

FACULTY OF SCIENCE AND TECHNOLOGY

MASTER'S THESIS

Deep Learning for text data mining: Solving spreadsheet
data classification.

Formal Supervisor: Prof. Reggie Davidrajuh
Supervisors at Avito LOOPS: Derek Gobel, CEO

Student: Aleksandr Kimashev

Stavanger 2017

1

1 Contents
1 Introduction .. 5

2 Formulation of the problem ... 6

3 Literature study ... 7

3.1 Literature study overview .. 7

3.2 Simple neuron and activation function .. 8

3.3 Feed forward network ... 10

3.4 Training algorithm ... 14

3.4.1 Gradient decent. .. 15

3.4.2 Back propagation gradient descent .. 18

3.4.3 Optimization of gradient decent. ... 20

3.5 Loss functions ... 23

3.6 Additional improvements of training algorithm .. 24

3.7 Hyperparameters ... 25

3.8 Limitations .. 26

3.9 Unsupervised learning ... 26

3.10 Overfitting ... 27

3.11 Convolutional and pooling .. 30

3.12 Recurrent, LSTMs and GRUs. .. 32

3.13 Additional NN optimization .. 35

3.14 Vectorization ... 36

4 Examples of neural networks in natural language processing ... 40

5 Framework/language ... 41

6 Datasets ... 42

7 Design ... 45

7.1 Project problem solving overall. ... 45

7.2 First step .. 46

7.3 Second step .. 48

7.4 Third step .. 54

8 Implementation ... 69

9 Analysis ... 74

10 Conclusion, Discussion ... 77

11 References ... 79

12 Appendix 1 (program demo) ... 83

2

List of frequently used abbreviations, terms:
• Accuracy - in this report, the ratio of the number of correct neural network responses to the

whole number of samples.
• Activation function - in the simple neuron- function that activate it to output one, in a more

general neuron function that compute neuron output, described in chapter Simple neuron and
activation function.

• Adam, Adagrad, Adamax, Adadelta, Nadam, RMSprop, Nesterov, Rprop - advanced
gradient descent algorithms, described in chapter Training algorithm.

• Batch - amount of data which are used for one change in the weights of an artificial neural
network, described in chapter Training algorithm.

• Convolutional network (CNN) - family of advanced architecture neural networks, the basic idea
is to use a mathematical convolution operation (filter) to sample, described in chapter
Convolutional and pooling.

• Error back propagation - algorithm calculates the network output error and calculates the
gradient vector as a function of weights, to chose best direction to change weights during network
training, described in chapter Training algorithm.

• False negative - error for each class, showing how many examples of this class were falsely
classified by other classes.

• False positive - classification error for each class, showing how many examples were falsely
classified by this class.

• FFNN - fully connected feed forward artificial neural network, described in theory chapter Feed
forward network

• GD,SGD - gradient descent and stochastic gradient descent algorithms, described in chapter
Training algorithm.

• GRU - the newest type of recurrent network used in this research, described in chapter
Recurrent, LSTMs and GRUs.

• Hyper parameters - not trainable artificial neural network parameters, which must be selected
by the developer, as network architecture.

• Hyperbolic tangent (Tanh) - bounded activation function, normally used in output layer and in
recurrent layers, described in chapter Simple neuron and activation function.

• Layer - in this work, bunch of neurons/units that have same inputs and output to another layer,
with the same activation functions.

• Loss function, error function - function that used to estimate difference between neural network
output and expected result, described in chapter Loss functions.

• LSTM- type of recurrent network used in this research, described in chapter Recurrent, LSTMs
and GRUs.

• Model - artificial neural network in Keras.
• Neuron - smallest node of neural network, normally with non-linear activation function,

described in chapter Simple neuron and activation function.
• N-gram -is a contiguous sequence of n items from a given sequence of text.
• NLP - natural language processing
• NN - any artificial neural network
• One hot vector - encode samples with a vector same long as dictionary, in which the right

symbol corresponds to 1, and all the rest to 0, described in chapter Vectirization.
• Overfitting - Ability of a network or other classifier to remember training set without

generalization, described in chapter Overfitting.
• Pooling - Sub-sampling is used to reduce the overall sample (usually image) size and increase the

degree of invariance applied to it convolutional filters, described in chapter Convolutional and
pooling.

• Recurrent network - family of advanced architecture neural networks, where neurons have back
connections, described in chapter Recurrent, LSTMs and GRUs.

• ReLU - rectified linear unit- the most commonly used activation function in FFNN, described in
chapter Simple neuron and activation function.

• Sample - In this work contents of one cell of spreadsheet.

3

• Sigmoid - sigmoid activation function, bounded activation function, normally used in output
layer and in recurrent layers, described in chapter Simple neuron and activation function.

• Synapse - connection between neurons, with one parameter-weight. Most trainable parameters of
neural network are synapses weights.

• Test set - set of samples that used only for evaluation neural network accuracy, network was
newer trained on them, used in chapter Overfitting.

• Trainable parameters - artificial neural network parameters, which change in the learning
process of the network, as weights oh synapses.

• Training set - set of samples that used to train neural network, a large enough network is able to
simply remember all training samples, used in chapter Overfitting.

• Unit - node of advanced recurrent networks like GRU and LSTM, with few activation functions,
described in chapter Recurrent, LSTMs and GRUs.

4

1 Introduction
Artificial neural networks are becoming more popular in recent times and are used in various industries -
from economic analysis to image recognition. For example, many large online stores use them in order to
offer their customers more suitable products for them. Such mathematical models are also widely used for
speech recognition and reproduction, as well as for image recognition and processing.
In this work I describe only artificial neural networks and for simplicity I call them neural networks.
The boom for unmanned vehicles also opened a new field of application for neural networks. They are
used for routing and navigation systems.
They were also attracted by the producers of anti-virus software. Such developments in the field of
artificial intelligence can protect information from cybercriminals and identify illegal content on the
Internet.
In this paper I consider the problem of using neural networks to classify and sort text information with
given classes. For the classification of textual information, recurrent and convolutional networks are
usually used [32][33][34][35][36][37][97][38][41][19][39][40][42][43]. As a minimum unit of
information, letters, n-grams, sentence words, phrases can be considered. In my work, I look in detail at
recurrent and convolutional networks, at the level of letters.
Working with neural networks is closer to the field of wandering search and description of a randomly
found one. Here, most often do not prove, but find and convince in applicability. Many methods used in
neural networks do not have a formally proven effectiveness.
The basic requirement for the network the network should generalize and not cram.
Improve the overall result can be due to the application of several different classifiers. From several
classifiers it is possible to create a committee, which by voting will make decisions on classifying an
object.
Main approach, to construct neural network architecture, that I used in this research was from simple to
complex: increase the number of layers and neurons in layers until network became overfitting, and then
to deal with overfitting.

5

2 Formulation of the problem
I developed this project for the Avito LOOPS company. This is a startup company, working on cutting
edge Computer Science innovation for application in the Oil & Gas industry. This company is currently
conducting a joint R&D project with a large, international oil company. Avito LOOPS develops software
(using machine learning, artificial intelligence, etc.) to help teams collaborate smarter and faster.
Avito Loops has significant experience in text data mining and has already developed two text classifiers:
one based on entity recognition, pattern matching and voting, the other based on machine learning and
decision trees. This project’s challenge was to develop a new classifier based on Deep Learning. Specific
research goals are to investigate existing algorithms and implementations of Deep Learning, to
understand their applicability to text mining, to design a solution that incorporates theoretical and
practical aspects, to run classification experiments on different data sets so that the pros and cons of
different techniques can be understood. Classification of the text was necessary for the spreadsheet
columns classification.
Deep Learning is a type of algorithm suitable for the analysis of data in a broad range of applications
including vision, speech and text. One of its important characteristics is the ability to work at
progressively higher levels of abstraction: in a text example, this would mean to incrementally create
abstractions for letters, short letter sequences, words and finally sentences.
In automatic text data mining,current challenge was to have a rich text type classification. By “rich”
classification means to go beyond basic categories like “string”, “number”, “date”, etc that are common in
programming languages and databases. A “rich” classification should be able to detect categories of
higher abstraction, like “person name”, “job title”, “project name”, “activity description”, “address”,
“equipment code”, etc., so categories that humans recognise easily when reading text but that computer
programs struggle with.
In this project, I solved the problem of classifying text columns in spread sheets, at the level of each cell,
using neural networks. In general, the task can be reduced to the classification of individual cells.
The main problem of neural networks is the availability of data for training the network. For the final
classification, five classes were selected, Interesting for Avito LOOPS and available for training data:
first names, second names, codes, streets and job position titles. Also, if possible, I wanted to distinguish
an unknown class[Figure 2-1]. The datasets used for learning and testing the network are described in
detail in the chapter Datasets.

Figure 2-1 Behavior of the system being developed

6

3 Literature study

3.1 Literature study overview
In the beggining of this work, I now nothing about neural networks and I consider the literature review to
be the most important chapter in my research, and although it turned out to be cumbersome, without it
further work will not be clear. With this knowledge and some experience with neural networks, further
work does not require much effort, only time to train networks.
Main topics described here:

• Description of an artificial neuron -Simple neuron and activation function.
• Description of the most simple neural network - Feed forward network.
• Network training algorithm and grade classification evaluation Training algorithm,

Loss functions, Additional improvements.
• Description of the parameters of the neural network, which must be selected at the architecture

level, and which do not change during the classical learning of the network - Hyperparameters.
• Some limitations of neural networks -Limitations.
• The problems of overfitting in neural networks and ways to deal with them -Overfitting.
• Advanced architecture of neural networks used in natural language processing - Convolutional

and pooling, Recurrent, LSTMs and GRUs.
• Use of ensembles, busting and begging, to improve the quality of classification - Additional NN

optimization
• Preparing data for the neural network -Vectorization

In this chapter, I spent some time getting to know the methods not used in this work, such as unsupervised
learning, although in work these methods are not used they need to be mentioned in order for the theory
to be complete. Also, methods like SGD were almost not used in the work, but they need to be described
as an intermediate step to the more advanced algorithms like Adam, Nadam.
Neural networks are a section of artificial intelligence in which signals are processed in a similar way, as
in neurons of living beings. The most important feature of the network is the parallel processing of
information by all links. With a huge amount of inter-neural connections, this makes it possible to
significantly speed up the process of processing information. In addition, with a large number of
connections, the network acquires resistance to errors that occur on some lines. The functions of damaged
connections are taken up by serviceable lines, as a result of which the network activity does not undergo
significant changes.
Neural networks are represented as systems of interconnected neurons. Connections between neurons
called synapses. Each synapse has one option - weight. These weights can be adjusted based on inputs
and outputs. The collection of neurons organized into layers and divided into three main types: the input,
hidden and output. An input layer which receives the information, few hidden layers (usually not more
than 3 in feed forward networks) that it is processed and an output layer, which displays the result. The
term "deep learning" came from having many hidden layers.
By increasing the number of hidden layers, we move from a shallow neural network, to a deep neural
network. Deep neural networks are capable of significantly more complex behavior than their shallow
counterparts. Each node, or neuron as it's called, processes input using an activation function.
Each layer can use any function to the previous layer to produce an output signal, typically a linear
transformation, followed by non-linearity [21]. Synapses are in communication between neurons, they
multiply the number of the input signal by its weights and send result to the neuron. Weight of the
synapse characterizes the strength of the link between neurons. Neurons sum the outputs from synapses
and apply an activation function (simple neuron returns 1 or 0 - result of activation function is compared
to a threshold value, to decide is it enough to "activate" neuron and return 1). During training of a neural
network this weights are changed to match the output parameters and the expected correct results (target).
Bias neurons output are always equal to one, and they will never have the input synapses. Weights of
synapses from bias neurons are able to shift activation function to the right or left. Weights of synapses
that connect ordinary neurons changes slope of the activation function. Also bias neurons helps when all
input neurons receive the input of 0 and no matter what their weight, they will transfer to the next layer 0
but not in the case of the presence of a neuron bias.
Good way to think about neural network as about complicated regression function.
Linear regression selects the parameters of the linear function, so that the result best matches the expected
result (observations). The coefficients are determined by minimizing some metric error between the

7

desired results and the obtained. In case of sigmoid function used for non-linearity, the each neuron
behaves as logistic regression. Every neuron process is the sum of the weighted data and applied a non-
linear function. Additional bias neuron every time output one. Neurons connections-synapses in the
neural network have its own weights. Weights are randomly initialized, and then during training
algorithm (for example error backpropagation) changed with some factor that determines training speed.
Neural network result is more flexible than linear regression and can fit much more complicated data.

3.2 Simple neuron and activation function
Each neuron has three main parameters: the input data, output data and activation function. The input
layer neurons take in information, in the form which can be numerically expressed. The following layers
receive data from previous layers. The activation function converts the input data to the output. In some
literature activation function called non-linearity [71] because normally in networks it should be non-
linear.
Network that consists only of one neuron acts like regression.
In the process of learning a neural network, the main variable parameters are the weights of the synapses,
but sometimes also some parameters of the activation function. Initially, weights are usually chosen
randomly, by normal distribution with mat waiting at zero. Schematically, the work of the neuron is
shown in the [Figure 3-1], synapses are represented as weights[57].

Figure 3-1 The scheme of the neuron's operation, input data (input) is multiplied by weights (W), summed, added bias (b)
and the result is sent to the input of some activation function. Bias neuron here represented as b, but it can be represented
as input one and weight[11]
Core part of neuron is activation function, that have some important properties[69]:
Nonlinear: When the activation function is non-linear, then a two-layer neural network can be proven to
be a universal function approximator. The linear activation function does not satisfy this property. When
multiple layers use the identity activation function, the entire network is equivalent to a single-layer
model.
Continuously differentiable: This property is necessary for enabling gradient-based optimization
methods. The binary step activation function is not differentiable at 0, and it differentiates to 0 for all
other values, so gradient-based methods can make no progress with it.
Range: When the range of the activation function is finite, gradient-based training methods tend to be
more stable, because pattern presentations significantly affect only limited weights. When the range is
infinite, training is generally more efficient because pattern presentations significantly affect most of the
weights. In the latter case, smaller learning rates are typically necessary.
Monotonic: When the activation function is monotonic, the error surface associated with a single-layer
model is guaranteed to be convex. Smooth Functions with a Monotonic derivative have been shown to
generalize better in some cases.
Approximates identity near the origin: When activation functions have this property, the neural
network will learn efficiently when its weights are initialized with small random values. When the
activation function does not approximate identity near the origin, special care must be used when
initializing the weights.
Linear activation function is possible but few neurons with linear activation function may be reduced to a
single linear activation function neuron. The simplest neuron has a binary step activation function and can
only output one or zero. But for the work of regular learning algorithms, that used gradients, instead of
the binary step activation function, class sigmoidal (S-shaped) functions are usually used. Sigmoidal (S-

8

shaped) functions - continuous functions that have two horizontal asymptote and one point of inflection.
The region of existence of the transfer functions is the entire real axis.
Most famous functions are: sigmoid, hyperbolic tangent and rectified linear unit[71][Figure 3-2].

Figure 3-2 Sigmoid activation function (left), hyperbolic tangent activation function (middle) and rectified linear

activation functioin (right)

Sigmoid function: 𝝈𝝈(𝒙𝒙) = 𝟏𝟏
𝟏𝟏+𝒆𝒆−𝒙𝒙

 , with deviate: 𝝈𝝈′(𝒙𝒙) = 𝝈𝝈(𝒙𝒙)(𝟏𝟏 − 𝝈𝝈(𝒙𝒙))

Hyperbolic tangent activation function: tanh(𝑥𝑥) = 2𝝈𝝈(𝟐𝟐𝒙𝒙) − 𝟏𝟏 = 𝟐𝟐
𝟏𝟏+𝒆𝒆−𝟐𝟐𝒙𝒙

− 𝟏𝟏 = 𝒆𝒆𝒙𝒙−𝒆𝒆−𝒙𝒙

𝒆𝒆𝒙𝒙+𝒆𝒆−𝒙𝒙
 , with deviate:

tanh′(𝑥𝑥) = 1 − tanh′(𝑥𝑥)2.

Rectified linear unit: 𝒓𝒓𝒆𝒆𝒓𝒓𝒓𝒓(𝒙𝒙) = 𝐦𝐦𝐦𝐦𝐦𝐦(𝟎𝟎,𝒙𝒙) = �
𝟎𝟎 𝒇𝒇𝒇𝒇𝒓𝒓 𝒙𝒙 < 0
𝒙𝒙 𝒇𝒇𝒇𝒇𝒓𝒓 𝒙𝒙 > 0

� , with deviate: 𝒓𝒓𝒆𝒆𝒓𝒓𝒓𝒓′(𝒙𝒙) = �
𝟎𝟎 𝒇𝒇𝒇𝒇𝒓𝒓 𝒙𝒙 < 0
𝟏𝟏 𝒇𝒇𝒇𝒇𝒓𝒓 𝒙𝒙 > 0

�.

Sigmoid. Sigmoid returns real numbers in range [0,1], large negative numbers become 0 and large
positive numbers become 1. The smoothness, continuity of function - important positive qualities. The
continuity of the first derivative allows to train a network with gradient methods.
Sigmoid function is a nice interpretation of a real neuron behavior, but in practice currently it used only in
output layer.
Sigmoid advantages:

• The derivatives are easy to calculate
• Activations won’t keep increasing they are bounded, output always between 0 to 1.

Sigmoid disadvantages:
• Sigmoids saturate and kill gradients (vanishing gradient problem[49]). Near 0 or 1 function

gradient is near zero. During backpropagation network training gradients show directions to the
minimum of error function, and multiplication on this gradient will be almost zero. Therefore on
each step weights will be almost not changed, and network training will be very slow. Also it is
important that first initialization of weights should be more careful to prevent saturation. Too
large initial weights will saturate and the network even before training.

• Function output are not zero-centered. That means that all data to the next layers will be positive,
and gradients on the weights during gradient descent backpropagation can be positive or negative.

• Computationally expensive compared to some other activation functions
Improved softmax function can be used to solve multiclass problems (if the output of the neural network
assumes more than two classes). Softmax ensures that all of the output values p are between 0 and 1, and
that their sum is 1. This is a generalization of the Sigmoid to multiple variables. Softmax leads to model
the joint distribution over the output variables p(x1, x2, x3, ..., xn) whereas using sigmoid leads to model
the marginal distributions p(x1), p(x2), p(x3), ..., p(xn). Sigmoid should be used if every sample can be
associated with multiple labels, if each example can only belong to one class, softmax should be used.
Hyperbolic tangent (Tanh).[53] The hyperbolic tangent is zero-centered, scaled sigmoidal function, that
returns real numbers in range [-1,1] and can be a good alternative activation function when compared to a
sigmoid. A tanh function will cause the derivatives to be much higher because of its range [-1,1]
compared to a sigmoid’s [0,1]. The derivative is also continuous and expressed in terms of the function
itself. Use this function only with positive values is inappropriate since it significantly impairs the results
of neural network.
Rectified linear unit (ReLU)[48]. Currently Rectified Linear Unit(ReLU) is the most popular activation
function 𝒇𝒇(𝒙𝒙) = 𝐦𝐦𝐦𝐦𝐦𝐦(𝟎𝟎,𝒙𝒙), that return input in positive area of the input parameters and zero in negative
area of the input parameters.
ReLU advantages:

• Simple to compute (fast).
• Gradient of a ReLU can become a constant, that cause faster learning. It was found to greatly

accelerate (e.g. a factor of 6 in Krizhevsky et al.) the convergence of stochastic gradient descent
compared to the sigmoid/tanh functions. It is argued that this is due to its linear, non-saturating
form. Comparison between Tanh and ReLU convergence speed shown on figure.

9

• Sparse networks - sparsity arises when Wx + b is less than or equal to 0 and neuron output oi zero
(such neurons have no influence on the output). The more nodes in the network that are sparse,
the more sparse the overall network is. Sparse representations have been shown to be better for
neural networks than dense representations.[59]

ReLU disadvantages:
• Large backpropagation gradient can change weights such that neuron will never be active any

more. The boundary on the ReLU is zero to infinity and thus it may cause the activation to
increase rapidly. This doesn’t happen as with a sigmoid. [70]

A plot from Krizhevsky et al. [Figure 3-3] (pdf) paper indicating the 6x improvement in convergence with
the ReLU unit compared to the Tanh. [68]

Figure 3-3 Training error rate by epochs for ReLU - solid line and Tanh - dashed line.

One attempt to solve ReLU "dying neurons problem" is leaky ReLU. Leaky ReLU use small negative
slope in negative area of the input parameters instead of zero output. Some time slope is one of neuron
parameter- Parameteric rectified linear unit (PReLU).[67]
Another ReLU improvements: Randomized leaky rectified linear unit (RReLU), Exponential linear unit
(ELU), S-shaped rectified linear activation unit (SReLU)
The choice of activation function is determined by: [66]

1. The specific tasks.
2. Convenience implementation.
3. learning algorithm: some algorithms impose restrictions on the type of activation function. The

most common type of non-linearity does not have a fundamental impact on the solution of the
problem. However, the best choice may be to reduce the time of training in several times.

Base on different activation function and loss function single neuron can act like Binary Softmax
classifier, Binary SVM classifier, Regularization interpretation [71]
One neuron can solve only linearly separable problem and divide space only with line or hyperplane (in
the case of many parameters). (Hyperplane separating the different output values, called the decisive
surface. [66]). The linearity of the division of space appears from the linear multiplication of input data by
weight coefficients. Dependently on activation function this separation can be sharp or smooth [Figure
3-4].

Figure 3-4 Behaviour of different activation functions: binary step activation function - dash line, smooth activation

function - color transition.
In this paper, I use three activation functions: sigmoid, Tanh, ReIU, but Wikipedia shows a list of 19
different functions and since there are no specific rules, this list can expand. [69]

3.3 Feed forward network
Combination of neurons become a neural network. The way that neurons are connected to network called
topology, architecture or graph of a neuron network. There are a lot of different possible ways to connect

10

neurons in network, but all this ways divided on two main classes. In feed-forward networks (acyclic
graph) information flows only in direction form input to output. In recurrent topology (semi-cyclic graph)
information can flows not only in one direction from input to output but also in opposite direction.[12]
Simplest type of neural network architecture is fully connected feed forward network[53][55][65]. Fully
connected means that each neuron connected with all neurons from previous layer. Theoretically there are
no limitations on number of layers, type of activation function or number of connections between
neurons. The simplest network consist of only one neuron that can solve regression problems.
Formalization of feed-forward neural network (FNN)
Given an input x and setting of the parameters θ that determine weight matrices and the biases
(W1, … , Wl, b1, … , bl), an FNN computes its output f(x, θ) = al by the recurrence[64]

si = Wiai−1 + bi
ai = Φi(si)

where a0 = x and f(x, θ) = al. The vectors ai are the activations of the neural network, and the activation
functions Φi(∙) are some nonlinear functions, which are typically sigmoid or a tanh functions applied
coordinate-wise.
The training objective is obtained by averaging the losses L(y, z) over a set S of input-output pairs (aka
training cases), giving the formula

h(θ) =
1

|S| � L(y, f(x, y))
(x,y)∈S

The loss function L(y, z) quantifies how bad z is at predicting the target y. Note that L may not compare z
directly to y, but instead may use z to parameterize some kind of predictive distribution, or compute some
prediction vector y� from z which is then directly compared to y.

Example of neuron feed-forward fully connected network with one hidden layer are shown on the [Figure
3-5]. [135]

Figure 3-5 Feed-forward fully connected network.

Equation for output from this network:

𝑦𝑦𝑚𝑚 = 𝑓𝑓(2) ��𝑤𝑤𝑚𝑚𝑚𝑚
(2)

𝑄𝑄

𝑚𝑚=0

𝑓𝑓(1) ��𝑤𝑤𝑚𝑚𝑞𝑞
(1)

𝑁𝑁

𝑖𝑖=0

𝑥𝑥𝑞𝑞��

where 𝑓𝑓(1) ,𝑓𝑓(2) and 𝑤𝑤𝑚𝑚𝑞𝑞
(1) , 𝑤𝑤𝑚𝑚𝑚𝑚

(2)are the activation functions and weights of the first and second layers,
subscript mq- describe that synapse connect neuron m from precious layer and neuron q from next layer.
Even such simple network result equation is complicated.
Another way to represent behavior of neural network layer is matrix multiplication [lectures: Tensorflow
and deep learning - without a PhD]
Hidden layer from previous example can be represented as [Figure 3-6]:

 input neurons

11

https://codelabs.developers.google.com/codelabs/cloud-tensorflow-mnist
https://codelabs.developers.google.com/codelabs/cloud-tensorflow-mnist
https://codelabs.developers.google.com/codelabs/cloud-tensorflow-mnist

 bias x1 x2 … xn z1 z2 … zq

sa
m

pl
es

1 0 0 … 1

.

w
ei

gh
ts

w1-1 w1-2 … w1-q

.

ac
tiv

at
io

n
fu

nc
tio

n

1 0 1 … 0 w2-1 w2-2 … w2-q

1 1 1 … 1 … … … …

1 1 1 … 0 wn-1 wn-2 … wn-q

1 1 0 … 1 b1 b2 … bq
Figure 3-6 Matrix representation of simple neural layer.

The complexity of the problems to be solved by the network, essentially depends on the number of layers.
[66] [72]
Often, in order to demonstrate the limited capacity of single-layer network we should use XOR operation:
This function of two arguments, that can be zero or one. It takes a value of 1 when one of the arguments
is one, but not both, otherwise 0 [Figure 3-6].

points 𝑥𝑥1 𝑥𝑥2 XOR
A0 0 0 0
B0 1 0 1
B1 0 1 1
A1 1 1 0

Figure 3-7 Xor operation description.
Problem is to divide space in to two zones with output zero and output one. Such problem cannot be
solved with one layer network with only one neuron. Actually it can be solved with one layer network
with two neurons, but in this case result should be coded in vector with length(1 will be vectors [0,1] and
[1,0] and zero vector[0,0]). As I mentioned before, one neuron can solve only linearly separable problem
and divide space only with line or hyperplane. But with XOR problem it is impossible to solve it with
only one line, like it shown on figure[Figure 3-8].

Figure 3-8 Impossibility to divide space by one line according to the XOR rule.

Such problem can be easily solved with two layers network. For simplicity, consider that neurons have
binary step activation function, or sigmoid function with threshold value 0.5. Figure shown two layers
network, that can solve XOR problem, with outputs of all neurons [Figure 3-9].

12

Figure 3-9 Neural network that can solve XOR problem. [73]

Each of the two neuron of the first layer forms a critical surface as an arbitrary line, and an output layer
neuron integrates these two solutions to form a critical surface of the strip formed by parallel lines of the
first layer neurons. The first layer divides the space into linearly separable. Also any successful synthesis
is a non-linear coordinate transformation, after which the problem of classification is more solvable.
Result of this division shown on figure[Figure 3-10].

Figure 3-10 Separation of space by a two-layer neural network, with two neurons in first layer.

Binary step was used as activation function in this network. Such a network cannot be trained, by back-
propagation algorithm.
Multilayer neural networks has more representing power than single-layer, only in case of the presence of
non-linearity. For two layer network with one neuron in output layer: the crucial area is the intersection,
union, inversion, or a combination of the fields generated by the neurons in the first layer. View function
(intersection, union, inversion, or a combination thereof) is determined by the parameters of the neuron of
the second layer (threshold and weights). The number of sides/hyperplanes in the region that divide space
coincides with the number of neurons in the first layer [Figure 3-11]. The regions can be open or closed.
If the region is closed, it always takes the form of a convex polygon.

Figure 3-11 Separation of space by a two-layer neural network, with four neurons in first layer.
Three-layer network is the most common in-class networks and is capable of forming an arbitrary non-
convex polygonal area multiply. Neurons of the first two layers create an independent arbitrary polygonal
crucial area in the right quantity and in the relevant dimensions of the input space X. These areas combine
neurons of the third layer in a desired combination. As for the two-layer network, permitted operations of
intersection and union [Figure 3-12]. The weights can be negative, and the corresponding area can go
with a minus sign, that implements the operation of inversion. The resulting open area may be:

13

Figure 3-12 Separation of space by a three-layer neural network.

3.4 Training algorithm
Before the introducing training algorithms, I want to mention that even if problem can be solved in
principle by using a neural network, it does not mean that this decision can be reached from an initial
state of the network. The network topology affect the result much more than learning algorithm. If the
network topology makes learning inconvenient, learning rate drops at times, and even dozens of times,
and can make it simply impossible; neural network easily develops only those generalizations that are
easy and convenient to make on the basis of its topology. All the rest, although possible in principle, but it
is very unlikely or, or unreachable from the initial state of the network;
There are two learning paradigms: supervised learning and unsupervised learning. Also learning
paradigms can be mixed, in this case supervised learning can use already pretrained network in
unsupervised way, that extract features[52].
In supervised, case, the neural network has the correct answers (network output) for each input sample.
The weights are adjusted so that the network has produced answers as close as possible to the known
correct answers.
Training without a teacher - unsupervised learning, this type of training is not as common as supervised.
There are no teachers, so the network does not get the desired result, or their number is very small.
Basically, this type of training is inherent in neural networks whose task is to group the data according to
certain parameters.
Also, the training can be done in three ways: a stochastic method (stochastic), a batch method (batch) and
mini-batch method (mini-batch). There are many articles and studies on the subject matter which method
is best and no one can come to a common response. Each method has its pros and cons.
Stochastic (also sometimes referred to online) method works on the following principle -if it have found
the increment of the weight immediately update the corresponding weight. While weights change very
often, which can contribute to a faster learning network. But training takes place on one example and
requires significantly more weight changes, to achieve a certain accuracy.
The batch method summarize the increment of all weights on the current iteration (epoch), and then
update all the weight using this amount. At the same time weights change only once after viewing all the
examples, but this change is most true.
Mini-batch method is a golden mean and tries to combine the advantages of both methods. Here the
principle is this: we are in a free manner distribute weight in groups and change their weight for the sum
of all weights in increments of one group or another.
Supervised learning
Supervised learning is the machine learning task of getting function from supervised training data. The
training data consist of a set of training examples. In supervised learning, each example is a pair
consisting of an input object and a desired output value. The complexity of the sample determines the
number of training examples required to achieve the network's ability to generalize. Too few examples
may cause a overfitting the network, when it is working well on the examples of learning sample, but it is
bad - on test cases.
Supervised learning algorithms perform the following steps[74]:

• Determine the type of training examples.
• Gather a training set. The training set needs to be representative of the real-world use of the

function.
• Determine the input feature representation of the learned function.
• Determine the structure of the learned function and corresponding learning algorithm.
• Complete the design. Run the learning algorithm on the gathered training set.

14

• Evaluate the accuracy of the learned function.
To make a network to give the right answers, it is necessary to train network, by changing weights (and
neurons parameters). The optimization problems are not "convex functions" absolutely any algorithm can
be mistaken. There are several methods for neuron network training.
Basic learning algorithm of the neural network is a back propagation method, which uses the gradient
descent algorithm.

3.4.1 Gradient decent.
First lets discuss gradient decent [16]. Gradient descent is a way of finding a local minimum (or
maximum) functions with the help of motion along the gradient. Understanding the gradient descent
method is necessary to use the method of backpropagation[75].
A simple gradient descent for two dimensional function [Figure 3-13]:

• calculate slope at the current position x
• reduce x on the slope multiplied on rate (x = x - slope*r)
• repeat until the slope will not equal to 0

Figure 3-13 The process of finding the minimum with gradient descent. [76]

In the case of a linear model and the error function as a sum of square errors, such function surface will
be a paraboloid, which has a unique minimum, and it allows to find a minimum analytically. In the case
of non-linear model error surface it has a much more complex structure and may have local minima, flat
sections, saddle points and long, narrow ravines. Determine the global minimum of a multidimensional
function analytically impossible, and therefore the training of the neural network, in fact, is the procedure
of studying the surface of the error function. Starting from a randomly chosen point on the surface of the
error function, gradually learning algorithm finds the global minimum. In the end, the algorithm stops at a
certain minimum, which can be a local or a global minimum.
Consider the function F (in our example it can be neuron network loss function, that describe dependence
of errors on the selected weights and parameters), assuming for definiteness that it is dependent on three
variables x, y, z. We compute its partial derivatives 𝑑𝑑𝑓𝑓

𝑑𝑑𝑥𝑥
, 𝑑𝑑𝑓𝑓
𝑑𝑑𝑦𝑦

, 𝑑𝑑𝑓𝑓
𝑑𝑑𝑑𝑑

 and form with them a vector, which is
called the gradient of the function:

𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑𝑔𝑔(𝑥𝑥, 𝑦𝑦, 𝑑𝑑) =
𝑑𝑑𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑑𝑑)

𝑑𝑑𝑥𝑥
𝑖𝑖 +

𝑑𝑑𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑑𝑑)
𝑑𝑑𝑦𝑦

𝑗𝑗 +
𝑑𝑑𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑑𝑑)

𝑑𝑑𝑑𝑑
𝑘𝑘

Where i, j, k - unit vectors parallel to the coordinate axes. In case of neural network our function will be
in multidimensional space, where each weight and parameter will add new dimension. Partial derivatives
characterize the variation of the function F for each independent variable separately. Formed through
them gradient vector gives an idea of the behavior of the function in the neighborhood of (x, y, z). The
direction of this vector is the direction of the most rapid increase of the function at that point. Opposite
gradient direction, is the direction of the fastest decrease of the function. Gradient module defines the rate
of increase and decrease of the function in the direction of the gradient. For all other areas of the speed of
change of the function at the point (x, y, z) is less than the modulus of the gradient. In passing from one
point to another as a gradient direction and its magnitude, in general, vary. The concept of gradient is
naturally transferred to the function of any number of variables.
The main idea of the method of steepest descent is to move to a minimum in the direction of the fastest
decrease of the function, which is opposite gradient direction [Figure 3-14].

15

Figure 3-14 Steepest descent to move to a minimum.

This idea is implemented as follows:
• Choose any way the starting point, we calculate it the gradient of the function and make a small

step backwards. As a result, we arrive at a point where the function value is smaller than the
original.

• The new point will repeat the procedure: again calculate the gradient of the function, and take a
step backwards.

• Continuing this process, we will move in the direction of decrease of the function. A special
selection of the direction of movement at every step allows us to hope that in this case the
approach to the smallest value of the function will be more rapid than in the method of coordinate
descent.

Gradient descent method requires the calculation of the gradient of the objective function at each step. If
it is given analytically, it is usually not a problem: for partial defining the gradient, you can obtain explicit
formulas.
The calculation at each step of the gradient, allowing all the time to move towards more rapid decay of
the objective function can at the same time slow down the calculation process. The fact that the gradient
calculation - usually much more complex operation than the count of the function itself. So often used a
modification of the gradient method, known as the steepest descent method. According to this method,
after calculating the starting point of the gradient functions make towards opposite gradient direction not
only a small step, but move up as long as the function decreases. After reaching the minimum point on the
selected direction, again calculated gradient of the function and repeat the above procedure [Figure 3-15].
This gradient is calculated much less, only by changing the direction of motion.

Figure 3-15 Steepest descent method behavior.

Formally to make just one step in the method of gradient descent (to make just one change network
settings), it must be calculated for absolutely the entire set of training data. For each object of training
data calculate the error and calculate the necessary correction network coefficients (but do not do this
correction), and after the submission of all data to calculate the amount of the adjustment factor for each
network (the sum of the gradients) and make the correction coefficients "one step". With a large set of
training data, the algorithm will work very slowly, so in practice often make adjustments to network
coefficients after each element of learning, where the gradient value approximated by the gradient of the
cost function, calculated on only one element of training. This method is called stochastic gradient
descent or operational gradient descent.
Problems of gradient descent[77]:

• Too large gradient. If it is too big, algorithm can jump point we needed. If it jump not very much,
it's not scary. But it can jump even further away from minimum than it was before. To solve it we
multiply gradients on learning rate, normally from 0 to 1.

16

• Too small gradient, so we algorithm change position very slow. Obviously, it is possible to
increase the learning rate, and even increase it greater than 1. This is rarely used, but happens.

• Gradient descent method is faced with the problem of local and global minima. Getting into a
local minimum algorithm often (depending on speed training or learning rate) can stay in it.
Simplest solution is to use a random starting points. More advanced is momentum. If the
algorithm uses a moment, then each weight change is added a change in the weights of the last
iteration with a certain coefficient. Also momentum can help with finding minimum in ravine-
type shape functions, where ordinary gradient descent will zig-zagging [Figure 3-16].

Figure 3-16 Gradient descent zig-zagging behavior in gully function.

Learning rate, is hyperparameter - value which is selected by the developer during trial and error. Too big
learning rate can cause can fail to converge [Figure 3-17].

Figure 3-17 Too big learning rate, that failed converge, too small decrease training speed.

In the space of nonlinear functions is the point of zero gradient for all coordinates - that it is problem for
the gradient descent. Simple gradient descent in this points will be stuck, but momentum can help in this
points[78].
If the point of the gradient in all the coordinates 0, it can be [Figure 3-18]:

• Local minimum, if at all directions of the second derivative is positive.
• Local maximum, if in all directions, the second derivative is negative.
• Saddle point[54], if, for some areas of the second derivative is positive and negative for others.

17

Figure 3-18 Local minimum, local maximum and saddle point, that has zero gradients[79].

The vast majority of points with zero gradient - this saddle point, rather than minima. It is easy to
understand intuitively - to the point of zero gradient has a local minimum or maximum, the second
derivative should be of the same sign in all directions, but the more measurements, the greater the chance
that at least on some directional signs will be different. And so the most difficult points that meet - will
saddle[63][62].

3.4.2 Back propagation gradient descent
Using the back-propagation algorithm[75] calculates the network output error and calculates the gradient
vector as a function of weights. This vector indicates the direction of the shortest descent on the surface
for a given point, so if you move in that direction, then the error is reduced. The sequence of these steps
will eventually lead to a minimum of one type or another.
Simplified neuron network training scheme: [80]

1. Initialize weights and parameters of activation functions in a small non-zero values. Weights
initialization will be different, for different activation functions.

2. Input iteration training set and calculate the output.
3. Calculate the error between network output and correct results.
4. Change the weight and parameters of activation function, so that the error decreased.
5. Repeat steps 2-4 for as long as the error does not stop or decrease is sufficiently low.

Each time when training algorithm use entire set of training data, called epoch.
Error or loss is the value that reflects the difference between the expected and received responses
(distance). The error can be calculated in different ways. There is no any limitation and we are free to
choose any method that will bring the best results.
For this example, let's assume that we minimize the Squared error (in my oppinion it is the simplest to
understand formula), defined by the formula:

𝜀𝜀��𝑤𝑤𝑖𝑖𝑗𝑗 �� =
1
2
� (𝑡𝑡𝑘𝑘 − 𝑜𝑜𝑘𝑘)2

𝑘𝑘∈𝑂𝑂𝑂𝑂𝑡𝑡𝑂𝑂𝑂𝑂𝑡𝑡𝑂𝑂

where 𝑡𝑡𝑘𝑘 - target output of the k-th neuron and 𝑜𝑜𝑘𝑘 - output, which is computing network output. The
squared error is a function of the weight coefficients. 𝑤𝑤𝑖𝑖𝑗𝑗 is the weight that connect neuron i from
previous layer and neuron j from next layer. There are many methods for solving optimization problems.
The simplest method is to randomly search the weights 𝑤𝑤𝑖𝑖𝑗𝑗 . Next Idea is a random local search, randomly
choose direction and calculate function in this one step, by this direction, if it leads down take a step.
A more effective method of gradient descent, whereby is a correction of each weights 𝑤𝑤𝑖𝑖𝑗𝑗 is performed in
the direction opposite to the error function gradient. Now instead of randomly choose direction we can
compute best direction from this point.
Movement in the direction opposite to the gradient will be carried out, if at each iteration to the
coordinates of the current point 𝑤𝑤𝑖𝑖𝑗𝑗 we will add value directly proportional to the derivative of the
coordinate 𝑤𝑤𝑖𝑖𝑗𝑗 , taken with the opposite sign.

∆𝑤𝑤𝑖𝑖𝑗𝑗 = −𝜂𝜂
𝜕𝜕𝜀𝜀
𝜕𝜕𝑤𝑤𝑖𝑖𝑗𝑗

where 𝜂𝜂 is a learning rate factor that specifies the speed of "movement". We are moving not only in the
direction of decrease of the function, but at a rate directly proportional to the rate of decrease of the
function.
For the output layer, squared error 𝜀𝜀 is a complex function which depends primarily on the output signals
of the neuron, activation function 𝑜𝑜𝑗𝑗 . The argument activation functions are sum of inputs 𝑆𝑆𝑗𝑗 , which in
turn depend on weights 𝑤𝑤𝑖𝑖𝑗𝑗 .

18

𝑆𝑆𝑗𝑗 = �𝑤𝑤𝑖𝑖𝑗𝑗 𝑥𝑥𝑖𝑖
𝑖𝑖

𝜀𝜀 = 𝜀𝜀 �𝑆𝑆𝑗𝑗 �𝑤𝑤𝑖𝑖𝑗𝑗 �� = 𝜀𝜀(𝑜𝑜𝑗𝑗 (𝑆𝑆𝑗𝑗 (𝑤𝑤𝑖𝑖𝑗𝑗)))
So deviate of error function with respect to weight 𝑤𝑤𝑖𝑖𝑗𝑗 , for the output layer are:

𝜕𝜕𝜀𝜀
𝜕𝜕𝑤𝑤𝑖𝑖𝑗𝑗

=
𝜕𝜕𝜀𝜀
𝜕𝜕𝑆𝑆𝑗𝑗

𝜕𝜕𝑆𝑆𝑗𝑗
𝜕𝜕𝑤𝑤𝑖𝑖𝑗𝑗

=
𝜕𝜕𝜀𝜀
𝜕𝜕𝑜𝑜𝑗𝑗

𝜕𝜕𝑜𝑜𝑗𝑗
𝜕𝜕𝑆𝑆𝑗𝑗

𝜕𝜕𝑆𝑆𝑗𝑗
𝜕𝜕𝑤𝑤𝑖𝑖𝑗𝑗

deviate of error function with respect to output of neuron j, for squared error:
𝜕𝜕𝜀𝜀
𝜕𝜕𝑜𝑜𝑗𝑗

= −(𝑡𝑡𝑗𝑗 − 𝑜𝑜𝑗𝑗)

deviate of activation function with respect to sum neuron inputs, for sigmoid function:
𝜕𝜕𝑜𝑜𝑗𝑗
𝜕𝜕𝑆𝑆𝑗𝑗

= 𝑜𝑜𝑗𝑗 (1 − 𝑜𝑜𝑗𝑗)

and deviate of sum with respect to weight 𝑤𝑤𝑖𝑖𝑗𝑗 , that is equal 𝑥𝑥𝑖𝑖 .
Denote the

𝜕𝜕𝜀𝜀
𝜕𝜕𝑜𝑜𝑗𝑗

𝜕𝜕𝑜𝑜𝑗𝑗
𝜕𝜕𝑆𝑆𝑗𝑗

= 𝛿𝛿𝑗𝑗

The general formula of increment weights for sigmoid activation function and squared error, for output
layer is:

∆𝑤𝑤𝑖𝑖𝑗𝑗 = 𝜂𝜂𝑜𝑜𝑗𝑗 (1 − 𝑜𝑜𝑗𝑗)(𝑡𝑡𝑗𝑗 − 𝑜𝑜𝑗𝑗)𝑥𝑥𝑖𝑖 = 𝜂𝜂𝛿𝛿𝑗𝑗 𝑥𝑥𝑖𝑖
In case neuron j is not on the last layer, and all next layers neurons that connected to neuron j called
children(j):

𝜕𝜕𝜀𝜀
𝜕𝜕𝑆𝑆𝑗𝑗

= �
𝜕𝜕𝜀𝜀
𝜕𝜕𝑆𝑆𝑘𝑘

𝜕𝜕𝑆𝑆𝑘𝑘
𝜕𝜕𝑆𝑆𝑗𝑗𝑘𝑘∈children (j)

Where 𝜕𝜕𝜀𝜀
𝜕𝜕𝑆𝑆𝑘𝑘

 already calculated on next layer and is equal 𝛿𝛿𝑘𝑘 ,
𝜕𝜕𝑆𝑆𝑘𝑘
𝜕𝜕𝑆𝑆𝑗𝑗

=
𝜕𝜕𝑆𝑆𝑘𝑘
𝜕𝜕𝑜𝑜𝑗𝑗

𝜕𝜕𝑜𝑜𝑗𝑗
𝜕𝜕𝑆𝑆𝑗𝑗

= 𝑤𝑤𝑖𝑖𝑗𝑗
𝜕𝜕𝑜𝑜𝑗𝑗
𝜕𝜕𝑆𝑆𝑗𝑗

𝜕𝜕𝑜𝑜𝑗𝑗
𝜕𝜕𝑆𝑆𝑗𝑗

 - deviate of activation function.

The general formula of increment weights for sigmoid activation function and squared error, for not
output layer is:

∆𝑤𝑤𝑖𝑖𝑗𝑗 = −𝜂𝜂
𝜕𝜕𝜀𝜀
𝜕𝜕𝑤𝑤𝑖𝑖𝑗𝑗

= −𝜂𝜂
𝜕𝜕𝑆𝑆𝑗𝑗
𝜕𝜕𝑤𝑤𝑖𝑖𝑗𝑗

�
𝜕𝜕𝜀𝜀
𝜕𝜕𝑆𝑆𝑘𝑘

𝜕𝜕𝑆𝑆𝑘𝑘
𝜕𝜕𝑆𝑆𝑗𝑗𝑘𝑘

= −𝜂𝜂𝑜𝑜𝑖𝑖𝑜𝑜𝑗𝑗 (1 − 𝑜𝑜𝑗𝑗)�𝛿𝛿𝑘𝑘𝑤𝑤𝑖𝑖𝑘𝑘
𝑘𝑘

Now we get generalized delta rule.
In 1949 Hebb D.O. formulated rule for binary step activation function, the following meanings:
The first rule of Hebb - If the signal is not correct and is zero, it is necessary to increase the weight of
those inputs where was one.
The second rule of Hebb - If the signal is not correct and is one, it is necessary to reduce the weight of
those inputs where was one.
Delta generally somewhat more general form of the Hebb rules:

𝑤𝑤𝑗𝑗 (𝑡𝑡 + 1) = 𝑤𝑤𝑗𝑗 (𝑡𝑡 + 1) + 𝜂𝜂𝜀𝜀𝑖𝑖𝑥𝑥𝑗𝑗
The components of the error vector defined as the difference between the expected and the actual value of
the output neuron. Algorithm conventional delta-rule can also be used for network training with sigmoid
activation, but the generalized delta rule effectively. In turn, the generalized delta rule can not be applied
to the binary step of activation functions.
The algorithm is not universal and has few disadvantages:

• The training network weight values can result in the correction values become very large. large
values of weights can lead to the fact that activation function deviation will be very small and
network stop training. Usually to avoid this reduce learning rate η, but this increases the training
time.

• Gradient descent method can get stuck in a local minimum and not hit the global minimum. The
main difficulty is the right methods out of local minima in the training of neural networks: each

19

time leaving local minimum is searched again the next local minimum in the same manner
backpropagation as long as find a way out will not succeed.

• Evidence of convergence suggests infinitesimal correction weights. In practice, if the step size is
fixed and very small, the convergence is too slow, and if it is fixed and is too large, it may cause
permanent paralysis or instability. A big learning rate convergence is faster, but there is a danger
leap through a decision or go in the wrong direction.

• The complex landscape of the objective function: the plateau alternate with regions of strong
nonlinearity. The derivative of the plateau is almost zero, and the sudden interruption, on the
contrary, can send us too far.

• Some of the parameters are updated less often others, especially when there are informative, but
few signs in the data that has a bad effect on the nuances of generalizing the network rules. On
the other hand, giving too much importance to all general rarely seen signs can lead to retraining.

If network consist too many neurons, it lost property to generalize information. Network starts overfitting
and remember all inputs, but any other inputs, even very similar, can be classified incorrectly.
Feed forward artificial neural networks with more sigmoidal layers poorly trained conventional methods
that work well for networks with one hidden layer, because there is a problem of "vanishing" of the
gradient, ie further of the output layer lower changes its weights, depend on activation function. Recurrent
networks with pure gradient decent backpropagation training algorithm has bad converges.
There are advanced second-order algorithms (as Levenberg–Marquardt algorithm)
[http://mechanoid.kiev.ua/neural-net-backprop3.html] that can find a good low and difficult terrain, but
for a small number of weights. To use the method of the second order, it is necessary to count the Hessian
- matrix of the derivatives with respect to each pair of pairs of parameters settings - and for Newton's
method, and even reverse it. Also it can be used genetic algorithms [1][2] to train neural networks, but in
this research I use only gradient based algorithms.

3.4.3 Optimization of gradient decent.
To make this chapter I used some referenses[77][81][82]. Normally gradient descent should input all
training data to find best approximation function, that fit this data, and calculate average of gradients. But
in practice it is not often possible of training time. So in neural network training algorithms input data
often randomly divided on same size iteration sets- batches. In case weights changed after every new
example, such gradient descent algorithm called stochastic (or "on-line") gradient descent SGD. SGD -
stochastic movement is therefore not in the direction of the gradient of the error function (which includes
the entire training set), but the error in the direction of the gradient of the random subsample. Consider
that it add to this gradient normally distributed noise. This noise and allows algorithm to get out of local
minima.
A compromise between computing the true gradient and the gradient at a single example, is to compute
the gradient against more than one training example (called a "mini-batch") at each step. This can perform
significantly better than true stochastic gradient descent because the code can make use of vectorization
libraries rather than computing each step separately. It may also result in smoother convergence, as the
gradient computed at each step uses more training examples[83]

3.4.3.1 Momentum
Method described in [7][8][83]. Stochastic gradient descent with momentum remembers the update
weights at each iteration, and determines the next update as a convex combination of the gradient and the
previous update. Each step algorithm position will be changed on this value:

𝜃𝜃 = 𝜃𝜃 − (𝑣𝑣𝑡𝑡 + 𝛾𝛾𝑣𝑣𝑡𝑡−1)
The name momentum stems from an analogy to momentum in physics: the weight vector, thought of as a
particle traveling through parameter space, incurs acceleration from the gradient of the loss ("force").
Unlike in classical stochastic gradient descent, it tends to keep traveling in the same direction, preventing
oscillations.

3.4.3.2 Nesterov accelerated gradient (Nesterov Momentum)
Method described in [7][8]. The algorithm with the accumulation of momentum. To not store the last n
instances of change scales, the algorithm uses exponential moving average.

𝑣𝑣𝑡𝑡 = 𝛾𝛾𝑣𝑣𝑡𝑡−1 + (1 − 𝛾𝛾)𝑥𝑥
Each step algorithm position will be changed on this value

𝜃𝜃 = 𝜃𝜃 − 𝑣𝑣𝑡𝑡

20

To save the history, the algorithm multiplies the already accumulated value 𝑣𝑣𝑡𝑡−1 by a factor 𝛾𝛾 and adds
new value multiplied by (1 − 𝛾𝛾). As 𝛾𝛾 closer to one, the accumulation window is bigger and stronger
smoothing - the history affect more. If x become equal to 0, 𝑣𝑣𝑡𝑡 attenuated exponentially for exponentially,
hence the name of algorithm. Less 𝛾𝛾, the algorithm more behaves like a normal SGD.
If at the time t under the algorithm point was a slope, and then he got to the horizontal or even opposite
slope part of function, algorithm still continues to moving. However, every step algorithm loses (1 − 𝛾𝛾)
its speed.
Accumulated in the 𝑣𝑣𝑡𝑡 value can greatly exceed the value of each of steps. Pulse accumulation already
gives a good result, but algorithm calculates the gradient of the loss function at the point where algorithm
should come. In this case function can increase speed if new derivation is bigger and decrease in another
case.
Too high 𝛾𝛾 and learning rate can cause missing areas with opposite gradients. However, sometimes this
behavior may be desirable.

3.4.3.3 Adagrad
Method described in [10][61]. Some parameters can be extremely informative, but they is rare changed.
Adagrad algorithm family keep information about how often each parameter changed. An example of the
algorithm can keep the sum of the squares of updates for each parameter. The magnitude of this value
indicates the changing rate.

𝐺𝐺𝑡𝑡 = 𝐺𝐺𝑡𝑡 + 𝑔𝑔𝑡𝑡2
Each step algorithm position will be changed by this value

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 −
𝜂𝜂

�𝐺𝐺𝑡𝑡 + 𝜖𝜖
𝑔𝑔𝑡𝑡

Where 𝐺𝐺𝑡𝑡 - sum of squares of the changes and 𝜖𝜖 - smoothing parameter is required in order to avoid
division by 0. Frequently updated parameter will have bigger 𝐺𝐺𝑡𝑡 , and large denominator.
Adagrad idea is to use something that would reduce the update for the parameters that already often
updated. Not necessary to use exactly this formulas and metrics.
Adagrad no need to accurately select the learning rate. It should be big enough, but not too big to leap
through a decision or go in the wrong direction.

3.4.3.4 RMSProp and Adadelta
Disadvantage of Adagrad is that 𝐺𝐺𝑡𝑡 can be increased too much, that leads to too small updates and
paralysis algorithm. RMSProp and Adadelta designed to correct this disadvantage[51].
Using the approach Adagrad, but instead 𝐺𝐺𝑡𝑡 , averaged gradient of the square gradient. Using an
exponential moving average.

𝐸𝐸[𝑔𝑔2]𝑡𝑡 = 𝛾𝛾𝐸𝐸[𝑔𝑔2]𝑡𝑡−1 + (1 − 𝛾𝛾)𝑔𝑔𝑡𝑡2
Where 𝐸𝐸[𝑔𝑔2]𝑡𝑡 moving average at the time t. Then:

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 −
𝜂𝜂

�𝐸𝐸[𝑔𝑔2]𝑡𝑡 + 𝜖𝜖
𝑔𝑔𝑡𝑡

The denominator is the root of the mean squares of the gradient, hence RMSProp - root mean square
propagation.

𝑅𝑅𝑅𝑅𝑆𝑆[𝑔𝑔]𝑡𝑡 = �𝐸𝐸[𝑔𝑔2]𝑡𝑡 + 𝜖𝜖
Adadelta differs in that to the numerator added a stabilizing member proportional 𝑅𝑅𝑅𝑅𝑆𝑆[𝑔𝑔]𝑡𝑡 .
Update the parameters takes three steps.

∆𝜃𝜃 = −
𝑅𝑅𝑅𝑅𝑆𝑆[𝑔𝑔]𝑡𝑡−1

𝑅𝑅𝑅𝑅𝑆𝑆[𝑔𝑔]𝑡𝑡
𝑔𝑔𝑡𝑡

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 −
𝑅𝑅𝑅𝑅𝑆𝑆[𝑔𝑔]𝑡𝑡−1

𝑅𝑅𝑅𝑅𝑆𝑆[𝑔𝑔]𝑡𝑡
𝑔𝑔𝑡𝑡

𝐸𝐸[∆𝜃𝜃2]𝑡𝑡 = 𝛾𝛾𝐸𝐸[∆𝜃𝜃2]𝑡𝑡−1 + (1 − 𝛾𝛾)∆𝜃𝜃2
𝑅𝑅𝑅𝑅𝑆𝑆[∆𝜃𝜃]𝑡𝑡 = �𝐸𝐸[∆𝜃𝜃2]𝑡𝑡 + 𝜖𝜖

Without explicit large 𝑅𝑅𝑆𝑆[∆𝜃𝜃]−1 , algorithm behavior is opposite Adagrad and RMSProp: first time we
will stronger update the weights that are used frequently.
For RMSProp and Adadelta, as well as for Adagrad not need very accurately pick up the learning rate.
Usually start 𝜂𝜂 is from 0.1 - 1, 𝛾𝛾 is equal 0.9. The closer 𝛾𝛾 to 1, the longer RMSProp and Adadelta with
big 𝑅𝑅𝑅𝑅𝑆𝑆[𝑔𝑔]−1 will strongly update parameters with rarely used weights.

21

 If 𝛾𝛾 is approximately 1 and 𝑅𝑅𝑅𝑅𝑆𝑆[𝑔𝑔]−1 is equal zero, then Adadelta be long do not increase weights of
rarely used parameters. That can lead to paralysis of the algorithm, or algorithm will first updates the
neurons that encode the best parameters.

3.4.3.5 Adam
Adam - adaptive moment estimation, combines the idea of accumulation of the motion and the idea of a
weaker update weights for typical parameters.

𝑚𝑚𝑡𝑡 = 𝛽𝛽1𝑚𝑚𝑡𝑡−1 + (1 − 𝛽𝛽1)𝑔𝑔𝑡𝑡
Also algorithm estimates the average dispersion in order to know the frequency of the gradient changes:

𝑣𝑣𝑡𝑡 = 𝛽𝛽2𝑣𝑣𝑡𝑡−1 + (1 − 𝛽𝛽2)𝑔𝑔𝑡𝑡2
Same as 𝐸𝐸[∆𝜃𝜃2]𝑡𝑡 , so there is no difference from RMSProp.
An important difference is in the initial calibration 𝑚𝑚𝑡𝑡 and 𝑣𝑣𝑡𝑡 , if the initial value is zero, it will spend a
long time to accumulate them, especially with a large window (0 ≪ 𝛽𝛽1 < 1, 0 ≪ 𝛽𝛽2 < 1)
Algorithm artificially inflates 𝑚𝑚𝑡𝑡 and 𝑣𝑣𝑡𝑡 at the first steps (approximately 0 < 𝑡𝑡 < 10 for 𝑚𝑚𝑡𝑡 and 0 < 𝑡𝑡 <
1000 for 𝑣𝑣𝑡𝑡)

𝑚𝑚�𝑡𝑡 =
𝑚𝑚𝑡𝑡

1 − 𝛽𝛽1
𝑡𝑡

𝑣𝑣�𝑡𝑡 =
𝑣𝑣𝑡𝑡

1 − 𝛽𝛽2
𝑡𝑡

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 −
𝜂𝜂

�𝑣𝑣�𝑡𝑡 + 𝜖𝜖
𝑚𝑚�𝑡𝑡

Well-tuned Adam does not need gradient clipping (gradient clipping will clip the gradients between two
numbers to prevent them from getting too large).
Authors Adam offered as the default values 𝛽𝛽1 = 0.9, 𝛽𝛽2= 0.999, 𝜖𝜖 = 10−8.

3.4.3.6 Adamax
Instead dispersion it calculate inertia moment of gradient distribution arbitrary power p. This works well
when p, tending to infinity.

𝑣𝑣𝑡𝑡 = 𝛽𝛽2
𝑂𝑂𝑣𝑣𝑡𝑡−1 + (1 − 𝛽𝛽2

𝑂𝑂)|𝑔𝑔𝑡𝑡 |𝑂𝑂

To use it Adam, it is necessary to extract root: 𝑂𝑂𝑡𝑡 = 𝑣𝑣𝑡𝑡
1
𝑂𝑂

Result equation:

𝑂𝑂𝑡𝑡 = lim
𝑂𝑂→∞

𝑣𝑣𝑡𝑡
1
𝑂𝑂 = lim

𝑂𝑂→∞
�𝛽𝛽2

𝑂𝑂𝑣𝑣𝑡𝑡−1 + (1 − 𝛽𝛽2
𝑂𝑂)|𝑔𝑔𝑡𝑡|𝑂𝑂�

1
𝑂𝑂 = lim

𝑂𝑂→∞
�(1 − 𝛽𝛽2

𝑂𝑂)�𝛽𝛽2
𝑂𝑂(𝑡𝑡−𝑖𝑖)|𝑔𝑔𝑖𝑖 |𝑂𝑂

𝑡𝑡

𝑖𝑖=1

�

1
𝑂𝑂

= lim
𝑂𝑂→∞

�1 − 𝛽𝛽2
𝑂𝑂� ��𝛽𝛽2

𝑂𝑂(𝑡𝑡−𝑖𝑖)|𝑔𝑔𝑖𝑖|𝑂𝑂
𝑡𝑡

𝑖𝑖=1

�

1
𝑂𝑂

= lim
𝑂𝑂→∞

��𝛽𝛽2
𝑂𝑂(𝑡𝑡−𝑖𝑖)|𝑔𝑔𝑖𝑖 |𝑂𝑂

𝑡𝑡

𝑖𝑖=1

�

1
𝑂𝑂

= max(𝛽𝛽2
𝑡𝑡−1|𝑔𝑔1|,𝛽𝛽2

𝑡𝑡−2|𝑔𝑔2|, … ,𝛽𝛽2|𝑔𝑔𝑡𝑡−1|, |𝑔𝑔𝑡𝑡 |)
It happened because when 𝑂𝑂 → ∞ in the sum will be dominated biggest term.
The remaining steps of the algorithm are the same as in Adam.
Additional motivation to increase the weight in the direction of a small gradient - it is better to get out of
the saddle points, which are optimization almost always stuck. Conversely, algorithms such as RMSprop
will see very low gradients in the saddle direction. [71]

3.4.3.7 Resilient propagation (Rprop)
Unlike the standard Backprop algorithm, Rprop uses only signs of partial derivatives to adjust the
weighting coefficients[14]. The algorithm uses "learning by epoch", when the correction of weights
occurs after the presentation of the network of all examples.
For each weights algorithm use its individual update-value ∆ij

(t), which solely determines the size of the
weight-update

22

∆𝑖𝑖𝑗𝑗
(𝑡𝑡)=

⎩
⎪⎪
⎨

⎪⎪
⎧𝜂𝜂+ ∗ ∆𝑖𝑖𝑗𝑗

(𝑡𝑡−1) , 𝑖𝑖𝑓𝑓
𝜕𝜕𝐸𝐸(𝑡𝑡−1)

𝜕𝜕𝑤𝑤𝑖𝑖𝑗𝑗
∗
𝜕𝜕𝐸𝐸(𝑡𝑡)

𝜕𝜕𝑤𝑤𝑖𝑖𝑗𝑗
> 0

𝜂𝜂− ∗ ∆𝑖𝑖𝑗𝑗
(𝑡𝑡−1) , 𝑖𝑖𝑓𝑓

𝜕𝜕𝐸𝐸(𝑡𝑡−1)

𝜕𝜕𝑤𝑤𝑖𝑖𝑗𝑗
∗
𝜕𝜕𝐸𝐸(𝑡𝑡)

𝜕𝜕𝑤𝑤𝑖𝑖𝑗𝑗
< 0

∆𝑖𝑖𝑗𝑗
(𝑡𝑡−1), 𝑒𝑒𝑒𝑒𝑂𝑂𝑒𝑒

�

where 0 < 𝜂𝜂− < 1 < 𝜂𝜂+
If at the current step the partial derivative with respect to the corresponding weight 𝑤𝑤𝑖𝑖𝑗𝑗 change its sign,
then this indicates that the last change was large and the algorithm jumped through the local minimum
and, therefore, the magnitude of the change is necessary reduce by 𝜂𝜂− and return the previous value of the
weighting factor.

∆𝑤𝑤𝑖𝑖𝑗𝑗 (𝑡𝑡) = 𝑤𝑤𝑖𝑖𝑗𝑗 (𝑡𝑡) − ∆𝑖𝑖𝑗𝑗
(𝑡𝑡−1)

If the sign of the partial derivative has not changed, then it is necessary to increase the correction value by
𝜂𝜂+ to achieve faster convergence. Fixing the factors 𝜂𝜂− and 𝜂𝜂+, we can drop hyperparameters.
The recommended values 𝜂𝜂− = 0.5, 𝜂𝜂+, = 1.2, but there are no restrictions on the use of other values for
these parameters.
In order to prevent too large or small values of the balance, the correction value is limited from above by
the maximum ∆𝑚𝑚𝑔𝑔𝑥𝑥 and from the bottom by the minimum ∆𝑚𝑚𝑖𝑖𝑞𝑞 values of the correction value, which by
default, respectively, are set to 50 and 1.0E-6.
The initial values for all ∆𝑖𝑖𝑗𝑗 are set to 0.1. Again, this should only be considered as a recommendation,
and in a practical implementation, you can specify a different value for initialization.
The following rule is used to calculate the correction value for the balance:

∆𝑤𝑤𝑖𝑖𝑗𝑗
(𝑡𝑡) =

⎩
⎪
⎨

⎪
⎧−∆𝑖𝑖𝑗𝑗

(𝑡𝑡) , 𝑖𝑖𝑓𝑓
𝜕𝜕𝐸𝐸(𝑡𝑡)

𝜕𝜕𝑤𝑤𝑖𝑖𝑗𝑗
> 0

+∆𝑖𝑖𝑗𝑗
(𝑡𝑡) , 𝑖𝑖𝑓𝑓

𝜕𝜕𝐸𝐸(𝑡𝑡)

𝜕𝜕𝑤𝑤𝑖𝑖𝑗𝑗
< 0

0, 𝑒𝑒𝑒𝑒𝑂𝑂𝑒𝑒

�

If the derivative is positive, i.e. the error increases, then the weight coefficient decreases by the amount of
correction, otherwise - increases. Then the weights are adjusted:

𝑤𝑤𝑖𝑖𝑗𝑗
(𝑡𝑡+1) = 𝑤𝑤𝑖𝑖𝑗𝑗

(𝑡𝑡) + ∆𝑤𝑤𝑖𝑖𝑗𝑗
(𝑡𝑡)

Algorithm:
1 Initialize the correction amount ∆ij
2 Calculate the partial derivatives for all examples.
3 Calculate the new value of ∆ij .
4 Adjust the weights.
5 If the break condition is not satisfied, go to 2.
6 This algorithm converges 4-5 times faster than the standard Backprop algorithm.

3.5 Loss functions
Few loss function described [71] [84]. In supervised learning we should estimate difference between
network results and correct answers. To estimate this error used loss function. The data loss takes the
form of an average over the data losses for every individual example. L = 1

N
∑ Lii where N is the number

of training data and f = f(xi; W) is an activation function of output layer.
For different neural network problems, it can be used different functions:
Classification: For classification(assume that there is a single correct answer) problems used the SVM
(e.g. the Weston Watkins formulation), sometimes squared and is the Softmax classifier that uses the
cross-entropy loss:

Li = � max(0, fi − fyi + 1)
j≠yi

Li = � max(0, fi − fyi + 1)2

j≠yi

23

Li = −log�
efy i

∑ efy ij
�

The basic idea behind the structured SVM loss is to demand a margin between the correct structure yi and
the highest-scoring incorrect structure.
When the set of labels is very large (e.g. words in English dictionary, or ImageNet which contains 22,000
categories), it may be helpful to use Hierarchical Softmax [5]. That decomposes labels into a tree. The
structure of the tree strongly impacts the performance and is generally problem-dependent.
Attribute classification: Binary classifier for every single attribute independently. The loss function then
maximizes the log likelihood of probability.

Li = � yij log�σ(fi)� + (1 − yij)log(1 − σ(fi))
j

where the labels yij are assumed to be either 1 (positive) or 0 (negative), and σ(⋅) is the sigmoid function.
Gradient on f:

∂Li

∂fi
= yij − σ(fi)

To classify among several classes (more than two) and provided that it can be selected only one class, the
log likelihood of probability formula takes the form also known as the multiclass cross-entropy:

Li = � pi(x) log(qi(x))
x

Where pi(x) is probability of correct classification for the example x, that is one for correct class i and
zero for all another, qi(x) is probability for class i according network output. In implementation part I
used Keras/Tensorflow framework, and in Tensorflow this formula called categorical cross entropy.
Regression is the task of predicting real-valued quantities. For this task, it is common to compute the loss
between the predicted quantity and the true answer and then measure the L2 squared norm, or L1 norm of
the difference. The L2 norm squared would compute the loss for a single example of the form:

Li = ‖f − yi‖2
2

The reason the L2 norm is squared in the objective is that the gradient becomes much simpler, without
changing the optimal parameters since squaring is a monotonic operation. The L1 norm would be
formulated by summing the absolute value along each dimension:

Li = ‖f − y_i ‖1 = ��fj − (yi)j�
j

sum over all dimensions of the desired prediction, if there is more than one quantity being predicted.
Looking at only the j-th dimension of the i-th example and denoting the difference between the true and
the predicted value by δij , the gradient for this dimension is easily derived to be either δij , with the L2
norm, or sign(δij ,).
The L2 loss is much harder to optimize than a more stable loss such as Softmax. When faced with a
regression task, first consider if it is absolutely necessary. Instead, have a strong preference to discretizing
your outputs to bins and perform classification over them whenever possible.

3.6 Additional improvements of training algorithm
Сertain optimizers can jump out of the global minimum, in order to solve this problem training with
returns can be used. This slows down learning.
In training of deep networks, it is usually helpful to anneal the learning rate over time. With a high
learning rate, the system contains too much kinetic energy and the parameter vector bounces around
chaotically, unable to settle down into deeper, but narrower parts of the loss function. Slow decay wasting
computation bouncing around chaotically with little improvement for a long time. But decay it too
aggressively and the system will cool too quickly, unable to reach the best position it can. There are three
common types of implementing the learning rate decay: [71]

• Step decay: Reduce the learning rate by some factor every few epochs. Typical values might be
reducing the learning rate by a half every 5 epochs, or by 0.1 every 20 epochs. The
hyperparameters of step decay, involves (the fraction of decay and the step timings in units of
epochs) are more interpretable.

24

• Exponential decay has the mathematical form 𝛼𝛼 = 𝛼𝛼0𝑒𝑒−𝑘𝑘𝑡𝑡 , where 𝛼𝛼0 and 𝑘𝑘 are hyperparameters
and 𝑡𝑡 is the iteration number or epoch number.

• 1/t decay has the mathematical form 𝛼𝛼 = 𝛼𝛼0/(1 + 𝑘𝑘𝑡𝑡) where 𝛼𝛼0 and 𝑘𝑘 are hyperparameters and 𝑡𝑡
is the iteration number.

But changing parameters of algorithms with momentum can cause paralyze of such algorithms because it
can be nowhere to increase speed.
Increasing the number of levels in any convolutional network with a certain number of layers, will lead to
worse accuracy, it will train worse and accuracy decreases. Although deeper network has strictly greater
representational power. And, generally speaking, it can be trivial to get a deeper model which is better
than less deep, by adding a few identity layers, which simply passes the signal on without change. [9]
BatchNorm and ReLU help with vanishing gradient problem. There are several solutions for such deep
networks training.
The network is gradually built up repeating blocks, after adding a new block to it temporarily connected
fully connected feed-forward layers and trained, then fully connected feed-forward layers removed and
new block connected.
Deep Residual Learning network able to train hundreds of layers (layer 152 [8]) For this, the network
adds extra communication, bypassing several layers, gradients to better spread.
Also in practice used transfer learning [71] to train convolutional networks. It is common to train a
ConvNet on a very large dataset (e.g. ImageNet, which contains 1.2 million images with 1000 categories),
and then use the ConvNet either as an initialization or a fixed feature extractor for the task of interest.

3.7 Hyperparameters
Hyperparameters - are values that must be chosen manually, often by trial and error. Among these values
are:

• Minibatch size
• Learning algorithm
• Parameters that are part of the learning algorithm like moment and the learning rate.
• Regularization, L1, L2, noise, ...
• The number of layers and neurons therein.
• Activation functions
• If a train CNN, the size of windows and fold pooling
• If there are ensemble of networks, the ensemble size and ways of combining

Selection of true hyperparameters is very important and will directly affect the convergence of neuron
network.
The number of hidden layers and neurons in which we can calculate the brute force based on one simple
rule - the more neurons, the more accurate the result and the exponentially more than the time you spend
on its training.
Currently, there are no hard and fast rules for selecting any number of hidden layers in feed-forward fully
connected networks, or to select the number of neurons in them. Although there are limitations to help
decide.

1) If the function is defined on a finite set of points, then 3-layers network able to approximate it.
2) If the function is defined and continuous on a compact area, the 3- layers network able to

approximate it.
3) The other functions that the neural network can be trained, can be approximated 4- layers

network.
Thus, theoretically, the maximum number of layers that must be - four or two hidden layers. Although
increasing the number of layers can help in solving real-world problems.
The number of neurons in the hidden layers.
Choosing the right number of neurons in hidden layers is very important. Too little - and the network will
not be able to learn. Too much will cause an increase in network training time to actually unreal values. It
may also lead to overfitting, the network will work fine on the training set, but very bad on the input
examples are not included in it.
However, there are heuristics rules to choose number of neurons in hidden layers. By this rule, the
number of neurons in the hidden layer of three layers network is:

𝑘𝑘 = √𝑚𝑚𝑞𝑞

25

where k - the number of neurons in the hidden layer, n - the number of neurons in the input layer, m -
number of neurons in the output layer.
For 4- layers network:

𝑘𝑘1 = 𝑚𝑚�
𝑞𝑞
𝑚𝑚
�

2
3

𝑘𝑘2 = 𝑚𝑚�
𝑞𝑞
𝑚𝑚
�

1
3

where 𝑘𝑘1- the number of neurons in the first hidden layer, 𝑘𝑘2- the number of neurons in the second
hidden layer.
The usual approach: increasing the number of layers and neurons in layers until network become
overfitting, and then to deal with overfitting.

3.8 Limitations
Neural network computes linear functions, nonlinear functions of one variable, as well as all kinds of
superposition - a function of the functions resulting from the cascade network connection[60].
The theorem of Kolmogorov -any multivariate continuous function can be represented as a superposition
of one–dimensional functions:

f(x1, … , xn) = � Φq ��Ψq,p(xp)
n

p=1

�
2n+1

q=0

where the functions Φq are continuous, and the function Ψq,p , in addition, also standard, ie, do not depend
on the function f
[A. N. Kolmogorov. On the representation of continuous functions of many variables by superpositions of
continuous functions of one variable and addition. Doklay Akademii Nauk USSR, 14(5):953 – 956, 1957]
Weierstrass Approximation Theorem: Any continuous function f can be approximated on a closed
bounded interval [a, b] by polynomials with arbitrary accuracy. More precisely, for any ε > 0, there exists
a polynomial p with

max
a≤x≤b

|f (x) − p(x)| < 𝜀𝜀
Gorban's Theorem - Any polynomial in several variables can be obtained from one arbitrary nonlinear
polynomial of one variable, using linear operations and superposition[60].
Neural networks allow with any accuracy calculate an arbitrary continuous function f(x1, … , xn) .
Consequently, they can be arbitrarily closely approximate any continuous operation of the automaton[60].
Each layer linearly separates feature space derived from the previous layer, thus to obtain at the output
plane of any other order is not possible.
No neural network can ever learn the function f(x) = x*x with 100% accuracy or on the x values from
minus infinity to plus infinity , unless:

• an infinite number of training examples
• an infinite number of units
• an infinite amount of time to converge

3.9 Unsupervised learning
Chapter is based on[85][25]. During unsupervised learning a neural network watching input data, without
advance information about what the output should correspond to those or other events. But since the data
may contain certain patterns. It is possible to take a single-layer, initiate a network of random weights,
when input data, determine the winner neuron and improve its weights. As a result, the neurons
themselves get inputs between a main parameters contained in the input information. That can be used for
clustering data.
For single-layer network can use deltarule. Deltarule very similar to the Hebb's rule, which has a very
simple meaning: the connection of neurons are activated together, should be strengthened, and
communication of neurons, triggered independently, should subside. But Hebb's rule originally
formulated for unsupervised learning and allows neurons to be adjusted by the allocation factors.
For unsupervised learning used Kohonen neural network architectures. Furthermore, Kohonen networks
can be used to reduce the dimensionality of data with minimum data loss.
The structure of the neural network comprises a single layer of neurons (Kohonen layer) without biases.
Input variables are normalized. The number of neurons is equal to the number of clusters. The number of

26

input variables of the neural network is equal to the number of features that characterize the object, and
studies based on its classification occurs to one of the clusters.
It is necessary to distinguish between the actual self-study and self-organizing neural network Kohonen.
In a typical unsupervised network it has a strictly fixed structure. Self-organization has no permanent
structure.
For self-study learning:
1. Choose amount of neurons in the Kohonen layer (K).
2. Random initialization of weighting coefficient values.
In case input data in [-1;1]: �𝑤𝑤𝑖𝑖𝑗𝑗 � ≤

1
√𝑅𝑅

 , in case input data in [0;1]: 0.5 − 1
√𝑅𝑅

≤ 𝑤𝑤𝑖𝑖𝑗𝑗 ≤ 0.5 + 1
√𝑅𝑅

where M - the number of features.
3. Calculation of Euclidean distances from the input vector to the center of the cluster:

𝑅𝑅𝑗𝑗 = ��(𝑥𝑥𝑖𝑖 − 𝑤𝑤𝑖𝑖𝑗𝑗)2
𝑅𝑅

𝑖𝑖=1

4. Selected winner neuron j, the closest to the input vector. For the selected neuron are corrected
weighting coefficients:

𝑤𝑤𝑖𝑖𝑗𝑗
(𝑚𝑚+1) = 𝑤𝑤𝑖𝑖𝑗𝑗

(𝑚𝑚) + 𝜈𝜈 �𝑥𝑥𝑖𝑖 − 𝑤𝑤𝑖𝑖𝑗𝑗
(𝑚𝑚)�

where 𝜈𝜈 - learning rate factor.
It repeated from step 3 till: exhausted predetermined limit number of periods of study, no significant
change occurred in the weighting factors within the specified accuracy over the last epoch of training,
exhausted predetermined limit physical training time.
In the case of a network of self-organizing Kohonen algorithm:
1. Set the critical distance corresponding to the maximum allowable Euclidean distance between the
example inputs and weights of the neuron-winner. The initial structure does not contain neurons. When
applied to the inputs of the network of the first example of a training sample created the first neuron with
weights equal to the given input values.
2. On the new sample input, calculated Euclidean distances from the example to the center of each cluster
and is determined by the neuron-winner with the lowest distance Rmin.
3. If Rmin is smaller than critical distance, made a correction weighting coefficients corresponding to the
neuron-winner, otherwise the structure of the network adds a new neuron weights which are made
numerically equal to the input values set an example.
4. The procedure is repeated with form 2. If during the last epoch of learning any clusters were not
involved, the respective neurons are excluded from the Kohonen network structure.
Another modification of the self-study and self-correction algorithms provide the weighting factors, not
only the neuron-winner, but all the other neurons.

3.10 Overfitting
Training of neural networks is often a serious problem, called overfitting - too big match of the neural
network to a particular set of training examples, and the network loses the ability to generalize.
Overfitting occurs when too long training, the number of training examples insufficient or too complex
neural network structures.
Overfitting due to the fact that the choice of training set is random. On the training set of the neural
network learning takes place. In the test set is related to tested model. These sets should not be crossed.
The difficulty of the algorithm is that we minimize the error is not that actually need to be minimized, we
need to minimize network error on new observations, not on training set.
In other words, we would like to see the neural network has the ability to generalize the result to new
observations.
For a number of steps, the prediction error is reduced on both test and train sets. Further parameters
adjusted to the training set. However, at a certain stage the error on the test set begins to increase, and the
error on the training set continues to decrease. But learning does not take place under the common data
patterns, and only under a particular subset of the training. The accuracy in the test sample falls. This
moment is the end of the real or learning from it and starts retraining. Test and teaching the set should not
overlap.
Overfitting occurs when the neural network has too many parameters to be derived from the available
options, as in the case of high-order polynomial [Figure 3-19]. Graphs polynomials can have different

27

shapes, and the higher the degree of (and thereby the more members included in it), so can be more
complex, this form. If we have some data, we can set a goal to fit them polynomial curve (model) and
thus obtain an explanation for the existing relationship. Data can be noisy, so you can not assume that the
best model is given by a curve that passes exactly through all the points. low-order polynomial may be
insufficiently flexible means

Figure 3-19 11 samples points, blue overfitted model (polynomial degree 10) and black generalized model (polynomial

degree 1).
Noisy (roughly linear) data is fitted to both linear and polynomial functions. Although the polynomial
function is a perfect fit, the linear version can be expected to generalize better. [86]
If the validation error increases(positive slope) while the training error steadily decreases(negative slope)
then a situation of overfitting may have occurred [Figure 3-20].[86]

Figure 3-20 Overfitting in supervised learning (e.g., neural network). Point on the chart, after which the error of the test

set begins to grow, with a decrease in the error in the training data, indicates the beginning of overfitting. [3].
Neural networks generally tend to reconfiguring. The network, which is very suitable for the training
data, are unlikely to summarize the output of non-teaching. There are many ways to retrain the network
restrictions (except for reducing the network), but the most common include averaging over multiple
networks, regularization and use of the method of Bayesian statistics.
There are several ways of controlling the capacity of Neural Networks to prevent overfitting:[71] [86]
[87][88]
In the process of network design, the ability of the network to be overfitted is an important point, after
which the methods of against overfitting are usually used.
To solve the overfitting used methods of regularization, dropout, batch normalization, adding noise[46] to
data and thinning of the neural network.
L1 and L2 regularization
Described in many sources[88][13][24][89]. Regularization of a model, it is a way to impose a fine to the
objective function of the complexity of the model. From a Bayesian point of view - is a way to take into
account some a priori information about the distribution of the model parameters.
Thus, to calculate the total gradient of the objective function is necessary to calculate the gradient
regularization functions:

∂C
∂θi

= η �
∂E
∂θi

+ λ
∂R
∂θi

�

where E - is the main objective function model R regularization function, λ - is the speed of learning and
the regularization parameter, respectively.
regularization function L1 and its derivatives are as follows:

28

https://en.wikipedia.org/wiki/Polynomial
https://en.wikipedia.org/wiki/Neural_network

𝑅𝑅𝐿𝐿1
(𝜃𝜃) = �|𝜃𝜃𝑖𝑖 |

𝑞𝑞

𝑖𝑖=1

∂𝑅𝑅𝐿𝐿1

∂θi
=

θi

�θi
2

= sign(θi)

L2 regularization as follows:

𝑅𝑅𝐿𝐿2
(𝜃𝜃) =

1
2
�θi

2
𝑞𝑞

𝑖𝑖=1

∂𝑅𝑅𝐿𝐿2

∂θi
= θi

Both regularization method fine model of great importance to the balance in the first case, the absolute
values of the weights in the second squares weights, so the distribution of the balance will be closer to
normal with center at zero.
In comparison, final weight vectors from L2 regularization are usually diffuse, small numbers. In
practice, if you are not concerned with explicit feature selection, L2 regularization can be expected to
give superior performance over L1. :[71]
Max norm constraints. Another form of regularization is to enforce an absolute upper bound on the
magnitude of the weight vector for every neuron and use projected gradient descent to enforce the
constraint. In practice, this corresponds to performing the parameter update as normal, and then enforcing
the constraint by clamping the weight vector w���⃗ of every neuron to satisfy ‖w���⃗ ‖2 < c. Typical values
of cc are on orders of 3 or 4. [71]
Dropout
Described in many sources[16] [90]. Training a neural network usually produced by a stochastic gradient
descent, randomly selecting one object from the selection. Dropouts regularization is that when you select
another object changed the structure of the network: each neuron ejected from training with a certain
probability. On each step we get a "new" network architecture [Figure 3-21].
On dropouts as if we average the huge mix of different architectures: it turns out that we each test case
building a new model at each test case we take one model of a giant ensemble and teach one step, then the
next example, we take a different model and teach it to one step, and then to average the output end, all
these models.

Figure 3-21 Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right: An example of a thinned

net produced by applying dropout to the network on the left. Crossed units have been dropped. [16]
 (However, the exponential number of possible sampled networks are not independent because they share
the parameters.) During testing there is no dropout applied, with the interpretation of evaluating an
averaged prediction across the exponentially-sized ensemble of all sub-networks. [71]
In practice: It is not very common to regularize different layers to different amounts (except perhaps the
output layer) It is most common to use a single, global L2 regularization strength that is cross-validated. It

29

is also common to combine this with dropout applied after all layers. The value of p=0.5p=0.5 is a
reasonable default, but this can be tuned on validation data.[71]
Batch normalization
For this chapter I used [59][lectures: Tensorflow and deep learning - without a PhD] [91]. Batch-
normalization is a method of accelerating deep learning, proposed by Ioffe and Szegedy. As the signal
propagates through the network, even normalized at the input, passing through the inner layers, it can be
highly distorted by both expectation and dispersion, which causes discrepancies between the gradients at
different levels. Therefore, it is necessary to use stronger regularizers, thereby slowing down the pace of
training.
Batch-normalization changes the input data in such a way as to obtain a zero expectation and a unit
variance. Normalization is performed before entering each layer. This means that during the training we
normalize batch_size examples, and during testing we normalize the statistics obtained on the basis of the
entire training set, since we can not see the test data in advance.
Calculation of expectancy and variance for a specific batch 𝑏𝑏 = 𝑥𝑥1, … , 𝑥𝑥𝑚𝑚 :

𝜇𝜇𝑏𝑏 =
1
𝑚𝑚
�𝑥𝑥𝑖𝑖

𝑚𝑚

𝑖𝑖=1

𝜎𝜎𝑏𝑏2 =
1
𝑚𝑚
�(𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑏𝑏)2
𝑚𝑚

𝑖𝑖=1

The activation function is converted so that it has zero expectancy and a unit variance on the whole batch:
𝑥𝑥𝑖𝑖� =

𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑏𝑏

�𝜎𝜎𝑏𝑏2 + 𝜖𝜖

Where 𝜖𝜖 > 0 is a parameter that protects from division by 0. Finally, in order to get activation function y,
we need to make sure that during normalization we did not lose the ability to generalize, and since we
applied scaling and shift operations to the original data, we can allow arbitrary scaling and shifting of
normalized values by obtaining the final activation function :

𝑦𝑦𝑖𝑖 = 𝛾𝛾𝑥𝑥𝑖𝑖� + 𝛽𝛽
Where 𝛾𝛾 And 𝛽𝛽 - trainable parameters of batch-normalization. This generalization also means that batch-
normalization can be useful to apply directly to the input data of a neural network.
Batch-normalization, to deep convolutional networks, almost always successfully achieves its goal - to
accelerate learning and prevent overfitting. Moreover, it can be an excellent regularizer, allowing to not
so carefully choose the pace of training, the power of the L_2 -generalizer and dropout (sometimes the
need for them completely disappears). Regularization is obtained because the result of the network
operation for a particular example is no longer deterministic, which simplifies the generalization.

3.11 Convolutional and pooling
For this chapter I used [23][26][71][92][93][94][95]. Convolutional neural network (CNN) is a special
architecture of artificial neural networks, the proposed by Yann LeCun for the effective image
recognition[9], is a part of deep learning technologies. Today, the use of CNN is one of the main methods
for extracting features from the audio, video and text data[19][20][45][47].
The basic idea in convolutional layer is to use a mathematical convolution operation (filter) to sample.
Convolution is a two-dimensional matrix of coefficients.
The advantage of using such filters is: the number of output more if the image element is more like a filter
applied to it. Using the convolution operation helps to get the output image, each pixel of which will
correspond to the degree of similarity on a piece of image filter. In other words, we get the map features.
Sub-sampling (pooling) is used to reduce the overall size image and increase the degree of invariance
applied to it filters. The architecture of CNN feature availability on the image is more important than the
exact knowledge of its coordinates.
The convolutional neural network alternating convolution layers (C-layers), sub-sampling layers (S-
layers) and fully connected feedforvard (F-layers) layer at the output.
This architecture contains three main paradigms:

• Local invariance.
• Shared weight.
• Down Sampling.

30

https://codelabs.developers.google.com/codelabs/cloud-tensorflow-mnist

Local invariance- to the input of a single neuron does not feed the entire image (or the outputs of the
previous layer), but only some of its area.
The concept of shared weights suggests that for a large number of links/synapses used a very small set of
weights [Figure 3-22]. In the process of propagation in the C-layer, each image fragment is multiplied
element-wise matrix on a small scale (core), the result is summed. This sum is a pixel of the output
image, which is called the map features. If we have an 32x32 pixel image, each of the neurons of the next
layer takes only a small entry section of the image size, for example 5x5, each of the fragments to be
processed with one and the same set. Such sets of weights may be many, but each of them will be applied
to the entire image. These sets of weights often called kernels. It is easy to calculate that even 10 neurons
5x5 input image size of 32x32 number of connections will be approximately 256,000, and the number of
adjustable parameters, only 250!
Stride size defining by how much you want to shift your filter at each step. A larger stride size leads to
fewer applications of the filter and a smaller output size.
Such a limitation on the weight of the network improves the properties of generalizations (generalization),
which ultimately has a positive impact on the ability of the network to find the invariants in the image and
respond mainly to them, ignoring other noise.
The number of cores (sets of weights) is determined by the developer and depends on a number of
features to select. Another feature of the convolutional layer is that it can slightly reduces the image due
to edge effects. Adding zero-padding is also called wide convolution, and not using zero-padding would
be a narrow convolution
The essence of subsampling and S-layers is to reduce the image spatial dimension. The most common
way to do subsampling it to apply a max operation to the result of each filter over a window. It provides a
fixed size output matrix, which typically is required for classification.
Alternating layers allows to make maps of the features of maps of the features, which in practice means
the ability to recognize complex features hierarchies.
Typically, after several layers, map features degenerates into a vector or a scalar, but it is becoming
hundreds of such maps of features. Then they are served by few layers of fully connected network. The
output layer of the network may have different activation functions.

Figure 3-22 Scheme of the convolutional neural network for the classification of images [17].

Input to most natural language processing (NLP) tasks are sentences or documents. Like input featurescan
be represented words or characters. In case of characters, convolution will get something like n-grams,
without needing to represent the whole vocabulary.
Typically, words was embedded (low-dimensional representations) like word2vec or GloVe, but they
could also be one-hot vectors that index the word into a vocabulary. Convolutional windows slide over
full input rows. typically window size is 2-5 words.
In picture recognition often used different channels for input RGB (red, green, blue) colors. In NLP
various channels can be word2vec and GloVe for example, or the same sentence represented in different
languages, or phrased in different ways.
Convolutional Neural Network for NLP may look like this [Figure 3-23].

31

Figure 3-23 Example of convolutional Neural Network for NLP. Here are three filter region sizes: 2, 3 and 4, each of
which has 2 filters. Every filter performs convolution on the sentence matrix and generates (variable-length) feature

maps. Then 1-max pooling is performed over each map, i.e., the largest number from each feature map is recorded. Thus
a univariate feature vector is generated from all six maps, and these 6 features are concatenated to form a feature vector

for the penultimate layer. The final softmax layer then receives this feature vector as input and uses it to classify the
sentence; here we assume binary classification and hence depict two possible output states. Source: Zhang, Y., & Wallace,

B. (2015). A Sensitivity Analysis of (and Practitioners’ Guide to) Convolutional Neural Networks for Sentence
Classification[96].

A big argument for CNNs is that they are fast. Very fast. Convolutions are a central part of computer
graphics and implemented on a hardware level on GPUs.
As hyperparameters for convolutional networks for NLP will be:

• Narrow vs. Wide convolution
• Stride Size
• Pooling window
• Word/character-level

3.12 Recurrent, LSTMs and GRUs.
Recurrent Neural Networks [23][24][25] make more intuitive sense. They resemble how we process:
Reading sequentially from left to right[58].
Recurrent Neural Network (RNN), in contrast to the Feedforward Neural Network (FNN), in addition to
the trained set of parameters (weight and biases), uses the calculated values of previous network
conditions.
Examples of the use of recurrent neural networks in the field of text processing in natural language:

• Simulation of vector representations of text information;

32

• Text generation;
• Analysis of the tone;
• Classification of texts.

A simple recurrent neural network is formally described as follows:
h(t) = f(x(t), h(t−1))

y(t) = g(h(t))
where x(t) is the input vector at time t (for example, a vector representation of the current word in the text
fragment); h(t) is the state of the hidden recurrent neuron at a given time; y(t) is the output [Figure 3-24].

Figure 3-24 The scheme of the recurrent neural network.

The equation for calculating the value of the hidden neuron h(t) may vary in different versions, but has
most frequently the form:

h(t) = f(Whx x(t) + Whh h(t−1) + bh)
where Whx , Whh , bh are trained parameters of recurrent neural network; f is nonlinear transformation
(for example, a sigmoid function or the hyperbolic tangent).
The output function of the value y(t) depends on the specific tasks and can be the value of the hidden
neuron. For example, in the classification problem is often used softmax function:

softmax(xi) =
exi

∑ exjj

This practice used fully connected feed forward layer. So,
y(t) = softmax(Whc h(t) + bc)

where y(t) is vector of probabilities of belonging to each of the classes l; Whc and bc are trained
parameters.
For more complex nonlinear transformations using deep neural network from multiple recurrent layers
[Figure 3-25].

Figure 3-25 The scheme of the multiple recurrent neural network.

Depending on the desired result, various modifications of network used: one input to one output network -
simple feed forward network, and some variations of recurrent networks[Figure 3-26].

33

Figure 3-26 Various modifications of recurrent neural network [97].

Another improvement of the recurrent model is bidirectional [27], where the state of the hidden layer
consists of two independent elements that are calculated using the h(t)

forward and h(t)
backward [Figure

3-27]
h(t)

forward = f(Whx
forward x(t) + Whh

forward h(t−1) + bh
forward)

h(t)
backward = f(Whx

backward x(t) + Whh
backward h(t−1) + bh

backward)
y(t) = g(h(t)

forward , h(t)
backward)

Figure 3-27 The scheme of the bidirectional recurrent neural network.

For training recurrent network used the same algorithm backpropagation, as for the feed forward
networks. Let θ(t) is a set of trained model parameters in time t. θ0 initialized with random values of
small value (close to 0). Then, using the gradient descent, we have:

θ(t+1) = θ(t) − α
∂J
∂θ

Ideally, the partial values must take into account the use of the trained network parameters at all time
points up to the entry.
Despite the universality of the model, it has a number of drawbacks. Thus, in determining the key of a
long sentence, the model well, "remembers" Only few last tokens of the input text fragment. At each step,
hidden layer updates and important information at the beginning of the sequence, may be lost. More
advanced models are Gated Recurrent Unit (GRU) and Long Short Term Memory (LSTM).
Gated Recurrent Unit (GRU) and Long Short Term Memory (LSTM)
Recurrent networks described in many sources, for this chapter I used [22][50][98][99][100]. In 1997
Hohrayter Sepp and Jürgen Schmidhuber presented an approach called LSTM (Long Short-Term
Memory). Recurrent Neural Network based on this approach have an improved (and more complex)
method calculate the state of the hidden layer h(t). This method, in addition to input values, and the
previous state of the network uses filters (gates), defining how information is used to calculate the output
values for a current layer y(t). And the values of the hidden layer in the next step h(t+1). Calculation h(t)
is called LSTM layer(LSTM unit) [Figure 3-28].
Along with the network state h, at each step calculated storage unit (memory cell) using the current input
value x(t) and the value of the block in the previous step c(t−1).
Input filter (input gate) i(t) determines whether the value of the memory block in the current step should
influence the result. Filter values range from 0 (completely ignore the input values) to 1, that provided by
a sigmoidal function:

i(t) = σ(Wix(t) + Uih(t−1))
For each hidden layer, it shares a unique weight W (weight between two time slot) and weight U (weight
between hidden layers).
"Filter forgetting» (forget gate) allows to exclude when calculating the value of the previous step
memory:

f (t) = σ(Wfx(t) + Ufh(t−1))
Based on all data received at time t (x(t), h(t−1), c(t−1)), calculated the state storage unit c (t) at the
current step.

34

c�(t) = tahn(Wcx(t) + Uch(t−1))
c(t) = f (t) ∘ c(t−1) + i(t) ∘ c�(t)

Output filter (output gate) is similar to the previous two and looks like:

o(t) = σ(Wox(t) + Uoh(t−1))
The total value LSTM-layer is determined by the output filter and non-linear transformation on the state
of the memory block.

h(t) = o(t) ∘ tahn(c(t))
GRU (Gated Recurrent Unit), based on the same principles as the LSTM, but uses fewer filters and
operations to calculate h(t). Filter update (update gate) z(t). and reset the filter status (reset gate) r(t).
calculated using the following formulas:

z(t) = σ(Wzx(t) + Uzh(t−1))
r(t) = σ(Wrx(t) + Urh(t−1))

The output value of h(t) is computed based on the intermediate value h�(t), that, with the filter of reset
state determines which values from previous step h(t) should be deleted.

h�(t) = tahn(Wx(t) + r(t) ∘ Uh(t−1))
With the update filter and an intermediate value

h(t) = z(t) ∘ h(t−1) + (1 − z(t)) ∘ h�(t)
Similarities and differences between LSTM and GRU-layers (left LSTM, right GRU)

Figure 3-28 Illustration of (a) LSTM and (b) gated recurrent units. (a) i, f and o are the input, forget and output gates,

respectively. c and c˜ denote the memory cell and the new memory cell content. (b) r and z are the reset and update gates,
and h and h˜ are the activation and the candidate activation. [6]

Like other recurrent neural network, LSTM and GRU (especially double and multi-layer) enough
complicated to training. Significantly accelerate learning processes deep neural networks allow graphics
processing units (GPU).
Recurrent Neural Network (as well as variations thereof GRU and LSTM), are quite effective in dealing
with text information analysis tasks.
GRU less redundant, and trains by 20-30% faster than LSTM.

3.13 Additional NN optimization
Ensembles of Neural Networks
One way to improve the accuracy of the models is to provide ensembles of models - sets of models used
to solve the same problem. Training of ensemble mean training a finite set of base classifiers and then
combining the results of their prediction in a single forecast. The combined classifier will give a more
accurate result, especially if:

• each base classifier itself has a good accuracy;
• they lead to different results (wrong on different sets).

Ensembles advantages:
• Statistical. Aggregate classifier "averages" the error of each of the basic classifications, therefore

the impact of accidents on averaged result is significantly reduced.
• Computing. From different points easier to find the global minimum.

35

• Representative. It may also happen that the total result will be located outside of the set of results
base, in this case, the construction of a combined result, extend the set of possible results.

Depending on how the ensemble is constructed, its use allows to solve one of two problems: the basic
tendency of neural network architecture to not fit enough (this problem is solved by boosting), a tendency
to overfitting (this problem is solved by bagging).
There are various universal voting scheme, for which the winner is the class:

• the maximum - with a maximum response of the ensemble members;
• averaging - with the highest average response of the ensemble members;
• The majority - with the largest number of votes of members of the ensemble.

Several possible ways of organizing ensemble of neural networks.
It is possible, to teach another neural network ("Head of the Committee"), the inputs of which will be
predictions of all neural network, and the output will be final output.
Another approach could be the introduction of "specialization" of the concept of experts. For this inputs
previously clustered into several (2-5) groups of similar input patterns.
Among the many ensemble classification methods, consider the most common are:

• begging (bootstrap aggregating)
• boosting

Begging
Bootstrap aggregating -bagging, it is the union of the results at different loadings. In the absence of a
large training sample, it can be created a lot of random samples from the original simple replacement
selection. Although the elements in the samples may be duplicated or overlap. The method is so called
because it combines the results of the predictions of various classifiers trained on random subsets.
Begging is useful only in case of different classifiers and instability when small changes in the initial
sample leads to significant changes in the classification.
Busting
Busting (boosting, improvement) - this procedure is a serial of composition algorithms, where each
following algorithm seeks to compensate for the shortcomings of the composition of previous algorithms.
Busting is a greedy algorithm for constructing algorithms composition. Weighted voting does not increase
the complexity of the algorithm is effective, but only smoothes answers basic algorithms. Efficiency
boosting due to the fact that at least adding basic algorithms increase margins learning objects.
Experiments have shown that sometimes boosting overfitted.

3.14 Vectorization
In my work, I classify the columns of tables. I assume that there is no relations between the cells of the
column and they can be used in any order. Each cell in my work is one example. Since each cell contains
only a few words and possibly special characters [101], I use information in each cell character-by-
character in ASCII encoding. Many ideas of character-by-character processing of text can also be used in
word-by-word processing.
To input samples to the neural network, several problems must be solved.
First, need to convert characters to numbers.
The simplest approach is to compose a dictionary of unique characters, and assign each character to a
number from the dictionary. The disadvantage of this approach is the different "distance" between the
character, for example the character "a", from the point of view of the neural network, can be more
similar to "b" than to "c".
The second option is to encode characters with a vector same long as dictionary, in which the right
symbol corresponds to 1, and all the rest to 0 (one hot vector) [Figure 3-29].

Figure 3-29 One hot vectors, for worlds cat and dog in case of four different animals.

Here all symbols are equidistant. The problem with this approach is in too long vectors of zeros, with a
large dictionary. The simplest way to get the resultant word wind is to add character vectors, such a

36

representation of a word is often called "neural bag of words / chars" [4][44] [Figure 3-30]. With this
addition, words of different lengths yield identical vectors along the length. The advantage of this
algorithm is the extreme simplicity of implementation, but information about the character order is lost.
The results sometimes better than other more complex algorithms.

Figure 3-30 Bag of words approach, for phrase "the dog is on the table".

An interesting idea of the classification of words is suggested [102], the idea is to pre-cluster words into a
number (several dozen) of clusters. Then each word is represented as a vector of distances to the center of
each of the clusters. As a result, each word is encoded by a new vector, each element of which is easily
explained in terms of the degree of relation to the clusters selected for clustering. Each element of such a
vector has a simple and understandable explanation. And such a vector can already be used to feed
another neural network or another method of machine learning to the input.
In the case of vectorization algorithms based on words, rather than individual characters, n-grams can be
used for words. At the same time, a dictionary of all possible n-grams is made up, how much memory is
enough (one letter, two, three, ...). Then any word is represented as a sequence of such n-grams.
The convolutional neural networks work on a similar principle, but instead of the n-grams dictionary,
convolution filters are used. [103]
Reduce the dimension
To reduce the dimension, different algorithms of machine learning can be used, mapping one
multidimensional space to another, and special methods for reducing the dimensionality of data, such as
principal component analysis (PCA), independent component analysis (ICA), non-negative matrix
factorization (NMF or NNMF), singular value decomposition (SVD)[12][104][105][106][107][108]
In this paper, I do not reduce the dimensionality of data, so I will briefly describe only the most popular
of these SVD algorithm.
The idea of SVD is simple - any matrix (real or complex) is represented as a product of three matrices:

𝑋𝑋 = 𝑈𝑈𝑈𝑈𝑉𝑉∗
Where 𝑈𝑈 is a unitary matrix of order m; 𝑈𝑈 is a matrix of size m x n, on the main diagonal of which there
are nonnegative numbers, called singular (the elements outside the main diagonal are equal to zero); 𝑉𝑉∗ is
a Hermitian transpose matrix of order n on 𝑉𝑉. m columns of the matrix 𝑈𝑈 and n columns of the matrix 𝑉𝑉
are called respectively the left and right singular vectors of the matrix 𝑋𝑋. For the problem of reducing the
number of dimensions, it is the matrix 𝑈𝑈 whose elements, raised to the second power, can be interpreted
as the variance that " Component, and in descending order: σ1 ≥ σ2 ≥ ... ≥ σnoise. Therefore, when
choosing the number of components for SVD guided by the sum of the variances given by the
components considered.
The disadvantage of the method is that the singular expansion is rather slow; Therefore, when the
matrices are too large, randomized algorithms are used.
Word embedding
Also, there are methods for vectorizing words based on relationships between words , on large volumes of
texts, to create high-dimensional (50 to 300 dimensional) representations. Word embedding is the
collective name for the set of language models and feature-learning techniques in natural language
processing (NLP) where words or phrases from the vocabulary are mapped to vectors of real numbers
[https://en.wikipedia.org/wiki/ Word_embedding]. Word embedding algorithms divided on two main
ideas Continuous Bag-of-Words model, and a Continuous Skip-gram model [5][18][109][110].
The most famous implementation of the algorithm is word2vec, developed by Google in 2013. In the
Internet you can download already trained word2vec models. To work with the text, the algorithm uses
the sliding window over the text, that includes the central word, currently in focus, together with the four
words and precede it, and the four words that follow it.
Word2vec uses a single hidden layer, fully connected neural network. The neurons in the hidden layer are
all linear neurons.
In continuous bag-of-words model, the context words encoded in one-hot form and sent to the input layer.
The training objective is to maximize the conditional probability of observing the actual output word
(central window word) given the input context words. The skip-gram model is the opposite of the CBOW
model. It is constructed with the focus word as the single input vector, and the target context words are at
the output layer [Figure 3-31].

37

Figure 3-31 Continuous Bag-of-Words model (left) and Continuous Skip-gram model (right). [110]

Additional improvements
Also, as additional improvement can be used stemming and lemmatization. Some sources mention that
phrase can be translated in different languages to increase amount of features. In this case I think that
phonetic algorithms as metaphone can be used to get more features from words [111][112].
As additional information for a neural network, can be used special tokens (gender, number, class, etc.).
Data requirements
The basic requirement for training data, control and test sets should be representative. The statement
"garbage in, garbage out" is well suited for neural networks. If the training data is not representative, then
the model, at least, will not be very good, and in the worst case - useless. The neural network can be
trained only on the data that it has.
The data must be balanced. Algorithms for training neural networks minimize the overall error, the
proportions in which data of various types are presented are important. A network trained on 900 good
and 100 bad examples will distort the result in favor of good observations, since this will allow the
algorithm to reduce the overall error (which is determined mainly by good cases).
The network learns what is easiest to learn. As example, in case the network is designed to classify
photos, cloud weather, or lighting, can become a key factor in network classification, than objects in
photos. In such case, for the network to work correctly, it should be trained on data, where all the weather
conditions and types of lighting which are interesting for feature network problems.
Also the set of local minima of the error function can be a property of the input, rather than the desired
surface and the metric that we optimize. For example, we can take the function 𝑦𝑦 = |𝑥𝑥|.
And train the network to determine whether the point lies above or below this function on x is from -1 to
1 and y is from 0 to 1. As input data we will use the coordinates of points represented in the form of two
numbers x and y. This requires a two-layer network, the first layer of two neurons, the second of one.
Such small network will quickly learn and will fit examples well.
Then we take the same function, but the input data - 16 binary features. The first 8-bit decomposition of
the first coordinate, the second 8 the same for the second. Analytically, the problem is solved similarly to
the previous one, if the weights of the input parameters are additionally multiplied by the powers of two.
But training the network on such data will be much more difficult. Even if that the final task and the
metric are exactly the same.
In the case of the word embedding classification, vectors based on the sense of words are likely to be
easier to accept by the neural network.
Correlation between input samples features can be problem too [lectures: Tensorflow and deep learning -
without a PhD], Neuron network can solve this problem with addition layers, or such correlation can be
removed with batch normalization.
Number of samples
The number of observations for the learning network is determined by heuristic rules which establish the
relationship between the number of observations required and the size of the network. By different
sources the number of observations should be 10 times bigger than network coefficients[31], or just
bigger than network coefficients[113]. In fact, this number depends on the complexity of the display,
which should play a neural network.

38

https://codelabs.developers.google.com/codelabs/cloud-tensorflow-mnist
https://codelabs.developers.google.com/codelabs/cloud-tensorflow-mnist

As the number of features used by the number of observations increases nonlinearly, so that even at a
fairly small number of features, say 50, you may need a huge number of observations. This problem is
called the "curse of dimensionality".

39

4 Examples of neural networks in natural language processing
In most cases, neural networks are used in NLP for various text classifications, such as Sentiment
Analysis, Spam Detection or Topic Categoryization. Both convolutional and recurrent networks are used.
Few recurrent networks examples:

• There are recurrent (LSTM) networks for classifying product reviews on Amazon [32].
• In medicine, recurrent networks are used in concept linking, or linking spans of text to concepts

in a knowledge graph (KG)[33]
• Recurrent nerworks in spoken language understanding [34]
• LSTM Conversational modeling[35]
• Recurrent networks for searching words in continous strings[36]
• Character predictions by recurrent networks[37]
• LSTM Question answering [97]

Convolutional networks examples:
• Sentence classification[38][41][19]
• Modelling sentences [39]
• Text categorization [40]
• Character level text classification[42][43]

40

5 Framework/language
In general, the neural networks are not difficult to program, the main difficulty is very high requirements
for code optimization. After several simple implementations of FFNN neural networks in the C#
programming language, I wondered about the search for a faster neural network frameworks. Currently,
there is a fairly large number of frameworks for working with neural networks. All frameworks are
divided into two main groups [114]:

• Symbolic computation frameworks (CNTK [115], Theano [116], TensorFlow [117], MXNET
[118]) are specified as a symbolic graph of vector operations, such as matrix add / multiply or
convolution.

• Non-symbolic (imperative) neural network frameworks (Torch [119], Caffe [120])
My main requirement for the neural networks framework was using of Nvidia GPU. Nvidia has
implemented a hardware-software parallel computing architecture that significantly improves computing
performance through the use of Compute Unified Device Architecture (CUDA) graphics processors.
Additionally, I wanted to have a framework that can run on Linux and Windows platforms. The
programming language was not fundamental, when choosing a framework.
After reading the overview articles [121] [114], I stopped On the Theano framework, after getting to
know the basic capabilities of the framework, I planned to use a high-level platform based on it -
Lasagne. As an operating system, I tried using Windows 7 home premium, Windows 10 Professional and
linuxmint 18.1cinnamon. Unfortunately installing the framework on each of these systems requires me 1-
2 days. Also, in the process of compiling examples, I found that Theano very long compiles graphs for
working with the GPU, especially in complex models. And as a result, learning models on the CPU is
often faster than compiling and training models on the GPU. Perhaps during the installation, I made some
mistakes.
The next candidate was the Tensorflow framework. Tensorflow like Theano can use the GPU capabilities.
Installing Tensorflow on a computer with Windows 7 home premium took a few minutes. After
compiling and learning a dozen models found on the Internet, I was satisfied with the performance of the
framework. To speed up the development process, I switched to a high-level Keras platform using
Tensorflow as a backend.
For work with neural networks I used the desktop NVIDIA GeForce GTX 670 4GB, Intel Core i7-3770K
3.50GHz, 8x2 GB DDR3-1333 DDR3

41

6 Datasets
As I mention above, the neural network can be trained only on the data that it has. So, I think, choosing
training data is the most important part in working with neural networks. It is impossible to train network
without training data and quality and amount of data will have most significant influence on results of
training.
But collecting data for training the network is too time-consuming task and under this project I used
datasets freely available in the interest and provided to me by the company Avito LOOPS.
Here I show the histograms of length of samples for the data sets used in the final classification. These
histograms are needed to select the maximum length of the samples for trainig the neural network. The
maximum length of samples affects the learning speed, the number of network parameters, the quality of
the classification, and the size of the maximum batch (given by the amount of computer memory). All the
histograms for clarity are made up to 60 chars. Some samples contains more than one word, and in this
case space was additional char in histogram and for neural network.
The datasets available to me:
The Fuse Spreadsheet Corpus (fuse-binaries-dec2014.tar.gz (6.9 GB)) [122], containing 2,127,284
URLs that return spreadsheets (and their HTTP server responses), and 249,376 unique spreadsheets,
contained within a public web archive of over 26.83 billion pages. Dataset contains not sorted
spreadsheets in .xls (Excel 2003) and .xlsx (Excel 2007). The absence of a common data structure led to
the fact that for reading the data I had to use three external applications, C# NPOI, VBA macros, and
python (looks like good solution will be Apache POI), and reading all the spares on the columns took
about 8 hours on my desktop. In the current research I decided not use this dataset, but the next stage of
the work can be the sorting of this dataset with the help of neural networks obtained in this research.
The free and open global address collection (openaddr-collected-global.zip (8.6 GB))) [123], that
contains .csv spreadsheets sorted by countries. Each spreadsheet has information about street names,
house numbers and postal codes, combined with geographic coordinates from all world (LON, LAT,
NUMBER, STREET, UNIT, CITY, DISTRICT, REGION, POSTCODE, ID, HASH). In this research I
used only unique street names, that contains only latin letters, numbers, points, commas, dash and
underscores. From this database I get 6357749 unique street names. After a quick survey of the base, I
realized that the column with the street name is filled most fully, and in the case of Russian (Russian is
my native language, so I easily can review such data) addresses it often contains information about the
street position without a name or about the old and new name of the street. So for me It looks like
database is has some noise. Figure [Figure 6-1] show histogram of street names that can be written in
ASCII samples length.

Figure 6-1 Histogram of ASCII street names samples length.

First, second names and job position titles. I got this datasets from the company Avito LOOPS. After
removing duplicates I got 50193 unique first world names, 195153 unique second world names and
45665 unique job titles. Quick glance through first and second names, shows that some samples classified
incorrect (applied to the Russian language and Russian names) , for example name " Julia" is a female
first name in Russia, but according this dataset it is second name. Job titles contains a lot very similar
samples as "3rd Party/Mtrl Supply Planner Additives" and "3rd Party/Mtrl Supply Planner Base Oils".
Figures [Figure 6-2][Figure 6-3][Figure 6-4] show histogram of names and position titles samples
lengths.

42

Figure 6-2 Histogram of first names samples length.

Figure 6-3 Histogram of second names samples length.

Figure 6-4 Histogram of position titles samples length.

Avito LOOPS provide me dataset with 1007 .csv spreadsheets. Some columns was classified on more
than 20 classes, as date, location, code, activity descriptions,... But, after extracting samples from the
spreadsheets by classes, I got very short lists of samples. So I was able to take only class code, from this
dataset, that contains 518801 samples of equipment codes. Figure [Figure 6-5] show histogram of code
samples length.

Figure 6-5 Histogram of code samples length.

Also In the beginning of this research, I used generated dataset [Figure 6-6] with random dates recorded
in different formats as "9.17", "17-Sep", "17-Sep-96", "September-96", "September 17, 1996", "9.17.96
12:00 AM", "09.17.96 0:00", "17.09.1996",... 14 types of dates. Main advantage of this dataset, that I can
generate as much data as I need (data is limited to listing all possible addresses for a certain period).
Also in the first experiments with neural networks I used not relevant with project datasets:
MNIST database of handwritten digits, has a training set of 60,000 examples, and a test set of 10,000
examples. [124]
Large Movie Review Dataset, dataset for binary sentiment classification containing set of 25,000 highly
polar movie reviews for training, and 25,000 for testing [125]
Sentiment140, tweets dataset, for sentiment analysis. Dataset contain 1.6 million samples polarity of the
tweet (0 = negative, 2 = neutral, 4 = positive), and tweet text. [126]

43

List of videocards 1447 unique videocard names [127]
All samples can be from 2-3 characters to 50 characters.
5.22 5.22.07 05.22.07 22-May 22-May-07 22-May-07 May-07

11.3 11.3.95 11.03.95 3-Nov 3-Nov-95 03-Nov-95 Nov-95

9.17 9.17.96 09.17.96 17-Sep 17-Sep-96 17-Sep-96 Sep-96

8.20 8.20.91 08.20.91 20-Aug 20-Aug-91 20-Aug-91 Aug-91

2.8 2.8.92 02.08.92 8-Feb 8-Feb-92 08-Feb-92 Feb-92

May-07 May 22, 2007 5.22.07 12:00 AM 5.22.07 0:00 5.22.2007 22-May-2007 22.05.2007

November-95 November 3, 1995 11.3.95 12:00 AM 11.3.95 0:00 11.3.1995 3-Nov-1995 03.11.1995

September-96 September 17, 1996 9.17.96 12:00 AM 9.17.96 0:00 9.17.1996 17-Sep-1996 17.09.1996

August-91 August 20, 1991 8.20.91 12:00 AM 8.20.91 0:00 8.20.1991 20-Aug-1991 20.08.1991

February-92 February 8, 1992 2.8.92 12:00 AM 2.8.92 0:00 2.8.1992 8-Feb-1992 08.02.1992
Figure 6-6 Examples of generated dates.

44

7 Design
By design in this research is understood choice of the best model. The choice of the best model went
through the steps, based on the theory, by experimentally selecting the best hyperparameters.
For the implementation my neural networks I used Tensorflow/Keras frameworks. First I made few tests
on GPU (graphics processing unit) and CPU (central processing unit). According this tests GPU give me
better performance in 2-5 times than CPU on my desktop computer, but spend some time on compiling
code in CUDA. All other examples I made on GPU.
Unfortunately, I received/found data for training network in parallel with work on the network. Many
stages of work could be shorter if I had all the data right away.
Data between epochs was shuffled.
Examples not relevant with project problem
Here I want to make short description of examples, that I used to understand neural networks. This
examples are not relevant with my main goal, but used the same approaches.
I assume that MNIST dataset and XOR example in neural networks are something the same as "hello
world" in any programming language, and any newbie in neural networks will start from this examples.
XOR problem is too simple and can be solved with back propagation on paper. But MNIST is already
good example to understand basic neural network behavior. During working with this dataset I was trying
feed forward networks and convolutional networks with dropout and batch normalization methods to
solve overfitting problems. Best score on this models was over 99% accuracy. Examples implemented on
Tensorflow.
As first natural language processing problem, for my neural networks I choose tweets sentiment analysis
[128] This example use word lemmatizer for data preprocessing. Create lexicon based on a random one
out of every 2500 samples. Data vectorized into the bag of words model. Model contain three feed
forward layers. 10 epochs give around 74% accuracy. Example implemented on Tensorflow.
Sequence classification, Large Movie Review Dataset. [129] Dataset contains good or bad movie reviews.
The problem is to determine whether a given movie review has a positive or negative sentiment. Keras
provides access to the IMDB dataset the imdb.load_data() function allows to load the dataset in a format
that is ready for use in neural network and deep learning models. So for this example I did not prepared
data. This example shows word embedding, one dimensional convolutional layers and recurrent layers
(long short term memmory), with best accuracy 86.36%. Example implemented on Tensorflow/Keras.
Also I was tried 33 different examples [130] provided by Keras. Most interesting is "Generates text from
Nietzsche's writings" and almost the same example "Text Generation With LSTM Recurrent Neural
Networks in Python with Keras"[131]. This examples works on character level, Each character
vectorized in one hot vector. Recurrent network (long short term memmory) layers trained to predict next
character.

7.1 Project problem solving overall.
During solving project problem I was working only on classification separate cells because I assume that
there are no relations between cells in one column. To classify columns with such classifier we need to
classify each cell separately, sum scores for all class and choose class with biggest score.
From theory part and examples of problems, that can be solved with neural network, I choose two main
types of networks for this project: recurrent (simple recurrent, long short term memory LSTM, gated
recurrent unit GRU) and one dimensional convolutional networks.
In this project I vectorize all samples on character level, because samples are not to big (it can be only 2-3
characters in one sample, and I do not have sample with length bigger than 50 characters). Samle can has
lowercase latin letters and few special symbols, so all characters vectorized with one hot vectors- each
sample vectorized in matrix with one hot vectors. As next improvement it can be interesting to use n-
grams from samples with embedding algorithms and recurrent networks. But now I use the same vectors
in recurrent and convolutional networks.
Since at the time I started developing the neural network, I had no experience with neural networks, the
development of the final networks was carried out in four steps. The fourth step was the development and
training of the final networks. Each step gave me a deeper understanding of the work of the neural
network and the learning algorithms of the network.
At each step I tried to follow the basic rule: to complicate the network, increasing the number of layers
and neurons in the layer, until the network starts overfitting, then applied the techniques against
overfitting. If the overfitting succeeded to avoid, I continued to complicate the network.

45

But in the process of working with networks, I stopped at the maximum number of trainable parameters
of the network, no more than 300,000, which was an average number of samples, at each step. Also with
large networks, my computer did not do well.
This restriction is the most controversial and complex place in my work, described in more detail at the
end of the second step.
In addition, despite the fact that the main parameter of network quality was the accuracy of classification,
on a test set (an unknown network at the learning stage), it was important to get networks capable of
generalizing information. Smaller networks are more generalized and, perhaps, having received a test set
from another source, smaller networks would do better.
The possibility of classifying an unknown class is discussed in the Analysis chapter.

7.2 First step
First problem was to show that I understood framework and can train neural network on my own data.
On this step I did not try to tune network. On this step I use Adam optimizer with default parameters
(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0 [132])
For the first classification problem I choose binary classification between videocard names (1447 unique
videocard names) and generated dates (2100 dates in 14 different formats, 150 dates in each format- all
types of dates are one class). Network architecture contain one recurrent (LSTM) layer with 10 units and
one output neuron with sigmoid activation function [Figure 7-1]. Loss function is cross entropy, training
algorithm is ADAM. From each sample I used first 40 characters. After one epoch with batch size equal
to 5, I got accuracy on training set 0.9566. In this first example I do not use test set at all, goal of this
example for me was to show that network can be trained on such data.

Figure 7-1 Neural network architecture.

Second classification problem was multiclass classification. During this classification I train network to
classify 14 different formats of generated dates. Such classification is not always possible, because some
dates are the same in different formats, like 17-Sep-96 can be: 9.17.96 and 09.17.96 but 17-Dec-96 will
be 12.17.96 and 12.17.96 - in second sample it is impossible to choose class. As training set I use 1000
samples from all class, and as test set I used 100 samples from all class.
Network architecture contain one recurrent (LSTM) layer with 50 units and 14 output neuron with
sigmoid activation functions [Figure 7-2]. Each output neuron calculate score for each class. Loss
function is categorical cross entropy, training algorithm is ADAM. From each sample I used first 30
characters.
After 15 epoch with batch size equal to 50, I got accuracy on test set 0.8629.

Figure 7-2 Neural network architecture.

Last classification problem in this step was binary classification problem on real data. In this problem I
first time get some real and significant data for the project - classification between first and second
names. To solve this problem I tried six different networks [Figure 7-3]

46

Figure 7-3 Network architectures for binary classification problem on real data.

In all networks convolution window on borders of sample start on the middle of window, that output
same amount of neurons as input.
All networks has the same output layer with one sigmoid neuron.
All networks was trained with the same batch size 600, 15 epochs, loss function is cross entropy, training
algorithm is ADAM. From each sample I used first 40 characters. In this example I assumed that data
already shuffled, and first 200000 examples I used as training set, other 45347 as test set. Next I realized
that it was mistake.
Accuracy on test set for each model after 15: 1: 0.8226, 2: 0.8234, 3: 0.8246, 4: 0.8364, 5: 0.8352 ,6:
0.8353.
Here I understand that some models has better accuracy before 15 epochs, but due to overfitting or
incorrect hyperparameters (for example too high learning rate) accuracy went down.
Also important information, that small networks spend few minutes to train 15 epochs, but big networks
need almost hour on the same amount of epochs. I did not collect time on this examples.

47

Manually looked through the network mistakes I realized that I get about 65% of false positive mistakes
for second names. It can mean that network choose prefer to choose second name class every time when it
is "not sure". Next I checked is this dataset balanced, and I realized that dataset contains 79% of second
names. That means that even if network will chose second name every time with such unbalanced dataset,
it will be 79% accuracy.
Correct accuracy of network 5 with balanced test set was: 0.7005 with 90% of false positive mistakes for
second names.
As result of the first step I realized, that it is possible to train neural network on such data. But, to
continue, I need to solve some problems.
Result problems of the first step:

1. I need to visualize results of each training step, to understand hyperparameters better
2. I need more structured approach to choose hyperparameters
3. I need estimate networks by types (like another hyperparameter)
4. To estimate network power ("size"), I need to check amount of network training parameters, not

amount of neurons
5. Real datasets can be not balanced, test and train set should be balanced
6. Different models need different amount of epochs to training, even with the same training

algorithm. So to choose best models I need train each network on different amount of epochs.
7. Training time is very important parameter. Small network can get lower accuracy, but trained

very fast.
8. It is better to save network parameters/weights after each epoch, In this case if network accuracy

will go down (because of overfitting or incorrect learning parameters) it will be easy to restore
the best model. Restored model can be trained more with another parameters.

7.3 Second step
At this step I used two real datasets: first/second names and job titles, in total three classes. Total amount
of samples was 291011. Also I made my experiments more strict, and I was working with problems from
the first step.
I divided my program on three modules: data preparation, network design and network training.
Data preparation module made vectorization, divided data on training set and test set and balanced data.
Solve problem 5 from previous step.
For balanced data I was trying three approaches:

• Reduce the number of examples in a larger class
• Repeat small class to make it larger (maybe with noise)
• Add class weights in training algorithm, to make smaller classes has more influence on loss

function
According my experience, second approach has a little better convergence but I did not try it a lot,
because duplicates do not change amount of new training samples, but increase time for each epoch of
training. Also second approach need to choose what samples should be repeated, if you want to add only
part of the samples.
On this step I used only class weights to balance data. After data was prepared, all networks was trained
on the same training sets and was tested on the same test sets. Also In this module I check and remove
duplicates (it was only one duplicate in names).
Network design module described different neural networks. Each network design module describe only
one type of networks, that solve problem 3 from previous step. And now I am going from small networks
to big networks (problem 4), that is my first solution for choosing hyperparameters more strictly (problem
2)
Network training module trained networks. This module save training statistics, as: training accuracy
and training loss by batches and by epochs, testing accuracy and testing loss by epochs, training time and
percentiles of neural network weights by epochs[lectures: Tensorflow and deep learning - without a PhD].
Such statistics give more information about changes in neural network on each step of training. Also now
I can stop network on any step if I see that training don't give me correct results, or if I want to change
some training parameters manually.
This module solve problems 1,6,7,8, from previous step.
As tested network types on this step, I choose simple recurrent networks, LSTM, GRU, bidirectional
recurrent networks, convolutional networks with one window size and convolutional networks with
different window sizes. All networks was trained about 30 epochs, or if last 5-7 epochs accuracy on test

48

https://codelabs.developers.google.com/codelabs/cloud-tensorflow-mnist

set was not improved, I stopped training earlier. All models was trained with different training
algorithms: Adam, Nadam (Adam with Nesterow momentum), RMSprop, SGD. Different learning rates,
different momentums, learning rate annealing (with different decay coeffeicients) and gradient clipping in
some models. Total numbers of trainable parameters in different models was from 2000 parameters to 1
640 771 parameters. Normally in this work I was guided by the rule that amount of parameters should be
less than amount of samples (291011). But also I was tied some bigger models. I would like to note from
myself that really important in this rule, in my opinion, is not the number of samples but the total number
of features in data. More precisely, one might say complexity. So if bigger amount of parameters give
beast accuracy on test set (network newer seen this before), it can be better solution, but it can be a lot
minor features that can reduce the quality of the network on data from other sets.
To solve overfitting I used weight regularization, batch normalization, dropout and gaussian noise.
Also on this step I was tried my own learning rate reducer module, that reduce learning rate only if
accuracy lowered. This approach should be studied deeper, because of it can cause training algorithm can
stuck in local minima. In the end, I abandoned this approach and used the standard learning rate decay
implemented in the Keras framework [133].

𝐿𝐿𝑔𝑔𝑖𝑖 = 𝐿𝐿𝑔𝑔𝑖𝑖−1 �
1

1 + 𝑐𝑐𝑖𝑖
�

Where 𝐿𝐿𝑔𝑔𝑖𝑖 and 𝐿𝐿𝑔𝑔𝑖𝑖−1 are learning rate for updates i and i-1, 𝑖𝑖 is number of update weights and c is
annealing coefficient.
It is important to remember that using the learning rate decay imposes restrictions on the learning time, a
high decay quickly reduces the learning rate [Figure 7-4].

Figure 7-4 Learning rate decay by steps, start rate=0.01, decay=0.02.

As activation function improvements, I used sigmoid, ReLU and Leaky ReLU in simple neurons and
recurrent units.
Unfortunately it is impossible to check all possible hyperparameters in the framework of this work. Each
model with new parameters was trained from few hours till day. So I was increasing complexity of
networks, but sometimes several hyperparameters changed at once, and some changes were spontaneous.
Trained models:
LSTM
I started this step with LSTM networks, as most often referred to in articles with natural language
processing problems. On this step I was trying 16 long short term memory models. I started from small
models (about 10 units) and finished with models that contains 400 units LSTM layer and three fully
connected layers. Also I was trying models with two LSTM layers (100 units in each of them) that output
data to three fully connected layers. Biggest model has 749443 trainable parameters.
From the beginning, according my theory part, I choose Nadam as my main training algorithm and
reduced learning rate with increasing model complexity, but with LSTM layers with more than 200 units
it is become necessary to use also gradient clipping. Figure [Figure 7-6] show loss by batches in first
epoch and figure [Figure 7-6] by epochs, with too high learning rate Nadam without gradient clipping
(with such high learning rate network cannot find a minimum, constantly jumping over it).

49

Figure 7-5 Training loss by batches for the first epoch, with too high learning rate for this model.

Figure 7-6 Training and test loss by epochs, with too high learning rate for this model.

Best test set accuracy I get with big model that contain 400 LSTM units in one layer that feed three layer
feed forward fully connected layers 64x32x3 neurons- total amount of trainable parameters 749443, and
accuracy 0.85833. To solve overfitting in this model I used gaussian noise and dropout.
Same model without fully connected layers has 722,803 trainable parameters and get accuracy 0.85033.
But model with 200 LSTM units in one layer has 201,403 trainable parameters and got test accuracy
0.8476 on 12 epoch, ten start overfitttng.
During this test I realized that It is not easy to overfit LSTM models. In small models training and test
accuracy stops on some level [Figure 7-7]. In big models training accuracy continues to grow, but test
accuracy lowered very slow, and methods against ovefritting straighten the line [Figure 7-8].

Figure 7-7 Behavior of one layer 50 LSTM units model with dropout (test accuracy is better, because of dropout)

Figure 7-8 Behavior of one layer 400 LSTM units model with dropout and gaussian noise (test accuracy is better, because

of dropout)
Simple recurrent networks
In this research I used seven simple recurrent networks, with amount of neurons form 50 in one layer
(Trainable params: 5,203), to two recurrent layers network with 300 neurons in each layer, that feed
feedforward layers (Trainable params: 295,331). It was surprise for me, but small network with 50
recurrent neurons and total 5,203 trainable parameters got best test accuracy from such type networks:
0.818. But all other networks got accuracy higher than 0.81. So all simple recurrent networks get almost
the same accuracy from 0.81 to 0.82, and I decide to not use this type of networks.
(in all networks I fought with overfitting if this was necessary)
GRU

50

On this step I used six different gated recurrent unit networks. Because GRU is advanced and simplified
LSTM, I was waiting very similar results and was trying only interesting models from LSTM. Biggest
model has 337,443 trainable parameters, and got 0.848 accuracy on test set.
In general, I want to note the more predictable behavior of the GRU, It is overfitted faster and stronger
[Figure 7-9] [Figure 7-10]. I compared same models with GRU and LSTM models and according my
results GRU is one third faster convergence by time and by amount of epochs. Also GRU unit has
smaller amount of trainable parameters than LSTM unit.

Figure 7-9 GRU model with 200 units, loss behavior (best test accuracy was 0.843)

Figure 7-10 LSTM model with 200 units, loss behavior (best test accuracy was 0.84)

I consider that strong overtraining is an advantage of GRU, on LSTM charts it is not always clear what
happens with the network.
Bidirectional recurrent networks
Here I was trying only two models with 50 bidirectional GRU units (30,453 trainable parameters) and
with 50 bidirectional LSTM units(40,553 trainable parameters). And results should be compared with
same amount of trainable parameters networks.
Bidirectional LSTM got test accuracy 0.8386, 80 one directional LSTM units (42,163 trainable
parameters) got accuracy 0.8357.
Bidirectional GRU got test accuracy 0.8423, 80 one directional GRU units (31,683 trainable parameters)
got accuracy 0.833.
According this examples bidirectional recurrent networks has little better accuracy in comparison with the
same type and same size by parameters one directional networks.
Convolutional networks with one window size
In this examples I was using convolutional and multilayer convolutional networks with window size 3
characters. Smallest network has one convolutional layer with 64 filters, filter length was equal 3, total
trainable parameters: 18,883. Biggest network has two conwolutional layers, that feeds feedforvard fully
connected layers 64x32x3, 106,535 trainable parameters.
Convolutional networks are 2-3 times faster (by time), than recurrent on GPU. But they has bigger
problems with overfitting.
In this examples small network has best test accuracy 0.84, all other networks has accuracy higher than
0.83, but was overfitted.
I did not spend too much time on this type of networks, because multylayer convolutional networks
sounds unreasonable for me with such small samples (30-40 letters), and one layer convolutional network
with one window size should not be better than networks with different window sizes.
But small convolutional network is very good choice to quickly assess data.
Convolutional networks with different window sizes
I used six networks from this type, all networks has the same windows sizes: 2,3,4,5 and four layers feed
forward network in the end. All differences was amount filters, amount of neurons in feed forward
networks and additional improvements as dropout and regularizations.
Here small and big models can has almost the same amount of trainable parameters because of different
pooling lengths. Small model with 16 filters for each size, without pooling has 109,267 trainable
parameters, big model with 128 filters for each size and pooling length 2 has 1 640 771 trainable

51

parameters. Best accuracy on this models was 0,855. Same128 filters for each size and pooling length 16
has 264,515 trainable parameters. Best accuracy on this models was 0.8483.
Model with 1 640 771 trainable parameters has size 18.8 Mb, total data size 3.34 Mb, this result is more
like overfitted model for this data set and maybe on another datasets such network will have lover
accuracy.
Convolutional networks can be easily overfitted after only one epoch and overfitting become biggest
problem. Even if it is possible to solve overfitting, model still can not increase accuracy [Figure
7-11][Figure 7-12].

Figure 7-11 Model (1 640 771 trainable parameters) accuracy, solid lines for overfitted model (best accuracy 0.842 after

two epochs), dashed lines for model with dropout (best accuracy 0,855 after 14 epochs)

Figure 7-12 Model (1 640 771 trainable parameters) loss, solid lines for overfitted model (best accuracy 0.842 after two

epochs), dashed lines for model with dropout (best accuracy 0,855 after 14 epochs)
Convolutional networks with different window sizes gave me best accuracy on this step.
Training estimation
The main problem of this step was to appear, what happens to the network after each batch and epoch.
Without such an understanding, it is difficult to achieve good results. To understand changes in the
network, I used graphics training loss by batches, training loss and accuracy by epochs, test loss and
accuracy by epochs [Figure 7-13].

52

Figure 7-13 Grafical training representation.

Training loss by batches can help to quickly understand if the learning rate is too large, without waiting
for the end of several eras. The behavior of the loss and accuracy can also talk about too much speed of
training, and also about the overfitting, or can signal that the training has stopped at some minima. Ending
of changes in accuracy and loss can also indicate that the training speed is reduced to almost zero, thanks
to annealing, and it is possible to reduce the annealing rate.
Loss and accuracy are not equivalent and are built according to different equations, and although the goal
of the learning function is to reduce the loss function, the network requirement is high accuracy on the
test data.
Another way to visualize network learning is to plot the percentile scales for each layer [Figure 7-14]. For
the first time I saw this technique in lectures [lectures: Tensorflow and deep learning - without a PhD]. In
Tensorflow, Tensorboard was developed for such visualization, but at this stage I was unable to use this
compiler in my work because of an error in source codes. Tensorboard used too much memory. Later
with the help of the community I corrected the error in Tensorboard and used its visualization. To
visualize the learning at this step, I used my weight percentile graphs in each layer.

Figure 7-14 My own percentiles chart.

53

https://codelabs.developers.google.com/codelabs/cloud-tensorflow-mnist

To see the quality of classification by classes I used false positive and false negative errors charts[Figure
7-15].

Figure 7-15 False positive and false negative errors for 5 classes, on test set visualization by epochs.

Second step results
As result of second step I choose few hiperparameters:

1. Three types of Networks that I will use in the feature work: GRU, bidirectional GRU and
convolutional networks with different window sizes.

2. Batch size 500-1000
3. Adam as training algorithm
4. Keras learning rate decay
5. Simple ReLU in hidden layers
6. Important notes:
7. Complicated models should be trained with smaller learning rate
8. Gradient clipping can help if learning rate selected not correctly

From my point of view, although models with a number of parameters significantly exceeding the dataset,
give the best results on the test sample (data that the network has never seen), however this result is more
like overfitted model for this data set and maybe on another datasets such network will have lover
accuracy. Unfortunately I did not found answer on this question, there are several studies devoted to the
search for the optimal number of network parameters, but no one gives an exact answer [28][29][30]. A
small number of weights increases the generalizing capacity of the network and lowers the accuracy[31].
In connection with the advice of the forums, the limitations of my computer and the data requirements, I
decided not to exceed the number of parameters higher than the number of training examples.

7.4 Third step
In the previous step, the main attention was paid to the choice of the network, in this step attention is paid
to the training of the selected networks. The purpose of this step is a deeper understanding of network
behavior and achieving maximum accuracy. Great progress in understanding the network was the ability
to use the tensorboard to visualize the histograms and percentile weights in each layer, after fixing the
error in the source code for TensorFlow. I also added false positive and false negative errors to the
learning log.
At this step I used same datasets: first/second names and job titles, in total three classes. Total amount of
samples was 291011. So I tried to avoid networks with a number of parameters over 300,000. The data
preparation module has been changed in this step and now only prepares the data for the network.
Decisions about data balancing and data sharing on the test and training set are taken by the network
design module - this makes it easier to send new data to the network.
In the previous step, I worked with samples of 50 characters length, in this step I used samples of 30
characters in length. This transition is due to the long of most work positions (the short position of the
CEO is recognized by the neural network as the first name). On the contrary, the names do not exceed this
length. Unfortunately, in this case, I got work positions duplicates: "3rd Party Logistics Coordinator",
"3rd Party Logistics Coordinator Ukraine", "3rd Party Logistics Coordinator-Indonesi" - become the
same.
As a result of changing the length of samples decreases the amount of trainable parameters in the same
architecture networks and reduce accuracy.
A quick check by the convolutional network showed, that for samples with a length of 30 characters,
network of similar architecture (but with fewer trainable parameters 176 963) reached an accuracy of
0.8452 at the 46th epoch, after which it began to be slightly overfited. The same network with 50

54

characters samples (264.515 trainable parameters) reached an accuracy of 0.8483 at the 18th epoch
[Figure 7-16]. Direct comparison of accuracy between this and previous step is not correct.

Figure 7-16 Test accuracy on the same architecture network with length of samples 30 and 50.

In addition, at this step, for balancing, I use an incremental coefficient for the first name class, and I do
not increase the importance of the job titles class. As it seemed to me from the past experience, a big
difference between job titles and names prevents the network from seeing the difference between first and
second names, and with a complete balancing of the dataset, a network with a small number of parameters
the first few epochs can not distinguish names.
This is the last step in the design of the network and at this stage it was desirable to get the maximum
quality of classification on the data, due to the capabilities of the network itself, and not at the expense of
long examples.
At this step, I worked only with GRU, bidirectional GRU and convolutional networks with different
window sizes.
GRU
In this step, I tried 32 GRU network models ranging from small networks and gradually increasing the
complexity of the network. If necessary, I added methods of combating retraining. Here I will show only
the most interesting networks from my point of view. During the creation of networks, tensorboard was
actively used. To complicate the GRU model, you can add the number of layers, the number of neurons in
the layer and adding feedforward networks of different complexity to the end of the network.
Increase in the number of layers. To estimate main influence of increasing amount of layers I was
working with 9 simple networks. On this step I did not used any algorithms against overfitting, and
training algorithm was Adam with default parameters (lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-
08, decay=0.0 [132]).
All models with best accuracy described on figures [Figure 7-17][Figure 7-18][Figure 7-19].

Figure 7-17 Architectures of GRU models with different amount of layers with best accuracy, the architecture of the

models is briefly described in the title with the total number of parameters, the number of units/neurons is indicated in
parentheses.

55

Figure 7-18 Architectures of GRU models with different amount of layers with best accuracy, the architecture of the

models is briefly described in the title with the total number of parameters, the number of units/neurons is indicated in
parentheses.

56

Figure 7-19 Architectures of GRU models with different amount of layers with best accuracy, the architecture of the

models is briefly described in the title with the total number of parameters, the number of units/neurons is indicated in
parentheses.

The accuracy of training models by epochs are shown in the graph [Figure 7-20].The noise on the graphs
probably indicates the speed of training is too high, but the overall impact of the network architectures is.

Figure 7-20 Models test accuracy by epochs.

As can be seen from the results of model training, the smallest model has an error of 0.6608, for 10
epochs, after checking for errors in classes I was convinced that this model could not learn to distinguish
between first and second names even with not complete balancing.
It's also interesting to note that bidirectional networks charts has smaller noise and high learning rate not
big problem for them.
The main trend is confirmed on the accuracy charts[Figure 7-20]: an increase in the number of parameters
leads to an increase in accuracy. But we also see the influence of architecture, so the network
"GRU10x3_ff_params: 6,153" with a large number of parameters, in general, loses in classification to
"GRU10x1_bi_dir_params: 4,053".
The second conclusion is: increasng number of recurrent layers more than 2-3 does not give a perceptible
gain in the quality of the network. Second layer in bidirectional network did not give me better
performance because of owerfitting.

57

The third conclusion, for such small recurrent networks, the feed forward network 64x32x3 gives a slight
increase in the quality of classification, with a significant increase in the number of parameters.
Increase in the number of neurons.
Another approach to increase neural network complexity is to increase number of neurons in layers. To
estimate main influence of amount neurons, I was working with 7 simple networks. On this step I did not
used any algorithms against overfitting, and training algorithm was Adam with default parameters
(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0 [132]).
For this experiments I used first model architecture from figure[Figure 7-17] with different amount of
URU units.
Best accuracy for models by units GRU10: 0.662, GRU20: 0.66, GRU30: 0.8165, GRU40: 0.8378,
GRU60: 0.8412, GRU80: 0.8442, GRU100: 0.837. Figure [Figure 7-21] show models test accuracy by
epochs. As we see 20 gated recurrent units in one layer with 4,683 trainable parameters can not get
difference between first and second names too. Even 60 gated recurrent units has problems with a
division of names, first three epochs. 100 gated recurrent units got difference between names even after
first epoch.
Also I tested 80 and 100 gated recurrent units on data without balancing and 80 units solve names
difference only after 4 epochs, 100 units in this case did not get difference between names in first epoch.
So maybe 20 units with better balancing can get better score.

Figure 7-21 Models test accuracy by epochs.

So one layer model with 20 neurons and 4,683 trainable parameters got accuracy 0.66 and can not divide
names classes, but two layers network with same 20 neurons with 2,673 trainable parameters got accuracy
0.8288. Difference between amount of trainable parameters, because of input and output layers has
double difference in amount of synapses.
As result of numbers of layers and numbers of neurons testing I saw that GRU behaves very much like
conventional feed forward networks and amount of layers can be much more important (like with HEX
problem in theory part) than amount of neurons, but in case complexity of my problem two layers are
enough.
From first two examples I choose two layers GRU with feed forward layers (GRU10x2_ff) [Figure 7-18]
and two layers bidirectional network with feed forward layers (GRU10x2_bi_dir_ff) [Figure 7-19]
[Figure 7-20] to improve them.
One directional GRU
On this stage I choose two layers GRU with feed forward layers and trying to get best accuracy from this
network, remaining with the maximum number of trainable parameters below 300,000. During this work I
was trying 20 different networks with different solutions against overfitting and gradually reducing start
learning rate from 0.01 to 0.0002 (Adam with annealing) with networks grows. Best network from this
type got accuracy 0.8525 after 319 epochs. First and last networks shown on figure [Figure 7-22]

58

Figure 7-22 Started network and last network of this type. Dropout in GRU for all weights.

The process of network growth can be observed on eight networks whose accuracy graphs are
shown[Figure 7-23].
Development process:

1. Picked up the selected network with started learning rate 0.01 (GRU10x2)
2. Increased the number of parameters and got overfitting (GRU40x2)
3. Solve overfitting (GRU40x2)
4. Increase amount of parameters without methods against overfitting and got overfitting

(GRU60x2)
5. Solve overfitting (GRU60x2)
6. Increase amount of parameters with previous methods against overfitting and got overfitting

(GRU90x2)
7. Increase amount of parameters with previous methods against overfitting and reduced started

learning rate to 0.001 (GRU120x2)
8. Increase amount of parameters with previous methods against overfitting and reduced started

learning rate to 0.0002 wits same decay =0.0002 (GRU150x2)
Here I did not explain solutions for overfitting on each step, because I was trying different methods, my
last solution shown on figure [Figure 7-22]

59

Figure 7-23 Test accuracy charts, with model improvement. Dashed chars explain models without methods against

overfitting.
Last model was trained 324 epochs, that spend 8 hours and got best accuracy 0.852533 on 319 epoch,
whole test accuracy chart[Figure 7-24].

Figure 7-24 Best model test accuracy.

During this step I was using weights histograms, histograms give a lot of information about what is
happening on the network. In my opinion most interesting histograms are output from recurrent network -
that show GRU behavior and weights for first layer of feedforward network- that show (as I interpret it)
feed forward response to recurrent part output.
Tensorboard screenshots histograms for same 8 models and my brief interpretation are shown [Figure
7-25][Figure 7-26][Figure 7-27][Figure 7-28][Figure 7-29][Figure 7-30][Figure 7-31] (histograms saved
by time). Unfortunately I have not seen any description of how such graphics are interpreted by other
developers of networks and the interpretation offered here is purely my opinion. Also all the work with
the charts is only visual, I did not evaluate skewness or kurtosis or any other properties mathematically.

60

Figure 7-25 Model 2, GRU 40 units, 2 layers + FFNN 64x32x3 neurons by layer, without algorithms against overfitting.

Histogram of output from recurrent layers (left); histogram of weights from first FFNN layer.
According figure [Figure 7-23] this model was overfitterd. GRU output distriduted mostly near -1,1 and
0, as we know GRU output is Hyperbolic tangent function, bounded from -1 to 1. Such behavior of output
in my opinion means that each neuron has chosen interesting features from samples for itself and
responds to them with a 1, on the remaining -1 or zero. I want the entire network to work.
Histogram of weights from first FFNN layer looks like slightly changed normal distribution. Weights
were initially initialized by a normal distribution and if weights still looks same, that mean that this layer
almost nothing learned.

Figure 7-26 Model 3, GRU 40 units, 2 layers + FFNN 64x32x3 neurons by layer, with algorithms against overfitting.

Histogram of output from recurrent layers (left); histogram of weights from first FFNN layer.
Overfitting solved [Figure 7-23], GRU output looks for me that network has potential to be trained more,
I stopped too earlier.
Weights from first FFNN layer looks more like uniform between -0.2 and 0.2 with mean value near zero,
that is looks good.

61

Figure 7-27 Model 4, GRU 60 units, 2 layers + FFNN 64x32x3 neurons by layer, without algorithms against overfitting.

Histogram of output from recurrent layers (left); histogram of weights from first FFNN layer.
According figure [Figure 7-23] this model was overfitterd. Here we have exactly the same behaviour like
model 2 [Figure 7-25], but overfitting is stronger and GRU output is more divided between -1 and 1.
Histogram of weights from first FFNN layer looks like correct normal distribution.

Figure 7-28 Model 5, GRU 60 units, 2 layers + FFNN 64x32x16x3 neurons by layer, with algorithms against overfitting.

Histogram of output from recurrent layers (left); histogram of weights from first FFNN layer.
Overfitting solved [Figure 7-23], same as model 3, according GRU output network can be trained more.
Weights from first FFNN layer looks even better and approach the uniform distribution, this layer works
good.

Figure 7-29 Model 6, GRU 90 units, 2 layers + FFNN 64x32x16x3 neurons by layer, with algorithms against overfitting.

Histogram of output from recurrent layers (left); histogram of weights from first FFNN layer.
According figure[Figure 7-23], model looks like overfitted but histograms looks like for models 3 and 5,
approaching the uniform distribution. For me it is can be because of to high learning rate, that is seen on
figure[Figure 7-23] with too high accuracy changes.

62

Figure 7-30 Model 7, GRU 120 units, 2 layers + FFNN 64x32x16x3 neurons by layer, with algorithms against overfitting.

Histogram of output from recurrent layers (left); histogram of weights from first FFNN layer.
Model did not overfitted by accuracy chars[Figure 7-23], GRU output but it starts looks like overfitted
models 2 and 4. I think that it happened because recurrent part of model already starts fit data, but FFNN
with high dropout 0.3 still studying. Weights from first FFNN layer looks like layer learned something
but not much. An interesting observation is that the FFNN weights at the beginning of the training had a
distribution closer to uniform and in the learning process they return to the starting normal distribution -
in my opinion that means that in the early stages of learning, fast ReLU functions from the feedforward
layer took on the entire complexity of the task, but later the slower hyperbolic tangent and sigmoid
functions from GRU were sufficiently trained that the first from the feedforward layer was not needed.

Figure 7-31 Model 8, GRU 150 units, 2 layers + FFNN 64x32x16x3 neurons by layer, with algorithms against overfitting.

Histogram of output from recurrent layers (left); histogram of weights from first FFNN layer.
Model did not overfitted by accuracy chars[Figure 7-23]. Such high amount of recurrent units very much
divided the features from samples, among themselves, output contains almost only -1, 0 and 1 and in my
opinion, rather loose statement would be, it is first step to begins to approach to one hot input vectors.
GRU layers become a property encoder. I think that zero output neurons are not good in this case, such
neurons does not working with some samples.
I think that this network continues to learn thanks to feedforward part. That is the reason why I stopped
on this network. Even if it has best accuracy on test set, I think that it can be not the best solution on
another data.
Best histogram shape for GRU output, in my opinion, will be two maximums, at -1 and 1, such shape will
correspond to a neuron with binary step activation function, such behavior is expected from sigmoidal
functions.
Best shape for the histogram of weights from first FFNN layer, in my opinion will be uniform distributed
weights near zero, or normal distribution with higher variance, than after initialization.

63

Bidirectional GRU
On this stage I choose two layers bidirectional GRU with feed forward layers and trying to get best
accuracy from this network, remaining with the maximum number of trainable parameters below
300,000. I was trying 10 different networks, since bidirectional networks require more time for training, I
stopped on network with 150,819 trainable parameters, that got 0.8474 accuracy on 51 epoch. For this
network, I was guided by the rules developed earlier.
First and last networks shown on figure [Figure 7-32]

Figure 7-32 Started network and last network of this type. Dropout in GRU for all weights.

Last model was trained 62 epochs, that spend 8 hours and got best accuracy 0. 8474 on 51 epoch, whole
test accuracy chart [Figure 7-33] and weights histograms [Figure 7-34]. According accuracy chart, model
stopped in training without overfitting.

Figure 7-33 Best model test accuracy.

64

Figure 7-34 Bidirectional model GRU 80 units, 2 layers + FFNN 64x32x3 neurons by layer, with algorithms against
overfitting. Histogram of merged output from recurrent layers (left); histogram of weights from first FFNN layer.

Model did not overfitted [Figure 7-33], GRU merged output from -2 to 2 is histogram of the sum and the
distribution of each of the branches of the network can be very different, sum of uniform distributions
should looks like triangle distribution, so, currently I assume that output from all brunches are more like
uniform.
For me histograms looks good enough.
Convolutional network
Here I estimate convolutional network with feed forward layers and trying to get best accuracy from this
network, remaining with the maximum number of trainable parameters below 300,000. I was trying 10
different convolutional networks, I stopped on network with 176,963 trainable parameters, that got 0.8427
accuracy on 61 epoch. For this network, I was guided by the rules developed earlier.
Here I will show two most interesting networks[Figure 7-35].

65

Figure 7-35 Two most interesting convolutional networks, with accuracy on test set.

Even if both networks has similar best test accuracy, the number of parameters differs almost twice. The
change in accuracy on the test data, in the learning process can be observed on the charts[Figure
7-36][Figure 7-37][Figure 7-38]. This is the first time in my work when a stronger model was trained
slower, with the same training algorithm. It's also interesting that usually networks made a big jump in
accuracy when they understood the difference between names. A convolutional network is much simpler
than a recurrent and such a smooth accuracy growth, apparently due to the gradual finding of significant
n-gramms.
Also first small network was owerfitted, but bigger network continue training.
According my experience big pooling window also prevent overfittng in comparison with model with the
same amount of parameters, which sounds plausible, given that max pooling simply discards minor
symptoms.

Figure 7-36 Convolutional models test accuracy.

66

Figure 7-37 Convolutional model 64 filters for each sizes [2, 3, 4, 5] with pooling window 2 and FFNN 16x16x8x3 neurons
by layer, with algorithms against overfitting. Histogram of merged output from convolutional layers (left); histogram of

weights from first FFNN layer.
This network was overfitted [Figure 7-36]. Merged unbounded ReLU output histogram looks not
interesting. Because small amount of neurons histogram of weights looks angular, but normal distributed-
that is bad sign, this layer did not trained a lot.

Figure 7-38 Convolutional model 128 filters for each sizes [2, 3, 4, 5] with pooling window 16 and FFNN 128x64x32x3
neurons by layer, with algorithms against overfitting. Histogram of merged output from convolutional layers (left);

histogram of weights from first FFNN layer.
This network was not overfitted [Figure 7-36] and continued to trained. Merged unbounded ReLU output
histogram has such additional angle in comparison with precious network because of dropout. Histogram
of weights has not normal.
Additional improvements
First and simplest improvement of all networks, that I was trying to continue to train already trained
networks with other training algorithms. I found that for these purposes, the simpler learning algorithms
are well suited as SGD and RMSprop without any momentum. But continue of training my best recurrent
network give me only 8 additional correct classified samples from test set that contain 15 000 samples.
Second idea to get better score is to made quorum of networks, and simple sum scores for each class from
all networks. On this step I already has a lot of different networks, saved on different epochs, so to obtain
a general classification, it was only necessary to classify the text data by different networks. In the first
try I choose two best GRU networks, two best bidirectional GRU networks and three convolutional
networks. This quorum gave me 0.8559 test accuracy on same test set with sample size 30 characters.
Previous winner was two layers recurrent network (with biggest amount of parameters from described
here networks: 258,923) with accuracy 0.8525.
The next attempt was to use the same network at different stages of training, to create a quorum, but in
this case, on my examples I got the accuracy value close to the average between these networks
Development results:

67

Even the simplest network distinguishes work positions from names, and gets accuracy above 66%. On
these data with the length of an example of 30 characters and networks of up to 300,000 parameters, it's
not a problem to get accuracy of up to 84% on a simple non-optimized network, to get accuracy of up to
85%, you will need to work on optimization, to get accuracy over 85% Networks and many days of
training these networks.
Also I want to mention that convolutional network has the best accuracy on samples with length 50
characters, but on the samples with 30 characters the winner was GRU network.
Based on the results of these 3 steps, I developed my own graph of the choice of the optimal network
architecture, achieved some understanding of the internal operation of the network and the influence of
some methods of dealing with overfitting on the result of the network state.
In the implementation of the final network I will use two layers GRU networks, bidirectional two layers
GRU networks and convolutional networks.
Since the main difficulty was the separation of classes of names, I tried to train two networks, the first is
trained on a class containing all the names, and the second only divides the names into two classes. But
this approach did not give me any improvement in the quality of the classification and because of the
complexity of implementation I declined it.

68

8 Implementation
For the replicability complete code of last solution (some interim solutions are not preserved) are
available at: Appendix 1, run description.
The final implementation of the neural network is done in python, using tensorflow / keras frameworks.
All visualization is done using the matplotlib library. Additional in the final implementation used libraries
numpy and pickle. As a development environment, PyCharm was used.
Actually, the implication of a neural network is not a difficult task, even without using frameworks. And
modern frameworks allow creating a simple neural network in a few lines of code. This work has
developed an iterative and explicit separation between the design of the network and the implementation
does not exist. By now I've tried more than a hundred models (considering different hyperparameters,
architectures, learning algorithms, ...), each model was implemented. In this section, I will describe only
the latest versions of the received networks.
Since the final goal of the work was a rich text type classification, rather than parsing spreadsheets, my
experience in parsing is not part of the implementation section. In my experience above, parsing
spreadsheets is better using Apache POI and Java.
Also, the entire classification is carried out at the level of individual cells in tables, not columns, which
simplifies the work with data at the level of the neural network, allows you to classify columns of
different lengths without additional costs and adds the additional ability to determine a column containing
an unknown class.
The final network was trained at 5 сlasses of 300,000 samples from classes containing more samples.
Used classes: First names, second names, codes, streets and job position titles. The maximum length of
the example was 40 characters. Only classes of names were balanced.
In this paper, I do not use stemming and lemmatization because my examples mostly contain unique
names and codes, besides a small noise in the data, for a neural network can be a plus. One of the main
advantages of neural networks, in my opinion, is the ability to choose the most significant features from
examples.
In some works, convolutional and recurrent networks are used sequentially. In my work, such a network
architecture will not give any advantage, because the samples are too short.
Also, in this work for the test set, I took 5000 examples from each class to get a balanced test set. 5000
examples from the smallest class- unique job titles (45665 samples), is about 11%. In the process of
working on this project, I did not meet a clear rule on the choice of the size of the training and test set,
moreover, according to the law of large numbers [https://en.wikipedia.org/wiki/Law_of_large_numbers],
I assume that for large data sets, the relative amount of test data can be reduced.
Cross-validation in neural networks is not used often, because of the huge computational costs. For each
new sample, I will have to train the network again. In addition, during the training of the network, I
changed some parameters, that is, the learning is not fully automated and even if all the random values
used in the network (initialization of weights, dropout), are repeated exactly, each trained network
becomes unique even with the same architecture.
In the development of networks, I chose networks with a size of up to 300,000 parameters, as the
maximum number of examples in the class. But in my experience, the increase in the quality of
classification by a neural network is increasing in leaps, an increase in the number of parameters depends
more on the architecture of the network. So if I did not see improvements in the quality of classification, I
did not increase the number of parameters, trying to keep the network as simple as possible.
In my experiments, the size of the batch varied from 100 to 1000 examples (too large batches require a lot
of memory, so more than 1000 sometimes create an error). I obtained optimal results on a 500-sample
batch.
The final learning algorithm was the Adam, with different learning rates and in the latest version, I myself
change the learning rate, not using the standard methods of the framework (in which case I better
understand the implementation).
In the process of training neural networks, I was guided by obtaining the highest quality of the test set
classification. Therefore, the accuracy chart of the test set was the main factor. If in the last 5-10 epochs
there was no improvement in the accuracy of the classification of the test set, I stopped training and tried
to continue learning from the best point. To do this, I often took simpler learning algorithms, such as SGD
with a low learning rate, but sometimes increased the learning rate, if the spasm did not seem high enough
to me, or to accidentally get into another local minimum of the loss function.
Learning rate and annealing were selected in such a way that a small noise could be seen on the accuracy
charts.

69

Since the project is only one module for classifying text data, no graphical interface or even an
application programming interface was not supposed at this stage. At the moment, for classification, you
need to have sample files, a trained network and run a script in the python.
Last implementation contains three modules: vectorization module, models description module, training
module.
Vectorization module
The vectorization module loads text data and stores vectors ready for neural networks. In total, four
folders are created with examples of length: 20, 30, 40, 50.
For the vectorization of all examples, first select unique characters, in my case, only 60 characters, of
which a dictionary is made. Then each character of the example is encoded in one-hot vector with one
corresponding to the position of the symbol in the dictionary. To save the finished ones, I used the library
pickle. Most important part of vectorization module are shown in listing [Listing 8-1]
def vectors(class_, mlen):
 samplesamount = len(class_[1])
 cx1 = np.zeros((samplesamount, mlen, len(chars)), dtype=np.bool)
 for w, word in enumerate(class_[1]):
 fullword1 = word
 for c, char in enumerate(fullword1[:mlen]):
 cx1[w, c, char_indices[char]] = 1
 return cx1

maxlen=[20,30,40,50]
for mlen in maxlen:
 print(str(mlen))
 dataFolder = 'Prepared_vectors_'+str(mlen)+'/'
 os.makedirs(dataFolder)

 for class_ in classes:
 vector=vectors(class_,mlen)
 with open(dataFolder+class_[0]+'.pickle', 'wb') as f:
 pickle.dump(vector, f)

 with open(dataFolder+'chars.pickle', 'wb') as f:
 pickle.dump(chars, f)
 with open(dataFolder+'indices_char.pickle', 'wb') as f:
 pickle.dump(indices_char, f)

Listing 8-1 Main part of vectorization module.
Models description module
Model describes the models, selects training algorithms, divides the vectorized data into test and training
sets and sends it all to the training module. Here I did not describe the trivial parts of the program, such as
downloading files and splitting files into parts.
Models used in last classification described on figures[Figure 8-1][Figure 8-2].

Figure 8-1 GRU and convolutional models, with accuracy on test set. The number of neurons/units is indicated in

parentheses.

70

Figure 8-2 GRU and convolutional models, with accuracy on test set. The number of neurons/units is indicated in

parentheses.
In all code listings I left only the basic terms.
All networks started with code [Listing 8-2]:
from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.layers import GRU
from keras.optimizers import RMSprop, Nadam, Adam, SGD
from keras.layers.convolutional import Convolution1D
from keras.layers.convolutional import MaxPooling1D
from keras.layers.core import Flatten
from keras.layers.normalization import BatchNormalization
from keras.layers import Merge , Dropout

Listing 8-2 Code header
Next listings described last four models[Listing 8-3][Listing 8-4][Listing 8-5][Listing 8-6]:
model = Sequential()
model.add(BatchNormalization(input_shape=(maxlen, len(chars))))
model.add(GRU(120, dropout_W=0.2, dropout_U=0.2, return_sequences=True))
model.add(GRU(120, dropout_W=0.2, dropout_U=0.2))
model.add(BatchNormalization())
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.3))
model.add(BatchNormalization())
model.add(Dense(32, activation='relu'))
model.add(Dropout(0.3))
model.add(BatchNormalization())
model.add(Dense(classnum, activation='sigmoid'))

Listing 8-3 Model 1) GRU120x2_ff
model = Sequential()
left = Sequential()
left.add(BatchNormalization(input_shape=(maxlen, len(chars))))
left.add(GRU(80, dropout_W=0.2, dropout_U=0.2, return_sequences=True))
left.add(GRU(80, dropout_W=0.2, dropout_U=0.2))
right = Sequential()
right.add(BatchNormalization(input_shape=(maxlen, len(chars))))
right.add(GRU(80, dropout_W=0.2, dropout_U=0.2, return_sequences=True, go_backwards=True))
right.add(GRU(80, dropout_W=0.2, dropout_U=0.2))
model.add(Merge([left, right], mode='sum'))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.3))
model.add(BatchNormalization())
model.add(Dense(32, activation='relu'))
model.add(Dropout(0.3))
model.add(BatchNormalization())
model.add(Dense(classnum, activation='sigmoid'))

Listing 8-4 Model 2) GRU80x2_bi_dir_ff
model = Sequential()
nb_feature_maps = 128

71

ngram_filters = [2, 3, 4]
conv_filters = []
for n_gram in ngram_filters:
 sequential = Sequential()
 conv_filters.append(sequential)
 sequential.add(Convolution1D(nb_filter=nb_feature_maps, filter_length=n_gram, activation='relu', input_shape=(maxlen,
len(chars))))
 sequential.add(MaxPooling1D(pool_length=16))
 sequential.add(Flatten())
model.add(Merge(conv_filters, mode='concat'))
model.add(Dropout(0.5))
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(BatchNormalization())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(BatchNormalization())
model.add(Dense(classnum, activation='sigmoid'))

Listing 8-5 Model 3) Conv_128_3f_p16
model = Sequential()
nb_feature_maps = 128
ngram_filters = [2, 3, 4, 5]
conv_filters = []
for n_gram in ngram_filters:
 sequential = Sequential()
 conv_filters.append(sequential)
 sequential.add(Convolution1D(nb_filter=nb_feature_maps, filter_length=n_gram, activation='relu', input_shape=(maxlen,
len(chars))))
 sequential.add(MaxPooling1D(pool_length=16))
 sequential.add(Flatten())
model.add(Merge(conv_filters, mode='concat'))
model.add(Dropout(0.5))
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(32, activation='relu'))
model.add(Dense(classnum, activation='sigmoid'))

Listing 8-6 Model 4) Conv_128_4f_p16
Each model ends with the settings of the learning algorithm, annealing and balancing. Then it invokes the
network training module. The approximate configuration code is shown in the listing[Listing 8-7]. Each
trained network saved in different folders.
class_weight = {0: 4, 1: 1, 2: 4, 3: 1, 4: 1}
optimizer = Adam(lr=0.002)
model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy'])
batch_size = 500

tr = TrainingClass()
tr.Training(model, batch_size, optimizer, os.getcwd()+'/model_11', trainX, trainY, testX, testY,
 class_weight, epochnum=0, decay=0.01/70)

Listing 8-7 Example of training configuration
The accuracy of training of each of the networks is shown in the chart [Figure 8-3]. In the learning
process, I sometimes changed the learning parameters. As a result, some networks were trained with new
parameters. In this chart, I show only attempts that improve the result of the classification. After network
training I chose best networks, that shown[Figure 8-1][Figure 8-2].
The important characteristic of the network is the speed of training. Average time for learning a network
of one epoch (all data once):

• 1)_GRU120x2_ff 4.12 min
• 2)_GRU80x2_bi_dir_ff 7.82 min
• 3)_Conv_128_3f_p16 1.36 min
• 4)_Conv_128_4f_p16 1.53 min

The network was in the best classification condition, after which it compiled an ensemble of networks. As
a result of the classification, each network issues score for each class and, summing up the outputs of all
networks, I received a common score for the class. After that, I chose the class with the highest score. The
result of this classification is shown as the result of the ensemble [Figure 8-3].

72

Figure 8-3 Accuracy charts of four networks, by epochs and accuracy of ensemble of this networks. Arrows shows best

accuracy for each network.
Ensemble errors for classes [Figure 8-4]:

Class False positive False negative
First names 1299 1045
Second names 1259 1258
Codes 17 212
Streets 17 12
Position titles 161 226
Figure 8-4 Ensemble errors for classes.
As we can see Streets is the most correct classified class, and network has big problem to get difference
between first and second names. But after a cursory review of the names, I realized that my own manual
classification would only get worse.
Training module.
The task of the module was to manage the training of the network, collect the necessary statistics for
visualization, save the network state after each epoch, and build network training schedules (including
working with the tensorboard).
Listing [Listing 8-8] describe only important code from training module. Most inportant lines are
model.fit(...) that starts training model and lr=lr * (1. / (1. + decay*iteration)) that reduce learining rate.
for iteration in range(1000):
 batchloss = []
 batchacc = []
 def plot_batch_loss(batch, logs):
 batchloss.append(logs['loss'])
 batchacc.append(logs['acc'])

 e_losses = [0]
 e_accs = [0]
 e_val_losses = [0]
 e_val_accs = [0]
 def plot_epoch_loss(epoch, logs):
 e_losses[0]=(logs['loss'])
 e_accs[0]=(logs['acc'])
 e_val_losses[0]=(logs['val_loss'])
 e_val_accs[0]=(logs['val_acc'])

 epoch_loss_callback = LambdaCallback(on_epoch_end=plot_epoch_loss)
 batch_loss_callback = LambdaCallback(on_batch_end=plot_batch_loss)

 hist=model.fit(trainX, trainY, batch_size=batch_size, nb_epoch=1, show_accuracy=True, verbose=0,
 class_weight=class_weight, validation_data=(testX, testY), shuffle=True, callbacks=
 [epoch_loss_callback, batch_loss_callback,tensorBoard])

 FalseNegetive, FalsePositive=self.ErrorByClass(model, testX, testY)

 model.save(resultFolder+'model_acc_'+str(e_val_accs[0])+'_epoch_'+str(epochnum+iteration)+'.h5')

 lr = K.eval(model.optimizer.lr)
 lr=lr * (1. / (1. + decay*iteration))
 K.set_value(model.optimizer.lr, lr)

def ErrorByClass(self, model, testX ,testY):
 ClassNotDetected=[0] * len(testY[0])
 ClassDetectedNotCorrect=[0] * len(testY[0])
 predictions=model.predict_classes(testX, verbose=0)

73

 for i,pred in enumerate(predictions):
 if testY[i][predictions[i]]==False:
 ClassDetectedNotCorrect[predictions[i]]+=1
 for k,_ in enumerate(testY[i]):
 if testY[i][k]==True:
 ClassNotDetected[k]+=1
 return ClassNotDetected, ClassDetectedNotCorrect
Listing 8-8 Main part of training module.

9 Analysis
The resultant classifier in this work was an ensemble of four neural networks with a final classification
accuracy of 0.88988. The maximum quality of classification by such networks only for first and second
names was 0.745.
The main problem of this approach to classification are new classes that are not known for training. As I
mentioned before - The basic requirement for training data, control and test sets should be representative.
If the trained network receives a quote from the artwork or part of the program code on the python, the
example will be classified as one of the known class networks.
Partial errors can be avoided by setting a threshold for the score for each class. The output in the network
is limited by the sigmoid function from 0 to 1, and ideally the network issues one-hot vector, in which one
indicates the class chosen for this sample. Really, the class is selected by the highest score i.e. if the
classes have a scores: "0": 0.1, "1": 0.11, "2": 0.1, the highest score is 0.11 and the example will be
classified as class 1. We can set a threshold for the maximum value of score 0.5, thanks that all samples
with score lower than threshold should be classified as unknown classes. Such a payoff will naturally
reduce the quality of classification of known classes. But, for the ensemble of networks, it is more
preferable, because the unanimous choice of a class by all networks will greatly increase the score for this
class. It will also be positively affected by the fact that the classification takes place within the separate
cells, if the cells of one column are classified differently, this will be a good marker, meaning that there is
a new class in the column. It is possible to improve the classification with a threshold value using the
ReLU function in the last layer. But all these approaches will not give a guaranteed result.
For clarity, I show a schedule for classifying a test set from five classes of 5000 examples in each, the
resulting ensemble of neural networks, using 30 different threshold values, from 0 to 4 [Figure 9-1].
Summing all errors, without threshold [Figure 8-4] was 2753 errors. Threshold less than 2 almost nothing
changes, here an unknown class begins to appear - examples not defined for the network. 2 should be
center of total bound of 4 networks, and here "total binary step" function will be changed. From threshold
2 to 3 false positive errors for second name and false negative errors for first name down, that increase
size of unknown class to 5000 samples - network stopped recognize all first names. An unknown class
grows not only due to errors, but also due to correctly classified examples. False positive first names and
false negative second names errors down slower, form threshold 2 to 4. Error and unknown class match
on threshold 4, and further raise the threshold no longer makes sense. The graph shows that the choice of
the threshold value to 2 practically does not change the behavior of the classifications, but these values
are before the transition through zero. In the situation where the error almost disappeared, except for the
unknown class, 10,000 samples fell into the unknown class, most likely all the first and second names.
Probably for columns this approach will be more applicable, but even now the threshold between 2 and 4
can be a plus.

Figure 9-1 Amount of false positive, false negative errors and unknown class, for 25000 samples depending on the

threshold value for maximum score.

74

The next step in working with new classes can be the threshold value for the probability of the class with
the highest value. Probability I calculate as a score for this class divided by the sum of scores for all
classes.

𝑃𝑃𝑖𝑖 =
𝑂𝑂𝑐𝑐𝑜𝑜𝑔𝑔𝑒𝑒𝑖𝑖

∑ 𝑂𝑂𝑐𝑐𝑜𝑜𝑔𝑔𝑒𝑒𝑘𝑘𝑘𝑘
0

For this example, I take thresholds from 0 to 1[Figure 9-2]. Starting with a threshold value of just under
0.5 to 0.9, errors associated with the classification of names are almost lost, and the size of an unknown
class in this case becomes equal to 10,000 samples, which indicates that the network stops to classify first
and second names. Further increase of the threshold value does not make sense, since the error becomes
practically zero and the graphs of the unknown class and the total errors plus unknown class coincide.

Figure 9-2 Amount of false positive, false negative errors and unknown class, for 25000 samples depending on the

threshold value for probability.
To try this approach I prepared 5 additional unknown classes. To prepare unknown data I choose Hamlet,
Romeo and Juliet [89], this my report, Student_guide_160913 and Regulations_160913 together,
generated dates. During preparation I chose the text and divided it randomly into segments using length
distributions from real datasets. Hamlet divided with first names distribution (almost same as second
names), Romeo and Juliet divided with street names distribution, Student_guide_160913 and
Regulations_160913 was divided with codes distribution, my report was devided as job titles, and
generated dates has its own distribution.
Thanks to this approach, in the examples I got parts of words and whole words separated by dots,
commas and sometimes numbers. Of course, the way to get an unknown class can be infinitely many, and
this example shows only one of the possible outcomes of such a classification.
In total test set I got 10 classes, each class has 5000 samples. 5 classes that neural network was trained
(but new for network test data) and 5 unknown classes.
At first I choose 30 thresholds from 0 to 1 [Figure 9-3]. As the result of classification I got 17000 false
positive street names errors, 4400 false positive position titles and 3400 false positive codes. There are
probably no additional errors with names, because the new unknown samples contain spaces. With an
increase in the threshold above half, an unknown class appears in which all names immediately fall, as in
the previous example, but the false positive street names error is still very high.

75

Figure 9-3 Amount of false positive, false negative errors, unknown class and correct classes, for 50000 samples

depending on the threshold value for probability.
To check what happened with error near 1 threshold, I made one more chart with same data and with 25
thresholds between 0.99 and 1 [Figure 9-4]. Here we see that after threshold more than 0.995 false
positive street names errors become less than correct classification for street names. And on the last step
threshold 0.9996 false positive street names errors are equal 2000, but correct street names classification
are still 3400.
At a high threshold value, networks can not define a complex classes, but simple classes are still well
defined, so that although the network can not correctly determine part of the classes, some classes are
defined correctly. Perhaps to improve the classification of unknown classes, do not stop at the best
accuracy and continue to train the network, in which case the probabilities for already defined classes can
grow and you can select a threshold value higher.
For these data, the probable probability value is above 0.9996, it can be useful for classifying codes, street
names and job position titles.

Figure 9-4 Amount of false positive, false negative errors, unknown class and correct classes, for 50000 samples

depending on the threshold value for probability, from 0.98 to 1.

76

10 Conclusion, Discussion
The purpose of this work was a rich text type classification - detect categories of higher abstraction, like
"person name", "job title", "project name", "activity description", "address", "equipment code", etc., so
categories that people recognize, to classify the columns of spreadsheets. Neural networks are used in
cases where the relationship between input and output data is not known, as in this case.
As classes for learning the neural network were chosen: First names, second names, codes, streets and job
position titles. The most difficult to classify were first and second names. At a cursory look, I hardly
found any known to me names, so I think my own manual classification would be about 50% on these
two classes.
In the course of the work, more than a hundred different models of neural networks were compiled and
trained and tested.
In the process I was using Tensorflow/Keras frameworks and trained network can be easily connected to
any module in the python, in a few lines.
Also, a convenient system of scripts and graphs was created for the development and training of the
network. Later, the training of such networks will take much less time.
The resultant classifier in this work was an ensemble of four neural networks with a final classification
accuracy of 0.88988. In the ensemble, there are two convolutional networks, one recurrent and one bi-
directional recurrent neural network. At first I planned to make a weighted vote in the ensemble of
networks - networks with a higher accuracy would have a greater weight in voting, but in the end I came
to the conclusion that the accuracy difference among the networks is too small and the weight of all
networks in voting is equal to one.
A huge part of the work is devoted to improving the classification by a very small fraction of a percent, in
general it is possible to take a standard model for a particular case and obtain a good classification result.
Most further improvements results gain small increase in the quality of the classification. Even from
existing models, the Improvement of model can be almost forever, improving the quality of classification
by 1-2 examples from 25000, a few days of painstaking work. A good quotation of this approach is a
quote: "After your network has converged the training is just beginning." Quotation was found by me on
one of the forums devoted to neural networks, unfortunately I lost the link to the source.
All classifications are made for separate cells, not for columns.
The amount and quality of the data plays a major role in the neural network training and the problem of
unknown classes is also a data problem. Of course, the network training, I would like to have more data
for training, it would be guaranteed to improve the classification, and more classes data would avoid the
problem of an unknown class more often. Also, real data sets have different amounts of data, and
examples of different lengths, even with the length distributions shown in the datasets descriptions, some
classification can be performed, for examples of different lengths.
At the stage of developing the model, I already chose some models of neural networks, which seemed to
me to be the best for this work. In my opinion this is GRU and convolutional networks. Convolutional
networks are much easier to train and trained few times faster (by time), but are quickly overfitted. Such a
parameter as training time can be key in the work and if it is required to quickly train the network, I
would choose convolutional networks that have a part of percent accuracy less than the recurrent
networks.
At the stage of studying the theory, I often came across the phrase that the development of neural
networks is an act of art, and now, having some experience with neural networks, I will agree with this
statement. Any network trained on a cluster of high-performance computers or on a home computer,
requires a huge amount of training time, and having more time it is always possible to make the network
more complicated, even with the same number of trainable parameters. In this case, it is not possible for
me to go through all the hyperparameters, even by some more advanced algorithm than brute force.
The main disadvantage of neural networks for solving similar problems, I think that to some extent I have
to rely on luck when choosing hyper parameters.
I consider such results accuracy of 0.88988 is a successful achievement of the goal, but it can be
increased with some improvements, that I did not try in this research. The behavior of the classifier on the
unknown classes is significantly deteriorating, but this is contrary to the data requirement.
Some improvements I will describe here:

• Transfer learning - additional training of the network on new data. If just try to train the network
on new data, then backpropagation effectively destroys all previously learned and training in fact
already after a few bars goes from the very beginning (with wrong start initialization of weights).

77

Therefore, all the weights are fixed first, except for the weights of the last layer, last layer trained,
the previous layers can be slowly released so that they also tune. Such additional training can be
useful if new datasets appear, and it seems to me possible to learn the network on its own errors
in the test set.

• Boosting and bagging, described here.
• Work on the formation of each batch, at the moment, the batches are formed randomly, and

although the dataset is balanced, the balance of each individual batch is unknown. I think if you
look at the formation of a batch, I would start with its balancing, although it might be worth
starting with the batch, which contains more samples of complex classes like names, so that the
network will see from the first changes the difference between such classes.

• Metaphone - a phonetic algorithm for indexing words by their sound, taking into account the
basic rules of English pronunciation. Samples encoded with similar algorithms can also be used
in network training. For example, two recurrent networks receive real examples and a metaphone
output, and output the result to the general feedforward network. Similar advice using the same
phrase in different languages for learning network I met in the literature [111]

• N-grams can be used in recurrent networks instead of characters.
• It can be used word embedding on n-grams level, to vectorize samples.
• Continue to train the network, after achieving the best accuracy for increasing the likelihood and

the ability to use threshold values in the classification.
Novelty
Although the methods and approaches used in this work are not developed by me, nevertheless, all the
researches I have found work with text information of a longer length. In NLP, normally, uses sentences
or whole texts, as samples. The binary classification (positive / negative) is also often used. In my work
neural networks classify short samples, often an samples is one word, and the number of final classes is 5.
In addition, I made an attempt to classify an unknown neural network text class, which I have not seen in
the literature.
The main uniqueness of this work is that at the time of writing the work, I was not able to find a ready-
made solution or research for the classification of spreadsheets or such short samples.

78

11 References

1. Application of the genetic algorithm for training a neuron network in the objective identification of

images А.М. Lipanov, A.V. Tyurikov, A.S. Suvorov, E.Yu. Shelkovnikov, P.V. Gulyaev
2. using genetic algorithms for training neural networks. Shumkov Eugene Alexandrovich, Chistik Igor

Konstantinovich
3. Training of artificial neural networks Course "Neurointelligent systems", FBIC MIPT, 2013
4. Bag of Tricks for Efficient Text Classification. Armand Joulin, Edouard Grave, Piotr Bojanowski,

Tomas Mikolov
5. Distributed Representations of Words and Phrases and their Compositionality. Tomas Mikolov, Ilya

Sutskever, Kai Chen, Greg Corrado, Jeffrey Dean
7 Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. Junyoung Chung,

Caglar Gulcehre, KyungHyun Cho, Yoshua Bengio
8 On the importance of initialization and momentum in deep learning. I. Sutskever, J. Martens, G.

Dahl, and G.E. Hinton.
9 Deep Residual Learning for Image Recognition. Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian

Sun
10 Systematic evaluation of CNN advances on the ImageNet. Dmytro Mishkin, Nikolay Sergievskiy,

Jiri Matas
11 Notes on AdaGrad. Joseph Perla
12 Introduction to the Artificial Neural Networks. Andrej Krenker, Janez Bešter, Andrej Kos
13 MA 529 Stochastic Processes, Spring 2016 Instructor: Zhongqiang Zhang
14 L1 vs. L2 Regularization and feature selection. Paper by Andrew Ng, Presentation by Afshin

Rostami
15 A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm. Martin

Riedmiller, Heinrich Braun
16 Dropout: A simple way to prevent neural networks from overfitting. Srivastava N., Hinton G.,

Krizhevsky A., Sutskever I., Salakhutdinov R.
17 Stochastic Gradient Descent for Non-smooth Optimization: Convergence Results and Optimal

Averaging Schemes Ohad Shamir, Tong Zhang
18 You Only Look Once: Unified, Real-Time Object Detection. Joseph Redmon, Santosh Divvala, Ross

Girshick, Ali Farhadi
19 Efficient estimation of word representations in vector space. Tomas Mikolov, Kai Chen, Greg

Corrado, and Jeffrey Dean.
20 Convolutional Neural Networks for Sentence Classification. Yoon Kim
21 Exploring the Limits of Language Modeling. Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam

Shazeer, Yonghui Wu
22 Practical Recommendations for Gradient-Based Training of Deep Architectures. Yoshua Bengio
23 LSTM: A Search Space Odyssey. Klaus Greff, Rupesh Kumar Srivastava, Jan Koutnik, Bas R.

Steunebrink, Jurgen Schmidhuber
24 Recurrent Convolutional Neural Networks for Text Classification. Lai S., Xu L., Liu K., Zhao J.
25 Recurrent neural network regularization. Wojciech Zaremba, Ilya Sutskever, Oriol Vinyals
26 Short Text Clustering via Convolutional Neural Networks. Jiaming Xu, PengWang, Guanhua Tian,

Bo Xu, Jun Zhao, FangyuanWang, Hongwei Hao
27 Text Understanding from Scratch. Xiang Zhang, Yann LeCun,
28 Towards End-to-End Speech Recognition with Recurrent Neural Networks. Alex Graves, Navdeep

Jaitly
29 Fitnets: hints for thin deep nets. Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine

Chassang, Carlo Gatta, Yoshua Bengio
30 Do Deep Nets Really Need to be Deep? Lei Jimmy Ba, Rich Caruana
31 Neural network optimum parameters determining under industrial process mathematical model

construction. A.I. Gavrilov, P.V. Evdokimov
32 Applying Neural Networks. A practical Guide. Kevin Swingler
33 Predicting Amazon Product Review Helpfulness. James Wei, Jessica Ko, Jay Patel
34 Concept Linking for Clinical Text. Justin Fu

79

35 Using Recurrent Neural Networks for Slot Filling in Spoken Language Understanding. Grégoire
Mesnil, Yann Dauphin, Kaisheng Yao, Yoshua Bengio, Li Deng, Dilek Hakkani-Tur, Xiaodong He,
Larry Heck, Gokhan Tur, Dong Yu, Geoffrey Zweig

36 A Neural Conversational Model. Oriol Vinyals
37 A Recurrent Neural Network for Word Identification from Continuous Phoneme Strings. Robert B.

Allen
38 Character-level Recurrent Text Prediction. Melvin Low
39 Convolutional Neural Networks for Sentence Classification. Kim, Y.
40 A Convolutional Neural Network for Modelling Sentences. Kalchbrenner, N., Grefenstette, E., &

Blunsom, P.
41 Effective Use of Word Order for Text Categorization with Convolutional Neural Networks. Johnson,

R., & Zhang, T.
42 Semantic Clustering and Convolutional Neural Network for Short Text Categorization. Wang, P.,

Xu, J., Xu, B., Liu, C., Zhang, H., Wang, F., & Hao, H.
43 Character-level Convolutional Networks for Text Classification. Zhang, X., Zhao, J., & LeCun, Y.
44 Text Understanding from Scratch. Zhang, X., & LeCun, Y.
45 Understanding bag-of-words model: a statistical framework Zhang Y., Jin R., Zhou Z.-H.
46 Gradient-based learning applied to document recognition. LeCun Y., Bottou L., Bengio Y., Haffner

P.
47 Recurrent neural network language model training with noise contrastive estimation for speech

recognition. Chen X., Liu X., Gales M.J.F., Woodland P.C.
48 Deep Convolutional Neural Networks for Sentiment Analysis of Short Texts. Santos C.N., Gatti M.
49 Deep sparse rectifier neural networks. Glorot X., Bordes A., Bengio Y.
50 The vanishing gradient problem during learning recurrent neural nets and problem solutions.

Hochreiter S.
51 Gradient flow in recurrent nets: the difficulty of learning long-term dependencies. Hochreiter S.,

Bengio Y., Frasconi P., Schmidhuber J.
52 ADADELTA: an adaptive learning rate method. Zeiler M.D.
53 The Difficulty of Training Deep Architectures and the Effect of Unsupervised Pre-Training. D.

Erhan, P.A. Manzagol, Y. Bengio, S. Bengio, P. Vincent.
54 Understanding the difficulty of training deep feedforward neural networks. X. Glorot and Y. Bengio.
55 Neural networks and principal component analysis: Learning from examples without local minima.

P. Baldi and K. Hornik.
56 Constructing and training feed‐forward neural networks for pattern classification. Xudong Jiang,

Alvin Harvey Kam Siew Wah
57 Solving the problem of negative synaptic weights in cortical models. Christopher Parisien, Charles

H. Anderson, Chris Eliasmith
58 Automation of monitoring of public opinion on the basis of intellectual analysis of messages in

social networks. Budylsky Dmitry Viktorovich.
59 Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift.

Sergey Ioffe, Christian Szegedy
60 A generalized approximation theorem and the computational capabilities of neural networks. A.N.

Gorban
61 Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. John Duchi, Elad

Hazan, Yoram Singer.
62 Exact solutions to the nonlinear dynamics of learning in deep linear neural networks. Andrew M.

Saxe, James L. McClelland, Surya Ganguli
63 Identifying and attacking the saddle point problem in high-dimensional non-convex optimization.

Yann N. Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho
64 Training Deep and Recurrent Networks with Hessian-Free Optimization. James Martens. Ilya

Sutskever.
65 An Introduction to Neural Network Methods for Differential Equations Authors: Neha

Yadav,Anupam Yadav,Manoj Kumar
66 Neural networks: basic models I. V. Zaentsev.
67 Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification.

Kaiming He. Xiangyu Zhang. Shaoqing Ren. Jian Sun.

80

http://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1404.2188
http://arxiv.org/abs/1404.2188
http://arxiv.org/abs/1412.1058v1
http://arxiv.org/abs/1412.1058v1
http://www.aclweb.org/anthology/P15-2058
http://www.aclweb.org/anthology/P15-2058
http://arxiv.org/abs/1509.01626
http://arxiv.org/abs/1502.01710

68 ImageNet Classification with Deep Convolutional Neural Networks. Alex Krizhevsky. Ilya
Sutskever. Geoffrey E. Hinton

Links:
69 https://en.wikipedia.org/wiki/Activation_function
70 http://www.machinephilosopher.com/activation-function-neural-network/
71 http://cs231n.github.io
72 http://www.aiportal.ru/articles/neural-networks/decision-xor.html
73 http://stackoverflow.com/questions/5794954/determining-bias-for-neural-network-

perceptrons/5798467
74 https://www.saylor.org/site/wp-content/uploads/2011/11/CS405-6.2.1.2-WIKIPEDIA.pdf
75 https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/
76 http://www.stokastik.in/building-a-multi-class-text-classifier-from-scratch-using-neural-networks/
77 https://habrahabr.ru/post/272679/
78 https://habrahabr.ru/post/282900/
79 http://www.offconvex.org/2016/03/22/saddlepoints/
80 https: //habrahabr.ru/post/313216/
81 https://habrahabr.ru/post/318970/
82 http://sebastianruder.com/optimizing-gradient-descent/
83 https://en.wikipedia.org/wiki/Stochastic_gradient_descent
84 https://malaikannan.wordpress.com/2016/09/13/cross-entropy/
85 http://neuronus.com/nn/38-theory/961-nejronnye-seti-kokhonena.html
86 https://en.wikipedia.org/wiki/Overfitting
87 http://wiki.technicalvision.ru/index.php/Проблема_переобучения_модели_и_метод_регуляризац

ии
88 http://cs.nyu.edu/~rostami/presentations/L1_vs_L2.pdf
89 https://habrahabr.ru/post/175819/
90 http://www.nanonewsnet.ru/articles/2016/kak-obuchaetsya-ii
91 https://habrahabr.ru/post/309302/
92 https://geektimes.ru/post/74326/
93 http://deeplearning.net/tutorial/lenet.html
94 http://www.360doc.com/content/16/0303/19/2459_539162206.shtml
95 http://colah.github.io/posts/2014-07-Understanding-Convolutions/
96 http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/
97 http://ben.bolte.cc/blog/2016/keras-language-modeling.html
98 http://eric-yuan.me/rnn1/
99 https://deeplearning4j.org/lstm
100 http://datareview.info/article/znakomstvo-s-arhitekturoy-lstm-setey/
101 https://offbit.github.io/how-to-read/
102 https://habrahabr.ru/post/277563/
103 http://servponomarev.livejournal.com/8599.html
104 https://en.wikipedia.org/wiki/Principal_component_analysis
105 https://en.wikipedia.org/wiki/Independent_component_analysis
106 https://en.wikipedia.org/wiki/Non-negative_matrix_factorization
107 https://en.wikipedia.org/wiki/Singular_value_decomposition
108 https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/
109 https://iksinc.wordpress.com/2015/04/13/words-as-vectors/
110 http://www.kdnuggets.com/2016/05/amazing-power-word-vectors.html/2
111 http://www.drdobbs.com/the-double-metaphone-search-algorithm/184401251
112 http://www.gedpage.com/soundex.html
113 https://basegroup.ru/community/glossary/representativeness
114 http://blog.revolutionanalytics.com/2016/08/deep-learning-part-1.html
115 https://github.com/Microsoft/CNTK/
116 https://github.com/Theano/Theano
117 https://www.tensorflow.org
118 Https://github.com/dmlc/mxnet
119 http://torch.ch
120 http://caffe.berkeleyvision.org

81

121 https://habrahabr.ru/company/microsoft/blog/313318/
122 http://static.barik.net/fuse/
123 https://openaddresses.io
124 http://yann.lecun.com/exdb/mnist/
125 http://ai.stanford.edu/~amaas/data/sentiment/
126 http://help.sentiment140.com/
127 http://www.videocardbenchmark.net/gpu_list.php
128 https://pythonprogramming.net/data-size-example-tensorflow-deep-learning-tutorial/
129 http://machinelearningmastery.com/sequence-classification-lstm-recurrent-neural-networks-python-

keras/
130 https://github.com/fchollet/keras/tree/master/examples
131 http://machinelearningmastery.com/text-generation-lstm-recurrent-neural-networks-python-keras/
132 https://keras.io/optimizers/
133 http://machinelearningmastery.com/using-learning-rate-schedules-deep-learning-models-python-

keras/
134 http://shakespeare.mit.edu/
135 http://pypr.sourceforge.net/ann.html

Additional materials:
lectures:

• Tensorflow and deep learning - without a PhD (https://github.com/martin-gorner/tensorflow-
mnist-tutorial)

• Stanford University CS224d: Deep Learning for NLP 2016
(https://www.youtube.com/watch?v=Qy0oEkCZkBI&list=PLdkuolCDcHLocBoeunRB6LejpSZc
_y8wM)

• CS231n Convolutional Neural Networks for Visual Recognition (http://cs231n.github.io)
Lecture slides:

• CSCI 315: Artificial Intelligencethrough Deep Learning W&L Winter Term 2016 Prof. Levy
• Recurrent neural networks Ekaterina Lobacheva lobacheva.tjulja@gmail.com Deep Learning

CMC MSU, 2016
Internet resources:

• https://keras.io
• https://www.tensorflow.org
• http://neuralnetworksanddeeplearning.com/
• http://machinelearningmastery.com/
• https://blog.keras.io/
• https://habrahabr.ru/

82

https://codelabs.developers.google.com/codelabs/cloud-tensorflow-mnist
http://cs231n.github.io/

12 Appendix 1 (program demo)
To demonstrate the program, I attach to this report the latest version of the most important scripts without
models (OnlyScriptsDemo.rar). Same scripts and best models can be downloaded by link:
https://github.com/AleksandrData/PojectDemo
The program requires installed frameworks: tensorboard and keras.
Demo version does not include scripts working with an unknown class, since this work is not complete.
Full demo version contains the program files:

• 1_PrepareVectors.py
• 2_Multiclass.py
• 3_predictions_one_word.py
• Training.py

And data files:
• Codes.txt
• FirstNames.csv
• Position_Titles.csv
• SecondNames.csv
• StreatsAscii.txt

Data files contain 30 samples of each type (only for demonstration of work). The sizes of the complete
data sets are too large and some of the data is provided to me by Avito LOOPS company. Of course, it is
not possible to fully train the network on such data.
Scripts contains minor changes to work with small sets of data.

Operating procedure:

The first script is 1_PrepareVectors.py. As a result of the work, this script creates four folders with
prepared vectors for all classes: Prepared_vectors_20, Prepared_vectors_30, Prepared_vectors_40,
Prepared_vectors_50. The number in the folder name means the maximum length of the samples. Also,
the folders contain dictionaries used to convert samples into vectors.

Second is the model selection script 2_Multiclass.py. This script contains last four models from the
report.
17 maxlen = 40

Specify what vector folder use for training.
35 testAmount = 5

Indicates size of the test data (changed for a small number of examples)
57 modelNum = 1
Chooses a model for learning

Lines 59-170 describe the models of neural networks, learning algorithm and data balancing.

The zero model allows you to continue learning previous models.

Selected model sent to the training class from the Training.py file.
The main line in this class is:
73 hist = model.fit (trainX, trainY, batch_size = batch_size, nb_epoch = 1, show_accuracy = True, verbose = 0, class_weight
 = class_weight,
 Validation_data = (testX, testY), shuffle = True, callbacks =
 [Epoch_loss_callback, batch_loss_callback, tensorBoard])

That starting the learning process of the model for one epoch, and the lines:
94 lr = K.eval (model.optimizer.lr)
95 lr = lr * (1. / (1. + decay * iteration))
96 K.set_value (model.optimizer.lr, lr)

That changing learning rate after each epoch (annealing algorithm)

The rest of the code just outputs and saves various information about the training. Training does not
provide a stop before 1000 iterations in the code, but it saves the model after each iteration. During
training I manually stop algorithm, based on results. After each iteration, training algorithm saves:

83

• Charts form of images and data: res.png, acc.txt, batchloss.txt, loss.txt;
• Output to the console: time_err.txt;
• Model with the epoch number and accuracy on the test set: model_acc_0.2_epoch_0.h5;
• And the logs folder with data for tensorboard.

An example training console output contains a description of the model:
--
__
Layer (type) Output Shape Param # Connected to
==
batchnormalization_1 (BatchNorma (None, 40, 46) 184 batchnormalization_input_1[0][0]
__
gru_1 (GRU) (None, 40, 120) 60120 batchnormalization_1[0][0]
__
gru_2 (GRU) (None, 120) 86760 gru_1[0][0]
__
batchnormalization_2 (BatchNorma (None, 120) 480 gru_2[0][0]
__
dense_1 (Dense) (None, 64) 7744 batchnormalization_2[0][0]
__
dropout_1 (Dropout) (None, 64) 0 dense_1[0][0]
__
batchnormalization_3 (BatchNorma (None, 64) 256 dropout_1[0][0]
__
dense_2 (Dense) (None, 32) 2080 batchnormalization_3[0][0]
__
dropout_2 (Dropout) (None, 32) 0 dense_2[0][0]
__
batchnormalization_4 (BatchNorma (None, 32) 128 dropout_2[0][0]
__
dense_3 (Dense) (None, 5) 165 batchnormalization_4[0][0]
==
Total params: 157,917
Trainable params: 157,393
Non-trainable params: 524
__
TensorBoard: tensorboard --logdir=C:\Users\User\Desktop\diplom\py\1PojectDemo/GRU120x2_ff/logs

And information on training:

Falce negetive: 5 5 0 5 5
Falce positive: 0 0 20 0 0
Epoch: 0, total train time: 26.755398817501494sec, with val_acc: 0.2

Lr: 0.00200000009499
Falce negetive: 5 5 0 5 5
Falce positive: 0 0 20 0 0
Epoch: 1, total train time: 47.03809079943137sec, with val_acc: 0.2

Lr: 0.00199966681719
Falce negetive: 5 0 4 5 5
Falce positive: 0 19 0 0 0
Epoch: 2, total train time: 66.94418693646054sec, with val_acc: 0.24

Lr: 0.00199900058082
Falce negetive: 5 0 4 5 5
Falce positive: 0 19 0 0 0
Epoch: 3, total train time: 87.05136487033272sec, with val_acc: 0.24

The last script 3_predictions_one_word.py uses already trained models to classify new samples.
Line
13 words = '' alex ',' dog ',' agriculture ',' clock ',' jan ',' lopamudra ',' department of housing and ',' to understand their
 applicabil ']

Contains a list of words for classification. It is important that words do not have new symols, which were
not in the dictionary for vectorization. Otherwise, you need to replace such symbols.
For each example, the program output a score for classes into the console. Then you can select the highest
score or use algorithms to identify an unknown class.
Script output is:
classes:
['firs names', 'second names', 'position titles', 'codes', 'street names']

84

classification score:
--- alex; predicted:[3.95075822e+00 1.56203949e+00 2.43370421e-03 1.50835770e-03 3.76382768e-02]
--- dog; predicted:[2.15022826 2.95039797 0.05574801 0.00852747 0.07484355]
--- agriculture; predicted:[1.29598784 2.22561455 0.03362644 0.00748577 0.17331529]
--- clock; predicted:[0.76049161 3.10469842 0.00836152 0.004857 0.07136095]
--- jan; predicted:[3.99312258e+00 9.91214156e-01 1.67067209e-03 9.79841920e-04 2.45420095e-02]
--- lopamudra; predicted:[3.61467838e+00 1.54853678e+00 3.60016245e-03 2.55763740e-03 4.55116108e-02]
--- department of housing and; predicted:[1.76077492e-06 1.68220220e-06 3.95434856e+00 8.99853883e-04
 7.67063303e-03]
--- to understand their applicabil; predicted:[2.19813955e-04 2.83384155e-02 3.04266739e+00 7.34444242e-03
 1.52156258e+00]

85

	1 Introduction
	Formulation of the problem
	Literature study
	Literature study overview
	Simple neuron and activation function
	Feed forward network
	Training algorithm
	Gradient decent.
	Back propagation gradient descent
	Optimization of gradient decent.
	Momentum
	Nesterov accelerated gradient (Nesterov Momentum)
	Adagrad
	RMSProp and Adadelta
	Adam
	Adamax
	Resilient propagation (Rprop)

	Loss functions
	Additional improvements of training algorithm
	Hyperparameters
	Limitations
	Unsupervised learning
	Overfitting
	Convolutional and pooling
	Recurrent, LSTMs and GRUs.
	Additional NN optimization
	Vectorization

	Examples of neural networks in natural language processing
	Framework/language
	Datasets
	Design
	Project problem solving overall.
	First step
	Second step
	Third step

	Implementation
	Analysis
	Conclusion, Discussion
	References
	Appendix 1 (program demo)

