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1 Introduction

The characterisation of non-trivial background geometries which support some amount
of rigid (conformal) supersymmetry has attracted much attention in the recent
literature [1-38]. The primary motivation being that it is often possible to obtain impor-
tant exact results for quantum field theories defined on such backgrounds, with many novel
holographic applications [4, 6, 12, 15, 18, 28, 33, 34, 36, 38]. Perhaps the most system-
atic strategy for generating admissible backgrounds is by taking a rigid limit of some local



supergravity coupling, such that the dynamics of the gravity supermultiplet is effectively
frozen out [1]. The resulting bosonic supergravity background supports rigid supersymme-
try, with the supersymmetry parameter constrained by setting to zero the supersymmetry
variation of the fermions in the gravity supermultiplet. For bosonic supersymmetric back-
grounds of conformal supergravity [39-42], the supersymmetry parameter typically obeys
a particular conformally invariant first order PDE, known as a ‘twistor spinor equation’,
with respect to a certain superconnection whose precise form is dictated by the structure
of the conformal gravity supermultiplet.

The Lie superalgebra which encodes the rigid (conformal) supersymmetry of a bosonic
(conformal) supergravity background is known as the (conformal) symmetry superalgebra of
the background ([16, 17]) [43-47]. The even part of this superalgebra contains (conformal)
Killing vectors, which generate (conformal) isometries of the background, together with
R-symmetries of the associated rigid supermultiplet. The odd part contains (twistor)
spinors valued in certain R-symmetry representations which generate rigid (conformal)
supersymmetries of the background. The virtue of the (conformal) symmetry superalgebra
construction is that it often reveals special geometrical properties of the background based
on the type and amount of rigid (conformal) supersymmetry it supports. For example, in
dimensions eleven, ten and six, this approach was used recently in [48, 49] to prove that any
bosonic supersymmetric supergravity background possessing more than half the maximal
amount of supersymmetry is necessarily (locally) homogeneous.

The simplest class of conformal symmetry superalgebras contain odd elements which
obey a ‘geometric’ twistor spinor equation, with respect to the Levi-Civita connection.
Their generic structure was described in some detail in [16], where it was found that the
inclusion of a non-trivial R-symmetry is crucial in solving the odd-odd-odd component of
the Jacobi identity for the superalgebra. Indeed, this extra ingredient is what distinguishes
the construction in [16] from several earlier ones [50-53]. More general conformal symmetry
superalgebras are further complicated by the presence of some assortment of non-trivial
background fields (other than the metric). The details of these background fields depend
on the composition of the conformal gravity supermultiplet but one common feature is
the presence of R-symmetry gauge fields. In section 5 of this paper, we shall explore a
natural generalisation of the construction in [16] based on the gauging of R-symmetry.
For Lorentzian geometries, we find that the resulting structure generically defines a Lie
superalgebra only if the R-symmetry is one-dimensional and the background has dimension
three or four. Indeed, these are precisely the cases where the bosonic sector of a conformal
gravity supermultiplet contains only the metric and the R-symmetry gauge field.

It is a well-known and useful fact that geometric twistor spinors ‘square’ (in a sense
which can be made precise) to conformal Killing vectors. More generally, for a conformal
symmetry superalgebra, there is a similar (albeit somewhat more complicated) squaring
map defined by the odd-odd bracket [16, 17]. Of course, if a pseudo-Riemannian spin
manifold admits a conformal Killing vector, it need not admit a geometric twistor spinor.!
However, as was shown in [6, 8, 15], at least for a certain class of Lorentzian geometries

'In Euclidean and Lorentzian signatures, up to local conformal equivalence, the classification of those
geometries which do admit a nowhere vanishing geometric twistor spinor was established in [54-58].



which need not admit a geometric twistor spinor, the existence of a nowhere vanishing
conformal Killing vector with a particular causal character is in fact locally equivalent
to the existence of a nowhere vanishing twistor spinor that is defined with respect to a
particular connection with non-trivial intrinsic torsion. The precise form of this intrinsic
torsion is dictated by the local isotropy of the twistor spinor. Moreover, in dimensions
three and four, with one-dimensional R-symmetry, this data recovers precisely the defining
conditions for a bosonic supersymmetric conformal supergravity background.

If it is possible to define a quantum field theory on a background preserving a large
amount of (conformal) supersymmetry, it is often the case that the theory is particularly
well-behaved. Backgrounds which admit a conformal symmetry superalgebra with the
largest possible dimension are necessarily locally conformally flat. In Lorentzian signature,
any such conformal symmetry superalgebra has compact R-symmetry and is isomorphic
to one of the well-known conformal superalgebras classified by Nahm in [59]. However,
the general structure of conformal symmetry superalgebras with the next largest possible,
or submaximal, dimension (for backgrounds that are not locally conformally flat) is much
less clear. Our goal here will be to elucidate this structure for Lorentzian geometries in
three and four dimensions which admit a conformal symmetry superalgebra with gauged
one-dimensional R-symmetry. Our strategy will make use of some recent progress [60-62]
which has determined the submaximal dimension of the Lie algebra of conformal Killing
vectors for any Lorentzian manifold. We will also utilise some earlier results [63-65] on the
classification of (conformal) Killing vectors for Lorentzian manifolds of low dimension. We
then employ the results of [6, 15] to deconstruct a null (in four dimensions) or timelike (in
three dimensions) conformal Killing vector in terms of the charged twistor spinors which
form the odd part of the conformal symmetry superalgebra.

The organisation of this paper is as follows. We begin in section 2 by reviewing some
essential features of the conformal geometry of Lorentzian manifolds. This will include
the use of proper conformal scalars and gradients to represent the action of the conformal
group in terms of isometries and homotheties for some representative geometry in a given
conformal class. We will also provide a summary of the main results of [60-62] concerning
sharp upper bounds on the submaximal dimension of the conformal algebra for Lorentzian
geometries. In section 3, we review some basic properties of Clifford algebras, spinor
modules and their invariant bilinear forms, together with the vital concepts of spinorial
Lie derivative and twistor spinor. In the process, we take the opportunity to note some
of our basis conventions to be used in the forthcoming analysis. In section 4, we briefly
recap the definition of a real Lie superalgebra, focussing on the conceptualisation of certain
axioms that will facilitate our description of conformal symmetry superalgebras. We will
also define here a particular family of real Lie superalgebras that encompasses all the
conformal symmetry superalgebras obtained in later sections. In section 5, we summarise
the construction of conformal symmetry superalgebras in [16, 17] and propose a certain
generalisation based on the gauging of R-symmetry. The conditions which are sufficient
for the existence of such a Lie superalgebra are found to be satisfied identically only for
abelian R-symmetry in dimensions three and four. We then focus on the classification of
submaximal conformal symmetry superalgebras in these two cases.



The classification in three dimensions is obtained in section 6. It begins in sections 6.1
and 6.2 with a synopsis of null triads and Majorana spinors in three dimensions. With
respect to this framework, we then describe in detail the intimate connection [8, 15] between
causal conformal Killing vectors (in section 6.3) and charged twistor spinors (in section 6.4)
on Lorentzian three-manifolds. (Charged, that is, with respect to the gauged abelian R-
symmetry.) At least locally, it follows that the existence of a nowhere vanishing charged
(or uncharged) twistor spinor is characterised by the existence of a nowhere vanishing
timelike (or null) conformal Killing vector. The classification of submaximal conformal
symmetry superalgebras is contained in section 6.5, according to whether the geometry
in question admits a nowhere vanishing conformal Killing vector that is either null or
timelike. The null case is described in section 6.5.1 and the timelike case is described in
section 6.5.2. Up to local conformal equivalence, we prove that there are precisely three
types of Lorentzian three-manifold with a timelike conformal Killing vector which admit
submaximal conformal symmetry superalgebras, where the dimension of the conformal
algebra is four. Representative geometries are found to correspond to a certain class of
locally stationary metrics with four Killing vectors (see section 8 for a summary).

The classification in four dimensions is obtained in section 7. It begins in sec-
tions 7.1, 7.2 and 7.3 with a synopsis of null tetrads, Majorana spinors and Petrov types in
four dimensions. With respect to this framework, we then describe in detail the intimate
connection [6] between null conformal Killing vectors (in section 7.4) and charged twistor
spinors (in section 7.5) on Lorentzian four-manifolds. At least locally, it follows that the
existence of a nowhere vanishing charged twistor spinor is characterised by the existence
of a nowhere vanishing null conformal Killing vector (the twistor spinor is uncharged only
if the geometry is of Petrov type N or O). The classification of submaximal conformal
symmetry superalgebras is contained in section 7.6. From the results of [60, 75], it is
immediately apparent that the submaximal conformal symmetry superalgebras here are
associated with geometries of Petrov type N. Up to local conformal equivalence, we prove
that there are precisely two types of Lorentzian four-manifold with a null conformal Killing
vector which admit submaximal conformal symmetry superalgebras, where the dimension
of the conformal algebra is seven. Representative geometries are found to correspond to
a certain class of locally homogeneous plane wave metrics with six Killing vectors and a
proper homothetic conformal Killing vector (see section 8 for a summary). Using the re-
sults of [65], in section 7.6.2, we proceed to compute the symmetry superalgebras for a class
of ‘physically admissible’? Ricci-flat Lorentzian four-manifolds with a null Killing vector
that are of Petrov type II and D. We also compute the conformal symmetry superalgebra
for the most symmetric geometry in this class, which is the unique representative of Petrov
type D.

Section 8 contains a detailed summary of our main results.

2 Conformal Killing vectors

Let M be a smooth oriented manifold equipped with a Lorentzian metric g whose associated
Levi-Civita connection will be denoted by V. We take M to have dimension d > 2.

2In the sense that their energy-momentum tensor does not violate the dominant energy condition.



Let X (M) denote the space of vector fields on M (i.e. sections of the tangent bundle
TM). Let | X|? = g(X, X) denote the norm squared of any X € X(M) with respect to g.
At a point in M, X may be either spacelike (if | X|? > 0), timelike (if | X|* < 0) or null
(if [X[? = 0). If [ X|? < 0 then X is said to be causal. At each point in M, clearly the
sign of | X | with respect to any positive multiple of g is the same, so the aforementioned
causal properties of a vector field depend only on the conformal class [g] of g.

The Lie derivative Lx along any X € X(M) defines an endomorphism of the space
of tensor fields on M. The Lie bracket of vector fields is defined by [X,Y] = LxY =
VxY —VyX € X(M), for all X,Y € X(M). This equips X(M) with the structure of a
Lie algebra. Furthermore

LxLy —LyLx =Lixy], (2.1)

for all X,Y € X(M). Whence, the Lie derivative defines on the space of tensor fields a
representation of the Lie algebra of vector fields.
The subspace of conformal Killing vectors in X(M) is defined by

C(M,g)={X e€eX(M) | Lxg=—20xg}, (2.2)

for some real function ox on M. For any X,Y € €(M,g), using (2.1), it follows that
[(X,Y] € €M, g) with
oxy] = Vxoy —Vyox . (2.3)

Whence, restricting the Lie bracket to €(M, ¢) defines a (finite-dimensional) Lie subalgebra
of conformal Killing vectors on (M, g).

Any X € €(M,g) with ox constant is called homothetic and let $(M, g) denote the
subspace of homothetic conformal Killing vectors on (M,g). Any X € $H(M,g) with
ox # 0 is said to be proper. Any X € $(M,g) with ox = 0 is called isometric and let
R(M, g) denote the subspace of isometric conformal Killing vectors (i.e. Killing vectors)
on (M,g). From (2.3), clearly [$(M,g),H(M,g)] < R(M, g) so restricting to the subspace
of Killing vectors on (M, g) defines the ideal (M, g) < $H(M, g). Furthermore, given any
X,Y € H(M, g) with ox # 0, then Y—Z—;X € R(M, g). Whence, either (M, g) = R(M, g)
or dim($H(M, g)/R(M,g)) = 1.

A real function ¢ on M is called a conformal scalar if Vx¢ = pgyox¢, for all X €
(M, g), in terms of some py € R (¢ is said to be proper if pg # 0). A real one-form v on
M is called a conformal one-form if Lxv = p,dox, for all X € €(M, g), in terms of some
Py € R (v is said to be proper if p, # 0). If dv = 0 then v is called a conformal gradient. For
example, if ¢ is a (proper) conformal scalar, then d(In ¢) is a (proper) conformal gradient.
If v is a proper conformal gradient then, at least locally, v = p,d¢p for some real function
¢ such that, for each X € €(M, g), ox — Vx¢ = sx for some sx € R.

Any metric § in the same conformal class [g] as g is of the form § = e?*g, in terms of
some real function w on M. Each X € €(M, g) (with conformal factor ox) is also in €(M, §)
but with conformal factor 6x = ox —Vxw. Thus, we may assign the Lie algebra €(M, [g])
of conformal Killing vectors on (M, g) to the conformal class [g]. Of course, there may be a
preferred metric in [g] with respect to which the conformal Killing vectors in €(M, [g]) are
most conveniently represented (e.g. via a homothetic or isometric action). For example, if



(M, g) admits a proper conformal scalar ¢, then €(M, [g]) = &(M,e?**g) for w = i In ¢.
Alternatively, if (M, g) admits a proper conformal gradient v, then €(M, [g]) = H(M,e**g)
for w = ¢ and 6x = sx. More generally, €(M, [g]) is said to be conformally isometric if
it can be represented by £(M,e**g) or conformally homothetic if it can be represented by
(M, e*g) (with dim($H(M,e*g)/R(M,e*g)) = 1), for some choice of w.

Important aspects of the conformal geometry of (M, g) are characterised by its Weyl
tensor W and Cotton-York tensor C. If d > 3, then W = 0 only if (M, g) is locally
conformally flat. For any X € &(M,[g]), LxW = —20xW which implies Vx|W|? =
4o x|W|?, where |W|? denotes the scalar norm-squared of W with respect to g. Thus, if
d > 3, any (M, g) with |[W|? nowhere vanishing is conformally isometric, with €(M,[g]) =
R(M,|W|g) (ie. ¢ = |W|? is a proper conformal scalar with p, = 4). If d = 3, then
W vanishes identically and C' = 0 only if (M, g) is locally conformally flat. In this case,
for any X € €(M,|[g]), LxC = 0 which implies Vx|C|? = 60x|C|?, where |C|? denotes
the scalar norm-squared of C' with respect to g. Thus, if d = 3, any (M,g) with |C|?
nowhere vanishing is conformally isometric, with €(M, [g]) = &(M, |C|*/3g) (i.e. ¢ = |C|?
is a proper conformal scalar with py = 6).

For any X € €(M,[g]), Vx|X|? = —20x|X|? so if dim &€(M, [g]) = 1 then ¢ = | X |2
defines a proper conformal scalar with py = 2 provided X is nowhere null. In this case,
(M, [g]) is therefore always conformally isometric. Alternatively, if (M, g) is conformally
flat then €(M,[g]) = so(d,2), which is neither conformally homothetic nor conformally
isometric.

In fact, the dimension of €(M, [¢g]) can never exceed (d;rZ) and equals it only if (M, g)
is locally conformally flat. An important problem in conformal geometry is to determine
the next largest value of dim €(M, [g]), or submazimal dimension, which can be realised for
some (M, g) that is not conformally flat. In Lorentzian signature, this problem was recently
solved in [60-62]. Any (M, g) that is not locally conformally flat must have dim €(M, [g]) <
44 (dgl) for any d > 3 and dim €(M, [g]) < 4 for d = 3. These upper bounds are sharp in
that, for every d > 2, there are explicit examples for which they are saturated.

In d = 4, the conformal class of (M, g) can be characterised locally as being of Petrov
type I, II, D, III, N or O, depending on which components of the Weyl tensor vanish
identically. Theorem 5.1.3 in [60] provides sharp upper bounds on dim €(M, [g]) for each
Petrov type. Type O means W = 0 so (M, g) is locally conformally flat and dim €(M, [g]) =
15. Type N must have dim €(M,[g]) < 7, type D must have dim €(M, [g]) < 6 while
dim €(M, [g]) < 4 for types I, IT and III. It was shown in [64] that €(M, [g]) is conformally
isometric only if (M, g) admits a proper conformal scalar. Furthermore, from theorem 3
in [64], it follows that if (M, g) does not admit a proper conformal scalar then it must be
locally conformally equivalent to either Minkowski space (type O) or a plane wave (type
N). Whence, any (M, g) of type I, II, D or III must have €(M, [g]) conformally isometric.

3 Twistor spinors

Let us now assume that M has vanishing second Stiefel-Whitney class so the bundle SO(M)
of oriented pseudo-orthonormal frames lifts to Spin(M) by the assignment of a spin struc-
ture. For d < 3, this lift is always unobstructed.



The Clifford bundle CL(TM) over (M, g) is defined by the relation
XY + XY =2¢(X,Y)1, (3.1)

for all X,Y € X(M), where each multi-vector field ® on M is associated with a section ®
of C{(TM). At each point z € M, the exterior algebra of T,M = R4 b1 is isomorphic,
as a vector space, to the Clifford algebra C¢(T,M) (the metric g and its inverse provide
a duality between multi-vector fields and differential forms on M). The canonical volume
form e for the metric g on M defines a unique idempotent section I" of C/(T'M). If d is
odd, I is central in C¢(T'M). If d is even, ' X = —XT, for all X € X(M).

The Clifford algebra Cl(T, M) is Zs-graded such that elements with even and odd
degrees are assigned grades 0 and 1 respectively. The grade 0 elements span an ungraded
associative subalgebra C/°(T, M) < Cl(T,M). The degree two elements span a Lie sub-
algebra so(T, M) < CL°(T,M), where C{°(T,M) is understood as a Lie algebra whose
brackets are defined by commutators.

At each point z € M, the set of invertible elements in C¢(T, M) forms a multiplicative
group C£*(T,M). The vectors X € Cl(T,M) with |X|* = 41 generate the subgroup
Pin(T, M) < C¢*(T,M). The group Spin(T, M) = Pin(T, M) N CLO(T,M), which also
follows by exponentiating so(T, M) < C (T, M).

The pinor module is defined by the restriction to Pin(7, M) of an irreducible repre-
sentation of C/(T,M). Every Clifford algebra is isomorphic, as an associative algebra with
unit, to a matrix algebra and it is a simple matter to deduce their irreducible represen-
tations. The spinor module is defined by the restriction to Spin(7,M) of an irreducible
representation of C/°(T,M). Note that restricting to Spin(7, M) an irreducible represen-
tation of C¢(T;M) need not define an irreducible spinor module. If d is even, C{(T, M)
has a unique irreducible representation which descends to a reducible representation when
restricted to Spin(7, M), yielding a pair of inequivalent irreducible (chiral) spinor modules
associated with the two eigenspaces of I' on which I' = £1. If d is odd, C¢(T M) has two
inequivalent irreducible representations which are isomorphic to each other when restricted
to Spin(T,, M). The isomorphism here is provided by the central element I" and corresponds
to Hodge duality in the exterior algebra. In either case, the spinor module defined at each
point in M defines a principle bundle Spin(M) and its associated vector bundle $(M) is
called the spinor bundle over M.

Let &(M) denote the space of spinor fields on M (i.e. sections of $(M)). If d is even,
S(M) = 64(M) & S_(M), where &(M) denote the subspaces of chiral spinor fields
(defined via projection operators Py = 1(1£T')) on which I' = £1. The action of V
induced on &(M) is compatible with the Clifford action, i.e.

Vx(Yy) = (VxY)Y +YVxi, (3.2)
for all X,Y € X(M) and ¢ € &(M). Furthermore,
(VxVy — Yy Vx) = iy + 3 RIX V), (33)

for all X,Y € X(M) and ¢ € &(M), in terms of the Riemann tensor R of g.



When required, we let {9, |p = 0,1,...,d — 1} denote a local coordinate basis on
X(M). The volume form on (M, g) is given by & = +1/[g[dz® Adz! A ... Adz?!, in terms
of the dual basis {dz* | =0,1,...,d—1} of differential forms on M. With respect to this
basis, the action of the Levi-Civita connection is defined by V,8, = I'},,9, in terms of the
Christoffel symbols

1 o}
FZV = igp (augzza + aug,ua - &79“1/) . (3.4)
Components of the Riemann tensor are given by
Ry = 0y 105 — 0,10, + T T0s = T0 T s (3.5)

and let R 5, = gpali®sur- The Ricci tensor has components R, = Rf,,, and the scalar
curvature is R = g"" R,,,.
Let {Ty,.. 4. |k =0,1,...,d} denote a basis for sections of the Clifford bundle C¢(T'M),

such that 1

T A VA (=), - Thgey - (3.6)
’ ocESk

for degree k > 0 (i.e. unit weight skewsymmetrisation of k distinct degree one basis el-
ements) and the identity element 1 for k = 0. Let {e};} denote the components of a
pseudo-orthonormal frame on (M, g). By definition, g,, = efjegnag, in terms of the canon-
ical Minkowskian metric 7 on R4~ Components {w,‘fﬁ } of the associated spin connection

are defined by the ‘no torsion’ condition de® +w®g Aef = 0. In component form, the action
of V on any ¢ € &(M) is given by

1
Vb = 0t + Wi Tagts . (3.7)

In terms of these basis conventions, the term R(X,Y) = 3X*Y"”R,,,,I'*° on the right
hand side of (3.3).

There always exists on &(M) a non-degenerate bilinear form (—, —) with the properties
(¥, ) = a(p, )
(X9, 0) =7(, X¢) (3.8)

X, ) = (Vxb,0) + (¥, Vxo)

for all ¥, p € (M) and X € X(M), with respect to a pair of fixed signs o and 7 (see [16,
67, 68] for more details). The possible choices for ¢ and 7 depend critically on both
d and the signature of g. The sign 0 = +1 indicates whether (—,—) is symmetric or
skewsymmetric. The third line in (3.8) says that (—, —) is spin-invariant. For d even, this

implies (T, ) = (=1)¥2(x), T'p). Whence,
(Y, p5) =0 if d=0mod 4
(Wi,04)=0 ifd=2mod4, (3.9)

for all ¢4, o4+ € &4+(M). To any pair 1, p € &(M), let us assign a vector field &, , defined
such that

9(X, Epp) = (¢, Xop) (3.10)



for all X € X(M). From the first two properties in (3.8), it follows that &, , = 07, 4, for
all v, p € 6(M) and X € X(M).

Now let the dual ¢ of any ¢ € &(M) with respect to (—,—) be defined such that
o = (1, ), for all ¢ € &(M). From any v, € &(M), one can define ¥p as an
endomorphism of &(M). Whence, it can be expressed relative to the basis (3.6), with
coefficients proportional to multi-vectors of the form @I'#1#kq). Such expressions are
known as Fierz identities, full details of which can be found in section 4 of [16].

The spinorial Lie derivative [69-72] along any X € €(M, [g]) is defined by

1
Lx =Vx+dX, (3.11)
where dX = (V,X,)T* .3 The spinorial Lie derivative (3.11) obeys

Lx(Vyt) = V(L) = iy + jdox A Yy
Lx(V9) ~ V(Lxv) = 0x Vi — S(d— 1)(Vox), (312)

for all X € €(M,[g]), Y € X(M) and ¢y € S(M). Moreover, for all X,Y € €(M,[g]) and
any w € R, using (3.11) and (2.3), it follows that

(,CX + waxl)(ﬁy + U)O'yl) — (,Cy + wO'yl)(,CX + w(fxl) = ‘C[X,Y} + ’w(T[X’y]l . (313)

Whence, the map X — Lx + wox1 defines on &(M) a representation of €(M, [g]).

With respect to a metric § = e*¥g in [g], compatibility with the Clifford relation (3.1)
requires that X = e“ X, for all X € X(M). Moreover, given any 1) € (M), ¥ = /24
defines the corresponding spinor field with respect to g. For w = %, the representation of
C(M,[g]) on S(M) defined by

A 1
EX:£X+§UX17 (3.14)

for all X € €(M, [g]), is known as the Kosmann-Schwarzbach Lie derivative. It is worthy of
note because only for this particular value of w does (3.14) define a conformally equivariant
operator on &(M), i.e. if g — e?*g then

Lx — ew/2ﬁXe_w/2 , (3.15)
for all X € €(M,[g]). The Penrose operator

1
PX:VX_EXVa (3.16)

acts on &(M) along any X € X(M). It is also conformally equivariant on &(M) and,
using (3.12), obeys
Lx(Pyy) —Py(Lxy) = Pxy)¥, (3.17)

for all X € €(M,[g]), Y € X(M) and ¢ € S(M).

3In a slight abuse of notation, we use the same symbol for a vector field and its dual one-form with
respect to g.



The subspace of conformal Killing (or twistor) spinors in &(M) is defined by
1
304,14 = { < (01 ] Viw = XVo, VX €X01) (3.18)

By construction, 3(M,[g]) = ker P and conformal equivariance of the Penrose operator
explains why the subspace (3.18) is assigned to the conformal class [g] rather than to the
particular metric g on M. Furthermore, (3.17) shows that 3(M, [g]) is preserved by the
action of the Kosmann-Schwarzbach Lie derivative (3.14). A key property of twistor spinors
is that they ‘square’ to conformal Killing vectors, in the sense that the vector field defined
by (3.10) is &y € €(M, [g]), for any ¥, € 3(M, [g]).

With respect to a particular metric in [g], any ¢ € 3(M, [g]) with éwp = A1), for some
A € C, is said to be Killing if A # 0 or parallel if A = 0. The non-zero constant A is called
the Killing constant of a Killing spinor .

Taking a derivative of the defining equation for any ¥ € 3(M, [g]) yields the following
conditions

d d
VxVi = §K(X)w , V) = —mfw, (3.19)

and combining (3.19) with (3.3) implies the important integrability conditions
1

for all X,Y € X(M), where K(X) = X'K,,T%, W(X,Y) = LX0Y"W,,,,T# and
C(X,Y)=X"Y"C,,,I'”, in terms of the basis conventions described above. The Schouten
tensor K has components

1 1
KHV = m (—R#V + Q(d_l)g,WR> . (321)

The Weyl tensor W has components
Wiwpo = Buvpe + 9ppKve = GupKuo = GuoKup + Guo K pup » (3.22)
and we define |[W|? = W, W#"??. The Cotton-York tensor C' has components
Cuwp=V, K,y —V,K,,, (3.23)

and we define |C|? = C,,,C**.

There are a number of classification results concerning the existence of twistor spinors
(with and without zeros) on (M,g) in different dimensions and signatures. It can be
shown that dim 3(M,[g]) < 2dim &(M) and, from (3.20), it follows that this bound is
saturated only if (M, g) is locally conformally flat. The classification in d > 3 of all local
conformal equivalence classes of Lorentzian spin manifolds which admit a twistor spinor
without zeros was established by Baum and Leitner [54-58]. Their results generalise the
classification in d = 4 obtained earlier by Lewandowski in [73] which established that any
Lorentzian spin manifold admitting a twistor spinor must be locally conformally equivalent
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to either a pp-wave, a Fefferman space or R*!'. In d = 3, any Lorentzian spin manifold
admitting a twistor spinor must be locally conformally equivalent to either a pp-wave or
R2?1. In d > 4, there are a few more distinct classes of Lorentzian manifolds which admit
a non-vanishing twistor spinor (see [16] for more details). Any such geometry is locally
conformally equivalent to either a Lorentzian Einstein-Sasaki manifold (if d is odd) or
the direct product of a Lorentzian Einstein-Sasaki manifold with a Riemannian manifold
admitting Killing spinors.

4 Lie superalgebras

A real Lie superalgebra consists of a Zs-graded real vector space S (with even part S5 and
odd part S7) that is equipped with the following additional structure.
A real bilinear map [—, —] : § x & — S which respects the Zs-grading such that

[Sp,So] € Sp [Sp, 1) C S, [S1,51] C Sp - (4.1)
For all u,v € § and «, 5 € Sy,

[u,v] = —[v,u], [u, o] = —[a,u], [, B] = [B,a] . (4.2)

Since [—, —] is symmetric bilinear on Sj, [St, i is defined by specifying [«, o] € S for all
a € 81 (i.e. via polarisation, any [, 8] = L ([a+ B, + B8] — [, ] — [B, B])).
Furthermore, S is subject to a Jacobi identity which constrains

for all u,v,w € S and «, 3,7 € S;. The first three conditions in (4.3) have a simple
conceptualisation. The first condition says that Sg must be a real Lie algebra (i.e. it is the
Jacobi identity for Sg). The second condition says that S; must be a real representation of
Sp. The third condition says that the map [—, —| : S x S§ — Sy must be Sz-equivariant.
Notice that the fourth condition is symmetric trilinear on S and therefore equivalent, via
polarisation, to demanding [[a, a],a] = 0, for all « € Sj.

If [S7,S7] = 0 then clearly the third and fourth conditions in (4.3) are identically
satisfied and a real Lie superalgebra S is defined by any real Lie algebra Sz with real
Sp-module S7. We shall call S proper if [St, St] # 0. If [Sg, Si] = 0 then the second and
fourth conditions in (4.3) are identically satisfied. Consequently, S is then a proper real
Lie superalgebra only if [S7,S7] C Z(Sp) for a given real Lie algebra S with non-trivial
centre Z(Sj).

The proper real Lie superalgebras S we shall encounter in forthcoming sections all have
Z(8p) non-trivial, dim [S7, St] = 1 and dim S; < 2. To facilitate their description, consider
the following setup. Let h be a real Lie algebra with ideal € <h such that dim (h/¢) = 1 and
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Z (%) is non-trivial. Let v be a one-dimensional real Lie algebra. Now define S5 = b @ ¢, as
a real Lie algebra with [h,t] = 0, and let dim S = 2. With respect to a choice of non-zero
elements z € Z(¢), h € h/t and r € t, and a choice of basis {«, 8} on S, we define the
[Sg, S7| brackets

ko] =0, K.8]=0, [al=jga, hfl=36, [hal=—6, [fl=a, (4
for all k € ¢, and the [S7, S7] brackets

lova] = [8,8] =2, [0,8]=0. (4.5)

It follows that the Jacobi identity (4.3) is satisfied for this choice of brackets on S provided

[h, 2] = = . (4.6)

Taking (4.6) as part of the definition, the isomorphism class of the proper real Lie super-
algebra S described above will be written Sy'(h|v).

A more succinct form of (4.4) and (4.5) that will often be more convenient to use in
the forthcoming discussion is given by

1 . *
[k,ac] =0, [h,ac] = 50[@ , [rac)=tac, |ac,ac]=0, [ac,ap]=2z, (4.7)

for all k£ € ¢, in terms of ac = a+if (and af = a—1i3). Of course, despite the appearance
of the complex element ag, this still encodes the same real Lie superalgebra S5'(h]t).

The Lie superalgebra S3'(h|t) contains several ideals and subalgebras that are worth
naming, since they will also feature in the subsequent discussion. Let us define their
isomorphism classes via the omission of certain combinations of the elements h € h/¢, r € ¢
and S € S which figured in the construction above:

o S5(¢|v) < S5'(hlr) is defined by omitting h € b/¢.

e S5'(h) < S5'(h|e) is defined by omitting r € t.

e S5(¢) < S5'(h|) is defined by omitting h € h/t and r € t.
e S57(h) < 85'(h) is defined by omitting 5 € Sj.

e S7(¢) < S5'(h) is defined by omitting 5 € S; and h € h/¢.

Notice that the subscript in each of the proper real Lie superalgebras above denotes the
dimension of its odd part. In the conformal symmetry superalgebras we shall encounter, t©
will be represented by an abelian R-symmetry while b (and €) will typically be represented
by homothetic conformal Killing vectors (and Killing vectors).
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d 3 4 4 ) 6
Type R C C H H

R s0(A) u( A #£4) su(4) sp(1) sp(A)
Smax | 0sp(A|4) | su(2,2|4 #4) | psu(2,2]4) | §(4) | osp(6,2]|4)

Table 1. Generic conformal symmetry superalgebra data for Lorentzian (M, g).

5 Conformal symmetry superalgebras and gauged R-symmetry

A certain class of pseudo-Riemannian spin manifolds which admit a twistor spinor may
be equipped with a proper real Lie superalgebra structure that we refer to as a conformal
symmetry superalgebra [16, 17]. A conformal symmetry superalgebra S contains conformal
Killing vectors and constant R-symmetries in its even part S5 = B and twistor spinors
valued in certain R-symmetry representations in its odd part S7 = F.

Let R denote the real Lie algebra of R-symmetries. On any background (A, g) that
admits a conformal symmetry superalgebra S, the even part B = €(M, [g]) & R, as a real
Lie algebra. The action of B on F which defines the [B, F| bracket of S involves the action
of €(M,[g]) on 3(M,[g]) defined by the Kosmann-Schwarzbach Lie derivative (3.14) and
the action of R defined by the R-symmetry representation of F. The €(M, [g]) part of the
[F, F] bracket of S involves pairing twistor spinors, using the spinorial bilinear form in (3.8)
to make a conformal Killing vector (3.10), and projecting onto the R-invariant part.

The type of spinor representation must be compatible with the type of R-symmetry
representation in order to define F as a real B-module. This puts restrictions on R accord-
ing to the dimension d of M and the signature of g. In Lorentzian signature, the critical
data is summarised in table 1. Entries in the ‘Type’ row in table 1 denote the ground field
K over which the representation of R is defined. The dimension over K of this representa-
tion is denoted by .#". Entries in the ‘Syax’ row of table 1 denote the conformal symmetry
superalgebra & 2 Syax that is realised only when (M, g) is locally conformally equivalent
to Minkowski space.

If there exists a R(M, g)-invariant subspace F, C F such that the €(M, [g]) part of
[Fo, Folisin R(M, g) < €(M,[g]) then the background (M, g) can be assigned the symmetry
superalgebra So = Bo @& Fo, where B, = K(M,g) ® R.

Consider now the gauging of R-symmetry in the construction above. This amounts
to promoting a given R-module to a non-trivial vector bundle that is equipped with a
connection A. Locally, elements in F now correspond to spinors on (M, g) that are valued
in sections of this vector bundle. By replacing all occurrences of the Levi-Civita connec-
tion V with the gauged connection D = V + A (i.e. in the Kosmann-Schwarzbach Lie
derivative (3.14) and the Penrose operator (3.16)), the construction is made manifestly
equivariant with respect to the gauged R-symmetry.

Following this prescription for a given conformal symmetry superalgebra S implies
that each € € F obeys a twistor spinor equation

1
Dxe = 8XD€, (5.1)
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with respect to the gauged connection D, for all X € X(M). For any € € F, let =, denote
the component of [e, €] in €(M, [g]). That =, indeed remains a conformal Killing vector after
gauging the R-symmetry follows directly from (5.1), using the fact that =, is R-invariant.

The action of €(M, [g]) on F is of the form
[X,E]:ﬁxe+(AX+px)-6, (52)

for all X € €(M,[g]) and € € F, in terms of some R-valued function px on M. Generi-
cally, (5.2) is not in F since [X, €] does not obey the twistor spinor equation (5.1). However,
this property does follow if

txF = Dpx, (5.3)

for all X € €(M,]g]), where F = dA + A A A denotes the curvature of D.* For any
X,Y € €(M,[g]) which obey (5.3), [X,Y] € €(M,[g]) also obeys (5.3) with

pixy] = F(X,Y) + Dxpy — Dypx + [px, py] - (5.4)

The condition (5.3) ensures not only that [B, ] C F but also that the [BBF] and [BF.F]
components of the Jacobi identity (4.3) for S remain satisfied. Furthermore, [F,F] C B
and the [FFF] component of the Jacobi identity for S remains satisfied as a consequence
of manifest equivariance with respect to the gauged R-symmetry. Thus, § remains a Lie
superalgebra after gauging the R-symmetry provided (5.3) is satisfied.

We can summarise this result more explicitly by introducing a local basis {e;} for
sections of the relevant R-symmetry vector bundles. At each point x € M, {e;} defines a
basis for an R-module V' of precisely the same type as in [16, 17]. In particular, we recall
from table 1 that V' is orthogonal (type R) in d = 3, Hermitian (type C) in d = 4 and
symplectic (type H) in d = 5,6. In the orthogonal (or symplectic) case, V is equipped
with a non-degenerate symmetric (or skewsymmetric) R-invariant bilinear form that we
will call h (or w). With respect to a basis {€‘} on the dual module V* (defined such that
el(e;) = 5;), we identify e; = h;je’ in the orthogonal case (where h;; = h(e;, e;)) and
e; = w;je’ in the symplectic case (where w;; = w(e;, e;)). In the Hermitian case, e; and e’
are related by complex conjugation.

With respect to the basis above, a typical element € € F, subject to (5.1), is of the form

e'e; ifd=3,5
€= eﬁrel- +e_;et ifd=4 (5.5)
e e ifd=6,

“In fact, it is sufficient that ®x(Y) e = 1Y ®x - ¢, for all X € €(M,[g]), Y € X(M) and € € F, where
®x = 1xF — Dpx. Generically this condition is weaker than (5.3) but is equivalent to it for all the cases
of interest here.
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where the components € € &(M) if d = 3,5, €, = (e_;)* € &.(M) if d = 4 and
€' € &4 (M) if d = 6. The element =, € €(M, [g]) is defined such that

hij giXGj ifd=3
2¢. Xe_; ifd=4
wij giXEj ifd=5
wij e, Xe, ifd=6,
for all X € X(M) and € € F. For any ¢ € &(M), we recall that 1) = (1), —) denotes its dual

with respect to an admissible spinorial bilinear form (—,—) on &(M) (defined in (3.8)).
The associated element p=z, € C*°(M) ® R is defined such that

(2 . . . .
g(EZDeJ — @ De)hy ok ifd=3
o ) (€, De_; — € ;De )y — i(é}Dfﬂ‘ —e ;D )yl ifd=4 57
r= N %(EiDej + ngEi)wkj¢k ifd=5 |
|26, De, + €, Del s if d=6.

for all €,¢ € F.
In terms of the data above, our result is that the assignment of a linear map p :
€(M,[g]) = C°(M) ® R which obeys (5.3) is sufficient for the brackets

(X,e] = Lxe+ (Ax +px)-€, e € =5, (5.8)

on the Zgy-graded vector space €(M, [g]) @ F (for all X € €(M,[g]) and € € F) to define a
Lie superalgebra. Notice that the condition (5.3) does not involve elements in the image
of p that are in the kernel of D. Indeed, if we define

R={Re(C®(M)®R|DR=0}, (5.9)
as a real Lie algebra, then by appending to (5.8) the bracket
[R,e]=R-e, (5.10)

for all R € R and € € F, it follows that the Zs-graded vector space S = B & F, with
B = ¢&(M,g]) ® R, is also a Lie superalgebra. Elements in R here generalise the constant
R-symmetries in the ungauged construction of [16, 17].

Taking X = =, in (5.3), for all e € F, typically constrains the form of F' because p=,
is prescribed by (5.7). If F = 0, one can choose a gauge such that S recovers the form
it took before gauging the R-symmetry. In Lorentzian signature, one finds that (5.3) is
satisfied identically (with F' # 0) for all conformal Killing vectors in [F, F] only if d = 3
with R = s0(2) or d = 4 with R = u(1). Notice that these are the only two cases in table 1

~15 —



where R is abelian. It follows that FF = dA and Dpx = dpx in (5.3), which is the local
characterisation of
LxF =0, (5.11)

for all X € €(M,[g]). Furthermore, it is precisely for these two cases that the data
(g, A) describes the full set of bosonic fields in an off-shell conformal gravity supermultiplet
and (5.1) is the defining condition for bosonic supersymmetric vacua. The structure of
field theories with rigid supersymmetry on such backgrounds has been explored recently
in [6, 8, 15, 27].

6 d=3

6.1 Null triads

Let (&,6,x) denote a null triad of real vector fields on (M, g), subject to the defining

relations
1617 = 161" = 96, x) =9(6,x) =0,  g(&,0) =IxI"=1. (6.1)

The relations (6.1) are preserved under the following transformations (which collectively
generate O(2,1)):

e (&0,x) — (0,&x)
i (5797X) = (579 —ax — %a2€7>< + Oéﬁ), for any o € R.
o (£,0,x) = (BE 710, £x), for any 5 € R\{0}.

It is convenient to use the null triad to express the metric and volume form on M as
g=E(ER0+00E6+Xx® X, e=ENONYX. (6.2)

6.2 Majorana spinors

The Clifford algebra C/(2,1) = Mata(R) & Mata(R) has two inequivalent irreducible rep-
resentations, each isomorphic to R?, which are both identified with the unique irreducible
representation of C¢9(2,1) = Maty(R) after restricting to Spin(2,1). This restriction de-
fines the Majorana spinor representation.

Relative to the basis conventions (3.6), Hodge duality in the exterior algebra implies

L =euwI?, Lup=cempl, (6.3)

on Majorana spinors.
The bilinear form (3.8) on &(M) is unique and skewsymmetric. For all 1, p € &(M),
it follows that

Yo=-9¢,  YLup =9l (6.4)

and the associated Fierz identity is given by

¥ = 5 (@)1 + @I )T,) (65)
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In terms of a unitary basis for C¢(2, 1), all the quantities above are manifestly real.
For any € € §(M), let us define the real vector field

B =¢€T"e . (6.6)

We shall assume henceforth that & is nowhere vanishing, which is so only if € is nowhere
vanishing. Furthermore, using (6.5), it follows that & = 0. Consequently, &, is null.
For any €,¢’ € &(M), let us also define

(=€, Kk =€ . (6.7)

The scalar x vanishes identically only if € and €' are linearly dependent. We shall assume
henceforth that x # 0. Using (6.5), it follows that

€. = —2Ce = 2ke . (6.8)

Thus, & and & are both null while ( is spacelike, with

o = 2 = —SgEne) 960 Q) = 9lEn, Q) =0 (69)

It is sometimes convenient to identify (6.6) and (6.7) in terms of the null triad intro-
duced in section 6.1, such that

=6, —ne=0, wC=x. (6.10)

In terms of this identification, €’ = k@e. Since (e, €’) define a basis of Majorana spinors, it
follows that any ¢ € G(M) can be written

1 = ae + BO¢e, (6.11)
where o« = €01 and 8 = €.

6.3 Causal conformal Killing vectors

The action of the Levi-Civita connection V on the null triad one-forms is constrained by
the relations (6.1) such that

v,ugu = pufv —quXv
V0, = —puby +ruxu (6.12)
v,qul = _Tugu + Q,ueu )
in terms of three real one-forms (p, q,r).
Given any X € X(M) with | X|? = 0, using the transformations below (6.1), one can

always define a null triad such that X = ¢£. From the first line in (6.12), it follows that £
is a conformal Killing vector only if

po=qe =0, Pe = —2qy , Py = q6 - (6.13)
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The conformal factor (2.2) for £ € €(M,[g]) is o¢ = gy. The condition g¢ = 0 in (6.13) is
equivalent to { Ad¢ = 0. If ¢ is a Killing vector then (6.13) are satisfied with o¢ = ¢, =
0 = pe. If § is V-parallel then p = g = 0.

Identifying & = & as in (6.10) implies

V€= %(pue — g, 0¢) . (6.14)
It follows that (6.13) are in fact necessary and sufficient for ¢ € 3(M,[g]). Since € €
3(M,[g]) implies & = & € €(M, [g]), clearly (6.13) are necessary for any € € 3(M,[g]). The
point is that, at least locally, the existence of a nowhere vanishing null conformal Killing
vector is actually equivalent to the existence of a nowhere vanishing Majorana twistor
spinor [8]. Furthermore, if & is a Killing vector then e is necessarily a Killing spinor (with
Killing constan —%qg). If & is V-parallel then € is necessarily also V-parallel.

Given any X € X(M) with | X|? # 0, using the transformations below (6.1), one can
always define a null triad such that X = £+ 1| X[?6. If [ X[? < 0, let | X |* = —4x? so that
X = ¢ — 2k%0. From the first two lines in (6.12), it follows that X is a conformal Killing
vector only if

pg =0, qe + 2/@27"5 = Q(Hsz - X/<&2) , Pe — 2092 = —2(gy + QHQTX) ,

Py = Qo + 2K%7p K2pe = Oek? . (6.15)
The conformal factor ox = —9dx(lnk). If X is a Killing vector then (6.15) are satisfied
with Pe = 2(99/4,2.

Let us now identify the non-zero scalar k above with its namesake in (6.7). Identifying
¢=¢ and 0 = —1k72¢ asin (6.10) then implies X = £ —2k2%0 = & +&. Let us name this
timelike vector field = = & + £, with |22 = —4x2. With respect to the aforementioned
identifications, it follows that

1 _
V€= i(pue — K 1que/)

1
V€ = —krye— i(p” + 9u(Ink))e . (6.16)

If = is a conformal Killing vector then
d(k728) = =k 3p=+E, (6.17)
where
pz = 2(0yKk — KDy) - (6.18)
Thus EANd= =4kp=E& A O A x is zero only if p= = 0.
6.4 Charged twistor spinors

Consider now the implications of the existence of a charged twistor spinor, which can be
thought of locally as a pair of Majorana spinors (¢, €) both obeying (5.1) with respect to
the action of the R = s0(2) gauged connection

Dye =V e+ Aue’
Dy = Ve — Aye . (6.19)
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An equivalent version of (6.19) follows by taking the real and imaginary parts of D, ec =
Vec — 1A ec, where ec = € + i€/. Because (e, €') transform as a 2-vector under so(2),
ec = € + i€’ has unit charge under u(1) = so(2).

The first consequence of (6.19) is that the timelike vector field = = &+ & € €(M, [g]).
Thus, using (6.16), one finds that the five conditions in (6.15) are necessary in order for
(€,€) to define a charged twistor spinor with respect to D. The remaining three conditions
which come from the twistor spinor equation for (e, €') are precisely sufficient to fix all three
components of A, such that

1
A, = —kKro€, + 5/-{_1%9# + (Ogk — KTy )X » (6.20)

in terms of the identifications in (6.10).

Thus we conclude that if (M, g) admits a nowhere vanishing everywhere timelike con-
formal Killing vector X, then there must exist a nowhere vanishing charged twistor spinor
pair (e,€) on (M,g), with X = =, that is defined with respect to the gauged connec-
tion A in (6.20). This characterisation of charged twistor spinors on a smooth orientable
Lorentzian three-manifold was first obtained in [15].

Using (6.20), the twistor spinor equation for (e, €’) implies that the real function

2
=3

is identical to its namesake in (6.18). Moreover, it follows that

p (eDé' — € De), (6.21)

LEF = dpE y (6.22)

so (5.3) is satisfied identically for X = =.
Differentiating the defining condition (5.1) with (6.19) gives
2 -
gD#De@ =K, ITWec — i(F,, T — F,1)ec, (6.23)

where F, = 1¢,,,F"?. Combining (6.23) with (3.3) implies the integrability condition

iCplPec = 2V, Fy1 + VEFu)ec + £ (Ful — F|,T,))(p=1 + 2Vk)ec, (6.24)
using the identity
4
3 Dec = k1 p=1 +2Vk)ec . (6.25)

It is convenient to define CN’W = %EMPUCPW in d = 3. From the definition of the Cotton-
York tensor (3.23), it follows that C’W = ~,,M, C’M,,g’“’ =0 and V“C’W = 0 identically. An
equivalent, but somewhat more wieldy, form of (6.24) is given by

_ _ 5 3 _ 1 -
iCuwIec = k1 <(pEF# —VY(kFu))1+KkVE, +2F#V/f+2F”(8[Mn)FV] — 2pEF”I‘W> €C .

(6.26)
From (6.26), it follows that

1. -
5CwE” = p=F, = V"(kFuw) . (6.27)
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6.5 Conformal symmetry superalgebras

Let (M, g) be any smooth orientable Lorentzian three-manifold equipped with a nowhere
vanishing causal conformal Killing vector X and a €(M, [g])-invariant closed two-form F.
As we have explained, any null X € €(M, [g]) defines a nowhere vanishing twistor spinor e
(with X = ¢ = &) while any timelike X € €(M, [g]) defines a nowhere vanishing charged
twistor spinor pair (e,€) (with X = = = £ + &) that is charged with respect to the
connection A in (6.20) whose curvature is F' = dA. From section 5, we recall that this data
is sufficient to assign to (M, [g]) a conformal symmetry superalgebra S with trivial R for
null X or gauged R = s0(2) for timelike X.

6.5.1 Null case

If (M, g) admits a nowhere vanishing conformal Killing vector £ that is everywhere null then
it is locally conformally equivalent to a pp-wave or R%>!. We shall assume henceforth that
(M, g) is not locally conformally flat. The general form of the three-dimensional pp-wave

metric is
Gpp = 2dudv + H(u, z)du? + dz?, (6.28)

in terms of Brinkmann coordinates (u,v,z) on M, where H is an arbitrary real function
of (u,z). In these coordinates, £ = 0, is a null Killing vector of (M, gpp). It is often
convenient to adopt the notation ' = 9,.

The only non-trivial component of the Riemann tensor of gpp is Rygus = —%GgH .
Whence, (M, gpp) is flat only if H is a linear function of . The only non-trivial component
of the Ricci tensor of gp, is Ryy = Ruzue and the scalar curvature R = 0. The only
non-trivial component of the Cotton-York tensor of gpp is Cygpy = —%BEH whose scalar
norm-squared |C|? = 0. Thus, (M, gpp) is conformally flat only if H is a quadratic function
of z. Since we are concerned with geometries that are not conformally flat, we shall assume
henceforth that (M, gpp) has 92H # 0.

Any X € (M, [gpp]) must be of the form

V% Tx

X =vx0y + (ax — Byz — TxQ +2cxv)0y + (Bx + (7 +cx)x)0y, (6.29)

in terms of three real functions (ax, Sx,vx) of u and a real number cx which obey

1 /
2ax — Bz — BEa?) + (yxHY = 2exH + (Bx + (5 + ex)a)dH =0 (6.30)
The conformal factor is ,
ox = —%X —ex . (6.31)

The expression (6.29) shows that the Lie bracket of the generic null Killing vector &
with any X € €(M, [gpp)) is given by

€, X] = 2ex€ . (6.32)

Whence, the real line spanned by & forms a one-dimensional ideal of €(M, [gpp]). Clearly
€ is in the centre Z(C€(M, [gpp])) of €(M, [gpp)) only if every X € €(M, [gpp]) has cx = 0.
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If £ ¢ Z(C€(M, [gpp))) then at least one X € €(M, [gpp]) must have cx # 0 and every other
Y € €(M,[gpp]) can be taken to have ¢y = 0 (i.e. if Y € €(M, [gpp]) has ¢y # 0 then
Y=Y - 22X €M, |gpp)) has cy = 0).

The condition (6.30) indicates that the existence of an extra conformal Killing vector
(in addition to §) puts constraints on the function H. If dim €(M, [gpp]) = 2, one can fix
vx = 1in (6.29), (6.30) and (6.31) with respect to a conformally equivalent metric via

u /duQQ(u) , Vv — %xzﬁ_lﬁuﬁ , e Qr, He Q72(H - 22002071,

(6.33)
if it is possible to identify Q2 = 'y;(l. In this case, X is homothetic with respect to 'y;(l 9pp>
with conformal factor —cx. Whence, from (6.32), X is a Killing vector only if [{, X] = 0,
in which case (6.30) fixes

H = —2ax — 8% + 28a + f(—2 + /du By), (6.34)

in terms of any real function f of one variable whose third derivative is not zero. A similar,
but more complicated, expression for H emerges when cx # 0.

Since |C|? vanishes identically on (M, gpp), it cannot be used to define a conformal
scalar. However, the fact that the Lie derivative of C' along any conformal Killing vector X
is zero implies that Ox Cyuzpy = — (20, X" 4+ 0; X*)Cugu o0 (M, gpp). Using (6.31), this gives
Ox Cyzu = (box + 4cx)Cyay for any X € €(M, [gpp)). Consequently, if & € Z(E(M, [gpp))),
then ¢ = 93H is a proper conformal scalar with p, = 5 and €(M, [gpp)) is conformally
isometric. If & ¢ Z(&(M, [gpp))) then (M, gpp) admits a proper conformal gradient with
¢ = +InO2H and sy = —%Cx, in which case (M, gpp) is conformally homothetic. In
both cases, the isometric/homothetic action of €(M, [gpp]) is with respect to the metric
(02H)?/° g, on M (which need not be locally isometric to a pp-wave).

If 2 < dim€(M,[gpp]) < 4, we have seen above that the structure of (M, [gpp))
depends critically on whether or not ¢ € Z(€(M,[gpp])). If &€ € Z(E(M,[gpp])) then
C(M, [gpp)) = R(M,g) (i.e. conformally isometric). This requires the existence of a
Lorentzian three-manifold (M, g) with 2 < dim (M, g) < 4 which admits a non-zero null
&€ Z(R(M,g)). The classification, up to local isometry, of all three-dimensional Lorentzian
geometries with Killing vectors is due to Kruckovié [63] (see also section 5 in [61]). Any
Lorentzian three-manifold (M, g) in [63] that is not conformally flat and admits a non-
zero null £ € Z(R(M,g)) must have dim R(M,g) < 3. If dim R(M, g) = 2 then one can
choose local coordinates (u,v,z) on M such that (0y,& = 9,) € R(M,g) = R? and, for
some positive function 2 of x, g = Q(x)gpp in terms of the pp-wave metric gpp in (6.28) of
the form

2dudv + H(z)du? + da?, (6.35)

with 93H # 0.

If £ ¢ Z(€(M,[gpp])) then €(M, [gpp]) = H(M,g) (i.e. conformally homothetic) and
¢ € Z(R(M,g)). Just as in the previous case, R(M,g) = R? is the only option if
dim €(M, [gpp]) > 2 (we have already covered the dim €(M, [gpp]) = 2 case above). Clearly

- 21 —



H 0 [9,0.] ¢(M, [gpp))

b+ ce® uOy — (v + bu)dy — 20, —0y + b0, b[VI]
b—2clnzx —u0y, — (v + cu)dy — x0, Oy + Oy b[IV]
b+ca2(65) | —audy, — (v — L(a—1)bu)dy — L(a+ 1)zdy | ady— Sa—1)b3, | B[VI]

Table 2. Data for geometries with dim €(M, [gpp]) = 3.

dim €(M, [gpp]) = 4 is impossible since dim (M, [gpp]) = dim H(M, g) = dim K(M, g) + 1.
The only remaining option is dim €(M, [gpp]) = 3. Since the homothetic action of
C(M, [gpp]) is with respect to g = (93H)?/°gpp,, where gy, is of the form (6.35), the
proper homothetic X € $H(M,g)/R(M,g) obeys Lxg = %cxg and [, X] = 2¢x€ with
cx # 0. The non-zero value of cx is irrelevant and it is convenient to work in terms of
U= —ﬁX € (M, g)/R(M,g) which has cy = —3. Solving Lyg = —2g and [9,£] = ¢
yields three inequivalent classes of solutions for H and 1 which are displayed in table 2.
The parameters a € R\{0,+1,1}, b € R and ¢ € R\{0}. For the functions H in table 2, ¥
is homothetic not only with respect to g = (95 H)?%/ % gpp but also with respect to gpp (albeit
with a different constant conformal factor). For H = b+ ce”, ¢ is a Killing vector with
respect to gpp and (M, gpp) is homogeneous. In the other two cases, ¥ is a Killing vector
with respect to 7 2gpp.

For each geometry in table 2, it follows by direct calculation that the associated con-
formal symmetry superalgebra S is defined by the following common non-zero brackets

9.0=¢, Wd=jze, lod=¢ (6.36)

in terms of a (suitably normalised) parallel spinor € € F on (M, gpp), together with the
bracket [¢, d,] displayed in the third column of table 2. Consequently S = S (€(M, [gpp))),
in terms of the notation defined in section 4 (identifying ¥ = h and { = z). Entries in the
rightmost column of table 2 denote the isomorphism class of B = €(M, [gpp]) in terms of a
three-dimensional indecomposable real Lie algebra in the Bianchi classification [77]. Up to
isomorphism, there exists a basis {ej, €2, e3} such that the Lie algebra

e b[VIy| has non-zero Lie brackets [e;, e3] = ea, [ea, €3] = €.
e b[IV] has non-zero Lie brackets [e1, e3] = e1, [e2, e3] = e2 — e;.
e b[VI] has non-zero Lie brackets [e1, e3] = ea + aey, [e2, e3] = e1 + aes.

For b[VI], each positive real number a # 1 corresponds to a distinct isomorphism class.
The class b[VIp] corresponds to the Poincaré algebra of R1:!.
6.5.2 Timelike case

Let us now assume that (M, g) admits a nowhere vanishing conformal Killing vector =
that is everywhere timelike. As we have explained, this data defines a nowhere vanishing
charged twistor spinor pair (e, €') such that = = & +&. We shall also insist that the closed
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¢ ONVCW éuvéypép“ uF“ C'MVF“F” F“C'WC’”PFP

ps| 6 9 4 7 10

Table 3. Some proper conformal scalars.

two-form F' = dA defined by (6.20) is €(M, [g])-invariant so that we may assign to (M, [g])
a conformal symmetry superalgebra S.

If F =0 then locally A = d\ and the charged twistor spinor pair (e, €’) is equivalent
to a pair of ordinary twistor spinors (cos Ae + sin A€/, —sin Ae + cos A €’). Since € and €
are linearly independent, clearly F = 0 implies (M, g) must be locally conformally flat.’
In that case, €(M, [g]) = s50(3,2) = sp(4,R) and S = osp(2[4) (i.e. the A =2, d = 3 case
in table 1). We shall assume henceforth that (M, g) is not locally conformally flat so both
the Cotton-York tensor C' and the two-form F' are not identically zero.

For any X € €(M,[g]), LxC =0 and LxF = 0 while LxC =0xC and LxF = oxF
since Lxg = —20xg. Any non-zero scalar built from C, F and g therefore defines a
conformal scalar ¢ (with weight pg4). Five different options are displayed in table 3. If just
one ¢ in table 3 is nowhere vanishing then €(M, [g]) is conformally isometric. Conversely,
let us examine what happens if all ¢ in table 3 are identically zero.

In this case, F' defines a non-zero vector field that is everywhere null with respect to
g. As such, at least locally, there must exist a null triad (}3’ ,G, H) such that

9w = 2F, G,y + H,H, . (6.37)

Using C’MVF“F” = 0, it follows that F”CN'WC'VPFP = 0 implies C’WF“H” = 0. Moreover,
C’MVC'“” =0 and C’ul,g“” = 0 then imply C'WF” =0 and C’MVH“H” = 0. Therefore

Cu = oF,F, +28F,H,), (6.38)

in terms of a pair of real functions « and S which are not both zero. The form of the
Cotton-York tensor in (6.38) further implies that CN’WCN'”/)C'W vanishes identically. Now
taking Lx of (6.37) and using Lxgu, = —20xgu, and EXI*:’M = JXFN implies that

,CxGu = _SUXGM +vxH, , LxH, = —’yxﬁu —oxH,, (6.39)

in terms of some real function vx, for all X € €(M,[g]). Taking Lx of (6.38) and using
L XC’,W = UXC'W together with the expressions above yields

Oxa=—oxa+2yxp, oxB=o0xp, (6.40)

Conversely, if (M, g) is locally conformally flat, the integrability condition (6.26) does not imply F' = 0.
In this case, in terms of the conformally equivalent metric § = £~ 2g, (6.26) just states that the one-form
*F defines a Killing vector with respect to g and obeys d%F = —p=F. However, since €(M, [g]) = s50(3, 2),
it is the condition (5.11) that fixes F' = 0. Of course, if (M, g) is locally conformally flat and admits a
non-zero (M, g)-invariant F' which solves (6.26), one can define an associated symmetry superalgebra by
restricting to R(M, g) < s0(3,2), as was done for a number of examples in [15].
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Class | f a k l R(M,g)
v4 1 1 Or — YOy Y0, — 20y + L(2? — y?)0, [X]
IV.5 | e | #+1 Dy — YOy YOy + 2(e™2 —y2)0, — ae™"0, | R b[VII]]
IV.6 | sinz - cosy Oy — :Eg (cosz Oy + ady) | —siny 0, — To¥(cosx 9y + ads) | R @ b[IX]

Table 4. Data for geometries with dim €(M, [g]) = 4.

for all X € €(M,[g]). Whence, if 8 # 0 then ¢ = 3 defines a proper conformal scalar with
pe = 1. If 3 = 0 then ¢ = o defines a proper conformal scalar with ps = —1. Thus we
have proved that €(M, [g]) is always conformally isometric in the timelike case.

This fact means that we may choose a representative metric g in [g] for any admissible
geometry such that €(M, [g]) = K(M, g). By definition, the geometry (M, g) is therefore
stationary because it is equipped with a timelike Killing vector Z. It is convenient to
express the stationary metric

g=—4’w@w+h, (6.41)
in terms of the one-form @ defined by @(X) = —;5¢(E,X), for all X € X(M). By
construction, t=ww = 1 and 1=zh = 0 since |Z|? = —4x%. It follows that Lzww = 0 while

0=k = —o=k = 0 and Lzh = —20=h = 0 because oz = 0. If dw = 0 then (M, g) is static,
which occurs only if Z A d= = 0. Thus, from the observation below (6.18), (M, g) is static
only if p= = 0.

Any admissible geometry with dim €(M, [g]) = 4 must be locally conformally equiv-
alent to one of three Lorentzian geometries of class IV in [63] that is not conformally
flat. All three of these class IV geometries are stationary and, when expressed in the
form (6.41), have

2w =dt +w(z)dy,  h=dz? + f(z)?dy?, (6.42)

in terms of local coordinates (t,z,y) on M, for particular pairs of functions w and f that
are related such that O,w = af, for some non-zero real number a (the precise data is
displayed in table 4). This identification fixes = = —2x0; with x constant. The associated
null triad one-forms are

1
E=rldi+(wrdy), O=—g(dt+w=[dy), x=dz. (6.43)
The volume form (6.2) is € = —fdt A dx A dy. The action of V on (6.43) can be defined

via the triple of one-forms (p, g, r) in (6.12), which are given by

1.
Pe=po=ax=r =0, @=-re=5f 10, f,

1

=a, quﬁ'z(a—i_filaxf) ) re =

: L a0 (6.44)

Px = 4k

Comparison with (6.15) confirms that = is indeed a Killing vector. Moreover, from (6.18),
p= = —2kpy = —ka. Whence, none of the three class IV geometries is static.
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Class P pL S

IV.4 —1y —1@? +y?) SS(¢[X]|R)
IV.5 (1 —a®)ye® 1(1—a®)(y%e® +e7) | SS(RIR) & b[VILI]
IV.6 | —1(1+a?)sinasiny | —1(1+a?)sinzcosy | SS(R|R) & b[IX]

Table 5. Conformal superalgebra data for geometries with dim €(M, [g]) = 4.

Substituting (6.43) and (6.44) into (6.20) yields

1 1
A= (dt + wdy) + iaxfdy . (6.45)

Whence, F = dA = £(02f — a®f)dz A dy. Furthermore, substituting (6.43) and (6.44)
into (6.16), and using (6.45), implies the gauged connection in (6.19) is given by

1
Dy =8~ 7al, . (6.46)
The identification Z = £, +&» = —2k0; and k = €’ implies ¢ = I'ye. Moreover, ec = e+ile

is a charged twistor spinor with respect to (6.46) only if € is constant.

For each of the three Lorentzian geometries of class IV defined by table 4, there are
four Killing vectors (0, 9y, k,1) € R(M, g), with 0; € Z(R(M, g)). Entries in the rightmost
column of table 4 denote the isomorphism class of &(M, g) in terms of a four-dimensional
real Lie algebra, within the classification scheme of [77, 78]. Up to isomorphism, there
exists a basis {ey, ea, e3, e4} such that the Lie algebra

e ¢[X] has non-zero Lie brackets [e2, es] = e1, [e2, e4] = —es, [e3, es] = ea.
e R @ b[VIII] has non-zero Lie brackets [e1, es] = —es, [e1,e3] = —ea, [e2,e3] = €.
e R @ b[IX] has non-zero Lie brackets [e1, ea] = es, [e1, e3] = —ea, [e2, €3] = €;.

The classes b[VIII] and b[IX] correspond respectively to the simple real Lie algebras so(2, 1)
and so(3).

In each case, using (6.45), it is straightforward to check that the condition LxF = 0
from (5.11) is satisfied identically, for all X € K(M, g). Consequently, the locally equivalent
condition tx F' = dpx from (5.3) defines each function px in (5.2), up to the addition of
an arbitrary constant.® We have already noted that p= = —ka while, up to an arbitrary
constant, py, = %(aw — 0, f). For the remaining Killing vectors k and [, the non-constant
parts of pr and p; are displayed in table 5. Using this data, it is straightforward to compute
the associated submaximal conformal symmetry superalgebras S, which are displayed in
the rightmost column of table 5, in terms of the notation defined in section 4. In each case,
R = u(1) and we can take [R(M,g), F] = 0in S. For some non-zero R € R and all ec € F,
we can take [R, ec] = iec and [ec, €5] = E.

Any such constant term in (5.2) can be set to zero in the [B, F] bracket for the conformal symmetry
superalgebra S via an appropriate compensating constant R-symmetry contribution.
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7T d=4

7.1 Null tetrads

Let (£, 0, x) denote a null tetrad of vector fields on (M, g), subject to the defining relations
[€17 = 161> =0 =g(&,x) = 96, ) =90 x) »  9(&:0) =g x*) =1 (7.1)

The elements & and 6 are real while x is complex. The relations (7.1) are preserved under
the following transformations (which collectively generate O(3,1)):

e (§0,x)— (0,€ ).
o (£,0,x) — (£,0 —a*x — ax* — |al?¢, x + af), for any a € C.
o (£,0,x) — (£,0,¢x), for any B € R.

e (£,0,x) — (v&, 710, x), for any v € R\{0}.

It is convenient to express the metric and orientation tensor on M as
g=ER0+06+ XX +X" @ X, e=iENONXAXT, (7.2)
in terms of the null tetrad.

7.2 Majorana spinors

The Clifford algebra C¢(3,1) = Maty(R) has a unique irreducible Majorana spinor rep-
resentation that is isomorphic to R%. On the other hand, its complexification (the Dirac
spinor representation) decomposes into a pair of inequivalent irreducible chiral spinor rep-
resentations, each isomorphic to C?, associated with the two eigenspaces of I' on which
T = 1. The action of a subalgebra Maty(C) < Mat4(R) on C? which commutes with the
complex structure iI" defines the action of C¢(3, 1) on each chiral projection (the two chiral
projections transform in complex conjugate representations).
Relative to the Clifford algebra basis (3.6), taking I' = £e#?°T,s, it follows that

', = —56,“,,)01"’”1" , Lup=—i€ups LT, Luvpe = 1i€upol . (7.3)
There exists on &(M) a skewsymmetric bilinear form (3.8), with respect to which

_ 7 _ 7 _ 7 i .
Yipr = —94¥s, Yalpor =00, Yilwer =9 Lty = T5Euwpo N NG VRIS

(7.4)
for all ¢4, pr € 6L (M). The associated Fierz identities are given by
_ 1/, J P
Yr Py = 3 (D) — Z(‘/Oir Vi)l | Py
_ 1_
%: P = 7(90:FF#¢:I:)FMP:F . (75)

2
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In terms of a unitary basis for C¢(3,1), it follows that under complex conjugation

(J-&-‘P—&-)* = @—‘P— ) (J+Fu¢—)* = J—F,MSD-% , (@-kruuso-k)* = J—F,m/%@— . (7'6)
For a given € € G(M), we define
55 =elte= 2E7FN6+ s C,LLI/ = ngF/“,EJr . (77)

From (7.6), it follows that the vector field & is real while the two-form ¢ is complex and
obeys (. = —%Ewpa(p". The vector field & is nowhere vanishing only if € is nowhere
vanishing, which we shall assume henceforth. Furthermore, using (7.5), one obtains

14 k 14 1 14
”56”2 =0 ) f?@w =0 ) CupC P=0 ; Cupc P = qupffgg . (7'8)
It is convenient to identify (7.7) in terms of the null tetrad introduced in section 7.1, such
that & = £. The second identity in (7.8) then implies £ A ( = 0, whence ( = £ A7, in
terms of the complex one-form 7 = 9. The remaining identities in (7.8) fix 7 = %X*, ie.
¢ = %f A x* in terms of the null tetrad one-forms.

Using (7.5), it is possible to express any ¢ € G(M) in terms of the null tetrad and the
reference spinor € that defines £. In particular,

Yy = aey + SOe_

Yo =a%e_ + "0, (7.9)
where a = 2€e_0vy and S = 2e;1,. Moreover, it is easily verified that xe_ = 0 and
X*e— =\ 2e,.

7.3 Petrov types

The Weyl tensor W of g may also be expressed in terms of the null tetrad and its non-trivial
components are characterised by five complex functions

Yo =W(&X:6x) 5 Uy =W(E 0,8 x) Uy =W(Ex:0,x")

Vs =W(,0,0,x"), Uy =W(O,x*,0,x"), (7.10)
called Weyl scalars. The conformal class of g at each point in M may be classified as being
one of the following six Petrov types

o Type I. ¥y = 0.

Type II. ¥y = VU1 = 0.

TypeD.\I/():\IH:\I’;g:\I&;:O.

Type 111 \I’QZ\Iflz‘IJQIO.
oTypeN.\If():\Illzlllgz\Ifgz().
oTypeO.\IIO:\Illzlllgz\If3:III4:0.

We shall only be concerned with geometries which have the same Petrov type at each point,
and thus refer to the Petrov type of (M, g). If (M, g) is type I then it is called algebraically
general, otherwise it is called algebraically special. If (M, g) is type O then it is locally
conformally flat (i.e. W = 0).
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7.4 Null conformal Killing vectors

The relations (7.1) constrain the action of the Levi-Civita connection V on the null tetrad
one-forms such that

V,ugu = 2Re(p)u§u —quXv — QZX;
Vb, = —2Re(p) .0, + ruxy + r;Xj (7.11)
VuXy = =158 + ¢,0, — 2ilm(p) X0

in terms of data that it is convenient to assemble into three complex one-forms (p,q,)
on M.

Given any null vector field X on (M, g), it is always possible to define a null tetrad
with respect to which X = ¢. From the first line in (7.11), it follows that £ is a conformal
Killing vector only if

Re(P)g=0, g =0=q», 2Re(@)y=¢q, 2Re(@)¢+aqy+a~=0. (7.12)

Furthermore, ¢ is a Killing vector only if (7.12) are satisfied with Re(p)¢ = 0 (whence, g,
must be pure imaginary). In that case,

d§ = 2(gox + gpx") ANE+ 20 X A X - (7.13)
Any Killing vector X on (M, g) obeys
v,uvz/Xp = _Rup;ana (7'14)

in terms of the components R, ,, of the Riemann tensor of g. For a null Killing vector
X =¢, (7.14) and (7.13) imply

R &1 =V ,6, VI =2|q|* >0, (7.15)

where R, = ¢”° R0 is the Ricci tensor. The geometry (M,g) is Einstein if it obeys
R, = Agu, for some A € R (if A = 0 then (M,g) is Ricci-flat). Whence, if (M, g)
is Einstein and admits a null Killing vector £ then ¢, = 0 and d§ = k A § (where k =
2(gox + gpx*)), which implies £ A d¢ = 0. Indeed & A d§ = 0 only if ¢, = 0 so any (M, g)
with a null Killing vector £ for which £ A d€ # 0 cannot be Einstein.

The three-form £ Ad¢ is called the twist of £ and £ is said to be twisting if §AdE # 0 or
non-twisting if EAd¢ = 0. Restricting to the subspace ¢+ = {X € &(M, g)| g(X, &) = 0} de-
fines a Lie subalgebra of 8(M, g) only if £ is non-twisting, thus ensuring that the associated
hypersurface in (M, g) is integrable. Furthermore, if £ is non-twisting then substituting
d§ = kA€ into (7.14) with X = £ leads to several more useful properties. Contracting the
resulting expression with & on different indices and with the inverse metric implies

1 1 1
Ve = €', Rupot?6” = 7 IM660 R“V§V:—2(vyk”+2uku?—f) & (7.16)
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where f = 0,V¢k* and [k|? > 0 if k # 0. Substituting (7.16) into the definition of the
Weyl tensor (3.22) then implies

W,uupofpga = _1 <:13R + vpkl) - f> guél/ . (717)

2
Thus it follows that any (M, g) with a non-twisting null Killing vector has ¥y = U3 = 0
and is therefore algebraically special. Moreover, if any such geometry is Ricci-flat with
Uy = 0 then k£ = 0 so £ must be parallel and (M, g) is necessarily of Petrov type N or
O. Whence, any Ricci-flat (M, g) with a null Killing vector must be of Petrov type II, D,
N or O.

Let us conclude this section by illustrating some of the properties above via the in-
troduction of local coordinates (u,v,z,y) on (M, g). If (M, g) admits a nowhere vanishing
null Killing vector £ then we can take £ = 0, tangent to a family of null geodesics, with
geodesic distance parameterised by the affine coordinate v. A convenient local form of the
metric in these adapted coordinates is

g=2G(du+a)(dv+ 3+ %H(du + @) + E*(dz? 4 dy?), (7.18)

in terms of three real functions G, H and E and two real one-forms a = a,dx + oy dy and
f = Bydx + Bydy. All of these components are functions only of (u,z,y). The null tetrad
one-forms are identified such that

1

V2

If ¢ is non-twisting then integrability of its associated hypersurface implies £ = fdu, for

E=Gdu+a), G:dv—I—B—i-%Glef, X E(dz +idy) . (7.19)

some function f of (u,z,y). Up to a redefinition of G, this allows us to fix @ = 0 in (7.18).
Furthermore, if £ is parallel, then dé = 0 so f must be a function only of u and we can
fix f =1, =0and E = 1. Indeed, the existence of a parallel null vector on (M, g)
characterises a four-dimensional pp-wave, with local metric as in (7.30). In d = 4, the
pp-wave metric (7.30) is of Petrov type N or O. It is type O only if the real function H of
coordinates (u,x,%) obeys 02H = (’9§H and 0,0,H = 0. It is a plane wave only if H is a
quadratic function of (z,y).

Up to local isometry, there exists a classification of ‘physically admissible’ Ricci-flat
(M, g) with a null Killing vector. Chapter 24.4-5 in [65] contains a detailed summary of
the local metrics and their Killing vectors. From table 24.2 in [65], if (M, g) is a Ricci-flat
type N pp-wave then 1 < dim R(M, g) < 6 (within this class, dim &(M, g) never equals 4
and equals 5 or 6 only for plane waves). The remaining solutions of type II and D are
summarised in table 24.1 of [65]. The local metrics in this subclass correspond to (7.18)
witha = 8=0, G = —z, E? = 27/2 and 0. (x0,H) + x@iH = 0. These geometries all
have 1 < dim (M, g) < 4. Contained within this subclass are the type II ‘van Stockum’
solutions [66] (for 0, H = 0) and a static type D solution with dim R(M,g) = 4 (for H
constant). We shall return to compute symmetry superalgebras for these geometries in
section 7.6.
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7.5 Charged twistor spinors

Let us now examine the implications of the existence of a charged twistor spinor €, which
can be thought of locally as a Majorana spinor obeying (5.1) with respect to the action of
the R = u(1) gauged connection

Dye =V, e+iA,Te, (7.20)

ie. Dyer = Vyexr il ex.

The first consequence is that & defined in (7.7) is a conformal Killing vector. Let us
now deconstruct the defining condition D,e = %F pDe for charged twistor spinor € in terms
of the null tetrad. Identifying £ = £ then using (7.9) and (7.11) implies

1
Viueq = pues + —=q,0e_

V2

* ]' *
VME_ = puﬁ_ + ﬁquee_F . (721)
It follows that the defining condition for charged twistor spinor € is equivalent to the

following conditions on p, g and A:
po+idg =0=py+idy, q¢=0=gqy~, Py +iAy =qo . petide=—qy. (7.22)

Since & € €(M,[g]) for any charged twistor spinor e, it is straightforward to identify a
subset of conditions in (7.22) with precisely the conditions in (7.12) required for £ to be a
conformal Killing vector. The conditions in (7.12) describe eight real constraints on Re(p)
and ¢ which are contained in the twelve real constraints on p, ¢ and A in (7.22). The
four remaining constraints in (7.22) are precisely sufficient to fix all four components of A,
such that .

5 (Pt O = doxp = P = 43O+ 45) - (7.23)

Thus we conclude that if (M, g) admits a nowhere vanishing null conformal Killing

A, =

vector X, then there must exist a nowhere vanishing charged twistor spinor € on (M, g),
with X = &, that is defined with respect to the gauged connection A in (7.23). This
characterisation of charged twistor spinors on a smooth orientable Lorentzian four-manifold
was first obtained in [6] (see also [8]).

For any charged twistor spinor €, the twist of £ = £ can be written

€A dE = gpf . (7.24)
in terms of the real function
pe = —eDe= (g — g3 (7.25)
It follows that
el =dpe, (7.26)
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using F' = dA from (7.23). Whence, the condition (5.3) is satisfied identically for X = &.

Furthermore, as noted below (7.12), if £ is a Killing vector then ¢, is pure imaginary. In

that case, £ is non-twisting only if ¢, = 0 which, from (7.25), occurs only if p¢ = 0.
Differentiating the defining condition for € gives

4i 1
DyDes = 2K, Tes & éFWF”ei ~ S PV e (7.27)

Combining (7.27) with (3.3) implies the integrability condition
1 o i i 1 o
EWquaF €+ = :Fg gFHVEi — égﬂVﬂUF €+ . (728)

Identifying £ = &, in terms of the null tetrad, one finds that (7.28) is equivalent to the
following conditions on the Weyl scalars (7.10):

FPuTypes F

i

1
Uy=0 Uy =—-F Uy =
0 ; 1 3 (£>X) ) 2 3

(F(650)+F(X>X*)) , W3 = _iF(evx*) : (729)

The Petrov type of (M, g) therefore determines which components of F' must vanish
identically. For the algebraically special geometries, we have

e Typell <= F(§,x)=0.

e Type D <= F(&,x) =F(0,x) =0 and ¥y =0.

Type Il <= F(&,x) =0, F(£,0) =0 = F(x,x").

Type N < F=0and W # 0.
e Type O <— F=0and W =0.

These equivalences were first obtained in [19]. Notice that if F' = 0 then, locally, A = dA
and the charged twistor spinor e is equivalent to an ordinary twistor spinor e™e,..

Up to local conformal equivalence, the classification of Lorentzian four-manifolds which
admit a nowhere vanishing twistor spinor e is due to Lewandowski [73]. Any such (M, g)
must be of type N or O. The admissible type N geometries are distinguished by the twist of
the conformal Killing vector &. If the twist of & vanishes then (M, g) is in the conformal
class of a pp-wave with € parallel. If the twist of & does not vanish then (M, g) is in the
conformal class of a Fefferman space [74].

Thus, at least locally, any algebraically special (M, g) which admits a charged twistor

spinor € with F' £ 0 is of Petrov type II, D or III with null conformal Killing vector &..

7.6 Conformal symmetry superalgebras

Let (M,g) be any smooth orientable Lorentzian four-manifold equipped with a nowhere
vanishing null conformal Killing vector X and a €(M, [g])-invariant closed two-form F'. As
we have explained, X defines a nowhere vanishing charged twistor spinor e (with X = &)
that is charged with respect to the connection A in (7.23) whose curvature is F' = dA.
From section 5, we recall that this data is precisely what is needed to assign to (M, [g]) a
conformal symmetry superalgebra & with gauged R = u(1).
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7.6.1 Type N and O cases
From the discussion in section 7.5, it follows that if F' = 0 then (M, g) must have Petrov
type N (if W # 0) or type O (if W = 0). If (M, g) is of type O (i.e. locally conformally
flat) then €(M, [g]) = s0(4,2) = su(2,2) and S = su(2,2|1) (i.e. the 4/ =1, d =4 case in
table 1). If (M, g) is of type N, with F non-trivial, then it is locally conformally equivalent
to a pp-wave or a Fefferman space.

The generic pp-wave metric in d = 4 is of the form

Gpp = 2dudv + H(u, z,y)du?® + dz? + dy?, (7.30)

in terms of Brinkmann coordinates (u, v, x,y) on M, where H is an arbitrary real function
of (u,z,y). In these coordinates, { = 0, is a null Killing vector of (M, gpp). It is easily
verified that (M, gpp) is of type N unless 02H = 8§H and 0,0,H = 0. We shall assume
henceforth that (M, gpp) is of type N. Using that

V€ = Oye — i((azH)Fx +(0yH)Ty)€e, Vye=0pe, Vze=0,e, Vye=0ye, (7.31)

for any € € G(M), it follows that any twistor spinor € € 3(M, [gpp]) is actually V-parallel.
Moreover, using (7.31), it follows that Ve = 0 only if 0, = 0 with £e = 0. Consequently,
3(M, [gpp)) = ker & and dim 3(M, [gpp]) = 3dim&(M) = 2 in d = 4. It follows that the
[F, F] bracket for the conformal symmetry superalgebra S = B@ F ascribed to a pp-wave,
with F = 3(M, [gpp]), can be taken to be

[e,e] =&, (7.32)

for all € € ker & (see section 7.1 of [16] for the proof).
If the function H in (7.30) is quadratic in (z,y), we recover a special class of pp-waves
called plane waves (see [76] for a comprehensive review). Let

Gow = 2dudv + (a(u)(x? — y?) + 28(w)zy + y(u)(z® + y*))du? + do? + dy?, (7.33)

denote the generic plane wave metric in d = 4, in terms of three real functions «, 8 and v
of u. Having assumed that (M, gpw) is of type N, a and 8 must not both be zero.
In addition to § = 0y, R(M, gpw) contains Killing vectors of the form

k(f) = foOu + fy0y = (@0ufe + yOufy)Ou (7.34)
where
35]‘}5 = (a+7)fm+5fy s 8nyzﬁfz_(a_7)fy> (7'35)
and each component f, and f, is a function only of u. It follows that

ERNI=0,  [k().k()] ==(f, ), (7.36)

for any f and f obeying (7.35), where

w(f, f) = _fxaufx_fyaufy+fxaufx+fyaufyv (737)
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Class @ p v
I a b c
1I u"%a u™?b -2
111 a cos(2u) + bsin(2u) bcos(2u) — asin(2u) c
IV | u 2(acos(2Inu) + bsin(2Inw)) | u=2(bcos(2Inu) — asin(2Inw)) | u=?2

Table 6. Data for plane wave metrics gpw (7.33) in d = 4 with dim $(M, gpw) = 7. Up to local
conformal equivalence, the classes I 22 IT and IIT = TV.

is constant. Whence, the Lie algebra spanned by £ and all linearly independent k(f) as
in (7.34) (with f solving (7.35)) is isomorphic to the five-dimensional Heisenberg Lie algebra
heisy. Furthermore, it follows that 3(M, [gpw]) is invariant under this heisy. That is,

[516]2556207 [k(f)aﬁ]zﬁk‘(f)ezoa

for all € € 3(M, [gpw]) and k(f) € R(M, gpw), in terms of the spinorial Lie derivative (3.11).
A generic plane wave also admits a proper homothetic conformal Killing vector pro-
portional to 2v0, + x0; + y0,. In fact, ¥ = —%(21}8,, + 20, + y0dy) obeys

(7.38)

[0, €] = Lge = %6,

[0, k(F)] = 3k
for all k(f) € R(M, gpw) and € € 3(M, [gpw]), in terms of the Kosmann-Schwarzbach Lie
derivative (3.14).

In d = 4, any (M, g) that is not of type O must have dim €(M,[g]) < 7 and, from
theorem 5.1.3 in [60], dim €(M, [g]) = 7 requires (M, g) to be of type N. More precisely,
it is known [75] that dim €(M, [¢g]) = 7 only if (M, g) is locally conformally equivalent to

[, =¢, (7.39)

a homogeneous plane wave with an extra Killing vector. Up to local isometry, there are
precisely four classes of such geometries defined by the particular (o, 3,+) displayed in
table 6. In each case, (M, gpw) is not conformally flat provided the real numbers a and b
are not both zero and is Ricci-flat only if the real number ¢ is zero. Class I, with constant
(a, B8,7), defines a symmetric space. The coordinate transformation

1
(1w, 0,2.9) > (v = (2 + 7). 2, ey),

1 (7.40)

identifies the classes I 22 IT and III = IV, up to local conformal isometry. Details of the
extra Killing vector | € R(M, gpw) and its related brackets for each of these four classes
is displayed in table 7. Entries in the two rightmost columns of table 7 apply to any

k(f) = k(fz, fy) as in (7.34) and € € 3(M, [gpw]). In each case,
9,0 =0 . (7.41)

Thus, at least locally, we have just two distinct conformal classes of type N metrics with
dim &€(M, [g]) = 7. It is convenient to take the class I and III entries in table 6 to define
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Class l [0, €] (1 k(fe, £))] (1€l = Lse
I A 0 k(O frs Oufy) 0
IT Dy — vy ¢ k(uy fr, udy fy) Le
11 Oy — 0y + YOy 0 k(Oufs — fys Oufy + fr) iTe
IV | udy — 09y — 20y +ydy | € | k(udufy — fyoudufy + fz) | (1 +14D)e

Table 7. The extra | € R(M, gpw) and its brackets for the four classes in table 6.

a representative metric for each of these classes. In both cases, the homogeneous plane
wave (M, gpw) has €(M, [gpw]) = H(M, gpw) and the null Killing vector £ € Z(R(M, gpw))-
The submaximal conformal symmetry superalgebra S = B @& F associated with each class
has B = H(M, gpw) ® R and F = 3(M, [gpw]) = ker§, where R = u(1). The explicit
brackets for S are prescribed by (7.32), (7.36), (7.38), (7.39), (7.41) and table 7. For some
non-zero R € R, we can take [R,e] = iT¢, for all e € F. It follows that the class I
and III representative plane wave geometries both yield submaximal conformal symmetry
superalgebras S = S57(9(M, gpw)|R), in the notation of section 4 (identifying ¥ = h, £ = z
and R =r).

7.6.2 Physically admissible type II and D cases

From the discussion in section 7.4, we recall that if (M, g) is equipped with a null Killing
vector £ (and F' # 0) then it must be of Petrov type II or D with £ non-twisting in order to
be Ricci-flat. Let us now take advantage of the classification in [65] of ‘physically admis-
sible’ Ricci-flat geometries which admit a null Killing vector and compute their associated
symmetry superalgebras. We shall also compute the conformal symmetry superalgebra
for the unique admissible Ricci-flat geometry of Petrov type D. In general, the symmetry
superalgebra S, and conformal symmetry superalgebra S associated with any admissible
geometry (M, g) are isomorphic only if 8(M,g) = €(M,[g]) and F, = F. It is worth
recalling from theorem 3 in [64] that any (M, g) not of Petrov type N or O has €(M, [g])
conformally isometric. Of course, if (M, g) is Ricci-flat with €(M, [g]) # R(M,g), the
particular geometry (M, g) for which €(M, [g]) = R(M, §) need not be Ricci-flat.

In terms of the local coordinates introduced at the end of section 7.4, each geometry
(M, g) within this class has a null Killing vector £ = 9, with respect to a metric g of the
form (7.18) with @« = 8 = 0, G = —z and E = z~'/*. The only non-trivial component
of the Ricci tensor of g is Ry, which vanishes only if 0,(z0,H) + J:QSH = 0. By explicit
calculation of the Weyl tensor of g, one finds that the Weyl scalars ¥g = ¥y = U3 = 0
while ¥y = %x_:‘/ 2. The remaining Weyl scalar ¥4 vanishes only if

8$(x3/2a$H) = x3/2a§H , (xagc + z)ayH =0. (7.42)

Thus (M, g) is indeed generically of type II, and is of type D only if H obeys (7.42). If
(M, g) is of type D and Ricci-flat then H is necessarily constant.
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Identification of the null tetrad one-forms as in (7.19) implies that the volume form (7.2)
is e = £/2du A dv A dz A dy. The action of V on (7.19) can be defined via the the triple
of complex one-forms (p,q,r) in (7.11), which are given by

1 .
p= Z:U_l (dx — ;dy> ,

g= 2\1/§x1/4du = _2\1/53;3/4 <dv + <;H b2 — z'ay)H> du> L (743)

Comparison with (7.12) and (7.25) confirms that £ is indeed a non-twisting Killing vector

with pe = 0.
Substituting (7.19) and (7.43) into (7.23) yields
A= garldy : (7.44)

Whence, F = —3272dzAdy. Furthermore, substituting (7.19) and (7.43) into (7.21), and
using (7.44), implies the gauged connection in (7.20) is given by

1
D, =0, + Zafl/zﬁ[‘u[‘x : (7.45)

The identification { = & = 0, implies T'yex = 0 while, from (7.3), ilyyer = +a 126,
Consequently, using xe4 = v2e_ and x*e; = 0, it follows that T'yer = 2~/ 46;. Moreover,
€ is a charged twistor spinor with respect to (7.45) only if € is constant.

All the non-generic cases, where £ = 0, is not the only Killing vector in R(M, g), are
summarised in table 24.1 of [65]. The pertinent data is displayed in table 8 (the parameters
a,b € R\{0} and real functions f,h are constrained such that 8,(zd,H) + 282H = 0).
Entries in the fourth column of table 8 denote the isomorphism class of R(M,g). In
addition to b[VIp] that we encountered at the end of section 6.5.1, b[II] is isomorphic to
the three-dimensional Heisenberg Lie algebra heis; while a denotes the two-dimensional
nonabelian Lie algebra.

Every X € R(M, g) is of the form

X = a(udy, —v0y) + B0y + Y0y + h(u)0,, (7.46)

for some choice of real numbers «, # and v and a real function h of u. Thus, from (7.44), it
follows that tx F' = 2yz~2dz. Whence, the condition (5.3) is indeed satisfied for any X €
R(M, g) of the form (7.46), with px = —%fyx_l, up to the addition of an arbitrary constant.
Using this data, it is straightforward to compute the associated symmetry superalgebras
So which are displayed in the rightmost column of table 8, in terms of the notation defined
in section 4. In each case, R = u(1l) and the even-odd bracket in (5.2) is of the form
[X, €] = Jae, for all € € F, and X € R(M, g) of the form (7.46). For some non-zero R € R
and all € € F,, we can take [R,¢] = il'e and [e, €] = &.

The type D geometry (M,g) from table 8 has €(M,[g]) = H(M,g9). If 9 €
H(M,g)/R(M,g) is normalised such that [9,£] = £ then

¥ = —v0, — 220, — 2y0, . (7.47)
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Type H(u,z,y) {X} R&(M, g) S,
II f(u,x) {0y, 0v} R? R & S5 (R|R)
I f(ay — bu, z) {b0y + ady, Oy} R? R @ SS(R|R)
11 fu,x) — yoy,h(u) {0y + h(u)0y, 0y} R? R @ S5(R|IR)
11 w2 f(y — aln(u), x) {ady + udy, — v0y, Oy} a S5(alR)
11 F(x)e—2ay {8y + a(udy —v8,), 04,0y} | B[VIg] S5 (b[VIg]|R)
11 f(z)+ay {0y — audy, Oy, Oy} b[I1] S3(b[II)|R)
I f(z) {0y, Ou, 0} R3 R? @ S5 (R|R)
D 0 {0y, udy — vy, Dy, 0y} | R®B[VI] | R @ S5 (b[VIo)|R)

Table 8. Data for Ricci-flat geometries with a null Killing vector and F # 0.

The five-dimensional Lie algebra $)(M, g) is thus defined by RK(M,g) together with the
following non-trivial brackets

[0,0,) =0y,  [0,0,] =20, . (7.48)

From (7.47) and (7.44), it follows that ¥ obeys condition (5.3) with py = 2z~ 1y. In addition
to the [R(M, g), Fo] brackets given above, (5.2) also prescribes

9,6 = 3¢, (7.49)

for all e € Fo = F. Whence, the symmetry superalgebra S, together with (7.48) and (7.49)
define the conformal symmetry superalgebra S = S5'($(M, g)|R) (in the notation of sec-
tion 4) for the conformal class of the unique Ricci-flat type D geometry in table 8.

8 Summary of main results

The Lie algebra €(M, [g]) of conformal Killing vectors of any d-dimensional Lorentzian
manifold (M, g) that is not locally conformally flat has dim €(M, [g]) < 4 + (dgl) ifd>3
and dim €(M,[g]) < 4 if d = 3 [60-62]. Non-trivial conformal classes of geometries for
which these upper bounds are saturated will be referred to as being submaximal.

In this paper, we considered conformal symmetry superalgebras which can be ascribed
to the conformal class of certain Lorentzian geometries, based on gauging the R-symmetry
in the construction of [16, 17]. In particular, in d = 3,4 with one-dimensional R-symmetry
R, up to local conformal isometry, we obtained a classification of submaximal Lorentzian
geometries admitting a conformal symmetry superalgebra of the form & = B & F, with
even part B = €(M,[g]) ® R and odd part F containing (charged) twistor spinors.

In d = 3, we found in section 6.5.2 that any submaximal geometry with dim €(M, [g]) =
4 which admits a conformal symmetry superalgebra S is locally conformally equivalent to
one of the three types of stationary geometries (M, g) displayed in table 9, in terms of
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Class g R(M,g) S

V.4 —(dt + zdy)? + dz? + dy? ¢[X] S3(¢[X]|R)
V.5 —(dt + ae” dy)? + daz? + ¥ dy? R @ b[VII] | S3(R|R) @ b[VIL]]
IV.6 | —(dt —acoszdy)? +dz? + (sinz)?dy? | RO BIX] | S(R|R)® b[IX]

Table 9. Data for submaximal classes with dim €(M, [g]) =4 in d = 3.

Class a B 0 l
I a b c Oy
IIT | acos(2u) + bsin(2u) | beos(2u) — asin(2u) | ¢ | Oy — x0y + YOy

Table 10. Data for submaximal classes with dim €(M, [¢g]) =7 in d = 4.

local coordinates (t,x,y) on M. (The non-zero real number a # =+1 for class IV.5.) In
each case, €(M, [g]) = R(M, g) is spanned by four Killing vectors (0, 9y, k,1) (details of k
and [ are given in table 4) and R = u(1). Charged twistor spinors in F are of the form
ec = (1+iI'y)e, for any constant Majorana spinor €. The brackets defining S can be written

[R(M’ g)’ EC] =0 ) [R7 GC] = i€C , [6((37 GZE] = at , (81)

for all e¢ € F, in terms of a non-zero R € R. The notation for § in table 9 encodes this
information in the manner defined in section 4. The notation for the Lie algebras K(M, g)
in table 9 is defined at the end of section 6.5.2.

In d = 4, we found in section 7.6.1 that any submaximal geometry with dim €(M, [g]) =
7 which admits a conformal symmetry superalgebra S is locally conformally equivalent to
one of two types of homogeneous plane wave geometries (M, gpw), where

Gow = 2dudv + (a(u)(z? — y?) + 28(uw)zy + v (u)(2? + v*))du? + dz? + dy?, (8.2)

in terms of local coordinates (u,v,z,y) on M, with functions «, § and 7 as in ta-
ble 10. In both cases, the real numbers a and b are not both zero. In each case,
C(M, [gpw]) = H(M, gpw) is spanned by six Killing vectors (0, k(f),!) and a proper homo-
thetic conformal Killing vector ¥ = —1 (200, + 29, + yd,). The symbol k(f) represents
four linearly independent Killing vectors, and is defined in (7.34). Collectively, (0y, k(f))
span a five-dimensional Heisenberg Lie algebra heis,. The extra Killing vector [ is shown
in table 10 and the Lie algebra of Killing vectors (M, gpw) = Rl x heis,. The R-symmetry
R = u(1) and twistor spinors in F correspond to constant Majorana spinors in the kernel
of I',. The brackets defining S can be written

(R(M, g), e = 0, [19,6]:%6, R, =iTe, [ed=0a,, (8.3)

for all ¢ € F, in terms of a non-zero R € R. In both cases, it follows that S =
S5 (H(M, gpw)|R), in the notation of section 4.
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