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invariant two-form vanishes identically). In four dimensions, the conformal Killing vector

must be everywhere null and the invariant two-form vanishes identically if the geometry is
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locally conformally flat. We determine precisely which non-trivial conformal classes of met-
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1 Introduction

The characterisation of non-trivial background geometries which support some amount

of rigid (conformal) supersymmetry has attracted much attention in the recent

literature [1–38]. The primary motivation being that it is often possible to obtain impor-

tant exact results for quantum field theories defined on such backgrounds, with many novel

holographic applications [4, 6, 12, 15, 18, 28, 33, 34, 36, 38]. Perhaps the most system-

atic strategy for generating admissible backgrounds is by taking a rigid limit of some local
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supergravity coupling, such that the dynamics of the gravity supermultiplet is effectively

frozen out [1]. The resulting bosonic supergravity background supports rigid supersymme-

try, with the supersymmetry parameter constrained by setting to zero the supersymmetry

variation of the fermions in the gravity supermultiplet. For bosonic supersymmetric back-

grounds of conformal supergravity [39–42], the supersymmetry parameter typically obeys

a particular conformally invariant first order PDE, known as a ‘twistor spinor equation’,

with respect to a certain superconnection whose precise form is dictated by the structure

of the conformal gravity supermultiplet.

The Lie superalgebra which encodes the rigid (conformal) supersymmetry of a bosonic

(conformal) supergravity background is known as the (conformal) symmetry superalgebra of

the background ([16, 17]) [43–47]. The even part of this superalgebra contains (conformal)

Killing vectors, which generate (conformal) isometries of the background, together with

R-symmetries of the associated rigid supermultiplet. The odd part contains (twistor)

spinors valued in certain R-symmetry representations which generate rigid (conformal)

supersymmetries of the background. The virtue of the (conformal) symmetry superalgebra

construction is that it often reveals special geometrical properties of the background based

on the type and amount of rigid (conformal) supersymmetry it supports. For example, in

dimensions eleven, ten and six, this approach was used recently in [48, 49] to prove that any

bosonic supersymmetric supergravity background possessing more than half the maximal

amount of supersymmetry is necessarily (locally) homogeneous.

The simplest class of conformal symmetry superalgebras contain odd elements which

obey a ‘geometric’ twistor spinor equation, with respect to the Levi-Civita connection.

Their generic structure was described in some detail in [16], where it was found that the

inclusion of a non-trivial R-symmetry is crucial in solving the odd-odd-odd component of

the Jacobi identity for the superalgebra. Indeed, this extra ingredient is what distinguishes

the construction in [16] from several earlier ones [50–53]. More general conformal symmetry

superalgebras are further complicated by the presence of some assortment of non-trivial

background fields (other than the metric). The details of these background fields depend

on the composition of the conformal gravity supermultiplet but one common feature is

the presence of R-symmetry gauge fields. In section 5 of this paper, we shall explore a

natural generalisation of the construction in [16] based on the gauging of R-symmetry.

For Lorentzian geometries, we find that the resulting structure generically defines a Lie

superalgebra only if the R-symmetry is one-dimensional and the background has dimension

three or four. Indeed, these are precisely the cases where the bosonic sector of a conformal

gravity supermultiplet contains only the metric and the R-symmetry gauge field.

It is a well-known and useful fact that geometric twistor spinors ‘square’ (in a sense

which can be made precise) to conformal Killing vectors. More generally, for a conformal

symmetry superalgebra, there is a similar (albeit somewhat more complicated) squaring

map defined by the odd-odd bracket [16, 17]. Of course, if a pseudo-Riemannian spin

manifold admits a conformal Killing vector, it need not admit a geometric twistor spinor.1

However, as was shown in [6, 8, 15], at least for a certain class of Lorentzian geometries

1In Euclidean and Lorentzian signatures, up to local conformal equivalence, the classification of those

geometries which do admit a nowhere vanishing geometric twistor spinor was established in [54–58].
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which need not admit a geometric twistor spinor, the existence of a nowhere vanishing

conformal Killing vector with a particular causal character is in fact locally equivalent

to the existence of a nowhere vanishing twistor spinor that is defined with respect to a

particular connection with non-trivial intrinsic torsion. The precise form of this intrinsic

torsion is dictated by the local isotropy of the twistor spinor. Moreover, in dimensions

three and four, with one-dimensional R-symmetry, this data recovers precisely the defining

conditions for a bosonic supersymmetric conformal supergravity background.

If it is possible to define a quantum field theory on a background preserving a large

amount of (conformal) supersymmetry, it is often the case that the theory is particularly

well-behaved. Backgrounds which admit a conformal symmetry superalgebra with the

largest possible dimension are necessarily locally conformally flat. In Lorentzian signature,

any such conformal symmetry superalgebra has compact R-symmetry and is isomorphic

to one of the well-known conformal superalgebras classified by Nahm in [59]. However,

the general structure of conformal symmetry superalgebras with the next largest possible,

or submaximal , dimension (for backgrounds that are not locally conformally flat) is much

less clear. Our goal here will be to elucidate this structure for Lorentzian geometries in

three and four dimensions which admit a conformal symmetry superalgebra with gauged

one-dimensional R-symmetry. Our strategy will make use of some recent progress [60–62]

which has determined the submaximal dimension of the Lie algebra of conformal Killing

vectors for any Lorentzian manifold. We will also utilise some earlier results [63–65] on the

classification of (conformal) Killing vectors for Lorentzian manifolds of low dimension. We

then employ the results of [6, 15] to deconstruct a null (in four dimensions) or timelike (in

three dimensions) conformal Killing vector in terms of the charged twistor spinors which

form the odd part of the conformal symmetry superalgebra.

The organisation of this paper is as follows. We begin in section 2 by reviewing some

essential features of the conformal geometry of Lorentzian manifolds. This will include

the use of proper conformal scalars and gradients to represent the action of the conformal

group in terms of isometries and homotheties for some representative geometry in a given

conformal class. We will also provide a summary of the main results of [60–62] concerning

sharp upper bounds on the submaximal dimension of the conformal algebra for Lorentzian

geometries. In section 3, we review some basic properties of Clifford algebras, spinor

modules and their invariant bilinear forms, together with the vital concepts of spinorial

Lie derivative and twistor spinor. In the process, we take the opportunity to note some

of our basis conventions to be used in the forthcoming analysis. In section 4, we briefly

recap the definition of a real Lie superalgebra, focussing on the conceptualisation of certain

axioms that will facilitate our description of conformal symmetry superalgebras. We will

also define here a particular family of real Lie superalgebras that encompasses all the

conformal symmetry superalgebras obtained in later sections. In section 5, we summarise

the construction of conformal symmetry superalgebras in [16, 17] and propose a certain

generalisation based on the gauging of R-symmetry. The conditions which are sufficient

for the existence of such a Lie superalgebra are found to be satisfied identically only for

abelian R-symmetry in dimensions three and four. We then focus on the classification of

submaximal conformal symmetry superalgebras in these two cases.
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The classification in three dimensions is obtained in section 6. It begins in sections 6.1

and 6.2 with a synopsis of null triads and Majorana spinors in three dimensions. With

respect to this framework, we then describe in detail the intimate connection [8, 15] between

causal conformal Killing vectors (in section 6.3) and charged twistor spinors (in section 6.4)

on Lorentzian three-manifolds. (Charged, that is, with respect to the gauged abelian R-

symmetry.) At least locally, it follows that the existence of a nowhere vanishing charged

(or uncharged) twistor spinor is characterised by the existence of a nowhere vanishing

timelike (or null) conformal Killing vector. The classification of submaximal conformal

symmetry superalgebras is contained in section 6.5, according to whether the geometry

in question admits a nowhere vanishing conformal Killing vector that is either null or

timelike. The null case is described in section 6.5.1 and the timelike case is described in

section 6.5.2. Up to local conformal equivalence, we prove that there are precisely three

types of Lorentzian three-manifold with a timelike conformal Killing vector which admit

submaximal conformal symmetry superalgebras, where the dimension of the conformal

algebra is four. Representative geometries are found to correspond to a certain class of

locally stationary metrics with four Killing vectors (see section 8 for a summary).

The classification in four dimensions is obtained in section 7. It begins in sec-

tions 7.1, 7.2 and 7.3 with a synopsis of null tetrads, Majorana spinors and Petrov types in

four dimensions. With respect to this framework, we then describe in detail the intimate

connection [6] between null conformal Killing vectors (in section 7.4) and charged twistor

spinors (in section 7.5) on Lorentzian four-manifolds. At least locally, it follows that the

existence of a nowhere vanishing charged twistor spinor is characterised by the existence

of a nowhere vanishing null conformal Killing vector (the twistor spinor is uncharged only

if the geometry is of Petrov type N or O). The classification of submaximal conformal

symmetry superalgebras is contained in section 7.6. From the results of [60, 75], it is

immediately apparent that the submaximal conformal symmetry superalgebras here are

associated with geometries of Petrov type N. Up to local conformal equivalence, we prove

that there are precisely two types of Lorentzian four-manifold with a null conformal Killing

vector which admit submaximal conformal symmetry superalgebras, where the dimension

of the conformal algebra is seven. Representative geometries are found to correspond to

a certain class of locally homogeneous plane wave metrics with six Killing vectors and a

proper homothetic conformal Killing vector (see section 8 for a summary). Using the re-

sults of [65], in section 7.6.2, we proceed to compute the symmetry superalgebras for a class

of ‘physically admissible’2 Ricci-flat Lorentzian four-manifolds with a null Killing vector

that are of Petrov type II and D. We also compute the conformal symmetry superalgebra

for the most symmetric geometry in this class, which is the unique representative of Petrov

type D.

Section 8 contains a detailed summary of our main results.

2 Conformal Killing vectors

Let M be a smooth oriented manifold equipped with a Lorentzian metric g whose associated

Levi-Civita connection will be denoted by ∇. We take M to have dimension d > 2.

2In the sense that their energy-momentum tensor does not violate the dominant energy condition.
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Let X(M) denote the space of vector fields on M (i.e. sections of the tangent bundle

TM). Let ||X||2 = g(X,X) denote the norm squared of any X ∈ X(M) with respect to g.

At a point in M , X may be either spacelike (if ||X||2 > 0), timelike (if ||X||2 < 0) or null

(if ||X||2 = 0). If ||X||2 ≤ 0 then X is said to be causal . At each point in M , clearly the

sign of ||X||2 with respect to any positive multiple of g is the same, so the aforementioned

causal properties of a vector field depend only on the conformal class [g] of g.

The Lie derivative LX along any X ∈ X(M) defines an endomorphism of the space

of tensor fields on M . The Lie bracket of vector fields is defined by [X,Y ] = LXY =

∇XY − ∇YX ∈ X(M), for all X,Y ∈ X(M). This equips X(M) with the structure of a

Lie algebra. Furthermore

LXLY − LY LX = L[X,Y ] , (2.1)

for all X,Y ∈ X(M). Whence, the Lie derivative defines on the space of tensor fields a

representation of the Lie algebra of vector fields.

The subspace of conformal Killing vectors in X(M) is defined by

C(M, g) = {X ∈ X(M) | LXg = −2σXg} , (2.2)

for some real function σX on M . For any X,Y ∈ C(M, g), using (2.1), it follows that

[X,Y ] ∈ C(M, g) with

σ[X,Y ] = ∇XσY −∇Y σX . (2.3)

Whence, restricting the Lie bracket to C(M, g) defines a (finite-dimensional) Lie subalgebra

of conformal Killing vectors on (M, g).

Any X ∈ C(M, g) with σX constant is called homothetic and let H(M, g) denote the

subspace of homothetic conformal Killing vectors on (M, g). Any X ∈ H(M, g) with

σX 6= 0 is said to be proper . Any X ∈ H(M, g) with σX = 0 is called isometric and let

K(M, g) denote the subspace of isometric conformal Killing vectors (i.e. Killing vectors)

on (M, g). From (2.3), clearly [H(M, g),H(M, g)] < K(M, g) so restricting to the subspace

of Killing vectors on (M, g) defines the ideal K(M, g) C H(M, g). Furthermore, given any

X,Y ∈ H(M, g) with σX 6= 0, then Y − σY
σX
X ∈ K(M, g). Whence, either H(M, g) = K(M, g)

or dim(H(M, g)/K(M, g)) = 1.

A real function φ on M is called a conformal scalar if ∇Xφ = pφσXφ, for all X ∈
C(M, g), in terms of some pφ ∈ R (φ is said to be proper if pφ 6= 0). A real one-form υ on

M is called a conformal one-form if LXυ = pυdσX , for all X ∈ C(M, g), in terms of some

pυ ∈ R (υ is said to be proper if pυ 6= 0). If dυ = 0 then υ is called a conformal gradient . For

example, if φ is a (proper) conformal scalar, then d(ln φ) is a (proper) conformal gradient.

If υ is a proper conformal gradient then, at least locally, υ = pυdϕ for some real function

ϕ such that, for each X ∈ C(M, g), σX −∇Xϕ = sX for some sX ∈ R.

Any metric g̃ in the same conformal class [g] as g is of the form g̃ = e2ωg, in terms of

some real function ω on M . Each X ∈ C(M, g) (with conformal factor σX) is also in C(M, g̃)

but with conformal factor σ̃X = σX−∇Xω. Thus, we may assign the Lie algebra C(M, [g])

of conformal Killing vectors on (M, g) to the conformal class [g]. Of course, there may be a

preferred metric in [g] with respect to which the conformal Killing vectors in C(M, [g]) are

most conveniently represented (e.g. via a homothetic or isometric action). For example, if
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(M, g) admits a proper conformal scalar φ, then C(M, [g]) = K(M, e2ωg) for ω = 1
pφ

lnφ.

Alternatively, if (M, g) admits a proper conformal gradient υ, then C(M, [g]) = H(M, e2ωg)

for ω = ϕ and σ̃X = sX . More generally, C(M, [g]) is said to be conformally isometric if

it can be represented by K(M, e2ωg) or conformally homothetic if it can be represented by

H(M, e2ωg) (with dim(H(M, e2ωg)/K(M, e2ωg)) = 1), for some choice of ω.

Important aspects of the conformal geometry of (M, g) are characterised by its Weyl

tensor W and Cotton-York tensor C. If d > 3, then W = 0 only if (M, g) is locally

conformally flat. For any X ∈ C(M, [g]), LXW = −2σXW which implies ∇X ||W ||2 =

4σX ||W ||2, where ||W ||2 denotes the scalar norm-squared of W with respect to g. Thus, if

d > 3, any (M, g) with ||W ||2 nowhere vanishing is conformally isometric, with C(M, [g]) =

K(M, ||W ||g) (i.e. φ = ||W ||2 is a proper conformal scalar with pφ = 4). If d = 3, then

W vanishes identically and C = 0 only if (M, g) is locally conformally flat. In this case,

for any X ∈ C(M, [g]), LXC = 0 which implies ∇X ||C||2 = 6σX ||C||2, where ||C||2 denotes

the scalar norm-squared of C with respect to g. Thus, if d = 3, any (M, g) with ||C||2

nowhere vanishing is conformally isometric, with C(M, [g]) = K(M, ||C||2/3g) (i.e. φ = ||C||2

is a proper conformal scalar with pφ = 6).

For any X ∈ C(M, [g]), ∇X ||X||2 = −2σX ||X||2 so if dimC(M, [g]) = 1 then φ = ||X||−2

defines a proper conformal scalar with pφ = 2 provided X is nowhere null. In this case,

C(M, [g]) is therefore always conformally isometric. Alternatively, if (M, g) is conformally

flat then C(M, [g]) ∼= so(d, 2), which is neither conformally homothetic nor conformally

isometric.

In fact, the dimension of C(M, [g]) can never exceed
(
d+2

2

)
and equals it only if (M, g)

is locally conformally flat. An important problem in conformal geometry is to determine

the next largest value of dimC(M, [g]), or submaximal dimension , which can be realised for

some (M, g) that is not conformally flat. In Lorentzian signature, this problem was recently

solved in [60–62]. Any (M, g) that is not locally conformally flat must have dim C(M, [g]) ≤
4 +

(
d−1

2

)
for any d > 3 and dimC(M, [g]) ≤ 4 for d = 3. These upper bounds are sharp in

that, for every d > 2, there are explicit examples for which they are saturated.

In d = 4, the conformal class of (M, g) can be characterised locally as being of Petrov

type I, II, D, III, N or O, depending on which components of the Weyl tensor vanish

identically. Theorem 5.1.3 in [60] provides sharp upper bounds on dimC(M, [g]) for each

Petrov type. Type O means W = 0 so (M, g) is locally conformally flat and dimC(M, [g]) =

15. Type N must have dimC(M, [g]) ≤ 7, type D must have dimC(M, [g]) ≤ 6 while

dimC(M, [g]) ≤ 4 for types I, II and III. It was shown in [64] that C(M, [g]) is conformally

isometric only if (M, g) admits a proper conformal scalar. Furthermore, from theorem 3

in [64], it follows that if (M, g) does not admit a proper conformal scalar then it must be

locally conformally equivalent to either Minkowski space (type O) or a plane wave (type

N). Whence, any (M, g) of type I, II, D or III must have C(M, [g]) conformally isometric.

3 Twistor spinors

Let us now assume that M has vanishing second Stiefel-Whitney class so the bundle SO(M)

of oriented pseudo-orthonormal frames lifts to Spin(M) by the assignment of a spin struc-

ture. For d ≤ 3, this lift is always unobstructed.
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The Clifford bundle C`(TM) over (M, g) is defined by the relation

XY +XY = 2g(X,Y )1 , (3.1)

for all X,Y ∈ X(M), where each multi-vector field Φ on M is associated with a section Φ

of C`(TM). At each point x ∈ M , the exterior algebra of TxM ∼= Rd−1,1 is isomorphic,

as a vector space, to the Clifford algebra C`(TxM) (the metric g and its inverse provide

a duality between multi-vector fields and differential forms on M). The canonical volume

form ε for the metric g on M defines a unique idempotent section Γ of C`(TM). If d is

odd, Γ is central in C`(TM). If d is even, ΓX = −XΓ, for all X ∈ X(M).

The Clifford algebra C`(TxM) is Z2-graded such that elements with even and odd

degrees are assigned grades 0 and 1 respectively. The grade 0 elements span an ungraded

associative subalgebra C`0(TxM) < C`(TxM). The degree two elements span a Lie sub-

algebra so(TxM) < C`0(TxM), where C`0(TxM) is understood as a Lie algebra whose

brackets are defined by commutators.

At each point x ∈M , the set of invertible elements in C`(TxM) forms a multiplicative

group C`×(TxM). The vectors X ∈ C`(TxM) with ||X||2 = ±1 generate the subgroup

Pin(TxM) < C`×(TxM). The group Spin(TxM) = Pin(TxM) ∩ C`0(TxM), which also

follows by exponentiating so(TxM) < C`0(TxM).

The pinor module is defined by the restriction to Pin(TxM) of an irreducible repre-

sentation of C`(TxM). Every Clifford algebra is isomorphic, as an associative algebra with

unit, to a matrix algebra and it is a simple matter to deduce their irreducible represen-

tations. The spinor module is defined by the restriction to Spin(TxM) of an irreducible

representation of C`0(TxM). Note that restricting to Spin(TxM) an irreducible represen-

tation of C`(TxM) need not define an irreducible spinor module. If d is even, C`(TxM)

has a unique irreducible representation which descends to a reducible representation when

restricted to Spin(TxM), yielding a pair of inequivalent irreducible (chiral) spinor modules

associated with the two eigenspaces of Γ on which Γ = ±1. If d is odd, C`(TxM) has two

inequivalent irreducible representations which are isomorphic to each other when restricted

to Spin(TxM). The isomorphism here is provided by the central element Γ and corresponds

to Hodge duality in the exterior algebra. In either case, the spinor module defined at each

point in M defines a principle bundle Spin(M) and its associated vector bundle $(M) is

called the spinor bundle over M .

Let S(M) denote the space of spinor fields on M (i.e. sections of $(M)). If d is even,

S(M) = S+(M) ⊕ S−(M), where S±(M) denote the subspaces of chiral spinor fields

(defined via projection operators P± = 1
2(1 ± Γ)) on which Γ = ±1. The action of ∇

induced on S(M) is compatible with the Clifford action, i.e.

∇X(Y ψ) = (∇XY )ψ + Y ∇Xψ , (3.2)

for all X,Y ∈ X(M) and ψ ∈ S(M). Furthermore,

(∇X∇Y −∇Y∇X)ψ = ∇[X,Y ]ψ +
1

2
R(X,Y )ψ , (3.3)

for all X,Y ∈ X(M) and ψ ∈ S(M), in terms of the Riemann tensor R of g.

– 7 –
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When required, we let {∂µ |µ = 0, 1, . . . , d − 1} denote a local coordinate basis on

X(M). The volume form on (M, g) is given by ε = ±
√
|g|dx0 ∧ dx1 ∧ . . .∧ dxd−1, in terms

of the dual basis {dxµ |µ = 0, 1, . . . , d−1} of differential forms on M . With respect to this

basis, the action of the Levi-Civita connection is defined by ∇µ∂ν = Γρµν∂ρ in terms of the

Christoffel symbols

Γρµν =
1

2
gρσ(∂µgνσ + ∂νgµσ − ∂σgµν) . (3.4)

Components of the Riemann tensor are given by

Rρσµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµαΓανσ − ΓρναΓαµσ , (3.5)

and let Rρσµν = gραR
α
σµν . The Ricci tensor has components Rµν = Rρµρν and the scalar

curvature is R = gµνRµν .

Let {Γµ1...µk |k = 0, 1, . . . , d} denote a basis for sections of the Clifford bundle C`(TM),

such that

Γµ1...µk = Γ[µ1
. . .Γµk] ≡

1

k!

∑
σ∈Sk

(−1)|σ|Γµσ(1)
. . .Γµσ(k)

, (3.6)

for degree k > 0 (i.e. unit weight skewsymmetrisation of k distinct degree one basis el-

ements) and the identity element 1 for k = 0. Let {eαµ} denote the components of a

pseudo-orthonormal frame on (M, g). By definition, gµν = eαµe
β
νηαβ , in terms of the canon-

ical Minkowskian metric η on Rd−1,1. Components {ωαβµ } of the associated spin connection

are defined by the ‘no torsion’ condition deα+ωαβ∧eβ = 0. In component form, the action

of ∇ on any ψ ∈ S(M) is given by

∇µψ = ∂µψ +
1

4
ωαβµ Γαβψ . (3.7)

In terms of these basis conventions, the term R(X,Y ) = 1
2X

µY νRµνρσΓ
ρσ on the right

hand side of (3.3).

There always exists on S(M) a non-degenerate bilinear form 〈−,−〉 with the properties

〈ψ,ϕ〉 = σ〈ϕ,ψ〉
〈Xψ,ϕ〉 = τ〈ψ,Xϕ〉 (3.8)

X〈ψ,ϕ〉 = 〈∇Xψ,ϕ〉+ 〈ψ,∇Xϕ〉 ,

for all ψ,ϕ ∈ S(M) and X ∈ X(M), with respect to a pair of fixed signs σ and τ (see [16,

67, 68] for more details). The possible choices for σ and τ depend critically on both

d and the signature of g. The sign σ = ±1 indicates whether 〈−,−〉 is symmetric or

skewsymmetric. The third line in (3.8) says that 〈−,−〉 is spin-invariant. For d even, this

implies 〈Γψ,ϕ〉 = (−1)d/2〈ψ,Γϕ〉. Whence,

〈ψ±, ϕ∓〉 = 0 if d = 0 mod 4

〈ψ±, ϕ±〉 = 0 if d = 2 mod 4 , (3.9)

for all ψ±, ϕ± ∈ S±(M). To any pair ψ,ϕ ∈ S(M), let us assign a vector field ξψ,ϕ defined

such that

g(X, ξψ,ϕ) = 〈ψ,Xϕ〉 , (3.10)
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for all X ∈ X(M). From the first two properties in (3.8), it follows that ξψ,ϕ = στξϕ,ψ, for

all ψ,ϕ ∈ S(M) and X ∈ X(M).

Now let the dual ψ of any ψ ∈ S(M) with respect to 〈−,−〉 be defined such that

ψϕ = 〈ψ,ϕ〉, for all ϕ ∈ S(M). From any ψ,ϕ ∈ S(M), one can define ψϕ as an

endomorphism of S(M). Whence, it can be expressed relative to the basis (3.6), with

coefficients proportional to multi-vectors of the form ϕΓµ1...µkψ. Such expressions are

known as Fierz identities , full details of which can be found in section 4 of [16].

The spinorial Lie derivative [69–72] along any X ∈ C(M, [g]) is defined by

LX = ∇X +
1

4
dX , (3.11)

where dX = (∇µXν)Γµν .3 The spinorial Lie derivative (3.11) obeys

LX(∇Y ψ)−∇Y (LXψ) = ∇[X,Y ]ψ +
1

4
dσX∧ Y ψ

LX(∇ψ)−∇(LXψ) = σX∇ψ − 1

2
(d− 1)(∇σX)ψ , (3.12)

for all X ∈ C(M, [g]), Y ∈ X(M) and ψ ∈ S(M). Moreover, for all X,Y ∈ C(M, [g]) and

any w ∈ R, using (3.11) and (2.3), it follows that

(LX + wσX1)(LY + wσY 1)− (LY + wσY 1)(LX + wσX1) = L[X,Y ] + wσ[X,Y ]1 . (3.13)

Whence, the map X 7→ LX + wσX1 defines on S(M) a representation of C(M, [g]).

With respect to a metric g̃ = e2ωg in [g], compatibility with the Clifford relation (3.1)

requires that X̃ = eωX, for all X ∈ X(M). Moreover, given any ψ ∈ S(M), ψ̃ = eω/2ψ

defines the corresponding spinor field with respect to g̃. For w = 1
2 , the representation of

C(M, [g]) on S(M) defined by

L̂X = LX +
1

2
σX1 , (3.14)

for all X ∈ C(M, [g]), is known as the Kosmann-Schwarzbach Lie derivative . It is worthy of

note because only for this particular value of w does (3.14) define a conformally equivariant

operator on S(M), i.e. if g 7→ e2ωg then

L̂X 7→ eω/2L̂Xe−ω/2 , (3.15)

for all X ∈ C(M, [g]). The Penrose operator

PX = ∇X −
1

d
X∇ , (3.16)

acts on S(M) along any X ∈ X(M). It is also conformally equivariant on S(M) and,

using (3.12), obeys

L̂X(PY ψ)− PY (L̂Xψ) = P[X,Y ]ψ , (3.17)

for all X ∈ C(M, [g]), Y ∈ X(M) and ψ ∈ S(M).

3In a slight abuse of notation, we use the same symbol for a vector field and its dual one-form with

respect to g.
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The subspace of conformal Killing (or twistor) spinors in S(M) is defined by

Z(M, [g]) =

{
ψ ∈ S(M)

∣∣∣∣ ∇Xψ =
1

d
X∇ψ , ∀X ∈ X(M)

}
. (3.18)

By construction, Z(M, [g]) = kerP and conformal equivariance of the Penrose operator

explains why the subspace (3.18) is assigned to the conformal class [g] rather than to the

particular metric g on M . Furthermore, (3.17) shows that Z(M, [g]) is preserved by the

action of the Kosmann-Schwarzbach Lie derivative (3.14). A key property of twistor spinors

is that they ‘square’ to conformal Killing vectors, in the sense that the vector field defined

by (3.10) is ξψ,ϕ ∈ C(M, [g]), for any ψ,ϕ ∈ Z(M, [g]).

With respect to a particular metric in [g], any ψ ∈ Z(M, [g]) with 1
d∇ψ = λψ, for some

λ ∈ C, is said to be Killing if λ 6= 0 or parallel if λ = 0. The non-zero constant λ is called

the Killing constant of a Killing spinor ψ.

Taking a derivative of the defining equation for any ψ ∈ Z(M, [g]) yields the following

conditions

∇X∇ψ =
d

2
K(X)ψ , ∇2ψ = − d

4(d− 1)
Rψ , (3.19)

and combining (3.19) with (3.3) implies the important integrability conditions

W (X,Y )ψ = 0 , C(X,Y )ψ =
1

d
W (X,Y )∇ψ , (3.20)

for all X,Y ∈ X(M), where K(X) = XµKµνΓ
ν , W (X,Y ) = 1

2X
µY νWµνρσΓ

ρσ and

C(X,Y ) = XµY νCµνρΓ
ρ, in terms of the basis conventions described above. The Schouten

tensor K has components

Kµν =
1

d− 2

(
−Rµν +

1

2(d− 1)
gµνR

)
. (3.21)

The Weyl tensor W has components

Wµνρσ = Rµνρσ + gµρKνσ − gνρKµσ − gµσKνρ + gνσKµρ , (3.22)

and we define ||W ||2 = WµνρσW
µνρσ. The Cotton-York tensor C has components

Cµνρ = ∇µKνρ −∇νKµρ , (3.23)

and we define ||C||2 = CµνρC
µνρ.

There are a number of classification results concerning the existence of twistor spinors

(with and without zeros) on (M, g) in different dimensions and signatures. It can be

shown that dimZ(M, [g]) ≤ 2 dimS(M) and, from (3.20), it follows that this bound is

saturated only if (M, g) is locally conformally flat. The classification in d ≥ 3 of all local

conformal equivalence classes of Lorentzian spin manifolds which admit a twistor spinor

without zeros was established by Baum and Leitner [54–58]. Their results generalise the

classification in d = 4 obtained earlier by Lewandowski in [73] which established that any

Lorentzian spin manifold admitting a twistor spinor must be locally conformally equivalent
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to either a pp-wave, a Fefferman space or R3,1. In d = 3, any Lorentzian spin manifold

admitting a twistor spinor must be locally conformally equivalent to either a pp-wave or

R2,1. In d > 4, there are a few more distinct classes of Lorentzian manifolds which admit

a non-vanishing twistor spinor (see [16] for more details). Any such geometry is locally

conformally equivalent to either a Lorentzian Einstein-Sasaki manifold (if d is odd) or

the direct product of a Lorentzian Einstein-Sasaki manifold with a Riemannian manifold

admitting Killing spinors.

4 Lie superalgebras

A real Lie superalgebra consists of a Z2-graded real vector space S (with even part S0̄ and

odd part S1̄) that is equipped with the following additional structure.

A real bilinear map [−,−] : S × S → S which respects the Z2-grading such that

[S0̄,S0̄] ⊂ S0̄ , [S0̄,S1̄] ⊂ S1̄ , [S1̄,S1̄] ⊂ S0̄ . (4.1)

For all u, v ∈ S0̄ and α, β ∈ S1̄,

[u, v] = −[v, u] , [u, α] = −[α, u] , [α, β] = [β, α] . (4.2)

Since [−,−] is symmetric bilinear on S1̄, [S1̄,S1̄] is defined by specifying [α, α] ∈ S0̄ for all

α ∈ S1̄ (i.e. via polarisation, any [α, β] = 1
2([α+ β, α+ β]− [α, α]− [β, β])).

Furthermore, S is subject to a Jacobi identity which constrains

[[u, v], w] + [[v, w], u] + [[w, u], v] = 0 ,

[[u, v], α] + [[v, α], u] + [[α, u], v] = 0 , (4.3)

[[u, α], β] + [[α, β], u]− [[β, u], α] = 0 ,

[[α, β], γ] + [[β, γ], α] + [[γ, α], β] = 0 ,

for all u, v, w ∈ S0̄ and α, β, γ ∈ S1̄. The first three conditions in (4.3) have a simple

conceptualisation. The first condition says that S0̄ must be a real Lie algebra (i.e. it is the

Jacobi identity for S0̄). The second condition says that S1̄ must be a real representation of

S0̄. The third condition says that the map [−,−] : S1̄ × S1̄ → S0̄ must be S0̄-equivariant.

Notice that the fourth condition is symmetric trilinear on S1̄ and therefore equivalent, via

polarisation, to demanding [[α, α], α] = 0, for all α ∈ S1̄.

If [S1̄,S1̄] = 0 then clearly the third and fourth conditions in (4.3) are identically

satisfied and a real Lie superalgebra S is defined by any real Lie algebra S0̄ with real

S0̄-module S1̄. We shall call S proper if [S1̄,S1̄] 6= 0. If [S0̄,S1̄] = 0 then the second and

fourth conditions in (4.3) are identically satisfied. Consequently, S is then a proper real

Lie superalgebra only if [S1̄,S1̄] ⊂ Z(S0̄) for a given real Lie algebra S0̄ with non-trivial

centre Z(S0̄).

The proper real Lie superalgebras S we shall encounter in forthcoming sections all have

Z(S0̄) non-trivial, dim [S1̄,S1̄] = 1 and dimS1̄ ≤ 2. To facilitate their description, consider

the following setup. Let h be a real Lie algebra with ideal kCh such that dim (h/k) = 1 and
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Z(k) is non-trivial. Let r be a one-dimensional real Lie algebra. Now define S0̄ = h⊕ r, as

a real Lie algebra with [h, r] = 0, and let dimS1̄ = 2. With respect to a choice of non-zero

elements z ∈ Z(k), h ∈ h/k and r ∈ r, and a choice of basis {α, β} on S1̄, we define the

[S0̄,S1̄] brackets

[k, α] = 0 , [k, β] = 0 , [h, α] =
1

2
α , [h, β] =

1

2
β , [r, α] = −β , [r, β] = α , (4.4)

for all k ∈ k, and the [S1̄,S1̄] brackets

[α, α] = [β, β] = z , [α, β] = 0 . (4.5)

It follows that the Jacobi identity (4.3) is satisfied for this choice of brackets on S provided

[h, z] = z . (4.6)

Taking (4.6) as part of the definition, the isomorphism class of the proper real Lie super-

algebra S described above will be written SC2 (h|r).
A more succinct form of (4.4) and (4.5) that will often be more convenient to use in

the forthcoming discussion is given by

[k, αC] = 0 , [h, αC] =
1

2
αC , [r, αC] = iαC , [αC, αC] = 0 , [αC, α

∗
C] = 2z , (4.7)

for all k ∈ k, in terms of αC = α+ iβ (and α∗C = α− iβ). Of course, despite the appearance

of the complex element αC, this still encodes the same real Lie superalgebra SC2 (h|r).
The Lie superalgebra SC2 (h|r) contains several ideals and subalgebras that are worth

naming, since they will also feature in the subsequent discussion. Let us define their

isomorphism classes via the omission of certain combinations of the elements h ∈ h/k, r ∈ r

and β ∈ S1̄ which figured in the construction above:

• S◦2 (k|r) C SC2 (h|r) is defined by omitting h ∈ h/k.

• SC2 (h) C SC2 (h|r) is defined by omitting r ∈ r.

• S◦2 (k) C SC2 (h|r) is defined by omitting h ∈ h/k and r ∈ r.

• SC1 (h) < SC2 (h) is defined by omitting β ∈ S1̄.

• S◦1 (k) < SC2 (h) is defined by omitting β ∈ S1̄ and h ∈ h/k.

Notice that the subscript in each of the proper real Lie superalgebras above denotes the

dimension of its odd part. In the conformal symmetry superalgebras we shall encounter, r

will be represented by an abelian R-symmetry while h (and k) will typically be represented

by homothetic conformal Killing vectors (and Killing vectors).
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d 3 4 4 5 6

Type R C C H H

R so(N ) u(N 6= 4) su(4) sp(1) sp(N )

Smax osp(N |4) su(2, 2|N 6= 4) psu(2, 2|4) f(4) osp(6, 2|N )

Table 1. Generic conformal symmetry superalgebra data for Lorentzian (M, g).

5 Conformal symmetry superalgebras and gauged R-symmetry

A certain class of pseudo-Riemannian spin manifolds which admit a twistor spinor may

be equipped with a proper real Lie superalgebra structure that we refer to as a conformal

symmetry superalgebra [16, 17]. A conformal symmetry superalgebra S contains conformal

Killing vectors and constant R-symmetries in its even part S0̄ = B and twistor spinors

valued in certain R-symmetry representations in its odd part S1̄ = F .

Let R denote the real Lie algebra of R-symmetries. On any background (M, g) that

admits a conformal symmetry superalgebra S, the even part B = C(M, [g])⊕R, as a real

Lie algebra. The action of B on F which defines the [B,F ] bracket of S involves the action

of C(M, [g]) on Z(M, [g]) defined by the Kosmann-Schwarzbach Lie derivative (3.14) and

the action of R defined by the R-symmetry representation of F . The C(M, [g]) part of the

[F ,F ] bracket of S involves pairing twistor spinors, using the spinorial bilinear form in (3.8)

to make a conformal Killing vector (3.10), and projecting onto the R-invariant part.

The type of spinor representation must be compatible with the type of R-symmetry

representation in order to define F as a real B-module. This puts restrictions on R accord-

ing to the dimension d of M and the signature of g. In Lorentzian signature, the critical

data is summarised in table 1. Entries in the ‘Type’ row in table 1 denote the ground field

K over which the representation of R is defined. The dimension over K of this representa-

tion is denoted by N . Entries in the ‘Smax’ row of table 1 denote the conformal symmetry

superalgebra S ∼= Smax that is realised only when (M, g) is locally conformally equivalent

to Minkowski space.

If there exists a K(M, g)-invariant subspace F◦ ⊂ F such that the C(M, [g]) part of

[F◦,F◦] is in K(M, g) < C(M, [g]) then the background (M, g) can be assigned the symmetry

superalgebra S◦ = B◦ ⊕F◦, where B◦ = K(M, g)⊕R.

Consider now the gauging of R-symmetry in the construction above. This amounts

to promoting a given R-module to a non-trivial vector bundle that is equipped with a

connection A. Locally, elements in F now correspond to spinors on (M, g) that are valued

in sections of this vector bundle. By replacing all occurrences of the Levi-Civita connec-

tion ∇ with the gauged connection D = ∇ + A (i.e. in the Kosmann-Schwarzbach Lie

derivative (3.14) and the Penrose operator (3.16)), the construction is made manifestly

equivariant with respect to the gauged R-symmetry.

Following this prescription for a given conformal symmetry superalgebra S implies

that each ε ∈ F obeys a twistor spinor equation

DXε =
1

d
XDε , (5.1)

– 13 –



J
H
E
P
0
2
(
2
0
1
6
)
0
0
8

with respect to the gauged connection D, for all X ∈ X(M). For any ε ∈ F , let Ξε denote

the component of [ε, ε] in C(M, [g]). That Ξε indeed remains a conformal Killing vector after

gauging the R-symmetry follows directly from (5.1), using the fact that Ξε is R-invariant.

The action of C(M, [g]) on F is of the form

[X, ε] = L̂Xε+ (AX + ρX) · ε , (5.2)

for all X ∈ C(M, [g]) and ε ∈ F , in terms of some R-valued function ρX on M . Generi-

cally, (5.2) is not in F since [X, ε] does not obey the twistor spinor equation (5.1). However,

this property does follow if

ιXF = DρX , (5.3)

for all X ∈ C(M, [g]), where F = dA + A ∧ A denotes the curvature of D.4 For any

X,Y ∈ C(M, [g]) which obey (5.3), [X,Y ] ∈ C(M, [g]) also obeys (5.3) with

ρ[X,Y ] = F (X,Y ) +DXρY −DY ρX + [ρX , ρY ] . (5.4)

The condition (5.3) ensures not only that [B,F ] ⊂ F but also that the [BBF ] and [BFF ]

components of the Jacobi identity (4.3) for S remain satisfied. Furthermore, [F ,F ] ⊂ B
and the [FFF ] component of the Jacobi identity for S remains satisfied as a consequence

of manifest equivariance with respect to the gauged R-symmetry. Thus, S remains a Lie

superalgebra after gauging the R-symmetry provided (5.3) is satisfied.

We can summarise this result more explicitly by introducing a local basis {ei} for

sections of the relevant R-symmetry vector bundles. At each point x ∈ M , {ei} defines a

basis for an R-module V of precisely the same type as in [16, 17]. In particular, we recall

from table 1 that V is orthogonal (type R) in d = 3, Hermitian (type C) in d = 4 and

symplectic (type H) in d = 5, 6. In the orthogonal (or symplectic) case, V is equipped

with a non-degenerate symmetric (or skewsymmetric) R-invariant bilinear form that we

will call h (or ω). With respect to a basis {ei} on the dual module V ∗ (defined such that

ei(ej) = δij), we identify ei = hije
j in the orthogonal case (where hij = h(ei, ej)) and

ei = ωije
j in the symplectic case (where ωij = ω(ei, ej)). In the Hermitian case, ei and ei

are related by complex conjugation.

With respect to the basis above, a typical element ε ∈ F , subject to (5.1), is of the form

ε =


εiei if d = 3, 5

εi+ei + ε− ie
i if d = 4

εi+ei if d = 6 ,

(5.5)

4In fact, it is sufficient that ΦX(Y ) · ε = 1
d
Y ΦX · ε, for all X ∈ C(M, [g]), Y ∈ X(M) and ε ∈ F , where

ΦX = ιXF −DρX . Generically this condition is weaker than (5.3) but is equivalent to it for all the cases

of interest here.
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where the components εi ∈ S(M) if d = 3, 5, εi+ = (ε− i)
∗ ∈ S+(M) if d = 4 and

εi+ ∈ S+(M) if d = 6. The element Ξε ∈ C(M, [g]) is defined such that

g(X,Ξε) =


hij ε

iXεj if d = 3

2 εi+Xε− i if d = 4

ωij ε
iXεj if d = 5

ωij ε
i
+Xεj+ if d = 6 ,

(5.6)

for all X ∈ X(M) and ε ∈ F . For any ψ ∈ S(M), we recall that ψ = 〈ψ,−〉 denotes its dual

with respect to an admissible spinorial bilinear form 〈−,−〉 on S(M) (defined in (3.8)).

The associated element ρΞε ∈ C∞(M)⊗R is defined such that

(ρΞε · ψ)i =



2

3
(εiDεj − εjDεi)hkjψk if d = 3

(εi+Dε− j − ε− jDεi+)ψj+ −
1

4
(εj+Dε− j − ε− jDε

j
+)ψi+ if d = 4

3

5
(εiDεj + εjDεi)ωkjψ

k if d = 5

2

3
(εi+Dε

j
+ + εj+Dε

i
+)ωkjψ

k
+ if d = 6 ,

(5.7)

for all ε, ψ ∈ F .

In terms of the data above, our result is that the assignment of a linear map ρ :

C(M, [g])→ C∞(M)⊗R which obeys (5.3) is sufficient for the brackets

[X, ε] = L̂Xε+ (AX + ρX) · ε , [ε, ε] = Ξε , (5.8)

on the Z2-graded vector space C(M, [g])⊕F (for all X ∈ C(M, [g]) and ε ∈ F) to define a

Lie superalgebra. Notice that the condition (5.3) does not involve elements in the image

of ρ that are in the kernel of D. Indeed, if we define

R = {R ∈ C∞(M)⊗R |DR = 0} , (5.9)

as a real Lie algebra, then by appending to (5.8) the bracket

[R, ε] = R · ε , (5.10)

for all R ∈ R and ε ∈ F , it follows that the Z2-graded vector space S = B ⊕ F , with

B = C(M, [g])⊕R, is also a Lie superalgebra. Elements in R here generalise the constant

R-symmetries in the ungauged construction of [16, 17].

Taking X = Ξε in (5.3), for all ε ∈ F , typically constrains the form of F because ρΞε

is prescribed by (5.7). If F = 0, one can choose a gauge such that S recovers the form

it took before gauging the R-symmetry. In Lorentzian signature, one finds that (5.3) is

satisfied identically (with F 6= 0) for all conformal Killing vectors in [F ,F ] only if d = 3

with R = so(2) or d = 4 with R = u(1). Notice that these are the only two cases in table 1
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where R is abelian. It follows that F = dA and DρX = dρX in (5.3), which is the local

characterisation of

LXF = 0 , (5.11)

for all X ∈ C(M, [g]). Furthermore, it is precisely for these two cases that the data

(g,A) describes the full set of bosonic fields in an off-shell conformal gravity supermultiplet

and (5.1) is the defining condition for bosonic supersymmetric vacua. The structure of

field theories with rigid supersymmetry on such backgrounds has been explored recently

in [6, 8, 15, 27].

6 d = 3

6.1 Null triads

Let (ξ, θ, χ) denote a null triad of real vector fields on (M, g), subject to the defining

relations

||ξ||2 = ||θ||2 = g(ξ, χ) = g(θ, χ) = 0 , g(ξ, θ) = ||χ||2 = 1 . (6.1)

The relations (6.1) are preserved under the following transformations (which collectively

generate O(2, 1)):

• (ξ, θ, χ) 7→ (θ, ξ, χ).

• (ξ, θ, χ) 7→ (ξ, θ − αχ− 1
2α

2ξ, χ+ αξ), for any α ∈ R.

• (ξ, θ, χ) 7→ (βξ, β−1θ,±χ), for any β ∈ R\{0}.

It is convenient to use the null triad to express the metric and volume form on M as

g = ξ ⊗ θ + θ ⊗ ξ + χ⊗ χ , ε = ξ ∧ θ ∧ χ . (6.2)

6.2 Majorana spinors

The Clifford algebra C`(2, 1) ∼= Mat2(R) ⊕Mat2(R) has two inequivalent irreducible rep-

resentations, each isomorphic to R2, which are both identified with the unique irreducible

representation of C`0(2, 1) ∼= Mat2(R) after restricting to Spin(2, 1). This restriction de-

fines the Majorana spinor representation.

Relative to the basis conventions (3.6), Hodge duality in the exterior algebra implies

Γµν = εµνρΓ
ρ , Γµνρ = εµνρ1 , (6.3)

on Majorana spinors.

The bilinear form (3.8) on S(M) is unique and skewsymmetric. For all ψ,ϕ ∈ S(M),

it follows that

ψϕ = −ϕψ , ψΓµϕ = ϕΓµψ , (6.4)

and the associated Fierz identity is given by

ψϕ =
1

2
((ϕψ)1 + (ϕΓµψ)Γµ) . (6.5)
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In terms of a unitary basis for C`(2, 1), all the quantities above are manifestly real.

For any ε ∈ S(M), let us define the real vector field

ξµε = εΓµε . (6.6)

We shall assume henceforth that ξε is nowhere vanishing, which is so only if ε is nowhere

vanishing. Furthermore, using (6.5), it follows that ξεε = 0. Consequently, ξε is null.

For any ε, ε′ ∈ S(M), let us also define

ζµ = εΓµε′ , κ = εε′ . (6.7)

The scalar κ vanishes identically only if ε and ε′ are linearly dependent. We shall assume

henceforth that κ 6= 0. Using (6.5), it follows that

ξεε
′ = −2ζε = 2κε . (6.8)

Thus, ξε and ξε′ are both null while ζ is spacelike, with

||ζ||2 = κ2 = −1

2
g(ξε, ξε′) , g(ξε, ζ) = g(ξε′ , ζ) = 0 . (6.9)

It is sometimes convenient to identify (6.6) and (6.7) in terms of the null triad intro-

duced in section 6.1, such that

ξε = ξ , −1

2
κ−2ξε′ = θ , κ−1ζ = χ . (6.10)

In terms of this identification, ε′ = κθε. Since (ε, ε′) define a basis of Majorana spinors, it

follows that any ψ ∈ S(M) can be written

ψ = αε+ βθε , (6.11)

where α = εθψ and β = εψ.

6.3 Causal conformal Killing vectors

The action of the Levi-Civita connection ∇ on the null triad one-forms is constrained by

the relations (6.1) such that

∇µξν = pµξν − qµχν
∇µθν = −pµθν + rµχν (6.12)

∇µχν = −rµξν + qµθν ,

in terms of three real one-forms (p, q, r).

Given any X ∈ X(M) with ||X||2 = 0, using the transformations below (6.1), one can

always define a null triad such that X = ξ. From the first line in (6.12), it follows that ξ

is a conformal Killing vector only if

pθ = qξ = 0 , pξ = −2qχ , pχ = qθ . (6.13)
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The conformal factor (2.2) for ξ ∈ C(M, [g]) is σξ = qχ. The condition qξ = 0 in (6.13) is

equivalent to ξ ∧ dξ = 0. If ξ is a Killing vector then (6.13) are satisfied with σξ = qχ =

0 = pξ. If ξ is ∇-parallel then p = q = 0.

Identifying ξ = ξε as in (6.10) implies

∇µε =
1

2
(pµε− qµθε) . (6.14)

It follows that (6.13) are in fact necessary and sufficient for ε ∈ Z(M, [g]). Since ε ∈
Z(M, [g]) implies ξε = ξ ∈ C(M, [g]), clearly (6.13) are necessary for any ε ∈ Z(M, [g]). The

point is that, at least locally, the existence of a nowhere vanishing null conformal Killing

vector is actually equivalent to the existence of a nowhere vanishing Majorana twistor

spinor [8]. Furthermore, if ξε is a Killing vector then ε is necessarily a Killing spinor (with

Killing constant −1
2qθ). If ξε is ∇-parallel then ε is necessarily also ∇-parallel.

Given any X ∈ X(M) with ||X||2 6= 0, using the transformations below (6.1), one can

always define a null triad such that X = ξ+ 1
2 ||X||

2 θ. If ||X||2 < 0, let ||X||2 = −4κ2 so that

X = ξ − 2κ2θ. From the first two lines in (6.12), it follows that X is a conformal Killing

vector only if

pθ = 0 , qξ + 2κ2rξ = 2(κ2pχ − ∂χκ2) , pξ − 2∂θκ
2 = −2(qχ + 2κ2rχ) ,

pχ = qθ + 2κ2rθ , κ2pξ = ∂ξκ
2 . (6.15)

The conformal factor σX = −∂X(lnκ). If X is a Killing vector then (6.15) are satisfied

with pξ = 2∂θκ
2.

Let us now identify the non-zero scalar κ above with its namesake in (6.7). Identifying

ξ = ξε and θ = −1
2κ
−2ξε′ as in (6.10) then implies X = ξ−2κ2θ = ξε+ξε′ . Let us name this

timelike vector field Ξ = ξε + ξε′ , with ||Ξ||2 = −4κ2. With respect to the aforementioned

identifications, it follows that

∇µε =
1

2
(pµε− κ−1qµε

′)

∇µε′ = −κrµε−
1

2
(pµ + ∂µ(lnκ))ε′ . (6.16)

If Ξ is a conformal Killing vector then

d(κ−2Ξ) = −κ−3ρΞ ∗Ξ , (6.17)

where

ρΞ = 2(∂χκ− κpχ) . (6.18)

Thus Ξ ∧ dΞ = 4κρΞ ξ ∧ θ ∧ χ is zero only if ρΞ = 0.

6.4 Charged twistor spinors

Consider now the implications of the existence of a charged twistor spinor, which can be

thought of locally as a pair of Majorana spinors (ε, ε′) both obeying (5.1) with respect to

the action of the R = so(2) gauged connection

Dµε = ∇µε+Aµε
′

Dµε
′ = ∇µε′ −Aµε . (6.19)
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An equivalent version of (6.19) follows by taking the real and imaginary parts of DµεC =

∇µεC − iAµεC, where εC = ε + iε′. Because (ε, ε′) transform as a 2-vector under so(2),

εC = ε+ iε′ has unit charge under u(1) ∼= so(2).

The first consequence of (6.19) is that the timelike vector field Ξ = ξε+ξε′ ∈ C(M, [g]).

Thus, using (6.16), one finds that the five conditions in (6.15) are necessary in order for

(ε, ε′) to define a charged twistor spinor with respect to D. The remaining three conditions

which come from the twistor spinor equation for (ε, ε′) are precisely sufficient to fix all three

components of A, such that

Aµ = −κrθξµ +
1

2
κ−1qξθµ + (∂θκ− κrχ)χµ , (6.20)

in terms of the identifications in (6.10).

Thus we conclude that if (M, g) admits a nowhere vanishing everywhere timelike con-

formal Killing vector X, then there must exist a nowhere vanishing charged twistor spinor

pair (ε, ε′) on (M, g), with X = Ξ, that is defined with respect to the gauged connec-

tion A in (6.20). This characterisation of charged twistor spinors on a smooth orientable

Lorentzian three-manifold was first obtained in [15].

Using (6.20), the twistor spinor equation for (ε, ε′) implies that the real function

ρΞ =
2

3
(εDε′ − ε′Dε) , (6.21)

is identical to its namesake in (6.18). Moreover, it follows that

ιΞF = dρΞ , (6.22)

so (5.3) is satisfied identically for X = Ξ.

Differentiating the defining condition (5.1) with (6.19) gives

2

3
DµDεC = KµνΓ

νεC − i(FµνΓν − F̃µ1)εC , (6.23)

where F̃µ = 1
2εµνρF

νρ. Combining (6.23) with (3.3) implies the integrability condition

iCµνρΓ
ρεC = (2∇[µF̃ν]1 + ∇Fµν)εC + κ−1(Fµν1− F̃[µΓν])(ρΞ1 + 2∇κ)εC , (6.24)

using the identity
4

3
DεC = κ−1(ρΞ1 + 2∇κ)εC . (6.25)

It is convenient to define C̃µν = 1
2εµ

ρσCρσν in d = 3. From the definition of the Cotton-

York tensor (3.23), it follows that C̃µν = C̃νµ, C̃µνg
µν = 0 and ∇µC̃µν = 0 identically. An

equivalent, but somewhat more wieldy, form of (6.24) is given by

iC̃µνΓ
νεC = κ−1

(
(ρΞF̃µ−∇ν(κFµν))1+κ∇F̃µ+2F̃µ∇κ+2F̃ ν(∂[µκ)Γν]−

1

2
ρΞF̃

νΓµν

)
εC .

(6.26)

From (6.26), it follows that

1

2
C̃µνΞν = ρΞF̃µ −∇ν(κFµν) . (6.27)

– 19 –



J
H
E
P
0
2
(
2
0
1
6
)
0
0
8

6.5 Conformal symmetry superalgebras

Let (M, g) be any smooth orientable Lorentzian three-manifold equipped with a nowhere

vanishing causal conformal Killing vector X and a C(M, [g])-invariant closed two-form F .

As we have explained, any null X ∈ C(M, [g]) defines a nowhere vanishing twistor spinor ε

(with X = ξ = ξε) while any timelike X ∈ C(M, [g]) defines a nowhere vanishing charged

twistor spinor pair (ε, ε′) (with X = Ξ = ξε + ξε′) that is charged with respect to the

connection A in (6.20) whose curvature is F = dA. From section 5, we recall that this data

is sufficient to assign to (M, [g]) a conformal symmetry superalgebra S with trivial R for

null X or gauged R = so(2) for timelike X.

6.5.1 Null case

If (M, g) admits a nowhere vanishing conformal Killing vector ξ that is everywhere null then

it is locally conformally equivalent to a pp-wave or R2,1. We shall assume henceforth that

(M, g) is not locally conformally flat. The general form of the three-dimensional pp-wave

metric is

gpp = 2dudv +H(u, x)du2 + dx2 , (6.28)

in terms of Brinkmann coordinates (u, v, x) on M , where H is an arbitrary real function

of (u, x). In these coordinates, ξ = ∂v is a null Killing vector of (M, gpp). It is often

convenient to adopt the notation ′ = ∂u.

The only non-trivial component of the Riemann tensor of gpp is Ruxux = −1
2∂

2
xH.

Whence, (M, gpp) is flat only if H is a linear function of x. The only non-trivial component

of the Ricci tensor of gpp is Ruu = Ruxux and the scalar curvature R = 0. The only

non-trivial component of the Cotton-York tensor of gpp is Cuxu = −1
2∂

3
xH whose scalar

norm-squared ||C||2 = 0. Thus, (M, gpp) is conformally flat only if H is a quadratic function

of x. Since we are concerned with geometries that are not conformally flat, we shall assume

henceforth that (M, gpp) has ∂3
xH 6= 0.

Any X ∈ C(M, [gpp]) must be of the form

X = γX∂u + (αX − β′Xx−
γ′′X
4
x2 + 2cXv)∂v + (βX + (

γ′X
2

+ cX)x)∂x , (6.29)

in terms of three real functions (αX , βX , γX) of u and a real number cX which obey

2(αX − β′Xx−
γ′′X
4
x2)′ + (γXH)′ − 2cXH + (βX + (

γ′X
2

+ cX)x)∂xH = 0 . (6.30)

The conformal factor is

σX = −
γ′X
2
− cX . (6.31)

The expression (6.29) shows that the Lie bracket of the generic null Killing vector ξ

with any X ∈ C(M, [gpp]) is given by

[ξ,X] = 2cXξ . (6.32)

Whence, the real line spanned by ξ forms a one-dimensional ideal of C(M, [gpp]). Clearly

ξ is in the centre Z(C(M, [gpp])) of C(M, [gpp]) only if every X ∈ C(M, [gpp]) has cX = 0.

– 20 –



J
H
E
P
0
2
(
2
0
1
6
)
0
0
8

If ξ /∈ Z(C(M, [gpp])) then at least one X ∈ C(M, [gpp]) must have cX 6= 0 and every other

Y ∈ C(M, [gpp]) can be taken to have cY = 0 (i.e. if Y ∈ C(M, [gpp]) has cY 6= 0 then

Ỹ = Y − cY
cX
X ∈ C(M, [gpp]) has cỸ = 0).

The condition (6.30) indicates that the existence of an extra conformal Killing vector

(in addition to ξ) puts constraints on the function H. If dimC(M, [gpp]) = 2, one can fix

γX = 1 in (6.29), (6.30) and (6.31) with respect to a conformally equivalent metric via

u 7→
∫

duΩ2(u) , v 7→ v − 1

2
x2Ω−1∂uΩ , x 7→ Ωx , H 7→ Ω−2(H − x2Ω∂2

uΩ−1) ,

(6.33)

if it is possible to identify Ω2 = γ−1
X . In this case, X is homothetic with respect to γ−1

X gpp,

with conformal factor −cX . Whence, from (6.32), X is a Killing vector only if [ξ,X] = 0,

in which case (6.30) fixes

H = −2αX − β2
X + 2β′Xx+ f(−x+

∫
duβX) , (6.34)

in terms of any real function f of one variable whose third derivative is not zero. A similar,

but more complicated, expression for H emerges when cX 6= 0.

Since ||C||2 vanishes identically on (M, gpp), it cannot be used to define a conformal

scalar. However, the fact that the Lie derivative of C along any conformal Killing vector X

is zero implies that ∂XCuxu = −(2∂uX
u +∂xX

x)Cuxu on (M, gpp). Using (6.31), this gives

∂XCuxu = (5σX + 4cX)Cuxu for any X ∈ C(M, [gpp]). Consequently, if ξ ∈ Z(C(M, [gpp])),

then φ = ∂3
xH is a proper conformal scalar with pφ = 5 and C(M, [gpp]) is conformally

isometric. If ξ /∈ Z(C(M, [gpp])) then (M, gpp) admits a proper conformal gradient with

ϕ = 1
5 ln ∂3

xH and sX = −4
5cX , in which case (M, gpp) is conformally homothetic. In

both cases, the isometric/homothetic action of C(M, [gpp]) is with respect to the metric

(∂3
xH)2/5gpp on M (which need not be locally isometric to a pp-wave).

If 2 ≤ dimC(M, [gpp]) ≤ 4, we have seen above that the structure of C(M, [gpp])

depends critically on whether or not ξ ∈ Z(C(M, [gpp])). If ξ ∈ Z(C(M, [gpp])) then

C(M, [gpp]) = K(M, g) (i.e. conformally isometric). This requires the existence of a

Lorentzian three-manifold (M, g) with 2 ≤ dimK(M, g) ≤ 4 which admits a non-zero null

ξ ∈ Z(K(M, g)). The classification, up to local isometry, of all three-dimensional Lorentzian

geometries with Killing vectors is due to Kručkovič [63] (see also section 5 in [61]). Any

Lorentzian three-manifold (M, g) in [63] that is not conformally flat and admits a non-

zero null ξ ∈ Z(K(M, g)) must have dimK(M, g) < 3. If dimK(M, g) = 2 then one can

choose local coordinates (u, v, x) on M such that (∂u, ξ = ∂v) ∈ K(M, g) ∼= R2 and, for

some positive function Ω of x, g = Ω(x)gpp in terms of the pp-wave metric gpp in (6.28) of

the form

2dudv +H(x)du2 + dx2 , (6.35)

with ∂3
xH 6= 0.

If ξ /∈ Z(C(M, [gpp])) then C(M, [gpp]) = H(M, g) (i.e. conformally homothetic) and

ξ ∈ Z(K(M, g)). Just as in the previous case, K(M, g) ∼= R2 is the only option if

dimC(M, [gpp]) > 2 (we have already covered the dimC(M, [gpp]) = 2 case above). Clearly
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H ϑ [ϑ, ∂u] C(M, [gpp])

b+ c ex u∂u − (v + bu)∂v − 2∂x −∂u + b∂v b[VI0]

b− 2c lnx −u∂u − (v + cu)∂v − x∂x ∂u + c∂v b[IV]

b+ c x−2(a−1
a+1 ) −au∂u − (v − 1

2(a− 1)bu)∂v − 1
2(a+ 1)x∂x a∂u − 1

2(a− 1)b∂v b[VI]

Table 2. Data for geometries with dimC(M, [gpp]) = 3.

dimC(M, [gpp]) = 4 is impossible since dimC(M, [gpp]) = dimH(M, g) = dimK(M, g) + 1.

The only remaining option is dimC(M, [gpp]) = 3. Since the homothetic action of

C(M, [gpp]) is with respect to g = (∂3
xH)2/5gpp, where gpp is of the form (6.35), the

proper homothetic X ∈ H(M, g)/K(M, g) obeys LXg = 8
5cXg and [ξ,X] = 2cXξ with

cX 6= 0. The non-zero value of cX is irrelevant and it is convenient to work in terms of

ϑ := − 1
2cX

X ∈ H(M, g)/K(M, g) which has cϑ = −1
2 . Solving Lϑg = −4

5g and [ϑ, ξ] = ξ

yields three inequivalent classes of solutions for H and ϑ which are displayed in table 2.

The parameters a ∈ R\{0,±1, 1
3}, b ∈ R and c ∈ R\{0}. For the functions H in table 2, ϑ

is homothetic not only with respect to g = (∂3
xH)2/5gpp but also with respect to gpp (albeit

with a different constant conformal factor). For H = b + c ex, ϑ is a Killing vector with

respect to gpp and (M, gpp) is homogeneous. In the other two cases, ϑ is a Killing vector

with respect to x−2gpp.

For each geometry in table 2, it follows by direct calculation that the associated con-

formal symmetry superalgebra S is defined by the following common non-zero brackets

[ϑ, ξ] = ξ , [ϑ, ε] =
1

2
ε , [ε, ε] = ξ , (6.36)

in terms of a (suitably normalised) parallel spinor ε ∈ F on (M, gpp), together with the

bracket [ϑ, ∂u] displayed in the third column of table 2. Consequently S = SC1 (C(M, [gpp])),

in terms of the notation defined in section 4 (identifying ϑ = h and ξ = z). Entries in the

rightmost column of table 2 denote the isomorphism class of B = C(M, [gpp]) in terms of a

three-dimensional indecomposable real Lie algebra in the Bianchi classification [77]. Up to

isomorphism, there exists a basis {e1, e2, e3} such that the Lie algebra

• b[VI0] has non-zero Lie brackets [e1, e3] = e2, [e2, e3] = e1.

• b[IV] has non-zero Lie brackets [e1, e3] = e1, [e2, e3] = e2 − e1.

• b[VI] has non-zero Lie brackets [e1, e3] = e2 + ae1, [e2, e3] = e1 + ae2.

For b[VI], each positive real number a 6= 1 corresponds to a distinct isomorphism class.

The class b[VI0] corresponds to the Poincaré algebra of R1,1.

6.5.2 Timelike case

Let us now assume that (M, g) admits a nowhere vanishing conformal Killing vector Ξ

that is everywhere timelike. As we have explained, this data defines a nowhere vanishing

charged twistor spinor pair (ε, ε′) such that Ξ = ξε+ξε′ . We shall also insist that the closed
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φ C̃µνC̃
µν C̃µνC̃

ν
ρC̃

ρµ F̃µF̃
µ C̃µνF̃

µF̃ ν F̃µC̃µνC̃
νρF̃ρ

pφ 6 9 4 7 10

Table 3. Some proper conformal scalars.

two-form F = dA defined by (6.20) is C(M, [g])-invariant so that we may assign to (M, [g])

a conformal symmetry superalgebra S.

If F = 0 then locally A = dλ and the charged twistor spinor pair (ε, ε′) is equivalent

to a pair of ordinary twistor spinors (cos λ ε + sinλ ε′,− sinλ ε + cosλ ε′). Since ε and ε′

are linearly independent, clearly F = 0 implies (M, g) must be locally conformally flat.5

In that case, C(M, [g]) ∼= so(3, 2) ∼= sp(4,R) and S ∼= osp(2|4) (i.e. the N = 2, d = 3 case

in table 1). We shall assume henceforth that (M, g) is not locally conformally flat so both

the Cotton-York tensor C and the two-form F are not identically zero.

For any X ∈ C(M, [g]), LXC = 0 and LXF = 0 while LXC̃ = σXC̃ and LX F̃ = σX F̃

since LXg = −2σXg. Any non-zero scalar built from C̃, F̃ and g therefore defines a

conformal scalar φ (with weight pφ). Five different options are displayed in table 3. If just

one φ in table 3 is nowhere vanishing then C(M, [g]) is conformally isometric. Conversely,

let us examine what happens if all φ in table 3 are identically zero.

In this case, F̃ defines a non-zero vector field that is everywhere null with respect to

g. As such, at least locally, there must exist a null triad (F̃ , G,H) such that

gµν = 2F̃(µGν) +HµHν . (6.37)

Using C̃µνF̃
µF̃ ν = 0, it follows that F̃µC̃µνC̃

νρF̃ρ = 0 implies C̃µνF̃
µHν = 0. Moreover,

C̃µνC̃
µν = 0 and C̃µνg

µν = 0 then imply C̃µνF̃
ν = 0 and C̃µνH

µHν = 0. Therefore

C̃µν = αF̃µF̃ν + 2βF̃(µHν) , (6.38)

in terms of a pair of real functions α and β which are not both zero. The form of the

Cotton-York tensor in (6.38) further implies that C̃µνC̃
ν
ρC̃

ρµ vanishes identically. Now

taking LX of (6.37) and using LXgµν = −2σXgµν and LX F̃µ = σX F̃µ implies that

LXGµ = −3σXGµ + γXHµ , LXHµ = −γX F̃µ − σXHµ , (6.39)

in terms of some real function γX , for all X ∈ C(M, [g]). Taking LX of (6.38) and using

LXC̃µν = σXC̃µν together with the expressions above yields

∂Xα = −σXα+ 2γXβ , ∂Xβ = σXβ , (6.40)

5Conversely, if (M, g) is locally conformally flat, the integrability condition (6.26) does not imply F = 0.

In this case, in terms of the conformally equivalent metric ĝ = κ−2g, (6.26) just states that the one-form

∗̂F defines a Killing vector with respect to ĝ and obeys d∗̂F = −ρΞF . However, since C(M, [g]) ∼= so(3, 2),

it is the condition (5.11) that fixes F = 0. Of course, if (M, g) is locally conformally flat and admits a

non-zero K(M, g)-invariant F which solves (6.26), one can define an associated symmetry superalgebra by

restricting to K(M, g) < so(3, 2), as was done for a number of examples in [15].
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Class f a k l K(M, g)

IV.4 1 1 ∂x − y∂t y∂x − x∂y + 1
2(x2 − y2)∂t c[X]

IV.5 ex 6= ±1 ∂x − y∂y y∂x + 1
2(e−2x − y2)∂y − ae−x∂t R⊕ b[VIII]

IV.6 sinx - cos y ∂x − sin y
sinx(cosx ∂y + a∂t) − sin y ∂x − cos y

sinx (cosx ∂y + a∂t) R⊕ b[IX]

Table 4. Data for geometries with dimC(M, [g]) = 4.

for all X ∈ C(M, [g]). Whence, if β 6= 0 then φ = β defines a proper conformal scalar with

pφ = 1. If β = 0 then φ = α defines a proper conformal scalar with pφ = −1. Thus we

have proved that C(M, [g]) is always conformally isometric in the timelike case.

This fact means that we may choose a representative metric g in [g] for any admissible

geometry such that C(M, [g]) = K(M, g). By definition, the geometry (M, g) is therefore

stationary because it is equipped with a timelike Killing vector Ξ. It is convenient to

express the stationary metric

g = −4κ2$ ⊗$ + h , (6.41)

in terms of the one-form $ defined by $(X) = − 1
4κ2 g(Ξ, X), for all X ∈ X(M). By

construction, ιΞ$ = 1 and ιΞh = 0 since ||Ξ||2 = −4κ2. It follows that LΞ$ = 0 while

∂Ξκ = −σΞκ = 0 and LΞh = −2σΞh = 0 because σΞ = 0. If d$ = 0 then (M, g) is static,

which occurs only if Ξ ∧ dΞ = 0. Thus, from the observation below (6.18), (M, g) is static

only if ρΞ = 0.

Any admissible geometry with dimC(M, [g]) = 4 must be locally conformally equiv-

alent to one of three Lorentzian geometries of class IV in [63] that is not conformally

flat. All three of these class IV geometries are stationary and, when expressed in the

form (6.41), have

2κ$ = dt+ ω(x)dy , h = dx2 + f(x)2dy2 , (6.42)

in terms of local coordinates (t, x, y) on M , for particular pairs of functions ω and f that

are related such that ∂xω = af , for some non-zero real number a (the precise data is

displayed in table 4). This identification fixes Ξ = −2κ∂t with κ constant. The associated

null triad one-forms are

ξ = κ(dt+ (ω + f)dy) , θ = − 1

2κ
(dt+ (ω − f)dy) , χ = dx . (6.43)

The volume form (6.2) is ε = −fdt ∧ dx ∧ dy. The action of ∇ on (6.43) can be defined

via the triple of one-forms (p, q, r) in (6.12), which are given by

pξ = pθ = qχ = rχ = 0 , qθ = −rξ =
1

2
f−1∂xf ,

pχ =
1

2
a , qξ = κ2(a+ f−1∂xf) , rθ =

1

4κ2
(a− f−1∂xf) . (6.44)

Comparison with (6.15) confirms that Ξ is indeed a Killing vector. Moreover, from (6.18),

ρΞ = −2κpχ = −κa. Whence, none of the three class IV geometries is static.
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Class ρk ρl S

IV.4 −1
2y −1

4(x2 + y2) S◦2 (c[X]|R)

IV.5 1
2(1− a2)yex 1

4(1− a2)(y2ex + e−x) S◦2 (R|R)⊕ b[VIII]

IV.6 −1
2(1 + a2) sinx sin y −1

2(1 + a2) sinx cos y S◦2 (R|R)⊕ b[IX]

Table 5. Conformal superalgebra data for geometries with dim C(M, [g]) = 4.

Substituting (6.43) and (6.44) into (6.20) yields

A = −1

2
a(dt+ ωdy) +

1

2
∂xfdy . (6.45)

Whence, F = dA = 1
2(∂2

xf − a2f)dx ∧ dy. Furthermore, substituting (6.43) and (6.44)

into (6.16), and using (6.45), implies the gauged connection in (6.19) is given by

Dµ = ∂µ −
1

4
aΓµ . (6.46)

The identification Ξ = ξε+ξε′ = −2κ∂t and κ = εε′ implies ε′ = Γtε. Moreover, εC = ε+iΓtε

is a charged twistor spinor with respect to (6.46) only if ε is constant.

For each of the three Lorentzian geometries of class IV defined by table 4, there are

four Killing vectors (∂t, ∂y, k, l) ∈ K(M, g), with ∂t ∈ Z(K(M, g)). Entries in the rightmost

column of table 4 denote the isomorphism class of K(M, g) in terms of a four-dimensional

real Lie algebra, within the classification scheme of [77, 78]. Up to isomorphism, there

exists a basis {e1, e2, e3, e4} such that the Lie algebra

• c[X] has non-zero Lie brackets [e2, e3] = e1, [e2, e4] = −e3, [e3, e4] = e2.

• R⊕ b[VIII] has non-zero Lie brackets [e1, e2] = −e3, [e1, e3] = −e2, [e2, e3] = e1.

• R⊕ b[IX] has non-zero Lie brackets [e1, e2] = e3, [e1, e3] = −e2, [e2, e3] = e1.

The classes b[VIII] and b[IX] correspond respectively to the simple real Lie algebras so(2, 1)

and so(3).

In each case, using (6.45), it is straightforward to check that the condition LXF = 0

from (5.11) is satisfied identically, for all X ∈ K(M, g). Consequently, the locally equivalent

condition ιXF = dρX from (5.3) defines each function ρX in (5.2), up to the addition of

an arbitrary constant.6 We have already noted that ρΞ = −κa while, up to an arbitrary

constant, ρ∂y = 1
2(aω − ∂xf). For the remaining Killing vectors k and l, the non-constant

parts of ρk and ρl are displayed in table 5. Using this data, it is straightforward to compute

the associated submaximal conformal symmetry superalgebras S, which are displayed in

the rightmost column of table 5, in terms of the notation defined in section 4. In each case,

R ∼= u(1) and we can take [K(M, g),F ] = 0 in S. For some non-zero R ∈ R and all εC ∈ F ,

we can take [R, εC] = iεC and [εC, ε
∗
C] = Ξ.

6Any such constant term in (5.2) can be set to zero in the [B,F ] bracket for the conformal symmetry

superalgebra S via an appropriate compensating constant R-symmetry contribution.
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7 d = 4

7.1 Null tetrads

Let (ξ, θ, χ) denote a null tetrad of vector fields on (M, g), subject to the defining relations

||ξ||2 = ||θ||2 = 0 = g(ξ, χ) = g(θ, χ) = g(χ, χ) , g(ξ, θ) = g(χ, χ∗) = 1 . (7.1)

The elements ξ and θ are real while χ is complex. The relations (7.1) are preserved under

the following transformations (which collectively generate O(3, 1)):

• (ξ, θ, χ) 7→ (θ, ξ, χ).

• (ξ, θ, χ) 7→ (ξ, θ − α∗χ− αχ∗ − |α|2ξ, χ+ αξ), for any α ∈ C.

• (ξ, θ, χ) 7→ (ξ, θ, eiβχ), for any β ∈ R.

• (ξ, θ, χ) 7→ (γξ, γ−1θ, χ), for any γ ∈ R\{0}.

It is convenient to express the metric and orientation tensor on M as

g = ξ ⊗ θ + θ ⊗ ξ + χ⊗ χ∗ + χ∗ ⊗ χ , ε = iξ ∧ θ ∧ χ ∧ χ∗ , (7.2)

in terms of the null tetrad.

7.2 Majorana spinors

The Clifford algebra C`(3, 1) ∼= Mat4(R) has a unique irreducible Majorana spinor rep-

resentation that is isomorphic to R4. On the other hand, its complexification (the Dirac

spinor representation) decomposes into a pair of inequivalent irreducible chiral spinor rep-

resentations, each isomorphic to C2, associated with the two eigenspaces of Γ on which

Γ = ±1. The action of a subalgebra Mat2(C) < Mat4(R) on C2 which commutes with the

complex structure iΓ defines the action of C`(3, 1) on each chiral projection (the two chiral

projections transform in complex conjugate representations).

Relative to the Clifford algebra basis (3.6), taking Γ = i
4!ε

µνρσΓµνρσ, it follows that

Γµν = − i
2
εµνρσΓ

ρσΓ , Γµνρ = −i εµνρσΓσΓ , Γµνρσ = i εµνρσΓ . (7.3)

There exists on S(M) a skewsymmetric bilinear form (3.8), with respect to which

ψ±ϕ± = −ϕ±ψ± , ψ±Γµϕ∓ = ϕ∓Γµψ± , ψ±Γµνϕ± = ϕ±Γµνψ± = ∓ i
2
εµνρσ ϕ±Γρσψ± ,

(7.4)

for all ψ±, ϕ± ∈ S±(M). The associated Fierz identities are given by

ψ± ϕ± =
1

2

(
(ϕ±ψ±)− 1

4
(ϕ±Γµνψ±)Γµν

)
P±

ψ± ϕ∓ =
1

2
(ϕ∓Γµψ±)ΓµP∓ . (7.5)
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In terms of a unitary basis for C`(3, 1), it follows that under complex conjugation

(ψ+ϕ+)∗ = ψ−ϕ− , (ψ+Γµϕ−)∗ = ψ−Γµϕ+ , (ψ+Γµνϕ+)∗ = ψ−Γµνϕ− . (7.6)

For a given ε ∈ S(M), we define

ξµε = εΓµε = 2 ε−Γµε+ , ζµν = ε+Γµνε+ . (7.7)

From (7.6), it follows that the vector field ξε is real while the two-form ζ is complex and

obeys ζµν = − i
2εµνρσζ

ρσ. The vector field ξε is nowhere vanishing only if ε is nowhere

vanishing, which we shall assume henceforth. Furthermore, using (7.5), one obtains

||ξε||2 = 0 , ξµε ζµν = 0 , ζµρζ
νρ = 0 , ζ∗µρζ

νρ =
1

2
gµρξ

ρ
ε ξ
ν
ε . (7.8)

It is convenient to identify (7.7) in terms of the null tetrad introduced in section 7.1, such

that ξε = ξ. The second identity in (7.8) then implies ξ ∧ ζ = 0, whence ζ = ξ ∧ τ , in

terms of the complex one-form τ = ιθζ. The remaining identities in (7.8) fix τ = 1√
2
χ∗, i.e.

ζ = 1√
2
ξ ∧ χ∗ in terms of the null tetrad one-forms.

Using (7.5), it is possible to express any ψ ∈ S(M) in terms of the null tetrad and the

reference spinor ε that defines ξ. In particular,

ψ+ = αε+ + βθε−

ψ− = α∗ε− + β∗θε+ , (7.9)

where α = 2ε−θψ+ and β = 2ε+ψ+. Moreover, it is easily verified that χε− = 0 and

χ∗ε− =
√

2ε+.

7.3 Petrov types

The Weyl tensor W of g may also be expressed in terms of the null tetrad and its non-trivial

components are characterised by five complex functions

Ψ0 = W (ξ, χ, ξ, χ) , Ψ1 = W (ξ, θ, ξ, χ) , Ψ2 = W (ξ, χ, θ, χ∗) ,

Ψ3 = W (ξ, θ, θ, χ∗) , Ψ4 = W (θ, χ∗, θ, χ∗) , (7.10)

called Weyl scalars . The conformal class of g at each point in M may be classified as being

one of the following six Petrov types

• Type I. Ψ0 = 0.

• Type II. Ψ0 = Ψ1 = 0.

• Type D. Ψ0 = Ψ1 = Ψ3 = Ψ4 = 0.

• Type III. Ψ0 = Ψ1 = Ψ2 = 0.

• Type N. Ψ0 = Ψ1 = Ψ2 = Ψ3 = 0.

• Type O. Ψ0 = Ψ1 = Ψ2 = Ψ3 = Ψ4 = 0.

We shall only be concerned with geometries which have the same Petrov type at each point,

and thus refer to the Petrov type of (M, g). If (M, g) is type I then it is called algebraically

general , otherwise it is called algebraically special . If (M, g) is type O then it is locally

conformally flat (i.e. W = 0).
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7.4 Null conformal Killing vectors

The relations (7.1) constrain the action of the Levi-Civita connection ∇ on the null tetrad

one-forms such that

∇µξν = 2Re(p)µξν − qµχν − q∗µχ∗ν
∇µθν = −2Re(p)µθν + rµχν + r∗µχ

∗
ν (7.11)

∇µχν = −r∗µξν + q∗µθν − 2iIm(p)µχν ,

in terms of data that it is convenient to assemble into three complex one-forms (p, q, r)

on M .

Given any null vector field X on (M, g), it is always possible to define a null tetrad

with respect to which X = ξ. From the first line in (7.11), it follows that ξ is a conformal

Killing vector only if

Re(p)θ = 0 , qξ = 0 = qχ∗ , 2Re(p)χ∗ = qθ , 2Re(p)ξ + qχ + q∗χ∗ = 0 . (7.12)

Furthermore, ξ is a Killing vector only if (7.12) are satisfied with Re(p)ξ = 0 (whence, qχ
must be pure imaginary). In that case,

dξ = 2(qθχ+ q∗θχ
∗) ∧ ξ + 2qχ χ ∧ χ∗ . (7.13)

Any Killing vector X on (M, g) obeys

∇µ∇νXρ = −RνρµσXσ , (7.14)

in terms of the components Rµνρσ of the Riemann tensor of g. For a null Killing vector

X = ξ, (7.14) and (7.13) imply

Rµνξ
µξν = ∇µξν∇µξν = 2|qχ|2 ≥ 0 , (7.15)

where Rµν = gρσRµρνσ is the Ricci tensor. The geometry (M, g) is Einstein if it obeys

Rµν = Λgµν , for some Λ ∈ R (if Λ = 0 then (M, g) is Ricci-flat). Whence, if (M, g)

is Einstein and admits a null Killing vector ξ then qχ = 0 and dξ = k ∧ ξ (where k =

2(qθχ + q∗θχ
∗)), which implies ξ ∧ dξ = 0. Indeed ξ ∧ dξ = 0 only if qχ = 0 so any (M, g)

with a null Killing vector ξ for which ξ ∧ dξ 6= 0 cannot be Einstein.

The three-form ξ∧dξ is called the twist of ξ and ξ is said to be twisting if ξ∧dξ 6= 0 or

non-twisting if ξ∧dξ = 0. Restricting to the subspace ξ⊥ = {X ∈ K(M, g) | g(X, ξ) = 0} de-

fines a Lie subalgebra of K(M, g) only if ξ is non-twisting, thus ensuring that the associated

hypersurface in (M, g) is integrable. Furthermore, if ξ is non-twisting then substituting

dξ = k ∧ ξ into (7.14) with X = ξ leads to several more useful properties. Contracting the

resulting expression with ξ on different indices and with the inverse metric implies

∇ξkµ = fξµ , Rµρνσξ
ρξσ =

1

4
||k||2ξµξν , Rµνξ

ν = −1

2

(
∇νkν +

1

2
||k||2 − f

)
ξµ , (7.16)
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where f = θµ∇ξkµ and ||k||2 > 0 if k 6= 0. Substituting (7.16) into the definition of the

Weyl tensor (3.22) then implies

Wµνρσξ
ρξσ = −1

2

(
1

3
R+∇ρkρ − f

)
ξµξν . (7.17)

Thus it follows that any (M, g) with a non-twisting null Killing vector has Ψ0 = Ψ1 = 0

and is therefore algebraically special. Moreover, if any such geometry is Ricci-flat with

Ψ2 = 0 then k = 0 so ξ must be parallel and (M, g) is necessarily of Petrov type N or

O. Whence, any Ricci-flat (M, g) with a null Killing vector must be of Petrov type II, D,

N or O.

Let us conclude this section by illustrating some of the properties above via the in-

troduction of local coordinates (u, v, x, y) on (M, g). If (M, g) admits a nowhere vanishing

null Killing vector ξ then we can take ξ = ∂v tangent to a family of null geodesics, with

geodesic distance parameterised by the affine coordinate v. A convenient local form of the

metric in these adapted coordinates is

g = 2G(du+ α)(dv + β +
1

2
H(du+ α)) + E2(dx2 + dy2) , (7.18)

in terms of three real functions G, H and E and two real one-forms α = αxdx+ αydy and

β = βxdx+ βydy. All of these components are functions only of (u, x, y). The null tetrad

one-forms are identified such that

ξ = G(du+ α) , θ = dv + β +
1

2
G−1H ξ , χ =

1√
2
E(dx+ idy) . (7.19)

If ξ is non-twisting then integrability of its associated hypersurface implies ξ = fdu, for

some function f of (u, x, y). Up to a redefinition of G, this allows us to fix α = 0 in (7.18).

Furthermore, if ξ is parallel, then dξ = 0 so f must be a function only of u and we can

fix f = 1, β = 0 and E = 1. Indeed, the existence of a parallel null vector on (M, g)

characterises a four-dimensional pp-wave, with local metric as in (7.30). In d = 4, the

pp-wave metric (7.30) is of Petrov type N or O. It is type O only if the real function H of

coordinates (u, x, y) obeys ∂2
xH = ∂2

yH and ∂x∂yH = 0. It is a plane wave only if H is a

quadratic function of (x, y).

Up to local isometry, there exists a classification of ‘physically admissible’ Ricci-flat

(M, g) with a null Killing vector. Chapter 24.4-5 in [65] contains a detailed summary of

the local metrics and their Killing vectors. From table 24.2 in [65], if (M, g) is a Ricci-flat

type N pp-wave then 1 ≤ dimK(M, g) ≤ 6 (within this class, dimK(M, g) never equals 4

and equals 5 or 6 only for plane waves). The remaining solutions of type II and D are

summarised in table 24.1 of [65]. The local metrics in this subclass correspond to (7.18)

with α = β = 0, G = −x, E2 = x−1/2 and ∂x(x∂xH) + x∂2
yH = 0. These geometries all

have 1 ≤ dimK(M, g) ≤ 4. Contained within this subclass are the type II ‘van Stockum’

solutions [66] (for ∂uH = 0) and a static type D solution with dimK(M, g) = 4 (for H

constant). We shall return to compute symmetry superalgebras for these geometries in

section 7.6.
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7.5 Charged twistor spinors

Let us now examine the implications of the existence of a charged twistor spinor ε, which

can be thought of locally as a Majorana spinor obeying (5.1) with respect to the action of

the R = u(1) gauged connection

Dµε = ∇µε+ iAµΓε , (7.20)

i.e. Dµε± = ∇µε± ± iAµε±.

The first consequence is that ξε defined in (7.7) is a conformal Killing vector. Let us

now deconstruct the defining condition Dµε = 1
4ΓµDε for charged twistor spinor ε in terms

of the null tetrad. Identifying ξε = ξ then using (7.9) and (7.11) implies

∇µε+ = pµε+ +
1√
2
qµθε−

∇µε− = p∗µε− +
1√
2
q∗µθε+ . (7.21)

It follows that the defining condition for charged twistor spinor ε is equivalent to the

following conditions on p, q and A:

pθ + iAθ = 0 = pχ+ iAχ , qξ = 0 = qχ∗ , pχ∗+ iAχ∗ = qθ , pξ + iAξ = −qχ . (7.22)

Since ξε ∈ C(M, [g]) for any charged twistor spinor ε, it is straightforward to identify a

subset of conditions in (7.22) with precisely the conditions in (7.12) required for ξ to be a

conformal Killing vector. The conditions in (7.12) describe eight real constraints on Re(p)

and q which are contained in the twelve real constraints on p, q and A in (7.22). The

four remaining constraints in (7.22) are precisely sufficient to fix all four components of A,

such that

Aµ =
i

2
(pµ + qχθµ − qθχµ − p∗µ − q∗χ∗θµ + q∗θχ

∗
µ) . (7.23)

Thus we conclude that if (M, g) admits a nowhere vanishing null conformal Killing

vector X, then there must exist a nowhere vanishing charged twistor spinor ε on (M, g),

with X = ξε, that is defined with respect to the gauged connection A in (7.23). This

characterisation of charged twistor spinors on a smooth orientable Lorentzian four-manifold

was first obtained in [6] (see also [8]).

For any charged twistor spinor ε, the twist of ξε = ξ can be written

ξ ∧ dξ =
4

3
ρξ ∗ξ . (7.24)

in terms of the real function

ρξ = −3i

4
εΓDε = −3i

4
(qχ − q∗χ∗) . (7.25)

It follows that

ιξF = dρξ , (7.26)
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using F = dA from (7.23). Whence, the condition (5.3) is satisfied identically for X = ξ.

Furthermore, as noted below (7.12), if ξ is a Killing vector then qχ is pure imaginary. In

that case, ξ is non-twisting only if qχ = 0 which, from (7.25), occurs only if ρξ = 0.

Differentiating the defining condition for ε gives

DµDε± = 2KµνΓ
νε± ±

4i

3
FµνΓ

νε± −
1

3
εµνρσF

ρσΓνε± . (7.27)

Combining (7.27) with (3.3) implies the integrability condition

1

4
WµνρσΓ

ρσε± = ∓ i
3
F ρ[µΓν]ρε± ∓

i

3
Fµνε± −

1

6
εµνρσF

ρσε± . (7.28)

Identifying ξε = ξ, in terms of the null tetrad, one finds that (7.28) is equivalent to the

following conditions on the Weyl scalars (7.10):

Ψ0 = 0 , Ψ1 = − i
3
F (ξ, χ) , Ψ2 = − i

3
(F (ξ, θ) +F (χ, χ∗)) , Ψ3 = −iF (θ, χ∗) . (7.29)

The Petrov type of (M, g) therefore determines which components of F must vanish

identically. For the algebraically special geometries, we have

• Type II ⇐⇒ F (ξ, χ) = 0.

• Type D ⇐⇒ F (ξ, χ) = F (θ, χ) = 0 and Ψ4 = 0.

• Type III ⇐⇒ F (ξ, χ) = 0, F (ξ, θ) = 0 = F (χ, χ∗).

• Type N ⇐⇒ F = 0 and W 6= 0.

• Type O ⇐⇒ F = 0 and W = 0.

These equivalences were first obtained in [19]. Notice that if F = 0 then, locally, A = dλ

and the charged twistor spinor ε± is equivalent to an ordinary twistor spinor e±iλε±.

Up to local conformal equivalence, the classification of Lorentzian four-manifolds which

admit a nowhere vanishing twistor spinor ε is due to Lewandowski [73]. Any such (M, g)

must be of type N or O. The admissible type N geometries are distinguished by the twist of

the conformal Killing vector ξε. If the twist of ξε vanishes then (M, g) is in the conformal

class of a pp-wave with ε parallel. If the twist of ξε does not vanish then (M, g) is in the

conformal class of a Fefferman space [74].

Thus, at least locally, any algebraically special (M, g) which admits a charged twistor

spinor ε with F 6= 0 is of Petrov type II, D or III with null conformal Killing vector ξε.

7.6 Conformal symmetry superalgebras

Let (M, g) be any smooth orientable Lorentzian four-manifold equipped with a nowhere

vanishing null conformal Killing vector X and a C(M, [g])-invariant closed two-form F . As

we have explained, X defines a nowhere vanishing charged twistor spinor ε (with X = ξε)

that is charged with respect to the connection A in (7.23) whose curvature is F = dA.

From section 5, we recall that this data is precisely what is needed to assign to (M, [g]) a

conformal symmetry superalgebra S with gauged R = u(1).
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7.6.1 Type N and O cases

From the discussion in section 7.5, it follows that if F = 0 then (M, g) must have Petrov

type N (if W 6= 0) or type O (if W = 0). If (M, g) is of type O (i.e. locally conformally

flat) then C(M, [g]) ∼= so(4, 2) ∼= su(2, 2) and S ∼= su(2, 2|1) (i.e. the N = 1, d = 4 case in

table 1). If (M, g) is of type N, with F non-trivial, then it is locally conformally equivalent

to a pp-wave or a Fefferman space.

The generic pp-wave metric in d = 4 is of the form

gpp = 2dudv +H(u, x, y)du2 + dx2 + dy2 , (7.30)

in terms of Brinkmann coordinates (u, v, x, y) on M , where H is an arbitrary real function

of (u, x, y). In these coordinates, ξ = ∂v is a null Killing vector of (M, gpp). It is easily

verified that (M, gpp) is of type N unless ∂2
xH = ∂2

yH and ∂x∂yH = 0. We shall assume

henceforth that (M, gpp) is of type N. Using that

∇uε = ∂uε−
1

4
((∂xH)Γx + (∂yH)Γy)ξε , ∇vε = ∂vε , ∇xε = ∂xε , ∇yε = ∂yε , (7.31)

for any ε ∈ S(M), it follows that any twistor spinor ε ∈ Z(M, [gpp]) is actually ∇-parallel.

Moreover, using (7.31), it follows that ∇µε = 0 only if ∂µε = 0 with ξε = 0. Consequently,

Z(M, [gpp]) ∼= ker ξ and dimZ(M, [gpp]) = 1
2dimS(M) = 2 in d = 4. It follows that the

[F ,F ] bracket for the conformal symmetry superalgebra S = B⊕F ascribed to a pp-wave,

with F ∼= Z(M, [gpp]), can be taken to be

[ε, ε] = ξ , (7.32)

for all ε ∈ ker ξ (see section 7.1 of [16] for the proof).

If the function H in (7.30) is quadratic in (x, y), we recover a special class of pp-waves

called plane waves (see [76] for a comprehensive review). Let

gpw = 2dudv + (α(u)(x2 − y2) + 2β(u)xy + γ(u)(x2 + y2))du2 + dx2 + dy2 , (7.33)

denote the generic plane wave metric in d = 4, in terms of three real functions α, β and γ

of u. Having assumed that (M, gpw) is of type N, α and β must not both be zero.

In addition to ξ = ∂v, K(M, gpw) contains Killing vectors of the form

k(f) = fx∂x + fy∂y − (x∂ufx + y∂ufy)∂v , (7.34)

where

∂2
ufx = (α+ γ)fx + βfy , ∂2

ufy = βfx − (α− γ)fy , (7.35)

and each component fx and fy is a function only of u. It follows that

[ξ, k(f)] = 0 , [k(f), k(f̃)] = $(f, f̃)ξ , (7.36)

for any f and f̃ obeying (7.35), where

$(f, f̃) = −fx∂uf̃x − fy∂uf̃y + f̃x∂ufx + f̃y∂ufy , (7.37)
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Class α β γ

I a b c

II u−2a u−2b u−2c

III a cos(2u) + b sin(2u) b cos(2u)− a sin(2u) c

IV u−2(a cos(2 lnu) + b sin(2 lnu)) u−2(b cos(2 lnu)− a sin(2 lnu)) u−2c

Table 6. Data for plane wave metrics gpw (7.33) in d = 4 with dimH(M, gpw) = 7. Up to local

conformal equivalence, the classes I ∼= II and III ∼= IV.

is constant. Whence, the Lie algebra spanned by ξ and all linearly independent k(f) as

in (7.34) (with f solving (7.35)) is isomorphic to the five-dimensional Heisenberg Lie algebra

heis2. Furthermore, it follows that Z(M, [gpw]) is invariant under this heis2. That is,

[ξ, ε] = Lξε = 0 , [k(f), ε] = Lk(f)ε = 0 , (7.38)

for all ε ∈ Z(M, [gpw]) and k(f) ∈ K(M, gpw), in terms of the spinorial Lie derivative (3.11).

A generic plane wave also admits a proper homothetic conformal Killing vector pro-

portional to 2v∂v + x∂x + y∂y. In fact, ϑ = −1
2(2v∂v + x∂x + y∂y) obeys

[ϑ, ξ] = ξ , [ϑ, k(f)] =
1

2
k(f) , [ϑ, ε] = L̂ϑε =

1

2
ε , (7.39)

for all k(f) ∈ K(M, gpw) and ε ∈ Z(M, [gpw]), in terms of the Kosmann-Schwarzbach Lie

derivative (3.14).

In d = 4, any (M, g) that is not of type O must have dimC(M, [g]) ≤ 7 and, from

theorem 5.1.3 in [60], dimC(M, [g]) = 7 requires (M, g) to be of type N. More precisely,

it is known [75] that dimC(M, [g]) = 7 only if (M, g) is locally conformally equivalent to

a homogeneous plane wave with an extra Killing vector. Up to local isometry, there are

precisely four classes of such geometries defined by the particular (α, β, γ) displayed in

table 6. In each case, (M, gpw) is not conformally flat provided the real numbers a and b

are not both zero and is Ricci-flat only if the real number c is zero. Class I, with constant

(α, β, γ), defines a symmetric space. The coordinate transformation

(u, v, x, y) 7→ (eu, v − 1

4
(x2 + y2), eu/2x, eu/2y) , (7.40)

identifies the classes I ∼= II and III ∼= IV, up to local conformal isometry. Details of the

extra Killing vector l ∈ K(M, gpw) and its related brackets for each of these four classes

is displayed in table 7. Entries in the two rightmost columns of table 7 apply to any

k(f) = k(fx, fy) as in (7.34) and ε ∈ Z(M, [gpw]). In each case,

[ϑ, l] = 0 . (7.41)

Thus, at least locally, we have just two distinct conformal classes of type N metrics with

dimC(M, [g]) = 7. It is convenient to take the class I and III entries in table 6 to define
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Class l [l, ξ] [l, k(fx, fy)] [l, ε] = L̂lε

I ∂u 0 k(∂ufx, ∂ufy) 0

II u∂u − v∂v ξ k(u∂ufx, u∂ufy)
1
2ε

III ∂u − x∂y + y∂x 0 k(∂ufx − fy, ∂ufy + fx) i
2Γε

IV u∂u − v∂v − x∂y + y∂x ξ k(u∂ufx − fy, u∂ufy + fx) 1
2(1 + iΓ)ε

Table 7. The extra l ∈ K(M, gpw) and its brackets for the four classes in table 6.

a representative metric for each of these classes. In both cases, the homogeneous plane

wave (M, gpw) has C(M, [gpw]) = H(M, gpw) and the null Killing vector ξ ∈ Z(K(M, gpw)).

The submaximal conformal symmetry superalgebra S = B ⊕ F associated with each class

has B = H(M, gpw) ⊕ R and F = Z(M, [gpw]) ∼= ker ξ, where R = u(1). The explicit

brackets for S are prescribed by (7.32), (7.36), (7.38), (7.39), (7.41) and table 7. For some

non-zero R ∈ R, we can take [R, ε] = iΓε, for all ε ∈ F . It follows that the class I

and III representative plane wave geometries both yield submaximal conformal symmetry

superalgebras S ∼= SC2 (H(M, gpw)|R), in the notation of section 4 (identifying ϑ = h, ξ = z

and R = r).

7.6.2 Physically admissible type II and D cases

From the discussion in section 7.4, we recall that if (M, g) is equipped with a null Killing

vector ξ (and F 6= 0) then it must be of Petrov type II or D with ξ non-twisting in order to

be Ricci-flat. Let us now take advantage of the classification in [65] of ‘physically admis-

sible’ Ricci-flat geometries which admit a null Killing vector and compute their associated

symmetry superalgebras. We shall also compute the conformal symmetry superalgebra

for the unique admissible Ricci-flat geometry of Petrov type D. In general, the symmetry

superalgebra S◦ and conformal symmetry superalgebra S associated with any admissible

geometry (M, g) are isomorphic only if K(M, g) = C(M, [g]) and F◦ = F . It is worth

recalling from theorem 3 in [64] that any (M, g) not of Petrov type N or O has C(M, [g])

conformally isometric. Of course, if (M, g) is Ricci-flat with C(M, [g]) 6= K(M, g), the

particular geometry (M, g̃) for which C(M, [g]) = K(M, g̃) need not be Ricci-flat.

In terms of the local coordinates introduced at the end of section 7.4, each geometry

(M, g) within this class has a null Killing vector ξ = ∂v with respect to a metric g of the

form (7.18) with α = β = 0, G = −x and E = x−1/4. The only non-trivial component

of the Ricci tensor of g is Ruu, which vanishes only if ∂x(x∂xH) + x∂2
yH = 0. By explicit

calculation of the Weyl tensor of g, one finds that the Weyl scalars Ψ0 = Ψ1 = Ψ3 = 0

while Ψ2 = 1
8x
−3/2. The remaining Weyl scalar Ψ4 vanishes only if

∂x(x3/2∂xH) = x3/2∂2
yH ,

(
x∂x +

3

4

)
∂yH = 0 . (7.42)

Thus (M, g) is indeed generically of type II, and is of type D only if H obeys (7.42). If

(M, g) is of type D and Ricci-flat then H is necessarily constant.
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Identification of the null tetrad one-forms as in (7.19) implies that the volume form (7.2)

is ε = x1/2 du ∧ dv ∧ dx ∧ dy. The action of ∇ on (7.19) can be defined via the the triple

of complex one-forms (p, q, r) in (7.11), which are given by

p =
1

4
x−1

(
dx− i

2
dy

)
,

q = − 1

2
√

2
x1/4du , r = − 1

2
√

2
x−3/4

(
dv +

(
1

2
H + x(∂x − i∂y)H

)
du

)
. (7.43)

Comparison with (7.12) and (7.25) confirms that ξ is indeed a non-twisting Killing vector

with ρξ = 0.

Substituting (7.19) and (7.43) into (7.23) yields

A =
3

8
x−1dy . (7.44)

Whence, F = −3
8x
−2dx∧dy. Furthermore, substituting (7.19) and (7.43) into (7.21), and

using (7.44), implies the gauged connection in (7.20) is given by

Dµ = ∂µ +
1

4
x−1/2ΓµΓx . (7.45)

The identification ξ = ξε = ∂v implies Γvε± = 0 while, from (7.3), iΓxyε± = ±x−1/2ε±.

Consequently, using χε+ =
√

2ε− and χ∗ε+ = 0, it follows that Γxε± = x−1/4ε∓. Moreover,

ε is a charged twistor spinor with respect to (7.45) only if ε is constant.

All the non-generic cases, where ξ = ∂v is not the only Killing vector in K(M, g), are

summarised in table 24.1 of [65]. The pertinent data is displayed in table 8 (the parameters

a, b ∈ R\{0} and real functions f, h are constrained such that ∂x(x∂xH) + x∂2
yH = 0).

Entries in the fourth column of table 8 denote the isomorphism class of K(M, g). In

addition to b[VI0] that we encountered at the end of section 6.5.1, b[II] is isomorphic to

the three-dimensional Heisenberg Lie algebra heis1 while a denotes the two-dimensional

nonabelian Lie algebra.

Every X ∈ K(M, g) is of the form

X = α(u∂u − v∂v) + β∂u + γ∂y + h(u)∂v , (7.46)

for some choice of real numbers α, β and γ and a real function h of u. Thus, from (7.44), it

follows that ιXF = 3
8γx

−2dx. Whence, the condition (5.3) is indeed satisfied for any X ∈
K(M, g) of the form (7.46), with ρX = −3

8γx
−1, up to the addition of an arbitrary constant.

Using this data, it is straightforward to compute the associated symmetry superalgebras

S◦ which are displayed in the rightmost column of table 8, in terms of the notation defined

in section 4. In each case, R = u(1) and the even-odd bracket in (5.2) is of the form

[X, ε] = 1
2αε, for all ε ∈ F◦ and X ∈ K(M, g) of the form (7.46). For some non-zero R ∈ R

and all ε ∈ F◦, we can take [R, ε] = iΓε and [ε, ε] = ξ.

The type D geometry (M, g) from table 8 has C(M, [g]) = H(M, g). If ϑ ∈
H(M, g)/K(M, g) is normalised such that [ϑ, ξ] = ξ then

ϑ = −v∂v − 2x∂x − 2y∂y . (7.47)
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Type H(u, x, y) {X} K(M, g) S◦
II f(u, x) {∂y, ∂v} R2 R⊕ S◦2 (R|R)

II f(ay − bu, x) {b∂y + a∂u, ∂v} R2 R⊕ S◦2 (R|R)

II f(u, x)− y∂uh(u) {∂y + h(u)∂v, ∂v} R2 R⊕ S◦2 (R|R)

II u−2f(y − aln(u), x) {a∂y + u∂u − v∂v, ∂v} a SC2 (a|R)

II f(x)e−2ay {∂y + a(u∂u − v∂v), ∂u, ∂v} b[VI0] SC2 (b[VI0]|R)

II f(x) + ay {∂y − au∂v, ∂u, ∂v} b[II] S◦2 (b[II]|R)

II f(x) {∂y, ∂u, ∂v} R3 R2 ⊕ S◦2 (R|R)

D 0 {∂y, u∂u − v∂v, ∂u, ∂v} R⊕ b[VI0] R⊕ SC2 (b[VI0]|R)

Table 8. Data for Ricci-flat geometries with a null Killing vector and F 6= 0.

The five-dimensional Lie algebra H(M, g) is thus defined by K(M, g) together with the

following non-trivial brackets

[ϑ, ∂v] = ∂v , [ϑ, ∂y] = 2∂y . (7.48)

From (7.47) and (7.44), it follows that ϑ obeys condition (5.3) with ρϑ = 3
4x
−1y. In addition

to the [K(M, g),F◦] brackets given above, (5.2) also prescribes

[ϑ, ε] =
1

2
ε , (7.49)

for all ε ∈ F◦ = F . Whence, the symmetry superalgebra S◦ together with (7.48) and (7.49)

define the conformal symmetry superalgebra S ∼= SC2 (H(M, g)|R) (in the notation of sec-

tion 4) for the conformal class of the unique Ricci-flat type D geometry in table 8.

8 Summary of main results

The Lie algebra C(M, [g]) of conformal Killing vectors of any d-dimensional Lorentzian

manifold (M, g) that is not locally conformally flat has dim C(M, [g]) ≤ 4 +
(
d−1

2

)
if d > 3

and dimC(M, [g]) ≤ 4 if d = 3 [60–62]. Non-trivial conformal classes of geometries for

which these upper bounds are saturated will be referred to as being submaximal.

In this paper, we considered conformal symmetry superalgebras which can be ascribed

to the conformal class of certain Lorentzian geometries, based on gauging the R-symmetry

in the construction of [16, 17]. In particular, in d = 3, 4 with one-dimensional R-symmetry

R, up to local conformal isometry, we obtained a classification of submaximal Lorentzian

geometries admitting a conformal symmetry superalgebra of the form S = B ⊕ F , with

even part B = C(M, [g])⊕R and odd part F containing (charged) twistor spinors.

In d = 3, we found in section 6.5.2 that any submaximal geometry with dimC(M, [g]) =

4 which admits a conformal symmetry superalgebra S is locally conformally equivalent to

one of the three types of stationary geometries (M, g) displayed in table 9, in terms of
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Class g K(M, g) S

IV.4 −(dt+ x dy)2 + dx2 + dy2 c[X] S◦2 (c[X]|R)

IV.5 −(dt+ a ex dy)2 + dx2 + e2x dy2 R⊕ b[VIII] S◦2 (R|R)⊕ b[VIII]

IV.6 −(dt− a cosx dy)2 + dx2 + (sinx)2 dy2 R⊕ b[IX] S◦2 (R|R)⊕ b[IX]

Table 9. Data for submaximal classes with dimC(M, [g]) = 4 in d = 3.

Class α β γ l

I a b c ∂u

III a cos(2u) + b sin(2u) b cos(2u)− a sin(2u) c ∂u − x∂y + y∂x

Table 10. Data for submaximal classes with dimC(M, [g]) = 7 in d = 4.

local coordinates (t, x, y) on M . (The non-zero real number a 6= ±1 for class IV.5.) In

each case, C(M, [g]) = K(M, g) is spanned by four Killing vectors (∂t, ∂y, k, l) (details of k

and l are given in table 4) and R ∼= u(1). Charged twistor spinors in F are of the form

εC = (1+iΓt)ε, for any constant Majorana spinor ε. The brackets defining S can be written

[K(M, g), εC] = 0 , [R, εC] = iεC , [εC, ε
∗
C] = ∂t , (8.1)

for all εC ∈ F , in terms of a non-zero R ∈ R. The notation for S in table 9 encodes this

information in the manner defined in section 4. The notation for the Lie algebras K(M, g)

in table 9 is defined at the end of section 6.5.2.

In d = 4, we found in section 7.6.1 that any submaximal geometry with dimC(M, [g]) =

7 which admits a conformal symmetry superalgebra S is locally conformally equivalent to

one of two types of homogeneous plane wave geometries (M, gpw), where

gpw = 2dudv + (α(u)(x2 − y2) + 2β(u)xy + γ(u)(x2 + y2))du2 + dx2 + dy2 , (8.2)

in terms of local coordinates (u, v, x, y) on M , with functions α, β and γ as in ta-

ble 10. In both cases, the real numbers a and b are not both zero. In each case,

C(M, [gpw]) = H(M, gpw) is spanned by six Killing vectors (∂v, k(f), l) and a proper homo-

thetic conformal Killing vector ϑ = −1
2(2v∂v + x∂x + y∂y). The symbol k(f) represents

four linearly independent Killing vectors, and is defined in (7.34). Collectively, (∂v, k(f))

span a five-dimensional Heisenberg Lie algebra heis2. The extra Killing vector l is shown

in table 10 and the Lie algebra of Killing vectors K(M, gpw) ∼= Rlnheis2. The R-symmetry

R = u(1) and twistor spinors in F correspond to constant Majorana spinors in the kernel

of Γv. The brackets defining S can be written

[K(M, g), ε] = 0 , [ϑ, ε] =
1

2
ε , [R, ε] = iΓε , [ε, ε] = ∂v , (8.3)

for all ε ∈ F , in terms of a non-zero R ∈ R. In both cases, it follows that S ∼=
SC2 (H(M, gpw)|R), in the notation of section 4.
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bilinear invariants of the spinor representation of Spin(p, q), math/9511215.

[68] D.V. Alekseevsky, V. Cortes, C. Devchand and A. Van Proeyen, Polyvector super-Poincaré

algebras, Commun. Math. Phys. 253 (2004) 385 [hep-th/0311107] [INSPIRE].

[69] A. Lichnerowicz, Spineurs harmoniques, C. R. Acad. Sci. Paris 257 (1963) 7.
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