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ABSTRACT 

Predicting creep damage and remaining life of an engineering design is a complex task. There are many 

types of creep material models and they provide significantly different predictions. Furthermore, the 

necessary material data required for the material models are rarely available. Creep tests are typically 

performed in uniaxial tension under constant load and temperature. However, such similar conditions 

are rarely encountered in practical engineering applications where multiaxial stresses and cyclic load 

and temperature often are present. Creep-fatigue interaction and correlation between uniaxial and 

multiaxial stress states also add on to the complexity of the damage assessment in creep conditions. 

Pavlou have proposed a nonlinear cumulative creep damage model (NCCDM) that considers the 

sequence effect from the previous load history in the damage assessment. NCCDM has been evaluated 

for use in design applications and compared to a widely-used linear summation method known as the 

time fraction rule (TFR); TFR is used in several engineering design codes. Pavlou, Grell et. al, Lin and 

Teng have shown that NCCDM can predict creep damage more accurately than TFR under stepwise 

constant uniaxial stress and temperature conditions. However, NCCDM has not been used yet in 

practical engineering design applications.  

In this thesis, NCCDM will be applied to a X8CrNiMoNb-16-16 pressure vessel designed in accordance 

with ASME VIII-2 to demonstrate its use in conjunction with practical engineering problems. The 

pressure vessel will be subjected to elevated temperatures with applied variable two-step loading. This 

is used as a representative engineering example for the comparison of the two models, i.e., NCCDM 

vs. TFR. 

Firstly, by considering proposals made by Pavlou, Grell, Lin and Teng, an evaluation of the best use of 

the NCCDM was made. The model behaviour was also studied by considering fictive load cases. Based 

on the findings, conditions for further use of the model was established. Secondly, rupture and creep 

strength data obtained from a material database were used to create fitted curves with the Larson-

Miller parameter from which time-to-rupture and time-to-1% strain could be obtained for different 

stresses. Thirdly, the finite element (FE) method was used to evaluate several types of stress criteria 

on a generic model of a pressure vessel. Variable-step internal pressure at a constant elevated 

temperature was applied to the model. A linear-elastic and an elastic-plastic material model was used 

in the analysis. By considering high-to-low (H-L) and a low-to-high (L-H) loading sequence the 

remaining life to rupture and to 1% strain was calculated for the pressure vessel with both NCCDM and 

TFR. 

It was found that the NCCDM and the TFR gave very different predictions. For the L-H type of loading 

sequence the NCCDM predicted more conservative remaining life than TRF. The opposite was seen for 

the H-L type of loading. Larger variation in stress between the two load steps resulted in an increased 

difference between the predictions made with the two models. Due to the difficulty of performing a 

time-dependent creep analysis, the NCCDM model would benefit from being combined with an elastic-

analysis procedure to approximate the time-dependent stress distribution, like the procedure in ASME-

NH. Because of the simple use of NCCDM, there is potential for it to gain acceptance for engineering 

applications. However, further analysis and research should be made to fully understand the damage 

processes considered in the NCCDMs remaining life assessment. 
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1 INTRODUCTION 

1.1 Background 

Creep has been studied extensively ever since the creep phenomenon was recognized as a problem in 

design of high-temperature components [1]. One of the earliest research on creep was carried out by 

Andrade [2] in 1910, and by the 1920s creep strength in metals was studied systematically with short 

term creep tests and later in the 1950s with long term creep tests [3]. Although great advances have 

been made in research of understanding the creep phenomena, creep damage can be difficult to assess 

due to the complex nature of creep and the many factors affecting the creep damage process. Some 

of the main difficulties regarding creep rupture prediction is shown in Figure 1  

 

                                                                 

Figure 1. Details of creep-rupture problem[4]  

 

The time-dependent damage process that constitutes creep is mainly influenced by stress and 

temperature. Creep and stress-rupture tests are typically performed under isothermal uniaxial 

constant load conditions to determine the long-term damage effect on the material due to stress and 

temperature. However, similar conditions are rarely found in practical engineering problems where 

multiaxial stress states, cyclic or variable load and temperature conditions are often present.  

To predict creep deformation, it is essential to understand the material response and much work has 

been devoted to finding a functional relationship between stress, strain, time and temperature, 

nevertheless no such functional relationship has yet been generalized. The problem with predicting 

creep becomes even more challenging when fracture is considered, since it involves initiation and 

propagation of cracks. Other factors that complicates creep life prediction are the presence of 

geometrical irregularities and notches since these cause stress concentrations. This complicates creep 

rupture prediction further since notches introduce triaxiality which ultimately affect ductility and the 

rupture behaviour of the material. The more triaxiality, the less ductile the material behaves. Stress 

concentrations also lead to relaxation and stress redistributions and hence continuous accumulation 

of creep strain [4]. Stress relaxation is also a problem associated with variable loading when new high 

stresses are re-established at the beginning of each new cycle [1].  
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Since creep data for materials are based on uniaxial tests, it is necessary to correlate uniaxial and 

multiaxial stress so the same damage rules and applicable creep data can be used for predicting creep 

rupture. Many researchers have worked on characterizing the stress dependence of creep [5-8] and 

many alternative criteria have been proposed for the uniaxial-multiaxial correlation. However, which 

stress criterion that is best suited depends on the rupture characteristic of the material. It has been 

seen that materials that develops severe internal cracks which is typical for brittle material ruptures 

are mostly dependent on the maximum principle stress while materials with a more ductile behaviour 

are better described with an effective stress criterion. However, most material failures fall in a category 

in between and mixed stress criterions and other alternative methods have therefore been suggested 

[4].  

Growth in computer power has made it possible to numerically solve nonlinear time dependent 

engineering problems and define time dependent stress and strain distributions. Although 

commercially available software has methods for modelling creep, it is important to understand the 

assumptions and material models incorporated in the software because validation of the results is 

necessary [1]. As mentioned no generalized procedures for correlating stress, strain, time and 

temperature exist and the material models that are found in literature yield predictions which can 

differ remarkably from one another. Thus to obtain a meaningful prediction from a creep analysis, the 

constitutive equations need to be carefully selected and evaluated for both the material and the load 

and temperature history of interest [9]. Another issue related to this is that these material models 

require necessary input data from experimental test which are rarely available. It will take years to 

collect such material data that can describe the material response well enough to justify such an 

analysis since the increased effort and time a creep analysis entails are not in proportion to what is 

reasonable in an engineering project. [1].   

Because of this, instead of basing creep assessment procedures on inelastic creep analysis, most design 

codes try as far as they can to offer alternative assessment procedures based on elastic analysis. 

Another reason why elastic analysis is preferred is that it is easier than nonlinear analysis. In addition, 

inelastic creep analysis requires much more computational effort compared to an elastic one, 

especially for large components, complex load combinations and load histories [1]. ASME has made a 

deliberate decision not to provide too comprehensive and detained guidance for their inelastic time-

dependent analysis procedure. The reason for this is because the development of material models is 

considered an ongoing process and that too detailed guidance would halt the development [9].  

Even if a plastic creep analysis can solve the time dependent stress and strain distribution, a cumulative 

damage criterion is necessary to determine the remaining life of a component. Life prediction for 

components under variable loading conditions are based on assumptions of rules on how damage 

accumulates and only very simple damage rules based on linear summation are in use today [4]. The 

time fraction rule, also known as Robinson’s rule [10] is the most common rule for assessing creep 

damage. To account for the creep-fatigue interaction during cyclic creep conditions the time fraction 

rule is combined by means of superposition with Miner’s rule for fatigue, this combined cumulative 

creep-fatigue damage rule is sometimes referred to as the life fraction rule. However, the problem of 

linear summation methods is that they do not consider the damage effect due to the load and 

temperature sequence in the loading history. Current national standards, for instance, Boiler and 

Pressure Vessel Code by American Society of Mechanical Engineers (ASME) [11], UK nuclear power 

standard R5 [12], French RCC-MR [13], have all incorporated the life fraction rule in their rules for cyclic 

creep damage assessment. However, without the use of engineering corrections and safety factors 

that are included in the above mentioned codes, the life fraction rule is considered non-conservative 

[9]. More complex nonlinear rules have been proposed, but these typically require experimentally 
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derived material constants which can only be obtained with additional creep testing in addition to the 

standard uniaxial tests, something which is typically undesirable [1, 9]. This seems to be part of the 

reason why the linear damage rules are the only rules that have gained universal acceptance in codes 

and guidelines [1]. 

Due to the above-mentioned difficulties in predicting creep rupture accurately most damage 

assessments methods are based on approximations and assumptions, and methods provided in codes 

tend to be on the conservative side. Although the incentive of construction standards is to provide safe 

designs, designs should also be cost effective. Overly conservative criteria may cause designs to 

become expensive and are therefore not desirable. More accurate damage models might therefore be 

preferred. 

There are many examples of equipment that encounters elevated temperatures during their 

operation. Some of them are hydrocrackers in petroleum refineries, boilers and pressure vessels and 

blades in gas turbine engines in nuclear power or chemical plants [14]. Many of the plants that are in 

operation today have critical components reaching or exceeding their estimated design life. Life 

extension of components in existing plants can reduce cost significantly comparing to building new 

plants [15] and more accurate assessment methods could be beneficial in a life extension project, and 

perhaps prohibit premature shutdown. 

In a paper published in the journal Engineering Structures in 2001, Pavlou [16] derives at a nonlinear 

creep damage model which takes both load and temperature sequence into account in addition to 

being relatively easy to use. The proposed creep damage model accurately predicted the creep damage 

when compared with actual test results obtained from a stepwise constant uniaxial tensile creep test. 

Pavlou’s model has later been tested by other researchers, both in its original form [17] and slightly 

modified [18] and did in both cases give reasonable predictions of the creep damage when variable 

load sequences was considered. However, the proposed nonlinear creep damage model has not so far 

now been used for design purposes.  
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1.2 Objective and scope 

The main objective of this thesis is to evaluate the practical use of the nonlinear Pavlou creep damage 

accumulation model and compare it to the widely-used life fraction rule also known as Robinson’s rule 

which has been incorporated in several national codes. The difference in remaining creep life between 

the two damage accumulation models is to be compared by studying a representative engineering 

example subjected to variable loads at elevated temperatures in the creep range.  

The component to be studied is a generic model of a pressure vessel subjected to internal pressure at 

a constant elevated temperature of 700 °C (973 K). Internal pressure will be applied in a low-high 

sequence and high-low sequence and remaining life using the two creep models is to be evaluated for 

each sequence.  

To reach the objectives of this thesis, the following sub-objectives are to be carried out:  

• Study creep mechanisms and current creep damage assessments methods. 

• Evaluate methods used in standards for design of components in high-temperature service.  

• Evaluate the Pavlou creep damage model by considering suggestions from previous research.  

• Study how to account for multiaxial stress states and stress concentrations in creep damage 

assessment. Evaluate how various stress criterions can impact damage assessment and 

remaining life. 

• Construct a creep-rupture curve from applicable creep data for the material being used and 

study potential error and uncertainties from the creep data fit 

• Carrey out a stress analysis in ANSYS using various material models and calculate remaining 

life for the pressure vessel with the linear and nonlinear creep damage models and compare 

the remaining life  

Figure 2 shows a flowchart of the sub-objectives of the scope and work-process which is presented in 

this thesis. 

 

Figure 2. Scope of work flowchart 

1.3 Limitations  

The subject of creep is very comprehensive and in this thesis creep damage is only discussed on a 

macroscale level and damage from a microscale perspective is not considered nor is environmental 

effects that might affect material properties or load bearing capacities.    

No experimental procedures can be made in conjunction with this thesis due to the lack of creep 

testing facilities and no new experimental data can be obtained. Any experimental data used in this 

work is obtained from previous research. This also limits the possibilities of validation of any obtained 

result.  

Creep under variable loading is generally referred to as creep-fatigue. Although creep-fatigue 

interaction is discussed, this study will mainly be focusing on the creep damage characteristics.  

Evaluate stresses 

with various 

material models 

using FEA 

Evaluation of 

creep models  

Set up generic 

model of 
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Remaining life 
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Several codes are other applicable design codes for creep and pressure vessel design, this thesis will 

mainly discuss procedures and assessment methods given in ASME Boiler and Pressure Vessel Code.  

1.4 Structure of thesis 

This thesis is divided into six chapters where:   

Chapter 1 of this thesis contains an introduction to the topic of study as well as the objective and scope.  

Chapter 2 contains theory about creep mechanisms and creep testing. Subsequent subsections cover 

assessment methods for creep damage followed by a subchapter that contain a description of the 

nonlinear Pavlou creep damage accumulation model which will be thoroughly described. The next 

sections cover equivalent stress theories and the effect multiaxiality have on creep damage 

accumulation and material models used in finite element analysis are also described. Further the 

procedure in ASME-NH for elevated temperature design is explained. The last subchapter here briefly 

discloses pressure vessel design.  

The first part of Chapter 3 contains a study of the nonlinear Pavlou creep damage accumulation model 

and further, creep-strain and creep-rupture curves are constructed with applicable material creep-

data. Subsequent the numerical setup conditions for the finite element analysis is explained.  

In Chapter 4 the remaining life results from the present study are presented. 

Chapter 5 provides discussion on the creep damage assessment made with the nonlinear cumulative 

creep damage model based on the results and the literature study.  

Chapter 6 lists the conclusions based on the current study and is followed by recommendations for 

future work. 

 

 

 

 

 

 

 

 

 

 



6 
 

2 LITERATURE REVIEW 

2.1 Creep 

Creep is a time dependent inelastic deformation which is induced in materials that are subjected to 

stress. The slow deformation can result in permanent change in shape and rates are usually less than 

1.0% per minute, faster rates are generally associated with mechanical working such as forging and 

rolling [19]. Although creep can occur at any temperature, the point when the material experience the 

full effects of creep are dependent on the melting point 𝑇𝑀 of the material. For metals this starts at 

the temperature 𝑇 > 0.4𝑇𝑀 . At lower temperatures creep deformation occurs with continuously 

decreasing strain rate, while at elevated temperatures creep typically proceeds through three different 

stages which ultimately leads to failure [19] .   

 

Table 1. General behaviour during creep [20] 

Stage  Temperature  Characteristic  

Primary 𝑇 > 0.4𝑇𝑀 or 
𝑇 ≤ 0.4𝑇𝑀 

𝜀̇ decreases as 𝑡 and 𝜀 increase  

Secondary (steady state) 𝑇 ≥ 0.4𝑇𝑀 𝜀̇ is constant  
Tertiary  𝑇 ≥ 0.4𝑇𝑀 𝜀̇ increases as 𝑡 and 𝜀 increase  

 

A typical creep curve from an uniaxial creep tensile test with constant load and temperature is 

illustrated in Figure 3 and it shows creep divided into three stages, namely; primary, secondary and 

tertiary creep. Primary creep which is also called transient or cold creep starts with an instantaneous 

strain 𝜀0 which consist of both an elastic and plastic strain, it starts with a relatively high strain rate 

which is then followed by monotonic decrease in creep strain rate because of strain hardening as the 

material deforms. For low temperatures, this behaviour can proceed indefinitely, but for elevated 

temperatures the deformation rate will eventually become independent from time and strain. This 

steady-state regime is the secondary state of creep and can also be called hot or viscous creep. Creep 

at the final stage before fracture is the tertiary creep, at this stage the creep rate accelerates due to 

microscopic cracks in the grain boundary causing damage-accumulation leading to accelerated creep 

strain rate behaviour. The three stages of creep and their corresponding characteristics are given in 

Table 1 [19, 21]   

 

Figure 3. schematic illustration of creep curve for constant load and temperature with the three stages: primary, secondary 
and tertiary creep  
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Increasing stress or temperature ultimately increases the creep strain as schematically depicted in 

Figure 4, hence the time to rupture will also decrease. In addition, by increasing the stress, the time 

spent in each stage will shorten [19].  

 

Figure 4. Schematic illustration of creep curve shapes for increasing stress and temperature [15]  

 

The behaviour shown in Figure 4 can be explained with the following competing material reactions 

[15, 22]:  

• Strain hardening  

• Softening processes, including recovery, recrystallization, strain softening and precipitate 

overaging 

• Damage processes like cavitation, cracking and specimen necking.  

Work hardening, which is the materials ability to resist additional strain after it has been deformed, 

has a decreasing effect on the strain rate. Recovery is when thermal softening lead to loss of effective 

strain hardening. Since recovery is thermally activated it does not occur at low temperatures and 

explains why creep rate in the low temperature range is always decreasing. When recovery, hardening 

and damage is in balance the creep rate becomes nearly constant which is the steady-state creep. 

Increasing temperatures makes it easier for recovery processes to overcome strain hardening, which 

is the reason why the primary-secondary state transitions occur at lower strains as temperature is 

increasing. The tertiary creep stage with accelerated strain rate is due to microstructural and 

mechanical instabilities in the material such as cavities, separation of grain boundaries and cracks. This 

leads to local reductions in cross-sectional area, hence the resistance to load decreases. The coupling 

with softening is the cause of the rapid increase in strain rate, which ultimately leads to failure [15, 19, 

22].  

On a micro scale level, the first stage of creep damage is characterized by initiation and formation of 

isolated voids along grain boundaries. At the second stage, the voids connect with each other leading 

to the development of micro cracks. Finally, at the third stage the micro cracks have grown and can be 

detected either visually or by the aid of non-destructive testing. At this final stage, failure is impending 

[23]. 

Classification of material behaviour can be divided into three disciplines; elasticity, plasticity and creep 

mechanics. Other proposals differentiate them into four, where creep behaviour is divided into 

viscoelasticity and viscoplasticity [21]  
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2.1.1 Elevated-temperature fracture and creep mechanisms  

Creep damage mechanisms can be represented with deformation mechanism maps as shown in Figure 

5. These illustrate time- and temperature-dependent regimes and can show what damage mechanisms 

that dominates the creep process [1]. This helps in identifying what creep laws or creep law 

combination to use for modelling the creep behaviour.  

The main creep mechanisms are those that are controlled by dislocation movement and those that are 

controlled by diffusion. The governing mechanism is dependent on stress and temperature however, 

many mechanisms can occur simultaneously. Higher stress and lower temperature generally promote 

dislocation movements while the diffusion controlled mass transport occur at low stresses and high-

temperatures. Diffusion which is the atomic movement in metals is due to thermal vibration of atoms 

and is more difficult below the temperature of 0.3𝑇𝑚  but becomes more significant at higher 

temperatures above 0.4𝑇𝑚 when the atomic vibration increase. In dislocation creep dislocations can 

move through the crystal lattice both by dislocation glide along slip planes and by climbing onto parallel 

slip planes by the aid of diffusion [1, 24].   

 

 

Figure 5. Typical deformation-mechanism maps for 316 SS a) Stress/temperature map of grain size 200 μm b) Strain-
rate/stress map for grain size 100 μm [25]  

 

Rupture, transgranular fracture and intergranular fracture are the three primary failure modes at 

elevated temperatures. Ductile rupture occurs both at temperature below 0.3𝑇𝑚 and for the ultra-high 

temperature regime above 0.6𝑇𝑚 at high stresses. High-temperature rupture is typically associated 

with dynamic recovery and recrystallization and is therefore not considered to be a creep dominated 

failure mode [1, 24]. 

In creep, transgranular fracture occur when stress and strain are reasonably high. It is initiated by void 

nucleation around inclusions, followed by void growth and void coalescence until fracture occurs. 

Transgranular fracture is similar to low temperature ductile fractures but for temperature in the creep 

range the process is assisted by diffusion. When temperature increase, the damage mechanism change 

from transgranular fracture to intergranular fracture. Which is typically the dominating failure mode 

b) 
a) 
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at lower stresses, higher temperatures and longer rupture times. For intergranular fracture void 

nucleation, growth and coalescence are restricted to the grain boundaries and the fracture appears 

brittle in nature since there is little macroscopic plastic flow. The two types of voids caused by 

intergranular fracture are known as wedge type cavities and isolated rounded cavities. The round 

cavities form along the boundaries normal to the axis of tension and wedge shape cavities initiates at 

corners or triple-points due to shear deformation along the inclined boundaries, also known as grain 

boundary sliding (GBS) as illustrated in Figure 6. The formation of round cavities along grain edges are 

promoted by lower stresses, while higher stress and lower temperature typically cause wedge crack 

formations [24]. 

 

Figure 6. Intergranular fracture creep cavitation mechanisms a) wedge type cavitation at triple point and b) rounded cavities 
along the edge boundary [24] 

 

If the fracture is brittle or ductile in nature depends on both the alloy, temperature and strain rate. 

Ductile fractures are mostly transgranular and brittle fractures are often intergranular. For fractures 

exhibiting both intergranular and transgranular fracture paths it is typically found that the 

transgranular rupture was initiated by the stress increase caused by the intergranular cracking [24]. 

 

2.1.2 Creep under cyclic actions   

In primary or transient creep, redistribution of stresses occurs which eventually lead to the steady-

state creep condition. Both the rate and extent of the redistribution depends on both the initial stress 

level, metal temperature and creep response of the material [1]. The term creep transients is the 

change of isotropic strength in a material because of an increase in dislocation density or by change in 

directional hardening [26]. Transient conditions are often important under variable loading when new 

high stresses are re-established at the beginning of each cycle [1]. 

 

2.1.2.1 Ratcheting 

Another phenomenon that must be considered under cyclic actions is the plastic strain accumulation 

that may occur, called ratcheting. Below the creep range this progressive incremental plastic 

deformation occurs when the cyclic stresses reach the yielding point. The total inelastic strain may 

either be stable as illustrated in Figure 7 where the inelastic strains are constant for each cycle or the 

plastic strain may vary for each cycle [11]. The progressive plastic deformation finally lead to failure of 

the structure, a failure mode also known as incremental collapse [27]. Ratcheting in tension can cause 

larger tensile strains leading to necking and failure before fatigue cracks have had the possibility to 

form and grow [20]. In the creep range, ratcheting can occur even without plastic yielding since creep 



10 
 

can change the residual stresses and affect the time-independent response. It may also be enhanced 

due to nonlinear interaction between primary and secondary stresses [11]. 

 

Figure 7. Stable strain ratcheting under load-controlled cycling [1] 

 

 

2.1.3 Stress relaxation under cyclic loading  

Time dependent stress relaxation is a kind of creep damage that occurs under hold periods at constant 

fixed strain. The relaxation rate is dependent on the creep strength of the material. To maintain the 

total strain constant, the elastic strain must decrease with a corresponding decrease in stress. A typical 

example where creep relaxation is an issue is for high-temperature bolting, were the stress 

progressively relaxes after the initial torque, therefore bolt retightening must be made on for example 

flanges to avoid leakage. Both relaxation and redistributions of stresses have large significance on the 

creep damage. Especially under cyclic operations. However, often appropriate relaxation data does 

not exist and relaxation analysis are made with constant load isothermal data [20, 22]. 

When cyclic loads are combined with hold periods, stress relaxation has been seen to influence the 

low-cycle fatigue endurance. Such an example of creep-fatigue interaction with stress relaxation 

during hold timed is illustrated in Figure 8. Test made with steel 304SS showed that hold periods at 

peak tensile strain are the most damaging, while compressive hold periods did not have substantial 

effect, in fact it was seen that it had a healing impact for hold periods at both tensile and compressive 

strain. The reduced fatigue life at tensile strain hold periods got more substantial when the hold 

periods increased. However, the reduction rate showed to progressively decrease for longer hold 

periods which indicated that that the limit of relaxation damage was reached within rather short hold 

times. The characteristics of the time-dependent cyclic relaxation damage varies between materials. 

Similar cyclic hold time relaxation tests made with material Udimet 700 showed the complete opposite 

results. For the compressive strain hold periods, it had a more detrimental effect on fatigue resistance, 

while tensile hold periods had only a small effect. During periods of loading and unloading the 

accumulated creep damage during  hold periods has seen to be larger than the accumulated fatigue 

damage [20, 28].  
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Figure 8. Example of creep-fatigue interaction with stress relaxation during hold periods under cyclic loading [24] 

2.2 Temperature effect on material properties  

Elevated temperatures cause changes in mechanical properties. These temperature dependent 

properties can be divided into time-independent and time-dependent properties. The following 

properties fall into the category of time independent material properties [23]:  

• Modulus of elasticity 

• Yield and ultimate strength  

• Coefficient of thermal expansion 

• Poisson ratio  

• Elongation at rupture 

• True stress-strain curve (the relationship between stress and strain) 

• Fatigue life relationship between cyclic strain and cycles to rupture 

The creep resistance and creep rupture strength of a material are often expressed in terms of 

temperature and time and belongs in the category of the time-dependent material properties. Other 

properties which fall into this category are properties which defines the relationship between applied 

stress and strain rate [23]. An example of this is the Norton-Bailey [29, 30] steady-state creep power 

law given by the following equation: 

 𝜀�̇� = 𝐶1𝜎
𝑛 Eq. 2.1 

 

where 𝜀�̇�  is the creep strain rate,  𝜎  is the applied stress and 𝐶1  and 𝑛  are material specific 

temperature-dependent constants. Rate dependent plasticity theories and models for creep strain 

rate and creep response will be further discussed in Chapter 2.7.1.3.  

 

2.2.1 Creep resistant steels  

Creep resistant steels has been under constant developments since the beginning of the 1900s. The 

need to improve the high-temperature properties of steel was based on the power station industries 

needs to increase the efficiency of steam power plants by increasing temperature and steam pressure 

[3]. Today, several different alloys are used for various high-temperature applications. Typical heat 
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resistant alloys include carbon steels, chromium-molybdenum (Cr-Mo) steels, chromium-

molybdenum-vanadium (Cr-Mo-V) steels, stainless steels, nickel and cobalt alloys and superalloys. A 

comparison of stress-rupture properties between different alloys is given in Figure 9 [24]. 

 

Figure 9. Stress-rupture comparison for several alloy classes [24] 

 

Creep resistant materials typically have a high melting point since the creep rate in materials are 

dependent on diffusion coefficients which are proportional to the ratio 𝑇 𝑇𝑚⁄ . An open metallic 

structure has more diffusiveness and therefore at the same 𝑇 𝑇𝑚⁄  , face-centred cubic (fcc) metals 

generally have better creep resistance than body-centred cubic (bcc) metals which has a more open 

structure and hence have more diffusiveness. Depending on the dominant creep mechanism, different 

microstructural properties are beneficial. In diffusion creep grain size play a significant role, a larger 

grain size improves the creep resistance for diffusive controlled creep since mass transportation in 

finer grains are more rapid. Creep resistance can also be improved even further by having inert 

particles such as carbides on the grain boundaries which increases creep resistance since it helps to 

pin down the boundaries [24].  

 

Table 2. Maximum service temperature for various alloys [24] 

Alloy 
Maximum service temperature, 𝑻 
[°C] 

Carbon steel  400-480 
Chromium molybdenum  540 
Chromium molybdenum vanadium 540 
Martensitic stainless steel  540-650 
Ferritic stainless steel  370 
Austenitic stainless steel  870 
Nickel-base superalloys 1290 

 

There is a large variation in maximum allowable service temperature for the various creep resistant 

alloys given in Table 2. The operating temperature for carbon steel varies depending on the in-

service stress. However, beyond 480 °C, embattlement due to graphite formation becomes an issue. 

In Cr-Mo steels, the chromium content increase the resistance against oxidation and molybdenum 
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forms carbides to avoid graphitization and increase the elevated temperature strength. The addition 

of vanadium in Cr-Mo-V steels results in an increase of the thermal softening point for the steel. Among 

the stainless types of steels in Table 2, the austenitic steel has superior creep resistance and can be 

used for elevated temperatures up to 870°C, though a problem associated with the austenitic steel 

grades are their high thermal expansion coefficient which must be compensated for when designing 

high-temperature components. The martensitic stainless steels can be used in rather high-

temperature applications up to 650 °C, but for avoiding in-service softening the martensitic steels must 

be tempered. Ferritic stainless steels can only be used at limited operating temperatures because of 

precipitation of embrittling phases that occurs at higher temperatures. The high chromium content of 

ferritic stainless steel does however provide it with good scaling resistance  [24].  

Nickel based alloys are typically used in corrosive environment at high-temperature service. The alloy 

elements chromium and molybdenum combined with nickel makes the steel both oxidizing and 

corrosive resistant. Of all nickel based alloys the Ni-Cr-Mo alloys have the best heat and corrosion 

resistance and they are frequently used for chemical processing and in other industries that may utilize 

their combination of high temperature properties [24].  

The term superalloys typically designates steel with the defining feature of high mechanical strength, 

good fatigue resistance, high-temperature creep resistance and surface stability. They also have the 

ability to operate at elevated temperatures for long periods of time [24, 31]. Although there is no strict 

definition, the name superalloy is typically used for alloys that includes nickel, cobalt and iron with a 

high percentage of nickel in addition to a variety of other alloying elements. The composition of 

superalloys are among the most complex metallic alloys that has been developed for commercial use. 

The application encouraging the development of superalloys is for the use of air foils in the hot section 

of gas turbine engines. They have also been used successfully in other applications, for instance rocket 

components, nuclear reactors, heat exchangers, petrochemical equipment etc. [31]. Superalloys are 

often used for temperatures above 540 °C and some of them can even be used for load-bearing 

applications at temperatures beyond 85% of their melting temperature. Among all superalloys the 

nickel-base superalloys have the best creep resistance and  they are used for turbine blades in engines 

with service temperatures up to 1290 °C, which corresponds to 𝑇 𝑇𝑚⁄ =0.9 [24].The cost of superalloys 

are generally 30 to 200 times that of plain stainless steel and this is due to the high level of investment 

and the complexity of both composition and the processing [31]. 

2.3 Testing of creep properties   

2.3.1 Creep testing  

Creep strength of a material is commonly measured as rupture strength or creep resistance. Rupture 

strength is defined as the necessary stress level to cause failure in a certain period and creep resistance 

is defined as the stress level needed to produce a nominal strain within a certain time period [1].  

Elevated temperature tests for creep resistance and creep rupture are similar, however rupture 

strength is typically measured with stress-rupture tests, which measures the time to failure for a given 

stress, while creep resistance is determined with so called creep tests which measure time dependent 

strain. A major difference between stress-rupture and creep tests is the total strain during the test. For 

creep tests the total strain does generally not exceed 0.5%, while the strain can reach up to 50 % in a 

stress-rupture test. In addition, for stress-rupture test, the specimens are typically loaded at higher 

stresses than in creep tests. The duration for a stress-rupture test is also generally shorter compared 

to the creep test. Stress-rupture tests are concluded when failure occurs, which is often approximately 

after 1000 hours, while the duration of creep tests can vary from a few months to several years [24]. 
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Test specimens used to measure creep resistance and creep rupture strength are similar to specimens 

used in a regular tensile test [22]. Tests can be conducted either by constant stress or constant load, 

however the constant-stress tests are not as easy to conduct as the constant-load tests and the latter 

are therefore considered adequate for engineering applications because of the convenience of the 

constant load testing [15]. 

Stress-rupture and creep tests are typically carried out under constant temperature in tubular furnaces 

on specimens subjected to either tension or compression. The most common types of tests are those 

conducted under uniaxial tension under constant load conditions. Throughout these tests, the load is 

maintained constant and as the specimen elongates and the cross-sectional area decreases, the axial 

stress increase. The stress value reported from these tests is usually the initial stress value[21, 22]. A 

schematic illustration for a creep test setup under constant load is shown in  Figure 10.  

 

 

Figure 10. Typical constant load and temperature creep tensile test fixture and an example of stress-rupture data obtained 
from constant load and temperature stress-rupture tests  [24]  

 

Although uniaxial tensile tests are the most common in creep rupture tests, the method is not suitable 

for brittle materials due to its flaw-sensitivity such as crack propagation. For brittle materials, creep 

tests under compression is more appropriate since it better measures the inherent plastic properties 

of materials with brittle behaviour [22] 

As previously mentioned, creep test under constant stress are more difficult to carry out than a 

constant load test. This is because the reduction of load must be proportionate to the degree of 

straining.  However, in some cases, it is necessary to make constant stress creep tests, for example, 

when to determine the differences between temperature dependence and stress dependence of a 

material. To maintain the constant-stress the load is adjusted as the length of the specimen changes. 

Difficulties arises during necking to keep the stress constant at the neck, since stress is reduced in other 

points of the measured length. When this occurs, the measured strain over the measured specimen 

length is no longer representative, because the neck can act as a stress concentrator. Therefore, the 

constant-stress test is much more meaningful when elongation of the specimen occurs uniformly, 

instead of locally by necking. However, constant stress-creep tests are improving with the aid of 

computer controlled tests machines [22]. Constant-stress tests do in general not display the behaviour 

associated with tertiary creep. This is however not a significant problem since steady-state creep is the 

most important design parameter in elevated temperature design, nevertheless, the duration of 
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tertiary creep constitutes as a safety factor, which may allow flaw-detection in a component before 

failure is evident [24]. 

Another significant factor to consider when testing materials in the high- temperature regime is the 

material ductility. The importance of an acceptable creep ductility level in addition to creep strength 

for high-temperature steels was first recognized in the 1930s when steam turbine bolts suffered 

premature damage due to lack of ductility. This experience eventually led to new practices, where 

creep elongation and ductility was also to be considered in creep tests. The significance of studying 

material behaviour through long-term testing of materials was also recognized [3]. 

Ductility under creep conditions is particularly important to consider when selecting material for 

designs where stress concentrations due to localized defects and notches are present since multiaxial 

stress states can lead to reduced ductility. Materials with higher creep strength does in general have 

lower ductility [15]. This is because superalloys and engineering alloys can lose their ductility when 

subjected to high-temperatures because the impurities diffusing to the grain boundaries becomes 

more perceptible. Elongation is measured in both creep test and stress-rupture tests. For the latter, 

there are two significant measures of creep elongation. These are true elongation, which is measured 

right after the secondary creep stage, and total elongation, which is defined as the elongation at 

fracture. Although true elongation is considered to better represent ductility in metals at elevated 

temperatures it is common practice to plot both elongations versus the rupture life when presenting 

elongation data. The total elongation data often has more scatter than true elongation. This is because 

the total elongation is affected by local creep mechanisms, such as necking that occurs during tertiary 

creep [24].   

As a conservative approach, to avoid damage due to lack of ductility, a frequently used creep design 

criteria is based on 1% creep [24].  

 

2.3.2 Multiaxial creep testing  

Many of the components operating in in the high-temperature range are subjected to biaxial and 

triaxial stresses. Nevertheless, most creep tests of materials are typically performed by uniaxial creep 

tensile test. The various multiaxial creep testing techniques are primarily used for modelling and 

validation purposes since they better represent various stress states. But since experimental testing 

on multiaxial creep rupture and creep damage development are not as easily executed as uniaxial 

testing methods, uniaxial creep testing will most likely remain to be the main creep testing method 

[22, 32].  

One of the more common multiaxial creep testing methods is performed by applying internal pressure 

and axial end loading on tube specimens. This method only offer a small variation in multiaxial stress 

states and therefore has limited use. However, the loading on the test specimens can quite well 

represent the loading on piping components. Since the radial stress can be neglected for thin-walled 

pipes, both biaxial and triaxial stress states can be tested depending on the wall-thickness to radius 

configuration of the specimen. In addition, specimens can also be tested with circumferential notches 

[22, 32]. Creep testing with tension and torsion are also made on tubular specimens. The cheap test 

specimens and commercially available test machines makes the method somewhat convenient, but 

the stress state created by the combined tension and torsion causes second principal stress, 𝜎2 which 

is negative, and therefore cannot represent stress states in pressurized industrial components [22] 

One of the most convenient multiaxial creep testing methods is uniaxial testing of notched specimens 

which uses measurement analysis to provide information of the deformation process. It has the great 
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advantage that they can be performed in regular creep testing machines, in addition specimens are 

inexpensive compared to other test specimens used for multiaxial creep testing [22].  

There are multiaxial creep tests with cruciform specimens that offers testing for wide variety of 

multiaxial stress states. Such apparatus has been developed for both biaxial [33-35] and triaxial [36] 

cruciform specimens for which orthogonal loads of various ratios are applied to the cruciform 

specimen to produce a wide variety of biaxial and triaxial stress states. Although it may seem like an 

ideal tool researchers, test specimens are very expensive and require a highly advanced test setup 

[22].  

Important to mention and also stated by Betten [21] is that experimental creep results can differ 

greatly from reality and results obtained from tests are not always representative even if similar stress 

states can be recreated.  

2.3.3 Notch sensitivity and notched creep testing 

Creep tests of notched specimen are typically used as a qualitative measure to determine the 

suitability of an alloy for designs that may contain stress concentrations. Rupture life testing of notched 

specimens can indicate a materials capacity to deform locally without cracking under multiaxial 

stresses. Therefore, notched specimen testing are often conducted on superalloys since these have a 

tendency to exhibit brittle behaviour when exposed to elevated temperatures due to precipitation of 

particles to grain boundaries. This leads to reduced ductility and an increase in notch sensitivity. The 

presence of a notch can either increase, decrease or have no effect on the rupture life. An alloy is said 

to be notch strengthened when the presence of a notch increases rupture life. This means that the 

specimen can resist higher nominal stresses compared to an unnotched specimen. On the contrary, 

notch weakening is when the presence of a notch reduces rupture life. Materials that exhibits this 

behaviour is also called notch sensitive alloys. Typically, circumferential 60° V-notch round specimens 

are used in notched creep testing. Nevertheless, size and shape configuration of notched test 

specimens should be based on requirements necessary for obtaining a representative selection of the 

material being studied [22].  

The configuration of the notch has a major influence on the rupture life and studies that involves notch 

configuration usually describes the results in relation to the elastic stress-concentration factor, 𝐾𝑡, an 

ideal value which is based on linear-elastic behaviour. The design stress 𝜎𝑑 at the notch can then be 

described by the yield stress, 𝜎𝑦 divided by the stress concentration factor. In addition to the notch 

configuration there are several other factors that may affect the rupture strength or rupture time of 

notched specimens. Size of the specimen, notch preparation and other metallurgical effects, such as 

composition, grain size, heat treatment and processing histories does also influence the behaviour of 

notched alloys. There is therefore no straightforward way of describing the effect notches have at 

elevated temperatures [20]. 

The significance of the notch weakening or strengthening effect is often by researchers measured with 

a so-called notch strength ratio which is typically defined as below unity for notch sensitive alloys. This 

ratio can however be unreliable and can differ depending on class of an alloy and rupture-time. It is 

therefore not possible to use this ratio for direct comparison between materials [20]. 

 

2.3.4 Extrapolation of creep data 

Even for established materials, there exist few long-term creep-rupture data up to 100 000 h. 

Therefore, extrapolation from short term tests data is typically necessary to determine the rupture 
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and creep properties over extended time periods. In addition, the continuous development of new 

materials for high-temperature application also make it important to know what their long-term 

performance will be within a reasonably short-time period. Out of necessity several extrapolation 

techniques have been developed and each of them with advantages and disadvantages which 

designers have learned to work with. One of the first extrapolation methods assumed that a plot stress 

versus rupture time with log-log scale was straight, an assumption that is now known to be wrong and 

will overestimate the rupture time [1].  

The various extrapolation techniques may be divided into three main groups; parametric-, graphical- 

and algebraic methods and within each group there are subdivisions for empirical methods and 

theoretical methods trying to reflect the physical behaviour. Depending on the purpose, different 

methods are preferred, and it is difficult to designate one method as superior to the others, however 

the extrapolation techniques that uses time-temperature parameters have been very popular due to 

their easy use [1].  

2.3.4.1 Larson-Miller parameter  

Among all parametric methods used to predict allowable time to rupture for metals under constant 

load conditions, the Larsson-Miller parameter [37] is one of the most widely used extrapolation 

techniques and due to its simplicity it has got a considerable attention since it was proposed in the 

early 1950s [1].  

The Larson-Miller parameter can be used to represent creep-stress rupture data by correlating time 

and temperature to one parameter in the following form:  

 𝑃𝐿𝑀(𝜎) = 𝑇(𝑙𝑜𝑔𝑡𝑓 + 𝐶) 
Eq. 2.2 
 

   

where 𝑇 is the temperature in Kelvin, 𝑡𝑓 is the stress-rupture time in hours and 𝐶 is a constant initially 

suggested by Larson and Miller to be of an order 20 for most metals. It has later been shown that 

values of 𝐶  in fact varies and often has a value between 15 and 27 [14]. Figure 11 provides an 

illustration of how the Larson-Miller parameter joins rupture curves for various testing temperatures 

into one master curve by correlating the temperature on the time axis into one time-temperature 

parameter by using a specific value 𝐶 which is dependent on the material and the temperature range 

[1, 14] 

 

 

Figure 11. Illustration of rupture curves of various temperatures joined into a master curve with the Larson-Miller parameter 
[1] 
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Larson-Miller parameter plots are often used for obtaining rupture times for various stress and 

temperature conditions. In an assessment made by Penny and Marriott [1] of several extrapolation 

techniques, the semi-empirical Larson-Miller parameter was described as easy to use, simple and 

convenient for direct comparisons between metals, but not very accurate. However, other linear 

parameter extrapolation models that was assessed including Dorn and Manson-Haferd did on average 

not provide any better accuracy. The correlation obtained with all three methods compared well with 

current standards of industrial data but for extrapolation they all gave low confidence in predictions 

above one log cycle. Other more complex nonlinear parameter models and graphical methods were 

also discussed in their assessment and it was concluded that even if the extrapolation obtained with 

these were more accurate they were not considered practical at present. They concluded that certain 

methods are preferred to others depending on the purpose but until better procedure had been 

developed the most practical way of determining what method to choose it to use the one that best 

fits the data and purpose.  

2.4 Linear damage models 

The constant load and temperature condition used in creep testing is typically not representative for 

components in an elevated temperature service. For components found in power plants and 

petrochemical plants, repetitive cyclic loading in the creep range are considered normal operating 

conditions [14]. Variable load and temperature conditions must therefore be taken into consideration 

in damage and remaining life assessment of components.  

The simplest and earliest concept of cumulative low-temperature fatigue damage was initially 

proposed by Palmgren [38] and later by Miner [39]. The concept which is now known as the Palmgren-

Miner summation or simply Miner’s rule uses linear summation to predict failure of a component by 

the criterion    

 𝐷𝑓 =∑
𝑛𝑖
𝑁𝑑𝑖

= 1 Eq. 2.3 

 

where 𝑛𝑖 is the number of cycles for a given load or stress level 𝑖 and 𝑁𝑑𝑖  is the number of load cycles 

until failure at that same load amplitude. Fatigue failure occurs when 𝐷𝑓  , which represents the 

accumulated fatigue damage reaches unit value.  

The procedure of calculating cyclic load damage at low temperatures is relatively straight forward, 

however at elevated temperatures where the effects of creep are significant, evaluation becomes 

more difficult since the cyclic life is affected by stress relaxation. In addition, factors like stress 

concentration and triaxiality which will be discusses subsequently, also have a significant effect on 

creep-fatigue life of a component[14].  

2.4.1 Linear creep damage models   

The same cumulative damage concept used in Miner’s rule was later applied in creep damage models 

for evaluating damage and remaining life for components at elevated temperatures. One of the most 

common creep damage models is known as Robinson’s rule [10] or the time fraction rule. Robinson 

assumed that the cumulative creep damage of a component at elevated temperature could be 

predicted by: 
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 𝐷𝑐 =∑
𝑡𝑖
𝑡𝑓𝑖

 Eq. 2.4 
 

Where 𝑡𝑖, is the time spent at a certain temperature level 𝑇𝑖 and 𝑡𝑓𝑖  is the rupture time at that same 

temperature. The original application of Robinson’s rule was to evaluate creep at various 

temperatures. However, since then it has also been used extensively for variable stress histories, as 

well as at variable temperatures [1].  

An alternative to Robinson’s rule is a strain-based method for creep damage assessment that builds 

on the concept of ductility exhaustion. The application of the method is similar to Robinson’s life 

fraction rule, except that it uses strain fraction instead of time fraction. The accumulated creep damage 

is expressed as follows:  

 𝐷𝑐 =∑
𝜀𝑖
𝜀𝑓𝑖

 Eq. 2.5 
 

 

Like the previously described damage models, failure occurs when the accumulated damage reaches 

unity. At this point, the accumulated strain has reached the materials ductility limit, which is typically  

obtained from the ductility measured in a constant load creep test [1].  

 

2.4.2 Creep-fatigue interaction damage rules 

When high-temperature is combined with cyclic stress, creep-fatigue interaction must be considered. 
As previously stated, damage assessment for cyclic loads at high-temperature is much more 
complicated than for low temperatures. This is because both the amplitude and the cycle duration 
cause damage to the material [1]. Much research has been dedicated to investigating the 
combination of time-dependent creep and cycle dependent-fatigue and several rules have been 
suggested for estimating the accumulated damage under creep-fatigue conditions. The most used 
method for creep-fatigue interaction is based on superposition of creep and fatigue damage [15], a 
concept that was initially proposed in 1962 by Tiara [40].   
 
The life fraction rule (LFR) which is also known as the time and cycle fraction summation (TCFS) 
combines Miner’s rule for fatigue and Robinson’s time fraction rule for creep as follows [15]. 
 

 
∑

𝑛

𝑁𝑑
+∑

𝑡

𝑡𝑓
= 𝐷𝑓 + 𝐷𝑐 = 𝐷 

 

Eq. 2.6 
 

 

In the above formula, 𝑛𝑗  is the number of fatigue cycles at a stress and temperature level 

corresponding to cycle type 𝑗 and 𝑁𝑑𝑗  is the number of allowable cycles for that cycle type. Similarly,  

𝑡𝑘 is the duration of the time interval at a certain stress- and temperature level and 𝑡𝑟𝑘 is the allowable 

time duration until rupture for that same condition.  

The basic idea with this method is that the time-dependent creep and the cycle-dependent fatigue is 

evaluated separately. Independently, creep and fatigue reaches failure when the time-and cycle-

fraction sum add up to  𝐷𝑓 = 1 and 𝐷𝑐 = 1, respectively. However, when combined it was considered 

that the total creep-fatigue damage 𝐷 would occur at unit value.  

By evaluating the creep and fatigue damage as suggested above, the damage contribution from fatigue 

and creep can be plotted as a single point on a creep-fatigue interaction diagram, where each axis is 
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represented by 𝐷𝑓 and 𝐷𝑐. By taking into account the failure criteria, 𝐷 = 1 as above, the diagram can 

be diagonally divided with a straight line, like the dotted line depicted in Figure 12, dividing the diagram 

into a safe region for where failure does not occur and an unsafe region [24, 41]. However, creep-

fatigue failure can occur for damage values less than one, a phenomena now known as creep-fatigue 

interaction [1]. By plotting experimental data on a creep-fatigue interaction diagram, Campbell [42] in 

1971, was the first to demonstrate that cyclic loading at elevated temperatures could result in rupture 

for damage values far less than unit value.  

 

 

Figure 12. Creep-fatigue interaction diagram for the LFR method 

 

By plotting experimental creep-fatigue data as proposed by Campbell, conservative approximations 

for safe boundary regions can be assumed for materials [41]. The safe region, which is also known as 

a creep-fatigue damage envelope is typically conservatively bounded by a bilinear curve with a locus 

point (𝐷𝑐 , 𝐷𝑓) that differ for various materials. For example, in ASME III, Subsection NH [11], the locus 

point is defined as (0.3, 0.3) for stainless steel 304SS and 316SS and (0.1, 0.1) for Ni-Fe-Cr Alloy 800H.  

There have been many attempts to offer more complex nonlinear methods for both creep and fatigue, 

than the above-mentioned damage models. Nevertheless, none of these methods are regularly used 

today. Linear damage summation is the earliest and most simple creep-fatigue damage model and it 

is the only method that has found universal acceptance in design codes and guidelines regardless of 

its documented shortcomings [1]. The reason for this is that it is easy to use and only require standard 

S-N fatigue curves and creep-rupture curves [15]. 

Both ASME-NH [11] and French RCC-MR [13] codes uses the life fraction rule with bilinear damage 

envelopes based on conservative lower bounds experimental values for materials supported in the 

codes. British R5 [12], however differ from the other codes in that they use 𝐷 = 1 as the damage 

criteria which is represented as a straight line on the damage envelope.   

Important to mention is that using the linear damage summation rule given Eq. 2.6 is not equivalent 

to using any of the above mentioned national codes for components in elevated temperature service. 

Standards, such as ASME-NH, gives a very conservative life assessment due to engineering corrections 

and safety factors that are incorporated in the code [15].    
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In the companion guide to the ASME Boiler and pressure vessel code, Jetter [9] describes several 

comparative evaluations between the life fraction approach and other alternative methods. But even 

if some of these methods have given better predictions, they typically require more material testing 

for determination of material parameters. The most notable work has been with ductility exhaustion. 

Compared to only the time fraction rule, the two approaches both gave similar data scatter. However, 

when used with a creep-fatigue interaction diagram ductility exhaustion has shown less scatter in some 

situations and is also more conservative at low strain ranges and rates. However, Jetter [9] also states 

that there so far is no indication that the method would be sufficiently superior, compared to the 

current time fraction rule, to justify the tedious and complicated process of redefining and verifying 

rules in code.  

2.5 The nonlinear Pavlou creep damage accumulation model 

Linear summation models described in the previous subchapter does not account for the effect of load 

or temperature sequence in the load and temperature history. Although other more complex 

nonlinear damage methods have been suggested that more accurately predicts damage, these have 

not had the same success as the resilient life fraction rule, partially due to that of they require 

additional material testing for determination of necessary material constants.  

In the journal of engineering structures from 2001 D.G. Pavlou [16] presents a nonlinear cumulative 

creep damage model that is analogous to a fatigue damage model proposed by Subramanyan [43] in 

1976. The proposed creep damage function considers previous damage, like the time fraction rule, but 

in addition it also takes into consideration the sequence effect from previous load and temperature 

history. Pavlou proposes that creep damage can be represented by isodamage lines and builds his 

theory on the assumption that the curve correlating temperature, 𝑇, rupture or failure time, 𝑡𝑓 and 

stress, 𝜎 on a Larson-Miller parameter plot, can be approximated as a straight line for a large variety 

of metals. It is also assumed that creep has an “endurance limit” 𝜎𝑒, which is a stress low enough to 

cause no creep damage at all. This creep endurance limit is equivalent to the fatigue endurance limit 

which is represented as a knee-point on fatigue S-N curves. 

Since each point along the rupture curve on the Larson-Miller parameter plot represent failure after 

the loading time 𝑡𝑓, Pavlou defines the rupture curve 𝑃𝐿𝑀𝑓 − log𝜎 to represents a damage state of 

100% as schematically illustrated in Figure 13. The damage line representing rupture is part of a set of 

isodamage lines with an upper bound represent failure and a lower bound horizontal line representing 

the creep endurance limit log 𝜎𝑒 , with the corresponding Larson-Miller parameter 𝑃𝐿𝑀𝑒 that relates to 

a damage state of zero. The hypothesis is that all isodamage lines intersect at a common point 𝑂, which 

is the point of intersection between the line with damage state of 100% and the horizontal line 

representing the damage state zero as shown in Figure 14. The proposed damage function is defined 

as the ratio of the slope of an isodamage line to that of the original rupture curve and can be written 

as  

 𝐷 =
tan𝜃𝑖
tan 𝜃𝑓

 Eq. 2.7 

 

Where tan 𝜃𝑖  is the slope of an arbitrary isodamage line and tan 𝜃𝑓  is the slope of the rupture line 

𝑃𝐿𝑀𝑓 − log𝜎. The damage function 𝐷 has two standard damage states; zero for 𝜃𝑖 = 0 and unity for 

𝜃𝑖 = 𝜃𝑓, when failure occurs.  
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For a two-step loading sequence of the type shown in Figure 15 the principle of Pavlou’s creep damage 

model can be illustrated with aid of the diagram in Figure 16. The diagram demonstrates the loading 

of a specimen with initial loading conditions 𝜎1, 𝑇1 loaded with duration 𝑡1 which results in a damage 

state 𝐷1  indicated by 𝐴  on the diagram. The specimen is further loaded under the new loading 

condition 𝜎2, 𝑇2 indicated by 𝐶 with an initial damage 𝐷2 = 𝐷1. If the specimen continues to be loaded 

under the same conditions until failure at 𝐷𝑓 = 1, the time till failure, 𝑡2 is represented by the line 𝐶𝐹.   

 

 

Pavlou uses the geometric relationship of the isodamage lines and the relationship between the 

logarithmic stress and the Larson-Miller parameter, 𝑃𝐿𝑀 to derive the formula for a two-step loading 

creep damage function as follows: 

 (
𝑡1
𝑡𝑓1
)

𝑞1,2

+
𝑡2
𝑡𝑓2
= 𝐷 Eq. 2.8 

and  

 𝑞1,2 =
𝑇1 log(𝜎2 𝜎𝑒⁄ )

𝑇2 log(𝜎1 𝜎𝑒⁄ )
 Eq. 2.9 

Figure 14. Definition of the damage function [16] Figure 13. Schematic Illustration of the Larson-Miller 
parameter [16]  

Figure 15. Two stage stress and temperature loading 
sequence [16] 
 

Figure 16. Creep damage accumulation under two 
stage loading [16] 
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Where 𝜎1, 𝑇1 and 𝜎2, 𝑇2 are the stress and temperature for the first and second step of the loading 

sequence, 𝑡1 and 𝑡2 is the duration for the first and second loading cycle and 𝑡𝑓1and 𝑡𝑓2  is the rupture 

time corresponding to each stress and temperature condition. 𝜎𝑒 is as previously mentioned described 

as the creep endurance limit. 

Pavlou further develops his theory and presents a generalized procedure which can be used for 

cumulative damage under multi stage loading.   

 (…(((
𝑡1
𝑡𝑓1
)

𝑞1,2

+
𝑡2
𝑡𝑓2
)

𝑞2,3

+
𝑡3
𝑡𝑓3
)

𝑞3,4

+⋯+
𝑡𝑘−1
𝑡𝑓𝑘−1

)

𝑞𝑘−1,𝑘

+
𝑡𝑘
𝑡𝑓𝑘
= 𝐷 Eq. 2.10 

where  

 𝑞𝑘−1,𝑘 =
𝑇𝑘−1log (𝜎𝑘 𝜎𝑒⁄ )

𝑇𝑘 log(𝜎𝑘−1 𝜎𝑒⁄ )
 Eq. 2.11 

 

In Pavlou’s study [16], it is suggested to replace the creep endurance limit, 𝜎𝑒  since it relates to 

monotonic loading and replace it with a fitting parameter 𝑝, derived from experimental values from 

stepped creep test. The reason for this is to consider the transient effect that occur in the material 

under cyclic or variable step loading.  

By disregarding the physical meaning of the creep endurance limit, 𝜎𝑒 in Eq. 2.8 and replace it with the 

preferable fitting parameter 𝑝, the two-step loading damage function becomes:  

 

 (
𝑡1
𝑡𝑓1
)

𝑇1 log(𝜎2 𝑝⁄ )
𝑇2 log(𝜎1 𝑝⁄ )

+
𝑡2
𝑡𝑓2
= 𝐷 Eq. 2.12 

 

The flowchart in Figure 17 shows the outline of the creep damage evaluation procedure of the Pavlou 

creep damage model.  

Further in the study, lifetime fractions 𝑡1 𝑡𝑓1⁄ and 𝑡2 𝑡𝑓2⁄  from experimental stepped creep test data 

were used to derive the fitting parameter by solving Eq. 2.12 with respect to the fitting parameter 𝑝. 

The fitting parameters obtained for the tested materials were slightly higher than the maximum 

applied stress, indicating that the physical meaning of fitting parameter has no relations to a creep 

endurance limit. Nevertheless, the theoretical results obtained with Pavlou’s model correlated very 

well with experimental data for the materials Al-99.98 and austenitic steel X8CrNiMoNb 16-16.  

As for the Submaranyan model for fatigue, the Pavlou model is unstable for stresses close to the creep 

endurance limit or the fitting parameter due to singularity that occurs when the logarithmic value in 

the exponent becomes unit value [17, 44].  

More resent research by Rege and Pavlou [45] published in the International Journal of Fatigue, a one-

parameter nonlinear fatigue damage accumulation model is suggested. The method is a modification 

of the Submaranyan’s fatigue model [43] to which Pavlou’s creep model is analogous to. Rege and 

Pavlou suggest that the isodamage lines are to be replaced with nonlinear curves. Thus, instead of 

using of the linear damage function D = tan𝜃𝑖/ tan 𝜃𝑓 the nonlinear damage function given below is 

proposed.  
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 𝐷 = (
tan𝜃𝑖
tan 𝜃𝑓

)

𝑞(𝜎𝑖)

 Eq. 2.13 

 

where the exponent is a function of the stress amplitude for the current load step 𝑖. Their theory 

proved very successful when compared to fatigue test results. Although their proposed model is for 

fatigue it is likely that similar implementation of nonlinear isodamage lines can be applied to the creep 

model previously proposed by Pavlou.        

 

                                         

Figure 17. Flowchart of the Pavlou damage model procedure 

 

2.5.1 Pavlou damage accumulation model applied in research 

The nonlinear cumulative creep damage model proposed by Pavlou has been the subject in studies 

made by other researchers. It has either in its original form or slightly modified version given 

satisfactory predictions of variable step creep test data [17, 18].  

Grell and co-workers [17] made experimental variable load creep testing for aluminium casting alloy 

354 with tensile and three-point bending specimens. The experimental creep data was compared to 

predictions made with various creep damage models. In their evaluation, the nonlinear Pavlou damage 

model [16] gave the most accurate predictions for the tested material when compared with other 

linear summation models used in their evaluation, including the time fraction rule. 

In contrary to Pavlou’s analysis [16], where the fitting parameter used was higher than the applied 

stresses, Grell and colleagues [17] chose to use a fitting parameter that was lower than the applied 

stresses and closer to an actual creep endurance limit. It is recommended in their research to use the 

original parameter 𝜎𝑒  instead of the fitting parameter 𝑝 , since such a parameter would limit the 

usefulness of the model in design applications. Grell, further states that with a fitting parameter, the 

material would have to be tested under similar stress and temperature conditions as expected in the 

component. From a design perspective, by using the creep endurance limit, a design engineer would 

only need to obtain the creep endurance limit for the specific material instead of having to perform 

tests.  
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Another research published in 2006 [18], used Pavlou method to analyse experimental data under 

variable creep conditions for the lead-free solder alloy Sn.3.5Ag-0.5Cu. However, in the study the 

Pavlou model did not give satisfactory predictions for the tested alloy in its original form. Instead a 

modified version of the Pavlou model was suggested, where the Larson-Miller parameter was replaced 

with a curve of normalized stresses. To include temperature, stresses were normalized with the elastic 

modulus for the corresponding temperature. As shown in Figure 18, the normalization makes the data 

points fit closer together permitting the data points to be described by a power law instead of the 

Larson-Miller parameter. 

 

Figure 18. Correlation of stress, time and temperature as an alternative to the Larson-Miller parameter to represent damage 
a 100% damage state for the modified version of the nonlinear creep damage model. At the LHS stress versus rupture time for 
various temperatures are given as separate curves and at the RHS the normalized stress σ(T)/E(T) versus rupture time 
correlates stress, time and temperature into one master curve [18]  

  

The results from their work showed that the modified Pavlou model gave reasonable predictions of 

the stepped creep data and well described the sequence effect from the two-step variable load and 

temperature creep testing. It was further observed that a high-low sequence of two-step loading at 

constant temperature and a high-low sequence of temperature at constant stress were much more 

damaging than the corresponding low-high sequence.   

2.6 Influence of multiaxial stress states on creep   

Any complex stress combinations with three stresses and six shear stresses can be transformed to the 

principal coordinate system in which no shear stresses exist. Any stress state can then be described 

with the principal stresses 𝜎1 > 𝜎2 > 𝜎3. A triaxial tress state include all three stresses, while a biaxial 

stress state includes only 𝜎1 and 𝜎2 and have  𝜎3 = 0. A uniaxial stress state is when 𝜎1 = 𝜎 and 𝜎2 =

𝜎3 = 0 [22]. 

Most material data including creep rupture data is typically based on uniaxial testing. Therefore, the 

fundamental idea of equivalent stress equations is to compute a corresponding stress for complex 

stress states that can produce correct rupture time when applied to uniaxial creep data [22].  

Creep damage development is largely dependent on the stress state of a component since stress states 

are known to affect the ductility of a material. The stress state also determines which stress parameter 

is best correlated to the creep damage rate [1]. There are many theories on how to correlate creep 

damage in multiaxial stress states to uniaxial stress state creep data and the most extensively used 

creep-rupture strength are von Mises, Tresca and the maximum principal stress criterion [46] . 
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2.6.1 Classical theories  

Von Mises criterion, also known as the octahedral shear stress criterion or the distortional energy 

criterion, assumes that failure by yielding occurs when the distortional strain-energy density in the 

material reaches the same value as for yielding by uniaxial tension or compression [47]. Von Mises 

effective stress formula, when expressed in terms of principal stresses can be written as follows. 

 𝜎𝑉𝑀 =
1

√2
[(𝜎1 − 𝜎2)

2 + (𝜎2 − 𝜎3)
2 + (𝜎3 − 𝜎1)

2]1/2 Eq. 2.14 

 

The maximum shear stress criterion given by Eq. 2.15, also known as the Tresca criterion is based on 

the concept of maximum shear stress energy. Criterion for yielding is when the maximum shear stress 

of a point equals maximum shear stress at yield under uniaxial tension or compression [22, 47] 

 𝜎𝑇𝑅 = 𝜎1 − 𝜎3 
Eq. 2.15 
 

 

The Rankine theory base the failure criteria on the maximum principal stress (MPS). The theory states 

that yielding in a complex stress system occur when the maximum principal tensile stress, 𝜎1 reach the 

value of the yield stress. 

 𝜎𝑀𝑃𝑆 = 𝜎1 
Eq. 2.16 
 

 

Important to mention is that yielding also can occur in compression if the minimum principal stress, 

𝜎3 reaches the yield stress before yielding is reached in tension. The theory is best suited for brittle 

material since failure in ductile materials occur in shear, in addition, homogenous materials can resist 

very high hydrostatic pressures without failure, which indicates that the maximum principal stress 

criteria is not valid for all stress states [48].     

Brittle material ruptures are generally governed by the MPS criterion while the von Mises effective 

stress is the controlling parameter for ductile ruptures that occurs under high stresses under short 

service. However, long service times in elevated temperatures can lead to a significant reduction in 

ductility, the rupture is then governed by either the MPS or a mixed criterion including both von Mises 

and MPS. Some studied has also been dedicated to finding out whether creep failure would occur at 

complete tensile triaxiality 𝜎1 = 𝜎2 = 𝜎3, a stress state for which von Mises effective stress becomes 

zero. It is however believed that even though no failure or deformation would occur in a short time 

span, long exposure time would eventually lead to a MPS controlled rupture. However, this is not easily 

verified due to difficulties associated with performing multiaxial testing [22].   

 

2.6.2 Mixed criteria 

Mixed criterions have often been suggested since the classical stress parameters has failed to describe 

material behaviour satisfactorily [22]. Much work has been devoted to characterizing the stress 

dependence of creep damage [5-8] and many proposals for the mixed criteria have been presented 

over the years. The mixed criterions are typically based on the assumption that creep damage is stress 

dependent and that the parameters von Mises effective stress, 𝜎𝑉𝑀 and the maximum principal tensile 

stress, 𝜎𝑀𝑃𝑆  are the most relevant [1]. The models differ on how much each stress parameter 
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contributes to the equivalent uniaxial stress and on how the relative importance of the stress 

parameters are defined.  

A general model [1] that uses 𝛼  to determine influence of the stress parameters 𝜎𝑉𝑀  and 𝜎𝑀𝑃𝑆 

correlates creep damage under uniaxial stress with multiaxial stress conditions by the formula 

 𝜎𝑒𝑞 = 𝛼𝜎𝑉𝑀 + 𝛽𝜎𝑀𝑃𝑆 Eq. 2.17 

where 

 𝛽 = 1 − 𝛼 
Eq. 2.18 
 

 

This method divides materials are into 𝛼  materials and 𝛽  materials, whereas 𝛼  materials are only 

depending on effective stress (𝛼 =1), this is typically the case for aluminium alloys. Similarly, 𝛽 

materials, such as copper is only dependent on the maximum principal stress. However, most materials 

used for engineering purposes have a combination of both 𝛼 and 𝛽 behaviour.  𝛽 materials are more 

sensitive to notches and stress concentrations and 𝛼  dominant materials are often selected in 

engineering applications [1]. 

Another alternative empirical equivalent stress developed by the Russian research institute CKTI uses 

the Norton creep exponent 𝑛 in their proposed mixed criteria for high-temperature alloys [22].   

  

 𝜎𝐶𝐾𝑇𝐼 = (𝜎𝑀𝑃𝑆
𝑛 + 0.47𝜎𝑉𝑀

𝑛 )1 𝑛⁄  
Eq. 2.19 
 

 

The Principle Facet Stress, 𝜎𝐹  concept was proposed for materials that experience grain boundary 

sliding (GBS) [49]. The suggested criterion is based on the observation that the creep damage process 

is dominated by cavitation on the transverse axis of the MPS and is coupled with shear deformation 

governed by von Mises along the inclined grain boundaries as illustrated in Figure 19. 

 

 𝜎𝐹 = 2.24𝜎1 − 0.62(𝜎2 + 𝜎3) 
Eq. 2.20 
 

 

The principle facet stress has been successful in predicting multiaxial creep rupture from uniaxial creep 

data, especially for austenitic and ferritic steels. Since stresses calculated with the above equation are 

high, it cannot be used directly in engineering calculations. However, it has been observed to coincide 

with von Mises stress on the outer surface on a pressurized tube by normalizing with a factor of 2.4 

and Huddleston’s stress by normalizing with a factor of 2 [22]. The criterion is not suitable for 

specimens subjected to large hydrostatic stress and it is only valid when grain boundary cavitation is 

the dominant failure mechanism [49]. 
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Figure 19. Grain boundary sliding with round shaped cavities forming on the transverse axis of the maximum principal stress 
and shear deformation along the inclined boundaries  [49]  

 

 

2.6.3 Huddleston’s theory 

Although it has been shown that classical criterion suggested by von Mises, Tresca and Rankine all give 

a comparatively poor fit for compression- tension stress states. Tresca and von Mises have been the 

most commonly used strength theories used in high-temperature structural design codes [46, 50, 51] 

Huddleston [46, 50, 51] developed an isochronous rupture surface when studying creep rupture in 

stainless steel. The concept can be considered a modified version of the von Mises criterion and a 

comparison between biaxial isochronous contours of classical theories and Huddleston’s theory is 

shown in Figure 20.  

      

The model proposed by Huddleston has shown to give more accurate stress-rupture life predictions 

than the classical theories of von Mises, Tresca and Rankine (MPS) for stainless steel alloys tested 

under various biaxial stresses. The model can also differentiate creep life under tensile versus 

compressive stress states. The bottleneck in the 3D isochronous rupture surface depicted in Figure 21 

indicates that larger stresses are required under compressive stress states to cause the same amount 

of damage as produced in tension. The model translates a multiaxial stress state to an equivalent 

uniaxial stress that causes creep damage at a similar rate. The proposed equivalent stress 𝜎𝐻𝑈𝐷 given 

by Eq. 2.21 [46, 50, 51].  

Figure 20. Biaxial isochronous stress-rupture 
contour for Inconel 600 at 816 °C [51] 

Figure 21. 3D Isochronous stress 
rupture surface for type 304 stainless 
steel at 593 °C [51] 
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 𝜎𝐻𝑈𝐷 =
3

2
𝑆1 (

2𝜎𝑉𝑀
3𝑆1

)
𝑎

exp [𝑏 (
𝐽1
𝑆𝑆
− 1)]  

Eq. 2.21 
 

 

Where 𝜎𝑉𝑀 is von Mises effective stress, 𝑎 and 𝑏 are material specific constants,  𝐽1, the first invariant 

of the stress tensor, 𝑆1, the maximum deviatoric stress and 𝑆𝑆 , an invariant stress parameter that 

includes 𝐽1and the second invariant of the deviatoric stress tensor 𝐽2
′  

 𝐽1 = 3𝜎𝐻 = 𝜎1 + 𝜎2 + 𝜎3 Eq. 2.22 

 

 𝑆1 = 𝜎1 − 𝐽1 3⁄  Eq. 2.23 

 

 𝑆𝑆 = √
6𝐽2
′ + 𝐽1

2

3
= (𝜎1

2 + 𝜎2
2 + 𝜎3

2)1 2⁄  
Eq. 2.24 
 

  

The model is not sensitive to small changes of the constants 𝑎 and 𝑏, biaxial data from 304, 316 and 

Inconel stainless steel also showed that the values of material specific constants 𝑎 and 𝑏  had a limited 

range. Based on this, Huddleston proposed that universal values 𝑎=1 and 𝑏=0.24 may be applicable. 

This leads to a simplified form of Eq. 2.21 , given by 

 𝜎𝐻𝑈𝐷𝑠 = 𝜎𝑉𝑀 𝑒𝑥𝑝 [0.24 (
𝐽1
𝑆𝑆
− 1)] Eq. 2.25 

 

Although the material specific values produced more accurate predictions, the model with the 

universal constants still produced better predictions for the tested steels 304, 316 and Inconel, than 

the classical theories [46]. The Huddleston criteria which was initially developed for stainless steels has 

also been confirmed useful for ferritic high-temperature engineering alloys and was included into the 

ASME Code Case N47-29 in 1990, is today known as ASME III, Subsection NH [11, 22, 50] 

2.7 Finite Element analysis  

Finite element analysis (FEA) is a numerical method used to solve field problems for example 

displacement, stress and temperature distributions. Differential equations or integral expressions are 

used to describe the field problem and a field or structure is discretized in to smaller parts which are 

called finite elements. Each finite element is only allowed to have a limited spatial variation which can 

be modelled by simpler equations. This yields an approximate solution of the field problem since the 

actual variation is often more complicated [52].  

2.7.1 Material models 

Finite element analysis use material models for describing the material response for various loading 

conditions. The various material models have different stress-strain relationships and a description of 

a selection of material models are presented below.  

2.7.1.1 Linear-elastic material model  

The linear-elastic material model is the most used material model in solid mechanics. The linear-elastic 

model assumes a linear behaviour of the material, where stress is proportional to strain, commonly 

known as Hooke’s law, 𝜎 = 𝐸𝜀. Material subjected to small strains has a reversible behaviour and 

when released after loading the material recover to its original form and the strain returns to zero. If 
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the material has been strained within the linear elastic limit, the material is considered perfectly 

elastic. This material model assumes that stress is proportional to strain and it is represented by the 

linear part AO in Figure 22. [47, 53] 

 

 

Figure 22. Engineering stress-strain diagram for tensile specimen [47] 

 

2.7.1.2 Rate independent plastic material model  

When a metallic material is loaded beyond the elastic limit and deforms at low temperatures (below 

the creep regime) the material response is described by rate independent plasticity models. 

A material subjected to load beyond its elastic limit have a total strain equal to the sum of the elastic 

and a plastic strain component  𝜀𝑡 = 𝜀𝑒 + 𝜀𝑝. Upon unloading, the elastic strain is recovered but the 

plastic strain remains and the material has a sustained non-recoverable plastic deformation. Figure 22 

illustrates a material loaded to its plastic region to point J and unloading occurs along the line JK which 

corresponds to the recovered elastic strain, 𝜀𝑒 . The plastic strain, 𝜀𝑝   remains as permanent in the 

material [47]. 

In theoretical analysis, the stress-strain curve can be bilinear or multilinear as shown in Figure 23. The 

simplest bilinear stress-strain curve is represented by the elastic-perfectly plastic model. The material 

has a linear stress-strain relationship until the yield point and exhibits no hardening behaviour. As the 

material is loaded to its yield point, the material will continue to elongate without increasing the load 

[54]. This material model is an idealized model which can be used when strains are small [47]. The 

elastic-perfectly plastic stress-strain curve has a plastic region beyond the yield point which is 

represented by a horizontal line with tangent modulus, 𝐸𝑇 equal zero.  
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Figure 23. Stress-strain representations: a) Elastic-perfectly plastic stress strain curve b) Bilinear stress-strain curve c) 
multilinear stress-strain curve  

 

Strain hardening is a material’s ability to resist additional strain when loaded beyond the yield stress, 

as the material deform the elastic proportion of the curve and yield stress increases until the ultimate 

stress limit has been reached [47, 54]. To include strain hardening behaviour a bilinear or a multilinear 

stress-strain curve representation can be used. The tangent modulus for the plastic region is constant 

for bilinear curve while for the multilinear curve each segment of the plastic region is represented by 

a different value [53].  

Hardening rules are used to describe the change in yield criterion due to plastic deformation. Figure 

24 provides a graphical illustration with two isotropic and kinematic hardening rules which are 

commonly used for plasticity modelling. For isotropic hardening the yield surface keeps its shape and 

has a uniform increase in size around its symmetric axis, which results in a corresponding increase in 

elastic range and in yield stress. For the kinematic hardening law the yield surface moves in stress 

space but the shape and size remains the same so that the elastic range remains constant. Isotropic 

hardening best describes material behaviour under monotonic loading and elastic unloading while the 

kinematic rule can be used for both monotonic and cyclic loading because of its ability to model the 

behaviour of plastic ratcheting, which is the buildup of plastic strain during cyclic loading and the 

Bauschinger effect, which is when compressive yield strength is reduced in response to tensile 

hardening [53].   

 

Figure 24. Illustration of hardening models with bilinear stress-strain curve (a) Isotropic strain hardening; (b) kinematic strain 
hardening [55] 

 

2.7.1.3 Rate dependent plasticity 

Creep is a time dependent deformation which is described with rate dependent plasticity models. The 

inelastic time dependent creep response of a material when loaded at elevated temperature is also 

sometimes referred to as viscoplasticity. Creep response is modelled by functions describing creep 

strain rate and as previously described in Chapter 2.1 the three stages; primary; secondary and tertiary 

creep are characterized by decreasing, constant and accelerating strain rate. There is not yet a single 
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model that can describe all three stages. However, in structural analysis, it is typically the two first 

stages that are considered. Various constitutive equations and theories have been proposed over the 

years for modelling time-dependent plastic behaviour. Many of these has been gathered in work made 

by Penny and Marriott [1]. The following general descriptions of rate-dependent plasticity models has 

been obtained from their work and is described in terms of uniaxial state of stress, however multiaxial 

generalizations can be made by using hypothesis and concepts that has been proposed in plastic 

deformation theory.  

Creep under uniaxial constant load depends on functions of stress, time and temperature. Most work 

on creep has treated functions as separate parameters and a general approximation on creep strain 

can be described in the following form  

 𝜀𝑐 = 𝑓1(𝜎)𝑓2(𝑡)𝑓3(𝑇) Eq. 2.26 

 

Several suggestions for how to describe the various parameters have been made and some common 

forms for describing the stress and time functions are given in Table 3 and Table 4 respectively.  

Table 3. Stress functions f1(σ) [1] 

  𝑓1(𝜎)  

Norton  1929 𝐾𝜎𝑛 Eq. 2.27 

Soderberg  1936 𝐵{exp(𝜎 𝜎0⁄ ) − 1} Eq. 2.28 

Mc Vetty  1943 𝐴 𝑠𝑖𝑛ℎ(𝜎 𝜎0⁄ ) Eq. 2.29 

Dorn  1955 𝐶 𝑒𝑥𝑝(𝜎 𝜎0⁄ ) Eq. 2.30 

Johnson, Henderson & Kahn 1963 𝐷1𝜎
𝑚1 + 𝐷2𝜎

𝑛2 Eq. 2.31 

Garofalo 1964 𝐴 {𝑠𝑖𝑛ℎ(𝜎 𝜎0⁄ )}𝑛 Eq. 2.32 

*  𝐾, 𝐴, 𝐵, 𝐶, 𝐷1, 𝐷2 𝑛, 𝑛1, 𝑛2 and 𝜎0 are temperature dependent material constants 

 

Most work on stress dependence has been made for secondary creep. The most common form of the 

stress functions in Table 3 is the Norton power law. One of the reasons it has gained popularity, besides 

from its simplicity is because it describes stress distributions as independent from the load magnitude.  

 

Table 4. Time functions f2(t) [1] 

  𝑓2(𝑡)  

Andrade   (1 + 𝑏𝑡1 3⁄ )𝑒𝑥𝑝(𝑘𝑡) − 1  

Bailey   𝐹𝑡𝑚 Eq. 2.33 

Mc Vetty   𝐺{1 − 𝑒𝑥𝑝(−𝑞𝑡)} + 𝐻𝑡 Eq. 2.34 

Graham & Walles   𝛴𝑎𝑖𝑡
𝑚𝑖  Eq. 2.35 

Garofalo  𝜃1{1 − 𝑒𝑥𝑝(−𝜃2𝑡)} + 𝜀�̇�𝑡 Eq. 2.36 

*  𝐹, 𝐺, 𝐻, 𝑎𝑖, 𝑏, 𝑘, 𝑚 , 𝑚, 𝑞 are temperature dependent constants  

 

The time functions are mostly based on empirical expressions for which researchers have tried to apply 

physical meaning and they do not necessarily describe the actual creep behaviour. Although they do 

describe time dependence under constant stress rather well, it is typically due to the many coefficients 

used in the curve fitting procedure. The temperature dependence 𝑓3(𝑇)  in equation Eq. 2.26 is 

essential to all creep rate processes and is described with Arrhenius law 𝑒𝑥𝑝(−𝑄 𝑅𝑇⁄ ), where 𝑄 is the 

activation energy, 𝑅 is the Boltzmann’s constant and 𝑇 is the absolute temperature.  
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It is more complicated to predict strain rates under variable load than it is for constant loading. Since 

most available creep data are from uniaxial, constant stress and temperature conditions, creep 

equations for variable stresses are established purely from hypothetical generalizations from constant 

stress creep equations. These generalizations do however predict very different results under the 

identical load histories and none of these methods are considered entirely satisfactory.  

One of the proposals for describing creep strain rate for varying stress is the time hardening theory. 

This considers the hypothesis that the only thing affecting strain rate, except for stress is time-

dependent structural changes. Time hardening theories suggest that creep strain rate is a function of 

stress, time and temperature and can be stated in the form 

 𝜀�̇� = 𝑓1(𝜎)
𝑑𝑓2(𝑡)

𝑑𝑡
𝑓3(𝑇) Eq. 2.37 

 

The material changes described by the time hardening approach are mainly of softening character and 

cannot adequately describe primary creep. It can however be correct to use for material that only 

displays secondary creep and may in some cases be adequate for material that exhibits secondary and 

tertiary creep.  

Another theory is the strain hardening theory. This assumes that the hardening effect is caused by 

deformation and describes creep strain rate as a function of stress, accumulated strain and 

temperature in the following form 

 𝜀�̇� = 𝑓1(𝜎)𝑓2(𝜀𝑐)𝑓3(𝑇) Eq. 2.38 

 

The strain hardening assumption describes creep that is predominantly primary and has also given 

satisfactory results for describing creep in very short-time creep tests. Since strain hardening is 

generally associated with primary creep and time hardening may be related to time dependent effects, 

these theories can be combined to better fit experimental data. Such combinations are however 

generally considered as purely empirical refinements. A general expression for the combined theories 

can be expressed in the following form  

 𝜀�̇� = 𝑓1(𝜎)𝑓2(𝜀𝑐)𝑓3(𝑡)𝑓4(𝑇) Eq. 2.39 

 

In addition to the above-mentioned theories, numerous other suggestions have been proposed for 

describing creep rate under variable stress, some of which were also included in the work by Penny 

and Marriott [1]. These include phenomenon such as reverse creep which is the reverse creep strain 

upon unloading and recovery, which is the loss of strain hardening due to thermal softening. However, 

a more detailed explanation of these is beyond the scope of this thesis. 

One of the most commonly used laws for describing primary and secondary creep strain is obtained 

by combining the Norton [29] and Bailey [30] stress and time functions as  

 𝜀𝑐 = 𝐶1𝜎
𝑛𝑡𝑚 Eq. 2.40 

 

Where 𝐶1 (with unit 𝑀𝑃𝑎−𝑛 ∙ ℎ−𝑚), 𝑛 and 𝑚 are temperature dependent parameters. As described by 

Betten [21] the above expression in Eq. 2.40 can be differentiated with respect to time to obtain the 

time-hardening version Norton-Bailey law is given by 

 𝜀�̇� = 𝐶1𝑛 𝜎
𝑛𝑡𝑚−1 Eq. 2.41 
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And by solving Eq. 2.40 with respect to time and insert into the time-hardening expression in Eq. 2.41 

the Norton-Bailey strain-hardening version in Eq. 2.42 can be obtained.  

 𝜀�̇� = 𝑚𝐶1
1 𝑚⁄ 𝜎𝑛 𝑚⁄ 𝜀𝑐

(𝑚−1) 𝑚⁄
 Eq. 2.42 

 

What is typically known as the Norton-Bailey creep power law previously given in Eq. 2.1 is obtained 

by taking 𝑚=1 [21]. Another form of the Norton-Bailey power law often used in literature is given by 

 𝜀�̇� = 𝐶1
′𝜎𝑛

′
𝑡𝑚

′
 Eq. 2.43 

 

Where Creep 𝐶1
′ , 𝑛′and 𝑚′  still are temperature dependent constants but 𝐶1

′  have different units 

𝑀𝑃𝑎−𝑛
′
∙ ℎ−𝑚

′−1. However, this form is limited to values for 𝐶1
′ that are larger than zero [56]. All of 

the temperature dependent constants given in the above equations need to be obtained from creep 

test data which is not always easily obtained.  

2.8 High-temperature design code: ASME III Subsection NH 

As previously mentioned in the introduction, there are several national codes that provide rules and 

guidelines for design of components at elevated temperatures. In the following sections, the design 

rules for construction at elevated temperatures according to ASME, Section III, Subsection NH are 

discussed.  

Behind the rules in standards, engineering corrections and safety factors are often based on extensive 

research and detailed analysis. However, the fundamental principles behind the methods are not often 

apparent to the user [22]. ASME provide extensive rules for evaluating components in the creep regime 

and only the outline of the method provided in the code will be presented.  

2.8.1.1 Background of ASME III Subsection NH 

Many industries consider their design procedures and guidelines as property and information is 

typically classified as commercially confidential. Many industries also appear to have no systematic 

design procedures at all. Historically, it has been necessary for the pressure vessel industry to 

implement regulatory design methods due to the substantial risk associated with failure in pressurized 

components. Due to this there has been an open forum for its procedural methods and the experience 

gained during the process of working with other industries has suggested that the design practice used 

in the pressure vessel industry can be used for high-temperature design in general [1].  

The main difference between high- and low-temperature design requirements is not so much the 

effect of temperature but rather the time-dependency it introduces [1]. ASME Boiler and Pressure 

Vessel Code, section III subsection NH [11] contains rules for construction of Class 1 components for 

nuclear service at elevated temperature. Its purpose is to offer comparable construction rules as 

subsection NB [57] does for Class 1 components (components in primary reactor system) below the 

temperature regime for which creep effects are significant [9].  

The first predecessor to ASME-NH that covered design rules for elevated temperature Class 1 

components was issued in 1963 under the name Code Case 1331. The initial versions of this was very 

limited in scope and it was not until 1971 that the basic requirements used in ASME-NH was included. 

Since then, many additions, modifications and revisions has been made. A series of code cases 1592-

1596 were released in 1974 covering all aspects of elevated temperature construction [9]. 

Subsequently this became Code Case N-47 before it finally was called ASME-NH.   
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The main contributor to the development of ASME-NH has been the Oak Ridge National Laboratory. 

In addition, many organizations, both in the United states and worldwide has contributed through 

exchange agreements and voluntary contributions [9]. 

 

2.8.1.2 Creep assessment method in ASME-NH  

Subsection NH can be considered and extension of Subsection NB, and deals with construction of 

components at elevated temperatures where the effects of creep are considered significant, which has 

been specified as temperatures above 370 °C for ferritic steels and 425 °C for austenitic steels and 

nickel based alloys [9, 11].  

One major difference between Subsection NB and subsection NH is the number of allowed materials 

[9]. The permitted materials included in the code of Subsection NH are listed in Table 5. 

Table 5. Permitted materials in ASME-NH [11] 

Material  Permitted use Condition 

304SS Structural and bolts Annealed 
316SS Structural and bolts Annealed 
Ni-Fe-Cr Alloy 800H Structural Annealed 
21/4Cr‐1Mo Structural Annealed 
9Cr‐1Mo‐V Structural Normalized and tempered 
Ni-Cr-Fe-Mo-Cb Alloy 718 Only for bolts Precipitation hardened 

 

Except for Alloy 718 which is precipitation hardened and only allowed for bolts and 9Cr‐1Mo‐V, the 

allowed materials are specified in the annelid condition. The annealed condition was specified for 

Subsection NH material because of concern for long-term stability and predictability of mechanical 

properties. In 2004, structural material 9Cr‐1Mo‐V with the normalized and tempered condition, was 

the last material to be added to the list of structural materials to take advantage of its higher yield 

strength, which tend to reduce distortion and strain accumulation due to ratcheting and superior creep 

rupture strength [9].  

2.8.1.3 Analysis of components at elevated temperature service 

As indicated in Figure 25, the analysis of a component at elevated temperature in the creep regime, 

require limits for both the load-controlled stresses and strain- and deformation-controlled quantities 

to be satisfied. The limits have been set to avoid the following failure modes: (1) ductile rupture from 

short term loadings; (2) creep rupture from long-term loadings; (3) creep-fatigue failure; (4) gross 

distortion due to incremental collapse and ratcheting; (5) loss of function due to excessive 

deformation; (6) buckling due to short-term loading and (7) creep-buckling due to long-term loadings. 

For failure modes (5) to (7) there are only brief guidelines provided in the code [11].  

First a design should meet the requirements given in an ASME code of construction such as ASME I, 

VIII-1 or VIII-2, and then comply with requirements in ASME III-Subsection NH. It should however be 

mentioned that the temperature dependent allowable stress values vary with the different sections 

[14].  



36 
 

 

Figure 25. Procedures for structural integrity evaluations for nuclear class 1 components by the ASME Rules [58] 

 

In subsection NH, the following maximum accumulated inelastic strain limits has been established to 

ensure functional requirements and structural integrity [11] : 

• Strains averaged through thickness, 1% (membrane strain) 

• Strains at the surface, due to an equivalent linear distribution of strain through the thickness, 

2% (bending strain) 

• Maximum local strains, at any point, 5%  

               

Figure 26. Illustration of strain-limited quantities [9]. 

 

The limits above are the accumulated limits over the expected operating lifetime of a component and 

are to be computed for a steady state period at the end of the specified life to avoid significant effect 

of transients [11]. These limits require an inelastic analysis to be carried out. Due to the difficulties 

associated with performing inelastic analysis (which will be further discussed below) subsection NH 

has provided alternative methods that are based on elastic analysis [9].  

The strain- and deformation-controlled limit evaluation in Subsection NH [11] can be performed using 

one of the three following analysis methods:  

1. Elastic analysis 

2. Simplified inelastic analysis 

3. Inelastic analysis 

These are arranged in the order from simplest to most difficult and least accurate to most accurate. 

Also, the amount of material data required for the analysis and the cost to perform them increase for 

1% 
2% 

5% 

𝜎𝑏 𝜎𝑚 𝜎𝐿  
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method two and three. Of all the three criteria, the elastic limits are set to be most conservative, due 

to difficulties of accurately predicting inelastic strain with elastic analysis. As illustrated in the flowchart 

in Figure 27, when stresses from the elastic analysis cannot satisfy the elastic limits, either the 

component need to be redesigned or a simplified inelastic analysis can be performed. Similarly, if the 

simplified analysis does not meet the requirements for the simplified inelastic stress limits, the 

component must either be modified or an inelastic analysis be carried out [11, 14]. 

 

                                   

Figure 27. Flowchart of analysis procedure for evaluation of inelastic strain limits  

 

2.8.1.3.1 Elastic analysis 

The elastic analysis is typically preferred among engineers since it is the easiest, most convenient and 

least expensive analysis method. The method involves linearization to separate and categorize stresses 

to approximate the more accurate plastic and creep analysis. Further, there are tests provided in the 

code to ensure that strain- and deformation requirements are met. The method is appropriate to use 

when the combined primary and secondary stresses are below the yield strength of the material [14]. 

However, a downside with stress categorization is that it requires substantial knowledge and 

engineering judgement, especially for complex structures and three-dimensional stress fields [59]. In 

addition, strain- and deformation-controlled limits in Subsection NH require primary and secondary 

stress categories to be dealt with separately as opposed to the elastic method in ASME VIII-2. However, 

there are alternative tests for the elastic analysis which offer an alternative to avoid separation of 

primary and secondary stresses. The elastic analysis is not as accurate as a plastic or creep analysis, 

which more accurately predicts the materials stress-strain relationship. It is, however the most 

conservative criteria and considered adequate for most design applications [14].  

2.8.1.3.2 Simplified inelastic analysis  

The simplified inelastic analysis also uses the results from the stress categorization made with the 

elastic analysis. However, these are used to calculate a strain which is compared to the allowable strain 

limit, thus the name simplified inelastic analysis. The method is based on the concept that the core 

stress remains elastic when subjected to primary and secondary stresses (obtained from stress 

linearization). By normalizing the primary and secondary stresses, the magnitude of the elastic core of 

the component can be establish with a so-called Bree-diagram. The value of the elastic core can 

subsequently be used to calculate the resulting strain [9, 14]. 

Elastic analysis 

Simplified inelastic 

analysis 

Inelastic analysis 

Design  

Exceeding 

limits 

Exceeding 

limits 

Exceeding 

limits 

No 

No 

No 

R
ed

es
ig

n
 

S
tr

ai
n

 a
n
d

 d
ef

o
rm

at
io

n
 

re
q

u
ir

em
en

ts
 a

re
 s

at
is

fi
ed

 

Yes 

Yes 

Yes 



38 
 

2.8.1.3.3 Inelastic analysis  

The inelastic analysis method does neither include comprehensive nor specific guidance in Subsection 

NH. This was an intentional decision, since material models for inelastic analysis are still under 

development, and it was considered that over-specific guidance would halt further progress in the field 

[9].  

With an inelastic analysis, the inelastic strains and deformation due to service loads can be obtained 

directly from the analysis. The analysis does however require constitutive equations that describe both 

time-independent and time-dependent material response. There exist many formulations of such 

equations, however the prediction obtained from the various equations can vary significantly, as 

previously mentioned in Chapter 2.7.1. For predictions with an inelastic analysis to be meaningful, the 

equation selected to model the material’s response must be evaluated according to the materials load 

and temperature history. This typically require a large quantity of material test data which are typically 

not available and material testing would be required. All the above-mentioned requirements make the 

method both expensive and time consuming. In addition, since it is not practical to test a material for 

all stages of the load and temperature history, the choice of material model and the evaluation of the 

results therefore requires a substantial portion of engineering judgement [9, 14]. 

2.8.1.4 Accumulated creep-fatigue damage evaluation  

The method for evaluating accumulated creep-fatigue in ASME-NH [11] is based on superposition of 

the Miners rule for fatigue and the time-fraction rule for creep damage. The damage due to creep and 

fatigue are evaluated separately and combined as follows: 

 ∑(
𝑛

𝑁𝑑
)
𝑗

𝑃

𝑗=1

+ ∑(
∆𝑡

𝑇𝑑
)
𝑘

= 𝐷𝑓

𝑞

𝑘=1

+ 𝐷𝑐 = 𝐷 Eq. 2.44 

 

Where 𝑛 𝑁𝑑⁄  is the cyclic portion of the life fraction, for which 𝑛 is the number of fatigue cycles at a 

given strain range 𝑗 , 𝑁𝑑  is the number of allowable cycles (the fatigue life) for cycle type, 𝑗 

corresponding to a given strain range at the maximum temperature occurring during the cycle. The 

creep life fraction given by ∆𝑡 𝑇𝑑⁄  is time dependent, where ∆𝑡 is the duration of the time interval, 𝑘, 

at a certain stress- and temperature-level and 𝑇𝑑 is the rupture time at that same stress and maximum 

temperature for the time interval 𝑘. 𝐷 is the total creep-fatigue damage factor [11].  

This linear damage approach was chosen in the 1970s, and is consistent with the other damage 

assessment procedures in the ASME code. The use of Miners rule is for example used for assessing 

fatigue damage at lower temperatures in Subsection NB. Many methods for evaluating creep-fatigue 

damage was considered, however the linear fraction approach was chosen since it was straight 

forward and does not require as many tests as other methods. Important to mention is that the linear 

fraction damage summation is unconservative without the safety factors incorporated in Subsection 

NH [9].  

Figure 28 shows the bilinear summation diagram used in the Subsection NH for creep-fatigue 

interaction. The intersection points for the permitted materials are also indicated in the figure. The 

lines in the envelope are conservative lower bound limits based on experimental data.  
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Figure 28. Creep-fatigue damage envelope re-plotted from ASME-NH [11] 

 

2.8.1.5 Creep-fatigue analysis method  

When the inelastic strain- and deformation-limits for functional- and structural integrity requirements 

are met the creep fatigue analysis can be carried out. The rules for cyclic loads in Subsection NH involve 

determining points within a cycle time for which the stress levels in a certain point of a component are 

at a maximum. Stresses are then evaluated against load- and strain-controlled limits for creep and 

fatigue, similar to the procedure explained in the previous subchapter [14]. 

As pointed out by Jawad and Jetter [14] a substantial amount pf calculations are required before Eq. 

2.44 can be solved. Subsection NH provides two alternative approaches for solving the creep-fatigue 

damage equation [11]: 

• Inelastic creep-fatigue analysis 

• Elastic creep-fatigue analysis 

Conceptually, creep-fatigue evaluation with inelastic analysis is relatively straightforward and will not 

be discussed further. However, the difficulties associated with inelastic analysis as mentioned above 

still apply [9]. 

 

2.8.1.5.1 Elastic creep-fatigue analysis  

The creep-fatigue analysis in Subsection NH provides a complicated calculation procedure for creep-

fatigue evaluation especially for complex load-temperature histories with many cycles. It also requires 

complex interpolation procedures to regenerate isochronous stress-strain curves for each 

temperature-time block [58]. 

Very briefly explained, the procedure requires a set-up of the entire load- and temperature history of 

a point of interest. The load and temperature history is divided into cycles, and for each cycle type, a 

total strain range, 𝜀𝑡 is computed. 𝜀𝑡 is used in the evaluation of the fatigue fraction term 𝑛 𝑁𝑑⁄  to 

determine the number of allowable fatigue cycles (𝑁𝑑)𝑗  for each cycle type. 𝜀𝑡   is also used for 

obtaining the corresponding stress level which is necessary for computing the creep fraction term 

∆𝑡 𝑇𝑑⁄  in Eq. 2.44. The procedure requires composing a stress-time history envelope that includes all 

cycle types which is modified to include the transient effects of stress relaxation as illustrated in Figure 

29. The period for stress relaxation is then divided into time blocks for which an average constant 
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stress and constant temperature are assumed and for each of these time blocks, the life fraction is 

computed and summed. 

The general creep-fatigue procedure in Subsection NH include the following steps [11]:  

• Defining the total number of hours, 𝑡𝐻, spent at elevated temperatures 

• Define the hold temperature, 𝑇𝐻𝑇  as the metal temperature that occurs during sustained 

normal operation.  

• Define average cycle time, 𝑡�̅�  for each cycle type as 𝑡�̅� = 𝑡𝐻 𝑛𝑗⁄ , where 𝑛𝑗  is the number of 

applied repetitions for cycle type 𝑗.  

• Compute the total strain range 𝜀𝑡  and establish the corresponding stress 𝑆𝑗  from time-

independent stress-strain curves corresponding to 𝑇𝐻𝑇 

• Adjust 𝑆𝑗 with respect to stress relaxation and the multiaxial stress state 

• Construct a stress-time history envelope for the cycle type 𝑗 and define transient parameters 

• Superimpose all stress-time history envelopes to construct a composite stress-time history 

envelope that includes all cycle types 

• Determine the time interval  (∆𝑡)𝑘  for the creep damage term. For each time interval, 

determine the allowable time duration need (𝑇𝑑)𝑘 from the stress to rupture curves. 

Not mentioned here are the numerous safety factors and engineering corrections for stress 

concentrations, multiaxiality etc. that are incorporated in the procedure. The code also provides 

alternative methods with various level of conservatism for some of the steps in the above list. 

 

 

Figure 29. Stress-time history envelope for creep damage assessment [11] 

 

In a review [58] of the rules in Subsection NH it was found that the evaluation procedures and rules 

are too complex to carry out for an actual reactor design with consideration for all the design transient 

conditions, by using hand calculations. A computerized implementation of the rules was proposed to 

solve the problem.  
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2.9 Pressure vessel design   

According to the definition in ASME VIII-1 [60],  pressure vessels are containers used for containment 

of either internal or external pressure, which may be obtained from an external source or by applying 

heat from a direct or indirect source.  

Pressure vessels operating under high-temperature service where the effect of creep is significant can 

be found in chemical plants, refineries and power generation plants. One of the design issues for such 

pressure vessels are the variable loading conditions due to start up and shut down in combination with 

the effect of long time exposure at elevated temperatures. The capability of a pressure vessel shell to 

perform properly depends on several factors, like the stress level, material properties, operating 

temperature and temperature range and pressure cycles [14]. The purpose of this section is to describe 

stresses in pressure vessels due to the design pressure and to describe in short, some different design 

methodologies used in pressure vessel design.  

Generally, pressure vessels can be categorized into thin-walled or thick (heavy)-walled configuration 

and depending on what configuration the pressure vessel has, different approaches can be used for 

computing the stresses. There are also several types of shape configurations for pressure vessels. 

However, in the following sections regarding thin- and thick-walled configurations, only stresses with 

respect to cylindrical shape pressure vessels will be discussed. 

 

2.9.1 Thin-walled pressure vessel configuration  

When pressure is applied to a cylinder, three principal stresses arise in the material, namely 

circumferential or hoop stress ( 𝜎ℎ ), radial stress (𝜎𝑟 ) and longitudinal or axial stress (𝜎𝑧 ). The 

assumption made for thin-walled cylinders is that the hoop and axial stresses are constant through the 

wall thickness without any pressure gradients and that the radial stress can be neglected since it is 

considered small in comparison [48]. The hoop stress and axial stress are due to the internal pressure 

𝑃𝑖 and can for a thin walled cylinder be approximated with the following expressions: 

 𝜎ℎ =
𝑃𝑖𝐷𝑖
2𝑡

 Eq. 2.45 

 

 𝜎𝑧 =
𝑃𝑖𝐷𝑖
4𝑡

 Eq. 2.46 

 

where 𝐷𝑖  is the internal diameter and 𝑡 is the cylinder thickness. The thin-walled approximation is 

generally considered rather accurate when the ratio of thickness to inside radius is less than 1/10 [48].

  

2.9.2 Thick-walled pressure vessel configuration 

For thick-walled cylinders when the ratio of the wall thickness to the inside radius becomes too large, 

stresses become triaxial and the biaxial assumption used for the thin-walled configuration is no longer 

valid. In addition, the stresses must be evaluated with respect to the radius since hoop and radial stress 

vary across the wall thickness as illustrated in Figure 30. Stresses for thick-walled cylinders can be 

described with the Lamé equations given by [48]: 

 𝜎ℎ(𝑟) = 𝐴 +
𝐵

𝑟2
 Eq. 2.47 
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 𝜎𝑟(𝑟) = 𝐴 −
𝐵

𝑟2
 

Eq. 2.48 
 

 

Where 𝐴 and 𝐵 are constants that are derived from the boundary conditions. The general case of a 

cylinder subjected to both internal and external pressure yields the following Lamé constants. 

 𝐴 =
𝑃𝑖𝑟𝑖

2 − 𝑃𝑜𝑟𝑜
2

𝑟𝑜
2 − 𝑟𝑖

2  Eq. 2.49 

 

 
𝐵 =

𝑟𝑖
2𝑟𝑜
2(𝑃𝑖 − 𝑃𝑜)

𝑟𝑜
2 − 𝑟𝑖

2  

 

Eq. 2.50 

For a cylinder with closed ends subjected to both internal and external pressure, the axial stress along 

the cylinder equals the Lamé constant 𝐴. 

   𝜎𝑧 = 𝐴 =
𝑃𝑖𝑟𝑖

2 − 𝑃𝑜𝑟𝑜
2

(𝑟𝑜
2 − 𝑟𝑖

2)
 

Eq. 2.51 
 

 

Figure 30. Stress distribution of a thick-walled cylinder subjected to internal pressure [48] 

 

2.9.3 ASME VIII - Pressure vessel design methods 

ASME BPVC is a widely used code for the design of pressure vessels and while there other pressure 

vessel codes, such as the European Standard EN 13445 [27] the following section only concerns the 

design methodologies given in ASME BPVC section VIII.  

In ASME-VIII there are basically two methods for design of pressure containing components to 

determine the required wall thickness to withstand internal pressure and external loads. These are 

often referred to as Design by Rule (DBR) and Design by Analysis (DBA). Simply described, the DBR 

approach provide formulas to determine the required wall thickness based on design pressure, 

allowable stress and geometry parameters and the requirements for specific configurations are 

determined by several diagrams provided in the code [14].  

With the DBA method given in ASME VIII-2 [59], a component is evaluated based on results obtained 

from numerical analysis. The DBA-requirements are based on protection against the following failure 

modes; plastic collapse; local failure; collapse from buckling and failure due to cyclic loading 

(ratcheting). The code offers linear-elastic and elastic-plastic analysis procedures for each of the above 

listed failure modes and provides different acceptance criteria to determine if the component is safe 

depending on what type of analysis is being used. The procedures for protection against buckling and 

failure due to cyclic loading will not be further discussed, however short descriptions of the procedures 

for protection against plastic collapse and local failure are given below.  
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For protection against plastic collapse there are three alternative analysis methods provided in the 

code: 

1. Elastic Stress Analysis Method – Stresses are computed using a linear-elastic material model 

and classified into categories and compared to related limiting values which have been 

established conservatively.   

2. Limit-Load Method – The procedure involves determining the lower bound limit load of a 

component. An elastic-perfectly plastic material model with small displacement theory shall 

be used and the concept of load and resistance factor design (LRFD) is used to establish the 

limit load as a safety measure against plastic collapse.  

3. Elastic-Plastic Stress Analysis Method – In this analysis procedure a plastic collapse load is 

derived from an elastic-plastic analysis by using either a material model that includes 

hardening and softening or an elastic-perfectly plastic material model. Like the Limit-Load 

method, design factors are used to establish the maximum allowable load.  

From the above listed analysis procedures for protection against plastic collapse the elastic stress 

analysis method has been the most commonly used design methodology, particularly for components 

at elevated temperatures [14]. However, categorization of stresses requires both experience and 

judgement, especially for complex geometries and particularly those with three-dimensional stress 

fields. Therefore nowadays, the analysis methods involving elastic-plastic material models are 

becoming more and more utilized. In addition, the structural evaluation made with the elastic stress 

analysis only approximates the protection against plastic collapse and a more accurate assessment can 

be obtained with method 2) and 3) by determining the limit or the plastic collapse load. Nevertheless, 

the elastic-plastic analysis provides the most accurate estimate for protection against plastic collapse 

because it provides a better estimate of the structural behaviour since the stress redistribution due to 

inelastic deformation and deformation characteristics of the component are considered directly in the 

analysis. Also, worth mentioning is that for heavy-wall configuration (𝑅𝑖/𝑡 ≤ 4) pressure containing 

components, the use of elastic stress analysis with stress classification is not recommended since it 

can yield non-conservative results especially around discontinuities. The reason for this is that the 

nonlinear distribution of stress associated with heavy wall sections is not sufficiently well represented 

by implicit linear stress [59].  

For protection against local failure both elastic and elastic plastic analysis can be used. Like in the 

procedure for protection against plastic collapse, the elastic-plastic method provides a more accurate 

estimate of protection against local failure. In the elastic analysis procedure for local failure, a triaxial 

stress limit given by the sum of the three linearized primary principal stresses are evaluated against a 

limiting criterion while the elastic-plastic analysis involves evaluating the plastic strain for all points in 

the component against a triaxial limiting strain [59].  

  



44 
 

3 METHOD – CREEP DAMAGE ASSESSMENT   

This Chapter explains the procedure of a creep damage assessment made for a pressure vessel with 

the use of the nonlinear Pavlou creep damage model and the linear Life Fraction Rule. The first part 

evaluates how to use the nonlinear creep model for practical design applications. The evaluation is 

based on applicable data from variable-load creep tests and previous research. The second part 

presents the chosen material data for the pressure vessel and creep-rupture curves for the selected 

material are made and evaluated. In the last section, a Finite Element Analysis is conducted to evaluate 

stresses on the pressure vessel and the results from the analysis are used for remaining life 

assessment.  

The numerical computing platform MATLAB was used for setting up calculations and creating plots 

that are presented in this chapter. Computer-aided engineering software ANSYS Workbench has been 

used for making the geometry and for the stress analysis of the pressure vessel.  

3.1 Evaluation of creep models  

Previous evaluations of Pavlou’s nonlinear creep model had various suggestions for how to use it. In 

Pavlou’s analysis [16] it was suggested to replace the original creep endurance limit with a fitting 

parameter to consider the transient behaviour of the material during variable step loading. However, 

in the research made by Grell [17] it was suggested to use the original parameter since the choice of a 

fitting parameter would limit the model to stresses below the fitting parameter. A third suggestion 

that has been made is to replace the Larson-Miller parameter curve with a normalized curve [18]. 

This section is dedicated to evaluating how to use the nonlinear model in practice and evaluate which 

of the above suggestions should apply when evaluating the creep life of a component. 

3.1.1 Validation of the nonlinear Pavlou model 

A recreation of Pavlou’s analysis [16] was made to validate the script in MATLAB and to confirm 

Pavlou’s results. To verify the nonlinear creep model Pavlou used experimental results [61] from 

austenitic high-temperature steel X8CrNiMoNb 16-16 and high-purity aluminium (Al 99.98). The 

materials were tested at a constant temperature for two-step loading up to failure. The loading 

conditions and test results are given in Table 6 and Table 7.  

 

Table 6. Load conditions for variable step creep loading  

Material  𝝈𝟏 (MPa) 𝝈𝟐 (MPa) 𝑻𝟏 (K) 𝑻𝟐 (K) 

X8CrNiMoNb-16-16 150 170 973 973 

Al-99.98 12 14 498 498 

 

 

Table 7. Test results from two step creep test for materials [61] 

X8CrNiMoNb-16-16 𝑡1 𝑡𝑓1⁄  0.05 0.1 0.35 0.40 0.44 0.46 0.55 0.88 

 𝑡2 𝑡𝑓2⁄  0.70 0.61 0.21 0.25 0.20 0.21 0.21 0.05 

Al-99.98 𝑡1 𝑡𝑓1⁄  0.12 0.13 0.3 0.32 0.50 0.65 0.70 0.75 

 𝑡2 𝑡𝑓2⁄  0.58 0.56 0.38 0.37 0.24 0.16 0.13 0.11 
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According to Pavlou’s model the failure criterion for a two-step loading can be written:   

 𝐷 = (
𝑡1
𝑡𝑓1
)

𝑇1 log(𝜎2 𝑝⁄ )
𝑇2 log(𝜎1 𝑝⁄ )

+
𝑡2
𝑡𝑓2
= 1 

Eq. 3.1 
 

 

Eq. 3.1 can be solved equation in with respect to the fitting parameter 𝑝 by 

 

 

𝑝 = 10(

 
 
 
 
 
 
 −𝑙𝑜𝑔𝜎2+𝑙𝑜𝑔𝜎1∙

𝑇2 log (1−
𝑡2
𝑡𝑓2
)

𝑇2 log (
𝑡1
𝑡𝑓1
)

𝑇2 log (1−
𝑡2
𝑡𝑓2
)

𝑇1 log (
𝑡1
𝑡𝑓1
)

−1

)

 
 
 
 
 
 
 

 

Eq. 3.2 
 

 

 

Pavlou used the first pair of test results in Table 7 together with the loading condition in Table 6 to 

obtain the fitting parameter 𝑝=184.916 MPa for the materials X8CrNiMoNb-16-16 and 𝑝=15.577 MPa 

for Al 99.98. Pavlou compared the theoretical results obtained with Eq. 3.1 with the experimental 

results from Table 7 by plotting the time fractions of consumed life versus the remaining life. The 

recreated comparison given in Figure 31 and  Figure 32.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32. Remaining life t2/tf2 for σ2=14 MPa 
versus consumed life t1/tf1 for σ1=12 at constant 
temperature T=498 K for material Al-99.98 with 
fitting parameter p=15.577 MPa 
  

Figure 31. Remaining life t2/tf2 for σ2=170 MPa versus 
consumed life t1/tf1 for σ1=150 at constant 
temperature T=973 K for material X8CrNiMoNb-16-16 
with fitting parameter p=184.916 MPa 
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Table 8. Fitting parameter for obtained from test results. 

X8CrNiMoNb-16-16 𝑝 (MPa) 184.92 185.38 176.27 180.02 178.13  179.53 184.43 184.87 
 

Al-99.98 𝑝 (MPa) 15.58    15.53    15.50    15.55   15.49    15.55    15.45    15.55 

 

The fitting parameters given in Table 8 was obtained from the other sets of test results from Table 7. 

The difference between the largest and smallest fitting parameter was 9.11 MPa for X8CrNiMoNb-16-

16 and 0.13 MPa for Al-99.98. The theoretical predictions of the remaining life fraction 𝑡2 𝑡𝑓2⁄  using Eq. 

3.1 was made with each of the fitting parameters for X8CrNiMoNb-16-16 (Figure 33) and for Al-99.98 

(Figure 34) and compared with the experimental results. As seen from the figures below, all the fitting 

parameters yielded satisfactory predictions.   

 

  

 

 

 

3.1.1.1  Fitting parameter versus creep endurance limit  

It has been recommended to use the creep endurance limit instead of the fitting parameter [17]. 

Pavlou’s definition [16] of a creep endurance limit as stress low enough to cause no creep damage at 

all has not been frequently mentioned in creep literature. However, creep endurance or creep 

resistance is typically defined as a stress level needed to produce a nominal strain for instance 0.1% in 

a certain time [1]. Instead of regarding creep endurance as a limit for which damage will not occur 

regardless of temperature and load duration it can be regarded as a strain-limit criterion.  

The creep resistance 𝜎𝑅𝑝1 is defined as a stress needed to produce 1% strain in a certain period. For 

austenitic steel X8CrNiMoNb-16-16 at temperature 973 K (700 °C) the creep resistance for 10 000 h is  

𝜎𝑅𝑝1=64 MPa and 𝜎𝑅𝑝1=34 MPa for the period 100 000 h [62]. By replacing the fitting parameter in Eq. 

3.1 with the creep endurance limit 𝜎𝑒 or as defined above, 𝜎𝑅𝑝1 Palou’s failure criteria become:  

Figure 33. Remaining life t2/tf2 for σ2=170 MPa versus 
consumed life t1/tf1 for σ1=150 at constant temperature 
T=973 K for material X8CrNiMoNb-16-16 with fitting 
parameters from Table 8 

Figure 34. Remaining life t2/tf2 for σ2=14 MPa versus 
consumed life t1/tf1 for σ1=12 at constant temperature 
T=498 K for material Al-99.98 with fitting parameters 
from Table 8 
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 𝐷 = (
𝑡1
𝑡𝑓1
)

𝑇1 log(𝜎2 𝜎𝑅𝑝1⁄ )

𝑇2 log(𝜎1 𝜎𝑅𝑝1⁄ )
+
𝑡2
𝑡𝑓2
= 1 

Eq. 3.3 
 

 

The theoretical results obtained with Eq. 3.3 for austenitic steel X8CrNiMoNb-16-16 was compared 

with the experimental results in Table 7. As clearly indicated in Figure 35 the predicted remaining life 

𝑡2 𝑡𝑓2⁄  did not agree well with the experimental test data. 

 

 

 

 

The Pavlou model is based on the hypothesis that creep damage can be modelled as isodamage lines.  

that all intersect in a common point at the failure line 100% damage [16]. The failure criterion in 

equation Eq. 3.1 can be rearranged to the following form of relationship for a two-step loading: 

 𝐷 = 1 −
𝑡2
𝑡𝑓2
= (

𝑡1
𝑡𝑓1
)

𝑞1,2

 Eq. 3.4 

 

With the above relationship, the duration 𝑡1  with the loading condition corresponding to the first 

loading step 𝜎1, 𝑇1 should yield the same damage as the loading condition 𝜎2, 𝑇2 does for the time 

duration (1 − 𝑡2 𝑡𝑓2)⁄ 𝑡𝑓2  and thus should be on the same damage line. The experimentally obtained 

time fractions in Table 7 and rupture times given in Table 9 were used for plotting the hold time versus 

the stress on a log-log plot. The data points corresponding to the same damage state were connected 

with lines to represent the isodamage lines for the various damage states.   

 

 

 

Figure 35. Remaining life t2/tf2 for σ2=170 MPa versus 
consumed life t1/tf1 for σ1=150 at constant temperature 
T=973 K for material X8-CrNiMoNb-16-16 with creep 
resistance σRp1=64 MPa for 10 000 h and σRp1=34 MPa for 
100 000 h 
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Table 9. Rupture time for material X8CrNiMoNb-16-16 and Al 99.98 [61] 

Material 𝑇1 (K) 𝜎1 (MPa) 𝑡𝑓1  (h) 𝑇2 (K) 𝜎2 (MPa) 𝑡𝑓2  (h) 

X8CrNiMoNb-16-16 973 150 447 973 170 200 

Al 99.98 498 12 17 498 14 6.9 

 

 

 

Figure 36. Isodamage lines plotted based on experimental data for material a) X-8-CrNiMoNb-16-16 at T=973 K and b) Al 
99.98 at T=498 K 

 

The plots with the isodamage lines and experimental data points are shown in Figure 36. From the 

figure, it is apparent that all lines intersect approximately at the same point. The intersection between 

the isodamage lines and the line representing the damage state 100% all corresponds to the values of 

the fitting parameters as given in Table 8. This indicates that the fitting parameter should be used 

instead of the creep endurance limit for variable step loading, as was also suggested by Pavlou [16].  

3.1.2 Modified Pavlou creep model - normalized curve  

The modified version [18] of the Pavlou model bases the damage equation on a rupture curve of 

normalized stresses versus temperature to represent the 100% damage state instead of using the 

rupture curve obtained Larson-Miller parameter. To account for temperature the rupture stresses are 

normalized with Young’s modulus at the corresponding temperature.  

Since ASME has an extensive collection of material data, rupture data from ASME III Subsection NH 

[11] for austenitic steel 304SS was used to create a similar rupture curve. Young’s modulus at various 

temperatures for the same material was obtained from ASME section II [63] and linear interpolation 

and extrapolation was made to obtain values for some of the temperatures. The original rupture data 

is given in Figure 37 and the normalized rupture data in Figure 38. As seen from the figures, the 

normalized stress did not transform the data points in such a way so that they could be correlated by 

a straight line. The modified form of Pavlou’s model may have given reasonable remaining life 

predictions for alloy Sn-3.5Ag-0.5Cu but it is apparent that the method might be limited to certain 

materials.  
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3.1.3 Sequence effect on load and temperature history  

The main difference between the Pavlou creep damage model and the linear time fraction rule is that 

the Pavlou model considers the sequence effect from both the load and the temperature history.  

The behaviour of the Pavlou damage model was investigated by assuming different loading conditions 

for the austenitic material X8CrNiMoNb-16-16 with the same fitting parameter 𝑝=184.916 MPa as 

were previously obtained from the experimental data. A comparison for a two-step loading were made 

between using equation Eq. 3.1 and the time fraction rule which for a two-step variable loading can 

be written:   

 𝐷 =
𝑡1
𝑡𝑓1
+
𝑡2
𝑡𝑓2
= 1 Eq. 3.5 

 

The various loading and temperature conditions were applied in low-high sequences (L-H) and for 
high-low sequences (H-L).     
 

3.1.3.1 Variable step loading with constant temperature  

The sequence effect due to the loading was investigated by keeping the temperature constant at 973 
K while various loading conditions were applied in low-to-high loading sequence (L-H) and in high-to-
low loading sequence (H-L). The load cases that were used for this are given in Table 10.  
 
 
 
 
 
 
 
 
 
 

Figure 38. Normalized stress versus rupture time 
for material 304SS at various temperatures 

Figure 37. Stress versus rupture time for material 
304SS at various temperatures 
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Table 10. Two stage loading data of material X8CrNiMoNb-16-16 with constant temperature T=973 K 

 L-H   H-L  

 𝜎1 (MPa) 𝜎2 (MPa)  𝜎1 (MPa) 𝜎2 (MPa) 

Case 1 150 170  170 150 

Case 2 110 160  160 110 

Case 3 110 130  130 110 

Case 4 150 183  183 150 

Case 5 190 200  200 190 

Case 6 160 190  190 160 

 

            

              
Figure 39. Nonlinear creep damage model versus linear creep damage model for variable step loading   
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Load case 1-6 from Table 10 are illustrated in Figure 39. To demonstrate the behaviour of the nonlinear 

model compared to linear summation rule the load cases were plotted in terms of time fractions. Case 

1-4 showed that the linear summation (time fraction rule) is non-conservative and overestimates the 

remaining life for load sequence L-H while it underestimates the remaining life for the H-L sequence.  

By comparing load case 2 and 3 it was apparent that with decreasing difference between 𝜎1 and 𝜎2 

(∆𝜎) the difference between predictions made with the nonlinear damage model and the linear 

summation became smaller. This is because the exponent in Eq. 3.1 reaches unity when ∆𝜎 gets closer 

to zero. It was pointed out in Pavlou’s research [16] that for the special case of constant stress and 

constant temperature, the expression in Eq. 3.1 can be written as Eq. 3.5.  

When both stresses 𝜎1 and 𝜎2 are larger than the fitting parameter 𝑝, as in case 5, the nonlinear model 

shows an opposite behaviour than to previous load cases. In this case, the remaining life for the L-H 

sequence become less conservative than the linear summation. Similarly, the sequence H-L indicates 

a lower remaining life and thus is more conservative than the time fraction rule. This phenomenon 

could indicate that the model is only valid for stresses below the fitting parameter.  

Similar to the Subramanyan fatigue model [43, 44] and as stated in the research by Grell [17], Pavlou’s 

model becomes unstable if the fitting parameter 𝑝 lies between any of  the stresses 𝜎1 to 𝜎𝑛 as for 

load case 6. This is due to singularity that occurs when the logarithmic argument in the exponent 

reaches unity. Another unstable behaviour also occurred for load case 4 which had one stress value 

very close to the fitting parameter.  

 

3.1.3.2 Variable temperature steps with constant loading  

The stress was held at a constant level (𝜎1= 𝜎2) at 150 MPa to see how the nonlinear Pavlou model 

performed compared to the time fraction rule for various temperature sequences. The different 

temperature cases that were tested are given in Table 11. The various temperatures were applied in a 

low-to-high temperature sequence (L-H) and in high-to-low temperature sequence (H-L).  

The Pavlou model has in previous research not been tested for variable temperature sequences. Due 

to lack of experimental data for various temperature steps, the behaviour of the nonlinear creep 

damage model cannot be verified for the different temperature steps. The purpose of applying various 

temperature steps was solely to investigate the numerical behaviour of the model. 

 
 
Table 11. Two step temperature with constant stress σ=150 MPa 

 L-H  H-L  
 𝑇1 (K) 𝑇2 (K) 𝑇1 (MPa) 𝑇2 (MPa) 

Case 1 953 973 973 953 
Case 2 873 973 973 873 
Case 3 873 1073 1073 873 
Case 4 773 1073 1073 773 
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Figure 40. Nonlinear creep damage model versus linear creep damage model with constant stress σ=150 MPa and variable 
temperature for X8CrNiMoNb-16-16  

 

The nonlinear damage accumulation model did not have the same restrictions for temperature ranges 

as it did for stresses and there is no risk of singularity since the creep model is not used for 

temperatures remotely close to zero degrees Kelvin (-273 °C).  

What was evident from Figure 40 is that for lager temperature differences between 𝑇1 and 𝑇2 (∆𝑇) 

the more the nonlinear creep damage model differs from the linear summation. As for the variable 

stress sequence, the linear summation predicts a less conservative remaining life for the L-H 

temperature sequence and a more conservative value for the H-L sequence when compared to the 

nonlinear model.  

By using various temperatures, it was seen from Pavlou’s model that the variable temperature 

sequences did not affect the creep damage as much as variable stresses. This agrees with research by 

Tiara [40] where it was concluded that temperature cycling does not have as much influence on creep 

as temperature cycling.  

 

 

 

973-953 
973-873 

873-973 

873-1073 

1073-873 1073-773 

773-1073 

953-973 



53 
 

3.1.4 Discussion on further use of the nonlinear creep damage model 

It was previously mentioned that various recommendations have been proposed on how to use the 

nonlinear creep model. According to Pavlou [16] the fitting parameter should be used to consider the 

transient effect that occurs during cyclic loading. Grell [17] on the other hand recommended the use 

of the original parameter, the creep endurance limit. The two statements however are ambiguous and 

would yield opposite results in terms of the remaining life for the L-H/H-L load sequences. 

When predictions from the Pavlou model was compared with experimental data for X8CRNiMoNb-16-

16 and Al-99.98 the predictions agreed well with the test results. However, when the creep resistance 

replaced the fitting parameter in Eq. 3.1 the predictions did not yield accurate predictions at all. The 

plot of isodamage lines that were made with the experimental data is another indicator that the fitting 

parameter is the better choice to use for creep life prediction under variable step loading conditions. 

In the unsuccessful attempt that was made to normalize stress rupture data for material 304SS to 

replace the Larson-Miller parameter expression in the Pavlou model, it appears that the modified 

version of the model might be limited to certain materials.    

From the above-mentioned reasons, it appears that the best way of using the Pavlou model in its 

original form with the use of a fitting parameter. However, as pointed out by Grell [17], this limits the 

model to stresses a certain level below the fitting parameter as was seen from load cases 4-6 in the 

previous subchapter. 

None of the research that has been made on the Pavlou creep model discusses the creep-fatigue 

interaction and how to determine the number of allowable fatigue cycles. Nor has there been any 

discussions on whether it should be combined with a fatigue model or not. Due to uncertainties of the 

creep-fatigue interaction, further use of the model will be limited to very few fatigue cycles to reduce 

the effect from fatigue.  

To determine the value of the fitting parameter experimental data from variable step loading is 

necessary. Since the fitting parameter for X8CrNiMoNb-16-16 had already been obtained, and similar 

data for other materials were difficult to find, the same material was used for design of the pressure 

vessel. There has been no comparison with experimental results for variable temperature steps with 

the Pavlou model in its original form. It is also uncertain if experimental data under different 

temperatures would have resulted in a different fitting parameter value. Due to these uncertainties, 

the design temperature in the analysis of remaining life should be at the same temperature as those 

the model has been validated for (973 K).  

The following is a list of assumptions and conditions that was made for further use of the nonlinear 

damage model for remaining life analysis of a pressure vessel design:  

• The austenitic material X8CrNiMoNb-16-16 with fitting parameter 𝑝 =184.916 MPa is 

considered for the analysis.  

• Temperature conditions for the analysis should be equal to those which the nonlinear model 

has been validated for.   

• The design temperature for the pressure vessel is set to constant at 973 K (700 °C). 

• The temperature is high and creep damage is assumed to be the predominant cause of damage  

• The pressure vessel is subjected to a two-step variable loading and damage due to fatigue is 

negligible since fatigue damage is considered small in comparison to creep damage.   
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3.2 Material data 

The material X8CrNiMoNb-16-16 was selected for the pressure vessel design since there were existing 

experimental creep data for the material from which a fitting parameter could be obtained. The 

material is an austenitic high-temperature and high strength steel used for elevated temperature 

applications. The chemical composition of the material is given in Table 12.   

Table 12. Chemical composition of X8CrNiMoNb 16-16 in Wt% [62]

 C Ni Cr Mn P S Si Mo Nb Ta 

Min  0.04 15.5 15.5    0.3 1.6 10xC  
Max  0.1 17.5 17.5 1.5 0.035 0.015 0.6 2 1.2 1.2 

 

The mechanical properties of the material X8CrNiMoNb-16-16 at room temperature (RT) and at 700 

°C are given in Table 1. The properties at 700 °C were obtained by linear extrapolation of the available 

material data which was obtained from a material database [62]. The density change due to material 

expansion at elevated temperature was neglected and the material density at 700 °C was assumed to 

be equal to the density at RT.  

 

Table 13. Properties of X8CrNiMoNb-16-16 at RT and at 700°C [62] 

Property  Symbol Unit 
Temperature 

RT 700 °C 

Young’s modulus 𝑬 GPa 198 141 
Yield stress 𝑺𝒚 MPa ≥215 127 

Ultimate strength  𝑺𝒖 MPa 530 313 
Density  𝝆 kg/dm3 8 8 
Coefficient of thermal expansion  𝜶𝒕 10^-6/(°C) N/A 18.81) 
Poisson’s ratio 𝝂  0.3 0.3 

1) Mean coefficient of thermal expansion between RT (20°C) and 700°C 

Available material creep data [62] was used for making a Larson-Miller parameter plot for creep 

resistance, 𝜎𝑅𝑝1 and creep rupture strength, 𝜎𝐶𝑅𝑆 so both time-to-rupture and time-to-1% strain could 

be obtained for different stress levels. Data for 𝜎𝑅𝑝1was included since many designs are based on a 

maximum allowable amount of creep strain, for example 0.1 or 1% during the expected lifetime of a 

component [64]. As were also previously mentioned the 1% strain limit is also typically used to avoid 

damage due to lack of ductility. All material data that was used are noted in Appendix A.  

 

3.2.1.1 Accuracy of the Larson-Miller parameter plot  

The Larson-Miller parameter, 𝑃𝐿𝑀 which is given in Eq. 2.2 was used to correlate the temperature and 

time with stress so the creep data could be described in one fit from which allowable time 

corresponding to a certain stress and temperature could be obtained. The fit can be optimized by 

changing the variable 𝐶 to optimize the correlation coefficient, 𝑅2. However, predictions should only 

be made within the stress range of the data [65]. Although there are other more complex creep data 

correlation methods which might be more accurate, the Larson-Miller parameter was chosen because 

of its relatively easy data correlation.  

Fits, both with and without logarithmic scale on the stress axis, were tested. By changing the 𝐶-value, 

four fits each were selected for the creep resistance, 𝜎𝑅𝑝1 and the creep rupture strength, 𝜎𝐶𝑅𝑆 based 

on the 𝑅2-value. The 𝑅2 value can range between 0 and 1 where a value closer to 1 indicates a better 
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correlation between the data and the fit. The best fits were obtained with a second order polynomial 

fit and a Gaussian fit. Graphical representations of the obtained fits are presented in Figure 41. 

 

Figure 41. Larson-Miller parameter plots with Gaussian and second order polynomial fits for σRp1 and σCRS 

 

The 𝑅2 value alone does not necessarily guarantee if the fit is good and useful for predictions and there 

are other statistics which can be used for evaluating the appropriateness of the fit such as the sum of 

squares due to errors (SSE) and the root mean squared error (RMSE) given below [66] [67]:  
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 Eq. 3.6 
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 Eq. 3.7 

 

Where 𝑤𝑖 are the weights which regulates how much each response value impact the final parameter, 

𝑦𝑖  is the data points, �̂�𝑖  is the value from the fit and (𝑦𝑖 − �̂�𝑖) represent the residuals. In the expression 
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for RMSE, 𝑛 repsesent the number of data points and 𝑚 is the number of parameters in the function. 

For SSE and RMSE a value closer to zero is an indication that the fit is useful for prediction [67]. MATLAB 

curve fitting application in was used for obtaining the statistical curve fitting data. The statistics results 

from each evaluated fit for 𝜎𝑅𝑝1 and 𝜎𝐶𝑅𝑆 are given in Table 14 and Table 15.  

 

Table 14. Statistics of CRS-fits from MATLAB 

Name 𝑪 Fit type SSE 𝑹𝟐 𝒏 −𝒎 RMSE  

Log CRS 13.9 Poly 2 0.0197 0.9964 51 0.01965 3 
Log CRS 13.9 Gauss 1 0.03325 0.9939 51 0.02553 3 

CRS 15.4 Poly 2 742 0.9964 51 3.814 3 
CRS 15.4 Gauss 1 498.5 0.9976 51 3.126 3 

 

 

Table 15. Statistics of Rp1-fits from MATLAB 

Name 𝑪 Fit type SSE 𝑹𝟐 𝒏 −𝒎 RMSE 𝒎 

Log Rp1 13.4 Poly 2 0.005157 0.9981 33 0.0125 3 
Log Rp1 13.4 Gauss 1 0.006412 0.9976 33 0.01394 3 

Rp1 12.7 Poly 2 115.5 0.9983 33 1.871 3 
Rp1 12.7 Gauss 1 73.03 0.9989 33 1.488 3 

 

A bad fit can severely over and underestimate the allowable time duration under a certain stress and 

temperature. As seen from the tables, the best fits for both creep resistance and creep rupture 

strength was obtained with the second order polynomial fits when stresses on the ordinate were 

plotted with a logarithmic scale. These are highlighted in yellow and the equations for the selected fits 

are given by:  

 𝑙𝑜𝑔𝜎𝑅𝑝1 = −2.721 ∙ 10
−8 𝑃𝐿𝑀

2 + 6.564 ∙ 10−4𝑃𝐿𝑀 − 1.495 Eq. 3.8 

 

 𝑙𝑜𝑔𝜎𝐶𝑅𝑆 = −2.901 ∙ 10
−8 𝑃𝐿𝑀

2 + 7.302 ∙ 10−4𝑃𝐿𝑀 − 1.98 Eq. 3.9 

 

 𝑃𝐿𝑀(𝜎𝑅𝑝1) = 𝑇 (𝑙𝑜𝑔𝑡𝑓𝑅𝑝1 + 𝐶) Eq. 3.10 

 

 𝑃𝐿𝑀(𝜎𝐶𝑅𝑆) = 𝑇(𝑙𝑜𝑔𝑡𝑓𝐶𝑅𝑆 + 𝐶) 
Eq. 3.11 
 

 

The above equations do not display all decimal places. The equations were solved with respect to the 

allowable time duration for the corresponding stress and temperature condition using MATLAB where 

all decimal places in the fits were used. Solving without all decimal places the obtained results can 

differ from the ones calculated by the software.   

The error between the allowable time obtained from the fits and from the data points was calculated 

using Eq. 3.12 to get an indication of how much the rupture-time and 1%strain-time deviated from the 

actual values. The time calculated from the fits, the actual time from the creep data and the error 

between them for some of the extremes are given in Table 16 and Table 17 respectively.  
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 %𝑒𝑟𝑟𝑜𝑟 = |
𝑡𝑓𝑓𝑖𝑡 − 𝑡𝑓𝑑𝑎𝑡𝑎
𝑡𝑓𝑑𝑎𝑡𝑎

| ∙ 100 Eq. 3.12 

 

 

Table 16. Sample points for testing the accuracy of the fitted CRS curves 

Temperature 
𝑻 (℃)  

Stress 
𝝈𝑪𝑹𝑺  

From creep data 
𝒕𝑪𝑹𝑺𝒅𝒂𝒕𝒂(𝒉)  

Polynomial fit 
𝒕𝑪𝑹𝑺𝒇𝒊𝒕(𝒉)  

Error 
(%)  

670 111 10 000 14 100 41.00 
680 100 10 000 13 841 38.41 
670 66 100 000 100 534 0.53 
620 103 200 000 199 098 0.45 

 

Table 17. Sample points for testing the accuracy of the fitted Rp1 curves 

Temperature 
𝑻 (℃)  

Stress 
𝝈𝑹𝒑𝟏  

From creep data 
𝒕𝑹𝒑𝟏𝒅𝒂𝒕𝒂(𝒉)  

Polynomial fit 
𝒕𝑹𝒑𝟏𝒇𝒊𝒕(𝒉)  

Error 
(%)  

750 42 10 000 6 666 33.34 
740 44 10 000 8 464 15.36 
610 147 10 000 9990 0.10 
620 88 100 000 99 923 0.08 

 

As seen from the tables the chosen fits overestimated and underestimated the time duration for some 

stress and temperature combinations. However, the average error between all the data points and the 

corresponding values from the fits were 6.19% for the creep resistance and 13.08% for the creep 

rupture strength. The residual plots for the fits given in Figure 42 shows the values of the Larson-Miller 

parameter that produced most error.  

 

 

Figure 42. Residual plots for σRp1 and σCRS 
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3.3 Pressure vessel model for creep damage analysis 

The difference in remaining life between the nonlinear creep damage model and the linear time 

fraction rule was evaluated by studying a pressure vessel subjected to variable pressure. The setup of 

pressure vessel geometry and the stress analysis was made by using ASNSYS Workbench. ANSYS 

DesignModeler (DM) was used for setting up the geometry and the toolbox static-structural was used 

for the analysis part. ANSYS DM is a part of ASNSYS Workbench and was chosen for modelling, which 

allows for easy updating and modification of the geometry. It also allows for geometry parameters in 

the analysis.  

For this study, a simple generic model was considered sufficient. A two-dimensional axisymmetric 

model was set up for the analysis because it allows for a finer mesh and significantly reduces 

computation demands. The axisymmetric alternative can be used when the geometry stresses, 

boundary conditions and material properties are symmetric with respect to an axis. The geometry and 

the dimensions of the model that was used in the analysis is given in Figure 43. Due to the high-

temperature and hence the low yield stress, a small diameter pressure vessel was considered since the 

wall stress increase as the inner diameter increase. 

For the stress evaluation, both a linear-elastic and an elastic-plastic material model was used to 

investigate how the different analysis methods would affect the remaining life. The elastic-plastic 

analysis method considers both the applied loading in addition to the deformation characteristics of 

the pressure vessel and should therefore provide a more accurate assessment than the elastic stress 

analysis. Ideally, a time-dependent creep analysis should have been used to model the time-dependent 

material response for obtaining the most accurate results. However, that additional material data 

which is required for a creep analysis was non-available.  

 

                                

Figure 43. Axisymmetric FEA model and dimensions 
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3.3.1 Loading conditions 

The following assumptions were made for the setup of the analysis: 

• The pressure vessel is filled with gas and the weight from the medium is considered negligible  

• External pressure atmospheric pressure is considered insignificant compared to internal 

pressure and can be neglected 

• The pressure vessel is very small and the effect of gravity does not have significant effect on 

the structure. Gravity is therefore not considered in the analysis 

• Two-step internal pressure 

• The temperature has reached steady-state (700°C) and there are no temperature gradients  

• The pressure vessel is free to expand and thermal stresses are non-present  

Table 18 contains the loading conditions for the applied two-step loading that were used for both the 

linear-elastic and elastic-plastic analysis. The applied loads and boundary conditions that were applied 

to the axisymmetric model are given in Figure 44, where (A) is a displacement constraint at the bottom 

vertex that was set to zero in y-direction, (B) is the internal pressure and (C) is the nozzle end-cap 

pressure, 𝑃𝑛 = 𝑃𝑖𝐴𝑖/𝐴𝑛 , which was applied to create static equilibrium.  

 

Table 18. Loading conditions for FEA analysis 

Load   Magnitude Magnitude 

Internal pressure  𝑃𝑖  8   MPa 12 MPa 
End cap pressure at nozzle  𝑃𝑛 -6.4 MPa -9.6 MPa 
Temperature S.S 𝑇 700 °C 700 °C 

0 

 

Figure 44. Applied loads and boundary conditions  
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3.3.2 Engineering data  

For the linear-elastic analysis the material properties at 700 °C given in Table 13 were used. The same 

properties were also used for the elastic-plastic analysis to create a true stress-strain curve that 

includes temperature dependent hardening behaviour. The true-stress strain curve was made 

according to ASME VIII-2 Appendix 3D and has a perfect plastic behaviour beyond the limit of the true 

ultimate stress as can be seen in Figure 45. The true stress-strain data was used as material input to 

ANSYS for the elastic-plastic analysis.  

 

 

Figure 45. True stress-strain for X8CrNiMoNb-16-16 at T=700 °C  

 

In ANSYS the multilinear kinematic hardening option were used to represent the plastic stress-strain 

data because it can represent both monotonic and cyclic loading. The multilinear alternative was 

chosen since gives a more accurate representation of the stress-strain strain relationship compared to 

the bilinear alternative. For the rate-independent plasticity modelling with the multilinear kinematic 

hardening, ANSYS uses the von Mises yield criterion to determine when yielding occurs. In the elastic-

plastic analysis large deformation effects was also used to more closely approximate the structural 

behaviour.  

3.3.3 Meshing and 2D plane elements 

In finite element analysis, meshing is the process of discretising the model into a finite number of 

elements. The mesh represents a system of algebraic equations which are used to numerically solve 

the structural system. The quality of the mesh is important for the accuracy and stability of the 

numerical computation [53]. For 2D plane problems triangular and quadrilateral plane elements as 

shown in Figure 46 can be used. The 2D elements can represent both planar and axisymmetric solids 

[53]. Without midside nodes the elements are linear meaning linear interpolation provides the 

approximate field values between the nodes. When assigning midside nodes to the elements they 

become quadratic and quadratic interpolation assigns the approximate values. The midside node also 

allows the element sides to form into quadratic curves and therefore quadratic elements gives a good 

geometric fit to curved structure boundaries [52]. 
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Figure 46. Element types: a) 3 node triangle b) 4 node quadrilateral c) 6 node triangle d) 8 node quadrilateral [68] 

 

3.3.3.1 Mesh analysis and convergence test  

A Quadrilateral dominant mesh with midside nodes was selected for the model because of its model 

flexibility and accuracy. The ANSYS Workbench mesh metric tool was used for controlling shape 

parameters of the elements to ensure the quality of the generated mesh. It is generally recommended 

to use a finer mesh to obtain stresses than for displacements because the stress and strain are 

obtained from derivative of the displacement gradients [52, 69].  

A mesh convergence study was made with the linear-elastic material model to determine the 

necessary element count to describe the stresses. For the convergence test the load case with internal 

pressure of 𝑃𝑖=12 MPa was used. First the body mesh was established to determine the necessary 

amount of through thickness elements for the pressure vessel. The maximum von Mises stress through 

the nozzle and pressure vessel wall were both included in the body mesh convergence test. The 

locations from where maximum von Mises stresses were obtained are given in Figure 47 and the result 

from the test is given in Table 19.  

 

Figure 47. Through wall thickness path for nozzle and the pressure vessel wall 

 

Table 19. Body mesh convergence test  

Mesh size [mm] 
Cylinder wall Nozzle wall 
𝝈𝑽𝑴 [MPa] 𝝈𝑽𝑴 [MPa] 

25 50.976 46.258 
20 50.978 47.141 
15 51.225 48.739 
10 51.367 49.369 
5 51.428 49.698 
4 51.438 49.779 
3 51.446 49.887 
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For the body mesh, an element size of 3 mm seemed sufficient. This corresponded to eight elements 

through the nozzle thickness and fifteen elements through the wall thickness of the pressure vessel. 

Once the body mesh had been established, mesh refinement was made at the notches where stress 

concentrations were present since large stress gradients require a finer mesh. The lowermost notch 

on the inside of the cylinder had the largest stress and was used for the mesh refinement convergence 

test.  

Table 20. Mesh convergence for notch 

Edge Mesh Size 
[mm] 

Total no. of 
elements 

Total no. of 
nodes 

Lower notch 
𝝈𝑽𝑴 [MPa] 

3 5509 17298 121.27 
2 5669 17792 121.71 
1.5 5826 18283 121.86 
1 6095 19130 121.97 
0.5 7088 22211 122.01 
0.25 8845 27666 122.07 
0.2 9660 30203 122.07 

 

Since the body mesh elements were already small there were only slight change of notch stress as the 

notch elements were refined as seen in Table 20. However, the stress seemed to stabilize for an edge 

size of 0.5 mm which were therefore chosen for the analysis. This resulted in a total count of 7088 

elements and 22211 nodes for the model.  

 

 

Figure 48. Mesh refinement of lower inside notch with edge mesh 0.5mm 

 

 

3.3.4 Model verification  

The purpose of the analysis is to obtain physical stress quantities and the simulation should represent 

the physics of the object being modelled. To verify the model setup and boundary conditions and to 

check for numerical error, the stresses from the linear-elastic numerical analysis were compared to 

stresses obtained with analytical calculations. Since stresses are triaxial in thick walled cylinders, Lamé 

equations were used to obtain the analytical solutions. The same through thickness locations in Figure 

47 that was used for the mesh convergence test was also used to obtain the numerical solutions for 

the numerical-analytical stress comparison. The locations for the comparison were chosen to avoid the 

effect from stress concentrations.  

The numerical and analytical comparison of through thickness hoop stress, radial stress, axial stress 

and von Mises stress are plotted in Figure 49. For the pressure vessel wall (path A1-A2) there was 
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almost no difference between the analytical and numerical solutions but for the nozzle (path B1-B2) 

the two methods did not give equal results because of stress concentrations too close to the path. 

With the result from the comparison it was assumed that the set up for the numerical model had been 

done correctly. 

 

 

3.4 Protection against plastic collapse and local failure   

To obtain a realistic example for the numerical studies, the pressure vessel was checked for global 

stability and ductility failures according to the numerical elastic-plastic analysis procedure in ASME VIII-

2 [59]. It should however be mentioned that this procedure is not approved by ASME for design in the 

creep range when materials are governed by time-dependent properties [59] as mentioned in the 

Chapter 2.8.1.3.  

The elastic-plastic procedure requires the use of the same true stress-strain curve as previously 

presented. When checking the global stability of a component there are two acceptance criteria in 

ASME. A global criterion, which concerns the protection against global collapse and a service criteria 

to check for limits such as defection that may cause operational concerns. Since no service limits had 

been specified for the pressure vessel only the global collapse criteria was considered.  

For protection against global collapse ASME uses the concept of Load and Resistance Factor Design 

(LRFD) instead of determining the actual collapse load which is defined as the load that causes overall 

structural instability to the component. If the solution converges for the applied factored loading 

condition the component is considered stable. LRFD is also used to ensure that the design is safe from 

local failure. The maximum loading condition in Table 18 was considered for the global and local failure 

check. Due to the factored loads the effect of gravity could no longer be neglected and standard earth 

gravity 9.806.6 m/s² was considered for the dead weight of the pressure vessel. The factored loads 

that were used to check for global and local failure are given by Eq. 3.13 and Eq. 3.14 respectively.  

 2.4(𝑃 + 𝑃𝑆 + 𝐷) Eq. 3.13 

 

 1.7(𝑃 + 𝑃𝑆 + 𝐷) Eq. 3.14 

 

Where 𝑃 represents the design pressure, 𝑃𝑆 the static head from liquid or bulk materials, which were 

neglected due to the previous assumption that pressure vessel is filled with gas, and 𝐷 is the dead 

Figure 49. Comparison of ANSYS stresses and stresses calculated with Lamé equations 
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weight of the pressure vessel. Figure 50 shows the applied loads and boundary conditions that were 

considered for the global and local failure check. 

 

 

Figure 50. Applied loads and constraints for analysis of a) global collapse and b) local failure. 

 

The solution converged in the elastic-plastic analysis under the applied factored loads in Eq. 3.13 and 

thus the pressure vessel was considered stable and protected against plastic collapse. 

For protection against local failure all points of the component were checked with the following strain 

requirement 

 𝜀𝑝𝑒𝑞 + 𝜀𝑐𝑓 ≤ 𝜀𝐿 Eq. 3.15 

 

 𝜀𝐿 = 𝜀𝐿𝑢 ∙ 𝑒𝑥𝑝 [− (
𝛼𝑠𝑙

1 +𝑚2
) ({

𝜎1 + 𝜎2 + 𝜎3
3𝜎𝑉𝑀

} −
1

3
)] Eq. 3.16 

 

Where 𝜀𝑝𝑒𝑞 is the equivalent plastic strain, 𝜀𝑐𝑓 is the forming strain which is assumed to be zero and 

the 𝜀𝐿 is the triaxial limiting strain. The quantities 𝜀𝐿𝑢=𝑚2=0.4457,  𝛼𝑠𝑙=0.6 were obtained from ASME 

VIII-2 Table 5.7 [59]. With the forming strain being zero the strain requirement 𝜀𝑝𝑒𝑞 𝜀𝐿⁄ ≤ 1 were 

evaluated for all points in the model. With the factored load from Eq. 3.14 a maximum ratio of 

𝜀𝑝𝑒𝑞 𝜀𝐿⁄ =0.00747 was obtained from the analysis and the pressure vessel had fulfilled the local failure 

requirements.  
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3.5 Equivalent stresses for remaining creep life evaluation 

Stresses for the creep life evaluations were obtained from both the linear-elastic and the elastic plastic 

stress analysis. To correlate the triaxial stress state to the uniaxial creep data both the classical 

equivalent stress criterions, the mixed criterion with 𝛼 and 𝛽 constants and Huddleston’s criterion 

with universal constants were used. These are given in Table 21 with their corresponding material 

parameters. Stresses were obtained from the analysis by defining user defined equations in ANSYS.  

The maximum stress occurred at the lowermost notch on the inside of the pressure vessel. This was 

also the point that was evaluated with the different stress criterions. The stress distribution from the 

different criterions obtained with the elastic analysis is given in Figure 51 and the stress distributions 

for the same stress criterions but obtained with the elastic-plastic analysis are given in Figure 52. 

 

Table 21. Equivalent stresses for creep life evaluation 

Stress type  Symbol  Material parameter  Equation 
No.  

Von Mises 𝜎𝑉𝑀  N/A Eq. 2.14 

Tresca 𝜎𝑇𝑅  N/A Eq. 2.15 

Maximum principal Stress 𝜎𝑀𝑃𝑆  N/A Eq. 2.16 

Mixed criteria 𝜎𝑒𝑞    𝛼=0.8,  Eq. 2.17 

Mixed criteria 𝜎𝑒𝑞   𝛼=0.9,  Eq. 2.17 

Huddleston  𝜎𝐻𝑈𝐷   𝑎=1, 𝑏=0.24 (universal constants) Eq. 2.25 

 

For the mixed criteria in Eq. 2.17, it was assumed that material X8CrNiMoNb 16-16 had an 𝛼 value in 

the range of 0.8 and 0.9 and 𝛽 about 0.2 to 0.1. This is typically the case for materials such as austenitic 

stainless steel and nickel based superalloys [1]. For Huddleston’s equivalent stress the universal 

constants for 𝑎 and 𝑏 for austenitic stainless steel were used. In addition to the above mentioned 

equivalent stress criterions the mixed criterion proposed by the Russian research institute CKTI and 

the principal facet stress were also previously mentioned in Chapter 2.6. These were however not 

considered for the analysis since the mixed CKTI criterion requires the Norton exponent which has not 

been obtained for the selected material and the Principal facet stress cannot be used directly in 

engineering calculations without normalization.     

The stresses obtained from the linear-elastic and elastic-plastic analysis are given in Table 22 and Table 

23 respectively. The corresponding monotonic stress creep-rupture time 𝑡𝐶𝑅𝑆   and the time-to-1% 

strain 𝑡𝑅𝑝1  are also given in the tables. These were obtained from the polynomial Larson-Miller 

parameter fits given in Eq. 3.8 and Eq. 3.9 (chapter 3.2.1.1 ). 
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Table 22. Stress types from linear-elastic analysis from internal pressure P=12 MPa 

Stress type  
Stress value 
[MPa] 

Allowable time 
𝒕𝒇𝑪𝑹𝑺  [h] 

Allowable time 
𝒕𝒇𝑹𝒑𝟏 [h] 

Von Mises, 𝜎𝑉𝑀 122.01 2665 669 
Tresca, 𝜎𝑇𝑅 138.22 1567 347 
Maximum principal Stress, 𝜎𝑀𝑃𝑆 126.24 2311 562 
Mixed criteria, 𝜎𝑒𝑞 , 𝛼=0.8 122.84 2591 646 
Mixed criteria, 𝜎𝑒𝑞 , 𝛼=0.9 122.43 2627 657 
Huddleston, 𝜎𝐻𝑈𝐷 125.76 2349 573 

 

 

Table 23. Stress types from linear elastic-analysis with internal pressure P=8 MPa 

Stress type  
Stress value 
[MPa] 

Allowable time 
𝒕𝒇𝑪𝑹𝑺  [h] 

Allowable time 
𝒕𝒇𝑹𝒑𝟏 [h] 

Von Mises, 𝜎𝑉𝑀 81.34 12690 4289 
Tresca, 𝜎𝑇𝑅 92.147 8035 2511 
Maximum principal Stress, 𝜎𝑀𝑃𝑆 84.162 11220 3715 
Mixed criteria, 𝜎𝑒𝑞 , 𝛼=0.8 81.896 12383 4169 
Mixed criteria, 𝜎𝑒𝑞 , 𝛼=0.9 81.618 12536 4229 
Huddleston, 𝜎𝐻𝑈𝐷 83.843 11376 3776 

 

 

Table 24. Stress types from elastic-plastic analysis with internal pressure P=12 MPa 

Stress type  
Stress value 
[MPa] 

Allowable time 
𝒕𝒇𝑪𝑹𝑺  [h] 

Allowable time 
𝒕𝒇𝑹𝒑𝟏 [h] 

Von Mises, 𝜎𝑉𝑀 114.25 3487 927 
Tresca, 𝜎𝑇𝑅 130.00 2042 482 
Maximum principal Stress, 𝜎𝑀𝑃𝑆 119.47 2907 743 
Mixed criteria, 𝜎𝑒𝑞 , 𝛼=0.8 115.00 3396 898 
Mixed criteria, 𝜎𝑒𝑞 , 𝛼=0.9 114.62 3442 913 
Huddleston, 𝜎𝐻𝑈𝐷 117.94 3065 793 

 

 

Table 25. Stress types from elastic-plastic analysis with internal pressure P=8 MPa 

Stress type  
Stress value 
[MPa] 

Allowable time 
𝒕𝒇𝑪𝑹𝑺  [h] 

Allowable time 
𝒕𝒇𝑹𝒑𝟏 [h] 

Von Mises, 𝜎𝑉𝑀 81.281 12724 4302 
Tresca, 𝜎𝑇𝑅 92.082 8057 2519 
Maximum principal Stress, 𝜎𝑀𝑃𝑆 84.098 11251 3727 
Mixed criteria, 𝜎𝑒𝑞 , 𝛼=0.8 81.836 12416 4182 
Mixed criteria, 𝜎𝑒𝑞 , 𝛼=0.9 81.559 12568 4241 
Huddleston, 𝜎𝐻𝑈𝐷 83.782 11406 3787 
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Figure 51. Stress distribution at the notch obtained with linear-elastic analysis with internal pressure P=12 MPa for a) von 
Mises b) Tresca c) Maximum principal stress d) Huddleston’s stress e) Mixed criteria with α=0.8 and f) Mixed criteria with 
α=0.9 
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Figure 52. Stress distribution at the notch obtained with elastic-plastic analysis with internal pressure P=12 MPa for a) von 
Mises b) Tresca c) Maximum principal stress d) Huddleston’s stress e) Mixed criteria with α=0.8 and f) Mixed criteria with 
α=0.9 
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Almost all stress criteria gave similar stress magnitudes. The maximum von Mises and maximum 

principal stress at the notch had similar maximum values, therefore the mixed criteria with both 𝛼=0.8 

and 𝛼=0.9 were almost equal. Huddleston stress criteria, which is considered a modified version of von 

Mises gave stress values of slightly higher magnitude than von Mises. Had it been compressive strength 

it would most likely had given a lower stress since it predicts higher damage for tensile than 

compressive stresses. The Tresca criterion which is known to be more conservative than von Mises 

criteria distinguished itself from the others and gave higher stress. For the lower pressure 𝑃𝑖=8 MPa 

the difference between the stresses obtained from the linear-elastic and elastic-plastic material model 

were trivial because no plastic strain was present. However, for the higher loading step 𝑃𝑖=12 MPa the 

stresses from the elastic-plastic material model were lower than for the linear-elastic model since 

plasticity and strain hardening was considered. The linear-elastic model assumes stress and strain are 

proportional up to the materials yield point and therefore predicts higher stresses.  

For the remaining life predictions, it was assumed that the time fraction at the first time-step, 𝑡1 𝑡1𝑓⁄  

were 0.3 for both the low-to-high and high-to low load sequences. The remaining life 𝑡2  were 

calculated with the following equations for the Pavlou model and the time fraction rule:  

 

 𝑡2𝑃 = (1 − (
𝑡1
𝑡𝑓1
)

𝑇1 log(𝜎2 𝑝⁄ )
𝑇2 log(𝜎1 𝑝⁄ )

)𝑡𝑓2  Eq. 3.17 

 

 𝑡2𝑇𝐹𝑅 = (1 −
𝑡1
𝑡𝑓1
) 𝑡𝑓2  

Eq. 3.18 
 
 

 

The percental difference in remaining life between the two models was calculates by: 

 

 ∆𝑡2% =
𝑡2𝑃 − 𝑡2𝑇𝐹𝑅

𝑡2𝑃
∙ 100% Eq. 3.19 
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4 RESULT  

The following results for the predicted remaining life 𝑡2 were computed with Eq. 3.17 for the nonlinear 

Pavlou creep damage model 𝑡2𝑃  and with Eq. 3.18 for the time fraction rule 𝑡2𝑇𝐹𝑅 . Both the time 

difference ∆𝒕𝟐 and percental difference between the models are also given in the in the results. 

4.1 Remaining creep rupture life of pressure vessel  

Table 26. Remaining creep rupture life from linear-elastic analysis for L-H type of loading  

Stress type 
∆𝝈 

[MPa] 

Remaining Creep Rupture life, 𝒕𝟐𝑪𝑹𝑺  
∆𝒕𝟐𝑪𝑹𝑺  

[h] 
∆𝒕𝟐𝑪𝑹𝑺% Nonlinear Pavlou 

model [h] 
Time fraction 
rule [h] 

Von Mises, 𝜎𝑉𝑀 40.7 1216 1865 -649 -53.4 
Tresca, 𝜎𝑇𝑅 46.1 619 1097 -477 -77.1 
Maximum principal Stress, 𝜎𝑀𝑃𝑆 42.1 1022 1618 -596 -58.3 
Mixed criteria, 𝜎𝑒𝑞 , 𝛼=0.8 40.9 1176 1814 -638 -54.3 
Mixed criteria, 𝜎𝑒𝑞 , 𝛼=0.9 40.8 1196 1839 -644 -53.8 
Huddleston, 𝜎𝐻𝑈𝐷 41.9 1043 1644 -601 -57.7 

 

Table 27. Remaining creep rupture life from linear-elastic analysis for H-L type of loading  

Stress type 
∆𝝈 

[MPa] 

Remaining Creep Rupture life, 𝒕𝟐𝑪𝑹𝑺  
∆𝒕𝟐𝑪𝑹𝑺  

[h] 
∆𝒕𝟐𝑪𝑹𝑺% Nonlinear Pavlou 

model [h] 
Time fraction 
rule [h] 

Von Mises, 𝜎𝑉𝑀 40.7 11514 8883 2630 22.8 
Tresca, 𝜎𝑇𝑅 46.1 7585 5625 1960 25.8 
Maximum principal Stress, 𝜎𝑀𝑃𝑆 42.1 10283 7854 2429 23.6 
Mixed criteria, 𝜎𝑒𝑞 , 𝛼=0.8 40.9 11257 8668 2589 23.0 
Mixed criteria, 𝜎𝑒𝑞 , 𝛼=0.9 40.8 11385 8775 2610 22.9 
Huddleston, 𝜎𝐻𝑈𝐷 41.9 10414 7963 2451 23.5 

 

Table 28. Remaining creep rupture life from plastic analysis for L-H type of loading  

Stress type 
∆𝝈 

[MPa] 

Remaining Creep Rupture life, 𝒕𝟐𝑪𝑹𝑺  
∆𝒕𝟐𝑪𝑹𝑺  

[h] 
∆𝒕𝟐𝑪𝑹𝑺% Nonlinear Pavlou 

model [h] 
Time fraction 
rule [h] 

Von Mises, 𝜎𝑉𝑀 33.0 1765 2441 -676 -38.3 
Tresca, 𝜎𝑇𝑅  37.9 931 1429 -499 -53.6 
Maximum principal Stress, 𝜎𝑀𝑃𝑆 35.4 1416 2035 -619 -43.7 
Mixed criteria, 𝜎𝑒𝑞 , 𝛼=0.8 33.2 1712 2377 -665 -38.8 
Mixed criteria, 𝜎𝑒𝑞 , 𝛼=0.9 33.1 1739 2409 -671 -38.6 
Huddleston, 𝜎𝐻𝑈𝐷 34.2 1518 2145 -627 -41.3 

 

Table 29. Remaining creep rupture life from plastic analysis for H-L type of loading  

Stress type 
∆𝝈 

[MPa] 

Remaining Creep Rupture life, 𝒕𝟐𝑪𝑹𝑺  
∆𝒕𝟐𝑪𝑹𝑺  

[h] 
∆𝒕𝟐𝑪𝑹𝑺% Nonlinear Pavlou 

model [h] 
Time fraction 
rule [h] 

Von Mises, 𝜎𝑉𝑀 33.0 11094 8906 2188 19.7 
Tresca, 𝜎𝑇𝑅 37.9 7313 5640 1673 22.9 
Maximum principal Stress, 𝜎𝑀𝑃𝑆 35.4 9969 7876 2093 21.0 
Mixed criteria, 𝜎𝑒𝑞 , 𝛼=0.8 33.2 10844 8691 2152 19.8 
Mixed criteria, 𝜎𝑒𝑞 , 𝛼=0.9 33.1 10967 8798 2170 19.8 
Huddleston, 𝜎𝐻𝑈𝐷 34.2 10036 7984 2052 20.4 
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4.2 Remaining life to 1% strain of pressure vessel  

 

Table 30. Remaining life until 1% strain from linear-elastic analysis for L-H type of loading  

Stress type 
∆𝝈 

[MPa] 

Remaining Creep Rupture life, 𝒕𝟐𝑹𝒑𝟏  
∆𝒕𝟐𝑹𝒑𝟏 

[h] 
∆𝒕𝟐𝑹𝒑𝟏% Nonlinear Pavlou 

model [h] 
Time fraction 
rule [h] 

Von Mises, 𝜎𝑉𝑀 40.7 305 468 -163 -53.4 
Tresca, 𝜎𝑇𝑅 46.1 137 243 -106 -77.1 
Maximum principal Stress, 𝜎𝑀𝑃𝑆 42.1 248 393 -145 -58.3 
Mixed criteria, 𝜎𝑒𝑞 , 𝛼=0.8 40.9 293 452 -159 -54.3 
Mixed criteria, 𝜎𝑒𝑞 , 𝛼=0.9 40.8 299 460 -161 -53.8 
Huddleston, 𝜎𝐻𝑈𝐷 41.9 254 401 -147 -57.7 

 

Table 31. Remaining life until 1% strain from linear-elastic analysis for H-L type of loading  

Stress type 
∆𝝈 

[MPa] 

Remaining Creep Rupture life, 𝒕𝟐𝑹𝒑𝟏  
∆𝒕𝟐𝑹𝒑𝟏 

[h] 
∆𝒕𝟐𝑹𝒑𝟏% Nonlinear Pavlou 

model [h] 
Time fraction 
rule [h] 

Von Mises, 𝜎𝑉𝑀 40.7 3892 3003 889 22.8 
Tresca, 𝜎𝑇𝑅 46.1 2370 1758 612 25.8 
Maximum principal Stress, 𝜎𝑀𝑃𝑆 42.1 3405 2601 804 23.6 
Mixed criteria, 𝜎𝑒𝑞 , 𝛼=0.8 40.9 3790 2918 871 23.0 
Mixed criteria, 𝜎𝑒𝑞 , 𝛼=0.9 40.8 3840 2960 880 22.9 
Huddleston, 𝜎𝐻𝑈𝐷 41.9 3456 2643 813 23.5 

 

Table 32. Remaining life until 1% strain from elastic-plastic analysis for L-H type of loading  

Stress type  
∆𝝈 

[MPa] 

Remaining Creep life, 𝒕𝟐𝑹𝒑𝟏  
∆𝒕𝟐𝑹𝒑𝟏 

[h] 
∆𝒕𝟐𝑹𝒑𝟏% Nonlinear Pavlou 

model [h] 
Time fraction 
rule [h] 

Von Mises, 𝜎𝑉𝑀 33.0 309 464 -154 -49.8 
Tresca, 𝜎𝑇𝑅 37.9 220 337 -118 -53.6 
Maximum principal Stress, 𝜎𝑀𝑃𝑆 35.4 362 520 -158 -43.7 
Mixed criteria, 𝜎𝑒𝑞 , 𝛼=0.8 33.2 453 629 -176 -38.8 
Mixed criteria, 𝜎𝑒𝑞 , 𝛼=0.9 33.1 461 639 -178 -38.6 
Huddleston, 𝜎𝐻𝑈𝐷 34.2 393 555 -162 -41.3 

 

Table 33. Remaining life until 1% strain from elastic-plastic analysis for H-L type of loading  

Stress type  
∆𝝈 

[MPa] 

Remaining Creep life, 𝒕𝟐𝑹𝒑𝟏  
∆𝒕𝟐𝑹𝒑𝟏 

[h] 
∆𝒕𝟐𝑹𝒑𝟏% Nonlinear Pavlou 

model [h] 
Time fraction 
rule [h] 

Von Mises, 𝜎𝑉𝑀 33.0 3752 3012 740 19.7 
Tresca, 𝜎𝑇𝑅 37.9 2286 1763 523 22.9 
MPS 35.4 3302 2609 693 21.0 
Mixed criteria, 𝜎𝑒𝑞 , 𝛼=0.8 33.2 3652 2927 725 19.8 
Mixed criteria, 𝜎𝑒𝑞 , 𝛼=0.9 33.1 3701 2969 732 19.8 
Huddleston, 𝜎𝐻𝑈𝐷 34.2 3332 2651 681 20.4 
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5 DISCUSSION 

The remaining life predictions obtained with the two damage models gave very different results. The 

nonlinear Pavlou damage model predicted shorter remaining life for the second load step 𝑡2 for low-

to-high loading sequences and longer remaining life for the high-to-low loading sequences when 

compared to the life fraction rule.  

The percental differences  ∆𝑡2𝐶𝑅𝑆% and ∆𝑡2𝑅𝑝1%  for the rupture life and for the remaining life to 1% 

strain were equal for the same stresses, which shows that the allowable time 𝑡𝑓𝐶𝑅𝑆  and 𝑡𝑓𝑅𝑝1  for the 

corresponding stress and temperature level has no effect on the discrepancies between the remaining 

life predictions of the two models. The difference between the predictions were solely dependent on 

the stress difference between the first and second load step  ∆𝜎 and the larger difference in stress, the 

larger the difference between the two models remaining life predictions. At most, the time faction rule 

predicted a remaining life that was 77.1% longer compared to the prediction made with nonlinear 

model. Due to the short allowable time 𝑡𝑓𝐶𝑅𝑆  and 𝑡𝑓𝑅𝑝1 , this difference did not seem very significant in 

terms of hours. However, the time difference from the predictions would seem much more significant 

for longer allowable time durations.  

The allowable time 𝑡𝑓𝐶𝑅𝑆  and 𝑡𝑓𝑅𝑝1  corresponding to the various stresses at temperature at 700 °C 

were obtained from fitted curves made from data points for creep rupture strength (𝜎𝐶𝑅𝑆) and 1% 

Yield stress (𝜎𝑅𝑝1). The average error between the fitted curves and the actual data was 13.08% for 

the creep rupture strength and 6.19% for the creep resistance. Although this error manifests itself for 

the remaining life it does not affect the percental difference between the predictions of the two 

models, since that was only dependent on the stress difference between the load steps.   

The short rupture life of the pressure vessel was due to the high-temperature and stresses. No 

significant loss of ductility due to long-term operation at elevated temperature is therefore to be 

expected and a ductile rupture behaviour can be assumed. Since the von Mises stress is the controlling 

parameter for ductile ruptures, the von Mises stress criterion, Huddleston criterion which can be 

considered a modified form of the Mises, or one of the mixed criterions most likely is the best to 

correlate the multiaxial rupture to the uniaxial rupture data.  

The strain hardening response in the elastic-plastic analysis caused lower stresses than for the 

corresponding linear-elastic analysis for the loading step with internal pressure 𝑃𝑖=12 MPa. Strain 

hardening also occur in transient creep and the elastic-plastic analysis may have more resemblance to 

an actual creep analysis out of the two material models that were used, since it considers plasticity. 

However, since none of the used material models incorporates time in the analysis, none of them can 

therefore predict actual stress and strain distribution in the creep range since they are time dependent. 

For stress concentrations, like the ones present in the considered notch, time dependent stress 

relaxation and stress redistribution would occur, which can only be taken into consideration with a 

time-dependent material model. Unfortunately, no such analysis could be made since no experimental 

creep data (which is necessary for obtaining temperature dependent constants for the material model) 

were applicable for the selected pressure vessel material. Even if the essential material constants could 

have been obtained to describe the material response for this creep analysis, the model still would 

have been needed to be validated, both for the material and loading history to provide useful 

predictions, since various material models give very different predictions even for the same loading 

history. Most likely this would have required additional creep tests. 
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Potential notch weakening or notch strengthening behaviour could not be obtained for the material 

and has therefore not been considered for the remaining life of the pressure vessel. 

To use a creep damage model for design requires a certain degree of conservatism to be included in 

the life assessment. The time fraction rule is known to be unconservative without the corrections used 

in guidelines and codes. More useful information could have been gained by comparing the nonlinear 

model to for instance ASME-NH which is known to be conservative. This could have given an indication 

on how much adjustment in form of engineering corrections that may be necessary for the nonlinear 

model to always provide conservative predictions. Such a correction could for example have been to 

make an adjustment of the fitting parameter. A comparison with ASME-NH was however not possible 

to make in this study since the nonlinear model requires variable step-load experimental data to obtain 

the fitting parameter. Such data were unfortunately not available for any of the permitted ASME-NH 

materials.  

Another aspect of the ASME-NH procedure to consider for the nonlinear creep damage assessment is 

use of the elastic analysis procedure to approximate the time-dependent stress and strain 

distributions. Such an elastic procedure would make the nonlinear model more convenient to use in 

design applications because the abovementioned difficulties associated with inelastic time-dependent 

analysis would be avoided.  

The need of necessary material data has been mentioned many times throughout this study. Other 

more sophisticated models than the time fraction rule has previously been proposed for predicting 

creep damage but none of them has yet gained universal acceptance like the time fraction rule. One 

reason for this is the additional material creep data that is necessary to obtain material specific 

constants for the creep models. Most creep and rupture data are obtained from constant load and 

constant temperature creep tests and it is typically undesirable to use creep models that require 

additional material testing since this entails extra costs in addition to being time consuming. The fitting 

parameter in the Pavlou model seems to be a crucial factor to obtain accurate predictions. The 

disadvantage of the fitting parameter is however that it can only be obtained from variable stepped-

load creep tests which is not a standard creep testing procedure.   

For the nonlinear model, there have been various opinions whether to use the fitting parameter or the 

creep endurance limit and it was pointed out by Grell that a fitting parameter would limit the model 

to design stresses below the fitted value. Although this is true it may not be an issue when the 

nonlinear model is used for practical applications. As for the material used in this study the fitting 

parameter was significantly larger than the yield stress and stresses of that magnitude would limit the 

service life of the pressure vessel significantly. Although there are elevated temperature components 

that are designed for short time service, many components are also designed for longer service and 

for those, stresses must be kept in the lower range and the fitting parameter would then not be a 

limiting factor.  

In the present study, two tests have indicated that the fitting parameter should be used instead of the 

creep endurance limit for the nonlinear creep damage model. When the creep resistance for 1% strain 

within 10 000 and 100 000 hours was used as a creep endurance limit for the material X8CrNiMoNb-

16-16 the predicted results deviated grossly from the experimental data. Secondly, the isodamage lines 

which were plotted by using the stepped-load experimental data for X8CrNiMoNb-16-16 and Al-99.98 

showed that the isodamage lines intersected the rupture curve (damage state 100%) at the value of 

the fitting parameter. This confirmed Pavlou’s hypothesis of isodamage lines all intersecting the 

rupture curve at a common point.  However, for the Pavlou creep damage model to be more 

convenient for design applications, a simpler way of establishing the fitting parameter than having to 
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perform variable step-load creep tests might be necessary. Perhaps further understanding of the 

physical meaning behind the fitting parameter could be useful for finding alternative ways for it to be 

determined. Another important aspect of the fitting parameter that deserves more attention, is its 

sensitivity to temperature change. No such sensitivity studies have yet been made. If it does not change 

significantly for various temperatures, the same fitting parameter could possibly also be used under 

variable temperature conditions. 

So far, the nonlinear creep model has only been tested for few load cycles under conditions where 

creep damage is predominant. Whether the nonlinear model considers creep-fatigue interaction or to 

what degree fatigue damage is accounted for requires further analysis and testing for any conclusions 

to be made. A bilinear creep-fatigue interaction diagram is used to combine the linear summation of 

creep and fatigue damage but since the Pavlou model is nonlinear such a diagram cannot be used if 

the creep model were to be combined with a fatigue model. A different damage criteria for creep-

fatigue would then have to be determined.  

The understanding of the creep phenomenon has increased significantly over the years. However, 

there are still uncertainties in creep life assessments due to difficulty of generalizing the creep 

response for various materials and load histories. Therefore, a creep analysis to determine stress and 

strain distribution may not always lead to accurate predictions. The elastic analysis in in ASME-NH is 

typically considered more convenient than inelastic methods for approximating stress and strain 

distribution and therefore many times it is the preferred method amongst engineers. A similar elastic 

approach to determine the stress distribution could therefore be beneficial also for the Pavlou creep 

damage model. Approximations and generalizations used in life prediction should also include a certain 

level of conservatism to account for uncertainties. This certainly is the case in ASME-NH which have 

included several load- and strain-limits checks to ensure safe designs. For the Pavlou method to be 

used in elevated temperature design applications similar safety measures must be considered.  

To summarize, confirmed by experimental data in Pavlou’s research [16] and re-demonstrated here, 

the Pavlou model has accurately predicted creep rupture life for both Al-99.98 and X8CrNiMoNb-16-

16. It has also in other research given more accurate predictions than the time fraction rule, both in its 

modified and original form, by considering the sequence from the load history in the life assessment. 

The remaining life calculations with the nonlinear model are also almost as simple to perform as for 

the life fraction method which seems to be a crucial factor for a method to gain acceptance in 

engineering applications of elevated temperature components. However, further testing and 

validation for other materials and load histories are necessary before it can be applied for life 

prediction of elevated temperature components.   
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6 CONCLUSION 

In this thesis, the nonlinear cumulative Pavlou creep damage model has been studied and compared 

to the linear time fraction rule. The comparison of two models was made by studying the creep life of 

a pressure vessel subjected to two-step variable loading at different load sequences. The following 

observations listed below are conclusions of the present work 

1. The isodamage lines plotted in Figure 36 using the stepped-load experimental data from other 

research showed that the isodamage lines all intersected with the rupture curve (𝐷=100%) at 

the value of the fitting parameter. This indicates that Pavlou’s hypothesis of isodamage lines 

all intersecting at a common point is correct. It also suggests that the fitting parameter should 

be used instead of the creep endurance limit in the nonlinear creep damage model. 

2. Stress cycling cause larger deviation than temperature cycling between the time fraction rule 

and the Pavlou damage model. The percental difference in remaining life between the two 

models are only dependent on the stress difference between the loading steps 𝜎1  and 𝜎2 

and/or the temperature difference ∆𝑇 

3. Pavlou’s creep damage model predicts a longer remaining life for the high-low load sequence 

and predicts a more conservative remaining life for the low-high load sequence compared to 

predictions with the fraction rule.  

6.1 Recommendations for further work   

Further knowledge of how the model works is required for further use of the nonlinear model in design 

applications of high-temperature components. The following list contains suggestions of areas for 

further work which could help to gain a better understanding of the nonlinear model. 

1. Investigate if there are alternative ways to obtain the fitting parameter.  

Further understanding of the physical meaning behind the fitting parameter could lead to a 

more simple way to obtain it, without the use of experimental creep data from variable step 

loading. This could make the Pavlou creep damage model more convenient to use in design 

applications since most available experimental material creep data are obtained from constant 

load and temperature test.  

2. Study the temperature dependence of the fitting parameter.  

For the nonlinear creep damage model to be used for predicting creep life under variable 

temperatures, the fitting parameter cannot be too sensitive to temperature change. This can 

be determined by obtaining the fitting parameter from variable step-loading creep tests 

performed at various temperatures. The significance a potential change of the fitting 

parameter might have on the remaining life predictions should also be considered. 

3. Studying the effect of creep-fatigue interaction  

Better understanding on how the nonlinear damage model considers creep-fatigue interaction 

is necessary, especially when multiple load cycles are considered in the life assessment. 

Further studies with the Pavlou creep damage model for multiple load cycles should therefore 

be investigated.  

4. Investigate how to incorporate safety factors in the nonlinear damage assessment 

Evaluate the nonlinear Pavlou creep model against current standards used for elevated 

temperature design (e.g. ASME-NH). This could give an indication of how much adjustment in 

form of engineering corrections that may be necessary for the nonlinear model to always 

provide conservative predictions. 
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5. Study possibility for improvement of the cumulative nonlinear creep damage model  

Briefly mentioned in Chapter 2.5 is the more recent one-parameter nonlinear fatigue damage 

accumulation model proposed by Rege and Pavlou [45] published in the International Journal 

of Fatigue in 2017. In their work, they suggest that the fatigue isodamage lines can be replaced 

with nonlinear isodamage curves. An investigation whether a similar approach can be used for 

the Pavlou creep damage model could potentially lead to an improvement of the creep life 

assessment. 
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APPENDIX A – Material data for X8CrNiMoNb 16-16 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Material designation:      X8CrNiMoNb 16-16 
Standard / Country:         Germany/DIN 
Subgroup: DIN 17460 (1992) High temperature austenitic steel plate and sheet, 

cold and hot rolled strip, bars and forgings 
 – Technical Delivery conditions; replaced by: 
DIN EN 10028-7:2000; DIN EN 10222-5:2000; DIN EN 10302:2002 

  

Mechanical properties  

 

Property  Symbol  Value  Unit  Note  
Bars, forgings, plates, sheets strips; Solution annealed; (long.) 

Yield stress Rp0.2 ≥ 215 MPa  

Tensile stress Rm 530-690 MPa  

Elongation A ≥ 35 %  

Impact Kv/ku ≥ 36 J ISO-V 
Bars, forgings, plates, sheets strips; Solution annealed; (trans.) 

Yield stress Rp0.2 ≥ 215 MPa  

Tensile stress Rm 530-690 MPa  

Elongation A ≥ 22 %  

Impact Kv/ku ≥ 45 J ISO-V 

 

Typical physical properties  
 

Property  Symbol Value  Unit  

Density  ρ 7.86 Kg/dm3 

Modulus of elasticity  E 190-210 GPa 

Poisson’s coefficient  ν 0.27-0.30  

 

 

 

 

 

 

 

 

 

 

 

 

 



High-temperature material properties 

 

Property  T(°C) Value  Unit 

Modulus of elasticity, E  20 198 GPa 

100 192 GPa 

200 183 GPa 

300 175 GPa 

400 167 GPa 

500 159 GPa 

600 150 GPa 

700 141* GPa 

Mean coefficient of thermal 
expansion between 20 (°C) and  

100 16.3 10-6/(°C) 

200 16.9 10-6/(°C) 

300 17.3 10-6/(°C) 

400 17.8 10-6/(°C) 

500 18.2 10-6/(°C) 

600 18.5 10-6/(°C) 

700 18.8* 10^-6/(°C) 

Yield stress, Rp0.2 20 215 MPa 

100 195 MPa 

200 177 MPa 

300 157 MPa 

400 147 MPa 

500 137 MPa 

550 137 MPa 

600 132 MPa 

700 127* MPa 

Thermal conductivity  20 16 W/m·°C 

Specific thermal capacity 20 450 J/kg·°C 

Specific electrical resistivity  20 0.7 Ω mm2/m 

Density  20 8 Kg/dm3 
*  Material property at 700 ° C obtained by linear interpolation  
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Creep properties  

 

Material designation:      X8CrNiMoNb-16-16 
Standard / Country:         Germany/DIN 
Subgroup: DIN EN 10088-1 (2014) Stainless steels – Part 1: List of stainless steels  

Austenitic creep resisting steels with Mo 

 

Temperature 
 (°C) 

1% Yield Stress 
Rp1 (MPa) 

Creep Rupture 
Strength 

CRS (MPa) 
Temperature 

 (°C) 

1% Yield 
Stress 

Rp1 (MPa) 

Creep Rupture 
Strength 

CRS (MPa) 

10000 h 200000 h 

580 177 270 580 - 162 

590 167 246 590 - 147 

600 157 225 600 - 132 

610 147 205 610 - 118 

620 137 186 620 - 103 

630 128 169 630 - 91 

640 118 152 640 - 80 

650 108 137 650 - 71 

660 98 124 660 - 63 

670 89 111 670 - 55 

680 80 100 680 - 49 

690 72 91 690 - 42 

700 64 83 700 - 35 

710 58 77 710 - 29 

720 53 70 720 - 24 

730 47 64 730 - 20 

740 44 59 740 - 17 

750 42 54 750 - 15 

100000 h    

580 128 186    

590 118 169    

600 108 152    

610 98 136    

620 88 122    

630 79 107    

640 72 94    

650 64 83    

660 56 75    

670 49 66    

680 43 59    

690 38 51    

700 34 44    

710 29 37    

720 26 31    

730 22 26    

740 19 23    

750 17 20    

 

 

 



Error from chosen polynomial fits (Larson-Miller parameter) 

 log σCRS Polynomial fit log σRp1% Polynomial fit 

T [°C] 
σCRS 
[MPa] 

t [h] tCRS fit [h] error % σRp1%[MPa] t [h] tCRS fit [h] error % 

580 270 10000 6.47E+03 35.307 177 10000 1.11E+04 10.644 

590 246 10000 8.13E+03 18.720 167 10000 1.06E+04 6.487 

600 225 10000 9.33E+03 6.707 157 10000 1.03E+04 2.838 

610 205 10000 1.05E+04 4.692 147 10000 9.99E+03 0.095 

620 186 10000 1.16E+04 15.581 137 10000 9.79E+03 2.125 

630 169 10000 1.22E+04 22.293 128 10000 9.28E+03 7.220 

640 152 10000 1.32E+04 32.259 118 10000 9.31E+03 6.911 

650 137 10000 1.38E+04 37.610 108 10000 9.50E+03 5.018 

660 124 10000 1.37E+04 37.370 98 10000 9.89E+03 1.059 

670 111 10000 1.41E+04 41.002 89 10000 1.01E+04 0.531 

680 100 10000 1.38E+04 38.405 80 10000 1.05E+04 4.837 

690 91 10000 1.29E+04 28.935 72 10000 1.07E+04 6.690 

700 83 10000 1.18E+04 17.995 64 10000 1.12E+04 12.052 

710 77 10000 1.01E+04 0.998 58 10000 1.08E+04 7.614 

720 70 10000 9.23E+03 7.672 53 10000 9.93E+03 0.653 

730 64 10000 8.23E+03 17.704 47 10000 1.01E+04 0.901 

740 59 10000 7.11E+03 28.863 44 10000 8.46E+03 15.364 

750 54 10000 6.27E+03 37.295 42 10000 6.67E+03 33.340 

580 186 100000 8.04E+04 19.633 128 100000 9.67E+04 3.329 

590 169 100000 8.34E+04 16.637 118 100000 9.44E+04 5.587 

600 152 100000 8.85E+04 11.487 108 100000 9.39E+04 6.081 

610 136 100000 9.35E+04 6.477 98 100000 9.55E+04 4.451 

620 122 100000 9.50E+04 4.998 88 100000 9.99E+04 0.077 

630 107 100000 1.04E+05 3.930 79 100000 1.02E+05 2.180 

640 94 100000 1.10E+05 9.737 72 100000 9.60E+04 3.970 

650 83 100000 1.11E+05 10.985 64 100000 9.87E+04 1.253 

660 75 100000 1.01E+05 1.298 56 100000 1.06E+05 5.857 

670 66 100000 1.01E+05 0.534 49 100000 1.11E+05 11.005 

680 59 100000 9.32E+04 6.766 43 100000 1.13E+05 13.045 

690 51 100000 9.54E+04 4.564 38 100000 1.11E+05 10.695 

700 44 100000 9.67E+04 3.348 34 100000 1.03E+05 2.911 

710 37 100000 1.04E+05 3.934 29 100000 1.10E+05 10.097 

720 31 100000 1.11E+05 10.733 26 100000 9.98E+04 0.224 

730 26 100000 1.16E+05 15.555 22 100000 1.06E+05 6.184 

740 23 100000 1.03E+05 3.489 19 100000 1.05E+05 5.090 

750 20 100000 9.63E+04 3.681 17 100000 9.37E+04 6.322 

580 162 200000 1.75E+05 12.728 - 200000 - - 

590 147 200000 1.74E+05 13.162 - 200000 - - 

600 132 200000 1.78E+05 11.209 - 200000 - - 

610 118 200000 1.81E+05 9.604 - 200000 - - 

620 103 200000 1.99E+05 0.451 - 200000 - - 

630 91 200000 2.03E+05 1.355 - 200000 - - 

640 80 200000 2.06E+05 3.024 - 200000 - - 

650 71 200000 1.98E+05 0.774 - 200000 - - 

660 63 200000 1.89E+05 5.674 - 200000 - - 

670 55 200000 1.87E+05 6.471 - 200000 - - 

680 49 200000 1.71E+05 14.366 - 200000 - - 

690 42 200000 1.75E+05 12.423 - 200000 - - 

700 35 200000 1.91E+05 4.316 - 200000 - - 

710 29 200000 2.08E+05 3.988 - 200000 - - 

720 24 200000 2.22E+05 11.122 - 200000 - - 

730 20 200000 2.29E+05 14.596 - 200000 - - 

740 17 200000 2.22E+05 10.944 - 200000 - - 

750 15 200000 1.95E+05 2.672 - 200000 - - 

   Average error 13.075   Average error 6.187 
   Max error  41.002   Max error 33.340 
   Min error  0.451   Min error 0.077 

 

 



True Stress strain curve  

 

Ture stress-strain curve according to ASME VIII Division 2 Annex 3-D 
Material: X8CrNiMoNb-1-16 
Temperature: 700 °C 
 

Yield strength at temperature σys 127 MPa 

Ultimate strength temperature σuts 313 MPa 

True ultimate tensile stress σuts,t 488.7690519 MPa 

Young's modulus at temperature Ey 141000 MPa 

Engineering offset strain εys 0.002 - 

Stress-strain curve fitting parameter εp 0.00002 - 

Yield-tensile ratio R 0.405750799 - 

Curve fitting exponent m1 0.196342433 - 

Curve fitting exponent m2 0.445686901 - 

Material parameter K 0.292700721 - 

Curve fitting constant for the elastic region A1 431.200226 MPa 

Curve fitting constant for the plastic region A2 700.6909187 MPa 

 
 

True stress True strain  

True stress 
strain curve 
fitting 
parameter 

True plastic 
strain in the 
macrostrain 
region 

True plastic 
strain in the 
micro strain 
region 

True strain 
in the micro 
region 

True strain 
in the 
macro 
region 

σt εt (σt) H (σt) ε2 (σt) ε1 (σt) γ1 (σt) γ2 (σt) 

0 0 -6.66549 0 0 0 0 

10 7.093E-05 -6.29813 7.23E-05 4.72E-09 4.72E-09 2.45E-10 

20 0.000142 -5.93076 0.000342 1.61E-07 1.61E-07 2.42E-09 

30 0.0002141 -5.5634 0.00085 1.27E-06 1.27E-06 1.25E-08 

40 0.0002892 -5.19604 0.001622 5.5E-06 5.5E-06 4.97E-08 

50 0.0003719 -4.82868 0.002676 1.72E-05 1.72E-05 1.71E-07 

60 0.0004695 -4.46132 0.004028 4.34E-05 4.34E-05 5.37E-07 

70 0.0005932 -4.09396 0.005693 9.52E-05 9.52E-05 1.58E-06 

80 0.0007596 -3.7266 0.007681 0.000188 0.000188 4.45E-06 

90 0.0009923 -3.35924 0.010005 0.000342 0.000342 1.21E-05 

100 0.001325 -2.99188 0.012673 0.000585 0.000584 3.18E-05 

110 0.0018085 -2.62451 0.015694 0.000951 0.000946 8.2E-05 

113.1 0.0020003 -2.51063 0.016704 0.001096 0.001089 0.000109 

120 0.0025234 -2.25715 0.019078 0.001482 0.001466 0.000207 

130 0.0036094 -1.88979 0.022831 0.002228 0.002178 0.00051 

140 0.0053193 -1.52243 0.026961 0.003249 0.003101 0.001225 

150 0.0081057 -1.15507 0.031475 0.004617 0.0042 0.002842 

160 0.0126859 -0.78771 0.03638 0.006414 0.005314 0.006237 

170 0.0198692 -0.42035 0.041681 0.008734 0.006101 0.012562 

180 0.0298662 -0.05299 0.047384 0.011685 0.006152 0.022438 

190 0.0415898 0.314375 0.053495 0.015389 0.005352 0.03489 

200 0.0532843 0.681737 0.06002 0.019984 0.00407 0.047796 

210 0.0639357 1.049098 0.066964 0.025621 0.0028 0.059647 

220 0.0735654 1.416459 0.074331 0.032471 0.001804 0.070201 

230 0.082622 1.78382 0.082127 0.040721 0.001118 0.079873 

240 0.0915273 2.151181 0.090356 0.050578 0.000676 0.08915 

250 0.1005593 2.518542 0.099023 0.062267 0.000402 0.098385 



260 0.1098768 2.885904 0.108132 0.076034 0.000236 0.107797 

270 0.1195647 3.253265 0.117688 0.092148 0.000137 0.117512 

280 0.1296676 3.620626 0.127694 0.110899 7.94E-05 0.127602 

290 0.140209 3.987987 0.138154 0.132601 4.55E-05 0.138107 

300 0.1512021 4.355348 0.149073 0.157593 2.6E-05 0.149048 

310 0.1626547 4.72271 0.160454 0.186236 1.47E-05 0.160441 

320 0.1745723 5.090071 0.172301 0.218922 8.3E-06 0.172294 

330 0.1869592 5.457432 0.184618 0.256068 4.66E-06 0.184614 

340 0.1998193 5.824793 0.197407 0.298117 2.6E-06 0.197405 

350 0.2131561 6.192154 0.210673 0.345546 1.45E-06 0.210672 

360 0.2269728 6.559515 0.224419 0.398857 8E-07 0.224419 

370 0.2412729 6.926877 0.238649 0.458587 4.41E-07 0.238648 

380 0.2560594 7.294238 0.253364 0.525303 2.43E-07 0.253364 

390 0.2713356 7.661599 0.26857 0.599606 1.33E-07 0.26857 

400 0.2871046 8.02896 0.284268 0.68213 7.24E-08 0.284268 

410 0.3033694 8.396321 0.300462 0.773544 3.94E-08 0.300462 

420 0.320133 8.763683 0.317154 0.874555 2.14E-08 0.317154 

430 0.3373983 9.131044 0.334349 0.985904 1.16E-08 0.334349 

440 0.3551682 9.498405 0.352048 1.108372 6.23E-09 0.352048 

450 0.3734455 9.865766 0.370254 1.242779 3.35E-09 0.370254 

460 0.3922331 10.23313 0.388971 1.389983 1.8E-09 0.388971 

470 0.4115337 10.60049 0.4082 1.550885 9.62E-10 0.4082 

480 0.4313499 10.96785 0.427946 1.726427 5.14E-10 0.427946 

488.76905 0.4491533 11.28999 0.445687 1.893184 2.96E-10 0.445687 
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Calculation of true stress-strain curve according to ASME VIII Division 2: Annex 3-D

Material: X8CrNiMoNb-16-16
Temperature: 700 C°

Yield strength at temperature: σys 127 MPa

Ultimate strength temperature: σuts 313 MPa

Young's modulus at temperature: Ey 141000 MPa

Engineering offset strain: εys 0.002

Stress-strain curve fitting parameter: εp 2 10 5

Yield-tensile ratio: R =――
σys

σuts
0.406

Material parameter: K =1.5 R1.5 0.5 R2.5 R3.5 0.293

Curve fitting exponent: m1 =――――――
+ln ((R)) ⎛⎝εp εys⎞⎠

ln
⎛
⎜
⎝
――――
ln ⎛⎝ +1 εp⎞⎠
ln ⎛⎝ +1 εys⎞⎠

⎞
⎟
⎠

0.196

Curve fitting exponent: m2 =0.75 ((1 R)) 0.446

Curve fitting constant for the elastic 
region:

A1 =―――――
σys ⎛⎝ +1 εys⎞⎠

⎛⎝ln ⎛⎝ +1 εys⎞⎠⎞⎠
m1

431.2 MPa

Curve fitting constant for the 
plastic region: 

A2 =―――
σuts e m2

m2
m2

700.691 MPa

True ultimate tensile stress: σuts_t =σuts em2 488.769 MPa

True stress: σt , ‥0 MPa 10 MPa σuts_t

Stress-strain curve fitting 
parameter:

H ⎛⎝σt⎞⎠ 2 ―――――――――
⎛⎝σt ⎛⎝ +σys K ⎛⎝σuts σys⎞⎠⎞⎠⎞⎠

K ⎛⎝σuts σys⎞⎠



True plastic strain in the micro 
strain region:

ε1 ⎛⎝σt⎞⎠
⎛
⎜
⎝
―
σt

A1

⎞
⎟
⎠

――
1

m1

True plastic strain in the 
macrostrain region:

ε2 ⎛⎝σt⎞⎠
⎛
⎜
⎝
―
σt

A2

⎞
⎟
⎠

――
1

m2

True strain in the micro region: γ1 ⎛⎝σt⎞⎠ ―――
ε1 ⎛⎝σt⎞⎠

2
⎛⎝1.0 tanh ⎛⎝H ⎛⎝σt⎞⎠⎞⎠⎞⎠

True strain in the macro region: γ2 ⎛⎝σt⎞⎠ ―――
ε2 ⎛⎝σt⎞⎠

2
⎛⎝ +1.0 tanh ⎛⎝H ⎛⎝σt⎞⎠⎞⎠⎞⎠

Total true strain: εt ⎛⎝σt⎞⎠ ++―
σt

Ey
γ1 ⎛⎝σt⎞⎠ γ2 ⎛⎝σt⎞⎠

True stress-strain curve 
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APPENDIX B – MATLAB Code  
 

 



%==========================================================================
% Pavlou creep damage accumulation model - X8CrNiMoNb-16-16
%==========================================================================
close all;
clear all;

sigma=[150 170];          % Stress, sigma in [MPa]
T=[973 973];              % Temperature T in [K]

% Experimental test data X8CrNiMoNb-16-16
t_r1_test=[0.05 0.10 0.35 0.40 0.44 0.46 0.55 0.88];
t_r2_test=[0.70 0.61 0.21 0.25 0.20 0.21 0.21 0.05];

t_r1=[0:0.01:1];          % time to creep failure ratio t1/tf1

% Fitting parameter
p=10^((-log10(sigma(2))+log10(sigma(1))*T(2)*log10(1-
t_r2_test(1))/(T(1)*log10(t_r1_test(1))))/(log10(1-t_r2_test(1))/
log10(t_r1_test(1))-1))

for k=1:101
  for i=1:1

  % exponent
   q(i)=T(i)*log10(sigma(i+1)/p)/(T(i+1)*log10(sigma(i)/p));

  % remaining life=1-consumed life
    t_r2(k)=1-t_r1(k)^q(i);

  end

end

% plot of remaining life vs. consumed life

figure(1)
hold on
box on
axis square
grid on
scatter(t_r1_test,t_r2_test,'filled')
plot(t_r1,t_r2, 'k')
hold off
axis([0 1 0 1])
title('X8CrNiMoNb-16-16')
xlabel('Consumed life t_1/t_f_1')
ylabel('Remaining life t_2/t_f_2 ')
legend('test results','theoretical results')

1
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%==========================================================================
%Pavlou creep damage accumulation model - Al-99.98
%==========================================================================
close all;
clear all;

sigma=[12 14];   % Stress, sigma in [MPa]
T=[489 489];     % Temperature T in [K]

% Experimental test data Al-99.98
t_r1_test=[0.12 0.13 0.30 0.32 0.50 0.65 0.70 0.75];
t_r2_test=[0.58 0.56 0.38 0.37 0.24 0.16 0.13 0.11 ];

t_r1=[0:0.01:1];  % time to creep failure ratio t1/tf1

% Solving for fitting parameter
p=10^((-log10(sigma(2))+log10(sigma(1))*T(2)*log10(1-
t_r2_test(1))/(T(1)*log10(t_r1_test(1))))/(log10(1-t_r2_test(1))/
log10(t_r1_test(1))-1))

for k=1:101
for i=1:1

   % exponent
     q(i)=T(i)*log10(sigma(i+1)/p(1))/(T(i+1)*log10(sigma(i)/p(1)));

    % remaining life
     t_r2(k)=1-t_r1(k)^q(i);

    end
end

% plot of remaining life vs. consumed life
figure(1)
hold on
box on
axis square
grid on
scatter(t_r1_test,t_r2_test,'filled')
plot(t_r1,t_r2, 'k')
hold off
axis([0 1 0 1])
title('Al-99.98')
xlabel('Consumed life t_1/t_f_1')
ylabel('Remaining life t_2/t_f_2')
legend('test results','theoretical results')

1
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% Fitting parameters, p  steel - X-8-CrNiMoNb-16-16
%==========================================================================
close all;
clear all;

sigma=[150 170];                                      % Stress, sigma
 in [MPa]
T=[973 973];                                          % Temperature T
 in [K]
q=[];                                                 % exponent

t_r1_test=[0.05 0.10 0.35 0.40 0.44 0.46 0.55 0.88];  % test results %
 X-8-CrNiMoNb-16-16
t_r2_test=[0.70 0.61 0.21 0.25 0.20 0.21 0.21 0.05];  % test results %
 X-8-CrNiMoNb-16-16

t_r1=[0:0.01:1];                                      % time to creep
 failure ratio t1/tf1
t_r2=[];                                              % time to creep
 failure ratio t2/tf2

for m=1:8
p(m)=10^((-log10(sigma(2))+log10(sigma(1))*T(2)*log10(1-
t_r2_test(m))/(T(1)*log10(t_r1_test(m))))/(log10(1-t_r2_test(m))/
log10(t_r1_test(m))-1))
end
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%==========================================================================
% Fitting parameters, p  Aluminium 99.98
%==========================================================================
close all;
clear all;

sigma=[12 14];                                        % Stress, sigma
 in [MPa]
T=[489 489];                                          % Temperature T
 in [K]
q=[];                                                 % exponent

t_r1_test=[0.12 0.13 0.30 0.32 0.50 0.65 0.70 0.75];  % test results %
 Alu
t_r2_test=[0.58 0.56 0.38 0.37 0.24 0.16 0.13 0.11 ];  % test results
 % Alu

t_r1=[0:0.01:1];                                      % time to creep
 failure ratio t1/tf1
t_r2=[];                                              % time to creep
 failure ratio

% Fitting parameter
for m=1:8
p(m)=10^((-log10(sigma(2))+log10(sigma(1))*T(2)*log10(1-
t_r2_test(m))/(T(1)*log10(t_r1_test(m))))/(log10(1-t_r2_test(m))/
log10(t_r1_test(m))-1))
end
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%==========================================================================
% Pavlou model - p,sensitivity analysis
% Material: X-8-CrNiMoNb-16-16
%==========================================================================
close all;
clear all;

sigma=[150 170]; % Stress, sigma in [MPa]
T=[973 973];     % Temperature T in [K]

% Experimental test data X8CrNiMoNb-16-16
t_r1_test=[0.05 0.10 0.35 0.40 0.44 0.46 0.55 0.88];
t_r2_test=[0.70 0.61 0.21 0.25 0.20 0.21 0.21 0.05];

t_r1=[0:0.01:1]; % time to creep failure ratio t1/t_f1

% Fitting parameter

p=[184.9160 185.3775 176.2740  180.0220  178.1304  179.5320  184.4309 
 184.8744]

for k=1:101
  for i=1:1
  % exponent
   q1(i)=T(i+1)*log10(sigma(i+1)/p(1))/(T(i+1)*log10(sigma(i)/p(1)));
   q2(i)=T(i+1)*log10(sigma(i+1)/p(2))/(T(i+1)*log10(sigma(i)/p(2)));
   q3(i)=T(i+1)*log10(sigma(i+1)/p(3))/(T(i+1)*log10(sigma(i)/p(3)));
   q4(i)=T(i+1)*log10(sigma(i+1)/p(4))/(T(i+1)*log10(sigma(i)/p(4)));
   q5(i)=T(i+1)*log10(sigma(i+1)/p(5))/(T(i+1)*log10(sigma(i)/p(5)));
   q6(i)=T(i+1)*log10(sigma(i+1)/p(6))/(T(i+1)*log10(sigma(i)/p(6)));
   q7(i)=T(i+1)*log10(sigma(i+1)/p(7))/(T(i+1)*log10(sigma(i)/p(7)));
   q8(i)=T(i+1)*log10(sigma(i+1)/p(8))/(T(i+1)*log10(sigma(i)/p(8)));

   t_r21(k)=1-t_r1(k)^q1(i);
   t_r22(k)=1-t_r1(k)^q2(i);
   t_r23(k)=1-t_r1(k)^q3(i);
   t_r24(k)=1-t_r1(k)^q4(i);
   t_r25(k)=1-t_r1(k)^q5(i);
   t_r26(k)=1-t_r1(k)^q6(i);
   t_r27(k)=1-t_r1(k)^q7(i);
   t_r28(k)=1-t_r1(k)^q8(i);
   end

end

% plot of remaining life vs. consumed life

figure(1)
hold on
grid on
box on

1



axis square
scatter(t_r1_test,t_r2_test,'filled')
plot(t_r1,t_r21,t_r1, t_r22,t_r1, t_r23,t_r1, t_r24,t_r1, t_r25,t_r1,
 t_r26, t_r1, t_r27, t_r1, t_r28)
hold off
axis([0 1 0 1])
title('X8CrNiMoNb-16-16')
xlabel('Consumed life, t_1/t_f_1')
ylabel('Remaining life, t_2/t_f_2')
legend('Experimental data','p=184.92 MPa','p=185.38 MPa','p=176.27
 MPa','p=180.02 MPa','p=178.13 MPa','p=179.53 MPa','p=184.43
 MPa','p=184.87 MPa')
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%==========================================================================
% Pavlou model - p,sensitivity analysis
% Material: Aluminium
%==========================================================================
close all;
clear all;

sigma=[12 14];  % Stress, sigma in [MPa]
T=[489 489];    % Temperature T in [K]

% Experimental test data Al-99.98
t_r1_test=[0.12 0.13 0.30 0.32 0.50 0.65 0.70 0.75];
t_r2_test=[0.58 0.56 0.38 0.37 0.24 0.16 0.13 0.11];

t_r1=[0:0.01:1];   % time to creep failure ratio t1/t_f1

% Fitting parameter
p=[15.5771 15.5313 15.4958 15.5522 15.4884 15.5470 15.4529 15.5493]

for k=1:101
  for i=1:1
  % exponent
   q1(i)=T(i+1)*log10(sigma(i+1)/p(1))/(T(i+1)*log10(sigma(i)/p(1)));
   q2(i)=T(i+1)*log10(sigma(i+1)/p(2))/(T(i+1)*log10(sigma(i)/p(2)));
   q3(i)=T(i+1)*log10(sigma(i+1)/p(3))/(T(i+1)*log10(sigma(i)/p(3)));
   q4(i)=T(i+1)*log10(sigma(i+1)/p(4))/(T(i+1)*log10(sigma(i)/p(4)));
   q5(i)=T(i+1)*log10(sigma(i+1)/p(5))/(T(i+1)*log10(sigma(i)/p(5)));
   q6(i)=T(i+1)*log10(sigma(i+1)/p(6))/(T(i+1)*log10(sigma(i)/p(6)));
   q7(i)=T(i+1)*log10(sigma(i+1)/p(7))/(T(i+1)*log10(sigma(i)/p(7)));
   q8(i)=T(i+1)*log10(sigma(i+1)/p(8))/(T(i+1)*log10(sigma(i)/p(8)));

   t_r21(k)=1-t_r1(k)^q1(i);
   t_r22(k)=1-t_r1(k)^q2(i);
   t_r23(k)=1-t_r1(k)^q3(i);
   t_r24(k)=1-t_r1(k)^q4(i);
   t_r25(k)=1-t_r1(k)^q5(i);
   t_r26(k)=1-t_r1(k)^q6(i);
   t_r27(k)=1-t_r1(k)^q7(i);
   t_r28(k)=1-t_r1(k)^q8(i);
   end

end

% plot of remaining life vs. consumed life

figure(1)
hold on
grid on
box on

1



axis square
scatter(t_r1_test,t_r2_test,'filled')
plot(t_r1,t_r21,t_r1, t_r22,t_r1, t_r23,t_r1, t_r24,t_r1, t_r25,t_r1,
 t_r26, t_r1, t_r27, t_r1, t_r28)
hold off
axis([0 1 0 1])
title('Al-99.98')
xlabel('Consumed life, t_1/t_f_1')
ylabel('Remaining life, t_2/t_f_2')
legend('Experimental data','p=15.58 MPa','p=15.53 MPa','p=15.50
 MPa','p=15.55 MPa','p=15.49 MPa','p=15.55 MPa','p=15.45 MPa','p=15.55
 MPa')
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%==========================================================================
% Isodamage lines: X8CrNiMoNb-16-16
%==========================================================================
close all; clear all;

steel_tf1=447    % time-to-rupture (h)
steel_tf2=200    % time-to-rupture (h)

S1=ones(1,9)*log10(150)  % stress step 1
S2=ones(1,9)*log10(170)  % stress step 2

S11=ones(1,8)*log10(150)  % stress step 1 (for scatter plot)
S22=ones(1,8)*log10(170)  % stress step 2 (for scatter plot)

% lifetime ratios Experimental data X8CrNiMoNb-16-16
tr1_test=[0.05 0.10 0.35 0.40 0.44 0.46 0.55 0.88 1];
tr2_test=[0.70 0.61 0.21 0.25 0.20 0.21 0.21 0.05 0];

tr11_test=[0.05 0.10 0.35 0.40 0.44 0.46 0.55 0.88];  % (for scatter
 plot)
tr22_test=[0.70 0.61 0.21 0.25 0.20 0.21 0.21 0.05];  % (for scatter
 plot)

D1=tr1_test    % damage due to stress 1
D2=1-tr2_test  % 1-damage due to stress 2 = damage due to stress 1
 (D2=D1)

D11=tr11_test    %(for scatter plot)
D22=1-tr22_test  %(for scatter plot)

% time to cause damage D1=D2
t1=log10(D1*steel_tf1)
t2=log10(D2*steel_tf2)

t11=log10(D11*steel_tf1) %(for scatter plot)
t22=log10(D22*steel_tf2) %(for scatter plot)

% Constants for isodamage lines
[m1, b1]=str_lin(t1(1), S1(1), t2(1), S2(1))
[m2, b2]=str_lin(t1(2), S1(2), t2(2), S2(2))
[m3, b3]=str_lin(t1(3), S1(3), t2(3), S2(3))
[m4, b4]=str_lin(t1(4), S1(4), t2(4), S2(4))
[m5, b5]=str_lin(t1(5), S1(5), t2(5), S2(5))
[m6, b6]=str_lin(t1(6), S1(6), t2(6), S2(6))
[m7, b7]=str_lin(t1(7), S1(7), t2(7), S2(7))
[m8, b8]=str_lin(t1(8), S1(8), t2(8), S2(8))
[m9, b9]=str_lin(t1(9), S1(9), t2(9), S2(9))

x=[0:0.01:4]

% Isodamage lines
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y1=m1*x+b1
y2=m2*x+b2
y3=m3*x+b3
y4=m4*x+b4
y5=m5*x+b5
y6=m6*x+b6
y7=m7*x+b7
y8=m8*x+b8
y9=m9*x+b9

figure(1)
axis([1 3 2.1 2.3])
axis square
box on
grid on
hold on
p(11)=scatter(t11,S11,'o k', 'filled')
p(12)=scatter(t22,S22,'o k','filled')
p(1)=plot(x,y1,'-.k')
p(2)=plot(x,y2,'-.k')
p(3)=plot(x,y3,'-.k')
p(4)=plot(x,y4,'-.k')
p(5)=plot(x,y5,'-.k')
p(6)=plot(x,y6,'-.k')
p(7)=plot(x,y7,'-.k')
p(8)=plot(x,y8,'-.k')
p(9)=plot(x,y9,'k')
set(p(9),'LineWidth',1.5);
legend(p([11 9  7 ]),'Data points','D=100%', 'Isodamage lines')
title('X8CrNiMoNb-16-16')
xlabel('log t')
ylabel('log \sigma')
hold off
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%==========================================================================
% Isodamage lines: Al 99.98
%==========================================================================
close all; clear all;

al_tf1=17     % time-to-rupture (h)
al_tf2=6.9    % time-to-rupture (h)

S1=ones(1,9)*log10(12)  % stress step 1
S2=ones(1,9)*log10(14)  % stress step 2

S11=ones(1,8)*log10(12)  % stress step 1 (for scatter plot)
S22=ones(1,8)*log10(14)  % stress step 2 (for scatter plot)

% lifetime ratios lifetime ratios Experimental data Alu-99.98
tr1_test=[0.12 0.13 0.30 0.32 0.50 0.65 0.70 0.75 1];
tr2_test=[0.58 0.56 0.38 0.37 0.24 0.16 0.13 0.11 0];

tr11_test=[0.12 0.13 0.30 0.32 0.50 0.65 0.70 0.75];  %(for scatter
 plot)
tr22_test=[0.58 0.56 0.38 0.37 0.24 0.16 0.13 0.11];  %(for scatter
 plot)

D1=tr1_test    % damage due to stress 1
D2=1-tr2_test  % 1-damage due to stress 2 = damage due to stress 1
 (D2=D1)

D11=tr11_test    %(for scatter plot)
D22=1-tr22_test  %(for scatter plot)

% time to cause damage D1=D2
t1=log10(D1*al_tf1)
t2=log10(D2*al_tf2)

t11=log10(D11*al_tf1) %(for scatter plot)
t22=log10(D22*al_tf2) %(for scatter plot)

% Constants for isodamage lines
[m1, b1]=str_lin(t1(1), S1(1), t2(1), S2(1))
[m2, b2]=str_lin(t1(2), S1(2), t2(2), S2(2))
[m3, b3]=str_lin(t1(3), S1(3), t2(3), S2(3))
[m4, b4]=str_lin(t1(4), S1(4), t2(4), S2(4))
[m5, b5]=str_lin(t1(5), S1(5), t2(5), S2(5))
[m6, b6]=str_lin(t1(6), S1(6), t2(6), S2(6))
[m7, b7]=str_lin(t1(7), S1(7), t2(7), S2(7))
[m8, b8]=str_lin(t1(8), S1(8), t2(8), S2(8))
[m9, b9]=str_lin(t1(9), S1(9), t2(9), S2(9))

x=[0:0.01:4]

% Isodamage lines
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y1=m1*x+b1
y2=m2*x+b2
y3=m3*x+b3
y4=m4*x+b4
y5=m5*x+b5
y6=m6*x+b6
y7=m7*x+b7
y8=m8*x+b8
y9=m9*x+b9

figure(1)
axis([0 1.3 1 1.3])
axis square
box on
grid on
hold on
p(11)=scatter(t11,S11,'o k', 'filled')
p(12)=scatter(t22,S22,'o k','filled')
p(1)=plot(x,y1,'-.k')
p(2)=plot(x,y2,'-.k')
p(3)=plot(x,y3,'-.k')
p(4)=plot(x,y4,'-.k')
p(5)=plot(x,y5,'-.k')
p(6)=plot(x,y6,'-.k')
p(7)=plot(x,y7,'-.k')
p(8)=plot(x,y8,'-.k')
p(9)=plot(x,y9,'k')
set(p(9),'LineWidth',1.5);
legend(p([11 9  7 ]),'Data points','D=100%', 'Isodamage lines')
title('Al 99.98')
xlabel('log t')
ylabel('log \sigma')
hold off
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%==========================================================================
% Gauss vs polynomial fit
% Creep Data: creep rupture strength (CRS) X8CrNiMoNb 16-16
%==========================================================================
close all; clear all;

load CRS_X8CrNiMoNb1616.dat

T_C=CRS_X8CrNiMoNb1616(:,1);        % Temperature in Celcius
S_CRS=CRS_X8CrNiMoNb1616(:,2);      % Creep Rupture Strength
 CRS (MPa))
t=CRS_X8CrNiMoNb1616(:,3);          % CRS time in hours
T_K=T_C+273.15;                     % Temperature in Kelvin

C=15.4;                             % Larson-Miller constant
PLM=T_K.*(C+log10(t));              % Larson-Miller parameter

% Creep conditions
T=750+273.15                        % Temperature in Kelvin
S=15                                % Stress in MPa

% Fitted curves

% Gaussian fit

f=fit(PLM,S_CRS,'gauss1');          % Gaussian fit function
c=coeffvalues(f);
a=c(1); b=c(2); c=c(3);             % Coefficients of Gauss function

syms plm
plm=double(solve(a*exp(-((plm-b)/c)^2)==S, plm) );
plm(2);
t_CRS=10^(plm(2)/T-C);

% Polynomial fit

fp=fit(PLM,S_CRS,'poly2');          % Polynomial fit function
cp=coeffvalues(fp);
p1=cp(1); p2=cp(2); p3=cp(3);       % Coefficients of polynomial
 function

syms plm_p
plm_p=double(solve(p1*plm_p^2 + p2*plm_p + p3==S, plm_p) );
plm_p(1);
t_CRS_p=10^(plm_p(1)/T-C);

figure (1)
box on
grid on
axis square
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hold on
h1=scatter(PLM,S_CRS, 'x');
h2=plot(f,'-.k');
h3=plot(fp,'-.r');
set(h1,'LineWidth',1);
set(h2,'LineWidth',1.5);
set(h3,'LineWidth',1.5);
xlabel('P_L_M=T(C+log t_C_R_S)')
ylabel('\sigma, [MPa]')
legend('Data points','Gaussian fit','Polynomial fit');
title('PLM vs. \sigma: Creep Rupture Strength, CRS')
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%==========================================================================
% Gauss vs polynomial fit (log stress)
% Creep Data: creep rupture strength (CRS) X8CrNiMoNb 16-16
%==========================================================================
close all; clear all;
load CRS_X8CrNiMoNb1616.dat

T_C=CRS_X8CrNiMoNb1616(:,1);            % Temperature in Celcius
S_CRS=log10(CRS_X8CrNiMoNb1616(:,2));   % Creep Rupture Strength
 CRS (MPa))
t=CRS_X8CrNiMoNb1616(:,3);              % CRS time in hours
T_K=T_C+273.15;                         % Temperature in Kelvin

C=13.9;                                 % Larson-Miller constant
PLM=T_K.*(C+log10(t));                  % Larson-Miller parameter

% Creep conditions
T=650+273.15                            % Temperature in Kelvin
S=170;                                  % Stress in MPa

% Fitted curves

% Gaussian fit

f=fit(PLM,S_CRS,'gauss1');              % Gaussian fit function
c=coeffvalues(f);
a=c(1); b=c(2); c=c(3);                 % Coefficients of Gauss
 function

syms plm
plm=double(solve(a*exp(-((plm-b)/c)^2)==log10(S), plm) );
plm(2);
t_CRS=10^(plm(2)/T-C);

% Polynomial fit

fp=fit(PLM,S_CRS,'poly2');          % Polynomial fit function
cp=coeffvalues(fp);
p1=cp(1); p2=cp(2); p3=cp(3);       % Coefficients of polynomial
 function

syms plm_p
plm_p=double(solve(p1*plm_p^2 + p2*plm_p + p3==log10(S), plm_p) );
plm_p(2);
t_CRS_p=10^(plm_p(2)/T-C);

figure (1)
box on
grid on
axis square

1



hold on
h1=scatter(PLM,S_CRS, 'x');
h2=plot(f,'-.k');
h3=plot(fp,'-.r');
xlabel('P_L_M=T(C+log t_C_R_S)')
ylabel('log\sigma')
set(h1,'LineWidth',1);
set(h2,'LineWidth',1.5);
set(h3,'LineWidth',1.5);
legend('Data points','Gaussian fit','Polynomial fit');
title('PLM vs. log\sigma: Creep Rupture Strength, CRS')
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%==========================================================================
% Gauss vs polynomial fit
% Creep Data: creep resistance (Rp1) X8CrNiMoNb 16-16
%==========================================================================
close all; clear all;

load Rp1_X8CrNiMoNb1616.dat

T_C=Rp1_X8CrNiMoNb1616(:,1);        % Temperature in Celcius
S_Rp1=Rp1_X8CrNiMoNb1616(:,2);      % 1% Yield Stress Rp1 (MPa)
t=Rp1_X8CrNiMoNb1616(:,3);          % Rp1% time in hours
T_K=T_C+273.15;                     % Temperature in Kelvin

C=12.7;                             % Larson-Miller constant
PLM=T_K.*(C+log10(t));              % Larson-Miller parameter

% Creep conditions
T=750+273.15;                       % Temperature in Kelvin
S=17;                               % Stress in MPa

% Fitted curves

% Gaussian fit

f=fit(PLM,S_Rp1,'gauss1');           % Gaussian fit function
c=coeffvalues(f);
a=c(1); b=c(2); c=c(3);              % Coefficients of Gauss function

syms plm
plm=double(solve(a*exp(-((plm-b)/c)^2)==S, plm) );
plm(2);
t_Rp1=10^(plm(2)/T-C)

% Polynomial fit

fp=fit(PLM,S_Rp1,'poly2');         % Polynomial fit function
cp=coeffvalues(fp);
p1=cp(1); p2=cp(2); p3=cp(3);      % Coefficients of polynomial
 function

syms plm_p
plm_p=double(solve(p1*plm_p^2 + p2*plm_p + p3==S, plm_p) );
plm_p(1)
t_Rp1_p=10^(plm_p(1)/T-C)

figure (1)
box on
grid on
axis square
hold on
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h1=scatter(PLM,S_Rp1, 'x');
h2=plot(f,'-.k');
h3=plot(fp,'-.r');
xlabel('P_L_M=T(C+log t_R_p_1_%)')
ylabel('\sigma, [MPa]')
set(h1,'LineWidth',1);
set(h2,'LineWidth',1.5);
set(h3,'LineWidth',1.5);
legend('Data points','Gaussian fit','Polynomial fit');
title('PLM vs. \sigma: 1% Yield Stress, R_p_1')

figure (2)
hold on
w1=plot(fp, PLM, S_Rp1,'Residuals')
w2=plot(f, PLM, S_Rp1,'Residuals')
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%==========================================================================
% Gauss vs polynomial fit (log stress)
% Creep Data: creep resistance (Rp1) X8CrNiMoNb 16-16
%==========================================================================
close all; clear all;

load Rp1_X8CrNiMoNb1616.dat

T_C=Rp1_X8CrNiMoNb1616(:,1);            % Temperature in Celcius
S_Rp1=log10(Rp1_X8CrNiMoNb1616(:,2));   % 1% Yield Stress Rp1 (MPa)
t=Rp1_X8CrNiMoNb1616(:,3);              % Rp1% time in hours
T_K=T_C+273.15;                         % Temperature in Kelvin

C=13.4;                                 % Larson-Miller constant
PLM=T_K.*(C+log10(t));                  % Larson-Miller parameter

% Creep conditions
T=700+273.15;                           % Temperature in Kelvin
S=152.51;                               % Stress in MPa

% Fitted curves

% Gaussian fit

f=fit(PLM,S_Rp1,'gauss1');              % Gaussian fit function
c=coeffvalues(f);
a=c(1); b=c(2); c=c(3);                 % Coefficients of Gauss
 function

syms plm
plm=double(solve(a*exp(-((plm-b)/c)^2)==log10(S), plm) );
plm(2);
t_Rp1=10^(plm(2)/T-C)

% Polynomial fit

fp=fit(PLM,S_Rp1,'poly2');          % Polynomial fit function
cp=coeffvalues(fp);
p1=cp(1); p2=cp(2); p3=cp(3);       % Coefficients of polynomial
 function

syms plm_p
plm_p=double(solve(p1*plm_p^2 + p2*plm_p + p3==log10(S), plm_p) );
plm_p(2)
t_Rp1_p=10^(plm_p(2)/T-C)

figure (1)
box on
grid on
axis square
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hold on
h1=scatter(PLM,S_Rp1, 'x');
h2=plot(f,'-.k');
h3=plot(fp,'-.r');
xlabel('P_L_M=T(C+log t_R_p_1_%)')
ylabel('log\sigma')
set(h1,'LineWidth',1);
set(h2,'LineWidth',1.5);
set(h3,'LineWidth',1.5);
legend('Data points','Gaussian fit','Polynomial fit');
title('PLM vs. log\sigma: 1% Yield Stress, R_p_1')

Published with MATLAB® R2016b

2



%==========================================================================
% Larson-Miller parameter fit for creep resistance 1% strain (Rp1)
% Creep Data: Rp1 X8CrNiMoNb 16-16
%==========================================================================
close all; clear all;

load Rp1_X8CrNiMoNb1616.dat

T_C=Rp1_X8CrNiMoNb1616(:,1);           % Temperature in Celcius
S_Rp1=log10(Rp1_X8CrNiMoNb1616(:,2));  % 1% Yield Stress Rp1 (MPa)
t=Rp1_X8CrNiMoNb1616(:,3);             % Rp1% time in hours
T_K=T_C+273.15;                        % Temperature in Kelvin

C=13.4;                                % Larson-Miller constant
PLM=T_K.*(C+log10(t));                 % Larson-Miller parameter

% Creep conditions
T=700+273.15;                          % Temperature in Kelvin
S=83.782;                              % Stress in MPa

% Fitted curves

% Polynomial fit

f=fit(PLM,S_Rp1,'poly2');             % Polynomial fit function
c=coeffvalues(f);
p1=c(1); p2=c(2); p3=c(3);            % Coefficients for polynomial
 function

syms plm
plm=double(solve(p1*plm^2 + p2*plm + p3==log10(S), plm) );
plm(2)
t_Rp1=10^(plm(2)/T-C)

figure (1)
box on
grid on
axis square
hold on
h1=scatter(PLM,S_Rp1, 'x');
h2=plot(f,'-.r');
xlabel('P_L_M=T(C+log t_R_p_1_%)')
ylabel('log\sigma')
set(h1,'LineWidth',1);
set(h2,'LineWidth',1.5);
legend('Data points','Polynomial fit');
title('PLM vs. log\sigma: 1% Yield Stress, R_p_1')
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%==========================================================================
% Larson-Miller parameter fit for creep rupture strength (CRS)
% Creep Data: CRS X8CrNiMoNb 16-16
%==========================================================================
close all; clear all;
load CRS_X8CrNiMoNb1616.dat

T_C=CRS_X8CrNiMoNb1616(:,1);          % Temperature in Celcius
S_CRS=log10(CRS_X8CrNiMoNb1616(:,2)); % Creep Rupture Strength
 CRS (MPa))
t=CRS_X8CrNiMoNb1616(:,3);            % CRS time in hours
T_K=T_C+273.15;                       % Temperature in Kelvin

C=13.9;                               % Larson-Miller constant
PLM=T_K.*(C+log10(t));                % Larson-Miller parameter

% Creep conditions
T=700+273.15;                         % Temperature in Kelvin
S=184;                                % Stress in MPa

% Polynomial fit

f=fit(PLM,S_CRS,'poly2');            % Polynomial fit function
c=coeffvalues(f);
p1=c(1); p2=c(2); p3=c(3);           % Coefficients for polynomial
 function

syms plm
plm=double(solve(p1*plm^2 + p2*plm + p3==log10(S), plm) );
plm(2);
t_CRS=10^(plm(2)/T-C);

figure (1)
box on
grid on
axis square
hold on
h1=scatter(PLM,S_CRS, 'x');
h2=plot(f,'-.r');
xlabel('P_L_M=T(C+log t_C_R_S)')
ylabel('log\sigma')
set(h1,'LineWidth',1);
set(h2,'LineWidth',1.5);
legend('Data points','Polynomial fit');
title('PLM vs. log\sigma: Creep Rupture Strength, CRS')
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%==========================================================================
% Modified Pavlou model: Stress-rupture curve vs. Normalised curve
% Material: ASME - NH 304SS
%==========================================================================
close all; clear all;

% Temperature in celcius
T=[-200 -125 -75 25 100 150 200 250 300 350 400 450 500 550 600 650
 700];

% E(T) in MPa
E=[209 204 201 195 189 186 183 179 176 172 169 165 160 156 151 146
 140]*10^3;

% Interpolation and extrapolation of Elastic Modulus
figure(1)
 hold on
 axis square
 box on
 grid on
 hold on
 axis([-300 800 0 250*10^3])
 scatter(T,E,'filled')
 plot(T, E, '-.b')
 coeffs = polyfit(T, E(1:17), 2);
 Tfit = linspace(T(1), E(end), 140);
 Efit = polyval(coeffs, Tfit);
 hold on;
 plot(Tfit, Efit, 'r-.');
 grid on;
 ax = gca;
 ax.XAxisLocation = 'origin';
 ax.YAxisLocation = 'origin';
 xlabel('Temperature, ^{\circ}C')
 ylabel('Moduli of Elasticity, E [MPa]')

% Get value for E(T) from interpolation and extrapolation
Efit425=interp1(T,E,425,'linear');
Efit450=interp1(T,E,450,'linear');
Efit475=interp1(T,E,475,'linear');
Efit500=interp1(T,E,500,'linear');
Efit525=interp1(T,E,525,'linear');
Efit550=interp1(T,E,550,'linear');
Efit575=interp1(T,E,575,'linear');
Efit600=interp1(T,E,600,'linear');
Efit625=interp1(T,E,625,'linear');
Efit650=interp1(T,E,650,'linear');
Efit675=interp1(T,E,675,'linear');
Efit700=interp1(T,E,700,'linear');
Efit725 = polyval(coeffs, 725);
Efit750 = polyval(coeffs, 750);
Efit775 = polyval(coeffs, 775);
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Efit800 = polyval(coeffs, 800);

% Rupture stresses at temperature T
S=[393 390 385 377 368 355 333 298 256 220 189 162 140 121 105 91;
   393 390 385 377 358 321 274 233 198 169 145 123 106 89 76 65;
   393 390 385 363 328 285 241 205 175 147 125 106 91 77 66 56;
   393 390 385 350 301 254 214 180 151 127 108 91 77 67 55 46;
   393 390 364 317 267 223 188 157 130 110 91 75 64 54 45 37;
   393 390 340 284 236 195 161 134 111 92 75 63 53 44 36 29;
   393 353 300 250 205 168 139 113 93 77 62 52 43 35 29 24;
   393 325 265 217 177 144 113 95 78 63 51 41 34 28 23 19;
   354 287 232 188 153 124 100 80 64 52 42 34 28 23 18 14;
   308 249 201 161 129 104 83 66 53 43 35 27 22 18 14 10;
   272 219 176 140 114 91 59 56 44 34 28 22 18 14 11 9];

% Normalized stresses S/E(T)
S_norm1=S(:,1)/Efit425;
S_norm2=S(:,2)/Efit450;
S_norm3=S(:,3)/Efit475;
S_norm4=S(:,4)/Efit500;
S_norm5=S(:,5)/Efit525;
S_norm6=S(:,6)/Efit550;
S_norm7=S(:,7)/Efit575;
S_norm8=S(:,8)/Efit600;
S_norm9=S(:,9)/Efit625;
S_norm10=S(:,10)/Efit650;
S_norm11=S(:,11)/Efit675;
S_norm12=S(:,12)/Efit700;
S_norm13=S(:,13)/Efit725;
S_norm14=S(:,14)/Efit750;
S_norm15=S(:,15)/Efit775;
S_norm16=S(:,16)/Efit800;

% tf=rupture time
tf=[1;10;30;100;300;1000;3000;10000;30000;100000;300000];

% Normalized Rupture curve
figure(2)
box on
axis square
grid on
hold on
loglog(tf,S_norm1,'+-')
loglog(tf,S_norm2,'+-')
loglog(tf,S_norm3,'+-')
loglog(tf,S_norm4,'+-')
loglog(tf,S_norm5,'+-')
loglog(tf,S_norm6,'+-')
loglog(tf,S_norm7,'+-')
loglog(tf,S_norm8,'+-')
loglog(tf,S_norm9,'+-')
loglog(tf,S_norm10,'+-')
loglog(tf,S_norm11,'+-')
loglog(tf,S_norm12,'+-')
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loglog(tf,S_norm13,'+-')
loglog(tf,S_norm14,'+-')
loglog(tf,S_norm15,'+-')
loglog(tf,S_norm16,'+-')
hold off
set(gca,'xscale','log');
set(gca,'yscale','log');
xlabel('Time to rupture, t_f')
ylabel('stress /Elastic modulus')
legend('425^{\circ}C','450^{\circ}C','475^{\circ}C','500^{\circ}C','525^{\circ}C','550^{\circ}C','575^{\circ}C','600^{\circ}C','625^{\circ}C','650^{\circ}C','675^{\circ}C','700^{\circ}C','725^{\circ}C','750^{\circ}C','775^{\circ}C','800^{\circ}C')

% stress rupture curve
figure(3)
box on
axis square
grid on
hold on
loglog(tf,S(:,1),'+-')
loglog(tf,S(:,2),'+-')
loglog(tf,S(:,3),'+-')
loglog(tf,S(:,4),'+-')
loglog(tf,S(:,5),'+-')
loglog(tf,S(:,6),'+-')
loglog(tf,S(:,7),'+-')
loglog(tf,S(:,8),'+-')
loglog(tf,S(:,9),'+-')
loglog(tf,S(:,10),'+-')
loglog(tf,S(:,11),'+-')
loglog(tf,S(:,12),'+-')
loglog(tf,S(:,13),'+-')
loglog(tf,S(:,14),'+-')
loglog(tf,S(:,15),'+-')
loglog(tf,S(:,16),'+-')
hold off
set(gca,'xscale','log');
set(gca,'yscale','log');
xlabel('Time to rupture, t_f')
ylabel('stress')
%legend('425^{\circ}C','450^{\circ}C','475^{\circ}C','500^{\circ}C','525^{\circ}C','550^{\circ}C','575^{\circ}C','600^{\circ}C','625^{\circ}C','650^{\circ}C','675^{\circ}C','700^{\circ}C','725^{\circ}C','750^{\circ}C','775^{\circ}C','800^{\circ}C')
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%==========================================================================
% Pavlou model vs. time fraction rule: sequence study
% Material: X8CrNiMoNb-16-16
%==========================================================================
close all;
clear all;

sigma=[120 150];    % Stress, sigma in [MPa]
T=[973 973];        % Temperature T in [K]

t_r1=[0:0.01:1];    % increment of ratio t1/tf1 between 0-1

% Fitting parameter

p=184.9160

for k=1:101

    for i=1:1

 % exponent for sequence L-H
    q(i)=T(i)*log10(sigma(i+1)/p)/(T(i+1)*log10(sigma(i)/p));

 % exponent for sequence H-L
    q(i+1)=T(i+1)*log10(sigma(i)/p)/(T(i)*log10(sigma(i+1)/p));

    t_r2(k)=1-t_r1(k)^q(i);   % remaining life L-H
    tr2(k)=1-t_r1(k)^q(i+1);  % remaining life H-L
    t_r2L(k)=1-t_r1(k);       % remaining life Robinson (linear)

    end
end

% plot of remaining life vs. consumed life

figure(1)
box on
grid on
axis square
hold on
plot(t_r1,t_r2,'b')
plot(t_r1,tr2,'r')
plot(t_r1,t_r2L, 'k')
hold off
%axis([0 1 0 1])
%axis([0 1 -1 1]) % for singularity load case
title('Constant temperature: case 4')
%title('Constant stress:Case 6')
xlabel('Consumed life t_1/t_f_1')
ylabel('Remaining life t_2/t_f_2')
legend('L-H','H-L','Linear summation')
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%==========================================================================
% Creep-Fatigue Damage Envelope
%==========================================================================

close all;
clear all;

% 304SS & 316SS, intersection (0.3, 0.3)

x = [0:0.01:0.3];
y = 1-7/3*x;         % first part of curve
x = [x,0.3];         % Cause a break in the line
y = [y,NaN];
x1 =[0.3:0.01:1];    % 2nd part of curve
x = [x,x1];
y = [y,3/7-x1.*3/7];
x1 = [x1,1];

% 21/4Cr-1Mo & 800H, intersection (0.1, 0.1)

r = [0:0.01:0.1];
s = 1-9/1*r;         % first part of curve
r = [r,0.1];         % Cause a break in the line
s = [s,NaN];
r1 =[0.1:0.01:1];    % 2nd part of curve
r = [r,r1];
s = [s,1/9-r1.*1/9];
r1 = [r1,1];

% 9Cr-1Mo-V, intersection (0.1, 0.01)
u = [0:0.001:0.1];
v = 1-9.9*u;         % first part of curve
u = [u,0.1];         % Cause a break in the line
v = [v,NaN];
u1 =[0.1:0.001:1];   % 2nd part of curve
u = [u,u1];
v = [v,1/90-u1.*1/90];
u1 = [u1,1];

% plot Creep-Fatigue Damage envelope

figure(1)
h1=plot(x,y,'b');
axis square
hold on
h2=plot(r,s, 'g');
h3=plot(u,v,'--r');
axis([0 1 0 1])
%title('Creep-Fatigue Damage Envelope')
xlabel('\Sigma n/ N_d')
ylabel('\Sigma \Deltat / T_d')
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legend('304SS & 316SS','2 1/4Cr-1Mo & 800H','9Cr-1Mo-V')
grid on
set(gca,'xtick',[0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1])
set(gca,'ytick',[0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1])
set(gca,'xticklabel',
{'0.0' '' '0.2' '' '0.4' '' '0.6' '' '0.8' '' '1.0'})
set(gca,'yticklabel',
{'0.0' '' '0.2' '' '0.4' '' '0.6' '' '0.8' '' '1.0'})

set(h1,'LineWidth',1.2);
set(h2,'LineWidth',1.2);
set(h3,'LineWidth',1.2);
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