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Abstract 
 

Most natural phenomena in the world have a nonlinear behaviour. If systems are to be described by 

linear equations they must follow the superposition principle. The superposition principle, consisting 

of additivity and homogeneity, states that the response caused by several inputs are equal to the 

sum of each input separately. Even though a minimal amount of systems in the world follow this 

principle, linearization of systems is widely used. The classical thoughts that the world could be 

described linearly were not disputed until the late 19th century.  

Dynamical systems describe how all points of the system evolve with time. Most nonlinear systems 

cannot be explicitly solved, so phase diagrams are widely used. Phase diagrams map the velocity and 

position as time increases, making it possible to investigate how the system travels after some time. 

Trajectories with different initial values also tells us how sensitive the system is to its starting values.  

This thesis has been divided into two parts. Part I consists of chapters 1-4, while part II consists of 

chapter 5-9.  

Chapter 1 gives an introduction briefly describing important terms and the history of nonlinearity in 

engineering. Chapter 2 gives a description of an unforced, linear dynamical system with different 

values of damping, using the method of the phase plane. In chapter 3, a linear forcing term is added 

to the system, and limit cycles are explained.  

The Pendulum equation, van der Pol equation and the Morison equation, which all describe known 

nonlinear systems are presented in chapter 4.  

Part II of this thesis consists of a parameter study of an equation of motion with nonlinearity in either 

the forcing or the damping term.  

Chapter 5 gives the presentation of what is termed the “base-case system”, which is an undamped 

system subjected to a nonlinear forcing term representing the drag force from the Morison 

equation. The parameters are varied separately to look at their effect on the system.   

In chapter 6, linear, constant damping is added to the base-case system and some selected systems 

with varied parameters from chapter 5. The results are as expected, with decaying amplitudes due to 

the damping. The systems mass parameter is also varied to get systems close to and at resonance. 

These systems have a behaviour similar to the results obtained from the van der Pol equation in 

chapter 4. 

 

 



II 
 

Chapter 7 and 8 look at systems with a nonlinear damping term. In chapter 7, the homogenous base-

case system is investigated, as well as systems with some degree of resonance. Critical values of the 

nonlinear damping parameter are found, where negative damping overtakes the systems. These 

critical values are different for each system. In chapter 8, a linear forcing term is added. The results 

from this chapter show that the critical values of the nonlinear damping parameter are the same 

with force added.  

 

In chapter 9, limit cycles are found for the base-case system with linear, constant damping and 

nonlinear forcing. The limit cycles are found for systems with the mass parameter varied to make the 

systems have some degree of resonance. As the damping is linear and constant, and some 

trajectories with initial conditions inside the limit cycle increase their amplitudes, it is concluded that 

the drag force from the Morison equation will to some degree work as negative damping. 

The thesis ends with a summary of conclusions and suggestions for further work within this subject. 

This thesis consists of a great deal of figures, plotted in Matlab. To make the figures easily readable 

the size of each diagram is rather large. This causes the thesis to be of significant length. To make it 

lighter, the presentation of the separate diagrams in chapter 7 and 8 is put into Appendix C and D 

respectively. 
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PART I 

 
Part I of this thesis presents the preliminary considerations which were necessary to achieve part II.  

Chapter 1 introduces differential equations and nonlinearity.  

Second order linear differential equation are presented and investigated using the phase plane 

method in chapter 2. The book “Nonlinear Differential Equations” by Struble R.A and Martin W.T was 

a great reference for the preparation of this chapter.  

Chapter 3 presents the forced oscillations in the phase plane and explain the concept of limit cycles. 

In chapter 4, known nonlinear equations are presented. The Van der Pol’s equation and the 

Pendulum equation are worked through, presenting the typical phase plane diagrams showing the 

behaviour they exhibit. Lastly in chapter 4, the Morison equation is presented, from where the drag 

force is used in the parameter studies in part II. 
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Chapter 1 – Introduction 
 

1.1 Differential equations in engineering 
 

Differential equations are equations that involve the derivatives of some function. These equations 

describe the change in the system, and its solutions are functions themselves. The origin of 

differential equation is traced back to Isaac Newton’s work written in 1671, and published in 1736 on 

what he called “fluxional equations.” Newton classified three kinds of equations: 

 

𝑑𝑦

𝑑𝑥
= 𝑓(𝑥) (1.1) 

𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦) (1.2) 

𝑥1

𝜕𝑦

𝜕𝑥1
+ 𝑥2

𝜕𝑦

𝜕𝑥2
= 𝑦 (1.3) 

 

The first two equations, (1.1) and (1.2), are classified as ordinary differential equations, while the last 

equation, (1.3) is a partial differential equation. Newton used a different notation, using dots for the 

derivative. These equations are written in the modern notation, by Leibniz, which also introduced the 

term “differential equations” in 1680.  The Bernoulli brothers and others further studied the work of 

Leibniz. The application of the theory has stretched from first being mostly towards geometry and 

mechanics, to involving all fields of science and engineering, such as astronomy, electricity, 

magnetism, quantum mathematics, dynamical systems, and relativity theory. [1] 

 

1.2 Ordinary differential equations 
 

Differential equations can be divided into ordinary and partial differential equations. Ordinary 

Differential Equations, (ODEs) contain only one independent variable. Partial differential equations 

contain two or more independent variables. Example of an ODE is the following which has x as its 

independent variable: 

𝑑𝑦

𝑑𝑥
= 𝑓(𝑥) (1.4) 

specifying the slope of a graph, y(x). Another example is the equation with variable t, describing a 

function that varies with time (t): 

𝑚
𝑑2𝑦

𝑑𝑡2
= 𝑓(𝑡) (1.5) 
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(1.5) is Newton’s second law of motion F=ma. The heat equation, describing the variation of heatflux 

is an example of a partial differential equations, where h(x,t) are the independent variables; 

position(x) and time(t): 

𝜕ℎ

𝜕𝑡
= 𝑘

𝜕2ℎ

𝜕𝑥2
(1.6) 

 

In this thesis, only ODEs will be considered.  

The order of the differential equation is determined by the highest order derivative that occurs in the 

equation. The equation specifying the slope of a graph is of first order, while Newton’s second law of 

motion is a second order ODE. An equation that occurs in the theory of fluid boundary layers is: 

𝑑3𝜑

𝑑𝑥3
+

1

2
𝜑

𝑑𝜑

𝑑𝑥
= 0 (1.7) 

Which is a third order ODE as it contains the third derivative for φ(x). [2]. Furthermore, it is a 

nonlinear equation as it contains the nonlinear term 𝜑
𝑑𝜑

𝑑𝑥
. 

 

1.2.1 Linear and nonlinear systems 
 

A nonlinear system is a system that is not linear. It is a set of equations that do not follow the 

superposition principle. The superposition principle consists of the additivity and homogeneity 

properties: 

𝐹(𝑥1 + 𝑥2) = 𝐹(𝑥1) + 𝐹(𝑥2)              𝐴𝑑𝑑𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (1.8) 

𝐹(𝑎𝑥) = 𝑎𝐹(𝑥)                                  𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 (1.9) 

 

The superposition principle states that the response caused by several inputs is the same as the sum 

of the response from each input separately.  

Linear systems are possible to solve to find an explicit solution. Nonlinear systems cannot be solved 

explicitly except from some special cases. An ODE for y(t) of the nth order is said to be linear if it can 

be written as: 

𝑎𝑛(𝑡)
𝑑𝑛𝑦

𝑑𝑡𝑛
+ 𝑎𝑛−1(𝑡)

𝑑𝑛−1𝑦

𝑑𝑡𝑛−1
+ ⋯ + 𝑎1(𝑡)

𝑑𝑦

𝑑𝑡
+ 𝑎0(𝑡)𝑦 = 𝑓(𝑡) (1.10) 

 

where only y and derivatives of y occur. If f(t)=0 the equation is said to be homogenous. If f(t)≠0 the 

equation is inhomogenous. [2] 
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1.2.2 Nonlinear dynamical systems 
 

A dynamical system is a system that can be described by how all points of the system evolve with 

time. What happens to the system over time is described by a mathematical rule, typically a 

differential equation for continuous time. The solution space can be presented as points of the 

position and the velocities of the system. The initial position tells us where the system is placed and 

using the mathematical rule we can identify the location of the system at all other times.   

The nonlinear ODEs can rarely be solved analytically. Nonlinear systems may have no solutions to an 

initial value problem, or they may have an infinite number of solutions. Studying these systems 

evolve around finding certain properties of the solutions. Plotting the positions and velocities of the 

solutions over time gives us a trajectory, telling us how the system travels as time passes. These 

trajectories can be very useful in analysing how, or if the system will settle after some time. [3] 

Examples of a nonlinear dynamical system are the Pendulum equation: 

𝑑2𝜃

𝑑𝑡2 +
𝑔

𝑙
𝑠𝑖𝑛𝜃 = 0 (1.11)

the van der Pol equation: 

𝑑2𝑥

𝑑𝑡2
− 𝜇(1 − 𝑥2)

𝑑𝑥

𝑑𝑡
+ 𝑥 = 0 (1.12) 

and the Morison equation: 

𝑚
𝑑2𝑥

𝑑𝑡2
+ 𝑐

𝑑𝑥

𝑑𝑡
+ 𝑘𝑥(𝑡) = 𝜌𝐶𝑚𝑉

𝑑𝑢

𝑑𝑡
+

1

2
𝜌𝐶𝐷𝐴𝑢|𝑢| (1.13) 

 

All of which will be studied in chapter 4. 

 

1.3 From linearity to nonlinearity 
 

Classical science evolved around the concept of a linear world. Isaac Newton’s laws of physics 

presented the universe as constant and static with time and space with linear variables having no 

beginning nor end. The realization that the world is very much nonlinear has by some been 

considered a new paradigm, while others have seen it as a natural evolvement of the sciences. The 

classical thoughts grounded in Newtonian mechanics and Euclidian geometry began to be disputed in 

the late 19th century. Einstein and his theory of relativity in 1915 revealed that time and space are 

related and relative to the observer and that space-time is a dynamic non-Euclidean geometry. 

Heisenberg encountered obstacles to measurement which revealed the complex and dynamical 

patterns of the nature. Roger Penrose and Stephen Hawking’s work implied that the universe had a 

specific beginning in space-time, overthrowing Newton’s assumption. [4] 

The invention of radio, laser, radar and computers in the 20th century made it crucial to look at the 

nonlinearity that occurred.  Henri Poinclare pointed at problems regarding the linear description of 

the world in 1903. Edward Lorenz brought attention to dynamical systems in meteorology and 

published the first nonlinear phenomena mathematical model in 1963. [4] 
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1.4 Nonlinearity in engineering 
 

The world consists of nonlinearity in most physical systems, across the different sciences. 

Linearization is a much used tool to be able to solve the system equation and predict what will occur 

at any time. Linearization is possible if the amplitude is small enough, so that higher order terms can 

almost be negligible. The following are some examples of nonlinearity in engineering, and illustrates 

the importance of studying nonlinearity. 

The simplest example is to look at the bending of a branch. When the applied load is sufficiently 

small, the bending of the branch is approximately proportional to the applied force. But when 

increasing the load, the branch will at some point break. [5]  

The most important nonlinearities in engineering are geometrical, physical and structural. The 

pendulum is an example of a geometrical nonlinearity. The linearization of the pendulum equation is 

based on the Taylor series: 

sin(𝜃) = 𝜃 −
𝜃3

3!
+

𝜃5

5!
− ⋯ (1.14)

At small angles the pendulum equation can be linearized (sin(θ) ~ θ), as the θ part is clearly 

dominating in the series. For larger oscillations or rotational motion the pendulum must be studied 

as a nonlinear equation as θ is not the only part contributing in the series given by (1.14). 

The stress-strain diagrams for steel and rubber are examples of physical or material nonlinearities. 

The stiffness of a system of springs illustrates structural nonlinearity as the stiffness will increase or 

decrease after a certain value of load or deflection is reached. Another source of nonlinearity is 

damping, which is very complex. Damping slows the system, normally through friction. [5] 
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Chapter 2- Linear second order ordinary 

differential equation 
 

Linear ordinary differential equations are possible to solve to find an explicit solution based only on 

the initial condition. The free response equation of motion will be studied in this chapter. The 

equation will involve only linear terms and the results for different damping cases will be presented. 

The trajectories in the phase plane will show what happens to the position and velocity of the system 

as time increases. The method using the phase plane was adapted from “Nonlinear Differential 

Equations” by Struble R.A and Martin W.T. [7] 

The equation: 

𝑚
𝑑2𝑥

𝑑𝑡2
+ 𝑐

𝑑𝑥

𝑑𝑡
+ k𝑥(𝑡) = 0 (2.1) 

 

is a second order ordinary differential equation that describes a free response of a single degree of 

freedom system. The m represents the mass, c is the damping coefficient and k represents the 

stiffness of the system. It is known as an equation of motion as x(t) describes position, its first 

derivative describes velocity, and the second derivative gives the acceleration.  

Introducing new variables for simpler equations: 

ω0 = √
𝑘

𝑚
(2.2) 

𝜎 =
𝑐

𝑚
(2.3) 

 

Substituting x(t)=Xeλt in (2.1) results in: 

λ2𝑋𝑒λt + 𝜎λX𝑒λt + ω0
2X𝑒λt = 0 (2.4) 

(λ2 + 𝜎λ + ω0
2)X𝑒λt = 0 (2.5) 

 

Initial conditions are represented by: 

𝑥(0) = 𝑑0 (2.6) 

𝑑𝑥

𝑑𝑡
(0) = 𝑣0 (2.7) 

 

which describe the initial displacement d0 and the initial velocity v0 at time t=0. 
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(2.5) is satisfied trivially when X=0 and the non-trivial solution is the quadric equation 

λ2 + 𝜎λ + ω0
2 = 0 (2.8) 

with roots 

𝜆1,2 = −
𝜎

2
+
−

√(
𝜎

2
)

2

− ω0
2 (2.9) 

The quadratic roots (2.9) are affected by the amount of damping, c. In this chapter four cases of 

damping will be presented: no damping, underdamping, overdamping and critical damping. Lastly, 

phase diagram for a system with negative stiffness will be presented.  

We are also introducing a new variable for the description of the velocity: 

𝑦(𝑡) =
𝑑𝑥

𝑑𝑡
(2.10) 

 

2.1  Case 1- System without damping 
 

(
𝜎

2
)

2

= 0 (2.11) 

 

When (
𝜎

2
)

2
= 0 the system has no damping, and the system will oscillate freely. 

The roots (2.9) become imaginary: 

𝜆1,2 =
+
−

√−ω0
2 =

+
−

𝑖ω0 (2.12) 

where ωn is called the natural frequency of the system and the system will oscillate freely around this 

frequency as shown in figure 2.1. 

 

2.1.1 Free response 
 

The solution of (2.1) becomes: 

𝑥(𝑡) = acos(ω0𝑡) + 𝑏𝑠𝑖𝑛(ω0𝑡) (2.13) 

where a and b depend on the initial conditions (2.6) and (2.7). Applying initial conditions gives the 

solution: 

𝑥(𝑡) = 𝑑0cos(ω0𝑡) +
𝑣0

ω0
sin(ω0𝑡) (2.14) 
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Figure 2.1: Free response without damping. 

Figure 2.1 shows that the free response without damping of the system will be a sinusoidal response. 

The initial position, d0, is set to 0, and the starting point when t=0 is indicated by the arrow. 

  

2.1.2  Phase plane diagram 
 

The velocity (2.10) of an undamped system is: 

𝑦(𝑡) =
𝑑𝑥

𝑑𝑡
= − aω0sin(ω0𝑡) + 𝑏ω0𝑐𝑜𝑠(ω0𝑡) (2.15)  

with initial values (2.6) and (2.7): 

𝑦(𝑡) = − d0ω0sin(ω0𝑡) + v0𝑐𝑜𝑠(ω0𝑡) 

 

Plotting the position x and the velocity y gives us the trajectory in the phase plane. Figure 2.2 shows 

that the trajectory is an ellipse with centre in the origin, x=0 and y=0.  
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Figure 2.2: Trajectory in the phase plane of an unforced system without damping. 

 

The origin is here called a center, as the trajectories neither move away or converge towards it. [6] 

 

2.2 Case 2- Underdamped system 
 

(
𝜎

2
)

2

< ω0
2 (2.16) 

 

When the damping rate is below the critical damping rate, the system is regarded as 

“underdamped”. The critical damping rate is given as: 

𝑐𝑐 = 2𝑚ω0 (2.17) 

Underdamped systems will oscillate freely from the initial displacement and velocity. The roots 

become imaginary. Introducing a new variable for the rooted part of (2.9): 

ω𝑑 =
+
−

√(
𝜎

2
)

2

− ω0
2 =

+
−

𝑖ω0√1 −
𝑐

𝑐𝑐

(2.18) 
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2.2.1  Free response 
(2.1) gives the solution of: 

𝑥(𝑡) = 𝑒−
𝜎
2

𝑡(𝑎𝑠𝑖𝑛(ω𝑑𝑡) + 𝑏𝑐𝑜𝑠(ω𝑑𝑡)) (2.19) 

 

Using initial conditions (2.6) and (2.7), the solution becomes: 

𝑥(𝑡) = 𝑒−
𝜎
2

𝑡 ((
𝑣0

ω𝑑
+

𝜎

2ω𝑑
𝑑0) 𝑠𝑖𝑛(ω𝑑𝑡) + 𝑑0𝑐𝑜𝑠(ω𝑑𝑡)) (2.20) 

 

 

Figure 2.3: Free response of an underdamped system. 

 

Figure 2.3 shows the free response of an underdamped system and is of the same form as figure 2.2, 

but with decreasing oscillations due to the damping. At t=0, we set d0=0. 

 

2.2.2  Phase plane diagram 
 

Recognizing that: 

𝑥(𝑡) = 𝑒−
𝜎
2

𝑡(𝑎𝑠𝑖𝑛(ω𝑑𝑡) + 𝑏𝑐𝑜𝑠(ω𝑑𝑡)) = 𝐴𝑒−
𝜎
2

𝑡 sin(ω𝑑𝑡 + 𝜑) (2.21) 

for arbitrary A and φ, we get a velocity function (2.10): 

𝑦(𝑡) =
𝑑𝑥

𝑑𝑡
= −

𝜎

2
𝐴𝑒−

𝜎
2

𝑡 sin(ω𝑑𝑡 + 𝜑) + 𝐴ω𝑑𝑒−
𝜎
2

𝑡 cos(ω𝑑𝑡 + 𝜑) (2.22) 
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Introducing new dependent variables: 

𝑢(𝑡) = ω𝑑𝑥(𝑡) = 𝐴ω𝑑𝑒−
𝜎
2

𝑡 sin(ω𝑑𝑡 + 𝜑) (2.23) 

𝑣(𝑡) = 𝑦(𝑡) +
𝜎

2
𝑥(𝑡) = 𝐴ω𝑑𝑒−

𝜎
2

𝑡 cos(ω𝑑𝑡 + 𝜑) (2.24) 

 

Where equations (2.23) and (2.24) represent a spiral as shown in Figure 2.4. [7] 

 

Figure 2.4: Trajectories in the uv-plane of an underdamped, unforced system. 

 

Going back to the xy-plane by using (2.23) and (2.24): 

𝑥(𝑡) =
𝑢(𝑡)

ω𝑑

(2.25) 

𝑦(𝑡) = 𝑣(𝑡) −
𝑢(𝑡)𝜎

2ω𝑑

(2.26) 
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Figure 2.5: Trajectories in the phase plane of an underdamped, unforced system.  

 

The origin is called a spiral point. When the damping coefficient c is positive, the spiral goes toward 

this point as time increases, as shown in figure 2.4. If c<0, the spiral will spiral away from the point 

[6].  The spiral in figure 2.5 shows a distorted spiral in the phase plane. The dotted line shows how 

the figures will continue to spiral if time is increased. 

 

 

2.3  Case 3- Overdamped system 
 

(
𝜎

2
)

2

> ω0
2 (2.27) 

 

When c>cc , where cc is defined in equation (2.17), the system is “overdamped”.  

 

2.3.1  Free response 
 

The overdamped system will not oscillate freely and the solution of equation (2.1) becomes: 

𝑥(𝑡) = 𝑎𝑒λ1𝑡 + 𝑏𝑒λ2𝑡 (2.28) 

  

where a and b again are determined from the initial conditions from equations (2.6) and (2.7), and 

the solution becomes: 
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𝑥(𝑡) = (
𝑑0λ2 − 𝑣0

λ2 − λ1
) 𝑒λ1𝑡 + (

𝑣0 − 𝑑0λ1

λ2 − λ1
) 𝑒λ2𝑡 (2.29) 

 

 

Figure 2.6: Free response of an overdamped system. 

Figure 2.6 shows the free response of the overdamped system. The initial position d0=0 is chosen, 

and the starting point is indicated by the arrow. The figure shows that the system goes to zero 

position without oscillation.  

 

2.3.2  Phase plane diagram 
 

Rewriting the equation (2.1) by using the expression for velocity (2.10) we get: 

𝑑2𝑥

𝑑𝑡2
=

𝑑𝑦

𝑑𝑡
= −

𝑘

𝑚
𝑥(𝑡) −

𝑐

𝑚
𝑦(𝑡) = −ω0

2𝑥(𝑡) − 𝜎𝑦(𝑡) (2.30) 

 

Seeking a system of the form: 

𝑑𝑢

𝑑𝑡
= 𝛼1𝑢(𝑡) (2.31) 

𝑑𝑣

𝑑𝑡
= 𝛼2𝑣(𝑡) (2.32) 

 

By applying linear transformation of the form: 

𝑢(𝑡) = 𝑏11𝑥(𝑡) + 𝑏12𝑦(𝑡) (2.33) 
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𝑣(𝑡) = 𝑏21𝑥(𝑡) + 𝑏22𝑦(𝑡) (2.34) 

where x(t) can be expressed as (2.10) and y(t) as (2.30). 

 

The following is obtained: 

𝑏11𝑦(𝑡) + 𝑏12(−ω0
2𝑥(𝑡) − 𝜎𝑦(𝑡)) = 𝛼1(𝑏11𝑥(𝑡) + 𝑏12𝑦(𝑡)) (2.35) 

𝑏21𝑦(𝑡) + 𝑏22(−ω0
2𝑥(𝑡) − 𝜎𝑦(𝑡)) = 𝛼2(𝑏21𝑥(𝑡) + 𝑏22𝑦(𝑡)) (2.36) 

 

For these equations to hold identically in x and y, each of the total coefficients of x(t) and y(t) must 

disappear.[7]  

Considering the sets of equations: 

−ω0
2𝑏12 = 𝛼1𝑏11 (2.37) 

𝑏11 − 𝜎𝑏12 = 𝛼1𝑏12 (2.38) 

 

Will give: 

𝑏12

𝑏11
= −

𝛼1

ω0
2

(2.39) 

1 +
𝛼1𝜎

ω0
2

= −
𝛼1

2

ω0
2

(2.40) 

and 

−ω0
2𝑏22 = 𝛼2𝑏21 (2.41) 

𝑏21 − 𝜎𝑏22 = 𝛼2𝑏22 (2.42) 

giving: 

𝑏22

𝑏21
= −

𝛼2

ω0
2

(2.43) 

1 +
𝛼2𝜎

ω0
2

= −
𝛼2

2

ω0
2

(2.44) 

 

Recognizing that equations (2.40) and (2.44) yield the characteristic equation, α1 and α2 become 

roots, λ1 and λ2. Setting b11=b21=ω0
2 gives the desired transformation (2.33) and (2.34): 

𝑢(𝑡) = ω0
2𝑥(𝑡) − 𝜆1𝑦(𝑡) (2.45) 

𝑣(𝑡) = ω0
2𝑥(𝑡) − 𝜆2𝑦(𝑡) (2.46) 

 

Noting that the determinant: 
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|
ω0

2 −𝜆1

ω0
2 −𝜆2

| = ω0
2(𝜆1 − 𝜆2) (2.47) 

is different from zero, since 𝜆1 ≠ 𝜆2. This makes (2.45) and (2.46) nonsingular. [7] 

The solutions become: 

𝑢(𝑡) = 𝑢0𝑒𝜆1𝑡 (2.48) 

𝑣(𝑡) = 𝑣0𝑒𝜆2𝑡 (2.49) 

where the pair u0 and v0 represents the initial condition (IC). Figure 2.7 shows the trajectories for 

different IC’s, marked by starting points. The arrows show that all trajectories tend towards the 

origin as time increases. 

 

Figure 2.7: Trajectories in the uv-plane of an overdamped, unforced system. 

 

 

Going back to x and y by using (2.45) and (2.46): 

𝑥(𝑡) =
𝑢(𝑡)

ω0
2

+
𝜆1(𝑣(𝑡) − 𝑢(𝑡))

𝜆1 − 𝜆2

(2.50) 

𝑦(𝑡) =
𝑣(𝑡) − 𝑢(𝑡)

𝜆1 − 𝜆2

(2.51) 
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Figure 2.8: Trajectories in the phase plane of an overdamped, unforced system. 

 

The trajectories in the phase-plane are given in figure 2.8. They are similar to those in the uv-plane, 

but appear rotated and stretched. The arrows in figures 2.7 and 2.8 indicate the starting position 

when t=0. The origin is called a node, and the trajectories converge to the point when the roots are 

negative as shown in figures 2.7 and 2.8. If the roots were both positive, the trajectories would move 

away from the origin. [6] 

 

2.4  Case 4- Critically damped system 
 

(
𝜎

2
)

2

= ω0
2 (2.52) 

 

When c=cc the system is described as “critically damped” and will not oscillate freely. 

The quadratic equation (2.8) gets the roots: 

𝜆1,2 = −
𝜎

2
+
−

√(
𝜎

2
)

2

− ω0
2 = −ω0 =  −

𝜎

2
(2.53) 
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2.4.1  Free response 
 

The roots are equal and the solution of equation (2.1) becomes: 

𝑥(𝑡) = 𝑎𝑒−ω0𝑡 + 𝑏𝑡𝑒−ω0𝑡 (2.54) 

 

where the constants a and b are determined form the initial conditions (2.6) and (2.7). Applying 

initial conditions gives solution: 

𝑥(𝑡) = 𝑑0𝑒−ω0𝑡 + (𝑣0 + ω0𝑑0)𝑡𝑒−ω0𝑡 (2.55) 

 

Figure 2.9: Free response of a critically damped system 

The response of a critically damped system shown in figure 2.9 is as figure 2.6 of the overdamped 

system. The only difference is that it reaches zero earlier. The initial condition d0 is set to 0 when t=0. 

 

 

2.4.2  Phase plane diagram 

 

In case of critical damping, the characteristic roots (2.53) are equal and the equations cannot be 

completely uncoupled. There is a need to find a linear transformation (2.33) and (2.34) to make one 

of the equations independent of the other. Using equation (2.45), and a second arbitrary equation 

independent of the first [7]: 

𝑢(𝑡) = ω0
2𝑥(𝑡) − 𝜆1𝑦(𝑡) =  (

𝜎

2
)

2

𝑥(𝑡) +
𝜎

2
𝑦(𝑡) (2.56) 

𝑣(𝑡) =
𝜎

2
𝑥(𝑡) (2.57) 
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By using equations (2.56) and (2.57), the derivatives become: 

𝑑𝑢

𝑑𝑡
= (

𝜎

2
)

2 𝑑𝑥

𝑑𝑡
+

𝜎

2

𝑑𝑦

𝑑𝑡
= (

𝜎

2
)

2

𝑦(𝑡) +
𝜎

2
(−ω0

2𝑥(𝑡) − 𝜎𝑦(𝑡))

= −
𝜎

2
((

𝜎

2
)

2

𝑥(𝑡) +
𝜎

2
𝑦(𝑡)) = −

𝜎

2
𝑢(𝑡) (2.58)

 

𝑑𝑣

𝑑𝑡
=

𝜎

2

𝑑𝑥

𝑑𝑡
=

𝜎

2
𝑦(𝑡) = 𝑢(𝑡) − (

𝜎

2
)

2

𝑥(𝑡) = 𝑢(𝑡) −
𝜎

2
𝑣(𝑡) (2.59) 

 

Making: 

𝑢(𝑡) = 𝑢0𝑒−
𝜎
2

𝑡 (2.60) 

where u0 depends on initial conditions. 

(2.60) in (2.59) gives: 

𝑑𝑣

𝑑𝑡
= 𝑢0𝑒−

𝜎
2

𝑡 −
𝜎

2
𝑣(𝑡) (2.61) 

Giving the solution of v: 

𝑣(𝑡) = 𝑢0𝑡𝑒−
𝜎
2

𝑡 + 𝑣0𝑒−
𝜎
2

𝑡 (2.62) 

where also v0 depends on initial conditions.  

 

 

Figure 2.10: Trajectories in the uv-plane of a critically damped, unforced system. 

 

By using equations (2.56) and (2.57) we obtain expressions for x(t) and y(t): 
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𝑥(𝑡) =
2

𝜎
𝑣(𝑡) (2.63) 

𝑦(𝑡) =
2

𝜎
𝑢(𝑡) − 𝑣(𝑡) (2.64) 

 

Plotting these expressions gives the trajectories in the phase-plane shown in figure 2.11. The linear 

transformations appears to involve rotation, stretching and reflection. [7] 

 

 

 

Figure 2.11: Trajectories in the phase plane of a critically damped, unforced system. 

 

The origin is here called an improper node. All trajectories converge to this point when the root is 

negative, as shown in figure 2.10 and 2.11. If the root was positive, the trajectories would move away 

from the point. [6] 

 

2.5  Case 5- Negative stiffness 

 

𝑘 < 0 

When k<0, ω0
2 <0, leading to an overdamped case. The solution is (2.48) and (2.49), with one root 

negative and the other positive. Figure 2.12 shows the trajectories in the uv-plane. Figure 2.13 shows 

the trajectories in the phase plane, obtained by using (2.50) and (2.51). [7] 
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Figure 2.12: Trajectories in the uv-plane for an overdamped, unforced system with negative stiffness. 

 

Figure 2.13: Trajectories in the phase plane for an overdamped, unforced system with negative stiffness. 

 

Figures 2.12 and 2.13 both have the origin as a saddle point. A saddle point is a critical point where 

the trajectories of the negative eigenvalue goes towards the critical point, while the trajectories of 

the positive eigenvalue moves away from the point. All other trajectories starting away from the 

point, go towards, but never reach the point, before moving away from the point. [6] 

Usually, for elastic systems, the stiffness is positive. When a system has positive stiffness, it 

experiences force in the same direction as the deformation of the system. Systems with negative 

stiffness contain stored energy leading to larger damping. Examples of systems with negative 

stiffness are pre-strained objects including post-buckled elements. [8] 
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Chapter 3 – Forced oscillations and limit cycles 
 

3.1  Forced oscillations 
 

When the equation of motion (2.1) has a forcing term added, it is called an equation for forced 

oscillations: 

𝑚
𝑑2𝑥

𝑑𝑡2
+ 𝑐

𝑑𝑥

𝑑𝑡
+ k𝑥(𝑡) = 𝐹(𝑡) (3.1) 

 

The loading may be harmonic or some arbitrary type of loading. As the harmonic loading case is 

relevant for waves, this type will be presented here. The loading is given as: 

𝐹(𝑡) = 𝐹0 sin( 𝜔𝑡) (3.2) 

It should be noted that all load functions can be given as sums of harmonic loading through Fourier 

expansion of the loads time history. 

3.1.1 Forced response 
 

The solution of (3.1) consists of two parts, called the “homogenous solution”, xh, and the “particular 

solution”, xp. The homogenous solution is (2.20), that of the unforced one. It is also called the 

“transient solution”, and will as time increases be damped out. 

𝑥ℎ(𝑡) = 𝑒−
𝜎
2

𝑡 ((
𝑣0

ω𝑑
+

𝜎

2ω𝑑
𝑑0) 𝑠𝑖𝑛(ω𝑑𝑡) + 𝑑0𝑐𝑜𝑠(ω𝑑𝑡)) (3.3) 

 

The particular solution will be of the form: 

𝑥𝑝(𝑡) = asin(𝜔𝑡 − 𝜃) (3.4) 

where a is the amplitude of the system, ω is the loading frequency of the system and θ represents 

the phase difference between the resultant motion and the driving force. Introducing a new variable: 

𝐴 =
𝐹0

𝑚
(3.5) 

 

Derivation of (3.4) in (3.2), and expansion of the sine and cosines terms gives: 

𝑠𝑖𝑛(𝜔𝑡)(𝐴 + 𝑎((𝜔2 − ω0
2) cos(𝜃) − 𝜎𝜔 sin(𝜃)))

+ cos(𝜔𝑡) (𝑎((ω0
2 − 𝜔2) sin(𝜃) − 𝜎𝜔 cos(𝜃))) = 0 (3.6)

 

Sine and cosine of the same angle are linearly independent; making (3.6) only satisfied in general if 

the coefficients of those terms vanish.  
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From the cos(ωt) coefficient we get: 

tan(𝜃) =
𝜎𝜔

ω0
2 − 𝜔2

(3.7) 

Which further leads to the expressions: 

sin(𝜃) =
ω0

2 − 𝜔2

√𝜎2𝜔2 + (ω0
2 − 𝜔2)2

(3.8) 

cos(𝜃) =
𝜎𝜔

√𝜎2𝜔2 + (ω0
2 − 𝜔2)2

(3.9) 

From the sin(ωt) coefficient we get: 

𝑎 =
𝐴

√(ω0
2 − 𝜔2)2 + 𝜎2𝜔2

(3.10) 

 

Using (3.10) in (3.4) gives an expression for the particular solution: 

𝑥𝑝(𝑡) =
𝐴

√(ω0
2 − 𝜔2)2 + 𝜎2𝜔2

sin(𝜔𝑡 − 𝜃) (3.11) 

 

where from (3.7) we have that: 

θ = 𝑡𝑎𝑛−1
𝜎𝜔

ω0
2 − 𝜔2

(3.12) 

The full calculation of the resulting equations (3.4)-(3.12) is given in Appendix B. 

Figure 3.1: Response of a forced damped system, note the initial transient motion caused by the initial 
conditions for displacement and velocity. 

Figure 3.1 shows the full response of the forced equation of motion as a sum of the homogenous 

solution (3.3) and the particular solution (3.4). The homogenous solution will be damped out as time 
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increases, leaving only the particular solution which is a sinusoidal wave. From this, we see that the 

particular solution gives the steady state solution, the response the system will have after some time. 

This response does not depend on the initial condition. [9] 

 

3.1.2 Resonance and phase curves 
 

Figure 3.2 shows the resonance curves for different values of damping. When the damping rate is 

increased, the resonance frequency, ωd, is lowered. Resonance occurs when the loading frequency, 

ω, is equal to the Eigen frequency, ω0, of the system. [10] 

 

Figure 3.2: Resonance curves for different values of damping. 

 

The quantity (3.12) represents the phase difference between the force and the motion as a result of 

the force. Keeping ω0 fixed, figure 3.3 shows how the phase difference increases for different values 

of damping. For all values of damping the phase is 0 at ω=0, increases to 
𝜋

2
 at ω= ω0 and ends towards 

π when ω increases. [9] 
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Figure 3.3: Phase curves for different values of damping. 

From figures 3.2 and 3.3 we see that when the loading frequency is a lot less than the Eigen 

frequency of the system the motion is controlled by the stiffness of the system and is in phase with 

the loading. When the loading frequency is about the same as the system’s Eigen frequency, the 

motion is controlled by damping and is out of phase with the loading. Loading frequencies larger 

than the systems’ Eigen frequency leads to a mass controlled motion, in phase opposite to the 

loading. At this frequency, the mass or inertia force acts against the loading and thus reduces the 

response. [9] 

3.1.3 Phase plane diagrams 
 

In this part, we look at what happens in the phase plane when the equations from chapter 2 are 

subjected to a sinusoidal loading.  

 

3.1.3.1 No damping 
 

A forced system with no damping can be described by the equation: 

𝑚
𝑑2𝑥

𝑑𝑡2
+ k𝑥(𝑡) = 𝐹0 sin( 𝜔𝑡) (3.13) 

When there is no damping, the phase plane of an unforced system is an ellipse as shown in figure 

2.2. Figure 3.4 shows the phase plane for equation (3.13). The form of the trajectory is still an ellipse, 

but is now a wavy line due to the forcing term. The initial conditions are marked on the figure as well 

as the starting point. Different initial values will give the same ellipse but with different starting 

values. The mass and the stiffness coefficient will decide the shape of the ellipse. The force 

coefficient decides the amplitude and the frequency ω decides the wavelength of the wavy line.  
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Figure 3.4: Phase diagram for an undamped forced system. 

 
 

3.1.3.2 Underdamped system 
 

In the case of the underdamped system, the trajectory in the phase plane is as a spiral going towards 

or away from the origin. Figure 2.5 shows the case of a positive damping coefficient, resulting in a 

trajectory spiralling towards the origin.  

 
Figure 3.5: Phase diagram for an underdamped forced system. 

The trajectory in the phase plane for an underdamped forced system will still spiral toward the 

origin, as shown in figure 3.5. Now, however, the trajectory seems to be spiralling into a circle in 
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which it continues a couple of revolutions before continuing to spiral towards the origin. New circles 

appear more and more closely as time increases.  

3.1.3.3 Overdamped system 

 

Figure 3.6: Trajectories in the phase plane for an overdamped forced system. 

The trajectories in the phase plane for an overdamped forced system will spiral towards the origin 

making loops on their way. The trajectories do not reach the origin but end in one steady loop where 

they stay as time is increased. These loops are different for different initial conditions but lay close 

together as shown in figure 3.6. This means that different trajectories for different initial conditions 

will after some time end up similar.  

 

3.1.3.4 Critically damped system 

 

Figure 3.7: Trajectories in the phase plane for a critically damped forced system. 
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The trajectories in the phase plane for a critically damped forced system appears as a zoomed 

version of the underdamped one. The IC’s and the time span are the same for figures 3.6 and 3.7. 

The trajectories go directly into loops for the critically damped system and loops continuously until 

reaching a steady loop around the origin. The amplitudes are as for the overdamped system. 

 

3.2 Limit cycles 
 

An isolated trajectory is called a limit cycle. Trajectories around a limit cycle spiral towards or away 

from the limit cycle, and are not closed. Limit cycles occur only in nonlinear systems. A linear system 

may have closed trajectories, as seen for the undamped case in figure 2.2, but the trajectories will be 

surrounded by other closed orbits. Limit cycles can be stable, half-stable or unstable as shown in 

figure 3.4. Stable limit cycles attract all near trajectories towards it. Unstable limit cycle will have 

near trajectories spiralling away from them. Half-stable limit cycles, where one trajectory spirals 

towards the limit cycle while another spirals away, are more uncommon. Stable limit cycles are 

important as they model systems with self-sustained oscillations. Examples of this phenomena are 

the beating of a heart or the self-excited vibrations in bridges and airplane wings. [11] 

 

 

 

 

 

 

Figure 3.8: Stable, half-stable and unstable limit cycles. 
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Chapter 4- One degree of freedom equations 

for known nonlinear systems 
 

4.1 The van der Pol Equation 
The unforced van der Pol equation is of the form: 

𝑑2𝑥

𝑑𝑡2
− 𝜇(1 − 𝑥2)

𝑑𝑥

𝑑𝑡
+ 𝑥 = 0 (4.1) 

 

Balthazar van der Pol proposed the nonlinear equation (4.1) to describe the behaviour found in 

experiments with oscillations in a vacuum tube triode circuit. These vacuum tubes where used during 

the first half of the twentieth century to control the flow of electricity in the circuity of transmitters 

and receivers. Van der Pol’s work, alongside Lorentz, Thompson, and Appleton has had a significant 

impact in the fields of radio and telecommunications. [13] 

Equation (4.1) is nonlinear as it contains the nonlinear multiplier (1-x2) in the damping term. When 

μ=0, the equation represents a simple harmonic oscillator. From the nonlinear term, we can observe 

that for |𝑥| > 1, the system has ordinary damping, i.e decaying oscillations. For |𝑥| < 1, the system 

experience negative damping which pumps energy into the system. This indicates that the system 

may settle into some oscillations of a given amplitude, a limit cycle where there is a balance between 

the generation and dissipation of energy. [12]. The value of μ indicates the strength of nonlinearity in 

the system. For more about this see “Asymptotic methods in the theory of non-linear oscillations” by 

Bogoliubov N.N. and Mitropolsky Y.A. [21] from page 186.  

Figure 4.1: Free response of the unforced van der Pol Equation with μ=0.5. 
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4.1.1 Free response 
 

Figures 4.1-4.3, made from using a build in function for the van der Pol equation in Matlab shows the 

response of the equation (4.1) as a function of time for different values of μ. Small values of μ leads 

to a weakly nonlinear system and the response is close to that of a simple harmonic oscillator. Figure 

4.1 shows the response for μ=0.5 with IC’s of x=0 and 
𝑑𝑥

𝑑𝑡
= 1 at t=0. The response is shown from t=0 

to t=60. 

 

 

Figure 4.2: Free response of the unforced van der Pol Equation with μ=5. 

Figure 4.3: Free response of the unforced van der Pol Equation with μ=10. 
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The response for a system with μ=5 is shown in figure 4.2. The system has a stronger nonlinearity 

than the one in figure 4.1 and we can see a shift in response for |𝑥| = 1. The response decays slowly 

for x>1 and reaches a faster shift at x=1 to x=-2. From x=-2 the system’s amplitude slowly grows 

before another fast shift occurs at x=-1 to x=2. The system continues this response with a steady 

amplitude of 2 as time increases. The IC’s and duration of the system in figure 4.2 is the same as for 

the system in Figure 4.1 

Figure 4.3 shows the response with μ=10 and the same IC’s and duration as figures 4.1 and 4.2. This 

system is strongly nonlinear and the shift at |𝑥| = 1 is seen clearly. From figures 4.1-4.3 we see that 

larger values of μ gives a stronger nonlinearity in a system and longer periods.  

 

4.1.2 Phase plane diagram 

 

Figure 4.4: Phase plane diagram for the unforced van der Pol equation with μ=1. 

 

The phase plane diagram for the unforced van der Pol equation with μ=1 exhibits a clear limit cycle 

shown in figure 4.2. It is seen that all the trajectories, despite of their initial conditions, which are 

marked with squares on the figure, reach the limit cycle after some time. The limit cycle is stable as 

all near trajectories spiral towards it.  
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Figure 4.5: Limit cycles for the van der Pol equation with different values of μ. 

 

The system in equation (4.1) have different limit cycles for different values of μ. The limit cycles start 

as a circle for μ=0 and become more sharp as μ increases. Limit cycles for increasing values of μ are 

shown in Figure 4.5. Limit cycles for μ>>1 are often called “relaxation oscillations” as they alternate 

between long relaxation periods and short fast shifts. 

4.1.3 Applications of the van der Pol equation 
 

The limit cycles that appear in the phase plane for the van der Pol equation have been used in many 

difference sciences to describe systems with nonlinear behaviour. 

Parkinson’s disease is a neurodegenerative disorder often characterized by tremors. The van der Pol 

equation have been proposed to model these tremors, since the limit cycles are not sinusoidal, but 

have flattened segments. [15] 

The cell model used to model the gastric mill central pattern generator of the lobster uses a 

generalization and extension of the van der Pol equation. [16] 

In the field of excitable media, the model of van der Pol, Fitz Hugh and Nagumo is used to describe 

the frictional sliding dynamics of a number of materials. [17]. Note that the term excitability originally 

referred to the property of living organisms (or of their constituent cells) to respond strongly to the 

action of a relatively weak external stimulus. [18] 

It has been proposed further study on the forced Van der Pol’s equation: 

𝑑2𝑥

𝑑𝑡2
− 𝜇(1 − 𝑥2)

𝑑𝑥

𝑑𝑡
+ 𝑥 = 𝐴sin (𝜔𝑡) (4.2) 

by Cao W. in “Van der Pol Oscillator” [22]. 

This has been attempted by Wallace T.L. and Homer T.H in “Mathematical Model of Forced Van Der 

Pol’s Equation” [23]. 
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 4.2 The pendulum equation 
 

The equation of motion for the pendulum is derived from Newton’s Second Law of motion: 

𝑚𝑎 = 𝐹 (4.3) 

Here m represents the mass of the system, a is the acceleration and F is the sum of forces working on 

the system. For the pendulum, m is the mass of the ball as the pendulum rod (with length l) is seen as 

massless. As the rod is stiff, no motion is possible in the radial direction. The position of the 

pendulum from the resting position is dependent only on the angular displacement θ and is lθ. The 

acceleration is therefore described as: 

𝑎 = 𝑙
𝑑2𝜃

𝑑𝑡2
(4.4) 

 

For an unforced, undamped pendulum the sum of forces is: 

𝐹 = −𝑚𝑔𝑠𝑖𝑛𝜃 (4.5) 

Equations (4.3) and (4.4) with (4.5) gives: 

𝑚𝑙
𝑑2𝜃

𝑑𝑡2
= −𝑚𝑔𝑠𝑖𝑛𝜃 (4.6) 

Which leads to the equation of motion for an undamped, unforced pendulum of: 

𝑑2𝜃

𝑑𝑡2
+

𝑔

𝑙
𝑠𝑖𝑛𝜃 = 0 (4.7) 

Where g represents the gravitational constant, which is acceleration due to gravity, l is the length of 

the pendulum and θ represents the angular displacement from the stable equilibrium. Note the 

nonlinear term sinθ. 

 

4.2.1 Free response 
 

The pendulum equation is often linearized using small angle approximation. For small angles, the 

dominating term in the Taylor series (1.14) is θ, which can replace sinθ in (4.9). Figure 4.6 shows the 

linear response in black line and the response for a nonlinear system in red. The top graphs represent 

a system with IC 𝜃(0) =
𝜋

2
, while the lower graphs have IC of 𝜃(0) =

𝜋

6
. All graphs have IC  

𝑑𝜗

𝑑𝑡
= 0 at 

t=0 (no initial velocity). For the graph with a lower starting angle, the linear and nonlinear solutions 

match exactly from the start and become somewhat different as time increases. For even lower 

angles, the graphs will match even more. For the graphs starting at the larger angle the mismatch is 

clear from the start. The graph difference increases as time increases.  
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Figure 4.6: Angular response as a function of time for an undamped, unforced pendulum for both linear and 
non-linear systems. 

 

4.2.2 Phase plane diagram 

 

Figure 4.7: Phase plane diagram for the undamped, unforced pendulum equation. 

The phase plane diagram for the undamped, unforced pendulum gives a picture of what happens 

with a pendulum and is shown in figure 4.7. Critical points, marked in the figure with a grey circle, are 

the vertical position θ=0 and the inverted vertical position θ=π. The positions |𝜃| = 2𝜋 is of course 

the same position as θ=0. The pendulum motion cannot start at the critical point as with no velocity 

the pendulum would rest in either its vertical or inverted vertical position. The arrows in the figure 

represent the initial condition of the trajectory and indicate the direction in which the mass travels. 

When the pendulum has IC where θ is close to the vertical position, it will swing around this position. 
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Releasing the pendulum from rest, near the inverted vertical position will increase its velocity until it 

reaches the vertical position. It will continue until it reaches the inverted vertical position, but the 

velocity will now decrease. Since the initial velocity is zero, the pendulum will only make one turn, 

reaching rest in the inverted vertical position. [14] 

When the initial velocity of the pendulum is large, it will, without damping, continue to spin around 

indefinitely. The velocity will decrease from the vertical position but then increase on the way down 

from the inverted vertical position. This is shown by the wavy graphs on the top and bottom of figure 

4.7. The top shows the pendulum going in the counter clockwise direction, and the bottom shows 

the clockwise direction. [14] 

 

 

Figure 4.8: Phase plane diagram for the damped, unforced pendulum equation. 

Normally there is always friction in a system, which makes the swinging of the pendulum decay and 

reach the resting position after some time. Figure 4.8 shows the phase plane for the same system as 

before, but with a damping coefficient added (linear damping). When the pendulum is released, now 

the velocity will decay no matter the initial velocity or displacement. The pendulum will not rest in 

the inverted vertical position. In the figure, each trajectory’s end is marked with a dotted line 

indicating that it will continue to spiral towards the resting position and no velocity if time were 

increased. 
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4.5 The Morison Equation 
 

The Morison Equation, which is used to describe the force on a cylinder in oscillatory flow is given by: 

  

𝑚
𝑑2𝑥

𝑑𝑡2
+ 𝑐

𝑑𝑥

𝑑𝑡
+ k𝑥(𝑡) = 𝐹(𝑡) (4.8) 

The total force acting on the entire cylinder is given as: 

𝐹(𝑡) = ∫ 𝑓(𝑧, 𝑡)𝑑𝑧
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

−𝑑

= ∫ 𝑓𝑀(𝑧, 𝑡)𝑑𝑧 + ∫ 𝑓𝐷(𝑧, 𝑡)𝑑𝑧
𝛼

−𝑑

𝛼

−𝑑

(4.9) 

Together the mass force and the drag force are assumed to be sufficient for the calculation of forces 

on a cylinder in waves, which gives the Morison formula describing a total force acting on a 

submerged cylinder per unit length: 

𝑓(𝑧, 𝑡) = 𝑓𝑀 + 𝑓𝐷 = 𝜌
𝜋𝐷2

4

𝑑𝑢

𝑑𝑡
𝐶𝑀 +

1

2
𝜌𝐶𝐷𝐷𝑢|𝑢| (4.10) 

From experiments, see for example [10], it has been shown that an approximation for the drag force 

per unit length of a cylinder exposed to a uniform current is: 

𝑓𝐷 =
1

2
𝜌𝐶𝐷𝐷𝑢|𝑢| (4.11) 

where ρ is the density of the water, CD is the drag coefficient, D is the diameter of the cylinder, and u 

is the horizontal water particle velocity. The force has the same sign as the flow direction, due to the 

absolute value of one of the velocity components. The drag force in the Morison equation is 

nonlinear, due to the square velocity force. The drag coefficient is determined from experiments and 

is a function of parameters such as the Reynolds number and the roughness of the cylinder’s surface. 

The horizontal velocity varies normally with water depth, making the total drag force acting on the 

submerged cylinder to be: 

𝐹𝐷(𝑡) = ∫ 𝑓𝐷(𝑧, 𝑡)𝑑𝑧
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

−𝑑

(4.12) 

The mass force acting on a submerged cylinder in constant accelerated flow per unit length is given 

as: 

𝑓𝑀 = 𝜌
𝜋𝐷2

4

𝑑𝑢

𝑑𝑡
𝐶𝑀 (4.13) 

where ρ is the fluid density, 
ρπD2

4
 is the mass of a unit length of the cylinder, 

𝑑𝑢

𝑑𝑡
 is wave acceleration 

and CM is the mass coefficient which is determined using wave tank experiments or computer 

software. The acceleration is as the velocity dependent on water depth, so the total mass force on 

the cylinder is: 

𝐹𝑀(𝑡) = ∫ 𝑓𝑀(𝑧, 𝑡)𝑑𝑧
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

−𝑑

(4.14) 
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The mass and drag coefficients CM and CD are derived from experiments, making the Morison 

equation empirical. The development of equation (4.9) is taken from “Marine Technology and 

Operation” written by O.T Gudmestad [10].  

Equation (4.8) is also applicable for other types of geometries than a cylinder. The term 
πD2

4
 is the 

cross-sectional area of the structure and D is the projected area of the structure and may be replaced 

with other formulas for the appropriate geometry. The Morison equation is used for regular waves 

that do not break. A regular wave in deep water does not break if the wave height divided on the 

wave length is smaller than 0.14. In addition, the diameter of the cylinder divided on the wave length 

needs to be smaller than 0.2 to ensure that the acceleration do not change too much over the 

diameter. The last requirement for the Morison equation is that the amplitude divided on the 

cylinder diameter should be smaller than 0.2 to ensure that the motion of the cylinder is not too big. 

[10] 

The drag term will dominate for: 

𝐷

𝐻
< 0.1 (4.15) 

The mass term will dominate for: 

0.5 <
𝐷

𝐻
< 1.0 (4.16) 

For values in between, both the mass and drag term will need to be calculated and the sum 

represents the total wave force. 
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PART II 

 
Part II of this thesis consist of a parameter study of an equation of motion with nonlinearity in either 

the forcing or the damping term.  

Chapter 5 gives the presentation of what is termed the “base-case system”, which is an undamped 

system subjected to a nonlinear forcing term representing the drag force from the Morison 

equation. The parameters are varied separately to look at their effect on the system.   

In chapter 6, linear, constant damping is added to the base-case system and some selected systems 

with varied parameters from chapter 5. The results are as expected, with decaying amplitudes due to 

the damping. The systems mass parameter is also varied to get system close to and at resonance. 

These systems have a behaviour similar to the results obtained from the van der Pol equation in 

chapter 4. 

Chapter 7 and 8 looks at systems nonlinear damping term. In chapter 7, the homogenous base-case 

system is looked at, as well as systems with some degree of resonance. Critical values of the 

nonlinear damping parameter are found, where negative damping overtakes the systems. These 

critical values are different for different systems. In chapter 8, a linear forcing term is added. The 

results from this chapter show that the critical values of the nonlinear damping parameter are the 

same with force added.  For chapter 7 and 8, only the tables are presented, while the presentation of 

each diagram is added as Appendix C and Appendix D respectively. 

In chapter 9, limit cycles are found for the base-case system with linear, constant damping and 

nonlinear forcing. The limit cycles are found for systems with the mass parameter varied to make the 

systems have some degree of resonance. As the damping is linear and constant, and some 

trajectories with initial conditions inside the limit cycle increase their amplitudes, it is concluded that 

the drag force from the Morison equation will to some degree work as negative damping. 
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Chapter 5- Nonlinear forcing term in the 

equation of motion without damping. 
 

5.1  Nonlinear forcing term 
 

The response and phase plane diagram of a forced second order linear equation of motion was 

showed in chapter 3. The forced equation of motion is expressed as: 

𝑚
𝑑2𝑥

𝑑𝑡2
+ 𝑐

𝑑𝑥

𝑑𝑡
+ k𝑥(𝑡) = 𝐹(𝑡) (5.1) 

where F(t) in chapter 3 was equal to F0sin(ωt). In this chapter, equation (5.1) will be studied with F(t) 

being a nonlinear forcing term. The equation studied here is given as: 

𝑚
𝑑2𝑥

𝑑𝑡2
+ 𝑐

𝑑𝑥

𝑑𝑡
+ k𝑥(𝑡) = 𝐹0 sin( 𝜔𝑡) |sin( 𝜔𝑡)| (5.2) 

This forcing term represent the drag force in the Morison equation, described by equation (4.8). This 

is used for calculating wave and current loading on fixed offshore structures. Notice that the forcing 

term is representing a term proportional to the velocity squared, representing turbulent flow past a 

cylinder (an obstacle in the flow path). 

A system of random variables is looked at, from where a base-case system is chosen. The values of 

the variables were chosen more or less at random as the aim with this chapter is to look at this 

system and evaluate the effect of each parameter. The parameters will, one by one, be varied to look 

at the response in the base-case system. It should be noted that physical systems always have some 

degree of damping, but for the sake of this analysis the systems will in this chapter be evaluated 

without damping, i.e. c=0. Other values of the variables could be chosen; however we would not 

expect large changes from the parameter studies conducted in this thesis. 
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5.2  Base-case system 
 

 

Figure 5.1: Typical phase plane diagrams for undamped systems with nonlinear force with different initial 
conditions(IC’s) from t=0 to t=500s(left) and t=1000s(right). 

The trajectories in the phase plane shown in figure 5.1 have similar behaviour. The colour of the 

graph indicates the trajectory of one given set of initial conditions, IC’s. IC’s represent a measure of 

the starting conditions; IC=1 means that at t=0 both the velocity and displacement are equal to 1. x(t) 

is the displacement while y(t) represents the velocity. The green trajectory has IC’s of 1 for both 

position and velocity. The blue trajectory has IC’s of 3 for position and velocity, while the red 

trajectory has IC’s of 2 for position and velocity. 

Figures 5.2 and 5.3 shows the position and velocity curves for the system respectively, with different 

initial conditions. The systems have equal periods of approximately 89s, and amplitudes of 

approximately 27, 41 and 55. 

Figure 5.2: Position curves for systems with nonlinear force for different IC’s, separated by different colours. 
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Figure 5.3: Velocity curves for systems with nonlinear force for different IC’s, separated by different colours. 

 The system represented by the red trajectory from figure 5.2 will from this point be referred to as 

the “base-case system”. In the following in this chapter, we will investigate what happens to this 

system when the parameters are varied.  

The base-case system has the following values of the parameters: 

-  Linear, constant damping coefficient, c=0 

-  Stiffness parameter, k=0,5 

-  Mass parameter, m=100 

-  Amplitude parameter, F0=50 

-  Loading frequency, ω=0,5 

-  Initial displacement, x(0)=2 

-  Initial velocity, y(0)=2 

 

Introducing a new variable: 

𝛽 =
𝜔

𝜔0

(5.3) 

If β=1,0, i.e. ω=ω0, the system is at resonance. For the base-case system is β=7,07.  
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5.2.1 Development for the base-case system 

Figure 5.4: Development in the phase plane for the base-case system from t=0 to t=267s(left) and to 
t=500s(right). 

 

Figure 5.5: Position curve for the base-case system. 

 

Figures 5.4 and 5.5 show the behaviour for the base-case system. Figure 5.4 shows the system in the 

phase plane, while figure 5.5 shows the position curve. The system has periods of approximately 89s.  
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5.3  Varying the stiffness coefficient 
The stiffness coefficient, k, will here be varied from 0,1 to 2,0, while all other variables will be as for 

the base-case system. The original value of k in the base-case system is k=0,5. 

 

5.3.1  k=0,1 
The base-case system with a stiffness of k=0,1 has a natural period of approximately 199s. Figure 5.6 

shows the development in the phase plane. On the left in the figure, the first revolution is shown, 

while the system is shown for 1000s on the right. Figure 5.7 shows the position curve for the system. 

Figure 5.6: Development in the phase plane for the base-case system with k=0,1 from t=0 to t=199s(left) and to 
t=1000s(right). 

 

Figure 5.7: Position curve for the base-case system with k=0,1. 
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5.3.2  k=0,2 
 

Figures 5.8 and 5.9 show the development of the base-case system with k=0,2 for the first 1000s. 

Figure 5.8 shows the system in the phase plane. The first revolution is shown to the left in the figure, 

while to the right the system is shown until t=1000s. Figure 5.9 shows the system’s position curve. 

The system has periods of approximately 140s. 

 

Figure 5.8: Development in the phase plane for the base-case system with k=0,2 from t=0 to t=141s(left) and to 
t=1000s(right). 

 

 

Figure 5.9: Position curve for the base-case system with k=0,2. 
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5.3.3  k=0,3 
 

Figures 5.10 and 5.11 show the development of the base-case system with k=0,3 for the first 1000s. 

Figure 5.10 shows the system in the phase plane. The first revolution is shown to the left in the 

figure, while to the right the system is shown until t=1000s. Figure 5.11 shows the system’s position 

curve. The system has periods of approximately 115s. 

Figure 5.10: Development in the phase plane for the base-case system with k=0,3 from t=0 to t=115(left) and to 
t=1000s(right). 

 

 

Figure 5.11: Position curve for the base-case system with k=0,3. 
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5.3.4  k=0,4 
 

Figures 5.12 and 5.13 show the development of the base-case system with k=0,4 for the first 1000s. 

Figure 5.12 shows the system in the phase plane. The first revolution is shown to the left in the 

figure, while to the right the system is shown until t=1000s. Figure 5.13 shows the system’s position 

curve. The system has periods of approximately 100s. 

Figure 5.12: Development in the phase plane for the base-case system with k=0,4 from t=0 to t=100(left) and to 
t=1000s(right). 

 

 

Figure 5.13: Position curve for the base-case system with k=0,4. 

 

 

 



46 
 

5.3.5  k=0,6  
 

Figures 5.14 and 5.15 show the development of the base-case system with k=0,6 for the first 1000s. 

Figure 5.14 shows the system in the phase plane. The first revolution is shown to the left in the 

figure, while to the right the system is shown until t=1000s. Figure 5.15 shows the system’s position 

curve. The system has periods of approximately 81s. 

Figure 5.14: Development in the phase plane for the base-case system with k=0,6 from t=0 to t=81(left) and to 
t=1000s(right). 

 

 

Figure 5.15: Position curve for the base-case system with k=0,6. 
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5.3.6  k=0,7  
 

Figures 5.16 and 5.17 show the development of the base-case system with k=0,7 for the first 1000s. 

Figure 5.16 shows the system in the phase plane. The first revolution is shown to the left in the 

figure, while to the right the system is shown until t=1000s. Figure 5.17 shows the system’s position 

curve. The system has periods of approximately 75s. 

Figure 5.16: Development in the phase plane for the base-case system with k=0,7 from t=0 to t=75(left) and to 
t=1000s(right). 

 

 

Figure 5.17: Position curve for the base-case system with k=0,7. 

 

 

 



48 
 

5.3.7  k=0,8  
 

Figures 5.18 and 5.19 show the development of the base-case system with k=0,8 for the first 1000s. 

Figure 5.18 shows the system in the phase plane. The first revolution is shown to the left in the 

figure, while to the right the system is shown until t=1000s. Figure 5.19 shows the system’s position 

curve. The system has periods of approximately 70s. 

Figure 5.18: Development in the phase plane for the base-case system with k=0,8 from t=0 to t=70(left) and to 
t=1000s(right). 

 

 

Figure 5.19: Position curve for the base-case system with k=0,8. 
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5.3.8  k=0,9 
 

Figures 5.20 and 5.21 show the development of the base-case system with k=0,9 for the first 1000s. 

Figure 5.20 shows the system in the phase plane. The first revolution is shown to the left in the 

figure, while to the right the system is shown until t=1000s. Figure 5.21 shows the system’s position 

curve. The system has periods of approximately 67s. 

Figure 5.20: Development in the phase plane for the base-case system with k=0,9 from t=0 to t=67s(left) and to 
t=1000s(right). 

 

 

Figure 5.21: Position curve for the base-case system with k=0,9. 
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5.3.9  k=1,0 
 

Figures 5.22 and 5.23 show the development of the base-case system with k=1,0 for the first 1000s. 

Figure 5.22 shows the system in the phase plane. The first revolution is shown to the left in the 

figure, while to the right the system is shown until t=1000s. Figure 5.23 shows the system’s position 

curve. The system has periods of approximately 63s. 

Figure 5.22: Development in the phase plane for the base-case system with k=1,0 from t=0 to t=63(left) and to 
t=1000s(right). 

 

 

Figure 5.23: Position curve for the base-case system with k=1,0. 
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5.4.12 Conclusion 
k 0,1 0,2 0,3 0,4 0,5 

(base-case system) 

0,6 0,7 0,8 0,9 1,0 

Periods 199 141 115 100 89 81 75 70 67 63 

β 15,81 11,18 9,13 7,91 7,07 6,45 5,98 5,59 5,27 5,0 

Phase 
plane 

diagrams           
Position 
curves 

          

Table 5.1: Review of phase plane diagrams and position curves for the base-case system with different values of k. 

 

Table 5.1 shows the phase plane diagrams and position curves for the base-case system with varying values of the stiffness parameter, k. The periods and 

the values of β, in the systems are also shown. The table shows that increasing the stiffness will lead to a reduced period, as well as lower amplitudes in the 

position curves. The velocity in the system does not seem to be affected by the variation of the stiffness parameter. The position curves get more smooth as 

the stiffness is increased, i.e. the nonlinearity in the forcing term gets less prominent.
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5.4  Varying the amplitude parameter, F0. 
 

The amplitude parameter, F0, will here be varied from 10 to 100. The value of F0 in the base-case 

system is F0=50. 

5.4.1  F0=10 
 

Figures 5.24 and 5.25 show the development of the base-case system with F0=10 for the first 1000s. 

Figure 5.24 shows the system in the phase plane. The first revolution is shown to the left in the 

figure, while to the right the system is shown until t=1000s. Figure 5.25 shows the system’s position 

curve. The system has periods of approximately 89s. 

Figure 5.24: Development in the phase plane for the base-case system with F0=10 from t=0 to t=89s(left) and to 
t=1000s(right). 

 

Figure 5.25: Position curve for the base-case system with F0=10. 
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5.4.2  F0=20 
 

Figures 5.26 and 5.27 show the development of the base-case system with F0=20 for the first 1000s. 

Figure 5.26 shows the system in the phase plane. The first revolution is shown to the left in the 

figure, while to the right the system is shown until t=1000s. Figure 5.27 shows the system’s position 

curve. The system has periods of approximately 89s. 

Figure 5.26: Development in the phase plane for the base-case system with F0=20 from t=0 to t=89s(left) and to 
t=1000s(right). 

 

 

Figure 5.27: Position curve for the base-case system with F0=20. 
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5.4.3  F0=30 
 

Figures 5.28 and 5.29 show the development of the base-case system with F0=30 for the first 1000s. 

Figure 5.28 shows the system in the phase plane. The first revolution is shown to the left in the 

figure, while to the right the system is shown until t=1000s. Figure 5.29 shows the system’s position 

curve. The system has periods of approximately 89s. 

Figure 5.28: Development in the phase plane for the base-case system with F0=30 from t=0 to t=89s(left) and to 
t=1000s(right). 

 

 

Figure 5.29: Position curve for the base-case system with F0=30. 
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5.4.4  F0=40 
 

Figures 5.30 and 5.31 show the development of the base-case system with F0=40 for the first 1000s. 

Figure 5.30 shows the system in the phase plane. The first revolution is shown to the left in the 

figure, while to the right the system is shown until t=1000s. Figure 5.31 shows the system’s position 

curve. The system has periods of approximately 89s. 

Figure 5.30: Development in the phase plane for the base-case system with F0=40 from t=0 to t=89s(left) and to 
t=1000s(right). 

 

 

Figure 5.31: Position curve for the base-case system with F0=40. 
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5.4.5  F0=60 
 

Figures 5.32 and 5.33 show the development of the base-case system with F0=60 for the first 1000s. 

Figure 5.32 shows the system in the phase plane. The first revolution is shown to the left in the 

figure, while to the right the system is shown until t=1000s. Figure 5.33 shows the system’s position 

curve. The system has periods of approximately 89s. 

Figure 5.32: Development in the phase plane for the base-case system with F0=60 from t=0 to t=89s(left) and to 
t=1000s(right). 

 

 

Figure 5.33: Position curve for the base-case system with F0=60. 
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5.4.6  F0=70 
 

Figures 5.34 and 5.35 show the development of the base-case system with F0=70 for the first 1000s. 

Figure 5.34 shows the system in the phase plane. The first revolution is shown to the left in the 

figure, while to the right the system is shown until t=1000s. Figure 5.35 shows the system’s position 

curve. The system has periods of approximately 89s. 

Figure 5.34: Development in the phase plane for the base-case system with F0=70 from t=0 to t=89s(left) and to 
t=1000s(right). 

 

 

Figure 5.35: Position curve for the base-case system with F0=70. 
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5.4.7  F0=80 
 

Figures 5.36 and 5.37 show the development of the base-case system with F0=80 for the first 1000s. 

Figure 5.36 shows the system in the phase plane. The first revolution is shown to the left in the 

figure, while to the right the system is shown until t=1000s. Figure 5.37 shows the system’s position 

curve. The system has periods of approximately 89s. 

Figure 5.36: Development in the phase plane for the base-case system with F0=80 from t=0 to t=89s(left) and to 
t=1000s(right). 

 

 

Figure 5.37: Position curve for the base-case system with F0=80. 
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5.4.8  F0=90 
 

Figures 5.38 and 5.39 show the development of the base-case system with F0=90 for the first 1000s. 

Figure 5.38 shows the system in the phase plane. The first revolution is shown to the left in the 

figure, while to the right the system is shown until t=1000s. Figure 5.39 shows the system’s position 

curve. The system has periods of approximately 89s. 

Figure 5.38: Development in the phase plane for the base-case system with F0=90 from t=0 to t=89s(left) and to 
t=1000s(right). 

 

 

Figure 5.39: Position curve for the base-case system with F0=90. 
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5.4.9  F0=100 
 

Figures 5.40 and 5.41 show the development of the base-case system with F0=100 for the first 1000s. 

Figure 5.40 shows the system in the phase plane. The first revolution is shown to the left in the 

figure, while to the right the system is shown until t=1000s. Figure 5.41 shows the system’s position 

curve. The system has periods of approximately 89s. 

Figure 5.40: Development in the phase plane for the base-case system with F0=100 from t=0 to t=89s(left) and 
to t=1000s(right). 

 

 

Figure 5.41: Position curve for the base-case system with F0=100. 
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5.4.10 Conclusion 

Table 5.2: Review of phase plane diagrams and position curves for the base-case system with different values of F0. 

Table 5.2 shows the phase plane diagrams and position curves for the base-case system with varying values of the amplitude parameter, F0. The period and 

value of β is constant when varying F0. The position curves show an increase in position amplitude as F0 gets larger. The velocity also increases as F0 

increases, this is shown in the phase plane diagrams in the table. When F0 is increased, the effect of the nonlinear forcing term increases.

F0 10 20 30 40 50 
(base-case system) 

60 70 80 90 100 

Periods 89 89 89 89 89 89 89 89 89 89 

β 7,07 7,07 7,07 7,07 7,07 7,07 7,07 7,07 7,07 7,07 

Phase 
plane 

diagrams           
Position 
curves 
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5.5  Varying the loading frequency, ω 
 

In this part the loading frequency, ω, will be varied from 0,1 to 1,0. In the base-case system the value 

of ω is 0,5. 

 

5.5.1  ω=0,1  
Figures 5.42 shows the development of the base-case system with ω=0,1 for the first 1000s. The 

phase plane diagram is showed to the left and the position curve to the right in the figure. 

Figure 5.42: Development in the phase plane(left) and position curve(right) for the base-case system with ω=0,1 
from t=0 t=1000s. 

5.5.2  ω =0,2 
Figures 5.43 shows the development of the base-case system with ω=0,2 for the first 1000s. The 

system is shown in the phase plane to the left, and the position curve is showed to the right in the 

figure. 

Figure 5.43: Development in the phase plane(left) and position curve(right) for the base-case system with ω=0,2 
from t=0 to t=1000s. 
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5.5.3  ω =0,3 
 

Figures 5.44 and 5.45 show the development of the base-case system with ω=0,3 for the first 1000s. 

Figure 5.44 shows the system in the phase plane. The first revolution is shown to the left in the 

figure, while to the right the system is shown until t=1000s. Figure 5.45 shows the system’s position 

curve. The system has periods of approximately 89s. 

Figure 5.44: Development in the phase plane for the base-case system with ω=0,3 from t=0 to t=89s(left) and to 
t=1000s(right). 

 

 

Figure 5.45: Position curve for the base-case system with ω=0,3. 
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5.5.4  ω =0,4 
 

Figures 5.46 and 5.47 show the development of the base-case system with ω=0,4 for the first 1000s. 

Figure 5.46 shows the system in the phase plane. The first revolution is shown to the left in the 

figure, while to the right the system is shown until t=1000s. Figure 5.47 shows the system’s position 

curve. The system has periods of approximately 89s. 

Figure 5.46: Development in the phase plane for the base-case system with ω=0,4 from t=0 to t=89s(left) and to 
t=1000s(right). 

 

 

Figure 5.47: Position curve for the base-case system with ω=0,4. 
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5.5.5  ω =0,6 
 

Figures 5.48 and 5.49 show the development of the base-case system with ω=0,6 for the first 1000s. 

Figure 5.48 shows the system in the phase plane. The first revolution is shown to the left in the 

figure, while to the right the system is shown until t=1000s. Figure 5.49 shows the system’s position 

curve. The system has periods of approximately 89s. 

Figure 5.48: Development in the phase plane for the base-case system with ω=0,6 from t=0 to t=89s(left) and to 
t=1000s(right). 

 

 

Figure 5.49: Position curve for the base-case system with ω=0,6. 
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5.5.6  ω =0,7 
 

Figures 5.50 and 5.51 show the development of the base-case system with ω=0,7 for the first 1000s. 

Figure 5.50 shows the system in the phase plane. The first revolution is shown to the left in the 

figure, while to the right the system is shown until t=1000s. Figure 5.51 shows the system’s position 

curve. The system has periods of approximately 89s. 

Figure 5.50: Development in the phase plane for the base-case system with ω=0,7 from t=0 to t=89s(left) and to 
t=1000s(right). 

 

 

Figure 5.51: Position curve for the base-case system with ω=0,7. 
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5.5.7  ω =0,8 
 

Figures 5.52 and 5.53 show the development of the base-case system with ω=0,8 for the first 1000s. 

Figure 5.52 shows the system in the phase plane. The first revolution is shown to the left in the 

figure, while to the right the system is shown until t=1000s. Figure 5.53 shows the system’s position 

curve. The system has periods of approximately 89s. 

Figure 5.52: Development in the phase plane for the base-case system with ω=0,8 from t=0 to t=89s(left) and to 
t=1000s(right). 

 

 

Figure 5.53: Position curve for the base-case system with ω=0,8. 
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5.5.8  ω =0,9 
 

Figures 5.54 and 5.55 show the development of the base-case system with ω=0,9 for the first 1000s. 

Figure 5.54 shows the system in the phase plane. The first revolution is shown to the left in the 

figure, while to the right the system is shown until t=1000s. Figure 5.55 shows the system’s position 

curve. The system has periods of approximately 89s. 

Figure 5.54: Development in the phase plane for the base-case system with ω=0,9 from t=0 to t=89s(left) and to 
t=1000s(right). 

 

 

Figure 5.55: Position curve for the base-case system with ω=0,9. 
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5.5.9  ω =1,0 
 

Figures 5.56 and 5.57 show the development of the base-case system with ω=1,0 for the first 1000s. 
Figure 5.56 shows the system in the phase plane. The first revolution is shown to the left in the 
figure, while to the right the system is shown until t=1000s. Figure 5.57 shows the system’s position 
curve. The system has periods of approximately 89s. 

Figure 5.56: Development in the phase plane for the base-case system with ω=1,0 from t=0 to t=89s(left) and to 
t=1000s(right). 

 

 

Figure 5.57: Position curve for the base-case system with ω=1,0. 
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5.5.10 Conclusion 

Table 5.3: Review of phase plane diagrams and position curves for the base-case system with different values of ω. 

 

Table 5.3 shows the phase plane diagrams and position curves for the base-case system with varying values of ω. The loading frequency does not affect the 

period of the system, which remains at 89s. The value of β is shown in the table, and it increases with the increase of the parameter. When ω=0,1, β=1,41, 

which means the system is close to resonance, i.e. when ω=ω0. Because of this, the diagrams for this value have larger axes than the rest, and should not be 

compared directly with the other diagrams in the table. The axes are also different for the system with ω=0,2. The diagrams for the other values of ω show 

that the amplitudes decrease as the parameter is increased. From the phase plane diagrams, it is seen that also the velocities decrease as the loading 

frequency is increased. The decrease in amplitudes is most visible for the lower values of ω, which are closer to resonance. When ω is increased, the effect 

of the nonlinear forcing term decreases.

ω 0,1 0,2 0,3 0,4 0,5 
(base-case 

system) 

0,6 0,7 0,8 0,9 1,0 

Periods 89 89 89 89 89 89 89 89 89 89 

β 1,41 2,83 4,24 5,66 7,07 8,49 9,10 11,31 12,73 14,14 

Phase 
plane 

diagrams           
Position 
curves 
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5.6 Varying the mass parameter, m.  
 

The last parameter to be varied is that of the mass, m, which will be varied from 50 to 150. The mass 

coefficient will also, in the end of this chapter, be set to very small values, to look at what happens 

with the base-case system at resonance. The original value of m in the base-case system is 100. 

 

5.6.1 m=50 
Figures 5.58 and 5.59 show the development of the base-case system with m=50 for the first 1000s. 

Figure 5.58 shows the system in the phase plane. The first revolution is shown to the left in the 

figure, while to the right the system is shown until t=1000s. Figure 5.59 shows the system’s position 

curve. The system has periods of approximately 63s. 

Figure 5.58: Development in the phase plane for the base-case system with m=50 from t=0 to t=63s(left) and to 
t=1000s(right). 

 

Figure 5.59: Position curve for the base-case system with m=50. 
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5.6.2 m=60 
 

Figures 5.60 and 5.61 show the development of the base-case system with m=60 for the first 1000s. 

Figure 5.60 shows the system in the phase plane. The first revolution is shown to the left in the 

figure, while to the right the system is shown until t=1000s. Figure 5.61 shows the system’s position 

curve. The system has periods of approximately 69s. 

Figure 5.60: Development in the phase plane for the base-case system with m=60 from t=0 to t=69s(left) and to 
t=1000s(right). 

 

 

Figure 5.61: Position curve for the base-case system with m=60. 
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 5.6.3 m=70 
 

Figures 5.62 and 5.63 show the development of the base-case system with m=70 for the first 1000s. 

Figure 5.62 shows the system in the phase plane. The first revolution is shown to the left in the 

figure, while to the right the system is shown until t=1000s. Figure 5.63 shows the system’s position 

curve. The system has periods of approximately 74s. 

Figure 5.62: Development in the phase plane for the base-case system with m=60 from t=0 to t=74s(left) and to 
t=1000s(right). 

 

 

Figure 5.63: Position curve for the base-case system with m=70. 
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5.6.4 m=80 
 

Figures 5.64 and 5.65 show the development of the base-case system with m=80 for the first 1000s. 

Figure 5.64 shows the system in the phase plane. The first revolution is shown to the left in the 

figure, while to the right the system is shown until t=1000s. Figure 5.65 shows the system’s position 

curve. The system has periods of approximately 80s. 

Figure 5.64: Development in the phase plane for the base-case system with m=80 from t=0 to t=80s(left) and to 
t=1000s(right). 

 

 

Figure 5.65: Position curve for the base-case system with m=80. 
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5.6.5 m=90 
 

Figures 5.66 and 5.67 show the development of the base-case system with m=90 for the first 1000s. 

Figure 5.66 shows the system in the phase plane. The first revolution is shown to the left in the 

figure, while to the right the system is shown until t=1000s. Figure 5.67 shows the system’s position 

curve. The system has periods of approximately 84s. 

Figure 5.66: Development in the phase plane for the base-case system with m=90 from t=0 to t=84s(left) and to 
t=1000s(right). 

 

 

Figure 5.67: Position curve for the base-case system with m=90. 
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5.6.6 m=110 
 

Figures 5.68 and 5.69 show the development of the base-case system with m=110 for the first 1000s. 

Figure 5.68 shows the system in the phase plane. The first revolution is shown to the left in the 

figure, while to the right the system is shown until t=1000s. Figure 5.69 shows the system’s position 

curve. The system has periods of approximately 94s. 

Figure 5.68: Development in the phase plane for the base-case system with m=110 from t=0 to t=94s(left) and 
to t=1000s(right). 

 

 

Figure 5.69: Position curve for the base-case system with m=110. 
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5.6.7 m=120 
 

Figures 5.70 and 5.71 show the development of the base-case system with m=120 for the first 1000s. 

Figure 5.70 shows the system in the phase plane. The first revolution is shown to the left in the 

figure, while to the right the system is shown until t=1000s. Figure 5.71 shows the system’s position 

curve. The system has periods of approximately 97s. 

Figure 5.70: Development in the phase plane for the base-case system with m=120 from t=0 to t=97s(left) and 
to t=1000s(right). 

 

 

Figure 5.71: Position curve for the base-case system with m=120. 
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5.6.8 m=130 
 

Figures 5.72 and 5.73 show the development of the base-case system with m=130 for the first 1000s. 

Figure 5.72 shows the system in the phase plane. The first revolution is shown to the left in the 

figure, while to the right the system is shown until t=1000s. Figure 5.73 shows the system’s position 

curve. The system has periods of approximately 102s. 

Figure 5.72: Development in the phase plane for the base-case system with m=130 from t=0 to t=102s(left) and 
to t=1000s(right). 

 

 

Figure 5.73: Position curve for the base-case system with m=130. 

 
 

 



79 
 

5.6.9 m=140 
 

Figures 5.74 and 5.75 show the development of the base-case system with m=140 for the first 1000s. 

Figure 5.74 shows the system in the phase plane. The first revolution is shown to the left in the 

figure, while to the right the system is shown until t=1000s. Figure 5.75 shows the system’s position 

curve. The system has periods of approximately 105. 

Figure 5.74: Development in the phase plane for the base-case system with m=140 from t=0 to t=105s(left) and 
to t=1000s(right). 

 

 

Figure 5.75: Position curve for the base-case system with m=140. 

 

 



80 
 

5.6.5 Conclusion 

Table 5.4: Review of phase plane diagrams and position curves for the base-case system with different values of m. 

Table 5.4 shows the phase plane diagrams and position curves for the base-case system with varying values of the mass parameter, m. Increasing the mass 

leads to increased periods, and increased value of β for the system. The increase of the mass parameter decreases the amplitude for velocity, but does not 

seem to affect the position amplitude. When m is increased, the effect of the nonlinear forcing term is not noticeably different. 

 

 

m 50 60 70 80 90 
 

100 
(base-case system) 

110 120 130 140 

Periods 62 69 74 80 84 89 94 96 102 105 

β 5,0 5,48 5,92 6,32 6,71 7,07 7,41 7,75 8,06 8,37 

Phase 
plane 

diagrams     
      

Position 
curves 
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5.7 The base-case system near resonance 
In this part, the parameters will be varied to achieve systems at and near resonance.  

5.7.1 Varying the mass near resonance 
 

5.7.1.1 β=0,8 
 

When m=1,28, β=0,8. The phase plane diagram is shown to the left in figure 5.76, and the position 

curve is shown to the right. 

Figure 5.76: Phase plane diagram(left) and position curve(right) for the base-case system with m=1,28, making 
β =0,8, from t=0 to t=1000s. 

5.7.1.2 β=0,9 
 

When m=1,62, β=0,9. The phase plane diagram is shown to the left in figure 5.77, and the position 

curve is shown to the right. 

Figure 5.77: Phase plane diagram(left) and position curve(right) for the base-case system with m=1,62, making 
β =0,9, from t=0 to t=1000s. 
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5.7.1.3 β=1,0 
When m=2, β=1, which means that the system is at resonance. The system is shown in the phase 

plane to the left in figure 5.78, while the position curve is shown to the right. 

Figure 5.78: Development in the phase plane(left) and position curve(right) for the base-case with m=2 from t=0 
to t=200s. 

 

5.7.1.4 β=1,1 
When m=2,42, β=1,1. The phase plane diagram is shown to the left in figure 5.79, and the position 

curve is shown to the right. 

 

Figure 5.79: Phase plane diagram for the base-case system with m=2,42, making β =1,1, from t=0 to t=1000s. 
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5.7.1.5 β=1,2 
 

When m=2,88, β=1,2. The phase plane diagram is shown to the left in figure 5.80, and the position 

curve is shown to the right. 

 

Figure 5.80: Phase plane diagram for the base-case system with m=2,88, making β =1,2, from t=0 to t=1000s. 
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5.7.2 Varying the loading frequency, ω, near resonance 
 

5.7.2.1 β=0,8 
 

When ω=0,057, β=0,8. The phase plane diagram is shown to the left in figure 5.81, and the position 

curve is shown to the right. 

Figure 5.81: Phase plane diagram(left) and position curve(right) for the base-case system with ω=0,057, making 
β =0,8, from t=0 to t=1000s. 

5.7.2.2 β=0,9 
 

When ω=0,064, β=0,9. The phase plane diagram is shown to the left in figure 5.82, and the position 

curve is shown to the right. 

 

Figure 5.82: Phase plane diagram(left) and position curve(right) for the base-case system with ω=0,064, making 
β =0,9, from t=0 to t=1000s. 
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5.7.2.3 β=1,0 
 

When ω=0,071, β=1, which means that the system is at resonance. The system is shown in the phase 

plane on the left in figure 5.83, while the position curve is showed to the right. 

  

Figure 5.83: Phase plane diagram(left) and position curve(right) for the base-case with ω=0,071, making the 
system at resonance, from t=0 to t=1000s. 

 

5.7.2.4 β=1,1 
 

When ω=0,078, β=1,1. The phase plane diagram is shown to the left in figure 5.84, and the position 

curve is shown to the right. 

 

Figure 5.84: Phase plane diagram(left) and position curve(right) for the base-case system with ω=0,078, making 
β =1,1, from t=0 to t=1000s.  
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5.7.2.5 β=1,2 
 

When ω=0,085, β=1,2. The phase plane diagram is shown to the left in figure 5.85, and the position 

curve is shown to the right. 

 

Figure 5.85: Phase plane diagram(left) and position curve(right) for the base-case system with ω=0,081, making 
β =1,2, from t=0 to t=1000s. 

 

 

5.7.3 Conclusion 
 

Tables 5.5 and 5.6 show the phase plane diagrams and position curves for the base-case system at 

and near resonance. Table 5.5 shows the system with different values of the mass parameter, m, and 

table 5.6 shows the system with different values of the frequency parameter, ω. It should be noted 

that the axes are not the same in the two tables. The axes are also different for the diagrams at 

resonance, i.e. β=1,0, compared to those near resonance in each table. This is due to the rapid 

growth when the system reaches resonance, making the axes too large. Higher order resonances; 

β=1/3 and β=1/2 will be discussed in chapter 9. 

The tables show that the systems go in a steady path of increase and decrease in both position and 

velocity as the parameters are set to values near resonance. The position and velocity amplitudes 

increase as β gets larger, up until β=1,0. At resonance, i.e. β=1,0, both systems experience an 

unlimited growth in both velocity and position. When the parameters, m and ω, are increased 

making systems with β>1,0, the systems go back to the steady path of increase and decrease in 

amplitudes. The increase of β after β=1,0, decreases the position and velocity amplitudes. The phase 

plane diagrams show that the values over and under resonance values are very similar to each other.  
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Table 5.5: Review of phase plane diagrams and position curves for the base-case system with different values of m, making the system near 

resonance. 

Table 5.6: Review of phase plane diagrams and position curves for the base-case system with different values of ω, making the system near 

resonance. 

β 0,8 0,9 1,0 1,1 1,2 

m 1,28 1,62 2,0 2,42 2,88 

Phase 
plane 

diagrams 

     
Position 
curves 

     

β 0,8 0,9 1,0 1,1 1,2 
 

ω 0,057 0,064 0,071 0,078 0,085 

Phase 
plane 

diagrams 

     
Position 
curves 
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5.8 Conclusion 
 

This chapter started with an introduction of a system we termed “the base-case system”. This system 

was selected more or less randomly, however, it should be representative for the nonlinear effects 

we are considering within this thesis. A parameter study was conducted, where each parameter was 

varied separately, while all other parameters were held equal to the values in the base-case system. 

In addition, the mass and the loading frequency were set to values making systems close to and at 

resonance, i.e. β=1,0. The following are the results of the analysis: 

- When the stiffness parameter, k, is increased, the periods decrease, the position amplitude 

decrease (which is expected also for a static system9, while the velocity amplitudes are not affected. 

The effect of the nonlinearity in the forcing term is decreased as k is increased. 

- The increase of the amplitude parameter, F0, does not affect the period, while both the position and 

velocity amplitude is increased. The effect of the nonlinearity increases as F0 is increased. 

- The loading frequency, ω, does not affect the period (notice that this system is undamped, making 

the systems natural frequency important). Some decrease in the position and velocity amplitude 

were noticed when ω was increased. This was most visible in the lower values of ω, where the 

systems were closer to resonance. The increase of ω shows that the effect of the nonlinearity in the 

forcing term decreases. 

- When the mass parameter, m, was increased, the periods increased as the natural frequency ω0 of 

the system varies. The position amplitudes do not seem to be affected, while a little decrease in 

velocity amplitude was observed. The variation of the mass parameter does not seem to affect the 

nonlinearity caused by the forcing term. 

- When the system’s mass or loading frequency is increased to values making systems close to 

resonance, i.e. ω=ω0, the systems’ position and velocity amplitudes increase as β gets larger, up until 

β=1,0. At resonance, i.e. β=1,0, both systems experience an unlimited growth in both velocity and 

position (note that there is no linear damping in the system). When the parameters are increased 

over the resonance values the systems go back to the steady path of increase and decrease in 

amplitudes. The increase of β after β=1,0, decreases the position and velocity amplitudes. 

In this chapter, to achieve systems close to and at resonance, both the mass parameter and the 

loading frequency were varied. Due to the similar effects of these parameter, it has been decided 

that when looking at the systems at and near resonance in the following of the thesis, only the mass 

parameter will be varied.  
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Chapter 6- Nonlinear forcing term in the 

equation of motion with linear, constant 

damping. 
 

As mentioned in the previous chapter, all physical systems have some degree of damping inherent. In 

this chapter, the base-case system will be presented with damping, as well as some selected systems 

from the cases where the parameters are changed. The systems at and near resonance will also be 

presented with damping.  

The equation of motion which is considered in this chapter is: 

𝑚
𝑑2𝑥

𝑑𝑡2 + 𝑐
𝑑𝑥

𝑑𝑡
+ k𝑥(𝑡) = 𝐹0 sin( 𝜔𝑡) |sin( 𝜔𝑡)| (6.1)

which is equal to equation (5.1), but with c≠0. 

The systems will be presented with two types of constant, linear damping, c=0,15 and c=0,5. The 

systems selected is the base-case system, and the lowest and highest cases of each parameter as 

presented in chapter 5. 

Introducing new variable: 

𝜉 =
𝑐

𝑐𝑐

(6.1) 

where ξ is the damping ratio in the system. For the base-case system cc=14,14. 

6.1 Base-case system  
 

The base-case system is shown in the phase plane in figure 6.1 with two values of linear damping, 

c=0,15 (ξ=0,012) on the left and c=0,5 (ξ=0,035) on the right. The position curves are shown in figure 

6.2.  

Figure 6.1: Phase plane diagrams for the base-case system with c=0,15(left) and c=0,5(right). 
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Figure 6.2: Position curves for the base-case system with c=0,15(left) and c=0,5(right). 

 

6.2 Base-case system with changed stiffness parameter, k. 
 

The base-case system with k=0,1 and k=1,0 is shown in the phase plane in figures 6.3 and 6.5 

respectively, with two values of linear damping, c=0,15 on the left and c=0,5 on the right. The 

position curves are shown in figure 6.4 for the system with k=0,1. The system is showed with 

c=0,15(ξ=2,37) to the left, and with c=0,5(ξ=7,91) to the right. The system with k=1,0 is showed in 

figure 6.6, where c=0,15(ξ=0,75) is showed on the left and c=0,5(ξ=2,5) is showed on the right. 

Figure 6.3: Phase plane diagrams for the base-case system with k=0,1, and c=0,15(left) and c=0,5(right). 
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Figure 6.4: Position curves for the base-case system with k=0,1, and c=0,15(left) and c=0,5(right). 

Figure 6.5: Phase plane diagrams for the base-case system with k=1,0, and c=0,15(left) and c=0,5(right). 

Figure 6.6: Position curves for the base-case system with k=1,0, and c=0,15(left) and c=0,5(right). 
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Table 6.1: Review of phase plane diagrams and position curves for the base-case system with different values of the stiffness parameter, k, with 

different values of linear damping, c. 

 

 

k 

 
c 

0,1 
 

β=15,81 

0,5 
(base-case system) 

β=7,07 

1,0 
 

β=5,0 

Phase plane 
diagrams 

Position curves Phase plane 
diagrams 

Position curves Phase plane 
diagrams 

Position curves 

0 

      
0,15 

      
0,5 
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6.3 Base-case system with changed amplitude parameter, F0. 
 

The base-case system with F0=10 and F0=100 is shown in the phase plane in figures 6.7 and 6.9 

respectively, with two values of linear damping, c=0,15 on the left and c=0,5 on the right. The 

position curves are shown in figure 6.8 for the system with F0=10 and in figure 6.10 for the system 

with F0=100, also with c=0,15 on the left and c=0,5 on the right. The amplitude parameter does not 

affect the critical damping, making the damping ratio equal to that of the base-case system, namely 

ξ=0,012 for c=0,15 and ξ=0,035 for c=0,5. 

Figure 6.7: Phase plane diagrams for the base-case system with F0=10, and c=0,15(left) and c=0,5(right). 

Figure 6.8: Position curves for the base-case system with F0=10, and c=0,15(left) and c=0,5(right). 
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Figure 6.9: Phase plane diagrams for the base-case system with F0=100, and c=0,15(left) and c=0,5(right).  

Figure 6.10: Position curves for the base-case system with F0=100, and c=0,15(left) and c=0,5(right). 
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Table 6.2: Review of phase plane diagrams and position curves for the base-case system with different values of the amplitude parameter, F0, with 

different values of linear damping, c. 

 

 

F0 

 
c 

10 50 
(base-case system) 

100 

Phase plane 
diagrams 

Position curves Phase plane 
diagrams 

Position curves Phase plane 
diagrams 

Position curves 

0 

      
0,15 

      
0,5 
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6.4 Base-case system with changed frequency parameter, ω. 
 

The base-case system with ω=0,2 and ω=1,0 is shown in the phase plane in figures 6.11 and 6.13 

respectively, with two values of linear damping, c=0,15 on the left and c=0,5 on the right. The system 

with ω=0,1 is not shown as it is a system close to resonance, which will be presented in 6.1.6. The 

position curves are shown in figure 6.12 for the system with ω=0,2 and in figure 6.14 for the system 

with ω=1,0, also with c=0,15 on the left and c=0,5 on the right. The frequency parameter does not 

affect the critical damping, making the damping ratio equal to that of the base-case system, namely 

ξ=0,012 for c=0,15 and ξ=0,035 for c=0,5. 

Figure 6.11: Phase plane diagrams for the base-case system with ω=0,2, and c=0,15(left) and c=0,5(right). 

Figure 6.12: Position curves for the base-case system with ω=0,2, and c=0,15(left) and c=0,5(right). 
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Figure 6.13: Phase plane diagrams for the base-case system with ω=1,0, and c=0,15(left) and c=0,5(right). 

Figure 6.14: Position curves for the base-case system with ω=1,0, and c=0,15(left) and c=0,5(right). 
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Table 6.3: Review of phase plane diagrams and position curves for the base-case system with different values of the frequency parameter, ω, with 

different values of linear damping, c. 

 

 

 

ω 

 
 
c 

0,2 
 

β=2,83  

0,5 
(base-case system) 

β=7,07 

1,0 
 

β=14,14 

Phase plane 
diagrams 

Position curves Phase plane 
diagrams 

Position curves Phase plane 
diagrams 

Position curves 

0 

      
0,15 

      
0,5 
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6.5 Base-case system with varied mass parameter, m. 
 

The base-case system with m=50 and m=140 is shown in the phase plane in figures 6.15 and 6.17 

respectively, with two values of linear damping, c=0,15 on the left and c=0,5 on the right. The 

position curves are shown in figure 6.16 for the system with m=50 and in figure 6.18 for the system 

with m=140, also with c=0,15 on the left and c=0,5 on the right. The system with m=50 has ξ=0,75 for 

c=0,15 and ξ=2,50 for c=0,5. When m=140, ξ=1,25 for c=0,15 and ξ=4,18 for c=0,5. 

Figure 6.15: Phase plane diagrams for the base-case system with m=50, and c=0,15(left) and c=0,5(right). 

Figure 6.16: Position curves for the base-case system with m=50, and c=0,15(left) and c=0,5(right). 



100 
 

Figure 6.17: Phase plane diagrams for the base-case system with m=140, and c=0,15(left) and c=0,5(right). 

Figure 6.18: Position curves for the base-case system with m=140, and c=0,15(left) and c=0,5(right). 
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Table 6.4: Review of phase plane diagrams and position curves for the base-case system with different values of the mass parameter, m, with 

different values of linear damping, c. 

 

 

 

m 

 
 
c 

50 
 

β=5,0  

100 
(base-case system) 

β=7,07 

140 
 

β=8,37 

Phase plane 
diagrams 

Position curves Phase plane 
diagrams 

Position curves Phase plane 
diagrams 

Position curves 

0 

      
0,15 

      
0,5 
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6.6 Base-case system at and near resonance. 
 

The base-case system with the mass varied so that the system is at and near resonance, i.e. β=0,8-1,2 

is shown with two values of linear damping, c=0,15 on the left and c=0,5 on the right in the figures. 

The phase plane diagrams for β=0,8-1,2 is shown in figures 6.19, 6.21, 6.23, 6.25 and 6.27 

respectively. The position curves are shown in figures 6.20, 6.22, 6.24, 6.26 and 6.28, also with c=0,15 

on the left and c=0,5 on the right. The damping ratio vary from ξ=0,12 to ξ=0,18 for c=0,15 and from 

ξ=0,40 to ξ=0,60 for c=0,5. 

Figure 6.19: Phase plane diagrams for the base-case system with m=1,28, making β=0,8, with c=0,15(left) and 
c=0,5(right). 

Figure 6.20: Position curves for the base-case system with m=1,28, making β=0,8, with c=0,15(left) and 
c=0,5(right). 
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Figure 6.21: Phase plane diagrams for the base-case system with m=1,62, making β=0,9, with c=0,15(left) and 
c=0,5(right). 

Figure 6.22: Position curves for the base-case system with m=1,62, making β=0,9, with c=0,15(left) and 
c=0,5(right). 

Figure 6.23: Phase plane diagrams for the base-case system with m=2,0, making β=1,0, with c=0,15(left) and 
c=0,5(right). 
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Figure 6.24: Position curves for the base-case system with m=2,0, making β=1,0, with c=0,15(left) and 
c=0,5(right). 

Figure 6.25: Phase plane diagrams for the base-case system with m=2,42, making β=1,1, with c=0,15(left) and 
c=0,5(right). 

Figure 6.26: Position curves for the base-case system with m=2,42, making β=1,1, with c=0,15(left) and 
c=0,5(right). 
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Figure 6.27: Phase plane diagrams for the base-case system with m=2,88, making β=1,2, with c=0,15(left) and 
c=0,5(right). 

Figure 6.28: Position curves for the base-case system with m=2,88, making β=1,2, with c=0,15(left) and 
c=0,5(right). 

 

Table 6.5 shows the phase plane diagrams and position curves for the base-case system when the 

mass is varied so that the system is near and at resonance. When a system is at resonance, the input 

frequency, ω, is equal to the natural frequency of the system, ω0.   
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Table 6.5: Review of phase plane diagrams and position curves for the base-case system with different values of m, making the system at and near 

resonance, with different values of linear damping, c.

c 

 
β 

0  0,15 0,5 

Phase plane diagrams Position curves Phase plane diagrams Position curves Phase plane diagrams Position curves 

 
 

0,8 

      
 
 

0,9 

      
 
 

1,0 

      
 
 

1,1 
 

 
      

 
 

1,2 
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6.7 Conclusion 
 

In this chapter, the base-case system, as well as some chosen systems from chapter 5 have been 

investigated when linear, constant damping is added. For the systems with parameters varied around 

the value in the base-case system, the results are as expected, the systems start to spiral towards the 

origin in the phase plane diagrams, i.e. the amplitudes decrease with time. 

The base-case system with the mass parameter set to values making the system near and at 

resonance experiences an increase in position and velocity. When there is no damping inherent, the 

system at resonance, β=1,0, will continue to grow, and the systems near resonance will have a 

repeated cycle of increasing and decreasing amplitudes in both position and velocity. When damping 

is added, both the systems near and at resonance will increase until some point, where they have a 

steady trajectory in the phase plane. This trajectory has similarities to that of the van der Pol 

equation, leading to an exploration if they may in fact be limit cycles. This is investigated in chapter 9. 
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Chapter 7- Nonlinear damping term in the 

homogenous equation of motion for one 

degree of freedom systems 
 

In this chapter equation (5.1) is investigated with a nonlinear damping term. The equation is 

homogenous, i.e. the external force F(t)=0.  

In the Marintek report “Comparing simple models for prediction of ringing loads and responses” [24] 

from 2009, the following equation is proposed to simulate structural motions of an offshore fixed 

platform: 

𝑎(𝑡) + (𝛽(𝑡)𝑓𝑒(𝑡) + 𝑏0)𝑣(𝑡) + 𝜔0
2𝑥(𝑡) = 𝑓𝑒(𝑡) (7.1) 

where β represents the possible nonlinear damping term, while b0 represents constant linear 

damping. See also [21]. Using this in equation (5.1) and making the equation homogenous(no 

external forces), we get: 

𝑑2𝑥

𝑑𝑡2
+ (𝑎 sin( 𝜔𝑡) |sin( 𝜔𝑡)| + 𝑐0)

𝑑𝑥

𝑑𝑡
+

k

𝑚
𝑥(𝑡) = 0 (7.2) 

Equation (7.2) is investigated with values from the base-case system presented in chapter 5. The 

parameters are varied to look at their effect on the system. The variations of the parameters are the 

same as in chapter 6, i.e. only the lowest and highest values from chapter 5 are investigated.  

 

It should be noted that as for the nonlinear damping term for the van der Pol equation, described in 

chapter 4, the damping could become negative. When a>c0, the damping term will for some values 

of t, become negative. As the nonlinear damping term is multiplied with the velocity of the system, 

both position and velocity curves are included in this chapter, as well as the phase plane diagrams.  

 

The nonlinear damping will be varied by varying a. This is done for two values of the constant 

damping coefficient, c0=0,005 and c0=0,0015. 

 

The diagrams are only shown in summary tables in this chapter. Presentation of all the diagrams for 

the different values of c0 and a, has been put into Appendix C. 

 

The tables in this chapter show the position curves, velocity curves and phase plane diagrams for the 

systems with two values of linear, constant damping, c0, and with varying values of nonlinear 

damping. Table 7.1 show the base-case system. Tables 7.2-7.6 show the systems with β=1/3, ½, 1,0, 

3/2, and 2,0 respectively.  
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The tables show that the increase of the nonlinear coefficient, a, increases the nonlinearity in the 

systems. When the nonlinear coefficient, a, reaches a certain value, which is different for every 

system, the negative damping is almost balancing the positive damping in the system. When a is 

increased just slightly more, the negative damping takes control, making the amplitudes grow 

continuously. The increase of the linear, constant coefficient, c0, slows the increase down.  

The following are the critical values of a, where the systems have a continued incline in their 

amplitudes: 

-  a=1,20 for the base-case system, where β=7,07. 

-  a=3,46 for the system with β=1/3 for both values of c0 

-  a=1,61 for the system with β=1/2 for both values of c0 

-  a=1,04 for the system with β=1,0 for both values of c0 

-  a=0,37 for the system with β=3/2 for both values of c0 

-  a=0,01 for the system with β=2,0 and c0=0,0015 

-  a=0,02 for the system with β=2,0 and c0=0,005 

This shows that as the value of β is increased, the systems need less value of the nonlinear 

coefficient, a, to reach a continued grow in amplitudes. The system with β=2,0, only need a=0,01 

when c0=0,0015. 

No further discussion of these results are included as we will propose that more research be done to 

investigate the appropriateness of the model equation (7.1) for structural systems.
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Table 7.1: Review of position curves, velocity curves and phase plane diagrams for the base-case system with varying nonlinear damping, for two 

values of linear, constant damping, c0=0,0015 and c0=0,005. 

It should be noted that the axis for the value a=1,2 is different from the axis in the other diagrams.

c0 

 
a 

0,0015 0,005 

Position curves Velocity curves Phase plane diagrams Position curves Velocity curves Phase plane diagrams 

 
 

0 

 
 

  
 

 

 
 

0,5 

 
 

  
 

 

 
 

1,0 

 
 

  
 

 

 
 

1,19 
 

 
 

 
  

 
 

 
 

1,2 
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Table 7.2: Review of position curves, velocity curves and phase plane diagrams for the system with β=1/3, with c0=0,0015 and c0=0,005, for 

increasing values of a. 

It should be noted that for the values a=3,45 and 3,46 the axis are different from the rest.

c0 

 
a 

0,0015 0,005 

Position curves Velocity curves Phase plane diagrams Position curves Velocity curves Phase plane diagrams 

 
 

0 

      
 
 

1,0 

      
 
 

2,0 

      
 
 

3,45 
 

 

      
 
 

3,46 
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Table 7.3: Review of position curves, velocity curves and phase plane diagrams for the base-case system with β=1/2, with varying nonlinear damping, 

for two values of linear, constant damping, c0=0,0015 and c0=0,005. 

It should be noted that for the values a=1,60 and 1,61 the axis are different from the rest.

c0 

 
a 

0,0015 0,005 

Position curves Velocity curves Phase plane diagrams Position curves Velocity curves Phase plane diagrams 

 
 

0 

      
 
 

0,5 

      
 
 

1,0 

      
 
 

1,60 
 

 

      

 
 

1,61 
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Table 7.4: Review of position curves, velocity curves and phase plane diagrams for the system with β=1,0, with c0=0,0015 and c0=0,005, for increasing 

values of a. 

It should be noted that for the values a=1,0, a=1,03 and a=1,04, the axis are changed compared to the other diagrams.

c0 

 
a 

0,0015 0,005 

Position curves Velocity curves Phase plane diagrams Position curves Velocity curves Phase plane diagrams 

 
 

0 

      
 
 

0,5 

      
 
 

1,0 

      
 
 

1,03 
 

 

      
 
 

1,04 
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Table 7.5: Review of position curves, velocity curves and phase plane diagrams for the system with β=3/2, with c0=0,0015 and c0=0,005, for 

increasing values of a. 

It should be noted that for the values a=0,36 and a=0,37, the axis differ from the other diagrams.

c0 

 
a 

0,0015 0,005 

Position curves Velocity curves Phase plane diagrams Position curves Velocity curves Phase plane diagrams 

 
 

0 

      
 
 

0,1 

      
 
 

0,2 

      
 
 

0,36 
 

 

      
 
 

0,37 
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Table 7.6: Review of position curves, velocity curves and phase plane diagrams for the system with β=2,0, with c0=0,0015 and c0=0,005, for increasing 

values of a. 

 

It should be noted that for the value a=0,02, the axis and timespans differ from the other diagrams.

c0 

 
a 

0,0015 0,005 

Position curves Velocity curves Phase plane diagrams Position curves Velocity curves Phase plane diagrams 

 
 

0 

      
 
 

0,01 

      
 
 

0,02 
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Chapter 8 – Nonlinear damping term in the 

equation of motion with linear forcing term for 

one degree of freedom systems 
 

In this chapter equation (5.1) is investigated with nonlinear damping term equal to that in chapter 7, 

and with a linear forcing term F(t), see [24]. The equation becomes: 

𝑑2𝑥

𝑑𝑡2
+ (𝑎 sin( 𝜔𝑡) |sin( 𝜔𝑡)| + 𝑐0)

𝑑𝑥

𝑑𝑡
+

k

𝑚
𝑥(𝑡) =

𝐹0

𝑚
sin (𝜔𝑡) (8.1) 

The base-case system is presented with two values of the linear damping coefficient, c0=0,005 and 

c0=0,0015, for increasing values of the nonlinear damping coefficient, a. The system is also 

investigated for the same values of the mass parameter, making the system close to and at 

resonance, as in chapter 7. 

Only the tables are presented in this chapter, the presentation of each diagram separately is in 

Appendix D. 

Table 8.1 shows the position curves, velocity curves and phase plane diagrams for the base-case 

system with two values of linear, constant damping, c0, and with varying values of nonlinear 

damping. Tables 8.2-8.6 show the same for the systems with β=1/3, β=1/2, β=1,0, β=3/2 and β=2,0, 

respectively. 

The systems will have a value of the nonlinear damping coefficient, a, where it has continuous 

increase in its amplitudes. This value is different for all the systems, but is the same as was found in 

chapter 7, when the system was not subjected to any loading. The behaviour of the systems up until 

this value of a, are similar to those in chapter 7, but because of the linear forcing term, the 

amplitudes are significantly higher and the system uses longer time to obtain a decrease of the 

amplitudes. 

The system at resonance, i.e. β=1,0, subjected to only linear, constant damping, c0, experience 

continuous growth in amplitudes. When nonlinear damping is added, the system does not 

experience this growth until a reaches its critical value, a=1,2.  
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Table 8.1: Review of position curves, velocity curves and phase plane diagrams for the base-case system, for c0=0,0015 and c0=0,005, and increasing 

values of a. 

Note that the axis for the values a=0 and a=1,2 are different from the other diagrams.

c0 

 
a 

0,0015 0,005 

Position curves Velocity curves Phase plane diagrams Position curves Velocity curves Phase plane diagrams 

 
 

0 

      
 
 

0,5 

      
 
 

1,0 

      
 
 

1,19 
 

 

      
 
 

1,2 
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Table 8.2: Review of position curves, velocity curves and phase plane diagrams for the system with β=1/3, for c0=0,0015 and c0=0,005, and increasing 

values of a. 

Note that the axis in the diagrams for the system with values a=2,0, a=3,45 and a=3,46 are different from the other systems diagram axis.

c0 

 
a 

0,0015 0,005 

Position curves Velocity curves Phase plane diagrams Position curves Velocity curves Phase plane diagrams 

 
 

0 

      
 
 

1,0 

      
 
 

2,0 

      
 
 

3,45 
 

 

      
 
 

3,46 
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Table 8.3: Review of position curves, velocity curves and phase plane diagrams for the system with β=1/2, for c0=0,0015 and c0=0,005, and increasing 

values of a. 

Note that the axis in the diagrams for the system with values a=0 and a=1,61 are different from the other systems diagram axis.

c0 

 
a 

0,0015 0,005 

Position curves Velocity curves Phase plane diagrams Position curves Velocity curves Phase plane diagrams 

 
 

0 

      
 
 

0,5 

      
 
 

1,0 

      
 
 

1,60 
 

 

      
 
 

1,61 
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Table 8.4: Review of position curves, velocity curves and phase plane diagrams for the system with β=1,0, for c0=0,0015 and c0=0,005, and increasing 

values of a. 

Note that the axis in the diagrams for the system with values a=0, a=1,03 and a=1,04 are different from the other systems diagram axis.

c0 

 
a 

0,0015 0,005 

Position curves Velocity curves Phase plane diagrams Position curves Velocity curves Phase plane diagrams 

 
 

0 

      
 
 

0,5 

      
 
 

1,0 

      
 
 

1,03 
 

 

      
 
 

1,04 
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Table 8.5: Review of position curves, velocity curves and phase plane diagrams for the system with β=3/2, for c0=0,0015 and c0=0,005, and increasing 

values of a. 

Note that the axis in the diagrams for the system with values a=0,36 and a=0,37 are different from the other systems diagram axis.

c0 

 
a 

0,0015 0,005 

Position curves Velocity curves Phase plane diagrams Position curves Velocity curves Phase plane diagrams 

 
 

0 

      
 
 

0,1 

      
 
 

0,2 

      
 
 

0,36 
 

 

      
 
 

0,37 
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Table 8.6: Review of position curves, velocity curves and phase plane diagrams for the system with β=2,0, for c0=0,0015 and c0=0,005, and increasing 

values of a. 

Note that the axis in the diagrams differs for every value of a.

c0 

 
a 

0,0015 0,005 

Position curves Velocity curves Phase plane diagrams Position curves Velocity curves Phase plane diagrams 

 
 

0 

      
 
 

0,01 

      
 
 

0,02 
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Chapter 9 - Limit cycles for a system with drag 

loading subjected to linear, constant damping. 
 

Limit cycles were discussed in chapter 3 and shown for the van der Pol equation in chapter 4. The van 

der Pol equation contains nonlinearity in the damping term, which can be both positive and negative. 

This leads to the system experiencing both generation and dissipation of energy from the damping 

term. The limit cycles are shown in figure 4.5 for different degrees of damping.  

In chapter 6, the phase plane diagrams for the systems with the mass parameter set to values making 

the system at and near resonance showed some similarities to those found for the van der Pol 

equation. In this chapter, those systems are further analysed, and limit cycles are found. 

9.1 Exploration of limit cycles for base-case system with β=0,8 
 

The base-case system with m=1,28, making β=0,8, is shown for different initial conditions in figure 

9.1, with damping, c=0,15. The different coloured trajectories represents different initial conditions, 

which are marked in the figure. All the trajectories spiral towards the limit cycle, making it a stable 

limit cycle. Figure 9.2 shows the system with more damping, c=0,5 to the left and c=1,0 to the right. 

These systems also have clear limit cycles, with amplitudes which are lower in both position and 

velocity. The more damping in the system, the more the transient response is limited, making the 

steady state solution occurring earlier.  

Figure 9.1: Base-case system with m=1,28, making β=0,8 with c=0,15 for four different initial conditions. 
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Figure 9.2: Base-case system with m=1,28, making β=0,8 with c=0,5(left) and c=1,0(right) for four different 
initial conditions. 

Further investigation shows that all the systems presented in table 6.4 exhibits limit cycles in the 

phase plane when subjected to linear, constant damping. Figure 9.3 shows the limit cycles in the 

base-case system with varying mass, making β between 0,8 and 1,2, with c=0,15. The increase of β 

increases the amplitudes of the limit cycles until the system is at resonance. When further increasing 

β, the limit cycles occur lower in position and velocity. For a static system, the amplitude of the 

displacement is 𝑥(𝑡) =
𝐹0

𝑘
, and for a dynamic system the amplitude at resonance is 𝑥(𝑡) =

𝐹0

2𝑘𝑐𝑐
 [19].  

Figures 9.4 and 9.5 shows the limit cycles for varying β for larger damping, c=0,5 and c=1,0. The limit 

cycles occur earlier, as was found for the system with β=0,8. The cycles also seem to be closer 

arranged when the damping is increased. 

Figure 9.3: Limit cycles in the base-case system with β between 0,8 and 1,0(left) and between 1,0 and 1,2(right), 
with c=0,15.  
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Figure 9.4: Limit cycles in the base-case system with β between 0,8 and 1,0(left) and between 1,0 and 1,2(right), 
with c=0,5. 

Figure 9.5: Limit cycles in the base-case system with β between 0,8 and 1,0(left) and between 1,0 and 1,2(right), 
with c=1,0. 

9.2 Exploration of limit cycles for base-case systems  

with 𝛽 =
1

3
, 𝛽 =

1

2
 , 𝛽 = 1,0, 𝛽 =

3

2
 𝑎𝑛𝑑 𝛽 = 2,0  

 

When β=1,0, the loading frequency, ω, is equal to the natural frequency of the system, ω0. The 

periods of the system are given by: 

𝑇0 =
2𝜋

𝜔0
(9.1) 

 

𝑇 =
2𝜋

𝜔
(9.2) 

T0 is the natural period of the system, and T is the loading period. This makes it possible to express β 

as: 

𝛽 =
𝜔

𝜔0
=

𝑇0

𝑇
(9.3) 
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This means that when β=1,0, the period of the loading is equal to the natural period of the system. 

Resonance is thereby the phenomena that occurs when for example a wave has the same period as 

the structure it encounters.  

In the following part, the following systems will be investigated for limit cycles in the phase plane for 

higher order resonances [26]: 

- β=1/3, i.e. the period of the wave is three times bigger than the period of the structure. 

- β=1/2, i.e. the period of the wave is double the period of the structure. 

- β=3/2, i.e. the period of the wave is 2/3 of the period of the structure. 

- β=2,0, i.e. the period of the wave is half of the period of the structure. 

9.2.1 𝛽 =
1

3
 

 

When adjusting the mass coefficient in the base-case system to m=0,222, we get a system with 𝛽 =
1

3
. Figure 9.6 shows the phase plane diagrams for the systems with c=0,15 to the left and with c=0,5 

to the right. The systems have clear limit cycles, and the increase of a linear damping coefficient, c, 

seems to decrease to limit cycle amplitude, as well as making it appear earlier. Figure 9.7 show the 

position curves for the systems, also here with c=0,15 on the left and c=0,5 on the right. The different 

colours in the plot represents the four different initial conditions, which are the same as in the phase 

plane diagrams. Figure 9.8 show the velocity curves for the same systems. When β=1/3, i.e. the 

period of the wave is three times the period of the structure, the limit cycles occur rather quickly. 

Figure 9.9 show the position curve for the systems for the first 35s. 

 

Figure 9.6: Base-case system with m=0,222, making β=1/3 with c=0,15(left) and c=0,5(right) for four different 
set of initial conditions. 
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Figure 9.7: Position curves for the system with β=1/3, c=0,15(left) and c=0,5(right) for four different set of initial 
conditions represented by separate colours. 

Figure 9.8: Velocity curves for the system with β=1/3, c=0,15(left) and c=0,5(right) for four different set of initial 
conditions represented by separate colours. 

Figure 9.9: The first 35s of the position curves for the system with β=1/3, c=0,15(left) and c=0,5(right) for four 
different set of initial conditions represented by separate colours. 
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9.2.2 𝛽 =
1

2
 

 

When adjusting the mass coefficient in the base-case system to m=0,5, we get a system with 𝛽 =
1

2
. 

Figure 9.10 show the phase plane diagrams for the systems with c=0,15 to the left and with c=0,5 to 

the right. The systems have clear limit cycles. Figures 9.11 and 9.12 show the position and velocity 

curves respectively. Also for these systems, the limit cycles occur rather fast. Figure 9.13 show the 

position curves for the systems for the first 35s. 

Figure 9.10: Base-case system with m=0,5, making β=1/2 with c=0,15(left) and c=0,5(right) for four different set 
of initial conditions represented with separate colours. 

Figure 9.11: Position curves for the system with β=1/2, c=0,15(left) and c=0,5(right) for four different set of 
initial conditions represented by separate colours. 
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Figure 9.12: Velocity curves for the system with β=1/2, c=0,15(left) and c=0,5(right) for four different set of 
initial conditions represented by separate colours. 

 

Figure 9.13: The first 35s of the position curves for the system with β=1/2, c=0,15(left) and c=0,5(right) for four 
different set of initial conditions represented by separate colours. 
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9.2.3 𝛽 = 1,0 

 

When the mass parameter in the base-case system is set to m=2,0, we get a system at resonance, 

β=1,0, which means that the period of the wave is equal to the natural period of the structure. Figure 

9.14 show the system with two values of linear damping, c=0,15 to the left and c=0,5 to the right. 

Figures 9.15 and 9.16 show the systems position and velocity curves respectively. Figure 9.17 shows 

the position curve for the system in the first 100s. It should be noted that the sets of initial conditions 

are different for these systems than the others. The systems at resonance have limit cycles in the 

phase plane diagrams, and the trajectories spiral quickly towards them. The increase of the damping 

coefficient, c, rapidly increases the amplitude where the limit cycle occurs. 

Figure 9.14: Base-case system with m=2,0, making β=1/2 with c=0,15(left) and c=0,5(right) for four different set 
of initial conditions represented with separate colours. 

Figure 9.15: Position curves for the system with β=1,0, c=0,15(left) and c=0,5(right) for four different set of 
initial conditions represented by separate colours. 
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Figure 9.16: Velocity curves for the system with β=1,0, c=0,15(left) and c=0,5(right) for four different set of 
initial conditions represented by separate colours. 

 

 

Figure 9.17: The first 100s of the position curves for the system with β=1,0, c=0,15(left) and c=0,5(right) for four 
different set of initial conditions represented by separate colours. 
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9.2.4 𝛽 =
3

2
 

 

When the mass parameter in the base-case system is set to m=4,5, we get β=3/2, which means that 

the period of the wave is 2/3 of the period of the structure. Figure 9.18 show the system with two 

values of linear damping, c=0,15 to the left and c=0,5 to the right. Figures 9.19 and 9.20 show the 

systems position and velocity curves respectively. Figure 9.21 show the position curves for the first 

100s. The systems exhibit limit cycles in the phase plane, but the trajectories use longer time to get 

there, i.e. the transient solution is more visible. The effect of increasing the linear damping 

coefficient, c, is also more visible.  

Figure 9.18: Base-case system with m=4,5, making β=3/2 with c=0,15(left) and c=0,5(right) for four different set 
of initial conditions represented with separate colours. 

 

 

 

Figure 9.19: Position curves for the system with β=3/2, c=0,15(left) and c=0,5(right) for four different set of 
initial conditions represented by separate colours. 
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Figure 9.20: Velocity curves for the system with β=3/2, c=0,15(left) and c=0,5(right) for four different set of 
initial conditions represented by separate colours. 

 

 

 

Figure 9.21: The first 100s of the position curves for the system with β=3/2, c=0,15(left) and c=0,5(right) for four 
different set of initial conditions represented by separate colours. 
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9.2.5 𝛽 = 2,0 

 

When adjusting the mass coefficient in the base-case system to m=8,0, we get a system with 𝛽 = 2. 

This means that the period of the wave is half of the period of the structure. Figure 9.22 show the 

phase plane diagrams for the systems with c=0,15 to the left and with c=0,5 to the right. Figures 9.23 

and 9.24 show the position and velocity curves for the systems respectively. Figure 9.24 show the 

position curves for the first 100s. It should be noted that the systems with β=2,0 have different initial 

conditions than the systems for the other values.   

Figure 9.22: Base-case system with m=8,0, making β=2,0 with c=0,15(left) and c=0,5(right) for four different set 
of initial conditions represented with separate colours. 

 

 

Figure 9.23: Position curves for the system with β=2,0, c=0,15(left) and c=0,5(right) for four different set of 
initial conditions represented by separate colours. 
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Figure 9.24: Velocity curves for the system with β=2,0, c=0,15(left) and c=0,5(right) for four different set of 
initial conditions represented by separate colours. 

 

 

 

 

Figure 9.25: The first 100s of the position curves for the system with β=2,0, c=0,15(left) and c=0,5(right) for four 
different set of initial conditions represented by separate colours. 
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 Table 9.1: Review of position curves, velocity curves and phase plane diagrams for the base-case system with the mass varied close to resonance, for 

two types of linear damping, c=0,15 and c=0,5, for four different set of initial conditions. 

It should be noted that the axis and timespans for β=1,0, β=3/2 and β=2,0 differ from the axis in the diagrams for the other vales of β.

c0 

 
β 

0,15 0,5 

Position curves Velocity curves Phase plane diagrams Position curves Velocity curves Phase plane diagrams 

 
 

1/3 

      
 
 

1/2 

      
 
 

1,0 

      
 
 

3/2 

      
 
 

2,0 
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9.3 Conclusion 
 

A one degree of freedom system subjected to drag loading and linear, constant damping will have 

limit cycles near and at resonance. As the damping is constant and linear, the drag loading will to 

some degree work as negative damping, making the generation and dissipation of energy in the 

system balanced. The trajectories having initial conditions outside the limit cycle decrease their 

amplitudes, while the trajectories starting inside the limit cycle increase their amplitudes into the 

limit cycles.  

9.4 Consequences for offshore structures 
 

For waves that have periods in resonance with the construction (ω=ω0, β=1), we get a limit cycle 

behaviour of the response (at least for small values of damping), giving systems starting at some 

initial conditions an increase in amplitude. This behaviour is discussed in the report “Transient 

motions of an oscillating system caused by forcing terms proportional to the velocity of the structural 

motion” by Gudmestad O.T [20]. The forcing term does thus include a negative damping component, 

which can be seen when linearizing the forcing term [20]. 

For higher order resonances, β=1/2 and β=1/3 as well as for β=3/2 and β=2,0, similar behaviour is 

observed, thereby energy from waves with higher periods, for example 15 seconds and 10 seconds, 

respectively, is fed into a system with natural period of 5 seconds. In storm situations, the energy 

spectrum has high values for higher periodic waves and considerable displacements and velocities 

can be expected, see also Appendix E. 
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Chapter 10 - Conclusions and further work 
 

10.1 Part I 
 

This thesis has been divided into two parts. Part I starts with preliminary considerations, a short 

historic overview of the nonlinearity in engineering as well as the introduction of the phase plane 

method. The method is in part I used to describe linear systems with different degrees of damping 

inherent. In chapter 2, the system is homogenous, i.e. F(t)=0, while in chapter 3, a linear forcing term 

is added to the systems.  

Chapter 4 gives a presentation of one degree of freedom equations for known nonlinear systems. 

The van der Pol equation is well known for describing systems with a nonlinear damping term. 

Systems described using the van der Pol equation exhibits limit cycles. Limit cycles are closed orbits 

in the phase plane, in which all near trajectories with different initial conditions will either spiral 

towards or away from. A limit cycle is said to be stable when all trajectories spiral towards it.  

The pendulum equation is a known equation for describing the pendulum which has a nonlinear 

stiffness. The pendulum equation is often linearized by using small angle approximation. The angular 

response as a function of time is presented in chapter 4 for both the linearized and the non-

linearized pendulum equation. It clearly shows the problem with linearization when the angles are 

increased. The phase plane diagram for the unforced pendulum equation is also presented, both 

without and with damping inherent. 

The Morison equation is a well-known equation within the marine engineering community. It is used 

to describe the inline force on a body in oscillatory flow. The Morison equation consists of the drag 

force and the mass force.  

10.2 Part II 
 

In part I, the systems and diagrams plotted are well known. In part II, a system with random values of 

the parameters is chosen. This system is named the base-case system. The aim of part II is to analyse 

what happens in this system when varying the values of the parameters. The base-case system is in 

chapter 5 subjected to a nonlinear force, representing the drag force from the Morison equation. The 

system’s parameters for stiffness, amplitude, loading frequency and mass are varied to look at their 

impact on the system, and the system is in chapter 5 looked at without damping. The results 

obtained from chapter 5 are: 

- When the stiffness parameter, k, is increased, the periods decrease, the position amplitude 

decrease, while the velocity amplitudes are not affected. The effect of the nonlinearity in the forcing 

term is decreased as k is increased. 

- The increase of the amplitude parameter, F0, does not affect the period, while both the position and 

velocity amplitude is increased. The effect of the nonlinearity increases as F0 is increased. 

- The loading frequency, ω, does not affect the period. Some decrease in the position and velocity 

amplitude were noticed when ω was increased. This was most visible in the lower values of ω, where 
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the systems were closer to resonance. The increase of ω, makes the effect of the nonlinearity in the 

forcing term decrease. 

- When the mass parameter, m, was increased, the periods increased. The position amplitudes do 

not seem to be affected, while a little decrease in velocity amplitude was seen. The variation of the 

mass parameter does not seem to affect the nonlinearity from the forcing term. 

- When the systems mass or loading frequency are increased to values close to resonance, i.e. ω=ω0, 

the systems positions and velocites amplitudes increase as β gets larger, up until β=1,0. At 

resonance, i.e. β=1,0, both systems experience an unlimited growth in both velocity and position. 

When the parameters are increased over the resonance values the systems go back to the steady 

path of increase and decrease in amplitudes. The increase of β after β=1,0, decreases the position 

and velocity amplitudes. 

In chapter 6, linear, constant damping is added to the base-case system, as well as for some selected 

systems from chapter 5. When varying the parameters around the values from the base-case system, 

we get results as expected. The linear, constant damping will decay the oscillations, making the 

systems spiral towards the origin in the phase plane diagrams. When the mass parameter is set to 

values making the base-case system close to and at resonance, the results are a bit different. The 

addition of damping makes the systems’ amplitudes increase up until the point where they have a 

steady trajectory in the phase plane. These trajectories are similar to those showed for the van der 

Pol equation in chapter 4.  

 

In chapter 7 nonlinear damping was added to the base-case system, and the system was made 

homogenous, i.e. F(t)=0. The base-case system was investigated as well as the systems with the mass 

varied to make systems with β=1/3-2,0. It was found that all the systems had their own critical value 

of the nonlinear damping coefficient a. At this value, the systems were overtaken by the negative 

damping leading to a continuous growth in amplitudes. The following values of a was found: 

-  a=1,20 for the base-case system, where β=7,07. 

-  a=3,46 for the system with β=1/3 for both values of c0 

-  a=1,61 for the system with β=1/2 for both values of c0 

- a=1,04 for the system with β=1,0 for both values of c0 

-  a=0,37 for the system with β=3/2 for both values of c0 

-  a=0,01 for the system with β=2,0 and c0=0,0015 

-  a=0,02 for the system with β=2,0 and c0=0,005 

In chapter 8, a linear forcing term was added to the systems from chapter 7, and the same 

investigations were conducted. It was found that the systems were still overtaken by the negative 

damping at the same critical values of a, as was found in chapter 7. In the Marintek report 

“Comparing simple models for prediction of ringing loads and responses”, 3.2.2 [24], it is mentioned 

that their nonlinear damping parameter, β, which the nonlinear damping parameter in this thesis, a, 

is based on, will be different for different systems.  

An exploration around limit cycles was conducted in chapter 9. The base-case system with nonlinear 

forcing term and linear, constant damping was investigated for values of the mass parameter making 
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β=1/3-2,0. It was in this chapter concluded that a one degree of freedom system subjected to drag 

loading and linear, constant damping will have limit cycles near and at resonance. As the damping is 

constant and linear, the drag loading will to some degree work as negative damping, making the 

generation and dissipation of energy in the system balanced.  

For higher order resonances, β=1/2 and β=1/3 as well as for β=3/2 and β=2,0, similar behaviour is 

observed, thereby energy from waves with higher periods, for example 15 seconds and 10 seconds, 

respectively, is fed into a system with natural period of 5 seconds. In storm situations, the energy 

spectrum has high values for higher periodic waves and considerable displacements and velocities 

can be expected, see also Appendix E. 

 

10.3 Further work 
 

The following is suggested: 

- As suggested in the Marintek report [24], further work to establish a “normalized” parameter for 

the nonlinear damping that does not depend on the actual system would be favourable. Also the 

load model suggested in [24] needs more investigation. 

- The “base-case system” chosen to investigate in this thesis has been chosen more or less at 

random. Further work would include to use values to describe an actual physical system. A natural 

place to start with this is the values from the Draugen monotower model from the Marintek report 

[24], as the nonlinear damping term in this thesis is based on that report. 

- Appendix E in this thesis is directly copied from the master thesis “Apparent Negative Damping an 

Original Approach to the Oscillations of Offshore Structures” by Rayne Babtiste from 2016. [25] It 

consists of an interview with the platform manager, Nils Gunnar Gundersen, of the Shell Draugen 

platform, about an incident occurring in 1995. The platform was hit by a great wave, but fortunately 

the platform was designed in such a way that no significant harm occurred. Rayne concludes that this 

wave may have been the result of crossflow oscillations. From the work conducted in this thesis, the 

large response may have been the result of negative damping from the drag force in the Morison 

equation, causing a wave with a large period and a large amplitude, hitting a structure, resulting in 

some degree of resonance. This should be further investigated. 

- The drag load from the Morison equation is used to describe oscillatory flow past an obstacle. It is 

suggested that there might be some interest in the medical science to use this equation to describe 

the flow in blood veins past obstacles as for example blood clots. Note that the loading is oscillatory 

(the heart pumps the blood at a certain frequency). The research question is therefore if certain 

frequencies of the heartbeat would cause resonance in the system and possible movements of the 

clots, a situation most undesirable for the patient. 
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Appendix A– Matlab codes 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%Free response without damping%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
d0=0; v0=5; w0=1.6;              %%Variables 
t1=0:0.1:8; t2=0:0.1:10;         %%Timespans 
  
x1=d0.*cos(w0.*t1)+(v0/w0).*sin(w0.*t1); 
x2=d0.*cos(w0.*t2)+(v0/w0).*sin(w0.*t2); 
  
plot(t1,x1,'k','LineWidth',1.2)        %%Plot whole line 
hold on 
plot(t2,x2,':k','LineWidth',1.2)       %%Plot dotted line 
  
plot([0 10],[0 0],'k'); plot([0 0], [-4 4],'k');     %%Making new axis 
  
axis off 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%Unforced system in the phase plane without damping%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
d0=4; v0=1; k=0.5; m=100; w0=sqrt(k/m);       %%Variables 
t=0:0.1:180;                                  %%Timespan 
  
x=(d0.*cos(w0.*t))+((v0/w0).*sin(w0*t)); 
y=(-d0.*w0.*sin(w0.*t))+(v0.*cos(w0.*t)); 
  
plot(x,y,'k','Linewidth',1.2) 
hold on 
  
plot([-18 18],[0 0],'k');plot([0 0], [-5 5],'k');    %%Making new axis 
  
axis off 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%Response of unforced, underdamped system%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
wd=0.9; c=0.9; m=2; d0=0; v0=5;        %%Variables 
t1=0:0.1:18; t2=0:0.1:20;               %%Timespans 
  
x1=exp((-c./(2.*m)).*t1).*(((v0/wd)+(c/(2*m*wd)*d0)).*sin((wd.*t1))+(d0.*cos(wd.*t1))); 
x2=exp((-c./(2.*m)).*t2).*(((v0/wd)+(c/(2*m*wd)*d0)).*sin((wd.*t2))+(d0.*cos(wd.*t2))); 
  
plot(t1,x1,'k','LineWidth',1.2)        %%Plot whole line 
hold on 
plot(t2,x2,':k','LineWidth',1.2)       %%Plot dotted line 
  
plot([0 20],[0 0],'k'); plot([0 0], [-5 5],'k');     %%Making new axis 
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axis off 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%unforced, underdamped system in u-v plane%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
A=5; wd=0.9; c=0.9; m=2; phi=0.2;                   %%Variables 
t1=0:0.1:10; t2=0:0.1:22;                           %%Timespans 
  
u1=A.*wd.*exp((-c./(2.*m)).*t1).*sin((wd.*t1)+phi); 
u2=A.*wd.*exp((-c./(2.*m)).*t2).*sin((wd.*t2)+phi); 
v1=A.*wd.*exp((-c./(2.*m)).*t1).*cos((wd.*t1)+phi); 
v2=A.*wd.*exp((-c./(2.*m)).*t2).*cos((wd.*t2)+phi); 
  
plot(u1,v1,'k','LineWidth',1.2)                     %%Plot whole line 
hold on 
plot(u2,v2,':k','LineWidth',1.2)                    %%Plot dotted line 
  
plot([-4 4],[0 0],'k'); plot([0 0], [-5 5],'k');    %%Making new axis 
  
axis off 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%unforced, underdamped system in phase plane%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
A=5; wd=0.9; c=0.9; m=2; phi=0.2;                   %%Variables 
t1=0:0.1:10; t2=0:0.1:22;                           %%Timespans 
  
u1=A.*wd.*exp((-c./(2.*m)).*t1).*sin((wd.*t1)+phi); 
u2=A.*wd.*exp((-c./(2.*m)).*t2).*sin((wd.*t2)+phi); 
v1=A.*wd.*exp((-c./(2.*m)).*t1).*cos((wd.*t1)+phi); 
v2=A.*wd.*exp((-c./(2.*m)).*t2).*cos((wd.*t2)+phi); 
x1=u1./wd; 
x2=u2./wd; 
y1=v1-c./(2.*m); 
y2=v2-c./(2.*m); 
  
plot(x1,y1,'k','LineWidth',1.2)                     %%Plot whole line 
hold on 
plot(x2,y2,':k','LineWidth',1.2)                    %%Plot dotted line 
  
plot([-4 4],[0 0],'k'); plot([0 0], [-5 5],'k');    %%Making new axis 
  
axis off 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%Free response overdamped system%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
d0=0; v0=5; s1=-1; s2=-2;         %%Variables 
t1=0:0.1:5; t2=0:0.1:8;    %%Timespans 
  
x1=(((d0*s2)-v0)/(s2-s1)).*exp(s1.*t1)+((v0-(d0*s1))/(s2-s1)).*exp(s2.*t1); 
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x2=(((d0*s2)-v0)/(s2-s1)).*exp(s1.*t2)+((v0-(d0*s1))/(s2-s1)).*exp(s2.*t2); 
  
plot(t1,x1,'k','LineWidth',1.2)     %%Plot whole line 
hold on 
plot(t2,x2,':k','LineWidth',1.2)    %%Plot dotted line 
  
plot([0 8],[0 0],'k'); plot([0 0], [-2 2],'k');    %%Making new axis 
  
axis off 
 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%unforced, overdamped system in u-v plane%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
a0=1; b0=1.5; a1=0; b1=1.5; a2=1; b2=0; a3=0; b3=-1.5; a4=-1; b4=0;  
a5=0.7; b5=1; a6=-1; b6=-1.5; a7=-0.7;b7=-1; a8=-1; b8=1.5; a9=1;  
b9=-1.5; a10=-0.7; b10=1;a11=0.7; b11=-1; s1=-1; s2=-0.5;   %%Variables 
t=0:0.1:10;                                 %%Timespan 
u0=a0.*exp(s1.*t);v0=b0.*exp(s2.*t);u1=a1.*exp(s1.*t);v1=b1.*exp(s2.*t); 
u2=a2.*exp(s1.*t);v2=b2.*exp(s2.*t);u3=a3.*exp(s1.*t);v3=b3.*exp(s2.*t); 
u4=a4.*exp(s1.*t);v4=b4.*exp(s2.*t);u5=a5.*exp(s1.*t);v5=b5.*exp(s2.*t); 
u6=a6.*exp(s1.*t);v6=b6.*exp(s2.*t);u7=a7.*exp(s1.*t);v7=b7.*exp(s2.*t); 
u8=a8.*exp(s1.*t);v8=b8.*exp(s2.*t);u9=a9.*exp(s1.*t);v9=b9.*exp(s2.*t); 
u10=a10.*exp(s1.*t);v10=b10.*exp(s2.*t);u11=a11.*exp(s1.*t); 
v11=b11.*exp(s2.*t); 
plot(u0,v0,'k',u1,v1,'k',u2,v2,'k',u3,v3,'k',u4,v4,'k',u5,v5,'k',u6,v6,'k',u7,v7,'k',u8,v8,'k',u9,v9,'k',u10,v10,'k',u11,v
11,'k','LineWidth',1.8) 
hold on 
plot([-1.5 1.5],[0 0],'k');plot([0 0], [-2 2],'k');  %%Making new axis 
  
axis off 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%unforced, overdamped system in phase plane%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
a0=1; b0=1.5; a1=0; b1=1.5; a2=1; b2=0; a3=0; b3=-1.5; a4=-1; b4=0;  
a5=0.7; b5=1; a6=-1; b6=-1.5; a7=-0.7;b7=-1; a8=-1; b8=1.5; a9=1;  
b9=-1.5; a10=-0.7; b10=1;a11=0.7; b11=-1; s1=-1; s2=-0.5;   %%Variables 
t=0:0.1:10;                                 %%Timespans 
u0=a0.*exp(s1.*t);v0=b0.*exp(s2.*t);u1=a1.*exp(s1.*t);v1=b1.*exp(s2.*t); 
u2=a2.*exp(s1.*t);v2=b2.*exp(s2.*t);u3=a3.*exp(s1.*t);v3=b3.*exp(s2.*t); 
u4=a4.*exp(s1.*t);v4=b4.*exp(s2.*t);u5=a5.*exp(s1.*t);v5=b5.*exp(s2.*t); 
u6=a6.*exp(s1.*t);v6=b6.*exp(s2.*t);u7=a7.*exp(s1.*t);v7=b7.*exp(s2.*t); 
u8=a8.*exp(s1.*t);v8=b8.*exp(s2.*t);u9=a9.*exp(s1.*t);v9=b9.*exp(s2.*t); 
u10=a10.*exp(s1.*t);v10=b10.*exp(s2.*t);u11=a11.*exp(s1.*t); 
v11=b11.*exp(s2.*t); 
hold on 
x0=(u0./w0)+((s1*(v0-u0))./(s1-s2));y0=(v0-u0)./(s1-s2); 
x1=(u1./w0)+((s1*(v1-u1))./(s1-s2));y1=(v1-u1)./(s1-s2); 
x2=(u2./w0)+((s1*(v2-u2))./(s1-s2));y2=(v2-u2)./(s1-s2); 
x3=(u3./w0)+((s1*(v3-u3))./(s1-s2));y3=(v3-u3)./(s1-s2); 
x4=(u4./w0)+((s1*(v4-u4))./(s1-s2));y4=(v4-u4)./(s1-s2); 
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x5=(u5./w0)+((s1*(v5-u5))./(s1-s2));y5=(v5-u5)./(s1-s2); 
x6=(u6./w0)+((s1*(v6-u6))./(s1-s2));y6=(v6-u6)./(s1-s2); 
x7=(u7./w0)+((s1*(v7-u7))./(s1-s2));y7=(v7-u7)./(s1-s2); 
x8=(u8./w0)+((s1*(v8-u8))./(s1-s2));y8=(v8-u8)./(s1-s2); 
x9=(u9./w0)+((s1*(v9-u9))./(s1-s2));y9=(v9-u9)./(s1-s2); 
x10=(u10./w0)+((s1*(v10-u10))./(s1-s2));y10=(v10-u10)./(s1-s2); 
x11=(u11./w0)+((s1*(v11-u11))./(s1-s2));y11=(v11-u11)./(s1-s2); 
plot(x0,y0,'k',x1,y1,'k',x2,y2,'k',x3,y3,'k',x4,y4,'k',x5,y5,'k',x6,y6,'k',x7,y7,'k',x8,y8,'k',x9,y9,'k',x10,y10,'k',x11,y11,
'k','LineWidth',1.8) 
plot([-5 5],[0 0],'k');plot([0 0], [-6 6],'k');  %%Making new axis 
  
axis off 
 

%%Response of unforced, critically damped system%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
d0=0; v0=5; w0=2;                              %%Variables 
t1=0:0.1:2; t2=0:0.1:5;                     %%Timespans 
  
x1=d0.*exp(-w0.*t1)+(v0+(w0.*d0)).*t1.*exp(-w0.*t1); 
x2=d0.*exp(-w0.*t2)+(v0+(w0.*d0)).*t2.*exp(-w0.*t2); 
plot(t1,x1,'k','LineWidth',1.2)                 %%Plot whole line 
hold on 
plot(t2,x2,':k','LineWidth',1.2)                 %%Plot dotted line 
  
plot([0 6],[0 0],'k'); plot([0 0],[-1.5 1.5],'k');%%Making new axis 
  
axis off 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%unforced, overdamped system in u-v plane%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
a0=0.4;b0=0.3;a1=0.3;b1=0.2;a2=0.2;b2=0.1;a3=-0.4; 
b3=-0.3;a4=-0.3;b4=-0.2;a5=-0.2;b5=-0.1;            %%Variables 
t=0:0.1:10;                                         %%Timepsan 
u0=a0*exp(-c.*t);v0=(exp(-c.*t)).*((a0.*t)+b0); 
u1=a1*exp(-c.*t);v1=(exp(-c.*t)).*((a1.*t)+b1); 
u2=a2*exp(-c.*t);v2=(exp(-c.*t)).*((a2.*t)+b2); 
u3=a3*exp(-c.*t);v3=(exp(-c.*t)).*((a3.*t)+b3); 
u4=a4*exp(-c.*t);v4=(exp(-c.*t)).*((a4.*t)+b4); 
u5=a5*exp(-c.*t);v5=(exp(-c.*t)).*((a5.*t)+b5); 
plot(u0,v0,'k',u1,v1,'k',u2,v2,'k',u3,v3,'k',u4,v4,'k',u5,v5,'k','LineWidth',1.8) 
hold on 
plot([-0.5 0.5],[0 0],'k');plot([0 0], [-0.5 0.5],'k'); %%Making new axis 
  
axis off 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%unforced, overdamped system in phase plane%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
a0=0.4;b0=0.3;a1=0.3;b1=0.2;a2=0.2;b2=0.1;a3=-0.4; 
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b3=-0.3;a4=-0.3;b4=-0.2;a5=-0.2;b5=-0.1;            %%Variables 
t=0:0.1:10;                                         %%Timespan 
u0=a0*exp(-c.*t);v0=(exp(-c.*t)).*((a0.*t)+b0); 
u1=a1*exp(-c.*t);v1=(exp(-c.*t)).*((a1.*t)+b1); 
u2=a2*exp(-c.*t);v2=(exp(-c.*t)).*((a2.*t)+b2); 
u3=a3*exp(-c.*t);v3=(exp(-c.*t)).*((a3.*t)+b3); 
u4=a4*exp(-c.*t);v4=(exp(-c.*t)).*((a4.*t)+b4); 
u5=a5*exp(-c.*t);v5=(exp(-c.*t)).*((a5.*t)+b5); 
x0=v0./c;y0=(u0./c)-v0;x1=v1./c;y1=(u1./c)-v1; 
x2=v2./c;y2=(u2./c)-v2;x3=v3./c;y3=(u3./c)-v3; 
x4=v4./c;y4=(u4./c)-v4;x5=v5./c;y5=(u5./c)-v5; 
plot(x0,y0,'k',x1,y1,'k',x2,y2,'k',x3,y3,'k',x4,y4,'k',x5,y5,'k','LineWidth',1.8) 
hold on 
  
plot([-0.5 0.5],[0 0],'k');plot([0 0], [-0.5 0.5],'k'); %%Making new axis 
  
axis off 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%unforced system with negative stiffness in u-v plane%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
a0=10;b0=0;a1=0;b1=10;a2=0;b2=-10;a3=10;b3=9;a4=5;b4=4;a5=10;b5=-9;a6=5;b6=-4;a7=-10;b7=-9;a8=-
5;b8=-4;a9=-10;b9=9;a10=-5;b10=4;a11=-10;b11=0;s1=-0.5;s2=0.4; %%Variables 
t=0:0.1:7;      %%Timespan 
u0=a0.*exp(s1.*t);v0=b0.*exp(s2.*t); 
u1=a1.*exp(s1.*t);v1=b1.*exp(s2.*t);u2=a2.*exp(s1.*t);v2=b2.*exp(s2.*t); 
u3=a3.*exp(s1.*t);v3=b3.*exp(s2.*t);u4=a4.*exp(s1.*t);v4=b4.*exp(s2.*t); 
u5=a5.*exp(s1.*t);v5=b5.*exp(s2.*t);u6=a6.*exp(s1.*t);v6=b6.*exp(s2.*t); 
u7=a7.*exp(s1.*t);v7=b7.*exp(s2.*t);u8=a8.*exp(s1.*t);v8=b8.*exp(s2.*t); 
u9=a9.*exp(s1.*t);v9=b9.*exp(s2.*t);u10=a10.*exp(s1.*t);v10=b10.*exp(s2.*t); 
u11=a11.*exp(s1.*t);v11=b11.*exp(s2.*t); 
  
plot(u0,v0,'k',u1,v1,'k',u2,v2,'k',u3,v3,'k',u4,v4,'k',u5,v5,'k',u6,v6,'k',u7,v7,'k',u8,v8,'k',u9,v9,'k',u10,v10,'k',u11,v
11,'k','LineWidth',1.8) 
hold on 
plot([-15 15],[0 0],'k');plot([0 0], [-200 200],'k');   %%Making new axis 
  
axis off 
 

%%%%%%%%%%%%%%%%%%%% 
%%Resonance curves%% 
%%%%%%%%%%%%%%%%%%%% 
  
A=1;w0=1;c1=0;c2=0.05;c4=0.1;c5=0.3;c6=1;w=0:0.01:2;    %%Variables 
  
a1=A./(sqrt(((w0.^2-w.^2).^2)+(c1.^2.*w.^2))); 
a2=A./(sqrt(((w0.^2-w.^2).^2)+(c2.^2.*w.^2))); 
a4=A./(sqrt(((w0.^2-w.^2).^2)+(c4.^2.*w.^2))); 
a5=A./(sqrt(((w0.^2-w.^2).^2)+(c5.^2.*w.^2))); 
a6=A./(sqrt(((w0.^2-w.^2).^2)+(c6.^2.*w.^2))); 
  
plot(w,a1,'k',w,a2,'k',w,a4,'k',w,a6,'k',w,a5,'k','LineWidth',1.2) 
hold on 



148 
 

plot([-0.1 2.1],[0 0],'k');plot([0 0], [-1 50],'k');    %%Making new axis 
axis off 
 

%%%%%%%%%%%%%%% 
%%Phasecurves%% 
%%%%%%%%%%%%%%% 
  
w0=4;c1=0;c2=0.05;c3=0.2;c4=0.5;c5=0.7;c6=1;w=0:0.01:2*pi;  %%Variables 
  
te1=atan2(((c1.*w)),(w0.^2-w.^2)); 
te2=atan2((c2.*w),(w0.^2-w.^2)); 
te3=atan2((c3.*w),(w0.^2-w.^2)); 
te4=atan2(((c4.*w)),(w0.^2-w.^2)); 
te5=atan2((c5.*w),(w0.^2-w.^2)); 
te6=atan2((c6.*w),(w0.^2-w.^2)); 
  
plot(w,te1,'k',w,te2,'k',w,te3,'k',w,te4,'k',w,te5,'k',w,te6,'k','LineWidth',1.2) 
hold on 
plot([-1 8],[0 0],'k');plot([0 0], [-1 3.5],'k');   %%Making new axis 
  
Axis off 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%forced system without dampingin the phase plane%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
m=100; F0=5;  k=0.5; c=0; sig=c/m; A=F0/m; w=2; wd=sqrt((sig/2)^2-w0^2); 
d0=4; v0=1; w0=sqrt(k/m);thet=atan((sig*m)/(w0^2-w^2));  %%Variables 
t=0:0.1:180;            %%Timespan 
xp=(A/sqrt((w0^2-w^2)^2+(sig^2*w^2)))*sin((w.*t)-thet); 
xh=(d0.*cos(w0.*t))+((v0/w0).*sin(w0*t)); 
yp=((A*w)/sqrt((w0^2-w^2)^2+(sig^2*w^2)))*cos((w.*t)-thet); 
yh=(-d0.*w0.*sin(w0.*t))+(v0.*cos(w0.*t)); 
x=xh+xp; 
y=yh+yp; 
  
plot(x,y,'k','Linewidth',1.2) 
hold on 
plot([-20 20],[0 0],'k'); plot([0 0], [-1.5 1.5],'k');  %%Making new axis 
  
axis off 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%forced, underdamped system the phase plane%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
m=100; F0=5; c=1.5; k=1.69; sig=c/m; w02=k/m; A=F0/m; w=2; wd=sqrt(w^2-(k/2)^2); 
v0=1; d0=0;thet=atan((sig*m)/(w02-w^2));    %%Variables 
t=0:0.1:300;                                %%Timespan 
xp=(A/sqrt((w02-w^2)^2+(sig^2*w^2)))*sin((w.*t)-thet); 
xh=exp((-sig/2).*t).*(((v0/wd)+(sig/2*wd)).*sin(wd.*t)+(d0.*cos(wd.*t))); 
yp=((A*w)/sqrt((w02-w^2)^2+(sig^2*w^2)))*cos((w.*t)-thet); 
yh=exp((-sig/2).*t).*((((-sig*v0)/(2*wd))-((sig^2*d0)/(4*wd))-(d0*wd)).*sin(wd.*t)+(v0.*cos(wd.*t))); 
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x=xh+xp; 
y=yh+yp; 
  
plot(x,y,'k','Linewidth',1.2) 
hold on 
plot([0 0], [-1.5 1.5],'k'); plot([-1 1], [0 0], 'k') %%Making new axis 
  
axis off 
 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%forced, overdamped system the phase plane%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
m=10; F0=50; c=80; k=1.69; sig=c/m; w02=k/m; A=F0/m; w=2; wd=sqrt(w^2-(k/2)^2); 
b=(v0-(s1*d0))/(s2-s1); a=d0-b; s1=-1; s2=-0.5;thet=atan((sig*m)/(w02-w^2));    %%Variables 
  
hold on 
for d0=[-2 0 2]         %%Initial displacement 
    for v0=[-2 0 2]     %%Initial velocity 
    t=0:0.1:1000;       %%Timespan 
    b=(v0-(s1*d0))/(s2-s1); a=d0-b; 
xp=(A/sqrt((w02-w^2)^2+(sig^2*w^2)))*sin((w.*t)-thet); 
xh=a.*exp(s1.*t)+b.*exp(s2.*t); 
yp=((A*w)/sqrt((w02-w^2)^2+(sig^2*w^2)))*cos((w.*t)-thet); 
yh=(s1.*a.*exp(s1.*t))+(s2.*b.*exp(s2.*t)); 
x=xh+xp; 
y=yh+yp; 
plot(x,y,'k','Linewidth',1.2) 
    end 
end 
  
plot([0 0], [-3 3],'k'); plot([-3 3], [0 0], 'k') %%Making new axis 
  
axis off 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%forced, critically damped system the phase plane%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
m=10; F0=50; k=1.69; c=4*k; sig=c/m; w02=k/m; w0=sqrt(k/m); A=F0/m; w=2; wd=sqrt(w^2-(k/2)^2); 
s1=-w0; s2=-w0; thet=atan((sig*m)/(w02-w^2));   %%Variables 
  
hold on 
for d0=[-2 0 2 ]        %%Initial displacement 
    for v0=[-2 0 2 ]    %%Initial velocity 
    t=0:0.1:1000;       %%Timespan 
    a=d0; b=v0+(w0*d0); 
xp=(A/sqrt((w02-w^2)^2+(sig^2*w^2)))*sin((w.*t)-thet); 
xh=(a.*exp(s1.*t))+(b.*t.*exp(s2.*t)); 
yp=((A*w)/sqrt((w02-w^2)^2+(sig^2*w^2)))*cos((w.*t)-thet); 
yh=(-w0.*a.*exp(s1.*t))-(w0.*b.*t.*exp(s2.*t)); 
x=xh+xp; 
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y=yh+yp; 
plot(x,y,'k','LineWidth',1.2) 
    end 
end 
  
  
plot([0 0], [-5 5],'k');plot([-7 7], [0 0], 'k')    %%Making new axis 
  
axis off 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%Position curve Van der Pol with mu=0,5%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
type vanderpoldemo 
tspan=[0, 60];     %%Timespan 
y0=[0;1];Mu1=0.5;                   %%Variables 
ode1=@(t,y) vanderpoldemo(t,y,Mu1); 
[t,y1]=ode15s(ode1,tspan,y0); 
  
plot(t,y1(:,1),':k','LineWidth',1.2)     
hold on 
  
plot([0 60],[0 0],'k');plot([0 0], [-2.5 2.5],'k'); %%Making new axis 
  
axis off 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%Position curve Van der Pol with mu=5%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
type vanderpoldemo 
tspan=[0, 50];                     %%Timespan 
y0=[0;1];Mu1=5;                   %%Variables 
ode1=@(t,y) vanderpoldemo(t,y,Mu1); 
[t,y1]=ode15s(ode1,tspan,y0); 
  
plot(t,y1(:,1),'k','LineWidth',1.2)     
hold on 
  
plot([0 60],[0 0],'k');plot([0 0], [-2.5 2.5],'k'); %%Making new axis 
  
axis off 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%Position curve Van der Pol with mu=10 %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
type vanderpoldemo 
tspan=[0, 60];                     %%Timespan 
y0=[0;1];Mu1=10;                   %%Variables 
ode1=@(t,y) vanderpoldemo(t,y,Mu1); 
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[t,y1]=ode15s(ode1,tspan,y0); 
  
plot(t,y1(:,1),':k','LineWidth',1.2)     
hold on 
  
plot([0 60],[0 0],'k');plot([0 0], [-2.5 2.5],'k'); %%Making new axis 
  
axis off 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%phaseplane vanderpol mu=1%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
  
type vanderpoldemo 
tspan=[0, 60];          %%Timespan 
y0=[2;0];y02=[3;1];y03=[-1;-2];y04=[-3;3];y05=[2;-1];y06=[1;-2];y07=[0.1;0.1];y08=[-0.3;-0.3];y09=[-
3.5;3.5];y010=[0.5;-0.5];y011=[1.3;-2.4];y012=[0.5;0.5];y013=[-1.5;2.5];y014=[-3;-3]; %%Variables 
Mu=1; 
ode=@(t,y) vanderpoldemo(t,y,Mu); 
[t,y1]=ode15s(ode,tspan,y0); 
plot(y1(:,1),y1(:,2),'k','LineWidth',1.2) 
hold on 
[t,y2]=ode15s(ode,tspan,y02); 
plot(y2(:,1),y2(:,2),'k','LineWidth',1.2) 
[t,y3]=ode15s(ode,tspan,y03); 
plot(y3(:,1),y3(:,2),'k','LineWidth',1.2) 
[t,y4]=ode15s(ode,tspan,y04); 
plot(y4(:,1),y4(:,2),'k','LineWidth',1.2) 
[t,y5]=ode15s(ode,tspan,y05); 
plot(y5(:,1),y5(:,2),'k','LineWidth',1.2) 
[t,y6]=ode15s(ode,tspan,y06); 
plot(y6(:,1),y6(:,2),'k','LineWidth',1.2) 
[t,y7]=ode15s(ode,tspan,y07); 
plot(y7(:,1),y7(:,2),'k','LineWidth',1.2) 
[t,y8]=ode15s(ode,tspan,y08); 
plot(y8(:,1),y8(:,2),'k','LineWidth',1.2) 
[t,y9]=ode15s(ode,tspan,y09); 
plot(y9(:,1),y9(:,2),'k','LineWidth',1.2) 
[t,y10]=ode15s(ode,tspan,y010); 
plot(y10(:,1),y10(:,2),'k','LineWidth',1.2) 
[t,y11]=ode15s(ode,tspan,y011); 
plot(y11(:,1),y11(:,2),'k','LineWidth',1.2) 
[t,y12]=ode15s(ode,tspan,y012); 
plot(y12(:,1),y12(:,2),'k','LineWidth',1.2) 
[t,y13]=ode15s(ode,tspan,y013); 
plot(y13(:,1),y13(:,2),'k','LineWidth',1.2) 
[t,y14]=ode15s(ode,tspan,y014); 
plot(y14(:,1),y14(:,2),'k','LineWidth',1.2) 
axis off 
  
plot([0 0], [-4 4],'k');plot([-4 4], [0 0],'k');    %%Making new axis 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Van der Pol limit cycles%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
type vanderpoldemo 
tspan=[0, 150]; 
y0=[2;0];y01=[1;0];y02=[3;1];y03=[-1;-2];y04=[-3;3];y05=[2;-1];y06=[1;-2];y07=[0.1;0.1];y08=[-0.3;-0.3];y09=[-
3.5;3.5];y010=[0.5;-0.5];y011=[1.3;-2.4];y012=[0.5;0.5];y013=[-1.5;2.5];y014=[-3;-3]; %%Variables 
Mu1=0.1; 
ode1=@(t,y) vanderpoldemo(t,y,Mu1); 
[t,y1]=ode15s(ode1,tspan,y0); 
plot(y1(:,1),y1(:,2),'k','LineWidth',1.2) 
hold on 
Mu3=0.5; 
ode3=@(t,y) vanderpoldemo(t,y,Mu3); 
[t,y3]=ode15s(ode3,tspan,y0); 
plot(y3(:,1),y3(:,2),'r','LineWidth',1.2) 
Mu4=1; 
ode4=@(t,y) vanderpoldemo(t,y,Mu4); 
[t,y4]=ode15s(ode4,tspan,y0); 
plot(y4(:,1),y4(:,2),'b','LineWidth',1.2) 
Mu5=1.5; 
ode5=@(t,y) vanderpoldemo(t,y,Mu5); 
[t,y5]=ode15s(ode5,tspan,y0); 
plot(y5(:,1),y5(:,2),'g','LineWidth',1.2) 
Mu6=2; 
ode6=@(t,y) vanderpoldemo(t,y,Mu6); 
[t,y6]=ode15s(ode6,tspan,y0); 
plot(y6(:,1),y6(:,2),'m','LineWidth',1.2) 
plot([-4 4], [0 0],'k');plot([0 0], [-4 4],'k');    %%Making new axis 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%Response of the Pendulum equation%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
L=1.5; g=9.81; m=0.3; b=0.05;k=0;r=g/L; %%Variables 
  
f=@(t,x) [x(2);-k*x(2)-r*x(1)]; 
init=[pi/6;0] 
[t,x]=ode45(f,[0 10], init); 
plot(t,x(:,1),'k'); 
hold on 
  
plot([0 10],[0 0],'k');plot([0 0], [-2 2],'k'); %%Making new axis 
  
axis off 
 

%%%%%%%%%%%%%%%%%%%%%%% 
%%Pendulum phaseplane%% 
%%%%%%%%%%%%%%%%%%%%%%% 

 
L=9; g=9.81; m=0.3; b=0.05; 
k=0.2; 
r=g/L; 
  
f=@(t,x) [x(2);-k*x(2)-r*sin(x(1))]; 
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init1=[-3.15;0]; 
[t,x1]=ode45(f,[0 22], init1); 
plot(x1(:,1),x1(:,2),'k','LineWidth',1.2); 
hold on 
axis off 
plot([-10 10],[0 0],'k'); 
plot([0 0], [-4 4],'k'); 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Phase plane plots for nonlinear force %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
m=8; F0=50; c=0; k=0.5; w=0.5;     %% Setting the variables to appropriate values. 
  
f=@(t,x) [x(2);((F0/m)*sin(w.*t)*abs(sin(w.*t)))-((c/m)*x(2))-((k/m)*x(1))]; 
init1=[2;2];                            %% Initial conditions 
[t,x1]=ode45(f,[0 3600], init1) 
plot(x1(:,1),x1(:,2),'k','LineWidth',1.2); 
hold on 
  
axis off 
plot([-40 40],[0 0],'k'); 
plot([0 0], [-10 10],'k');                 %% Making axis through the origin. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%Position/velocity curves for nonlinear force%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
m=8; F0=50; c=0.0; k=0.5; w=0.5;     %% Setting the varaiables to appropriate values. 
  
f=@(t,x) [x(2);((F0/m)*sin(w.*t)*abs(sin(w.*t)))-((c/m)*x(2))-((k/m)*x(1))]; 
init1=[2;2];                            %% Initial conditions 
[t,x1]=ode45(f,[0 3600], init1) 
plot(t,x1(:,1),'k','LineWidth',1.2); 
hold on 
  
axis off 
plot([0 3800],[0 0],'k'); 
plot([0 0], [-40 40],'k');                 %% Making axis through the origin. 
  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Phase plane plots for homogenous equation with nonlinear damping%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
m=100; F0=50; c0=0; a=0; k=0.5; w=0.5;     %% Setting the variables to 

appropriate values. 

  
f=@(t,x) [x(2);-(((a.*sin(w.*t).*abs(sin(w.*t))+c0)/m).*x(2))-

((k/m).*x(1))]; 
init1=[2;2];                            %% Initial conditions 
[t,x1]=ode45(f,[0 3600], init1) 
plot(x1(:,1),x1(:,2),'k','LineWidth',1.2); 
hold on 

  



154 
 

axis off 
plot([-40 40],[0 0],'k'); 
plot([0 0], [-10 10],'k');                 %% Making axis through the 

origin. 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%Position/velocity for homogenous equation with nonlinear damping%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
m=100; F0=50; c0=0.005; a=0.5; k=0.5; w=0.5;     %% Setting the variables 

to appropriate values. 

  
f=@(t,x) [x(2);-((((a.*sin(w.*t).*abs(sin(w.*t)))+c0)).*x(2))-

((k/m).*x(1))]; 
init1=[2;2];                            %% Initial conditions 
[t,x1]=ode45(f,[0 3600], init1) 
plot(t,x1(:,1),'k','LineWidth',1.2); 
hold on 

  
axis off 
plot([0 3800],[0 0],'k'); 
plot([0 0], [-40 40],'k');                 %% Making axis through the 

origin. 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Phase plane plots for linear forced equation with nonlinear damping%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
m=100; F0=50; c0=0.0015; a=0.5; k=0.5; w=0.5;     %% Setting the variables 

to appropriate values. 

  
f=@(t,x) [x(2);((F0/m).*sin(w.*t))-

((((a.*sin(w.*t).*abs(sin(w.*t)))+c0)).*x(2))-((k/m).*x(1))]; 
init1=[2;2];                            %% Initial conditions 
[t,x1]=ode45(f,[0 2000], init1) 
plot(x1(:,1),x1(:,2),'k','LineWidth',1.2); 
hold on 

  
plot([-30 30],[0 0],'k'); 
plot([0 0], [-8 8],'k');                 %% Making axis through the origin. 

  
axis off 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% 
%%Position/velocity plots for linear forced equation with nonlinear 

damping%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% 

  
m=8; F0=50; c0=0.005; a=0.02; k=0.5; w=0.5;     %% Setting the variables to 

appropriate values. 

  
f=@(t,x) [x(2);((F0/m).*sin(w.*t))-

((((a.*sin(w.*t).*abs(sin(w.*t)))+c0)).*x(2))-((k/m).*x(1))]; 
init1=[2;2];                            %% Initial conditions 
[t,x1]=ode45(f,[0 500], init1) 
plot(t,x1(:,1),'k','LineWidth',1.2); 
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hold on 

  

  
plot([0 500],[0 0],'k'); 
plot([0 0], [-40 40],'k');                 %% Making axis through the 

origin. 

  
axis off 
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Appendix B –  

Calculations for equations (3.4)-(3.12) 
 

𝑥𝑝(𝑡) = asin(𝜔𝑡 − 𝜃) = 𝑎(sin(𝜔𝑡) cos(𝜃) − cos(𝜔𝑡) sin(𝜃)) 

𝑑𝑥

𝑑𝑡
= a𝜔cos(𝜔𝑡 − 𝜃) = 𝑎𝜔(cos(𝜔𝑡) cos(𝜃) + sin(𝜔𝑡) sin(𝜃)) 

𝑑2𝑥

𝑑𝑡2 = −a𝜔2sin(𝜔𝑡 − 𝜃) = − 𝑎𝜔2(sin(𝜔𝑡) cos(𝜃) − cos(𝜔𝑡) sin(𝜃)) 

𝐴𝑠𝑖𝑛(𝜔𝑡) + 𝑎𝜔2(sin(𝜔𝑡) cos(𝜃) − cos(𝜔𝑡) sin(𝜃)) − 𝜎𝑎𝜔(cos(𝜔𝑡) cos(𝜃) + sin(𝜔𝑡) sin(𝜃))

− ω0
2𝑎(sin(𝜔𝑡) cos(𝜃) − cos(𝜔𝑡) sin(𝜃)) = 0 

𝐴𝑠𝑖𝑛(𝜔𝑡) +  𝑎𝜔2 sin(𝜔𝑡) cos(𝜃) − 𝑎𝜔2 cos(𝜔𝑡) sin(𝜃) − 𝜎𝑎𝜔 cos(𝜔𝑡) cos(𝜃)

− 𝜎𝑎𝜔 sin(𝜔𝑡) sin(𝜃) − ω0
2𝑎 sin(𝜔𝑡) cos(𝜃) + ω0

2𝑎 cos(𝜔𝑡) sin(𝜃) = 0 

𝑠𝑖𝑛(𝜔𝑡)(𝐴 + 𝑎𝜔2 cos(𝜃) − 𝜎𝑎𝜔 sin(𝜃) − ω0
2𝑎 cos(𝜃)) + cos(𝜔𝑡) (−𝑎𝜔2 sin(𝜃) − 𝜎𝑎𝜔 cos(𝜃) + ω0

2𝑎 sin(𝜃)) = 0 

𝑠𝑖𝑛(𝜔𝑡)(𝐴 + 𝑎(𝜔2 cos(𝜃) − 𝜎𝜔 sin(𝜃) − ω0
2 cos(𝜃)) + cos(𝜔𝑡) (𝑎(−𝜔2 sin(𝜃) − 𝜎𝜔 cos(𝜃) + ω0

2 sin(𝜃)) = 0 

𝑠𝑖𝑛(𝜔𝑡) (𝐴 − 𝑎((ω0
2 − 𝜔2) cos(𝜃) + 𝜎𝜔 sin(𝜃))) + cos(𝜔𝑡) (𝑎((ω0

2 − 𝜔2) sin(𝜃) − 𝜎𝜔 cos(𝜃))) = 0 

 

𝑎((ω0
2 − 𝜔2) sin(𝜃) − 𝜎𝜔 cos(𝜃)) = 0 

(ω0
2 − 𝜔2) sin(𝜃) = 𝜎𝜔 cos(𝜃) 

sin(𝜃)

cos(𝜃)
=

𝜎𝜔

ω0
2 − 𝜔2 

tan (𝜃) =
𝜎𝜔

ω0
2 − 𝜔2 

sin(𝜃) =
(ω0

2 − 𝜔2) cos(𝜃)

𝜎𝜔
 

sin2(𝜃) =
(ω0

2 − 𝜔2)2 cos2(𝜃)

𝜎2𝜔2  

sin2(𝜃) + cos2(𝜃) = 1 

cos2(𝜃) = 1 − sin2(𝜃) 

sin2(𝜃) =
(ω0

2 − 𝜔2)2(1 − sin2(𝜃))

𝜎2𝜔2  

sin2(𝜃) =
(ω0

2 − 𝜔2)2 − (ω0
2 − 𝜔2)2sin2(𝜃))

𝜎2𝜔2  

sin2(𝜃)𝜎2𝜔2 = (ω0
2 − 𝜔2)2 − (ω0

2 − 𝜔2)2sin2(𝜃) 

sin2(𝜃)𝜎2𝜔2 + (ω0
2 − 𝜔2)2sin2(𝜃) = (ω0

2 − 𝜔2)2 

sin2(𝜃)(𝜎2𝜔2 + (ω0
2 − 𝜔2)2) = (ω0

2 − 𝜔2)2 

sin2(𝜃) =
(ω0

2 − 𝜔2)2

𝜎2𝜔2 + (ω0
2 − 𝜔2)2 

sin(𝜃) =
ω0

2 − 𝜔2

√𝜎2𝜔2 + (ω0
2 − 𝜔2)2
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cos(𝜃) =
𝜎𝜔 sin(𝜃)

ω0
2 − 𝜔2  

cos(𝜃) =
𝜎𝜔(ω0

2 − 𝜔2)

(ω0
2 − 𝜔2)√𝜎2𝜔2 + (ω0

2 − 𝜔2)2
 

cos(𝜃) =
𝜎𝜔

√𝜎2𝜔2 + (ω0
2 − 𝜔2)2

 

𝐴 − 𝑎((ω0
2 − 𝜔2) cos(𝜃) + 𝜎𝜔 sin(𝜃)) 

𝑎 =
𝐴

(ω0
2 − 𝜔2) cos(𝜃) + 𝜎𝜔 sin(𝜃)

 

𝑎 =
𝐴

√(ω0
2 − 𝜔2)2 + 𝜎2𝜔2
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Appendix C – Diagrams for chapter 7 
 

C.1 Base-case system 

C.1.1  a=0 
When a=0, the system only has linear, constant damping from the coefficient c0.  

C.1.1.1 c0=0,0015 
Figures C.1 and C.2 show the base-case system with the linear damping coefficient, c0=0,0015. Figure 

C.1 shows the position curve to the left and the velocity curve to the right, while figure C.2 shows the 

phase plane diagram. The system has a steady decline in both position and velocity creating a spiral 

towards the origin in the phase plane. 

 

Figure C.1: Position curve(left) and velocity curve(right) for the base-case system with a=0 and c0=0,0015. 

 

Figure C.2: Phase plane diagram for the base-case system with a=0 and c0=0,0015. 
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C.1.1.2 c0=0,005 
Figures C.3 and C.4 show the base-case system with the linear damping coefficient, c0=0,005. Figure 

C.3 shows the position curve to the left and the velocity curve to the right, while figure C.4 shows the 

phase plane diagram. The system has a more rapid decline in both position and velocity due to the 

increase in damping compared to the system with c0=0,0015. 

 

Figure C.3: Position curve(left) and velocity curve(right) for the base-case system with a=0 and c0=0,005. 

 

Figure C.4: Phase plane diagram for the base-case system with a=0 and c0=0,005. 
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C.1.2 a=0,5 
In this part, the system will be subjected to both a linear damping coefficient, c0, as well as the 

nonlinear damping coefficient, a=0,5. 

C.1.2.1 c0=0,0015 
 

Figures C.5 and C.6 show the base-case system with the linear damping coefficient, c0=0,0015, and 

the nonlinear damping coefficient, a=0,5. Figure C.5 shows the position curve to the left and the 

velocity curve to the right, while figure C.6 shows the phase plane diagram. The nonlinearity is visible 

in the position curve, but is much more prominent in the velocity curve. The phase plane diagram is 

distorted as it moves very slowly towards the origin. 

 

 

Figure C.5: Position curve(left) and velocity curve(right) for the base-case system with a=0,5 and c0=0,0015. 

 

Figure C.6: Phase plane diagram for the base-case system with a=0,5 and c0=0,0015. 
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C.1.2.2 c0=0,005 
 

Figures C.7 and C.8 show the base-case system with the linear damping coefficient, c0=0,005, and the 

nonlinear damping coefficient, a=0,5. Figure C.C shows the position curve to the left and the velocity 

curve to the right, while figure C.8 shows the phase plane diagram. Since the linear damping 

coefficient is increased, all the graphs move faster towards zero.  

 

 

Figure C.7: Position curve(left) and velocity curve(right) for the base-case system with a=0,5 and c0=0,005. 

 

Figure C.8: Phase plane diagram for the base-case system with a=0,5 and c0=0,005. 
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C.1.3 a=1,0 
 

In this part, the nonlinear damping coefficient is increased to a=1,0. 

 

C.1.3.1 c0=0,0015 
 

Figures C.9 and C.19 show the base-case system with the linear damping coefficient, c0=0,0015, and 

the nonlinear damping coefficient, a=1,0. Figure C.9 shows the position curve to the left and the 

velocity curve to the right, while figure C.10 shows the phase plane diagram. In all the diagrams, it is 

clear that the nonlinearity is being more dominant. It is also visible that the damping at some times 

becomes negative, giving an incline in amplitude for the position and velocity. 

 

Figure C.9: Position curve(left) and velocity curve(right) for the base-case system with a=1,0 and c0=0,0015. 

 

Figure C.10: Phase plane diagram for the base-case system with a=1,0 and c0=0,0015. 
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C.1.3.2 c0=0,005 
 

Figures C.11 and C.12 show the base-case system with the linear damping coefficient, c0=0,005, and 

the nonlinear damping coefficient, a=1,0. Figure C.11 shows the position curve to the left and the 

velocity curve to the right, while figure C.12 shows the phase plane diagram.  

 

 

Figure C.11: Position curve(left) and velocity curve(right) for the base-case system with a=1,0 and c0=0,005. 

 

Figure C.12: Phase plane diagram for the base-case system with a=1,0 and c0=0,005. 
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C.1.4 a=1,19 
 

C.1.4.1 c0=0,0015 
 

Figures C.13 and C.14 show the base-case system with the linear damping coefficient, c0=0,0015, and 

the nonlinear damping coefficient, a=1,19. Figure C.13 shows the position curve to the left and the 

velocity curve to the right, while figure C.14 shows the phase plane diagram. The diagrams show that 

the negative damping from the nonlinearity in the damping term is almost balancing the linear 

damping coefficient.  

 

 

Figure C.13: Position curve(left) and velocity curve(right) for the base-case system with a=1,19 and c0=0,0015. 

 

Figure C.14: Phase plane diagram for the base-case system with a=1,19 and c0=0,0015. 
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C.1.4.2 c0=0,005 
 

Figures C.15 and C.16 show the base-case system with the linear damping coefficient, c0=0,005, and 

the nonlinear damping coefficient, a=1,19. Figure C.15 shows the position curve to the left and the 

velocity curve to the right, while figure C.16 shows the phase plane diagram. Even with greater linear 

damping coefficient, the nonlinearity is very visible. With a=1,19, the nonlinearity becomes more 

prominent in the position curve as well. 

 

 

Figure C.15: Position curve(left) and velocity curve(right) for the base-case system with a=1,19 and c0=0,005. 

 

Figure C.16: Phase plane diagram for the base-case system with a=1,19 and c0=0,005. 
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C.1.5 a=1,2 
 

C.1.5.1 c0=0,0015 
 

Figures C.17 and C.18 show the base-case system with the linear damping coefficient, c0=0,0015, and 

the nonlinear damping coefficient, a=1,2. Figure C.17 shows the position curve to the left and the 

velocity curve to the right, while figure C.18 shows the phase plane diagram. When a=1,2, the 

negative damping has overtaken the system, making it have a constant incline in both position and 

velocity. 

 

Figure C.17: Position curve(left) and velocity curve(right) for the base-case system with a=1,2 and c0=0,0015. 

 

Figure C.18: Phase plane diagram for the base-case system with a=1,2 and c0=0,0015. 
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C.1.4.2 c0=0,005 
 

Figures C.19 and C.20 show the base-case system with the linear damping coefficient, c0=0,005, and 

the nonlinear damping coefficient, a=1,2. Figure C.19 shows the position curve to the left and the 

velocity curve to the right, while figure C.20 shows the phase plane diagram. The negative damping is 

still making the system constantly increasing the position and velocity, but the linear damping 

coefficient slows the system more down when increased. 

 

 

Figure C.19: Position curve(left) and velocity curve(right) for the base-case system with a=1,2 and c0=0,005. 

 

Figure C.20: Phase plane diagram for the base-case system with a=1,2 and c0=0,005. 
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C.2 𝛽 =
1

3
 

When the mass parameter, m=0,222, the system has a loading frequency, ω, one third of the natural 

frequency, ω0, i.e. 𝛽 =
1

3
.  

C.2.1 a=0 
When a=0, the system is only subjected to linear, constant damping, c0. Figure C.21 shows the 

position and velocity curve for the system with c0=0,0015. Figure C.22 shows the system with 

c0=0,0015 in the phase plane. Figures C.23 and C.24 show the position and velocity curve and phase 

plane diagram respectively for the system with c0=0,005. The systems spirals towards the origin in 

the phase plane, as expected, faster for the system with higher damping coefficient.  

Figure C.21: Position curve(left) and velocity curve(right) for the base-case system with m=0,222, making β=1/3, 
with c0=0,0015 and a=0. 

Figure C.22: Phase plane diagram for the base-case system with m=0,222, making β=1/3, with c0=0,0015 and 
a=0. 
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Figure C.23: Position curve(left) and velocity curve(right) for the base-case system with m= 0,222, making β=1/3, 
with c0=0,005 and a=0. 

 

Figure C.24: Phase plane diagram for the base-case system with m=0,222, making β=1/3, with c0=0,005 and 
a=0. 
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C.2.2 a=1,0 
 

Figures C.25 and C.26 shoe the position curve, velocity curve and phase plane diagram respectively 

for the system with a=1,0 and c0=0,0015. Figures C.27 and C.28 show the same for the system with 

a=1,0 and c0=0,0015. It is clear that the damping term at some times becomes negative, leading to an 

increase in the amplitude.  

Figure C.25: Position curve(left) and velocity curve(right) for the base-case system with m=0,222, making β=1/3, 
with c0=0,0015 and a=1,0 

Figure C.26: Phase plane diagram for the base-case system with m=0,222, making β=1/3, with c0=0,0015 and 
a=1,0. 
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Figure C.27: Position curve(left) and velocity curve(right) for the base-case system with m=0,222, making β=1/3, 
with c0=0,005 and a=1,0. 

 

Figure C.28: Phase plane diagram for the base-case system with m=0,222, making β=1/3, with c0=0,005 and 
a=1,0. 
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C.2.3 a=2,0 
 

Figures C.29 and C.30 show the position curve, velocity curve and phase plane diagram respectively 

for the system with a=2,0 and c0=0,005. Figures C.31 and C.32 show the same for the system with 

a=2,0 and c0=0,005. The negativity in the damping term is almost balancing the positive damping, 

especially for the system with the lowest linear, constant damping coefficient, c0=0,0015.  

Figure C.29: Position curve(left) and velocity curve(right) for the base-case system with m=0,222, making β=1/3, 
with c0=0,0015 and a=2, 

Figure C.30: Phase plane diagram for the base-case system with m=0,222, making β=1/3, with c0=0,0015 and 
a=2,0. 
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Figure C.31: Position curve(left) and velocity curve(right) for the base-case system with m=0,222, making β=1/3, 
with c0=0,005 and a=2,0.  

Figure C.32: Phase plane diagram for the base-case system with m=0,222, making β=1/3, with c0=0,005 and 
a=2,0. 
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C.2.4 a=3,45 
 

Figures C.33 and C.34 show the position curve, velocity curve and phase plane diagram respectively 

for the system with a=3,45 and c0=0,005. Figures C.35 and C.36 show the same for the system with 

a=3,45 and c0=0,005. The negativity in the damping term is almost taking over for the positive 

damping.  

 

 

Figure C.33: Position curve(left) and velocity curve(right) for the base-case system with m=0,222, making β=1/3, 
with c0=0,0015 and a=3,45. 

Figure C.34: Phase plane diagram for the base-case system with m=0,222, making β=1/3, with c0=0,0015 and 
a=3,45. 
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Figure C.35: Position curve(left) and velocity curve(right) for the base-case system with m=0,222, making β=1/3, 
with c0=0,005 and a=3,45. 

 

Figure C.36: Phase plane diagram for the base-case system with m=0,222, making β=1/3, with c0=0,005 and 
a=3,45. 
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C.2.5 a=3,46 
 

Figures C.37 and C.38 show the position curve, velocity curve and phase plane diagram respectively 

for the system with a=3,46 and c0=0,005. Figures C.39 and C.40 show the same for the system with 

a=3,46 and c0=0,005. The negativity in the damping term has taken completely control of the system, 

leading to a continued incline in amplitude. Note that the timespan for the phase plane diagrams is 

set to only 90s, as the growth is rapid.  

 

 

Figure C.37: Position curve(left) and velocity curve(right) for the base-case system with m=0,222, making β=1/3, 
with c0=0,0015 and a=3,46. 

Figure C.38: Phase plane diagram for the base-case system with m=0,222, making β=1/3, with c0=0,0015 and 
a=3,46. 
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Figure C.39: Position curve(left) and velocity curve(right) for the base-case system with m=0,222, making β=1/3, 
with c0=0,005 and a=3,46. 

Figure C.40: Phase plane diagram for the base-case system with m=0,222, making β=1/3, with c0=0,005 and 
a=3,46. 
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C.3 𝛽 =
1

2
 

When the mass parameter, m=0,5, the system has a frequency, ω, half of the natural frequency, ω0, 

i.e. 𝛽 =
1

2
.  

C.3.1 a=0 
When a=0, the system is only subjected to linear, constant damping, c0. Figure C.41 shows the 

position and velocity curve for the system with c0=0,0015. Figure C.42 shows the system with 

c0=0,0015 in the phase plane. Figures C.43 and C.44 show the position and velocity curve and phase 

plane diagram respectively for the system with c0=0,005. The systems have similar behaviour as for 

β=1/3.  

 

Figure C.41: Position curve(left) and velocity curve(right) for the base-case system with m=0,5, making β=1/2, 
with c0=0,0015 and a=0. 

Figure C.42: Phase plane diagram for the base-case system with m=0,5, making β=1/2, with c0=0,0015 and a=0. 
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Figure C.43: Position curve(left) and velocity curve(right) for the base-case system with m=0,5, making β=1/2, 
with c0=0,005 and a=0. 

 

Figure C.44: Phase plane diagram for the base-case system with m=0,5, making β=1/2, with c0=0,005 and a=0. 
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C.3.2 a=0,5 
Figures C.45 and C.46 show the position curve, velocity curve and phase plane diagram respectively 

for the system with a=0,5 and c0=0,0015. Figures C.47 and C.48 show the same for the system with 

a=0,5 and c0=0,0015.  

Figure C.45: Position curve(left) and velocity curve(right) for the base-case system with m=0,5, making β=1/2, 
with c0=0,0015 and a=0,5. 

Figure C46: Phase plane diagram for the base-case system with m=0,5, making β=1/2, with c0=0,0015 and 
a=0,5. 
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Figure C.47: Position curve(left) and velocity curve(right) for the base-case system with m=0,5, making β=1/2, 
with c0=0,005 and a=0,5. 

Figure C.48: Phase plane diagram for the base-case system with m=0,5, making β=1/2, with c0=0,005 and 
a=0,5. 
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C.3.3 a=1,0 
 

Figures C.49 and C.50 show the position curve, velocity curve and phase plane diagram respectively 

for the system with a=1,0 and c0=0,005. Figures C.51 and C.52 show the same for the system with 

a=1,0 and c0=0,005.   

 

Figure C.49: Position curve(left) and velocity curve(right) for the base-case system with m=0,5, making β=1/2, 
with c0=0,0015 and a=1,0. 

Figure C.50: Phase plane diagram for the base-case system with m=0,5, making β=1/2, with c0=0,0015 and 
a=1,0. 
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Figure C.51: Position curve(left) and velocity curve(right) for the base-case system with m=0,5, making β=1/2, 
with c0=0,005 and a=1,0. 

 

 

Figure C.52: Phase plane diagram for the base-case system with m=0,5, making β=1/2, with c0=0,005 and a=1,0. 
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C.3.4 a=1,60 
 

Figures C.53 and C.54 show the position curve, velocity curve and phase plane diagram respectively 

for the system with a=1,60 and c0=0,005. Figures C.55 and C.56 show the same for the system with 

a=1,60 and c0=0,005.   

 

Figure C.53: Position curve(left) and velocity curve(right) for the base-case system with m=0,5, making β=1/2, 
with c0=0,0015 and a=1,60. 

Figure C.54: Phase plane diagram for the base-case system with m=0,5, making β=1/2, with c0=0,0015 and 
a=1,60. 
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Figure C.55: Position curve(left) and velocity curve(right) for the base-case system with m=0,5, making β=1/2, 
with c0=0,005 and a=1,60. 

Figure C.56: Phase plane diagram for the base-case system with m=0,5, making β=1/2, with c0=0,005 and 
a=1,60. 

 

 

 

 

 

 

 



186 
 

C.3.5 a=1,61 
 

Figures C.57 and C.58 show the position curve, velocity curve and phase plane diagram respectively 

for the system with a=1,61 and c0=0,005. Figures C.59 and C.60 show the same for the system with 

a=1,61 and c0=0,005.  

 

Figure C.57: Position curve(left) and velocity curve(right) for the base-case system with m=0,5, making β=1/2, 
with c0=0,0015 and a=1,61. 

Figure C.58: Phase plane diagram for the base-case system with m=0,5, making β=1/2, with c0=0,0015 and 
a=1,61. 
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Figure C.59: Position curve(left) and velocity curve(right) for the base-case system with m=0,5, making β=1/2, 
with c0=0,005 and a=1,61. 

Figure C.60: Phase plane diagram for the base-case system with m=0,5, making β=1/2, with c0=0,005 and 
a=1,61. 
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C.4 𝛽 = 1,0 
When the mass parameter, m=2,0, the system has a frequency, ω, equal to the natural frequency, ω0, 

i.e. 𝛽 = 1,0.  

C.4.1 a=0 
When a=0, the system is only subjected to linear, constant damping, c0. Figure C.61 shows the 

position and velocity curve for the system with c0=0,0015. Figure C.62 shows the system with 

c0=0,0015 in the phase plane. Figures C.63 and C.64 show the position and velocity curve and phase 

plane diagram respectively for the system with c0=0,005.  

Figure C.61: Position curve(left) and velocity curve(right) for the base-case system with m=2,0, making β=1,0, 
with c0=0,0015 and a=0. 

Figure C.62: Phase plane diagram for the base-case system with m=2,0, making β=1,0, with c0=0,0015 and a=0. 
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Figure C.63: Position curve(left) and velocity curve(right) for the base-case system with m=2,0, making β=1,0, 
with c0=0,005 and a=0. 

Figure C.64: Phase plane diagram for the base-case system with m=2,0, making β=1,0, with c0=0,005 and a=0. 
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C.4.2 a=0,5 
 

Figures C.65 and C.66 show the position curve, velocity curve and phase plane diagram respectively 

for the system with a=0,5 and c0=0,0015. Figures C.67 and C.68 show the same for the system with 

a=0,5 and c0=0,0015.  

Figure C.65: Position curve(left) and velocity curve(right) for the base-case system with m=2,0, making β=1,0, 
with c0=0,0015 and a=0,5. 

 

Figure C.66: Phase plane diagram for the base-case system with m=2,0, making β=1,0, with c0=0,0015 and 
a=0,5. 
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Figure C.67: Position curve(left) and velocity curve(right) for the base-case system with m=2,0, making β=1,0, 
with c0=0,005 and a=0,5. 

 

Figure C.68: Phase plane diagram for the base-case system with m=2,0, making β=1,0, with c0=0,005 and a=0,5. 
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C.4.3 a=1,0 
Figures C.69 and C.70 show the position curve, velocity curve and phase plane diagram respectively 

for the system with a=1,0 and c0=0,005. Figures C.71 and C.72 show the same for the system with 

a=1,0 and c0=0,005.   

Figure C.69: Position curve(left) and velocity curve(right) for the base-case system with m=2,0, making β=1,0, 
with c0=0,0015 and a=1,0. 

 

 

Figure C.70: Phase plane diagram for the base-case system with m=2,0, making β=1,0, with c0=0,0015 and 
a=1,0. 
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Figure C.71: Position curve(left) and velocity curve(right) for the base-case system with m=2,0, making β=1,0, 
with c0=0,005 and a=1,0. 

Figure C.72: Phase plane diagram for the base-case system with m=2,0, making β=1,0, with c0=0,005 and a=1,0. 
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C.4.4 a=1,03 
 

Figures C.73 and C.74 show the position curve, velocity curve and phase plane diagram respectively 

for the system with a=1,03 and c0=0,005. Figures C.75 and C.76 show the same for the system with 

a=1,03 and c0=0,005.   

 

Figure C.73: Position curve(left) and velocity curve(right) for the base-case system with m=2,0, making β=1,0, 
with c0=0,0015 and a=1,03. 

 

 

Figure C.74: Phase plane diagram for the base-case system with m=2,0, making β=1,0, with c0=0,0015 and 
a=1,03. 
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Figure C.75: Position curve(left) and velocity curve(right) for the base-case system with m=2,0, making β=1,0, 
with c0=0,005 and a=1,03. 

Figure C.76: Phase plane diagram for the base-case system with m=2,0, making β=1,0, with c0=0,005 and 
a=1,03. 
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C.4.5 a=1,04 
 

Figures C.77 and C.78 show the position curve, velocity curve and phase plane diagram respectively 

for the system with a=1,04 and c0=0,005. Figures C.79 and C.80 show the same for the system with 

a=1,04 and c0=0,005.  

Figure C.77: Position curve(left) and velocity curve(right) for the base-case system with m=2,0, making β=1,0, 
with c0=0,0015 and a=1,04. 

 

 

 

Figure C.78: Phase plane diagram for the base-case system with m=2,0, making β=1,0, with c0=0,0015 and 
a=1,04. 
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Figure C.79: Position curve(left) and velocity curve(right) for the base-case system with m=2,0, making β=1,0, 
with c0=0,005 and a=1,04. 

Figure C.80: Phase plane diagram for the base-case system with m=2,0, making β=1,0, with c0=0,005 and 
a=1,04. 
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C.5 𝛽 =
3

2
 

When the mass parameter, m=4,5, the system has a frequency, ω, is 50% bigger than the natural 

frequency, ω0, i.e. 𝛽 =
3

2
.  

C.5.1 a=0 
When a=0, the system is only subjected to linear, constant damping, c0. Figure C.81 shows the 

position and velocity curve for the system with c0=0,0015. Figure C.82 shows the system with 

c0=0,0015 in the phase plane. Figures C.83 and C.84 show the position and velocity curve and phase 

plane diagram respectively for the system with c0=0,005.  

Figure C.81: Position curve(left) and velocity curve(right) for the base-case system with m=4,5, making β=3/2, 
with c0=0,0015 and a=0. 

Figure C.82: Phase plane diagram for the base-case system with m=4,5, making β=3/2, with c0=0,0015 and a=0. 
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Figure C.83: Position curve(left) and velocity curve(right) for the base-case system with m=4,5, making β=3/2, 
with c0=0,005 and a=0. 

 

 

Figure C.84: Phase plane diagram for the base-case system with m=4,5, making β=3/2, with c0=0,005 and a=0. 
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C.5.2 a=0,1 
 

Figures C.85 and C.86 show the position curve, velocity curve and phase plane diagram respectively 

for the system with a=0,1 and c0=0,0015. Figures C.87 and C.88 show the same for the system with 

a=0,1 and c0=0,0015.  

Figure C.85: Position curve(left) and velocity curve(right) for the base-case system with m=4,5, making β=3/2, 
with c0=0,0015 and a=0,1. 

 

 

Figure C.86: Phase plane diagram for the base-case system with m=4,5, making β=3/2, with c0=0,0015 and 
a=0,1. 



201 
 

Figure C.87: Position curve(left) and velocity curve(right) for the base-case system with m=4,5, making β=3/2, 
with c0=0,005 and a=0,1. 

 

 

Figure C.88: Phase plane diagram for the base-case system with m=4,5, making β=3/2, with c0=0,005 and a=0,1. 
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C.5.3 a=0,2 
 

Figures C.89 and C.90 show the position curve, velocity curve and phase plane diagram respectively 

for the system with a=0,2 and c0=0,005. Figures C.91 and C.92 show the same for the system with 

a=0,2 and c0=0,005.   

 

Figure C.89: Position curve(left) and velocity curve(right) for the base-case system with m=4,5, making β=3/2, 
with c0=0,0015 and a=0,2. 

 

 

Figure C.90: Phase plane diagram for the base-case system with m=4,5, making β=3/2, with c0=0,0015 and 
a=0,2. 
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Figure C.91: Position curve(left) and velocity curve(right) for the base-case system with m=4,5, making β=3/2, 
with c0=0,005 and a=0,2. 

 

 

Figure C.92: Phase plane diagram for the base-case system with m=4,5, making β=3/2, with c0=0,005 and a=0,2. 
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C.5.4 a=0,36 
 

Figures C.93 and C.94 show the position curve, velocity curve and phase plane diagram respectively 

for the system with a=0,36 and c0=0,005. Figures C.95 and C.96 show the same for the system with 

a=0,36 and c0=0,005.   

 

Figure C.93: Position curve(left) and velocity curve(right) for the base-case system with m=4,5, making β=3/2, 
with c0=0,0015 and a=0,36. 

 

 

Figure C.94: Phase plane diagram for the base-case system with m=4,5, making β=3/2, with c0=0,0015 and 
a=0,36. 
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Figure C.95: Position curve(left) and velocity curve(right) for the base-case system with m=4,5, making β=3/2, 
with c0=0,005 and a=0,36. 

 

 

 

Figure C.96: Phase plane diagram for the base-case system with m=4,5, making β=3/2, with c0=0,005 and 
a=0,36. 
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C.5.5 a=0,37 
 

Figures C.97 and C.98 show the position curve, velocity curve and phase plane diagram respectively 

for the system with a=0,37 and c0=0,005. Figures C.99 and C.100 show the same for the system with 

a=0,37 and c0=0,005.  

 

Figure C.97: Position curve(left) and velocity curve(right) for the base-case system with m=4,5, making β=3/2, 
with c0=0,0015 and a=0,37. 

 

 

 

Figure C.98: Phase plane diagram for the base-case system with m=4,5, making β=3/2, with c0=0,0015 and 
a=0,37. 
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Figure C.99: Position curve(left) and velocity curve(right) for the base-case system with m=4,5, making β=3/2, 
with c0=0,005 and a=0,37. 

Figure C.100: Phase plane diagram for the base-case system with m=4,5, making β=3/2, with c0=0,005 and 
a=0,37. 
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C.6 𝛽 = 2,0 
When the mass parameter, m=8,0, the system has a frequency, ω, is twice the natural frequency, ω0, 

i.e. 𝛽 = 2,0. The system is presented for two values of linear, constant damping, c0=0,0015 and 

c0=0,005, with an increasing nonlinear coefficient, a.  

C.6.1 a=0 
When a=0, the system is only subjected to linear, constant damping, c0. Figure C.101 shows the 

position and velocity curve for the system with c0=0,0015. Figure C.102 shows the system with 

c0=0,0015 in the phase plane. Figures C.103 and C.104 show the position and velocity curve and 

phase plane diagram respectively for the system with c0=0,005.  

Figure C.101: Position curve(left) and velocity curve(right) for the base-case system with m=8,0, making β=2,0, 
with c0=0,0015 and a=0. 

Figure C.102: Phase plane diagram for the base-case system with m=8,0, making β=2,0, with c0=0,0015 and 
a=0. 
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Figure C.103: Position curve(left) and velocity curve(right) for the base-case system with m=8,0, making β=2,0, 
with c0=0,005 and a=0. 

 

 

Figure C.104: Phase plane diagram for the base-case system with m=8,0, making β=2,0, with c0=0,005 and a=0. 
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C.6.2 a=0,01 
 

Figures C.105 and C.106 show the position curve, velocity curve and phase plane diagram 

respectively for the system with a=0,01 and c0=0,0015. Figures C.107 and C.108 show the same for 

the system with a=0,01 and c0=0,0015. When the base-case system is at double resonance, the 

system is very sensitive to the nonlinear damping. At a=0,01, the system with c0=0,0015 is overtaken 

by the negative damping, while the system with c0=0,005 still decreases its amplitudes.  

Figure C.105: Position curve(left) and velocity curve(right) for the base-case system with m=8,0, making β=2,0, 
with c0=0,0015 and a=0,01. 

 

 

Figure C.106: Phase plane diagram for the base-case system with m=8,0, making β=2,0, with c0=0,0015 and 
a=0,01. 



211 
 

Figure C.107: Position curve(left) and velocity curve(right) for the base-case system with m=8,0, making β=2,0, 
with c0=0,005 and a=0,01. 

 

 

Figure C.108: Phase plane diagram for the base-case system with m=8,0, making β=2,0, with c0=0,005 and 
a=0,01. 
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C.6.3 a=0,02 
 

Figures C.109 and C.110 show the position curve, velocity curve and phase plane diagram 

respectively for the system with a=0,02 and c0=0,005. Figures C.111 and C.112 show the same for the 

system with a=0,02 and c0=0,005. At a=0,02, both systems experience a continued increase in 

amplitudes.  

 

Figure C.109: Position curve(left) and velocity curve(right) for the base-case system with m=8,0, making β=2,0, 
with c0=0,0015 and a=0,02. 

 

 

Figure C.110: Phase plane diagram for the base-case system with m=8,0, making β=2,0, with c0=0,0015 and 
a=0,02. 
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Figure C.111: Position curve(left) and velocity curve(right) for the base-case system with m=8,0, making β=2,0, 
with c0=0,005 and a=0,02. 

Figure C.112: Phase plane diagram for the base-case system with m=8,0, making β=2,0, with c0=0,005 and 
a=0,02. 
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Appendix D – Diagrams for chapter 8 
 

D.1 Base-case system 

D.1.1  a=0 
When a=0, the system only has linear, constant damping from the coefficient c0.  

D.1.1.1 c0=0,0015 
Figures D.1 and D.2 show the base-case system with the linear damping coefficient, c0=0,0015. Figure 

D.1 shows the position curve to the left and the velocity curve to the right, while figure D.2 shows the 

phase plane diagram.  

Figure D.1: Position curve(left) and velocity curve(right) for the base-case system with a=0 and c0=0,0015. 

 

Figure D.2: Phase plane diagram for the base-case system with a=0 and c0=0,0015. 



215 
 

D.1.1.2 c0=0,005 
Figures D.3 and D.4 show the base-case system with the linear damping coefficient, c0=0,005. Figure 

D.3 shows the position curve to the left and the velocity curve to the right, while figure D.4 shows the 

phase plane diagram.  

 

Figure D.3: Position curve(left) and velocity curve(right) for the base-case system with a=0 and c0=0,005. 

 

Figure D.4: Phase plane diagram for the base-case system with a=0 and c0=0,005. 
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D.1.2 a=0,5 
In this part, the system will be subjected to both a linear damping coefficient, c0, as well as the 

nonlinear damping coefficient, a=0,5. 

D.1.2.1 c0=0,0015 
 

Figures D.5 and D.6 show the base-case system with the linear damping coefficient, c0=0,0015, and 

the nonlinear damping coefficient, a=0,5. Figure D.5 shows the position curve to the left and the 

velocity curve to the right, while figure D.6 shows the phase plane diagram.  

 

 

Figure D.5: Position curve(left) and velocity curve(right) for the base-case system with a=0,5 and c0=0,0015. 

 

Figure D.6: Phase plane diagram for the base-case system with a=0,5 and c0=0,0015. 
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D.1.2.2 c0=0,005 
 

Figures D.7 and D.8 show the base-case system with the linear damping coefficient, c0=0,005, and the 

nonlinear damping coefficient, a=0,5. Figure D.7 shows the position curve to the left and the velocity 

curve to the right, while figure D.8 shows the phase plane diagram.  

 

 

Figure D.7: Position curve(left) and velocity curve(right) for the base-case system with a=0,5 and c0=0,005. 

 

Figure D.8: Phase plane diagram for the base-case system with a=0,5 and c0=0,005. 
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D.1.3 a=1,0 
 

In this part, the nonlinear damping coefficient is increased to a=1,0. 

 

D.1.3.1 c0=0,0015 
 

Figures D.9 and D.19 showsthe base-case system with the linear damping coefficient, c0=0,0015, and 

the nonlinear damping coefficient, a=1,0. Figure D.9 shows the position curve to the left and the 

velocity curve to the right, while figure D.10 shows the phase plane diagram.  

 

Figure D.9: Position curve(left) and velocity curve(right) for the base-case system with a=1,0 and c0=0,0015. 

 

Figure D.10: Phase plane diagram for the base-case system with a=1,0 and c0=0,0015. 
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D.1.3.2 c0=0,005 
 

Figures D.11 and D.12 show the base-case system with the linear damping coefficient, c0=0,005, and 

the nonlinear damping coefficient, a=1,0. Figure D.11 shows the position curve to the left and the 

velocity curve to the right, while figure D.12 shows the phase plane diagram.  

 

 

Figure D.11: Position curve(left) and velocity curve(right) for the base-case system with a=1,0 and c0=0,005. 

 

Figure D.12: Phase plane diagram for the base-case system with a=1,0 and c0=0,005. 
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D.1.4 a=1,19 
 

D.1.4.1 c0=0,0015 
 

Figures D.13 and D.14 show the base-case system with the linear damping coefficient, c0=0,0015, and 

the nonlinear damping coefficient, a=1,19. Figure D.13 shows the position curve to the left and the 

velocity curve to the right, while figure D.14 shows the phase plane diagram.  

 

 

Figure D.13: Position curve(left) and velocity curve(right) for the base-case system with a=1,19 and c0=0,0015. 

 

Figure D.14: Phase plane diagram for the base-case system with a=1,19 and c0=0,0015. 
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D.1.4.2 c0=0,005 
 

Figures D.15 and D.16 show the base-case system with the linear damping coefficient, c0=0,005, and 

the nonlinear damping coefficient, a=1,19. Figure D.15 shows the position curve to the left and the 

velocity curve to the right, while figure D.16 shows the phase plane diagram. 

 

 

Figure D.15: Position curve(left) and velocity curve(right) for the base-case system with a=1,19 and c0=0,005. 

 

Figure D.16: Phase plane diagram for the base-case system with a=1,19 and c0=0,005. 
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D.1.5 a=1,2 
 

D.1.5.1 c0=0,0015 
 

Figures D.17 and D.18 show the base-case system with the linear damping coefficient, c0=0,0015, and 

the nonlinear damping coefficient, a=1,2. Figure D.17 shows the position curve to the left and the 

velocity curve to the right, while figure D.18 shows the phase plane diagram.  

 

Figure D.17: Position curve(left) and velocity curve(right) for the base-case system with a=1,2 and c0=0,0015. 

 

Figure D.18: Phase plane diagram for the base-case system with a=1,2 and c0=0,0015. 
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D.1.4.2 c0=0,005 
 

Figures D.19 and D.20 show the base-case system with the linear damping coefficient, c0=0,005, and 

the nonlinear damping coefficient, a=1,2. Figure D.19 shows the position curve to the left and the 

velocity curve to the right, while figure D.20 shows the phase plane diagram.  

 

 

Figure D.19: Position curve(left) and velocity curve(right) for the base-case system with a=1,2 and c0=0,005. 

 

Figure D.20: Phase plane diagram for the base-case system with a=1,2 and c0=0,005. 
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D.2 𝛽 =
1

3
 

When the mass parameter, m=0,222, the system has a loading frequency, ω, one third of the natural 

frequency, ω0, i.e. 𝛽 =
1

3
.  

D.2.1 a=0 
When a=0, the system is only subjected to linear, constant damping, c0. Figure D.21 shows the 

position and velocity curve for the system with c0=0,0015. Figure D.22 shows the system with 

c0=0,0015 in the phase plane. Figures D.23 and D.24 show the position and velocity curve and phase 

plane diagram respectively for the system with c0=0,005. 

 

Figure D.21: Position curve(left) and velocity curve(right) for the base-case system with m=0,222, making β=1/3, 
with c0=0,0015 and a=0. 

Figure D.22: Phase plane diagram for the base-case system with m=0,222, making β=1/3, with c0=0,0015 and 
a=0. 
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Figure D.23: Position curve(left) and velocity curve(right) for the base-case system with m= 0,222, making 
β=1/3, with c0=0,005 and a=0. 

 

Figure D.24: Phase plane diagram for the base-case system with m=0,222, making β=1/3, with c0=0,005 and 
a=0. 
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D.2.2 a=1,0 
 

Figures D.25 and D.26 show the position curve, velocity curve and phase plane diagram respectively 

for the system with a=1,0 and c0=0,0015. Figures D.27 and D.28 show the same for the system with 

a=1,0 and c0=0,0015.  

Figure D.25: Position curve(left) and velocity curve(right) for the base-case system with m=0,222, making β=1/3, 
with c0=0,0015 and a=1,0. 

 

Figure D.26: Phase plane diagram for the base-case system with m=0,222, making β=1/3, with c0=0,0015 and 
a=1,0. 

 

 

 



227 
 

Figure D.27: Position curve(left) and velocity curve(right) for the base-case system with m=0,222, making β=1/3, 
with c0=0,005 and a=1,0. 

 

 

Figure D.28: Phase plane diagram for the base-case system with m=0,222, making β=1/3, with c0=0,005 and 
a=1,0. 
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D.2.3 a=2,0 
 

Figures D.29 and D.30 show the position curve, velocity curve and phase plane diagram respectively 

for the system with a=2,0 and c0=0,005. Figures D.31 and D.32 show the same for the system with 

a=2,0 and c0=0,005.  

Figure D.29: Position curve(left) and velocity curve(right) for the base-case system with m=0,222, making β=1/3, 
with c0=0,0015 and a=2. 

 

 

Figure D.30: Phase plane diagram for the base-case system with m=0,222, making β=1/3, with c0=0,0015 and 
a=2,0. 
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Figure D.31: Position curve(left) and velocity curve(right) for the base-case system with m=0,222, making β=1/3, 
with c0=0,005 and a=2,0.  

 

 

 

Figure D.32: Phase plane diagram for the base-case system with m=0,222, making β=1/3, with c0=0,005 and 
a=2,0. 
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D.2.4 a=3,45 
 

Figures D.33 and D.34 show the position curve, velocity curve and phase plane diagram respectively 

for the system with a=3,45 and c0=0,005. Figures D.35 and D.36 show the same for the system with 

a=3,45 and c0=0,005.  

 

 

Figure D.33: Position curve(left) and velocity curve(right) for the base-case system with m=0,222, making β=1/3, 
with c0=0,0015 and a=3,45. 

 

Figure D.34: Phase plane diagram for the base-case system with m=0,222, making β=1/3, with c0=0,0015 and 
a=3,45. 
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Figure D.35: Position curve(left) and velocity curve(right) for the base-case system with m=0,222, making β=1/3, 
with c0=0,005 and a=3,45. 

 

 

 

Figure D.36: Phase plane diagram for the base-case system with m=0,222, making β=1/3, with c0=0,005 and 
a=3,45. 
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D.2.5 a=3,46 
 

Figures D.37 and D.38 show the position curve, velocity curve and phase plane diagram respectively 

for the system with a=3,46 and c0=0,005. Figures D.39 and D.40 show the same for the system with 

a=3,46 and c0=0,005.  

 

 

Figure D.37: Position curve(left) and velocity curve(right) for the base-case system with m=0,222, making β=1/3, 
with c0=0,0015 and a=3,46. 

 

Figure D.38: Phase plane diagram for the base-case system with m=0,222, making β=1/3, with c0=0,0015 and 
a=3,46. 
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Figure D.39: Position curve(left) and velocity curve(right) for the base-case system with m=0,222, making β=1/3, 
with c0=0,005 and a=3,46. 

 

 

 

Figure D.40: Phase plane diagram for the base-case system with m=0,222, making β=1/3, with c0=0,005 and 
a=3,46. 
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D.3 𝛽 =
1

2
 

When the mass parameter, m=0,5, the system has a frequency, ω, half of the natural frequency, ω0, 

i.e. 𝛽 =
1

2
.  

D.3.1 a=0 
When a=0, the system is only subjected to linear, constant damping, c0. Figure D.41 shows the 

position and velocity curve for the system with c0=0,0015. Figure D.42 shows the system with 

c0=0,0015 in the phase plane. Figures D.43 and D.44 show the position and velocity curve and phase 

plane diagram respectively for the system with c0=0,005.  

 

Figure D.41: Position curve(left) and velocity curve(right) for the base-case system with m=0,5, making β=1/2, 
with c0=0,0015 and a=0. 

 

Figure D.42: Phase plane diagram for the base-case system with m=0,5, making β=1/2, with c0=0,0015 and a=0. 
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Figure D.43: Position curve(left) and velocity curve(right) for the base-case system with m=0,5, making β=1/2, 
with c0=0,005 and a=0. 

 

 

 

Figure D.44: Phase plane diagram for the base-case system with m=0,5, making β=1/2, with c0=0,005 and a=0. 
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D.3.2 a=0,5 
Figures D.45 and D.46 show the position curve, velocity curve and phase plane diagram respectively 

for the system with a=0,5 and c0=0,0015. Figures D.47 and D.48 show the same for the system with 

a=0,5 and c0=0,0015.  

 

Figure D.45: Position curve(left) and velocity curve(right) for the base-case system with m=0,5, making β=1/2, 
with c0=0,0015 and a=0,5. 

 

Figure D46: Phase plane diagram for the base-case system with m=0,5, making β=1/2, with c0=0,0015 and 
a=0,5. 
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Figure D.47: Position curve(left) and velocity curve(right) for the base-case system with m=0,5, making β=1/2, 
with c0=0,005 and a=0,5. 

 

 

 

 

Figure D.48: Phase plane diagram for the base-case system with m=0,5, making β=1/2, with c0=0,005 and a=0,5. 
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D.3.3 a=1,0 
 

Figures D.49 and D.50 show the position curve, velocity curve and phase plane diagram respectively 

for the system with a=1,0 and c0=0,005. Figures D.51 and D.52 show the same for the system with 

a=1,0 and c0=0,005.   

 

Figure D.49: Position curve(left) and velocity curve(right) for the base-case system with m=0,5, making β=1/2, 
with c0=0,0015 and a=1,0. 

 

 

Figure D.50: Phase plane diagram for the base-case system with m=0,5, making β=1/2, with c0=0,0015 and 
a=1,0. 
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Figure D.51: Position curve(left) and velocity curve(right) for the base-case system with m=0,5, making β=1/2, 
with c0=0,005 and a=1,0. 

 

 

 

 

Figure D.52: Phase plane diagram for the base-case system with m=0,5, making β=1/2, with c0=0,005 and a=1,0. 
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D.3.4 a=1,60 
 

Figures D.53 and D.54 show the position curve, velocity curve and phase plane diagram respectively 

for the system with a=1,60 and c0=0,005. Figures D.55 and D.56 show the same for the system with 

a=1,60 and c0=0,005.   

 

Figure D.53: Position curve(left) and velocity curve(right) for the base-case system with m=0,5, making β=1/2, 
with c0=0,0015 and a=1,60. 

 

Figure D.54: Phase plane diagram for the base-case system with m=0,5, making β=1/2, with c0=0,0015 and 
a=1,60. 
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Figure D.55: Position curve(left) and velocity curve(right) for the base-case system with m=0,5, making β=1/2, 
with c0=0,005 and a=1,60. 

 

 

 

Figure D.56: Phase plane diagram for the base-case system with m=0,5, making β=1/2, with c0=0,005 and 
a=1,60. 
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D.3.5 a=1,61 
 

Figures D.57 and D.58 show the position curve, velocity curve and phase plane diagram respectively 

for the system with a=1,61 and c0=0,005. Figures D.59 and D.60 show the same for the system with 

a=1,61 and c0=0,005.  

 

Figure D.57: Position curve(left) and velocity curve(right) for the base-case system with m=0,5, making β=1/2, 
with c0=0,0015 and a=1,61. 

 

 

Figure D.58: Phase plane diagram for the base-case system with m=0,5, making β=1/2, with c0=0,0015 and 
a=1,61. 
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Figure D.59: Position curve(left) and velocity curve(right) for the base-case system with m=0,5, making β=1/2, 
with c0=0,005 and a=1,61. 

 

 

 

Figure D.60: Phase plane diagram for the base-case system with m=0,5, making β=1/2, with c0=0,005 and 
a=1,61. 
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D.4 𝛽 = 1,0 
When the mass parameter, m=2,0, the system has a frequency, ω, equal to the natural frequency, ω0, 

i.e. 𝛽 = 1,0.  

D.4.1 a=0 
When a=0, the system is only subjected to linear, constant damping, c0. Figure D.61 shows the 

position and velocity curve for the system with c0=0,0015. Figure D.62 shows the system with 

c0=0,0015 in the phase plane. Figures D.63 and D.64 show the position and velocity curve and phase 

plane diagram respectively for the system with c0=0,005.  

Figure D.61: Position curve(left) and velocity curve(right) for the base-case system with m=2,0, making β=1,0, 
with c0=0,0015 and a=0. 

Figure D.62: Phase plane diagram for the base-case system with m=2,0, making β=1,0, with c0=0,0015 and a=0. 
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Figure D.63: Position curve(left) and velocity curve(right) for the base-case system with m=2,0, making β=1,0, 
with c0=0,005 and a=0. 

 

 

 

Figure D.64: Phase plane diagram for the base-case system with m=2,0, making β=1,0, with c0=0,005 and a=0. 
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D.4.2 a=0,5 
 

Figures D.65 and D.66 show the position curve, velocity curve and phase plane diagram respectively 

for the system with a=0,5 and c0=0,0015. Figures D.67 and D.68 show the same for the system with 

a=0,5 and c0=0,0015.  

Figure D.65: Position curve(left) and velocity curve(right) for the base-case system with m=2,0, making β=1,0, 
with c0=0,0015 and a=0,5. 

 

 

 

Figure D.66: Phase plane diagram for the base-case system with m=2,0, making β=1,0, with c0=0,0015 and 
a=0,5. 
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Figure D.67: Position curve(left) and velocity curve(right) for the base-case system with m=2,0, making β=1,0, 
with c0=0,005 and a=0,5. 

 

 

 

 

 

Figure D.68: Phase plane diagram for the base-case system with m=2,0, making β=1,0, with c0=0,005 and a=0,5. 
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D.4.3 a=1,0 
Figures D.69 and D.70 show the position curve, velocity curve and phase plane diagram respectively 

for the system with a=1,0 and c0=0,005. Figures D.71 and D.72 show the same for the system with 

a=1,0 and c0=0,005.   

Figure D.69: Position curve(left) and velocity curve(right) for the base-case system with m=2,0, making β=1,0, 
with c0=0,0015 and a=1,0. 

 

 

 

Figure D.70: Phase plane diagram for the base-case system with m=2,0, making β=1,0, with c0=0,0015 and 
a=1,0. 
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Figure D.71: Position curve(left) and velocity curve(right) for the base-case system with m=2,0, making β=1,0, 
with c0=0,005 and a=1,0. 

 

 

 

 

Figure D.72: Phase plane diagram for the base-case system with m=2,0, making β=1,0, with c0=0,005 and a=1,0. 
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D.4.4 a=1,03 
 

Figures D.73 and D.74 show the position curve, velocity curve and phase plane diagram respectively 

for the system with a=1,03 and c0=0,005. Figures D.75 and D.76 show the same for the system with 

a=1,03 and c0=0,005.   

 

Figure D.73: Position curve(left) and velocity curve(right) for the base-case system with m=2,0, making β=1,0, 
with c0=0,0015 and a=1,03. 

 

 

 

 

Figure D.74: Phase plane diagram for the base-case system with m=2,0, making β=1,0, with c0=0,0015 and 
a=1,03. 
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Figure D.75: Position curve(left) and velocity curve(right) for the base-case system with m=2,0, making β=1,0, 
with c0=0,005 and a=1,03. 

 

 

 

 

Figure D.76: Phase plane diagram for the base-case system with m=2,0, making β=1,0, with c0=0,005 and 
a=1,03. 
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D.4.5 a=1,04 
 

Figures D.77 and D.78 show the position curve, velocity curve and phase plane diagram respectively 

for the system with a=1,04 and c0=0,005. Figures D.79 and D.80 show the same for the system with 

a=1,04 and c0=0,005.  

Figure D.77: Position curve(left) and velocity curve(right) for the base-case system with m=2,0, making β=1,0, 
with c0=0,0015 and a=1,04. 

 

 

 

 

Figure D.78: Phase plane diagram for the base-case system with m=2,0, making β=1,0, with c0=0,0015 and 
a=1,04. 
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Figure D.79: Position curve(left) and velocity curve(right) for the base-case system with m=2,0, making β=1,0, 
with c0=0,005 and a=1,04. 

 

 

 

 

 

Figure D.80: Phase plane diagram for the base-case system with m=2,0, making β=1,0, with c0=0,005 and 
a=1,04. 
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D.5 𝛽 =
3

2
 

When the mass parameter, m=4,5, the system has a frequency, ω, is 50% bigger than the natural 

frequency, ω0, i.e. 𝛽 =
3

2
.  

D.5.1 a=0 
When a=0, the system is only subjected to linear, constant damping, c0. Figure D.81 shows the 

position and velocity curve for the system with c0=0,0015. Figure D.82 shows the system with 

c0=0,0015 in the phase plane. Figures D.83 and D.84 show the position and velocity curve and phase 

plane diagram respectively for the system with c0=0,005.  

Figure D.81: Position curve(left) and velocity curve(right) for the base-case system with m=4,5, making β=3/2, 
with c0=0,0015 and a=0. 

 

Figure D.82: Phase plane diagram for the base-case system with m=4,5, making β=3/2, with c0=0,0015 and a=0. 
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Figure D.83: Position curve(left) and velocity curve(right) for the base-case system with m=4,5, making β=3/2, 
with c0=0,005 and a=0. 

 

 

 

 

Figure D.84: Phase plane diagram for the base-case system with m=4,5, making β=3/2, with c0=0,005 and a=0. 
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D.5.2 a=0,1 
 

Figures D.85 and D.86 show the position curve, velocity curve and phase plane diagram respectively 

for the system with a=0,1 and c0=0,0015. Figures D.87 and D.88 show the same for the system with 

a=0,1 and c0=0,0015.  

Figure D.85: Position curve(left) and velocity curve(right) for the base-case system with m=4,5, making β=3/2, 
with c0=0,0015 and a=0,1. 

 

 

Figure D.86: Phase plane diagram for the base-case system with m=4,5, making β=3/2, with c0=0,0015 and 
a=0,1. 
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Figure D.87: Position curve(left) and velocity curve(right) for the base-case system with m=4,5, making β=3/2, 
with c0=0,005 and a=0,1. 

 

 

 

 

Figure D.88: Phase plane diagram for the base-case system with m=4,5, making β=3/2, with c0=0,005 and a=0,1. 
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D.5.3 a=0,2 
 

Figures D.89 and D.90 show the position curve, velocity curve and phase plane diagram respectively 

for the system with a=0,2 and c0=0,005. Figures D.91 and D.92 show the same for the system with 

a=0,2 and c0=0,005.   

 

Figure D.89: Position curve(left) and velocity curve(right) for the base-case system with m=4,5, making β=3/2, 
with c0=0,0015 and a=0,2. 

 

 

Figure D.90: Phase plane diagram for the base-case system with m=4,5, making β=3/2, with c0=0,0015 and 
a=0,2. 
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Figure D.91: Position curve(left) and velocity curve(right) for the base-case system with m=4,5, making β=3/2, 
with c0=0,005 and a=0,2. 

 

 

 

 

Figure D.92: Phase plane diagram for the base-case system with m=4,5, making β=3/2, with c0=0,005 and a=0,2. 
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D.5.4 a=0,36 
 

Figures D.93 and D.94 show the position curve, velocity curve and phase plane diagram respectively 

for the system with a=0,36 and c0=0,005. Figures D.95 and D.96 show the same for the system with 

a=0,36 and c0=0,005.   

 

Figure D.93: Position curve(left) and velocity curve(right) for the base-case system with m=4,5, making β=3/2, 
with c0=0,0015 and a=0,36. 

 

 

Figure D.94: Phase plane diagram for the base-case system with m=4,5, making β=3/2, with c0=0,0015 and 
a=0,36. 
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Figure D.95: Position curve(left) and velocity curve(right) for the base-case system with m=4,5, making β=3/2, 
with c0=0,005 and a=0,36. 

 

 

 

 

 

Figure D.96: Phase plane diagram for the base-case system with m=4,5, making β=3/2, with c0=0,005 and 
a=0,36. 
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D.5.5 a=0,37 
 

Figures D.97 and D.98 show the position curve, velocity curve and phase plane diagram respectively 

for the system with a=0,37 and c0=0,005. Figures D.99 and D.100 show the same for the system with 

a=0,37 and c0=0,005.  

 

Figure D.97: Position curve(left) and velocity curve(right) for the base-case system with m=4,5, making β=3/2, 
with c0=0,0015 and a=0,37. 

 

 

 

Figure D.98: Phase plane diagram for the base-case system with m=4,5, making β=3/2, with c0=0,0015 and 
a=0,37. 
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Figure D.99: Position curve(left) and velocity curve(right) for the base-case system with m=4,5, making β=3/2, 
with c0=0,005 and a=0,37. 

 

 

 

 

Figure D.100: Phase plane diagram for the base-case system with m=4,5, making β=3/2, with c0=0,005 and 
a=0,37. 
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D.6 𝛽 = 2,0 
When the mass parameter, m=8,0, the system has a frequency, ω, is twice the natural frequency, ω0, 

i.e. 𝛽 = 2,0. The system is presented for two values of linear, constant damping, c0=0,0015 and 

c0=0,005, with an increasing nonlinear coefficient, a.  

D.6.1 a=0 
When a=0, the system is only subjected to linear, constant damping, c0. Figure D.101 shows the 

position and velocity curve for the system with c0=0,0015. Figure D.102 shows the system with 

c0=0,0015 in the phase plane. Figures D.103 and D.104 show the position and velocity curve and 

phase plane diagram respectively for the system with c0=0,005.  

 

Figure D.101: Position curve(left) and velocity curve(right) for the base-case system with m=8,0, making β=2,0, 
with c0=0,0015 and a=0. 

Figure D.102: Phase plane diagram for the base-case system with m=8,0, making β=2,0, with c0=0,0015 and 
a=0. 
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Figure D.103: Position curve(left) and velocity curve(right) for the base-case system with m=8,0, making β=2,0, 
with c0=0,005 and a=0. 

 

 

 

 

Figure D.104: Phase plane diagram for the base-case system with m=8,0, making β=2,0, with c0=0,005 and a=0. 
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D.6.2 a=0,01 
 

Figures D.105 and D.106 show the position curve, velocity curve and phase plane diagram 

respectively for the system with a=0,01 and c0=0,0015. Figures D.107 and D.108 show the same for 

the system with a=0,01 and c0=0,0015.  

Figure D.105: Position curve(left) and velocity curve(right) for the base-case system with m=8,0, making β=2,0, 
with c0=0,0015 and a=0,01. 

 

 

Figure D.106: Phase plane diagram for the base-case system with m=8,0, making β=2,0, with c0=0,0015 and 
a=0,01. 
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Figure D.107: Position curve(left) and velocity curve(right) for the base-case system with m=8,0, making β=2,0, 
with c0=0,005 and a=0,01. 

 

 

 

 

Figure D.108: Phase plane diagram for the base-case system with m=8,0, making β=2,0, with c0=0,005 and 
a=0,01. 
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D.6.3 a=0,02 
 

Figures D.109 and D.110 show the position curve, velocity curve and phase plane diagram 

respectively for the system with a=0,02 and c0=0,005. Figures D.111 and D.112 show the same for the 

system with a=0,02 and c0=0,005.  

 

Figure D.109: Position curve(left) and velocity curve(right) for the base-case system with m=8,0, making β=2,0, 
with c0=0,0015 and a=0,02. 

 

 

Figure D.110: Phase plane diagram for the base-case system with m=8,0, making β=2,0, with c0=0,0015 and 
a=0,02. 
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Figure D.111: Position curve(left) and velocity curve(right) for the base-case system with m=8,0, making β=2,0, 
with c0=0,005 and a=0,02. 

 

 

 

Figure D.112: Phase plane diagram for the base-case system with m=8,0, making β=2,0, with c0=0,005 and 
a=0,02. 
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Appendix E 
 

This appendix is in its entirety copied from the master thesis “Apparent Negative Damping an 

Original Approach to the Oscillations of Offshore Structures” [25] by Babtiste Reyne from 2016. 

E.1 Context  
Nils Gunnar Gundersen is today a consultant in oil and gas production management. He was in the 

past involved in various projects and held the position of platform manager on Shell Draugen 

platform. The following text summarizes his testimony which was collected during an interview 

arranged by Ove Tobias Gudmestad on April 7, 2016. 

E.2 Interview 
I was already involved with the Draugen project during its concept phase. The structure consists of a 

single concrete shaft of variable section located at two hundred and fifty meters deep sea. On top of 

it, around thirty tons of steel forming the decks and the equipment. The air gap, initially supposed to 

be twenty four meters, was increased of six meters during the construction after a redesign 

proposed by the structural engineers who explained to us that it would reduce the risk of failure due 

to “ringing response”; this decision might have later saved our lives. In the year 1988 when the 

design process had just started, the project director asked the team to set on a date to begin the 

production: October the sixteenth, 1993 was our answer. After a few years of exemplary 

management demonstrated by minimum delays and no over costs, the production started on 

October the nineteenth, 1993. I then took charge of the platform management that held me 

responsible for all that would happens on site during its life of production.  

During one day of March 1995, I was working in my office when I noticed that the painting hanging in 

front of my desk was was not only swinging as it usually did, but punctually be lifted away from the 

wall before hitting it back. A hurricane was announced that day, and we could also tell by the 

“bangs” shrilling in the site. I then received an unexpected call from Aberdeen weather center, 

warning me of a very large wave coming in our direction. According to them, we had only thirty 

minutes to prepare. I ran to the microphone in order to quickly stop the production and to summon 

every present individual to the gymnasium located on the lower deck. Once everyone gathered was 

standing in front of the inner walls, I stood in the center of the room and told them about “Rasmus” - 

this is the name sailors give to the largest waves. Everyone was quiet and alert. I explained them how 

well the conception of the platform had been lead using a short presentation that the engineering 

team gave me. I finally tried to reassure everyone expressing my unconditional faith in the designers 

work. My short speech was concluded by this precise sentence: now we can only wait for “Rasmus” 

to hit us. As soon as I finished pronouncing these words, the loudest, most shivery and violent BANG I 

have ever heard rang out in the gymnasium. We started to feel increasingly large motions under our 

feet, the projector I was using for the presentation all of a sudden left its place and rolled towards a 

wall. Once I caught it, all and sundry sat and no one batted an eye while the room kept on pitching. I 

could not tell exactly how long it lasted but my guess would be more than a minute.  

Once it became obvious that “Rasmus” had left, we eventually went outside. Heavy equipment that 

where before taped on walls had run off after their bands were cut in the shock. We had been hit by 

a massive wave. On the hundred and thirty four workers who where present at Draugen, some 

would be quite experienced as fishermen. I would allow them to fish and to hang their catches under 

the deck where strong winds result in an effective way of drying fish. My condition was to only use 
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rope and wooden elements in order not to alter the structure, and they would come up with clever 

solutions to strongly attach the hundreds of kilograms of seized prays. We went to the lower deck to 

see what happened to them. Not only this large mass of robustly roped beings had disappeared, but 

the wave had not even left a clue of their very existence. No significant damage however was 

reported, and knowing what could have happen if we had not be told of the upcoming danger, I felt 

at first very thankful to those who warned us. The origin of this phenomenon could not be explained 

and I do not know how it was detected. While the industrial Shell hardly showed a reaction, the 

engineering team from Norwegian Contractors saw there an excellent way to confirm the quality of 

their work. This occurrence lead to the installation of measuring devices on the platform which may 

have recorded a similar event about a year later. 

Nils Gunnar Gundersen 

E.3 Complementary comments 
By the description of the events, it is clear that the phenomenon that was experienced is related to 

exceptional wave conditions which involve high magnitudes in both velocity and period. As the 

investigations were advancing rose the question of the relation of directions in between the 

impacting flow and the oscillations. N. G. Gundersen was contacted again and asked for possible 

further informations about any memory he may have had of both the angle of attack of the wave, 

and the trajectory of the resulting oscillations. 

I do not remember from which direction Rasmus was coming. The report I wrote after the event has 

very unfortunately been removed from the document center in the operating office in Kristiansund.  

Additionally, I cannot remember the direction of the oscillations. I just remember the tremendous 

big “BANG” when the huge wave hit us and everybody standing along the walls immediately jumped 

down on to the floor. The very big oscillations must have taken around 40 to 60 seconds, but it is 

difficult to judge because the weather was at that time very bad and the leg moved quite a lot during 

this bad weather situations. The fact that there were movement in the leg was in full compliance 

with the design criteria. 

I mentioned that I still remember the large painting I had in my office on the wall in front of me 

moving in all directions during bad weather situations. I always took it as a good sign that the huge 

vertical concrete structure behaved in accordance with all design criteria. 

Nils Gunnar Gundersen 

E.4 Conclusion 
Although N. G. Gundersen was understandably not able to recall the very details of the events, two 

hints may indicate the occurrence of a crossflow amplification of the oscillations, studied in part II.  

First, the gigantic wave that is described corresponds to a great height that necessarily comes with a 

large period. But the vibrations that are mentioned seem to correspond to much higher frequencies 

that do not resemble inflow oscillations. Then, the movement of the painting at the beginning of the 

events is reported abnormal because it would be lifted off the wall instead of gliding along it, which 

implies a change of the action’s direction. Assuming the usual forces to have the same direction as 

the flow, the behavior of the painting may be the result of an unusual crossflow oscillation. 


