
 private javax.swing.JLabel jLabel1;
 private javax.swing.JLabel jLabel2;
 private javax.swing.JLabel jLabel3;
 private javax.swing.JPanel jPanel1;
 private javax.swing.JTextField jTextField1;
 private javax.swing.JTextField jTextField2;
 private javax.swing.JTextField jTextField3;
 public void driverClass();
 private void initComponents();
 private void jButton1ActionPerformed(java.awt.event.ActionEvent);
 private void jButton2ActionPerformed(java.awt.event.ActionEvent);
 private void jButton4ActionPerformed(java.awt.event.ActionEvent);
 private void jTextField1ActionPerformed(java.awt.event.ActionEvent);
 private void jTextField2CaretUpdate(javax.swing.event.CaretEvent);
 private void jTextField2ActionPerformed(java.awt.event.ActionEvent);
 public static void main(String[]);
}

knn/kNN.class

package knn;
public synchronized class kNN {
 static EditDist cmp;
 static java.util.ArrayList classes;
 static java.util.ArrayList distances;
 static double prior;
 int numClass;
 static int count;
 public void kNN();
 public void createClass(String[]);
 public void remove(int);
 public void add(String, int);
 public static int classify(String, int);
 private static void count();
 private static double discriminant(double, double, double);
 static void <clinit>();
}

knn/dist/knn.jar

META-INF/MANIFEST.MF

Manifest-Version: 1.0

Ant-Version: Apache Ant 1.9.4

Created-By: 1.7.0_21-b11 (Oracle Corporation)

Class-Path:

X-COMMENT: Main-Class will be added automatically by build

Main-Class: knn.driverClass

knn/CRC64.class

package knn;
public final synchronized class CRC64 implements java.util.zip.Checksum {
 private static final long[] lookup;
 long crc;
 public void CRC64();
 public void update(byte[], int, int);
 public long getValue();
 public void reset();
 public void update(int);
 static void <clinit>();
}

knn/EditDist.class

package knn;
public synchronized class EditDist {
 public void EditDist();
 public static int DamLev(String, String);
}

knn/NFHash.class

package knn;
public synchronized class NFHash {
 protected static final char[] alphabet;
 protected final int digestSizeBytes;
 protected final int chars;
 protected char[] fingerprint;
 protected static long p5;
 protected static long p4;
 final int cutpoint;
 final int winSize;
 protected long[] rolling_window;
 int start;
 byte[] newByte;
 protected static long hash(long, long);
 public String HashString(byte[]);
 public void NFHash(int, int);
 private long rollingCRC(long, byte[]);
 protected long setReset();
 static void <clinit>();
}

knn/doStuff.class

package knn;
public synchronized class doStuff {
 public kNN classifyer;
 NFHash nfh;
 public void doStuff();
 public void resetNFH(int, int);
 public void setName();
 void delete(int);
 public void createNewNFHash(int, int);
 public String loadFiles();
 public int addTestingFile(int);
}

knn/driverClass$1.class

package knn;
synchronized class driverClass$1 implements java.awt.event.ActionListener {
 void driverClass$1(driverClass);
 public void actionPerformed(java.awt.event.ActionEvent);
}

knn/driverClass$2.class

package knn;
synchronized class driverClass$2 implements java.awt.event.ActionListener {
 void driverClass$2(driverClass);
 public void actionPerformed(java.awt.event.ActionEvent);
}

knn/driverClass$3.class

package knn;
synchronized class driverClass$3 implements java.awt.event.ActionListener {
 void driverClass$3(driverClass);
 public void actionPerformed(java.awt.event.ActionEvent);
}

knn/driverClass$4.class

package knn;
synchronized class driverClass$4 implements java.awt.event.ActionListener {
 void driverClass$4(driverClass);
 public void actionPerformed(java.awt.event.ActionEvent);
}

knn/driverClass$5.class

package knn;
synchronized class driverClass$5 implements javax.swing.event.CaretListener {
 void driverClass$5(driverClass);
 public void caretUpdate(javax.swing.event.CaretEvent);
}

knn/driverClass$6.class

package knn;
synchronized class driverClass$6 implements java.awt.event.ActionListener {
 void driverClass$6(driverClass);
 public void actionPerformed(java.awt.event.ActionEvent);
}

knn/driverClass$7.class

package knn;
final synchronized class driverClass$7 implements Runnable {
 void driverClass$7();
 public void run();
}

knn/driverClass.class

package knn;
public synchronized class driverClass extends javax.swing.JFrame {
 doStuff ds;
 private javax.swing.JButton jButton1;
 private javax.swing.JButton jButton2;
 private javax.swing.JButton jButton4;
 private javax.swing.JComboBox jComboBox1;
 private javax.swing.JLabel jLabel1;
 private javax.swing.JLabel jLabel2;
 private javax.swing.JLabel jLabel3;
 private javax.swing.JPanel jPanel1;
 private javax.swing.JTextField jTextField1;
 private javax.swing.JTextField jTextField2;
 private javax.swing.JTextField jTextField3;
 public void driverClass();
 private void initComponents();
 private void jButton1ActionPerformed(java.awt.event.ActionEvent);
 private void jButton2ActionPerformed(java.awt.event.ActionEvent);
 private void jButton4ActionPerformed(java.awt.event.ActionEvent);
 private void jTextField1ActionPerformed(java.awt.event.ActionEvent);
 private void jTextField2CaretUpdate(javax.swing.event.CaretEvent);
 private void jTextField2ActionPerformed(java.awt.event.ActionEvent);
 public static void main(String[]);
}

knn/kNN.class

package knn;
public synchronized class kNN {
 static EditDist cmp;
 static java.util.ArrayList classes;
 static java.util.ArrayList distances;
 static double prior;
 int numClass;
 static int count;
 public void kNN();
 public void createClass(String[]);
 public void remove(int);
 public void add(String, int);
 public static int classify(String, int);
 private static void count();
 private static double discriminant(double, double, double);
 static void <clinit>();
}

knn/src/knn/CRC64.java

 knn/src/knn/CRC64.java

knn/src/knn/CRC64.javapackage knn;

import java.util.zip.Checksum;

/**
 * Created by Ole on 09.02.2016.
 *
 * Blatant ripoff of the builtin CRC32 function, except scaled up to 64 bits and with a lookup table.
 *
 */

public final class CRC64 implements Checksum {

 // Based on ISO polynomial:

 private static final long[] lookup = new long[]{
 0x0000000000000000L, 0x01b0000000000000L, 0x0360000000000000L,
 0x02d0000000000000L, 0x06c0000000000000L, 0x0770000000000000L,
 0x05a0000000000000L, 0x0410000000000000L, 0x0d80000000000000L,
 0x0c30000000000000L, 0x0ee0000000000000L, 0x0f50000000000000L,
 0x0b40000000000000L, 0x0af0000000000000L, 0x0820000000000000L,
 0x0990000000000000L, 0x1b00000000000000L, 0x1ab0000000000000L,
 0x1860000000000000L, 0x19d0000000000000L, 0x1dc0000000000000L,
 0x1c70000000000000L, 0x1ea0000000000000L, 0x1f10000000000000L,
 0x1680000000000000L, 0x1730000000000000L, 0x15e0000000000000L,
 0x1450000000000000L, 0x1040000000000000L, 0x11f0000000000000L,
 0x1320000000000000L, 0x1290000000000000L, 0x3600000000000000L,
 0x37b0000000000000L, 0x3560000000000000L, 0x34d0000000000000L,
 0x30c0000000000000L, 0x3170000000000000L, 0x33a0000000000000L,
 0x3210000000000000L, 0x3b80000000000000L, 0x3a30000000000000L,
 0x38e0000000000000L, 0x3950000000000000L, 0x3d40000000000000L,
 0x3cf0000000000000L, 0x3e20000000000000L, 0x3f90000000000000L,
 0x2d00000000000000L, 0x2cb0000000000000L, 0x2e60000000000000L,
 0x2fd0000000000000L, 0x2bc0000000000000L, 0x2a70000000000000L,
 0x28a0000000000000L, 0x2910000000000000L, 0x2080000000000000L,
 0x2130000000000000L, 0x23e0000000000000L, 0x2250000000000000L,
 0x2640000000000000L, 0x27f0000000000000L, 0x2520000000000000L,
 0x2490000000000000L, 0x6c00000000000000L, 0x6db0000000000000L,
 0x6f60000000000000L, 0x6ed0000000000000L, 0x6ac0000000000000L,
 0x6b70000000000000L, 0x69a0000000000000L, 0x6810000000000000L,
 0x6180000000000000L, 0x6030000000000000L, 0x62e0000000000000L,
 0x6350000000000000L, 0x6740000000000000L, 0x66f0000000000000L,
 0x6420000000000000L, 0x6590000000000000L, 0x7700000000000000L,
 0x76b0000000000000L, 0x7460000000000000L, 0x75d0000000000000L,
 0x71c0000000000000L, 0x7070000000000000L, 0x72a0000000000000L,
 0x7310000000000000L, 0x7a80000000000000L, 0x7b30000000000000L,
 0x79e0000000000000L, 0x7850000000000000L, 0x7c40000000000000L,
 0x7df0000000000000L, 0x7f20000000000000L, 0x7e90000000000000L,
 0x5a00000000000000L, 0x5bb0000000000000L, 0x5960000000000000L,
 0x58d0000000000000L, 0x5cc0000000000000L, 0x5d70000000000000L,
 0x5fa0000000000000L, 0x5e10000000000000L, 0x5780000000000000L,
 0x5630000000000000L, 0x54e0000000000000L, 0x5550000000000000L,
 0x5140000000000000L, 0x50f0000000000000L, 0x5220000000000000L,
 0x5390000000000000L, 0x4100000000000000L, 0x40b0000000000000L,
 0x4260000000000000L, 0x43d0000000000000L, 0x47c0000000000000L,
 0x4670000000000000L, 0x44a0000000000000L, 0x4510000000000000L,
 0x4c80000000000000L, 0x4d30000000000000L, 0x4fe0000000000000L,
 0x4e50000000000000L, 0x4a40000000000000L, 0x4bf0000000000000L,
 0x4920000000000000L, 0x4890000000000000L, 0xd800000000000000L,
 0xd9b0000000000000L, 0xdb60000000000000L, 0xdad0000000000000L,
 0xdec0000000000000L, 0xdf70000000000000L, 0xdda0000000000000L,
 0xdc10000000000000L, 0xd580000000000000L, 0xd430000000000000L,
 0xd6e0000000000000L, 0xd750000000000000L, 0xd340000000000000L,
 0xd2f0000000000000L, 0xd020000000000000L, 0xd190000000000000L,
 0xc300000000000000L, 0xc2b0000000000000L, 0xc060000000000000L,
 0xc1d0000000000000L, 0xc5c0000000000000L, 0xc470000000000000L,
 0xc6a0000000000000L, 0xc710000000000000L, 0xce80000000000000L,
 0xcf30000000000000L, 0xcde0000000000000L, 0xcc50000000000000L,
 0xc840000000000000L, 0xc9f0000000000000L, 0xcb20000000000000L,
 0xca90000000000000L, 0xee00000000000000L, 0xefb0000000000000L,
 0xed60000000000000L, 0xecd0000000000000L, 0xe8c0000000000000L,
 0xe970000000000000L, 0xeba0000000000000L, 0xea10000000000000L,
 0xe380000000000000L, 0xe230000000000000L, 0xe0e0000000000000L,
 0xe150000000000000L, 0xe540000000000000L, 0xe4f0000000000000L,
 0xe620000000000000L, 0xe790000000000000L, 0xf500000000000000L,
 0xf4b0000000000000L, 0xf660000000000000L, 0xf7d0000000000000L,
 0xf3c0000000000000L, 0xf270000000000000L, 0xf0a0000000000000L,
 0xf110000000000000L, 0xf880000000000000L, 0xf930000000000000L,
 0xfbe0000000000000L, 0xfa50000000000000L, 0xfe40000000000000L,
 0xfff0000000000000L, 0xfd20000000000000L, 0xfc90000000000000L,
 0xb400000000000000L, 0xb5b0000000000000L, 0xb760000000000000L,
 0xb6d0000000000000L, 0xb2c0000000000000L, 0xb370000000000000L,
 0xb1a0000000000000L, 0xb010000000000000L, 0xb980000000000000L,
 0xb830000000000000L, 0xbae0000000000000L, 0xbb50000000000000L,
 0xbf40000000000000L, 0xbef0000000000000L, 0xbc20000000000000L,
 0xbd90000000000000L, 0xaf00000000000000L, 0xaeb0000000000000L,
 0xac60000000000000L, 0xadd0000000000000L, 0xa9c0000000000000L,
 0xa870000000000000L, 0xaaa0000000000000L, 0xab10000000000000L,
 0xa280000000000000L, 0xa330000000000000L, 0xa1e0000000000000L,
 0xa050000000000000L, 0xa440000000000000L, 0xa5f0000000000000L,
 0xa720000000000000L, 0xa690000000000000L, 0x8200000000000000L,
 0x83b0000000000000L, 0x8160000000000000L, 0x80d0000000000000L,
 0x84c0000000000000L, 0x8570000000000000L, 0x87a0000000000000L,
 0x8610000000000000L, 0x8f80000000000000L, 0x8e30000000000000L,
 0x8ce0000000000000L, 0x8d50000000000000L, 0x8940000000000000L,
 0x88f0000000000000L, 0x8a20000000000000L, 0x8b90000000000000L,
 0x9900000000000000L, 0x98b0000000000000L, 0x9a60000000000000L,
 0x9bd0000000000000L, 0x9fc0000000000000L, 0x9e70000000000000L,
 0x9ca0000000000000L, 0x9d10000000000000L, 0x9480000000000000L,
 0x9530000000000000L, 0x97e0000000000000L, 0x9650000000000000L,
 0x9240000000000000L, 0x93f0000000000000L, 0x9120000000000000L,
 0x9090000000000000L
 };

 @Override
 public void update(final byte[] bytes, int offset, int length) {
 final int end = length - offset;
 long crc = 0L;
 while (offset < end) {
 crc = lookup[(bytes[offset] ^ (int) crc) & 0xFF] ^ (crc >>> 8);
 offset++;
 }
 this.crc = crc;
 }

 long crc = 0L;

 @Override
 public long getValue() {
 return (crc ^ 0xFFFFFFFFFFFFFFFFL); // Invert the output
 }

 // Redundant methods (only present because this class implements an interface):

 @Override
 public void reset() {
 crc = 0;
 }

 @Override
 public void update(int i) {

 }

}

knn/src/knn/DamerauLevenshtein.java

 knn/src/knn/DamerauLevenshtein.java

knn/src/knn/DamerauLevenshtein.javapackage knn;

import java.util.Arrays;

/**
 * Created by Ole on 27.02.2016.
 */
public class DamerauLevenshtein {

 public static int DamLev(String first, String second){
 final int init = 0;
 int[][] dist = new int[first.length()+2][second.length()+2];
 dist[0][0]=init;

 for(int i = 0; i<=first.length(); i++) {
 dist[i+1][1] = i;
 dist[i+1][0] = init;
 }
 for(int j = 0; j<=second.length(); j++) {
 dist[1][j+1] = j;
 dist[0][j+1] = init;
 }

 int[] DA = new int[256]; // 256 printable characters
 Arrays.fill(DA, 0);

 for(int i = 1; i<=first.length(); i++) {
 int DB = 0;
 for(int j = 1; j<=second.length(); j++) {
 int i1 = DA[second.charAt(j-1)];
 int j1 = DB;

 int d=0;

 if (first.charAt(i-1)==second.charAt(j-1)){
 d=0;}
 else d=1;

 if(d==0) DB = j;
 dist[i+1][j+1] =
 Math.min(Math.min(dist[i][j]+d,
 dist[i+1][j] + 1),Math.min(
 dist[i][j+1]+1,
 dist[i1][j1] + (i-i1-1) + 1 + (j-j1-1))); // This line separates Damerau-Levenshtein from
 //ordinary Levenshtein
 }
 DA[first.charAt(i-1)] = i;
 }
 return dist[first.length()+1][second.length()+1];
 }

}

knn/src/knn/doStuff.java

 knn/src/knn/doStuff.java

knn/src/knn/doStuff.java/*
This class serves as a binding link between the library and the GUI
 */
package knn;

import java.io.File;
import java.io.FileInputStream;
import java.nio.MappedByteBuffer;
import java.nio.channels.FileChannel;
import javax.swing.JFileChooser;
import javax.swing.JOptionPane;

/**
 * This class is here to make the driver class less bloated
 * @author Ole
 */
public class doStuff {

 public kNN classifyer = new kNN();
 NFHash nfh = new NFHash(16,64);
 /*
 Actions performed by GUI elements
 */

 // Reset the No Frills Hash object:

 public void resetNFH(int sliding, int cut){
 nfh = new NFHash(sliding,cut);
 }

 // Set name of class

 public void setName(){

 }

 // Delete a class

 void delete(int num){
 classifyer.remove(num);
 }

 // Hash a byte array:

 public void createNewNFHash(int cutpoint, int windowsize){
 nfh = new NFHash(cutpoint, windowsize);
 }

 // Upload multiple files for training a new class:

 public String loadFiles(){

String userhome = System.getProperty("user.home");
 JFileChooser chooser = new JFileChooser(userhome +"\\Documents\\NFHash");
chooser.setMultiSelectionEnabled(true);
chooser.showOpenDialog(driverClass.getFrames()[0]);
File[] files = chooser.getSelectedFiles();

 FileInputStream fin = null;
 FileChannel ch = null;
 byte[] bytes = new byte[0];
 if (files.length>0){
 String[] preDigest = new String[files.length];

 for (int i=0; i<files.length;i++){
 File refFile = files[i];
 System.out.println(refFile);

 try {
 fin = new FileInputStream(refFile);
 ch = fin.getChannel();
 int size = (int) ch.size();
 bytes = new byte[size];
 MappedByteBuffer buf = ch.map(FileChannel.MapMode.READ_ONLY, 0, size);
 buf.get(bytes);
 preDigest[i]=nfh.HashString(bytes);
 System.out.println(preDigest[i]);
 ch.close();
 } catch (Exception e){

 e.printStackTrace();
 };

 }

 classifyer.createClass(preDigest);
String str = (String)JOptionPane.showInputDialog(
 driverClass.getFrames()[0],
 "",
 "Enter Class Name",
 JOptionPane.PLAIN_MESSAGE,
 null,
 null,
 "");
return str;
}
return "";
 }

 // Upload file for testing:

 public int addTestingFile(int knn){

String userhome = System.getProperty("user.home");
 JFileChooser chooser = new JFileChooser(userhome +"\\Documents\\NFHash");
chooser.showOpenDialog(driverClass.getFrames()[0]);
File refFile = chooser.getSelectedFile();

 FileChannel ch = null;
 byte[] bytes = new byte[0];
String digest;
 int cn=0;
 try {
 FileInputStream fin = new FileInputStream(refFile);
 ch = fin.getChannel();
 int size = (int) ch.size();
 bytes = new byte[size];
 MappedByteBuffer buf = ch.map(FileChannel.MapMode.READ_ONLY, 0, size);
 buf.get(bytes);
 digest=nfh.HashString(bytes);
 ch.close();
 cn=classifyer.classify(digest,knn);
 fin.close();
 } catch (Exception e){
 cn=-1;
 e.printStackTrace();
 };
 return cn;
 }

}

knn/src/knn/driverClass.java

 knn/src/knn/driverClass.java

knn/src/knn/driverClass.java/*
 * To change this license header, choose License Headers in Project Properties.
 * To change this template file, choose Tools | Templates
 * and open the template in the editor.
 */
package knn;

import java.util.logging.Level;
import java.util.logging.Logger;
import javax.swing.JOptionPane;
import javax.swing.UIManager;
import javax.swing.UnsupportedLookAndFeelException;

/**
 *
 * @author Ole
 */
public class driverClass extends javax.swing.JFrame {

 /**
 * Creates new form driverClass
 */
 public driverClass() {

 try {
 UIManager.setLookAndFeel(
 UIManager.getSystemLookAndFeelClassName());
 } catch (ClassNotFoundException ex) {
 Logger.getLogger(driverClass.class.getName()).log(Level.SEVERE, null, ex);
 } catch (InstantiationException ex) {
 Logger.getLogger(driverClass.class.getName()).log(Level.SEVERE, null, ex);
 } catch (IllegalAccessException ex) {
 Logger.getLogger(driverClass.class.getName()).log(Level.SEVERE, null, ex);
 } catch (UnsupportedLookAndFeelException ex) {
 Logger.getLogger(driverClass.class.getName()).log(Level.SEVERE, null, ex);
 }

 initComponents();
 }
doStuff ds = new doStuff();
 /**
 * This method is called from within the constructor to initialize the form.
 * WARNING: Do NOT modify this code. The content of this method is always
 * regenerated by the Form Editor.
 */
 @SuppressWarnings("unchecked")
 // <editor-fold defaultstate="collapsed" desc="Generated Code">//GEN-BEGIN:initComponents
 private void initComponents() {

 jPanel1 = new javax.swing.JPanel();
 jButton1 = new javax.swing.JButton();
 jComboBox1 = new javax.swing.JComboBox<>();
 jButton2 = new javax.swing.JButton();
 jButton4 = new javax.swing.JButton();
 jLabel1 = new javax.swing.JLabel();
 jLabel2 = new javax.swing.JLabel();
 jLabel3 = new javax.swing.JLabel();
 jTextField1 = new javax.swing.JTextField();
 jTextField2 = new javax.swing.JTextField();
 jTextField3 = new javax.swing.JTextField();

 setDefaultCloseOperation(javax.swing.WindowConstants.EXIT_ON_CLOSE);
 setTitle("k-NN Tech Demo");

 jPanel1.setBorder(javax.swing.BorderFactory.createEtchedBorder());

 jButton1.setText("Add class");
 jButton1.addActionListener(new java.awt.event.ActionListener() {
 public void actionPerformed(java.awt.event.ActionEvent evt) {
 jButton1ActionPerformed(evt);
 }
 });

 jButton2.setText("Remove class");
 jButton2.addActionListener(new java.awt.event.ActionListener() {
 public void actionPerformed(java.awt.event.ActionEvent evt) {
 jButton2ActionPerformed(evt);
 }
 });

 jButton4.setText("Upload test item");
 jButton4.addActionListener(new java.awt.event.ActionListener() {
 public void actionPerformed(java.awt.event.ActionEvent evt) {
 jButton4ActionPerformed(evt);
 }
 });

 javax.swing.GroupLayout jPanel1Layout = new javax.swing.GroupLayout(jPanel1);
 jPanel1.setLayout(jPanel1Layout);
 jPanel1Layout.setHorizontalGroup(
 jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)
 .addGroup(jPanel1Layout.createSequentialGroup()
 .addContainerGap()
 .addGroup(jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)
 .addGroup(jPanel1Layout.createSequentialGroup()
 .addComponent(jButton1)
 .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)
 .addComponent(jComboBox1, javax.swing.GroupLayout.PREFERRED_SIZE, 287, javax.swing.GroupLayout.PREFERRED_SIZE))
 .addGroup(jPanel1Layout.createSequentialGroup()
 .addComponent(jButton2)
 .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)
 .addComponent(jButton4)))
 .addContainerGap(javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE))
);
 jPanel1Layout.setVerticalGroup(
 jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)
 .addGroup(jPanel1Layout.createSequentialGroup()
 .addContainerGap()
 .addGroup(jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.BASELINE)
 .addComponent(jButton1)
 .addComponent(jComboBox1, javax.swing.GroupLayout.PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE))
 .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)
 .addGroup(jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.BASELINE)
 .addComponent(jButton2)
 .addComponent(jButton4))
 .addContainerGap(javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE))
);

 jLabel1.setText("Sliding Window Size");

 jLabel2.setText("k-number");

 jLabel3.setText("Cut Point");

 jTextField1.setText("16");
 jTextField1.addActionListener(new java.awt.event.ActionListener() {
 public void actionPerformed(java.awt.event.ActionEvent evt) {
 jTextField1ActionPerformed(evt);
 }
 });

 jTextField2.setText("64");
 jTextField2.addCaretListener(new javax.swing.event.CaretListener() {
 public void caretUpdate(javax.swing.event.CaretEvent evt) {
 jTextField2CaretUpdate(evt);
 }
 });
 jTextField2.addActionListener(new java.awt.event.ActionListener() {
 public void actionPerformed(java.awt.event.ActionEvent evt) {
 jTextField2ActionPerformed(evt);
 }
 });

 jTextField3.setText("5");

 javax.swing.GroupLayout layout = new javax.swing.GroupLayout(getContentPane());
 getContentPane().setLayout(layout);
 layout.setHorizontalGroup(
 layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)
 .addComponent(jPanel1, javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)
 .addGroup(layout.createSequentialGroup()
 .addContainerGap()
 .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING, false)
 .addGroup(layout.createSequentialGroup()
 .addComponent(jLabel1)
 .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)
 .addComponent(jTextField1, javax.swing.GroupLayout.PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE))
 .addGroup(layout.createSequentialGroup()
 .addComponent(jLabel3)
 .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)
 .addComponent(jTextField2)))
 .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.UNRELATED)
 .addComponent(jLabel2)
 .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)
 .addComponent(jTextField3, javax.swing.GroupLayout.PREFERRED_SIZE, 27, javax.swing.GroupLayout.PREFERRED_SIZE)
 .addGap(0, 0, Short.MAX_VALUE))
);
 layout.setVerticalGroup(
 layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)
 .addGroup(layout.createSequentialGroup()
 .addComponent(jPanel1, javax.swing.GroupLayout.PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE)
 .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)
 .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.BASELINE)
 .addComponent(jLabel1)
 .addComponent(jLabel2)
 .addComponent(jTextField1, javax.swing.GroupLayout.PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE)
 .addComponent(jTextField3, javax.swing.GroupLayout.PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE))
 .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)
 .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.BASELINE)
 .addComponent(jLabel3)
 .addComponent(jTextField2, javax.swing.GroupLayout.PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE))
 .addGap(0, 0, Short.MAX_VALUE))
);

 pack();
 }// </editor-fold>//GEN-END:initComponents

 private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {//GEN-FIRST:event_jButton1ActionPerformed
 String str=ds.loadFiles();
 if (str.length()>0)
 jComboBox1.addItem(str);
 }//GEN-LAST:event_jButton1ActionPerformed

 private void jButton2ActionPerformed(java.awt.event.ActionEvent evt) {//GEN-FIRST:event_jButton2ActionPerformed
 jComboBox1.removeItemAt(jComboBox1.getSelectedIndex());
 }//GEN-LAST:event_jButton2ActionPerformed

 private void jButton4ActionPerformed(java.awt.event.ActionEvent evt) {//GEN-FIRST:event_jButton4ActionPerformed
 int cn=ds.addTestingFile(Integer.parseInt(jTextField3.getText()));
 if (cn!=-1)
 JOptionPane.showMessageDialog(driverClass.getFrames()[0], "This element belongs in Class "+cn+", "+jComboBox1.getItemAt(cn));

 }//GEN-LAST:event_jButton4ActionPerformed

 private void jTextField1ActionPerformed(java.awt.event.ActionEvent evt) {//GEN-FIRST:event_jTextField1ActionPerformed
 // TODO add your handling code here:
 }//GEN-LAST:event_jTextField1ActionPerformed

 private void jTextField2CaretUpdate(javax.swing.event.CaretEvent evt) {//GEN-FIRST:event_jTextField2CaretUpdate
 int bound = Integer.parseInt(jTextField2.getText());
 int slide = Integer.parseInt(jTextField1.getText());
 ds.resetNFH(slide, bound);
 }//GEN-LAST:event_jTextField2CaretUpdate

 private void jTextField2ActionPerformed(java.awt.event.ActionEvent evt) {//GEN-FIRST:event_jTextField2ActionPerformed
 // TODO add your handling code here:
 }//GEN-LAST:event_jTextField2ActionPerformed

 /**
 * @param args the command line arguments
 */
 public static void main(String args[]) {
 /* Set the Nimbus look and feel */
 //<editor-fold defaultstate="collapsed" desc=" Look and feel setting code (optional) ">
 /* If Nimbus (introduced in Java SE 6) is not available, stay with the default look and feel.
 * For details see http://download.oracle.com/javase/tutorial/uiswing/lookandfeel/plaf.html
 */
 try {
 for (javax.swing.UIManager.LookAndFeelInfo info : javax.swing.UIManager.getInstalledLookAndFeels()) {
 if ("Nimbus".equals(info.getName())) {
 javax.swing.UIManager.setLookAndFeel(info.getClassName());
 break;
 }
 }
 } catch (ClassNotFoundException ex) {
 java.util.logging.Logger.getLogger(driverClass.class.getName()).log(java.util.logging.Level.SEVERE, null, ex);
 } catch (InstantiationException ex) {
 java.util.logging.Logger.getLogger(driverClass.class.getName()).log(java.util.logging.Level.SEVERE, null, ex);
 } catch (IllegalAccessException ex) {
 java.util.logging.Logger.getLogger(driverClass.class.getName()).log(java.util.logging.Level.SEVERE, null, ex);
 } catch (javax.swing.UnsupportedLookAndFeelException ex) {
 java.util.logging.Logger.getLogger(driverClass.class.getName()).log(java.util.logging.Level.SEVERE, null, ex);
 }
 //</editor-fold>

 /* Create and display the form */
 java.awt.EventQueue.invokeLater(new Runnable() {
 public void run() {
 new driverClass().setVisible(true);
 }
 });
 }

 // Variables declaration - do not modify//GEN-BEGIN:variables
 private javax.swing.JButton jButton1;
 private javax.swing.JButton jButton2;
 private javax.swing.JButton jButton4;
 private javax.swing.JComboBox<String> jComboBox1;
 private javax.swing.JLabel jLabel1;
 private javax.swing.JLabel jLabel2;
 private javax.swing.JLabel jLabel3;
 private javax.swing.JPanel jPanel1;
 private javax.swing.JTextField jTextField1;
 private javax.swing.JTextField jTextField2;
 private javax.swing.JTextField jTextField3;
 // End of variables declaration//GEN-END:variables
}

knn/src/knn/kNN.java

 knn/src/knn/kNN.java

knn/src/knn/kNN.javapackage knn;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;

/**
 * Created by Ole on 06.06.2016.
 */
public class kNN {

 static DamerauLevenshtein cmp = new DamerauLevenshtein();
 static ArrayList<ArrayList<String>> classes = new ArrayList<ArrayList<String>>();
 static ArrayList<ArrayList<Integer>> distances = new ArrayList<ArrayList<Integer>>();
 static double prior;
 int numClass;

 // Create Class Based on Input Files:

 public void createClass(String[] digests){
 ArrayList<String> digestArray = new ArrayList<String>(Arrays.asList(digests));
 classes.add(digestArray);
 }

 // Remove Class:

 public void remove(int classNum){
 classes.remove(classNum);
 try {
 distances.remove(classNum);
 }
 catch (Exception e){
 e.printStackTrace();
 }
 }

 // Add element to class:

 public void add(String digest, int classNum){
 ArrayList<String> temp= classes.get(classNum);
 classes.remove(classNum);
 temp.add(digest);
 classes.add(classNum,temp);
 }

 // Classify digest:

 public static int classify(final String candidate, final int knn){

 count();
 distances = new ArrayList<ArrayList<Integer>>();

 for (int i=0; i<classes.size(); i++){
 ArrayList<String> aList = classes.get(i);
 ArrayList<Integer> theClass = new ArrayList<Integer>();

 for (int j=0; j<aList.size(); j++){
 int leve = cmp.DamLev(candidate,aList.get(j));
 theClass.add(leve);
 }
 Collections.sort(theClass);
 distances.add(theClass);
 }

 int classify=0;
 double edit=0.0;

 for (int i=0; i<distances.size();i++){
 ArrayList<Integer> aList = distances.get(i);
 double newEdit = discriminant((double)knn, (double)aList.get(knn-1), (double)aList.size());

 if (newEdit>edit) {
 edit = newEdit;
 classify=i;
 }
 }
 return classify;
 }

 static int count=0;

 // Count all elements in data set:

 private static void count(){
 for (int i=0; i<classes.size(); i++)
 count+=classes.get(i).size();
 }

 // Calculate Discriminant Function:

 private static double discriminant(double knn, double editDist, double numClass){

 if (editDist>0){ // Do not divide by zero
 double prior = numClass/(double)count;
 double top = knn/numClass;
 double pnx = top/editDist; // nth estimate of p(x) (PDF)
 double disc = prior*pnx;
 return disc;}
 else return Double.MAX_VALUE;
 }

}

knn/src/knn/NFHash.java

 knn/src/knn/NFHash.java

knn/src/knn/NFHash.javapackage knn;

/**
 * Created by Ole on 20.02.2016.
 *
 * This is a basic Base-64 fuzzy hash prototype named No-Frills Hash.
 *
 */
public class NFHash {

 // This makes it faster to do a base 64 number:
 protected static final char[] alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/".toCharArray();

 final protected int digestSizeBytes = 64;
 final protected int chars = 64;

 protected char[] fingerprint;

 //Mersenne number

 protected static long hash(final long c, long h) {

 long h1=(h)&p4+((h)>>31);
 h1=h<p4 ? (h)&p5+((h)>>19) : h1; // If h<p2 then (h)&p+((h)>>13), else h1=h1

 return ((h1)^(~c));
 }

 protected static long p5=524287; // Mersenne primes
 protected static long p4=2147483647;

 final int cutpoint;

 public String HashString(final byte[] in) {
 int iter=1;
 int length = in.length;
 fingerprint = new char[digestSizeBytes];

 int j = 0;
 long h2 = 0L;
 long h = setReset();

 for (int i = 0; i < length; i++) {

 int character = (in[i]) & 255;
 h= rollingCRC(character,in);
 h2 = this.hash(character,h);
 long cmp = h & (cutpoint-1);

 if (cmp == (cutpoint - 1)) {
 // Boundary reached
 fingerprint[j] = alphabet[(int) (h2 & (chars-1))];

 if (j < digestSizeBytes - iter) {
 h2 = 0x28021967;
 j+=iter;

 }

 else {
 j=0;
 iter*=4;
 }
 }
 }

 if (h != 0) {
 fingerprint[j] = alphabet[(int) (h2 & (chars-1))];
 }

 return String.valueOf(fingerprint);
 }

 final int winSize;
 protected long[] rolling_window;

 public NFHash(final int windowsize, final int cutpoint){
 this.cutpoint=cutpoint;
 this.winSize=windowsize;
 newByte=new byte[winSize+1];
 }

 int start=0;
 byte[] newByte;
 private long rollingCRC(long c, byte[] b) {
 CRC64 c64 = new CRC64();
 System.arraycopy(b,start,newByte,0,winSize);
 c64.update(newByte,0,winSize);
 if (start<b.length-winSize)
 start++;
 return c64.getValue();
 }

 protected long setReset() {
 rolling_window = new long[winSize];
 start=0;
 return 0L;
 }

}

knn/build/classes/knn/CRC64.class

package knn;
public final synchronized class CRC64 implements java.util.zip.Checksum {
 private static final long[] lookup;
 long crc;
 public void CRC64();
 public void update(byte[], int, int);
 public long getValue();
 public void reset();
 public void update(int);
 static void <clinit>();
}

knn/build/classes/hashIt/DamerauLevenshtein.class

package hashIt;
public synchronized class DamerauLevenshtein {
 public void DamerauLevenshtein();
 public static int DamLev(String, String);
}

knn/build/classes/knn/DamerauLevenshtein.class

package knn;
public synchronized class DamerauLevenshtein {
 public void DamerauLevenshtein();
 public static int DamLev(String, String);
}

knn/build/classes/knn/doStuff.class

package knn;
public synchronized class doStuff {
 public kNN classifyer;
 NFHash nfh;
 public void doStuff();
 public void resetNFH(int, int);
 public void setName();
 void delete(int);
 public void createNewNFHash(int, int);
 public String loadFiles();
 public int addTestingFile(int);
}

knn/build/classes/knn/driverClass$1.class

package knn;
synchronized class driverClass$1 implements java.awt.event.ActionListener {
 void driverClass$1(driverClass);
 public void actionPerformed(java.awt.event.ActionEvent);
}

knn/build/classes/knn/driverClass$2.class

package knn;
synchronized class driverClass$2 implements java.awt.event.ActionListener {
 void driverClass$2(driverClass);
 public void actionPerformed(java.awt.event.ActionEvent);
}

knn/build/classes/knn/driverClass$3.class

package knn;
synchronized class driverClass$3 implements java.awt.event.ActionListener {
 void driverClass$3(driverClass);
 public void actionPerformed(java.awt.event.ActionEvent);
}

knn/build/classes/knn/driverClass$4.class

package knn;
synchronized class driverClass$4 implements java.awt.event.ActionListener {
 void driverClass$4(driverClass);
 public void actionPerformed(java.awt.event.ActionEvent);
}

knn/build/classes/knn/driverClass$5.class

package knn;
synchronized class driverClass$5 implements javax.swing.event.CaretListener {
 void driverClass$5(driverClass);
 public void caretUpdate(javax.swing.event.CaretEvent);
}

knn/build/classes/knn/driverClass$6.class

package knn;
synchronized class driverClass$6 implements java.awt.event.ActionListener {
 void driverClass$6(driverClass);
 public void actionPerformed(java.awt.event.ActionEvent);
}

knn/build/classes/knn/driverClass$7.class

package knn;
final synchronized class driverClass$7 implements Runnable {
 void driverClass$7();
 public void run();
}

knn/build/classes/knn/driverClass.class

package knn;
public synchronized class driverClass extends javax.swing.JFrame {
 doStuff ds;
 private javax.swing.JButton jButton1;
 private javax.swing.JButton jButton2;
 private javax.swing.JButton jButton4;
 private javax.swing.JComboBox jComboBox1;
 private javax.swing.JLabel jLabel1;
 private javax.swing.JLabel jLabel2;
 private javax.swing.JLabel jLabel3;
 private javax.swing.JPanel jPanel1;
 private javax.swing.JTextField jTextField1;
 private javax.swing.JTextField jTextField2;
 private javax.swing.JTextField jTextField3;
 public void driverClass();
 private void initComponents();
 private void jButton1ActionPerformed(java.awt.event.ActionEvent);
 private void jButton2ActionPerformed(java.awt.event.ActionEvent);
 private void jButton4ActionPerformed(java.awt.event.ActionEvent);
 private void jTextField1ActionPerformed(java.awt.event.ActionEvent);
 private void jTextField2CaretUpdate(javax.swing.event.CaretEvent);
 private void jTextField2ActionPerformed(java.awt.event.ActionEvent);
 public static void main(String[]);
}

knn/build/classes/knn/kNN.class

package knn;
public synchronized class kNN {
 static DamerauLevenshtein cmp;
 static java.util.ArrayList classes;
 static java.util.ArrayList distances;
 static double prior;
 int numClass;
 static int count;
 public void kNN();
 public void createClass(String[]);
 public void remove(int);
 public void add(String, int);
 public static int classify(String, int);
 private static void count();
 private static double discriminant(double, double, double);
 static void <clinit>();
}

knn/build/classes/knn/NFHash.class

package knn;
public synchronized class NFHash {
 protected static final char[] alphabet;
 protected final int digestSizeBytes;
 protected final int chars;
 protected char[] fingerprint;
 protected static long p5;
 protected static long p4;
 final int cutpoint;
 final int winSize;
 protected long[] rolling_window;
 int start;
 byte[] newByte;
 protected static long hash(long, long);
 public String HashString(byte[]);
 public void NFHash(int, int);
 private long rollingCRC(long, byte[]);
 protected long setReset();
 static void <clinit>();
}

knn/nbproject/build-impl.xml

 Must set src.dir
 Must set test.src.dir
 Must set build.dir
 Must set dist.dir
 Must set build.classes.dir
 Must set dist.javadoc.dir
 Must set build.test.classes.dir
 Must set build.test.results.dir
 Must set build.classes.excludes
 Must set dist.jar

 Must set javac.includes

 No tests executed.

 Must set JVM to use for profiling in profiler.info.jvm
 Must set profiler agent JVM arguments in profiler.info.jvmargs.agent

 Must select some files in the IDE or set javac.includes

 To run this application from the command line without Ant, try:

 java -jar "${dist.jar.resolved}"

 Must select one file in the IDE or set run.class

 Must select one file in the IDE or set run.class

 Must select one file in the IDE or set debug.class

 Must select one file in the IDE or set debug.class

 Must set fix.includes

 This target only works when run from inside the NetBeans IDE.

 Must select one file in the IDE or set profile.class
 This target only works when run from inside the NetBeans IDE.

 This target only works when run from inside the NetBeans IDE.

 This target only works when run from inside the NetBeans IDE.

 Must select one file in the IDE or set run.class

 Must select some files in the IDE or set test.includes

 Must select one file in the IDE or set run.class

 Must select one file in the IDE or set applet.url

 Must select some files in the IDE or set javac.includes

 Some tests failed; see details above.

 Must select some files in the IDE or set test.includes

 Some tests failed; see details above.

 Must select some files in the IDE or set test.class
 Must select some method in the IDE or set test.method

 Some tests failed; see details above.

 Must select one file in the IDE or set test.class

 Must select one file in the IDE or set test.class
 Must select some method in the IDE or set test.method

 Must select one file in the IDE or set applet.url

 Must select one file in the IDE or set applet.url

knn/build.xml

 Builds, tests, and runs the project knn.

knn/nbproject/project.xml

 org.netbeans.modules.java.j2seproject

 knn

knn/dist/README.TXT

========================
BUILD OUTPUT DESCRIPTION
========================

When you build an Java application project that has a main class, the IDE
automatically copies all of the JAR
files on the projects classpath to your projects dist/lib folder. The IDE
also adds each of the JAR files to the Class-Path element in the application
JAR files manifest file (MANIFEST.MF).

To run the project from the command line, go to the dist folder and
type the following:

java -jar "knn.jar"

To distribute this project, zip up the dist folder (including the lib folder)
and distribute the ZIP file.

Notes:

* If two JAR files on the project classpath have the same name, only the first
JAR file is copied to the lib folder.
* Only JAR files are copied to the lib folder.
If the classpath contains other types of files or folders, these files (folders)
are not copied.
* If a library on the projects classpath also has a Class-Path element
specified in the manifest,the content of the Class-Path element has to be on
the projects runtime path.
* To set a main class in a standard Java project, right-click the project node
in the Projects window and choose Properties. Then click Run and enter the
class name in the Main Class field. Alternatively, you can manually type the
class name in the manifest Main-Class element.

knn/src/knn/driverClass.form

knn/build/classes/knn/driverClass.form

knn/manifest.mf

Manifest-Version: 1.0

X-COMMENT: Main-Class will be added automatically by build

knn/build/built-jar.properties

#Thu, 09 Jun 2016 18:41:52 +0200

C\:\\Users\\Ole\\Documents\\NetBeansProjects\\knn=

knn/nbproject/genfiles.properties

build.xml.data.CRC32=a9d94d25

build.xml.script.CRC32=b12b571b

build.xml.stylesheet.CRC32=8064a381@1.79.1.48

This file is used by a NetBeans-based IDE to track changes in generated files such as build-impl.xml.

Do not edit this file. You may delete it but then the IDE will never regenerate such files for you.

nbproject/build-impl.xml.data.CRC32=a9d94d25

nbproject/build-impl.xml.script.CRC32=77626511

nbproject/build-impl.xml.stylesheet.CRC32=05530350@1.79.1.48

knn/nbproject/private/private.properties

compile.on.save=true

do.depend=false

do.jar=true

javac.debug=true

javadoc.preview=true

user.properties.file=C:\\Users\\Ole\\AppData\\Roaming\\NetBeans\\8.1\\build.properties

knn/nbproject/project.properties

annotation.processing.enabled=true

annotation.processing.enabled.in.editor=false

annotation.processing.processors.list=

annotation.processing.run.all.processors=true

annotation.processing.source.output=${build.generated.sources.dir}/ap-source-output

application.title=knn

application.vendor=Ole

build.classes.dir=${build.dir}/classes

build.classes.excludes=**/*.java,**/*.form

This directory is removed when the project is cleaned:

build.dir=build

build.generated.dir=${build.dir}/generated

build.generated.sources.dir=${build.dir}/generated-sources

Only compile against the classpath explicitly listed here:

build.sysclasspath=ignore

build.test.classes.dir=${build.dir}/test/classes

build.test.results.dir=${build.dir}/test/results

Uncomment to specify the preferred debugger connection transport:

#debug.transport=dt_socket

debug.classpath=\

 ${run.classpath}

debug.test.classpath=\

 ${run.test.classpath}

Files in build.classes.dir which should be excluded from distribution jar

dist.archive.excludes=

This directory is removed when the project is cleaned:

dist.dir=dist

dist.jar=${dist.dir}/knn.jar

dist.javadoc.dir=${dist.dir}/javadoc

endorsed.classpath=

excludes=

includes=**

jar.compress=false

javac.classpath=

Space-separated list of extra javac options

javac.compilerargs=

javac.deprecation=false

javac.external.vm=true

javac.processorpath=\

 ${javac.classpath}

javac.source=1.7

javac.target=1.7

javac.test.classpath=\

 ${javac.classpath}:\

 ${build.classes.dir}

javac.test.processorpath=\

 ${javac.test.classpath}

javadoc.additionalparam=

javadoc.author=false

javadoc.encoding=${source.encoding}

javadoc.noindex=false

javadoc.nonavbar=false

javadoc.notree=false

javadoc.private=false

javadoc.splitindex=true

javadoc.use=true

javadoc.version=false

javadoc.windowtitle=

main.class=knn.driverClass

manifest.file=manifest.mf

meta.inf.dir=${src.dir}/META-INF

mkdist.disabled=false

platform.active=default_platform

run.classpath=\

 ${javac.classpath}:\

 ${build.classes.dir}

Space-separated list of JVM arguments used when running the project.

You may also define separate properties like run-sys-prop.name=value instead of -Dname=value.

To set system properties for unit tests define test-sys-prop.name=value:

run.jvmargs=

run.test.classpath=\

 ${javac.test.classpath}:\

 ${build.test.classes.dir}

source.encoding=UTF-8

src.dir=src

test.src.dir=test

knn/build/classes/.netbeans_automatic_build

knn/build/classes/.netbeans_update_resources

knn/nbproject/private/config.properties

bloomFilter.java

 bloomFilter.java

bloomFilter.javapackage testcase;

/**
 * Created by Ole on 24.02.2016.
 */

import java.io.Serializable;
import java.util.BitSet;

public class bloomFilter<E> implements Serializable {
 private final BitSet bitset;
 private final int bitSetSize;
 private final int bitsPerElement;
 private final int expN; // expected (maximum) number of elements to be added
 private int numberOfAddedElements; // number of elements actually added to the Bloom filter
 int mask=0;

 /*
 bitSize = amount of bits per element
 expN = expected number of elements in bloom filter
 */

 public bloomFilter(final int bitSize, final int expN) {
 this.expN = expN;
 this.bitsPerElement = bitSize;
 this.bitSetSize = (bitSize * expN)*2;
 this.bitset = new BitSet(bitSetSize);
 }

 // Reset filter

 public void clear() {
 bitset.clear();
 numberOfAddedElements = 0;
 }

 // Add a digest

 public void add(long num) {

 int left = (int)(num >> 32); // Split the long into two
 int right = (int)num;

 System.out.println("adding");
 bitset.set((left & bitSetSize-1), true);
 bitset.set((right & bitSetSize-1), true);
 numberOfAddedElements ++;
 }

 // Check if the Bloom Filter contains a digest:

 public boolean contains(long num) {

 int left = (int)(num >> 32); // Split the long into two
 int right = (int)num;

 if (!bitset.get(left & bitSetSize-1) && !bitset.get(right & bitSetSize-1)) {
 System.out.println("not retrieving");
 return false;
 }
 System.out.println("retrieving");
 return true;
 }
}

CRC64.java

 CRC64.java

CRC64.java
import java.util.zip.Checksum;

/**
 * Created by Ole on 09.02.2016.
 *
 * Blatant ripoff of the builtin CRC32 function, except scaled up to 64 bits and with a lookup table.
 *
 */

public final class CRC64 implements Checksum {

 // Based on ISO polynomial:

 private static final long[] lookup = new long[]{
 0x0000000000000000L, 0x01b0000000000000L, 0x0360000000000000L,
 0x02d0000000000000L, 0x06c0000000000000L, 0x0770000000000000L,
 0x05a0000000000000L, 0x0410000000000000L, 0x0d80000000000000L,
 0x0c30000000000000L, 0x0ee0000000000000L, 0x0f50000000000000L,
 0x0b40000000000000L, 0x0af0000000000000L, 0x0820000000000000L,
 0x0990000000000000L, 0x1b00000000000000L, 0x1ab0000000000000L,
 0x1860000000000000L, 0x19d0000000000000L, 0x1dc0000000000000L,
 0x1c70000000000000L, 0x1ea0000000000000L, 0x1f10000000000000L,
 0x1680000000000000L, 0x1730000000000000L, 0x15e0000000000000L,
 0x1450000000000000L, 0x1040000000000000L, 0x11f0000000000000L,
 0x1320000000000000L, 0x1290000000000000L, 0x3600000000000000L,
 0x37b0000000000000L, 0x3560000000000000L, 0x34d0000000000000L,
 0x30c0000000000000L, 0x3170000000000000L, 0x33a0000000000000L,
 0x3210000000000000L, 0x3b80000000000000L, 0x3a30000000000000L,
 0x38e0000000000000L, 0x3950000000000000L, 0x3d40000000000000L,
 0x3cf0000000000000L, 0x3e20000000000000L, 0x3f90000000000000L,
 0x2d00000000000000L, 0x2cb0000000000000L, 0x2e60000000000000L,
 0x2fd0000000000000L, 0x2bc0000000000000L, 0x2a70000000000000L,
 0x28a0000000000000L, 0x2910000000000000L, 0x2080000000000000L,
 0x2130000000000000L, 0x23e0000000000000L, 0x2250000000000000L,
 0x2640000000000000L, 0x27f0000000000000L, 0x2520000000000000L,
 0x2490000000000000L, 0x6c00000000000000L, 0x6db0000000000000L,
 0x6f60000000000000L, 0x6ed0000000000000L, 0x6ac0000000000000L,
 0x6b70000000000000L, 0x69a0000000000000L, 0x6810000000000000L,
 0x6180000000000000L, 0x6030000000000000L, 0x62e0000000000000L,
 0x6350000000000000L, 0x6740000000000000L, 0x66f0000000000000L,
 0x6420000000000000L, 0x6590000000000000L, 0x7700000000000000L,
 0x76b0000000000000L, 0x7460000000000000L, 0x75d0000000000000L,
 0x71c0000000000000L, 0x7070000000000000L, 0x72a0000000000000L,
 0x7310000000000000L, 0x7a80000000000000L, 0x7b30000000000000L,
 0x79e0000000000000L, 0x7850000000000000L, 0x7c40000000000000L,
 0x7df0000000000000L, 0x7f20000000000000L, 0x7e90000000000000L,
 0x5a00000000000000L, 0x5bb0000000000000L, 0x5960000000000000L,
 0x58d0000000000000L, 0x5cc0000000000000L, 0x5d70000000000000L,
 0x5fa0000000000000L, 0x5e10000000000000L, 0x5780000000000000L,
 0x5630000000000000L, 0x54e0000000000000L, 0x5550000000000000L,
 0x5140000000000000L, 0x50f0000000000000L, 0x5220000000000000L,
 0x5390000000000000L, 0x4100000000000000L, 0x40b0000000000000L,
 0x4260000000000000L, 0x43d0000000000000L, 0x47c0000000000000L,
 0x4670000000000000L, 0x44a0000000000000L, 0x4510000000000000L,
 0x4c80000000000000L, 0x4d30000000000000L, 0x4fe0000000000000L,
 0x4e50000000000000L, 0x4a40000000000000L, 0x4bf0000000000000L,
 0x4920000000000000L, 0x4890000000000000L, 0xd800000000000000L,
 0xd9b0000000000000L, 0xdb60000000000000L, 0xdad0000000000000L,
 0xdec0000000000000L, 0xdf70000000000000L, 0xdda0000000000000L,
 0xdc10000000000000L, 0xd580000000000000L, 0xd430000000000000L,
 0xd6e0000000000000L, 0xd750000000000000L, 0xd340000000000000L,
 0xd2f0000000000000L, 0xd020000000000000L, 0xd190000000000000L,
 0xc300000000000000L, 0xc2b0000000000000L, 0xc060000000000000L,
 0xc1d0000000000000L, 0xc5c0000000000000L, 0xc470000000000000L,
 0xc6a0000000000000L, 0xc710000000000000L, 0xce80000000000000L,
 0xcf30000000000000L, 0xcde0000000000000L, 0xcc50000000000000L,
 0xc840000000000000L, 0xc9f0000000000000L, 0xcb20000000000000L,
 0xca90000000000000L, 0xee00000000000000L, 0xefb0000000000000L,
 0xed60000000000000L, 0xecd0000000000000L, 0xe8c0000000000000L,
 0xe970000000000000L, 0xeba0000000000000L, 0xea10000000000000L,
 0xe380000000000000L, 0xe230000000000000L, 0xe0e0000000000000L,
 0xe150000000000000L, 0xe540000000000000L, 0xe4f0000000000000L,
 0xe620000000000000L, 0xe790000000000000L, 0xf500000000000000L,
 0xf4b0000000000000L, 0xf660000000000000L, 0xf7d0000000000000L,
 0xf3c0000000000000L, 0xf270000000000000L, 0xf0a0000000000000L,
 0xf110000000000000L, 0xf880000000000000L, 0xf930000000000000L,
 0xfbe0000000000000L, 0xfa50000000000000L, 0xfe40000000000000L,
 0xfff0000000000000L, 0xfd20000000000000L, 0xfc90000000000000L,
 0xb400000000000000L, 0xb5b0000000000000L, 0xb760000000000000L,
 0xb6d0000000000000L, 0xb2c0000000000000L, 0xb370000000000000L,
 0xb1a0000000000000L, 0xb010000000000000L, 0xb980000000000000L,
 0xb830000000000000L, 0xbae0000000000000L, 0xbb50000000000000L,
 0xbf40000000000000L, 0xbef0000000000000L, 0xbc20000000000000L,
 0xbd90000000000000L, 0xaf00000000000000L, 0xaeb0000000000000L,
 0xac60000000000000L, 0xadd0000000000000L, 0xa9c0000000000000L,
 0xa870000000000000L, 0xaaa0000000000000L, 0xab10000000000000L,
 0xa280000000000000L, 0xa330000000000000L, 0xa1e0000000000000L,
 0xa050000000000000L, 0xa440000000000000L, 0xa5f0000000000000L,
 0xa720000000000000L, 0xa690000000000000L, 0x8200000000000000L,
 0x83b0000000000000L, 0x8160000000000000L, 0x80d0000000000000L,
 0x84c0000000000000L, 0x8570000000000000L, 0x87a0000000000000L,
 0x8610000000000000L, 0x8f80000000000000L, 0x8e30000000000000L,
 0x8ce0000000000000L, 0x8d50000000000000L, 0x8940000000000000L,
 0x88f0000000000000L, 0x8a20000000000000L, 0x8b90000000000000L,
 0x9900000000000000L, 0x98b0000000000000L, 0x9a60000000000000L,
 0x9bd0000000000000L, 0x9fc0000000000000L, 0x9e70000000000000L,
 0x9ca0000000000000L, 0x9d10000000000000L, 0x9480000000000000L,
 0x9530000000000000L, 0x97e0000000000000L, 0x9650000000000000L,
 0x9240000000000000L, 0x93f0000000000000L, 0x9120000000000000L,
 0x9090000000000000L
 };

 @Override
 public void update(final byte[] bytes, int offset, int length) {
 final int end = length - offset;
 long crc = 0L;
 while (offset < end) {
 crc = lookup[(bytes[offset] ^ (int) crc) & 0xFF] ^ (crc >>> 8);
 offset++;
 }
 this.crc = crc;
 }

 long crc = 0L;

 @Override
 public long getValue() {
 return (crc ^ 0xFFFFFFFFFFFFFFFFL); // Invert the output
 }

 // Redundant methods (only present because this class implements an interface):

 @Override
 public void reset() {
 crc = 0;
 }

 @Override
 public void update(int i) {

 }

}

DamerauLevenshtein.java

 DamerauLevenshtein.java

DamerauLevenshtein.java
import java.util.Arrays;

/**
 * Created by Ole on 27.02.2016.
 */
public class DamerauLevenshtein {

 public static int DamLev(String first, String second){
 final int init = 0;
 int[][] dist = new int[first.length()+2][second.length()+2];
 dist[0][0]=init;

 for(int i = 0; i<=first.length(); i++) {
 dist[i+1][1] = i;
 dist[i+1][0] = init;
 }
 for(int j = 0; j<=second.length(); j++) {
 dist[1][j+1] = j;
 dist[0][j+1] = init;
 }

 int[] DA = new int[256]; // 256 printable characters
 Arrays.fill(DA, 0);

 for(int i = 1; i<=first.length(); i++) {
 int DB = 0;
 for(int j = 1; j<=second.length(); j++) {
 int i1 = DA[second.charAt(j-1)];
 int j1 = DB;

 int d=0;

 if (first.charAt(i-1)==second.charAt(j-1)){
 d=0;}
 else d=1;

 if(d==0) DB = j;
 dist[i+1][j+1] =
 Math.min(Math.min(dist[i][j]+d,
 dist[i+1][j] + 1),Math.min(
 dist[i][j+1]+1,
 dist[i1][j1] + (i-i1-1) + 1 + (j-j1-1))); // This line separates Damerau-Levenshtein from
 //ordinary Levenshtein
 }
 DA[first.charAt(i-1)] = i;
 }
 return dist[first.length()+1][second.length()+1];
 }

}

kNN.java

 kNN.java

kNN.java
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;

/**
 * Created by Ole on 06.06.2016.
 */
public class kNN {

 static DamerauLevenshtein cmp = new DamerauLevenshtein();
 static ArrayList<ArrayList<String>> classes = new ArrayList<ArrayList<String>>();
 static ArrayList<ArrayList<Integer>> distances = new ArrayList<ArrayList<Integer>>();
 static double prior;
 int numClass;

 // Create Class Based on Input Files:

 public void createClass(String[] digests){
 ArrayList<String> digestArray = new ArrayList<String>(Arrays.asList(digests));
 classes.add(digestArray);
 }

 // Remove Class:

 public void remove(int classNum){
 classes.remove(classNum);
 try {
 distances.remove(classNum);
 }
 catch (Exception e){
 e.printStackTrace();
 }
 }

 // Add element to class:

 public void add(String digest, int classNum){
 ArrayList<String> temp= classes.get(classNum);
 classes.remove(classNum);
 temp.add(digest);
 classes.add(classNum,temp);
 }

 // Classify digest. "Candidate" is the fingerprint of the string you wish to classify:

 public static int classify(final String candidate, final int knn){

 count();
 distances = new ArrayList<ArrayList<Integer>>();

 for (int i=0; i<classes.size(); i++){
 ArrayList<String> aList = classes.get(i);
 ArrayList<Integer> theClass = new ArrayList<Integer>();

 for (int j=0; j<aList.size(); j++){
 int leve = cmp.DamLev(candidate,aList.get(j));
 theClass.add(leve);
 }
 Collections.sort(theClass);
 distances.add(theClass);
 }

 int classify=0;
 double edit=0.0;

 for (int i=0; i<distances.size();i++){
 ArrayList<Integer> aList = distances.get(i);
 double newEdit = discriminant((double)knn, (double)aList.get(knn-1), (double)aList.size());

 if (newEdit>edit) {
 edit = newEdit;
 classify=i;
 }
 }
 return classify;
 }

 static int count=0;

 // Count all elements in data set:

 private static void count(){
 for (int i=0; i<classes.size(); i++)
 count+=classes.get(i).size();
 }

 // Calculate Discriminant Function:

 private static double discriminant(double knn, double editDist, double numClass){

 if (editDist>0){ // Do not divide by zero
 double prior = numClass/(double)count;
 double top = knn/numClass;
 double pnx = top/editDist; // nth estimate of p(x) (PDF)
 double disc = prior*pnx;
 return disc;}
 else return Double.MAX_VALUE;
 }

}

merkle.java

 merkle.java

merkle.java
package testcase;
import java.io.Serializable;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

/**
 *
 * @author Ole
 */
public class merkle implements Serializable {

 bloomFilter bf;
 public static final byte typeTerminal = 0x0;
 public static final byte typeParent = 0x01;

 tableGenerator tg = new tableGenerator();
 private Rabin rs;
 public Node root;
 public int depth;
 public int nnodes;
 public int terminalnodes;

 void setRabin(Rabin rs){
 this.rs=rs;
 }

 public merkle(ArrayList<Long> fingerprints, Rabin rs, ArrayList<Integer>tagList) {
 this.rs = rs;
 this.tagList=sortNames(tagList, fingerprints);
 terminalnodes=fingerprints.size();
 bf=new bloomFilter(32,terminalnodes);
 create(fingerprints);
 }

 // Using this constructor is the simplest approach:

 public merkle(ArrayList<Long> fingerprints, final long galois, ArrayList<Integer>tagList) {
 this.rs = new Rabin(tg.generateTable(galois));
 this.tagList=sortNames(tagList, fingerprints);
 terminalnodes=fingerprints.size();
 bf=new bloomFilter(32,terminalnodes); // Adjust the Bloom Filter as needed for accuracy
 create(fingerprints);
 }

 /*
 Sort one list according to another:
 */

 public ArrayList<Integer> sortNames(ArrayList<Integer> results,ArrayList<Long> digests){
 int tmp2;
 long tmp;
 for (int k=0; k<digests.size()-1; k++) {

 boolean isSorted=true;
 for (int i=1; i<digests.size()-k; i++) {

 if (digests.get(i)>digests.get(i-1)) {
 tmp=digests.get(i);
 digests.set(i,digests.get(i-1));
 digests.set(i-1,tmp);

 tmp2=results.get(i);
 results.set(i,results.get(i-1));
 results.set(i-1,tmp2);

 isSorted=false;
 }
 }
 if (isSorted) break;
 }
 return results;

}

 ArrayList<Integer>tagList;

 void setTags(ArrayList<Integer>tagList){
 this.tagList=tagList;
 }

 public merkle(ArrayList<Long> fingerprints, final long galois) {
 rs = new Rabin(tg.generateTable(galois));
 create(fingerprints);
 }

 public merkle(Node treeRoot, int numNodes, int height, ArrayList<Long> fingerprints) {
 root = treeRoot;
 nnodes = numNodes;
 depth = height;
 fingerprints = fingerprints;

 }

 ArrayList<Long> fingerprints;

 void create(ArrayList<Long> signatures) {
 if (signatures.size() <= 1) {
// throw new IllegalArgumentException("Must be at least two signatures to construct a Merkle tree");
 }

 fingerprints = signatures;
 nnodes = signatures.size();
 ArrayList<Node> parents = bottomsUp(signatures);
 nnodes += parents.size();
 depth = 1;

 while (parents.size() > 1) {
 parents = internalLevel(parents);
 depth++;
 nnodes += parents.size();
 }

 root = parents.get(0);
 }

 public int getNumNodes() {
 return nnodes;
 }

 public Node getRoot() {
 return root;
 }

 public int getDepht() {
 return depth;
 }

 ArrayList<Node> internalLevel(ArrayList<Node> children) {
 ArrayList<Node> parents = new ArrayList<Node>(children.size() / 2);

 for (int i = 0; i < children.size() - 1; i += 2) {
 Node child1 = children.get(i);
 Node child2 = children.get(i+1);

 Node parent = createParent(child1, child2);
 parents.add(parent);
 }

 if (children.size() % 2 != 0) {
 Node child = children.get(children.size()-1);
 Node parent = createParent(child, null);
 parents.add(parent);
 }

 return parents;
 }

 ArrayList<Node> bottomsUp(List<Long> signatures) {
 ArrayList<Node> parents = new ArrayList<Node>(signatures.size() / 2);

 for (int i = 0; i < signatures.size() - 1; i += 2) {
 Node leaf1 = createTerminalNode(signatures.get(i),tagList.get(i));
 Node leaf2 = createTerminalNode(signatures.get(i+1),tagList.get(i+1));

 Node parent = createParent(leaf1, leaf2);
 parents.add(parent);

 }

 // in case of odd number of terminal nodes:

 if (signatures.size() % 2 != 0) {
 Node leaf = createTerminalNode(signatures.get(signatures.size() - 1),tagList.get(tagList.size()-1));
 Node parent = createParent(leaf, null);
 parents.add(parent);
 }

 return parents;
 }

 private Node createParent(Node child1, Node child2) {
 Node parent = new Node();
 parent.type = typeParent;
 parent.depth=depth+1;

 if (child2 == null) {
 parent.sig = child1.sig;
 } else {
 parent.sig = internalHash(child1.sig, child2.sig)|internalHash(child2.sig, child1.sig);
 }
 parent.left = child1;
 parent.right = child2;
 return parent;
 }

 private Node createTerminalNode(long fingerprint,int tag) {
 Node leaf = new Node();
 leaf.type = typeTerminal;
 leaf.sig = fingerprint;
 leaf.tag=tag;
 bf.add(fingerprint);
 return leaf;
 }

 long internalHash(long leftChildSig, long rightChildSig) {
 String it=(new String((leftChildSig+""+rightChildSig).getBytes()));
 long h=rs.hash(it.getBytes());

 return h;
 }

 public static class Node {
 public byte type; // Terminal or not?
 public long sig; // Digest
 public Node left;
 public Node right;
 public int tag; // ID
 public int depth;
 }
}

NFHash.java

 NFHash.java

NFHash.java
/**
 * Created by Ole on 20.02.2016.
 *
 * This is a basic Base-64 fuzzy hash prototype named No-Frills Hash.
 *
 */
public class NFHash {

 // This makes it faster to do a base 64 number:
 protected static final char[] alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/".toCharArray();

 final protected int digestSizeBytes = 64;
 final protected int chars = 64;

 protected char[] fingerprint;

 //Mersenne number

 protected static long hash(final long c, long h) {

 long h1=(h)&p4+((h)>>31);
 h1=h<p4 ? (h)&p5+((h)>>19) : h1; // If h<p2 then (h)&p+((h)>>13), else h1=h1

 return ((h1)^(~c));
 }

 protected static long p5=524287; // Mersenne primes
 protected static long p4=2147483647;

 final int cutpoint;

 public String hashByte(final byte[] in) {
 int iter=1;
 int length = in.length;
 fingerprint = new char[digestSizeBytes];

 int j = 0;
 long h2 = 0L;
 long h = setReset();

 for (int i = 0; i < length; i++) {

 int character = (in[i]) & 255;
 h= rollingCRC(character,in);
 h2 = this.hash(character,h);
 long cmp = h & (cutpoint-1);

 if (cmp == (cutpoint - 1)) {
 // Boundary reached
 fingerprint[j] = alphabet[(int) (h2 & (chars-1))];

 if (j < digestSizeBytes - iter) {
 h2 = 0x28021967;
 j+=iter;

 }

 else {
 j=0;
 iter*=4;
 }
 }
 }

 if (h != 0) {
 fingerprint[j] = alphabet[(int) (h2 & (chars-1))];
 }

 return String.valueOf(fingerprint);
 }

 final int winSize;
 protected long[] rolling_window;

 public NFHash(final int windowsize, final int cutpoint){
 this.cutpoint=cutpoint;
 this.winSize=windowsize;
 newByte=new byte[winSize+1];
 }

 int start=0;
 byte[] newByte;
 private long rollingCRC(long c, byte[] b) {
 CRC64 c64 = new CRC64();
 System.arraycopy(b,start,newByte,0,winSize);
 c64.update(newByte,0,winSize);
 if (start<b.length-winSize)
 start++;
 return c64.getValue();
 }

 protected long setReset() {
 rolling_window = new long[winSize];
 start=0;
 return 0L;
 }

}

Rabin.java

 Rabin.java

Rabin.javapackage testcase;

import java.util.Stack;

/*

This class can use a precalculated table, or generate one on the fly. The former is far more efficient, as Rabin's algorithm
on it's own is very simple and efficient.

 */

public final class Rabin {

 private static final int degree = Long.bitCount(Long.MAX_VALUE) + 1; // Degree is always 64 bits
 private static final long X_degree = 1L << Long.bitCount(Long.MAX_VALUE);
 private final long Prime;
 private transient static long[][] superTable;

 public Rabin(final long Prime) {
 this.Prime = Prime;
 initializeTables();
 }

 public Rabin() {
 Prime=0L;
 }

 public void setSuperTable(final long[][] superTable){
this.superTable=superTable;
 }

// This is the easiest constructor to use:

 public Rabin(final long[][] superTable) {
 this.superTable=superTable;
 Prime=0;
 }

 private void initializeTables() {
 final long[] preTable = new long[degree];

 preTable[0] = Prime;
 for (int i = 1; i < degree; i++) {
 long poly = preTable[i - 1] << 1;
 if ((preTable[i - 1] & X_degree) != 0) {
 poly ^= Prime;
 }
 preTable[i] = poly;
 }

 superTable = new long[8][256];

 for (int i = 0; i < 256; i++) {
 int c = i;
 for (int j = 0; j < 8 && c > 0; j++) {
 if ((c & 1) != 0) {

 superTable[0][i] ^= preTable[j];
 superTable[1][i] ^= preTable[j + 8];
 superTable[2][i] ^= preTable[j + 16];
 superTable[3][i] ^= preTable[j + 24];
 superTable[4][i] ^= preTable[j + 32];
 superTable[5][i] ^= preTable[j + 40];
 superTable[6][i] ^= preTable[j + 48];
 superTable[7][i] ^= preTable[j + 56];
 }
 c >>>= 1;
 }
 }

 }

// Using an AND mask of 255 keeps the last 8 bits while discarding the rest:

 private static long shiftDigest(final long digest) {

 long sD = superTable[0][(int) (digest & 0xFF)] ^
 superTable[1][(int) ((digest >>> 8) & 0xFF)] ^
 superTable[2][(int) ((digest >>> 16) & 0xFF)] ^
 superTable[3][(int) ((digest >>> 24) & 0xFF)] ^
 superTable[4][(int) ((digest >>> 32) & 0xFF)] ^
 superTable[5][(int) ((digest >>> 40) & 0xFF)] ^
 superTable[6][(int) ((digest >>> 48) & 0xFF)] ^
 superTable[7][(int) ((digest >>> 56) & 0xFF)];

 return sD;
 }

 public long hash(final byte[] preImage) {
 return hash(preImage, 0, 0);
 }

 private static int pad(final int length) {
 final int starterBytes = length & 7;
 return starterBytes;
 }

 static long hash(final byte[] preImage, int offset, final int footOffset) {

 final int length = preImage.length;
 long digest = 0L;

 final int initOffset = offset;
 final int pad = pad(length);
 if (pad != 0) {
 final int max = initOffset + pad - footOffset;
 while (offset < max) {
 digest = (digest << 8) ^ (preImage[offset] & 0xFF);
 offset++;
 }
 }

 final int max = initOffset + length - footOffset;
 while (offset < max) {
 digest = shiftDigest(digest) ^
 (preImage[offset] << 56) ^
 ((preImage[offset + 1] & 0xFF) << 48) ^
 ((preImage[offset + 2] & 0xFF) << 40) ^
 ((preImage[offset + 3] & 0xFF) << 32) ^
 ((preImage[offset + 4] & 0xFF) << 24) ^
 ((preImage[offset + 5] & 0xFF) << 16) ^
 ((preImage[offset + 6] & 0xFF) << 8) ^
 (preImage[offset + 7] & 0xFF);
 offset += 8;
 }
 return digest;
 }

}

tableGenerator.java

 tableGenerator.java

tableGenerator.javapackage testcase;

/**
 * Created by Ole on 10.02.2016.
 *
 * Generates an 8x256 table for use in Rabin fingerprints.
 *
 */
public class tableGenerator {

 private transient static long[][] superTable;

 // Generate a lookup table by passing an irreducible polynomial into generateTable():

 public long[][] generateTable(long poly) {
 long X_degree = 1L << Long.bitCount(Long.MAX_VALUE);

 final long[] preTable = new long[64];

 preTable[0] = poly;
 for (int i = 1; i < 64; i++) {
 long poly = preTable[i - 1] << 1;
 if ((preTable[i - 1] & X_degree) != 0) {
 poly ^= poly;
 }
 preTable[i] = poly;
 }

 superTable = new long[8][256];

 for (int i = 0; i < 256; i++) {
 int c = i;
 for (int j = 0; j < 8 && c > 0; j++) {
 if ((c & 1) != 0) {

 superTable[0][i] ^= preTable[j];
 superTable[1][i] ^= preTable[j + 8];
 superTable[2][i] ^= preTable[j + 16];
 superTable[3][i] ^= preTable[j + 24];
 superTable[4][i] ^= preTable[j + 32];
 superTable[5][i] ^= preTable[j + 40];
 superTable[6][i] ^= preTable[j + 48];
 superTable[7][i] ^= preTable[j + 56];
 }
 c >>>= 1;
 }
 }
 return superTable;
 }

 }

treeComparator.java

 treeComparator.java

treeComparator.java
import java.util.ArrayList;
import java.util.Stack;

/**
 * Created by Ole on 27.02.2016.
 */
public class treeComparator {

 // Get the binary Jaccard (for instance by using the number of terminal
 // nodes in each Merkle Tree

 public double Jaccard(int lengthA, int lengthB, int differ){

 int m=Math.max(lengthA,lengthB);

 int AnB = m-differ;

 if (AnB<0)
 AnB=0;

 double AuB=(double)lengthA+(double)lengthB-(double)AnB;
 double jaccard = AnB/AuB;
 if (jaccard<0)
 jaccard=0;
 return jaccard;
 }

// Compare two Merkle Trees -- regardless of height

 public static int count =0;

 // Tag with name, but order by hash

 public static ArrayList<Integer> differingOne=new ArrayList<Integer>();
 public static ArrayList<Integer> differingTwo=new ArrayList<Integer>();

 static ArrayList<merkle.Node> alNode = new ArrayList<merkle.Node>();

 merkle bloomTree;
 int terminalcount=0;

 public Stack<Integer> bloomCompare(merkle mfirst, merkle msecond){
 neq=0; // Number of different nodes

 nodeStack=new Stack<Integer>();
 if (mfirst.root!=msecond.root){

 int t1=mfirst.nnodes;
 int t2=msecond.nnodes;
 merkle referenceTree=mfirst;
 bloomTree=msecond;
 nodeStack= new Stack();

 if (t2>t1){
 referenceTree=msecond;
 bloomTree=mfirst;
 }
 bloomTraverse(referenceTree.root.left,bloomTree.root.left);
 bloomTraverse(referenceTree.root.right,bloomTree.root.right);

 }

 return nodeStack;

}

public void bloomTraverse(merkle.Node root){

 if (root.left!=null)
 bloomTraverse(root.left);
 if (root.right!=null)
 bloomTraverse(root.right);

 if (root.type==0x00 && !bloomTree.bf.contains(root.sig))
 {
 neq++;
 nodeStack.push(root.tag);
 }
}

int neq=0;

public void bloomTraverse(merkle.Node root, merkle.Node root2){

 if (root!=root2)
 {
 if (root.left!=null && root2.left!=null)
 bloomTraverse(root.left,root2.left);
 if (root.right!=null && root2.right!=null)
 bloomTraverse(root.right,root2.right);

 if (root.left!=null && root2.left==null)
 bloomTraverse(root.left);
 if (root.right!=null && root2.right==null)
 bloomTraverse(root.right);

 if (root.type==0x00 && !bloomTree.bf.contains(root.sig))
 {
 nodeStack.push(root.tag);
 neq++;
 }}

 }

 public Stack<Integer> nodeStack;

}

Abarth.csv

Basic (general) data;;;

Marque (make);Autobianchi;Issued from;1979

Model;A112 Abarth;Issued until;

Serie;A112;Number made;

Model family;;Body construction;

Model code;;Body designation;

Manufacturer;Autobianchi;Country;IT

;;;

Bodywork;;;

Base platform;;Number of doors;3

Bodywork type;hatchback (liftback) sedan;Number of seats;5

Bodywork designer;;Cargo capacity (volume);

Passenger space (volume);2460 l;Max. cargo capacity (volume);

;;;

Dimensions & Weight;;;

Length;3230 mm;Total (curb) weight;675 kg

Width;1490 mm;Dry weight;

Height;1370 mm;Load capacity;

Wheelbase;2040 mm;Gross (max.) weight;

Track front;;Towing weight;

Track rear;;Weight distribution (front);

Ground clearance;150 mm;Fuel capacity;30 l

Length/wheelbase ratio;1.58;;

;;;

Aerodynamics;;;

Drag coefficient (Cd, Cx, Cw);;Frontal area (A);1.74 m2 (est.)

Aerodynamic coefficient (Cd×A);;Aerodynamic resistance (Aero horse power) at 100 km/h (62 mph);

;;;

Engine;;;

Engine Code;;Total number of cylinders;4

Engine Type;straight (inline) (Inline, 4 cylinder);Total number of valves;

Engine Manufacturer;;Valves per cylinder;

Engine construction;;Bore;65.0 mm

Fuel;;Stroke;74.0 mm

Fuel details;;Bore/Stroke ratio;0.88

Fuel supply;Carburettor;Engine displacement;928 cm3

Engine Main bearings;;Unitary capacity;245.55 cm3/cylinder

Cam Design;;Compression ratio;10.0 : 1

Sump;;Max. output power;43.0 kW at 6600 rpm

Aspiration;natural;Max. torque;73.0 N·m at 3800 rpm

Compressor type;;Maximum rpm;

Intercooler;;Max. net output (power at the wheels);17.2 kW (est.)

Coolant;water;Specific output;46.3 kW/l

Catalytic converter;;Specific torque;78.7 N·m/l

;;;

Transmission;;;

Transmission type;manual;Number of gears;4

Wheel drive;front wheel drive;Top gear (drive) ratio;

;;Final gear (drive) ratio;

;;;

Performance;;;

Acceleration 0-50 mph (80 km/h);;Top (maximal) speed;150 km/h

Acceleration 0-60 mph (97 km/h);;Power-to-weight ratio;85.9 kW/ton

Acceleration 0-100 km/h;;Fuel consumption, City (urban);

Acceleration 0-100 mph (160 km/h);;Fuel consumption, Road (extra-urban);

Acceleration 80-120 km/h (50-70 mph) in top;;Fuel consumption, Mixed (combined);

Standing ¼mile time;;Fuel consumption, Euro;

Standing kilometer time;;CO2 emissions;

;;Range;

;;;

Chassis;;;

Engine location;front;Engine alignment;transverse

Steering;;Steering details;

Turns lock-to-lock;;Turning circle;9.0 m

Suspension front;;Suspension rear;

Wheels front;;Wheels rear;

Tyres front;155-13;Tyres rear;125/80-R12

Brakes front;disc;Brakes rear;drum

Brake diameter front;;Brake diameter rear;

Brakes details;;Braked area;

Saab900-20-1994.csv

Basic (general) data;;;

Marque (make);Saab;Issued from;1994

Model;05.02.900;Issued until;

Serie;900;Number made;

Model family;;Body construction;

Model code;;Body designation;

Manufacturer;Saab;Country;SE

Bodywork;;;

Base platform;;Number of doors;03.05.2016

Bodywork type;;Number of seats;5

Bodywork designer;;Cargo capacity (volume);

Passenger space (volume);4320 l;Max. cargo capacity (volume);

Dimensions & Weight;;;

Length;4640 mm;Total (curb) weight;1330 kg

Width;1720 mm;Dry weight;

Height;1440 mm;Load capacity;

Wheelbase;2530 mm;Gross (max.) weight;

Track front;;Towing weight;

Track rear;;Weight distribution (front);

Ground clearance;140 mm;Fuel capacity;

Length/wheelbase ratio;01.01.1983; ;

Aerodynamics;;;

Drag coefficient (Cd, Cx, Cw);0.3;Frontal area (A);2.11 m2 (est.)

Aerodynamic coefficient (Cd×A);0.63 m2 (est.);Aerodynamic resistance (Aero horse power) at 100 km/h (62 mph);15.7 kW (est.)

Engine;;;

Engine Code;;Total number of cylinders;4

Engine Type;straight (inline) (Inline, 4 cylinder);Total number of valves;16

Engine Manufacturer;;Valves per cylinder;4

Engine construction;;Bore;

Fuel;petrol (gasoline);Stroke;

Fuel details;;Bore/Stroke ratio;

Fuel supply;Injection;Engine displacement;1983 cm3

Engine Main bearings;;Unitary capacity;

Cam Design;;Compression ratio;

Sump;;Max. output power;136.0 kW at 5500 rpm

Aspiration;;Max. torque;263.0 N·m at 2100 rpm

Compressor type;;Maximum rpm;

Intercooler;;Max. net output (power at the wheels);54.4 kW (est.)

Coolant;;Specific output;68.6 kW/l

Catalytic converter;;Specific torque;132.6 N·m/l

Transmission;;;

Transmission type;manual;Number of gears;5

Wheel drive;front wheel drive;Top gear (drive) ratio;

 ; ;Final gear (drive) ratio;

Performance;;;

Acceleration 0-50 mph (80 km/h);;Top (maximal) speed;

Acceleration 0-60 mph (97 km/h);;Power-to-weight ratio;139.1 kW/ton

Acceleration 0-100 km/h;;Fuel consumption, City (urban);

Acceleration 0-100 mph (160 km/h);;Fuel consumption, Road (extra-urban);

Acceleration 80-120 km/h (50-70 mph) in top;;Fuel consumption, Mixed (combined);

Standing ¼mile time;;Fuel consumption, Euro;

Standing kilometer time;;CO2 emissions;

 ; ;Range;

Chassis;;;

Engine location;front;Engine alignment;transverse

Steering;;Steering details;

Turns lock-to-lock;;Turning circle;11.0 m

Suspension front;;Suspension rear;

Wheels front;;Wheels rear;

Tyres front;;Tyres rear;

Brakes front;;Brakes rear;

Brake diameter front;;Brake diameter rear;

Brakes details;;Braked area;

Saab900-25-1994.csv

Basic (general) data;;;

Marque (make);Saab;Issued from;1994

Model;05.02.900;Issued until;

Serie;900;Number made;

Model family;;Body construction;

Model code;;Body designation;

Manufacturer;Saab;Country;SE

Bodywork;;;

Base platform;;Number of doors;03.05.2016

Bodywork type;;Number of seats;5

Bodywork designer;;Cargo capacity (volume);

Passenger space (volume);4320 l;Max. cargo capacity (volume);

Dimensions & Weight;;;

Length;4640 mm;Total (curb) weight;1345 kg

Width;1720 mm;Dry weight;

Height;1440 mm;Load capacity;

Wheelbase;2530 mm;Gross (max.) weight;

Track front;;Towing weight;

Track rear;;Weight distribution (front);

Ground clearance;140 mm;Fuel capacity;

Length/wheelbase ratio;01.01.1983; ;

Aerodynamics;;;

Drag coefficient (Cd, Cx, Cw);0.3;Frontal area (A);2.11 m2 (est.)

Aerodynamic coefficient (Cd×A);0.63 m2 (est.);Aerodynamic resistance (Aero horse power) at 100 km/h (62 mph);15.7 kW (est.)

Engine;;;

Engine Code;;Total number of cylinders;6

Engine Type;straight (inline) (Inline, 6 cylinder);Total number of valves;24

Engine Manufacturer;;Valves per cylinder;4

Engine construction;;Bore;81.6 mm

Fuel;petrol (gasoline);Stroke;79.6 mm

Fuel details;;Bore/Stroke ratio;01.03.2016

Fuel supply;Injection;Engine displacement;2497 cm3

Engine Main bearings;;Unitary capacity;416.28 cm3/cylinder

Cam Design;;Compression ratio;

Sump;;Max. output power;125.0 kW at 5900 rpm

Aspiration;;Max. torque;227.0 N·m at 4200 rpm

Compressor type;;Maximum rpm;

Intercooler;;Max. net output (power at the wheels);50.0 kW (est.)

Coolant;;Specific output;50.1 kW/l

Catalytic converter;;Specific torque;90.9 N·m/l

Transmission;;;

Transmission type;manual;Number of gears;5

Wheel drive;front wheel drive;Top gear (drive) ratio;

 ; ;Final gear (drive) ratio;

Performance;;;

Acceleration 0-50 mph (80 km/h);;Top (maximal) speed;

Acceleration 0-60 mph (97 km/h);;Power-to-weight ratio;126.4 kW/ton

Acceleration 0-100 km/h;;Fuel consumption, City (urban);

Acceleration 0-100 mph (160 km/h);;Fuel consumption, Road (extra-urban);

Acceleration 80-120 km/h (50-70 mph) in top;;Fuel consumption, Mixed (combined);

Standing ¼mile time;;Fuel consumption, Euro;

Standing kilometer time;;CO2 emissions;

 ; ;Range;

Chassis;;;

Engine location;front;Engine alignment;transverse

Steering;;Steering details;

Turns lock-to-lock;;Turning circle;11.0 m

Suspension front;;Suspension rear;

Wheels front;;Wheels rear;

Tyres front;;Tyres rear;

Brakes front;;Brakes rear;

Brake diameter front;;Brake diameter rear;

Brakes details;;Braked area;

VolvoC70-2000.csv

Basic (general) data;;;

Marque (make);Volvo;Issued from;2000

Model;C70;Issued until;

Serie;C70;Number made;

Model family;;Body construction;

Model code;;Body designation;

Manufacturer;Volvo;Country;SE,NL

;;;

Bodywork;;;

Base platform;;Number of doors;4

Bodywork type;;Number of seats;4

Bodywork designer;;Cargo capacity (volume);

Passenger space (volume);4530 l;Max. cargo capacity (volume);

;;;

Dimensions & Weight;;;

Length;4730 mm;Total (curb) weight;1404 kg

Width;1830 mm;Dry weight;

Height;1420 mm;Load capacity;

Wheelbase;2670 mm;Gross (max.) weight;

Track front;;Towing weight;

Track rear;;Weight distribution (front);

Ground clearance;;Fuel capacity;68 l

Length/wheelbase ratio;1.77;;

;;;

Aerodynamics;;;

Drag coefficient (Cd, Cx, Cw);0.3;Frontal area (A);2.21 m2 (est.)

Aerodynamic coefficient (Cd×A);0.66 m2 (est.);Aerodynamic resistance (Aero horse power) at 100 km/h (62 mph);16.5 kW (est.)

;;;

Engine;;;

Engine Code;;Total number of cylinders;5

Engine Type;straight (inline) (Inline, 5 cylinder);Total number of valves;20

Engine Manufacturer;;Valves per cylinder;4

Engine construction;;Bore;81.0 mm

Fuel;petrol (gasoline);Stroke;77.0 mm

Fuel details;;Bore/Stroke ratio;1.05

Fuel supply;Injection;Engine displacement;1984 cm3

Engine Main bearings;;Unitary capacity;396.78 cm3/cylinder

Cam Design;;Compression ratio;9.5 : 1

Sump;wet;Max. output power;120.0 kW at 5100 rpm

Aspiration;;Max. torque;230.0 N·m at 1800 rpm

Compressor type;;Maximum rpm;

Intercooler;;Max. net output (power at the wheels);48.0 kW (est.)

Coolant;water;Specific output;60.5 kW/l

Catalytic converter;;Specific torque;115.9 N·m/l

;;;

Transmission;;;

Transmission type;manual;Number of gears;5

Wheel drive;front wheel drive;Top gear (drive) ratio;

;;Final gear (drive) ratio;

;;;

Performance;;;

Acceleration 0-50 mph (80 km/h);;Top (maximal) speed;

Acceleration 0-60 mph (97 km/h);;Power-to-weight ratio;116.4 kW/ton

Acceleration 0-100 km/h;;Fuel consumption, City (urban);

Acceleration 0-100 mph (160 km/h);;Fuel consumption, Road (extra-urban);

Acceleration 80-120 km/h (50-70 mph) in top;;Fuel consumption, Mixed (combined);

Standing ¼mile time;;Fuel consumption, Euro;

Standing kilometer time;;CO2 emissions;

;;Range;

;;;

Chassis;;;

Engine location;front;Engine alignment;transverse

Steering;;Steering details;

Turns lock-to-lock;;Turning circle;12.0 m

Suspension front;;Suspension rear;

Wheels front;;Wheels rear;

Tyres front;205/55-R16;Tyres rear;205/55-R16

Brakes front;disc;Brakes rear;

Brake diameter front;;Brake diameter rear;295 mm

Brakes details;;Braked area;

VolvoC70-2000sorted.csv

Acceleration 0-100 km/h;;Fuel consumption, City (urban);

Acceleration 0-100 mph (160 km/h);;Fuel consumption, Road (extra-urban);

Acceleration 0-50 mph (80 km/h);;Top (maximal) speed;

Acceleration 0-60 mph (97 km/h);;Power-to-weight ratio;116.4 kW/ton

Acceleration 80-120 km/h (50-70 mph) in top;;Fuel consumption, Mixed (combined);

Aerodynamic coefficient (Cd×A);0.66 m2 (est.);Aerodynamic resistance (Aero horse power) at 100 km/h (62 mph);16.5 kW (est.)

Aerodynamics;;;

Aspiration;;Max. torque;230.0 N·m at 1800 rpm

Base platform;;Number of doors;4

Basic (general) data;;;

Bodywork;;;

Bodywork designer;;Cargo capacity (volume);

Bodywork type;;Number of seats;4

Brake diameter front;;Brake diameter rear;295 mm

Brakes details;;Braked area;

Brakes front;disc;Brakes rear;

Cam Design;;Compression ratio;9.5 : 1

Catalytic converter;;Specific torque;115.9 N·m/l

Chassis;;;

Compressor type;;Maximum rpm;

Coolant;water;Specific output;60.5 kW/l

Dimensions & Weight;;;

Drag coefficient (Cd, Cx, Cw);0.3;Frontal area (A);2.21 m2 (est.)

Engine;;;

Engine Code;;Total number of cylinders;5

Engine construction;;Bore;81.0 mm

Engine location;front;Engine alignment;transverse

Engine Main bearings;;Unitary capacity;396.78 cm3/cylinder

Engine Manufacturer;;Valves per cylinder;4

Engine Type;straight (inline) (Inline, 5 cylinder);Total number of valves;20

Fuel;petrol (gasoline);Stroke;77.0 mm

Fuel details;;Bore/Stroke ratio;1.05

Fuel supply;Injection;Engine displacement;1984 cm3

Ground clearance;;Fuel capacity;68 l

Height;1420 mm;Load capacity;

Intercooler;;Max. net output (power at the wheels);48.0 kW (est.)

Length;4730 mm;Total (curb) weight;1404 kg

Length/wheelbase ratio;1.77;;

Manufacturer;Volvo;Country;SE,NL

Marque (make);Volvo;Issued from;2000

Model;C70;Issued until;

Model code;;Body designation;

Model family;;Body construction;

Passenger space (volume);4530 l;Max. cargo capacity (volume);

Performance;;;

Serie;C70;Number made;

Standing ¼mile time;;Fuel consumption, Euro;

Standing kilometer time;;CO2 emissions;

Steering;;Steering details;

Sump;wet;Max. output power;120.0 kW at 5100 rpm

Suspension front;;Suspension rear;

Track front;;Towing weight;

Track rear;;Weight distribution (front);

Transmission;;;

Transmission type;manual;Number of gears;5

Turns lock-to-lock;;Turning circle;12.0 m

Tyres front;205/55-R16;Tyres rear;205/55-R16

Wheel drive;front wheel drive;Top gear (drive) ratio;

Wheelbase;2670 mm;Gross (max.) weight;

Wheels front;;Wheels rear;

Width;1830 mm;Dry weight;

;;;

;;;

;;;

;;;

;;;

;;Final gear (drive) ratio;

;;;

;;;

;;Range;

AbarthCut.csv

Basic (general) data;;;

Marque (make);Autobianchi;Issued from;1979

Model;A112 Abarth;Issued until;

Serie;A112;Number made;

Model family;;Body construction;

Model code;;Body designation;

Manufacturer;Autobianchi;Country;IT

;;;

Bodywork;;;

Base platform;;Number of doors;3

Bodywork type;hatchback (liftback) sedan;Number of seats;5

Bodywork designer;;Cargo capacity (volume);

Passenger space (volume);2460 l;Max. cargo capacity (volume);

;;;

Dimensions & Weight;;;

Length;3230 mm;Total (curb) weight;675 kg

Width;1490 mm;Dry weight;

Height;1370 mm;Load capacity;

Wheelbase;2040 mm;Gross (max.) weight;

Track front;;Towing weight;

Track rear;;Weight distribution (front);

Ground clearance;150 mm;Fuel capacity;30 l

Length/wheelbase ratio;1.58;;

;;;

Aerodynamics;;;

Drag coefficient (Cd, Cx, Cw);;Frontal area (A);1.74 m2 (est.)

Aerodynamic coefficient (Cd×A);;Aerodynamic resistance (Aero horse power) at 100 km/h (62 mph);

;;;

Engine;;;

Engine Code;;Total number of cylinders;4

Engine Type;straight (inline) (Inline, 4 cylinder);Total number of valves;

Engine Manufacturer;;Valves per cylinder;

Engine construction;;Bore;65.0 mm

Fuel;;Stroke;74.0 mm

Fuel details;;Bore/Stroke ratio;0.88

Fuel supply;Carburettor;Engine displacement;928 cm3

Engine Main bearings;;Unitary capacity;245.55 cm3/cylinder

Cam Design;;Compression ratio;10.0 : 1

Sump;;Max. output power;43.0 kW at 6600 rpm

Aspiration;natural;Max. torque;73.0 N·m at 3800 rpm

Compressor type;;Maximum rpm;

Intercooler;;Max. net output (power at the wheels);17.2 kW (est.)

Coolant;water;Specific output;46.3 kW/l

Catalytic converter;;Specific torque;78.7 N·m/l

;;;

Transmission;;;

Transmission type;manual;Number of gears;4

Wheel drive;front wheel drive;Top gear (drive) ratio;

;;Final gear (drive) ratio;

