

Faculty of Science and Technology

MASTER’S THESIS

Study program/ Specialization:

Industrial Economy / Project Management

Spring semester, 2017

 Open access

Writer: Rolf Andreas Boiten

…………………………………………
(Writer’s signature)

Faculty supervisor: Sigbjørn Tveterås

External supervisor(s): Sigbjørn Tveterås

Thesis title:

The Necessity of Estimation in Software Development Projects.

Credits (ECTS): 30

Key words:

Software development, Programming,
Estimation, Agile Project Management, Scrum,
#NoEstimates, UX Design

Pages: 43

+ enclosure: 3

Stavanger, 13.07/2017

Date/year

Front page for master thesis
Faculty of Science and

Technology
Decision made by the Dean October 30th 2009

I

1 Abstract

Today most Software Development Companies use Agile Project Management to manage their

project, here the decisions are made as the project progresses to keep the agility in the project.

This has been a successful transition with a lot of benefits, but many agree that estimation

remains a great area of concern. The most important reasons for this are the unknown parts of the

project that make it hard to calculate accurate estimates. Many teams are unable to deliver what

they have committed to, because their estimates are often way off. This results in large project

overruns, which prevent the organizations from reaching the market early enough and can result

in bad market performance.

In this thesis, the necessity of estimation in Software Development Projects is discussed.

Interviews with experienced project managers where held to find out how theory coincides with

the Software Development Industry, Also, some of the main goals of these interviews were to

find out more about how estimates in Software Development Projects are created within the

industry today, and how necessary it is to have accurate estimates or estimates at all, for project

managers.

This thesis shows that there are a lot of benefits and often necessary to have good estimates. The

thesis also shows that it is important to have early specification of parts of the project, where the

decisions about the software should be made as early as possible to create the most accurate

estimates. But only the parts of the project which are soon going into development must be

heavily specified, otherwise agility will be lost. For less specified parts of the project rough

estimates should be enough to make the right decisions.

II

I Accreditation

First and foremost, I would like to thank my faculty supervisor Sigbjørn Tveterås, for taking the

role as my supervisor even without having any special knowledge about Software Development.

He helped me to change the thesis when I came to him for guidance on what to do, when I could

not gather enough information and data to complete my previous topic. He has also helped me

structure the thesis, answered my questions and given me information to prevent me from falling

into one of the many pitfalls when writing a master’s thesis.

III

II Motivation

I chose this thesis because I have a degree as a Computer Engineer, and I wanted to write a thesis

combining my background from computer engineering with Project Management. Through my

experience as a Software Developer, the difficulty of making accurate estimates has fascinated

me for a long time. I therefore chose this thesis in order to find out more about why accurate

estimates are needed and how accurate they need to be.

IV

III Figure list

Figure 2.1: The Cone of Uncertainty .. - 6 -

Figure 2.2: Scrum Framework. …………………………………………………………………………..- 7 -

Figure 2.3: The Scrum Product Backlog ... - 9 -

Figure 2.4: Epics, Story, Task .. - 11 -

Figure 2.5: Product Backlog Cumulative Flow Diagram .. - 15 -

Figure 3.1: Accuracy on estimates before project proposal... - 19 -

Figure 3.2: Accuracy on estimates before dividing Epics into smaller Stories - 19 -

Figure 3.3: Methods used for estimation of Epics .. - 20 -

Figure 3.4: Estimation of Stories before dividing into Tasks .. - 21 -

Figure 3.5: Which method should be used for estimation of Stories .. - 21 -

Figure 3.6: Greatest source of error when estimation Stories .. - 22 -

Figure 3.7: Estimation accuracy on Backlog Items .. - 23 -

Figure 3.8: Should items be re-estimated if new information appears.. - 23 -

Figure 3.9: Type of project that requires the largest amount of time spent on estimation……………...- 24 -

Figure 3.10: Accuracy on earlier project ... - 25 -

Figure 3.11: Consequences of not completing on delivery time .. - 25 -

Figure 3.12: Will the methods explained in #NoEstimates work ... - 26 -

Figure 3.13: Problems with #NoEstimates .. - 27 -

Figure 3.14 Most important reason to make estimates.. - 27 -

Figure 3.15 Greatest sources of error when estimating project cost and delivery time - 28 -

file:///C:/Users/Rolf%20Andreas/Dropbox/Master/Hele%20Oppgaven%205.docx%23_Toc487666393
file:///C:/Users/Rolf%20Andreas/Dropbox/Master/Hele%20Oppgaven%205.docx%23_Toc487666394
file:///C:/Users/Rolf%20Andreas/Dropbox/Master/Hele%20Oppgaven%205.docx%23_Toc487666395
file:///C:/Users/Rolf%20Andreas/Dropbox/Master/Hele%20Oppgaven%205.docx%23_Toc487666396
file:///C:/Users/Rolf%20Andreas/Dropbox/Master/Hele%20Oppgaven%205.docx%23_Toc487666397
file:///C:/Users/Rolf%20Andreas/Dropbox/Master/Hele%20Oppgaven%205.docx%23_Toc487666398
file:///C:/Users/Rolf%20Andreas/Dropbox/Master/Hele%20Oppgaven%205.docx%23_Toc487666399
file:///C:/Users/Rolf%20Andreas/Dropbox/Master/Hele%20Oppgaven%205.docx%23_Toc487666400
file:///C:/Users/Rolf%20Andreas/Dropbox/Master/Hele%20Oppgaven%205.docx%23_Toc487666401
file:///C:/Users/Rolf%20Andreas/Dropbox/Master/Hele%20Oppgaven%205.docx%23_Toc487666402
file:///C:/Users/Rolf%20Andreas/Dropbox/Master/Hele%20Oppgaven%205.docx%23_Toc487666403
file:///C:/Users/Rolf%20Andreas/Dropbox/Master/Hele%20Oppgaven%205.docx%23_Toc487666404
file:///C:/Users/Rolf%20Andreas/Dropbox/Master/Hele%20Oppgaven%205.docx%23_Toc487666405
file:///C:/Users/Rolf%20Andreas/Dropbox/Master/Hele%20Oppgaven%205.docx%23_Toc487666406
file:///C:/Users/Rolf%20Andreas/Dropbox/Master/Hele%20Oppgaven%205.docx%23_Toc487666407
file:///C:/Users/Rolf%20Andreas/Dropbox/Master/Hele%20Oppgaven%205.docx%23_Toc487666408
file:///C:/Users/Rolf%20Andreas/Dropbox/Master/Hele%20Oppgaven%205.docx%23_Toc487666409
file:///C:/Users/Rolf%20Andreas/Dropbox/Master/Hele%20Oppgaven%205.docx%23_Toc487666410
file:///C:/Users/Rolf%20Andreas/Dropbox/Master/Hele%20Oppgaven%205.docx%23_Toc487666411
file:///C:/Users/Rolf%20Andreas/Dropbox/Master/Hele%20Oppgaven%205.docx%23_Toc487666412

V

IV Table of content

1 Abstract ... I

I Accreditation... II

II Motivation ...III

III Figure list .. IV

IV Table of content ...V

1 Introduction .. - 1 -

1.1 Estimation in Software Development Projects .. - 1 -

1.2 Limitations .. - 1 -

1.3 Methodology ... - 2 -

2 Theory .. - 3 -

2.1 Estimates, Targets, Commitments and Planning ... - 3 -

2.2 Benefits of Accurate Estimates.. - 3 -

2.2.1 Desirable Project Attributes ... - 3 -

2.2.2 Benefits of Accurate Estimates .. - 4 -

2.3 Estimation Errors ... - 5 -

2.4 Scrum.. - 7 -

2.4.1 Definition of Scrum .. - 7 -

2.4.2 The Scrum Team .. - 8 -

2.5 Events ... - 8 -

2.5.1 Sprint ... - 8 -

2.5.2 Product Backlog ... - 9 -

2.5.3 Backlog Grooming.. - 10 -

2.6 Dividing the Project ... - 10 -

2.6.1 Project Scope.. - 10 -

2.6.2 Epics, Stories and Tasks .. - 10 -

2.6.2.1 Epics .. - 11 -

2.6.2.2 User Stories or Stories ... - 11 -

2.6.2.3 Tasks.. - 12 -

2.7 Estimation Methods ... - 12 -

2.7.1 Story Points .. - 12 -

2.7.2 Fibonacci Format .. - 12 -

2.7.3 Planning Poker ... - 13 -

2.7.4 Other Estimation Techniques ... - 13 -

2.8 #NoEstimates... - 14 -

2.8.1 The Concept ... - 14 -

2.8.2 #NoEstimates Product Backlog .. - 14 -

2.8.3 Replacing Estimations with Projections .. - 14 -

2.8.4 The Software Development Process ... - 15 -

VI

2.9 Specification .. - 16 -

2.9.1 General specification... - 16 -

2.9.2 User Experience Designer ... - 16 -

3 Results .. - 18 -

3.1 Setup of the Results.. - 18 -

3.2 Results from Interviews .. - 18 -

3.3 Other Findings from the Interviews ... - 28 -

4 Discussion... - 29 -

5 Conclusion .. - 34 -

6 References .. - 35 -

7 Appendices ... - 36 -

- 1 -

1 Introduction

1.1 Estimation in Software Development Projects

Today, most Software Development Organizations use an agile process for Software

Development where decisions are made as the project progresses in order to keep the agility in

the project. These organizations claim that they have had large benefits from transitioning to

Agile Software Development, but many of them still agree that estimation remains a great area of

concern due to the unknown part of the project which makes it hard to calculate accurate

estimates. Many teams are unable to deliver what they have committed to, and their estimates are

often way off. These inaccurate estimation results in large project overruns, which prevents the

organizations from reaching the market early enough and can result in bad market performance

(Lakkaraju & Goswami, 2016). Some even goes as far as saying that most of the time spent

making estimates is just a waste of time, because the accuracy is so bad and often a lot of time is

used making them (Holub, 2015).

To challenge this, the thesis is going to set light on “The Necessity of Estimation in Software

Development Projects”. By finding out:

1. What estimates are?

2. Why estimates are needed?

3. How estimates should be used?

4. How estimates should be made?

5. Who should make the estimates?

6. How accurate the estimates should be?

1.2 Limitations

This thesis is mostly going to focus on Agile Projects within Software Estimation, even though

some methods discussed in this thesis can possibly make the projects less agile. Much of the

theory discussed can also be used for managing and estimating within less agile projects managed

by a more traditional like Project Management Structure, where projects have a target or fixed

price and more strict requirement documents. Scrum will be used and referenced to as the main

framework for Project Management within Software Development in this thesis, because Scrum

is agile and appears to be the Project Management Structure or Framework mostly used in

Software Development Projects.

- 2 -

1.3 Methodology

For gathering information about estimation theory within Software Development, this thesis uses

Steve McConnell’s book “Software Estimation: Demystifying the Black Art”. McConnell is one

of the most well known people when it comes to estimation in Software Development, and he is

referenced in almost all lectures and presentations about Software Estimation. This thesis uses

presentations and lectures given by Vasco Duarte and Allen Holub about #NoEstimates to

establish how this new methodology works and its usefulness in replacing the traditional

estimates. To gather information about terms used in this thesis and to establish a notion of how

Project Management is done within Software Development. Scrum Guides written by The

International Scrum Institute and Ken Schwaber & Jeff Sutherland are used as well as various

articles.

To find out how theory coincides with the Software Development Industry, interviews with

experienced project managers where held. Also, some of the main goals of these interviews were

to find out more about how estimates in Software Development Projects are created within the

industry today, and how necessary it is to have accurate estimates (or estimates at all) for project

managers.

- 3 -

2 Theory

2.1 Estimates, Targets, Commitments and Planning

An estimate is a term that is often confused or misused especially when it comes to Software

Development. Estimates done by a software developer are often considered to be sufficiently

accurate to be used as actual commitments and a plan to meet a target (McConnell, 2006). A

target is a statement of a wanted business objective, for example “the first release needs to be

finished before summer”. A good reason for businesses to establish targets for projects is to

define what the desirable business objectives are and getting as much value as possible from the

project. Even if these targets can be classified as desirable or even mandatory, it does not

necessarily make them achievable. A commitment is a promise to deliver exact functionality at a

specific level of quality by a certain date. Commitments are mostly based on estimates, but this

does not mean that the commitment must be the same as the estimate (McConnell, 2006). An

estimate should not be a promise nor binding. A reason for this is that if people know the

estimates are going to be used as a promise and can be used against them, this can affect the

estimate they make (Beckerleg, 2014).

Estimates should be unbiased and the goal of the estimate should be accuracy and not to seek a

particular result. The goal of planning is on the other hand to seek a particular result, and the

plans are deliberately created to achieve specific outcomes (McConnell, 2006). Plans are based

and created from the knowledge gained by the estimates, and some of the risk in the project can

be assessed by comparing the plans with the estimates. Though even if the planned target is the

same as the unbiased estimate there is still a level of risk in the project. In Steve McConnel own

words “A good estimate is an estimate that provides a clear enough view of the project reality to

allow the project leadership to make good decisions about how to control the project to hit its

targets” (McConnell, 2006). This statement means that according to McConnel estimates do not

need to be highly accurate, only accurate enough for the project managers to use them for making

good decisions to control the project and its future.

2.2 Benefits of Accurate Estimates

2.2.1 Desirable Project Attributes

Software Development Projects try to achieve many goals for a project, but the most common

- 4 -

goals they strive for are (McConnell, 2006):

- Shortest possible schedule for getting the desired functionality with the best quality level.

- Lowest possible cost to deliver desired functionality within the desired time.

- Most functionality and highest possible feature richness for the time and money available.

These and other goals are prioritized very differently from person to person. Agile Development

focuses on flexibility, repeatability, robustness, sustainability, and visibility (Cockburn, 2002).

Executives tend to focus on predictability (McConnell, 2006). Following an Agile Project

Management style is therefore difficult if one of the goals is to please the executives also. To

accomplish this, accurate estimates are necessary.

2.2.2 Benefits of Accurate Estimates

Having accurate estimates creates many benefits when it comes to Software Development

Projects. Some of these are:

- Better budgeting. Accurate estimates lead to accurate budgets and forecasting costs are

important (McConnell, 2006).

- Higher quality. Schedule-stress-related quality problems are avoided. When schedule

pressure is extreme, there are about four times as many defects reported in the release

software (Jones, 1994).

- Early risk information. A very common mistake in software development is to fail to

correctly interpret the meaning of an initial mismatch between project goals and project

estimates (McConnell, 2006). Detecting a mismatch early gives more options that will be

available for corrective action.

- Improved status visibility. A good way to track progress is to compare planned progress

with actual progress. A project with a large mismatch between planned an actual progress

will stop using the actual plan and stop comparing progress (McConnell, 2006).

- Better coordination with nonsoftware functions. Without a reliable software schedule,

related functions like sale or marketing campaigns can start to slip which can cause the

entire project schedule to slip (McConnell, 2006).

- Increased credibility for the Development Team. A project team that holds its ground and

insists on an accurate estimate will improve its credibility within its organization

(McConnell, 2006).

Unfortunately, accurate estimates are often very hard and sometimes almost impossible to make.

- 5 -

Because of this, various estimation errors ranging from small to business bankrupting errors, still

affect the Software Development Industry.

2.3 Estimation Errors

Estimation errors come in many different sizes. These errors can affect the project in countless

ways and there are endless possible sources that can create them. Therefore, removing all of them

would be close to impossible and the effort should be put into preventing estimation errors with

serious consequences. There are four general sources for estimation errors (McConnell, 2006):

- Inaccurate information about the project being estimated.

- Inaccurate information about the capabilities of the organization that will perform the

project.

- Too much chaos in the project to perform accurate estimations.

- Inaccuracies created by the estimation process itself.

In Software Development, wanted and needed functionality and design of the product gradually

change during the project. In the beginning, there is a general product concept (the vision of the

software), this concept is refined based on the product and product goals. The goal can be to

deliver a specific amount of functionality or to deliver as much functionality as possible within a

fixed budget (McConnell, 2006). In every Software Development Project, thousands of decisions

must be made on how to meet requirements and achieve specific functionality in the software.

These decisions will affect the time needed to implement the specific functionality and influence

the rest of the project. Therefore, as more decisions are made the uncertainty of estimation will be

reduced. The Cone of Uncertainty in Figure 2.1 shows how estimates becomes more accurate as a

project progresses.

- 6 -

The graph shown in figure 2.1 shows that estimates created early in the project are subject to a

high degree of error. In the initial concept phase the total range of the inaccuracy factor for the

estimate is 4x divided by 0.25x, or a total of 16x. The reason the estimate contains uncertainty is

that the Software Development Project itself contains uncertainty. Because of this, the best way to

reduce uncertainty in estimates is to reduce uncertainty in the project itself. This can be done by

making decisions (McConnell, 2006). At first glance on the Cone of Uncertainty it would be easy

to presume that it takes a long time before having good accuracy on estimates, and that estimates

are not very good before the project is nearly done. The reason for this is because of the

milestones in the figure that are equally spaced, and the assumption that the horizontal axis shows

calendar time. The figure shows that as early as when the user interface design is completed, the

total range is 1.25x divided by 0.8x, or 1.56x. This creates a much more acceptable accuracy on

the estimates. It is important to consider that the Cone of Uncertainty represents the best-case

accuracy that it is possible to have in software estimates. It is therefore possible to do much

worse, but not possible to make more accurate estimates at given points, only to be more lucky

(McConnell, 2006).

Figure 2.1: The Cone of Uncertainty (McConnell, 2006). This graph shows the best possible accuracy on estimates,

with the two lines showing the smallest high and low points for the variance related to the actual estimate, at different

milestones in the project

- 7 -

2.4 Scrum

2.4.1 Definition of Scrum

Scrum is an Agile Project Management framework, mostly used within Software Development.

Scrum uses an iterative, incremental approach to optimize predictability and control risk

(Schwaber & Sutherland, 2016). Today Scrum is widely used, and most companies use a

management framework resembling or based on Scrum for their Software Development Projects.

Scrum can be used internal and external for all kinds of Software Development Projects from

parts of bigger systems to complete software (International Scrum Institute, 2016). Figure 2.2

shows the objects and events that is part of traditional Scrum and their relations within the Scrum

Framework. The Sprint is not shown in this figure, but its actual location would be behind the

Sprint Backlog and the Scrum Team, since the Scrum Team is responsible for doing the Sprint

and they use the Sprint Backlog to keep track of the Sprint. Objects and events from the Scrum

Framework that have an impact on the estimates will be explained.

In the Scrum Framework, there are three main pillars that need to be followed in all parts

(Schwaber & Sutherland, 2016):

- Transparency. Important aspects of the process and the project must be visible to those

who are responsible for the outcome of the project. All observers need to share a common

understanding of what is being seen.

Figure 2.2: Scrum Framework. The flow and relations within the Scrum Framework (scrum.org, 2017)

- 8 -

- Inspection. The progress towards the Sprint Goal and Scrum Items must be frequently

inspected by Scrum users to detect undesirable variances. Still the inspection should not

get in the way of the development process.

- Adaptation. The process or the material being processed must be adjusted when one or

more aspects of a process deviate outside acceptable limits. Otherwise the resulting

product will be unacceptable.

2.4.2 The Scrum Team

The Scrum Team consists of the Scrum Master, the Product Owner, and the Development Team.

Scrum Teams are cross functional and can accomplish the work without depending on others that

are not a part of the team. The Product Owner role is to maximize the actual business value of the

product and the work done by the Development Team. The Product Owner is responsible for

maintaining and managing the Product Backlog so that this is transparent, clear to all, informative

and updated. The Development Team is s self-organizing unit consisting of more than two but

less than nine people. This team is responsible for delivering a potentially releasable product at

the end of each Sprint. The Scrum Master is a servant-leader role for the Scrum Team, and makes

sure that the team understands the Scrum Theory, practice and rules, and that these are followed

through the project. The Scrum Master helps the Product Owner to get an understanding of how

to maintain and manage the Product Backlog and the Development Team with self-organizing,

removing impediments from progress and creating a high value product. The Scrum Master also

facilitates Scrum Events and overall causes changes that increase the productivity of the Scrum

Team (Schwaber & Sutherland, 2016).

2.5 Events

2.5.1 Sprint

The Sprint is the backbone of Scrum, which represents a limited period of one month or less.

During the Sprint, a usable and potential releasable product increment is created. Therefore, each

Sprint may be considered as a project with a short horizon. During the Sprint, no changes that

could endanger the Sprint Goal are made. Before the Sprint begins, a Sprint Planning Meeting is

held where a plan is created by the collaborative work of the Scrum Team. The goal of the Sprint

Planning Meeting is to find out what can be delivered in the next Sprint and how this can be

achieved. The Product Owner discusses the objective that the Sprint should achieve and the

wanted Product Backlog Items to be done. This and the Development Teams projected capacity is

- 9 -

used to forecast the Product Backlog Items the Development Team will deliver during the next

Sprint, and the Scrum Team crafts a Sprint Goal. The Sprint Goal is an objective that will be met

within the Sprint, by implementing the Product Backlog Items selected for the Sprint. These

selected Product Backlog Items plus the plan for delivering them is called the Sprint Backlog.

The Sprint Goal also works as a guidance to the Development Team to clarify why they are

building this increment (Schwaber & Sutherland, 2016).

2.5.2 Product Backlog

The Product Backlog is basically a list of all things that need to be done within the project. The

items in the Product Backlog can be technical or user-centric e.g. in the form of User Stories, and

replaces the traditional requirements specification artifacts. Figure 2.3 shows a typical Product

Backlog with ten User Stories, where each User Story is briefly explained, estimated and given a

priority. As most Product Backlogs, the User Stories in Figure 2.3 are sorted after priority, with

the highest prioritized User Stories at the top.

The Product Owner uses the Product Backlog during the Sprint Planning Meeting to describe the

upcoming entries to the team. Entries in the Product Backlog should always add create value for

the customer, where they are listed and arranged according to prioritization. The level of detail

depends on the position of the item within the Product Backlog, and all items regardless of

Figure 2.3: The Scrum Product Backlog (Scrum Institute, 2017). A typical Product

Backlog, where the User Stories are briefly explained, estimated and given a priority

- 10 -

position are estimated. There should not be any no action-items or low-level tasks in the Product

Backlog. The Product Backlog is a living document, so new items are discovered, described and

added to the list during the project, while existing items are changed or removed as appropriate

(International Scrum Institute, 2016). During the Sprint Planning Meeting items from the Product

Backlog are used to create a Sprint Backlog, containing all items that could be fully implemented

within the next Sprint. To further maintain the Product Backlog a Backlog Grooming sessions can

be held.

2.5.3 Backlog Grooming

During Backlog Grooming, the Product Owner and some or all members of the team review the

Backlog Items. They ensure that the Backlog contains the appropriate items, that they are

prioritized, estimated to an appropriate degree and that the items on the top of the Backlog is

ready for delivery (Agile Alliance, 2017).

2.6 Dividing the Project

2.6.1 Project Scope

The Project Scope defines the software being built and what it should deliver, this is often shown

in a specification document of some kind. In Agile Projects the Scope is mostly only defined by

high level requirements in the form of User Stories, scheduled in the release plan. Detailed

requirements are also necessary but mostly created when needed (Thomas, 2008). Often,

customers try to add more functionality or they changes their minds about what they want. In this

case the team may be asked to do something outside the initial agreement, often without

increasing budget or time frame. When this happens, it is called Scope Creeps (Yatzeck, 2012). In

Agile Projects, it is not considered Scope Creeps if the team has not started working on the

specification and detailing on that part of the project. Because being able to change parts of the

project while the project progresses is what makes it an Agile Project.

2.6.2 Epics, Stories and Tasks

In Agile Projects, it is common to have different terms to classify the things that need to be done,

related to how much they are specified within the projects. The terms used varies from

organization to organization. In this thesis the terms Epics, Stories and Tasks will be used. These

- 11 -

terms appear to be the most used terms, though Scrum Guides mentions small and large Stories

(International Scrum Institute, 2016; Schwaber & Sutherland, 2016). The relationship between

the terms are shown in Figure 2.4.

2.6.2.1 Epics

Epics are large bodies of work and can be broken into several smaller stories that can span across

multiple Sprints. In some cases, they can even span over more than one project. Epics often

change in Scope during the project as a natural aspect of Agile Development (Radigan, 2017).

2.6.2.2 User Stories or Stories

User Stories also known as Stories, are Software System Requirements that are expressed in a

few short sentences, preferably using only non-technical language (Radigan, 2017). The User

Stories focuses on exactly what the user needs/wants without going into more specific details on

how to achieve it. The notion of User Stories was created to address the issue that estimation

culture is focusing on time and not functionality of a program. Stories are now a central part of

putting software together, but Stories are not functional requirements and are mostly hard to

estimate (Holub, 2015). A typical template for a User Story is (International Scrum Institute,

2016):

As a [user], I [need/want] [action/functionality] so that [goal/achievement].

Figure 2.4: Epics, Story, Task (Lowe, 2014). Relationship between the terms for classification of items used in this

thesis

- 12 -

2.6.2.3 Tasks

Tasks are the elements of User Stories, but they are not used by all teams (Lowe, 2014). The term

task is often mixed with the terms acceptance criteria and conditions, and they are hard to

separate. The SMART acronym is often followed when creating tasks. What actually SMART

stands for is a hot topic, but often the letters represent: Specific, Measurable, Achievable,

Relevant, Time-boxed (Lowe, 2014).

2.7 Estimation Methods

All items within the Product Backlog must be estimated according to Scrum Theory. The Product

Owner needs to know how difficult the work will be, although it is not recommended that the

Product Owner attends when the estimations are done (International Scrum Institute, 2016). In

traditional Scrum, it is not common to use terms of time, but more abstract metrics like t-shirt

sizes (XS, S, M, L XL) or Story Points.

2.7.1 Story Points

Story Points represents the actual effort needed to develop a Story. There are several factors that

needs to be considered when creating an estimate (Chon, 2016):

- The amount of work to do

- The complexity of the work

- Any risk or uncertainty in doing the work

If Story Points are used for the estimation, everyone who is doing the estimations needs to agree

on the same metrics, a common scale or sequence to use and roughly how big a Story Point is

(International Scrum Institute, 2016).

2.7.2 Fibonacci Format

When creating estimates, the Fibonacci sequence (1,2,3,5,8,13,21) or Fibonacci-like sequences

(1,3,8,12,20) is often used as values instead of just using all possible numbers (International

Scrum Institute, 2016). This abstraction tends to work better than more exact estimates. The

reason that the sequences works better is debatable, but it is probably a combination the fact that

it is easier to use a high number for an estimate and that most estimates will be rounded up to

- 13 -

nearest number in the sequence. Using sequences instead of a more exact estimate can also be a

faster way of estimating.

2.7.3 Planning Poker

Planning Poker is an agile estimating technique that has become very popular when following the

Scrum Framework, even though the basics of this technique has been used for a long time

(Hartman, 2009). Poker Planning is very simple and accurate enough to use for Agile Project

Planning, where the only thing needed is a deck of numbered cards or notes per participant. The

game plays as followed (International Scrum Institute, 2016):

1. Product Owner presents the Story to be estimated, and the Scrum Team asks questions to

understand the Story if it is unclear.

2. Each member of the Scrum Team chooses their own card from their deck, representing their

estimate.

3. When everyone has chosen their cards, all cards are revealed at once.

4. Those with high or low estimates can explain their estimate.

5. The estimation starts again, and repeats itself until a consent is found.

6. This is done for all Stories.

2.7.4 Other Estimation Techniques

There are a lot of other possible estimation techniques. McConnel suggests in his book that when

something is being counted, the countable items must be (McConnell, 2006):

- Highly correlated to the size of the software.

- Available for counting early in the project.

- Where you can count to at least 20.

- Understand what you are counting.

- Request minimal effort to count.

Another much used technique is Three-Point Estimation, where three values are produced for

every estimated item based on experience or best-guess (Maksimovic, 2012):

- The best-case estimate.

- The most likely estimate.

- The worst-case estimate.

How the actual result estimate is calculated from the Three-Point Estimation can vary from

- 14 -

project to project.

Expert judgment by one person with or without using statistical analysis or algorithms to compare

current project with previous projects are also often used as an estimation method (Jørgensen,

2005). This method ranges all the way from the most basic one where one person estimates by

just writing down an estimate with his gut feeling to estimates done by a group of people that

afterwards gets compared by an advanced computer program using a large database of other

projects before a new estimate with including variance or standard deviation is calculated.

2.8 #NoEstimates

2.8.1 The Concept

The idea behind #NoEstimates is to implement a method for helping manage a project and

collaborating with stakeholders in a transparent and productive way. The team will remain

focused doing only valuable work which is the work that matters the most. This goes well with

the Agile principle that states, “Individuals and interactions over processes and tools” (Lakkaraju

& Goswami, 2016). #NoEstimates focuses on dividing projects into small User Stories to reduce

the need for estimation and starting to measure progress and foresee the future of the project.

Some of the most important features with #NoEstimates are (Lakkaraju & Goswami, 2016):

- The team is allowed to focus on creating value from day one.

- Good decisions can be made based on project progress.

- Monitoring actual progress and predicting a release date can be done without much effort.

2.8.2 #NoEstimates Product Backlog

When Product Backlog Items are being estimated, the top 10 Stories are probably not going to

change, but the next 30 are going to change based on information gained from the first 10 Stories.

After this, most Stories are just wild fantasy and could be thrown away. Estimating the first 10

Stories is mostly waste, because these Stories are under production or being produced so soon

that an estimate will not have much value. For the next 30 Stories estimates are mostly

invaluable, because they are going to be based on incorrect assumptions about how the software

works and what it is going to accomplish (Holub, 2015).

2.8.3 Replacing Estimations with Projections

- 15 -

When running a business, it is necessary to have some sort of projections, because time matters

and there is often a need to have some control over or projection for the future. #NoEstimates

solves this by counting User Stories instead of estimating them. A Cumulative Flow Diagram can

be used to measure progress, which is the actual rate the team is completing Stories. The diagram

can also be used to show when the project is most likely going to be finished. Figure 2.5 is a

Product Backlog Cumulative Flow Diagram, and shows the amount of User Stories in the Product

Backlog at different dates. In the Figure, the upper line shows the predicted increase in total User

Stories over time and the diagonal line shows the predicted number of User Stories that are

finished. The point where the two lines crosses is the predicted date the project is finished.

2.8.4 The Software Development Process

Duarte, one of the most well-known spokes persons for #NoEstimates, recommended to follow

these simple steps during the project:

1. Select the most important piece of work you need to do.

2. Break that work down into risk-neutral chunks of work. Risk neutral means that if the

delivery fails, this will not lead to bankruptcies nor have large negative impact on the

project.

Figure 2.5: Product Backlog Cumulative Flow Diagram (Duarte, 2014). The y-axis shows number of User
Stories in the backlog and the x-axis shows time. The red part of the bars shows remaining User Stories and the

blue part shows the finished ones. The upper line shows the predicted increase in total User Stories over time

and the diagonal line shows predicted number of User Stories that are finished. The point where the two lines

crosses is the predicted date the project is finished

- 16 -

3. Develop each piece of work

4. Iterate and refactor

If the system is stable it is possible to accurately predict how many Stories the team will deliver

over a low period. For a system to be considered being stable it must follow two rules:

1. The velocity cannot be outside limits three times in a row.

2. There cannot be five or more points trending up or down.

If the system is not stable one simply has to wait to find out what the new throughput will be

(Duarte, 2014).

2.9 Specification

2.9.1 General specification

The specification process of a Software Project, is a process to find out and describe the

requirement of the software the customer wants in a gradually greater level of detail. The

specification should be unambiguous and accurate so that the requirements only has one

interpretation (Thakur, 1999). Often in projects with a Traditional Project Management structure

it is common that the customer has created a highly detailed requirements document that contains

the basic specifications for the whole project. Though in Agile Project Management these

documents are not detailed and sometimes not created at all. Specification can be done part by

part in a project or the whole project at once. In Agile Projects, it is important to keep the agility,

and therefore only specify in great detail the parts of the software or items that are soon going

into development. Much of the specification proses can be done by a UX designer, who will

collaborate with the customer to design the software.

2.9.2 User Experience Designer

User Experience Designers mostly known as UX Designers in a Software Development Project

has the responsibility of making sure the product feels good to use. They ensure that the

software’s logic flows from one step to the next (Ming, 2014). UX Designers makes sure that the

software is useful, easy to use, intuitive and delightful to interact with. Their main goal is to

enhance the experience the user have while using the software, and make sure they find value in

the product (Lanoue, 2015).

- 17 -

The UX Designers in Software Development Projects often interact with the customers and users

to specify the Software. They establish the customer’s need, helps them make decisions on what

the User Interface should look like and which functions they need I the software. Mostly based

interaction and experience gained from the potential users of the software.

One other benefit from UX Design is that it prevents time being used on coding before most

decisions are made. It also makes estimating and the software development easier for the

Development Team since they know more specific what the customer wants and how it is

supposed to look like.

- 18 -

3 Results

3.1 Setup of the Results

One of the main goals of this thesis was to find out more about how estimates in Software

Development Projects are created in companies today, and how necessary it is to have accurate

estimates (or estimates at all) for project managers. To solve this, four well experienced project

managers from two different companies were selected for interviews. All project managers had

background as software developers and experience ranging from 18 to 35 years within Software

Development.

All interviews were anonymous and held at the project managers own company locations. The

project managers where informed about #NoEstimates and the results presented by Vasco Duarte

(Duarte, 2014). The project managers were also encouraged to answer all questions according to

their opinion and not how they thought they were supposed to make estimates or how it was done

in their organization. The full interview guide is added as Appendix 1 where more information

about the questions and the interview process can be found.

The results from each question are calculated as percentage. The answers for each question are

created by the project managers, and the value given to each answer is calculated by:

- How the answer is prioritized by the person interviewed if he had more than one answer.

- How many of the people that were interviewed gave the same answer.

An example of how the calculation is done is shown in Appendix 2.

3.2 Results from Interviews

In this section, the results of each question in the interviews is shown and commented.

Figure 3.1 shows the answers for the question: " In your opinion, how accurate should estimates

be before a project proposal?" Answers from this question shows that most of the project

managers agreed that only rough estimates are needed before a project proposal is given. Even

though one project manager wanted every single item in the project broken down to tasks and

estimated before the proposal was made. Where the specification part would be done using UX

Design, and the estimation part afterwards by the Development Team. The project manager had

- 19 -

firsthand experience with projects where things were done like this, where the pre-project would

be paid by the customer.

Figure 3.2 shows the answers to the question: " In your opinion, how accurate should estimates be

before Epics are divided into smaller Stories?" The answers from this question show that most of

the project managers agreed that only rough estimates are needed before Epics are divided into

smaller Stories. Most of the Epics already had an estimate from the pre-project proposal so no

further estimation was needed for those items at this point.

75 %

25 %

Accuracy on estimates before project

proposal

Rough Estimates

Accurate Estimates

Figure 3.1: Accuracy on estimates before project proposal. Distribution of the

answers rough estimates and accurate estimates

Figure 3.2: Accuracy on estimates before dividing Epics into smaller Stories.

Distribution of the answers rough estimates and none, divide everything into

smaller part before estimating

75 %

25 %

Accuracy on estimates before dividing
Epics into smaller Stories?

Rough Estimates

None, divide everything

into smaller parts before

estimating

- 20 -

Figure 3.3 shows the answers to the question: " In your opinion, which method should be used for

estimation of Epics?" The answers from this question show that the project managers have

different preferences when it comes to which estimation method is the best, but Three-Point

Estimation appears the one mostly used if more accurate estimates where needed. The project

managers who answered Three-point estimation also said that the estimation was done by a

group, and that they also used forth number for complexity in addition to most likely, max and

min values.

Figure 4.4 shows the answers to the question: "In your opinion, should Stories be estimated

before divided into Tasks?" The answers from this question are divided, but everyone agreed that

it should at least be a rough estimation. All the project managers also added that Stories always

should be divided into Tasks if possible.

Figure 3.3: Methods used for estimation of Epics. Distribution of the answers
Three-Point Estimation, No method, divide everything into smaller parts before

estimating and single experts judgement, with comparison to other projects

50 %

25 %

25 %

Which method should be used for
estimation of Epics?

Three-point estimation

No method, divide

everything into smaller

parts before estimating

Single expert

judgement, with

comparison to other

projects

- 21 -

Figure 3.5 shows the answers to the question: " In your opinion, which method should be used for

estimation of Stories?" The answers from this question show that every project manager had their

preferred method if they were to estimate User Stories. Though Three-Point Estimation and Poker

Planning appeared to be the methods they mostly used if an accurate estimate was needed.

Figure 3.6 shows the answers to question: " In your opinion, what are the greatest sources of error

when estimating Stories?" The answers from this question show that most project managers

50 %50 %

Estimation of Stories before dividing into

Tasks

Yes

Only rough estimation

Figure 3.4: Estimation of Stories before dividing into Tasks. Distribution of the answers

yes and only rough estimation

25 %

25 %25 %

25 %

Methods to be used for estimation of Stories

Three-point estimation

Poker Planning

Single experts judgement,

with comparison to other

projects

Group experts judgment,

no comparison

Figure 3.5: Which method should be used for estimation of Stories. Distribution of
the answers Three-Point Estimation, Poker Planning, Single expert judgement, with

comparison to other projects and group experts judgement, no comparison

- 22 -

regard the lack of understanding of the Task/Stories and the needed technology to accomplish the

tasks to be one of the greatest sources of error. All the sources listed by the project managers

except one appear to be related to the complexity of the Stories.

Figure 3.7 shows the answers to the question: " In your opinion, how accurate should Backlog

Items be estimated?" The answers from this question show that most of the project managers

agreed that Backlog Items only should be roughly estimated before going into the Sprint. If the

items should be more accurately estimated during Sprint Planning is not agreed upon, but most of

them answered that they should.

Figure 3.6: Greatest source of error when estimation Stories. Distribution of the answers

lack of understanding of task and needed technology, lack of understanding the consequences
of the changes in the code, unknown sources of risk, unexperienced in making estimates and

too large Stories and Tasks

37 %

12 %13 %

13 %

25 %

Greates sources of error when estimating stories?

Lack of understanding of

task and needed technology

Lack of understanding the

consequences of the

changes in the code

Unknown sources of risk

Unexperienced in making

estimates

Too large stories and tasks

- 23 -

Figure 3.8 shows the answers to the question: " In your opinion, should items be re-estimated if

new information appears?" The answers from this question show that most of the project

managers agreed that to have better control of the project items should be re-estimated if new

information appears. The information though must have a significant impact on the items, if they

should be re-estimated, or even have a very large impact according to one of the project

managers.

50 %

25 %

25 %

Estimation accuracy on Backlog Items

Rough Estimates, and

detailed when moved into

sprint

Rough Estimates, always

Accurate Estimates

Figure 3.7: Estimation accuracy on Backlog Items. Distribution of the answers

rough estimates, and detailed when moved into Sprint, rough estimates, always and

accurate estimates

50 %

25 %

25 %

Should items be re-estimated if new

information appears?

Yes

No

Only if there are large

consequences

Figure 3.8: Should items be re-estimated if new information appears. Distribution

of the answers yes, no and only if there are large consequences

- 24 -

Figure 3.9 shows the answers to the question: " In your opinion, what type of project requires the

largest amount of time spent on estimation?" The answers to this question show that most of the

managers agreed that projects with the risk of losing money for developer company are the

projects that require the most time to be spent on making estimates. One project manager also

added that more time should be spent on estimates on small projects because they often get

underrated because of their size. The relationship with the customer is also important. If there is

not much trust between development company and the customer, this forces more time to be

spent on estimates, according to one of the project managers.

Figure 3.10 shows the answers to the question: " How accurate has the project estimates been in

projects you have worked on?" The answers to this question show that most of the project the

interviewed project manager has been a part of has been finished on time or on overtime. Even

though a few of the projects has been finished earlier than estimated, most of the project

managers answered that projects tend to use all time available and rather be finished on time.

Figure 3.9: Type of project that requires the largest amount of time spent on estimation.

Distribution of the answers fixed price projects, low amount of trust from customer, small

projects and projects with penalties

25 %

12 %

25 %

38 %

What type of project requires the largest
amount of time spendt on estimation?

Fixed price projects

Low amount of trust

from customer

Small projects

Projects with penalties

- 25 -

Figure 3.11 shows the answers to the question: " What have the consequences been on projects

that were not completed on delivery time?" The answers to this question show that most of the

project managers agreed that overtime or increased time frame is the most common consequence

on a project that did not complete on delivery time or appeared to take longer time than budgeted.

Whether the customer had to pay more or the developing company earned less or even lost

money, happened just as frequent and are very dependent on the contract and the project. Often

the consequence are a combination of both customer paying more and the developing companies

earning less. All project managers agreed that reduction of Scope is not a good solution since it

only has a minor impact, because removing major parts of the Scope is not an option in most

projects.

50 %

25 %

25 %

Accuracy on earlier projects

Very variable, but mostly

overtime

Variable but sometimes

overtime

Sometimes on time, but

mostly overtime

Figure 3.10: Accuracy on earlier project. Distribution of the answers very variable, but

mostly overtime, variable but sometimes overtime and sometimes on time, but mostly

overtime

Figure 3.11: Consequences of not completing on delivery time. Distribution of the

answers customer increases budget and time frame and developer gets less profit or

looses money

54 %
46 %

Consequences of not completing on
delivery time?

Customer increases

budget and time frame

Developer gets less profit

or looses money

- 26 -

Figure 3.12 shows the answers to the question: " Do you think the methods explained in

#NoEstimates would work?" The answers to this question shows that most of the project

managers were positive to #NoEstimates methods by projecting instead of estimating every

object. One project manager answered that they had already tried similar methods with success on

one project. Another project manager reported that they mostly did not estimate at all on a current

project they were working on. Still, all of them agreed that this method will have some limitations

and problems.

Figure 3.13 shows the answers to the question: " What are the biggest problems with

#NoEstimates?" The answers to this question show that the project managers believed that the

biggest problems with #NoEstimates would be sizing the Stories and changing the customers and

organizations view on the estimation.

50 %

0 %

50 %

Will the methods explained in #NoEstimates

work?

Yes

No

Maybe

Figure 3.12: Will the methods explained in #NoEstimates work. Distribution of the

answers yes, no and maybe

- 27 -

Figure 3.14 shows the answers to the question: " In your opinion, what is the most important

reason to make estimates?" The answers to this question show that the project managers agreed

that budgeting and controlling projects are the main reasons for making estimates. Followed by

planning resources and establishing risk in the project.

Figure 3.15 shows the answers to the question: " In your opinion, what are the greatest sources of

error when estimating project cost and delivery time?" The answers to this question show that the

project managers disagreed on what the greatest sources for error are when estimating project cost

63 %8 %

8 %

21 %

Most important reason to make estimates

Budgeting

Planning resources

Establish risk

Control project

Figure 3.14 Most important reason to make estimates. Distribution of the answers

budgeting, planning resources, establish risk and control project

Figure 3.13: Problems with #NoEstimates. Distribution of the answers the customers

demand estimates, splitting into small enough User Stories, User Stories must be roughly

the same size and making the organization use and accept this method

37 %

25 %

25 %

13 %

Problems with #NoEstimates?

The customers demand

estimates

Spliting into small enough

User Stories

User stories must be

roughly the same size

Making the organization

use and accept this method

- 28 -

and delivery time. Though, the most common answers were Scope Changes and lack of

understanding of complexity and needed technology. Unmanaged or unforeseen risk which was

the third most common answer and can also partly be regarded as a consequence of lack of

understanding of needed technology and complexity.

3.3 Other Findings from the Interviews

Besides answering all the questions in the interview there were some important additional

information gained during the interviews, that also will be used in the discussion.

- All project managers said that they were using hours or days as metrics for estimates.

Some of them had tried using Story Points earlier, but they did not like the concept of

estimating by using something abstract and then having to re-calculate to hours if the

customer asked when something would be finished.

- One of the companies used UX design for the specification process to make a common

understanding between the development company and the customer of the project and

every User Story in it.

Figure 3.15 Greatest sources of error when estimating project cost and delivery time. Distribution of

the answers scope changes, lack of understanding of needed technology and complexity, unmanaged or

unforeseen risk, bad communication, unrealistic cost in project proposal by seller and inexperienced or

non-talented developers

33 %

27 %

19 %

9 %

6 %
6 %

Greates sources of error when estimating project
cost and delivery time?

Scope changes

Lack of understanding of needed

technology and complexity

Unmanaged or unforeseen risk

Bad communication

Unrealistic cost in project

proposal by seller

Inexperienced or non-talented

developers

- 29 -

4 Discussion

Estimation is a great concern when it comes to managing Software Development Projects.

Because customers most often want a certainty about what they will get and when they will get it.

This can be very hard to deliver to the customer on an accurate level when the projects are agile

and change all the time. There is a limit on how accurate estimates can be at different points in

the project’s life cycle, and how large the uncertainties in the estimates are. This is the case

especially in the beginning of a project and can be hard to explain to the customer (McConnell,

2006). Unfortunately, this forces the Development Team to make early estimates without enough

knowledge about the project. These estimates will be used to set targets and make commitments

for the project and will often be way off. This can in turn lead to a lot of stress for the developers,

project overruns and possibly bad market performance or project failure (Lakkaraju & Goswami,

2016).

Accurate estimates in Software Development Projects have a lot of benefits. Among them are:

better budgeting, higher quality, early risk information, improved status visibility, better

coordination with nonsoftware functions and increased credibility for the Development Team

(McConnell, 2006). The project managers that were interviewed regarded budgeting, controlling

project, planning resources and establishing risks as the most important reasons for making

estimates. With budgeting and controlling the project as the most important ones. These reasons

given by the project managers are almost the same as the benefits listed except the increased

credibility to the Development Team and higher quality. This shows that many of the benefits are

regarded as important, where most of them are also to some degree necessary for the projects

when it comes to the successfulness of the project.

How important the benefits are and how much they increase based on time spent on estimating is

related to how much the accuracy increases with the time spent on estimation. The increase in

benefits must be weighed against the cost and the time lost on doing the actual estimates. It is also

important that no time is spent on estimation that does not increase the benefits noticeably.

Because any activity that does not directly contribute to putting something of value into the

customer’s hands is a waste (Holub, 2015).

Some sort of knowledge about the time frame of a project is undoubtedly necessary for a project

with a customer or if the software should be used by someone else than the developer. Therefore,

some estimation or projection as it is called in the #NoEstimates theory is necessary, but how

- 30 -

accurate should they be? McConnell regards a good estimate to be an estimate that provides clear

enough view of the project to allow the project leadership to make good decisions about how to

control the project to hit its target (McConnell, 2006). The usage of the words “clear enough

view” is very different from person to person, but in this context, it does not sound like the

estimates need to be very accurate. Only to the point that the estimates makes it possible the

project leadership to use them for making good decisions.

It is well known that making good estimates is easier when more about the project and each item

is known. Therefore it is very important to make as much decisions about the software as possible

to narrow down the uncertainty of the estimates (McConnell, 2006). This is also backed up by the

Cone of Uncertainty that shows how the variance in the estimates are reducing as the projects

moves towards having the user interface design or the detail design completed. The project

managers interviewed also answered that non, or rough estimates were the only estimates that

seemed necessary before the items in the Backlog have been specified on a Task level.

A good way of helping the customer to make decisions early is by using UX Design on the start

of the project or on a pre-project. This will move the project past the “user interface design

completed” milestone and according to the Cone of Uncertainty the best-case accuracy of

estimates will then be reduced to [-20%, +25%] of the estimate. Using UX Design for the whole

software in the entire project in a pre-project or before the Developer Team starts coding, would

arguably remove much of the agility during the project. This could be solved by splitting the

project into smaller parts and then designing part by part of the project as the project progresses.

The Development Team can estimate and start developing a part of the project when that part is

designed. The UX Designer should not design further ahead in time than necessary for the

Development Team to have enough to do. This will keep most of the agility in the project. If

someone demands estimates for a part of the projector or the entire project, before the needed UX

Design is done they should be informed that these estimates are very uncertain.

Instead of using the word estimating, #NoEstimates uses the word projecting. In this method, the

number of User Stories are used for projecting when it is likely for parts of the project to be

finished. This is done by comparing the amount of User Stories in the project with the rate the

Development Team are finishing the User Stories (Duarte, 2014). The biggest difference from a

regular estimation process is that in the #NoEstimates method, no estimates are made before the

developers starts coding. Therefore, no more time than it takes to count User Stories and keeping

- 31 -

score of how many User Stories that have been finished during the Sprints are spent on

estimation. Still, the project must be divided down and specified until there is nothing bigger than

User Stories in the Backlog for the method to work and project a time frame. Duarte even claims

that this works better than actual estimates and has reasonable data from a lot of projects to back

him up on that claim (Duarte, 2014).

Though, the #NoEstimates method has some challenges. The project managers interviewed

answered that one of the biggest problems of the #NoEstimates methods would be changing the

view of the customers and the organization to not always have and use estimates. The other issues

the project managers interviewed highlighted with the #NoEstimates method were sizing the User

Stories properly into small Stories or to almost equally sized Stories. This shows that the project

managers interviewed did not believe that Vasco Duarte #NoEstimates method of estimation

works as well as he claims it does.

Duarte highlights that this method will work regardless of the size of the User Stories. One of the

project managers interviewed said that “this might work but it sounds a bit extreme”. He might

have a fair point, why not make very rough estimates instead? This would not take more time

than one person reading the actual Stories. The main reason to use the #NoEstimates method

would be if Duarte is correct, and that this method is more accurate than other estimates and

works for all User Stories almost regardless of size. Another reason would be that there is no

actual estimate to hand over to the customer before the first work period/Sprint is finished. In this

case, no one would be held accountable for creating a bad estimate before the Development Team

has had the time to finish some of the User Stories and created projections from that.

It is very important that estimates are used for what they really are. They are estimates with

degree of uncertainty related to a lot of known and unknown variables. Estimates should never be

used as promises, they are not commitments and should not be used as targets either. If

commitments are needed or targets must be set, they should be based on the estimates because

that is better than basing them on nothing. Still the large amount of uncertainty in the estimates

must be accounted for if commitments should be made or targets set.

According to some of the project managers that were interviewed this is often done by

multiplying with factors like 2 or pi or other numbers, though this is mostly used within projects

that have a fixed price or target price. This is a reasonable way of addressing the risk in the

- 32 -

projects because the developing company does not want to lose money and take all the risk

themselves. Especially since studies shows that developers also tend to make optimistic estimates

(Genuchten, 1991; Jørgensen & Grimstad, 2005). This can create some problems though. If the

developers know that no matter how they estimate the estimates will be multiplied with the same

factor, the developers might start making lower estimates. Therefore, this is a way of reducing

risk for the development company but will probably not increase the accuracy of the estimates.

There is also a well-known problem with estimating called Parkinson’s Law which states: "that

work expands to fill the time available for its completion". The project managers also confirmed

that projects mostly use all time available. Due to of Parkinson’s Law, making higher estimates

will not necessarily increase the revenue for a development company. Still over estimating is

much better than losing money. If possible, estimates should therefore be overestimated to reduce

risk, when commitments are made or targets are set based on the estimates (McConnell, 2006).

All the project managers said that they preferred using hours or days as metrics for estimates,

instead of Story Points. They had tried using Story Points earlier, but they did not like the concept

of estimating by using something abstract, and then having to re-calculate it to hours to hours if

the customer asked when something could be finished. The abstraction of estimating by using

Story Points, has most advantages for the Development Team that creates the estimates. Because

they can blame the system and show that these estimates really are not accurate.

When the projects use a traditional project manager instead of just using the Scrum Master he will

be the middleman and in charge of projecting what can be done in the future. The project

manager will have to find out how long time it will take to finish a certain amount of Story

Points. For this to work the speed of the Development Team or the throughput of the team must

be calculated or already known which is not always the case. It can also be hard for many

customers to relate to Story Points, and possibly make them feel like they do not have full control

of the project. Still the project managers said that they preferred estimating using the Fibonacci-

scale or similar scales. This is probably a combination of it being easier to use a high number for

an estimate and that most estimates will be rounded up to nearest number in the sequence.

The project managers answered very differently when they were asked about which methods they

preferred to use when estimating at different stages of the project. Though, Three-Point

Estimation appeared to be the one most of them would use if more accurate measurements were

needed. It is important to notice that these answers were given by most of them under the

- 33 -

assumption that they needed to select a known method. All except one, answered that only a

rough estimate done by one person would be good enough until that part was divided in smallest

items if more accurate estimates were not required.

There are a lot of great sources of error within Software Development. As mentioned earlier the

greatest of them are the uncertainty in the project itself and all the possible scope changes. The

project managers also regarded lack of understanding complexity and needed technology,

unmanaged or unforeseen risks, bad communication, unrealistic cost in project proposal by seller

and inexperienced or non-talented developers as great sources of risk. Almost all of these sources

of error can be reduced if a detailed and thorough specification process is done. Since Agile

Projects are supposed to change over time, there are always going to be some errors in the

estimates. Especially estimates for entire projects or large parts of the project. This will be

explained more directly in the conclusion.

- 34 -

5 Conclusion

It is necessary to have estimations within Software Development Projects, because the customer

needs to have some knowledge about the time frame and how much that will be finished by then.

The customer should be informed about the uncertainty of the estimates, and that the uncertainty

will be reduced when more decisions are made.

There are a lot of benefits by having accurate estimates and often it is also necessary to have

them. Still, it is important that only the needed amount of time is spent on making the estimates.

The estimates just need to be good enough. Specifying the project by splitting up Stories and

making decisions about the software is the best way of narrowing down the uncertainty of the

estimates, as well as making it possible to create more accurate estimates. Therefore, only rough

estimates should be made before the project is more specified and divided up. The specification

part should be done by a UX Designer who will collaborate with the customer to make software

that enhances the experience the user has while using the software, and make sure the users find

value in the product.

It is important that only the parts of the project that is soon going into development are heavily

specified. Otherwise agility will be lost in the process. If time should be used to divide the User

Stories into Tasks before they are estimated will depend on the customers demand for accuracy

and total control over the project. #NoEstimates will probably work if it is implemented in an

organization, but the project should be specified into small User Stories for the projection to

really work. For less specified parts of the project rough estimates should be enough to make the

right decisions. The people working on the project should also make the estimates since they can

make the most accurate ones.

- 35 -

6 References

Agile Alliance. (2017). “Backlog Grooming” Agile Alliance, Retrieved June 20, 2017 from

https://www.agilealliance.org/glossary/backlog-grooming
Beckerleg, G. (2014). “#NoEstimates - Stop lying to yourself and your customers and stop estimating”

Gerard Beckerleg, Retrieved May 12, 2017 from
https://www.slideshare.net/gerardbeckerleg/noestimates-stop-lying-to-yourself-and-your-
customers-and-stop-estimating

Chon, M. (2016). “What are story points” Mountain Goat Software, Retrieved May 22, 2017 from
https://www.mountaingoatsoftware.com/blog/what-are-story-points

Cockburn, A. (2002). Agile software development: Addison-Wesley Longman Publishing Co., Inc.
Duarte, V. (2014). “No estimates - a controversial way to improve estimation with result-handouts” Vasco

Duarte, Retrieved May 5, 2017 from https://www.slideshare.net/duartevasco/no-estimates-a-
controversial-way-to-improve-estimation-with-resultshandouts

Genuchten, M. v. (1991). Why is Software Late? An Empirical Study of Reasons for Delay in Software
Development. IEEE Trans. Softw. Eng., 17(6). doi:10.1109/32.87283

Hartman, B. (2009). “Introduction to Planning Poker” Agile Zone, Retrieved May 20, 2017 from
https://dzone.com/articles/introduction-planning-poker

Holub, A. (2015). “#NoEstimates” Allen Holub, Retrieved May 12, 2017 from
https://holub.com/slides/NoEstimates.key.pdf

International Scrum Institute. (2016). Scrum Revealed Vol. 1.
Jones, C. (1994). Assessment and control of software risks: Yourdon Press.
Jørgensen, M. (2005). Practical guidelines for expert-judgment-based software effort estimation. IEEE

Software, 22(3). doi:10.1109/MS.2005.73
Jørgensen, M., & Grimstad, S. (2005). Over-Optimism in Software Development Projects: “The Winner's

Curse”. IEEE Computer Society.
Lakkaraju, R., & Goswami, S. (2016). “#NoEstimates, An analytical perspective” Scrum Alliance,

Retrieved July 2, 2017 from
https://www.scrumalliance.org/community/articles/2016/june/noestimates

Lanoue, S. (2015). “What is UX Design? 15 User Experience Experts Weigh In” User Testing, Retrieved
June 28, 2017 from https://www.usertesting.com/blog/2015/09/16/what-is-ux-design-15-user-
experience-experts-weigh-in/

Lowe, D. (2014). “Theme, Epic, Story, Task” Scrum & Kanban, Retrieved May 20, 2017 from
http://scrumandkanban.co.uk/theme-epic-story-task/

Maksimovic, Z. (2012). “Easy task estimation with Three-point estimation” Retrieved June 12, 2017
from http://www.agile-code.com/blog/easy-task-estimation-with-three-point-estimation-
technique/

McConnell, S. (2006). Software Estimation: Demystifying the Black Art: Microsoft Press.
Ming, L. M. (2014). “UI UX who does what? A designers guide to the tech industry” CO.DESIGN,

Retrieved June 28, 2017 from https://www.fastcodesign.com/3032719/ui-ux-who-does-what-a-
designers-guide-to-the-tech-industry

Radigan, D. (2017). “Epics, stories, versions, and sprints” Atlassian, Retrieved May 20, 2017 from
https://www.atlassian.com/agile/delivery-vehicles

Schwaber, K., & Sutherland, J. (2016). The Definitive Guide to Scrum: The Rules of the game
Scrum Institute. (2017). “The Scrum Product Backlog” scrum-institute.org, Retrieved May 20, 2017 from

http://www.scrum-institute.org/The_Scrum_Product_Backlog.php
scrum.org. (2017). “What is Scrum” Scrum.org, Retrieved April 12, 2017 from

https://www.scrum.org/resources/what-is-scrum
Thakur, D. (1999). “What is Software Requirements Specification? Explain Structure and Characteristics

of SRS.” Computer Notes, Retrieved June 28, 2017 from http://ecomputernotes.com/software-
engineering/softwarerequirementsspecification

Thomas, S. (2008). “Agile Project Scope” It's a delivery Thing, Retrieved May 22, 2017 from
http://itsadeliverything.com/agile-project-scope

Yatzeck, E. (2012). “How to Contol Scope Creep in Agile” Thought Works, Retrieved June 29, 2017
from https://www.thoughtworks.com/insights/blog/how-control-scope-creep-agile

https://www.agilealliance.org/glossary/backlog-grooming
https://www.slideshare.net/gerardbeckerleg/noestimates-stop-lying-to-yourself-and-your-customers-and-stop-estimating
https://www.slideshare.net/gerardbeckerleg/noestimates-stop-lying-to-yourself-and-your-customers-and-stop-estimating
https://www.mountaingoatsoftware.com/blog/what-are-story-points
https://www.slideshare.net/duartevasco/no-estimates-a-controversial-way-to-improve-estimation-with-resultshandouts
https://www.slideshare.net/duartevasco/no-estimates-a-controversial-way-to-improve-estimation-with-resultshandouts
https://dzone.com/articles/introduction-planning-poker
https://holub.com/slides/NoEstimates.key.pdf
https://www.scrumalliance.org/community/articles/2016/june/noestimates
https://www.usertesting.com/blog/2015/09/16/what-is-ux-design-15-user-experience-experts-weigh-in/
https://www.usertesting.com/blog/2015/09/16/what-is-ux-design-15-user-experience-experts-weigh-in/
http://scrumandkanban.co.uk/theme-epic-story-task/
http://www.agile-code.com/blog/easy-task-estimation-with-three-point-estimation-technique/
http://www.agile-code.com/blog/easy-task-estimation-with-three-point-estimation-technique/
https://www.fastcodesign.com/3032719/ui-ux-who-does-what-a-designers-guide-to-the-tech-industry
https://www.fastcodesign.com/3032719/ui-ux-who-does-what-a-designers-guide-to-the-tech-industry
https://www.atlassian.com/agile/delivery-vehicles
http://www.scrum-institute.org/The_Scrum_Product_Backlog.php
https://www.scrum.org/resources/what-is-scrum
http://ecomputernotes.com/software-engineering/softwarerequirementsspecification
http://ecomputernotes.com/software-engineering/softwarerequirementsspecification
http://itsadeliverything.com/agile-project-scope
https://www.thoughtworks.com/insights/blog/how-control-scope-creep-agile

- 36 -

7 Appendices

Appendix 1

Interview Guide

The main goal of the interviews is to find out how accurate estimation the project managers

regards as necessary at the different stages of a project, as well as which methods they

recommend using at the different stages of the project. The other goals of the interviews are to

gain information about:

1. Why they consider it important to make estimates.

2. What they regard as the greatest sources of error.

3. How accurate their estimates normally are and what the consequences of bad estimates

have been in their projects.

4. If they believe it would be possible to change to the #NoEstimates method, and what they

assume to be the biggest problems with #NoEstimates.

All interviews will be anonymous and held at the project managers own company locations. The

project managers will be informed about #NoEstimates and the results presented by Vasco Duarte

(Duarte, 2014). The project managers will be encouraged to answer all questions according to

their opinion and not how the think they are supposed make estimates or how it is done in their

organization.

The interview questions:

1. What is your name?

2. How many years have you worked within Software Development?

3. What is your background from before you became a project manager?

4. In your opinion, how accurate should estimates be before a project proposal?

5. In your opinion, how accurate should estimates be before Epics are divided into smaller

Stories?

6. In your opinion, which method should be used for estimation of Epics?

7. In your opinion, should Stories be estimated before divided into Tasks?

- 37 -

8. In your opinion, which method should be used for estimation of Stories?

9. In your opinion, what are the greatest sources of error when estimating Stories?

10. In your opinion, how accurate should Backlog Items be estimated?

11. In your opinion, should objects be re-estimated if new information appears?

12. In your opinion, what type of project requires the largest amount of time spent on

estimation?

13. How accurate have the project estimates been in projects you have worked on?

14. What have the consequences been on projects that were not completed on delivery time?

15. Do you think the methods explained in #NoEstimates would work?

16. What are the biggest problems with #NoEstimates?

17. In your opinion, what is the most important reason to make estimates?

18. In your opinion, what are the greatest sources of error when estimating project cost and

delivery time?

- 38 -

Appendix 2

The Calculation Method of Interview Results

The results from each question are calculated as percentage. The answers for each question are

created by the project managers, and the value given to each answer are calculated by:

- How the answer is prioritized by the person interviewed if he has more than one answer.

- How many of the interviewed people did give that answer.

For example:

In your opinion, what are the greatest sources of error when estimating project cost and delivery

time?

Person A answers: Scope Changes and Bad Communication

Person B answers: Lack of understanding of needed technology and complexity, Unmanaged or

unforeseen risk, Inexperienced or non-talented developers and Unrealistic cost in project proposal

by seller.

Person C answers: Scope changes and a small part might be Bad Communication

These answers will result in the following calculations:

A A % B B % C C % Total: Percentage:

Scope changes 1 0,5 0 4 0,8 1,3 43,33 %

Lack of understandment 0 1 0,3 0 0,25 8,33 %

Unmanaged or unforeseen risk 0 1 0,3 0 0,25 8,33 %

Bad communication 1 0,5 0 1 0,2 0,7 23,33 %

Un realistic cost in project proposal 0 1 0,3 0 0,25 8,33 %

Inexperienced or non-talented developers 0 1 0,3 0 0,25 8,33 %

Sum 2 1 4 1 5 1 3 1

