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Abstract 

Ensuring precise estimation of temperature is a critical process for well planning and real-time 

drilling operations, especially for Extended Reach Drilling (ERD). Therefore, a temperature 

model has been developed to predict accurate wellbore temperature distributions for ERD 

applications. The model offers improvements to existing circulating temperature models in 

terms of more realistic drilling fluid properties and by introducing effects of heat sources that 

occurs in a drilling operation. 

 

In this work, temperature dependent drilling fluid transport and thermal properties are 

considered to improve the accuracy of the temperature model. Experiments have been 

performed to determine the behavior of drilling fluid density and viscosity under high pressure 

and high temperature conditions. Measurements of viscosity allows the effect of non-

Newtonian behavior to be included in the convective heat transfer processes. Furthermore, 

applying a non-Newtonian pressure loss model enables an opportunity to incorporate the impact 

of non-Newtonian behavior on the wellbore pressure distribution and thus pressure dependent 

drilling fluid properties. Another important aspect of the approach in this work, is the 

introduction of heat source terms. Heat generation that occurs during drilling processes have 

the potential to affect the wellbore temperature distribution. To give a better estimation of 

wellbore heat transfer processes, heat generation due to drill pipe rotation, drill bit friction, 

frictional pressure losses, and the Joule-Thomson coefficient is considered. 

 

Results from a sensitivity analysis indicate that parameters related to the hydraulics of a 

wellbore system have a significant effect on the temperature distribution. The flow rate is found 

to be a major contributor. Drilling fluid viscosity, density, and specific heat capacity have also 

shown significant effect on the temperature distribution. On the other hand, mechanical 

processes and heat generation due to friction are found to be less dominant. Results verify that 

the approach in this thesis provides an accurate wellbore temperature distribution with the 

possibility to enhance drilling performance and optimize well design. 
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1 Introduction 

Extended Reach Drilling (ERD) is a term that involves wells with large horizontal 

displacements. By definition, a well with a horizontal displacement to true vertical depth ratio 

of 2 or higher is regarded as an ERD well. Note that horizontal displacement in this case is 

measured from the kick off point (Rubiandini R.S, 2008). ERD wells emerged in the early 

1990’s as technology were improved to achieve optimized and cost efficient solutions. The 

improvement of technology was necessary to access reserves that previously were not 

economically or technically feasible to produce. This gave an opportunity to extend the life of 

mature fields and to optimize field development through a reduction of drilling sites and 

structures (Payne, Cocking, & Hatch, 1994). Furthermore, ERD designs gives the ability to 

increase the drainage capability of a reservoir by installing horizontal completions over large 

sections. Examples of challenging and successful ERD designs are found in for example the 

Wytch Farms project (BP) and the Sakhalin-1 project (Exxon Neftegas Limited).   

 

Compared to a conventional design, ERD wells will often have longer sections of higher 

inclinations. An ERD design results in challenges that are less pronounced in the conventional 

design. For example, torque and drag related issues tend to be more severe in ERD wells. In a 

long and highly deviated section, a large part of the drill pipe weight will lay on the low side of 

the wellbore and consequently increase the frictional forces. Torque and drag may become a 

limiting factor as the frictional forces increases. Problems related to excessive torque and drag 

are buckling behavior, insufficient WOB, and inability to reach target. Another issue that 

increases in complexity with wellbore length and inclination, is hole cleaning. The effect of 

annular velocity on cuttings transport diminishes with increasing inclination. Cuttings will 

therefore settle easier and cuttings beds may form. Moreover, the cuttings beds tend to slide 

downwards in the wellbore as avalanches for inclinations of 30-60 degrees (Tomren, Iyoho, & 

Azar, 1986). Insufficient hole cleaning has the potential to cause pipe sticking, reduction of 

ROP, excessive torque and drag, and more. Drilling fluid design is also a factor that is critical 

for ERD wells. Controlling drilling fluid properties can be an issue for deep and long wells, and 

problems related to borehole stability, lost circulation, barite sag, ECD management, torque 

and drag, and hole cleaning can occur (Cameron, 2001).  
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Another important aspect of ERD is wellbore temperature. Drilling further and deeper comes 

with an increased formation temperature, and it is not unusual that ERD wells are exposed to 

HPHT conditions. High temperatures have the potential to cause severe operational problems. 

For example, increasing the temperature will affect the ability of the drilling fluid to maintain 

its properties and thus ensure well control and avoid the problems listed above. Additionally, 

high temperatures can be a limiting factor for downhole drilling tools and the ability to perform 

directional control and logging. It is consequently critical to provide realistic estimations of 

wellbore temperatures. Therefore, the objective of this thesis is to develop a sophisticated 

temperature model that can predict accurate wellbore temperature distributions for ERD 

applications.  

 

The approach and related theory to the development of the model is explained in chapter 2. 

Energy source terms that occurs during drilling operations are implemented to improve existing 

circulation models and to give a more realistic representation of the wellbore temperature 

distribution. The considered source terms are heat generation due to drill pipe rotation, drill bit 

friction, frictional pressure losses and the effect of the Joule-Thomson coefficient. Furthermore, 

a sensitivity analysis and discussion of the results are given in chapter 3. The sensitivity analysis 

includes parameters such as wellbore design, drilling fluid transport and thermal properties, 

formation temperature and thermal properties, and the energy source terms. Determining how 

these parameters affect the wellbore temperature distribution has the potential to enhance 

drilling performance and provide optimized designs for ERD wells.  
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2  Temperature model and supporting theory  

2.1 Wellbore heat transfer 

For a drilling scenario, temperature differences between the wellbore and the formation result 

in a transfer of thermal energy. Heat may flow from formation to wellbore or vice versa 

depending on the relative temperatures. For example, if the formation temperature is higher 

than the temperature of the wellbore at a certain depth, the wellbore system will gain energy in 

terms of heat. By nature, heat will continue to flow from the formation to the wellbore until a 

thermal equilibrium is reached.  

 

Formation temperature can in a large scale be represented by a function of depth. As a well is 

drilled into the crust of the Earth, it approaches warmer areas and a general temperature increase 

is observed. The rate at which the temperature increases is expressed in terms of the geothermal 

gradient. The geothermal gradient is a governing factor for the wellbore temperature 

distribution. Therefore, an accurate estimation is critical for well planning, especially for ERD 

and HPHT wells where temperature may become a limiting factor. Determining an accurate 

geothermal gradient becomes a challenge in some cases as the gradient is location-specific and 

may vary between both regions and oil fields. Forrest, Marcucci, and Scott (2005) mapped and 

calculated geothermal gradients for 1131 fields and wells in the northern Gulf of Mexico. 

Results reveal significant variation from region to region and indicate a complex pattern of 

subsurface heat. To meet this challenge, geothermal gradients are often based on data from 

nearby wells. In chapter 3.8, a sensitivity analysis of the geothermal gradient and its impact on 

the wellbore temperature distribution is given to emphasize the importance of a representative 

estimation. 

 

The amount of heat flowing to or from the wellbore is also sensitive to wellbore design and 

drilling parameters. Consider the general wellbore schematic shown in figure 2-1. In the first 

section, drilling fluid enters the drill pipe at a known temperature. As the fluid flows down the 

pipe, its temperature will change due to heat transfer processes with its surroundings and 

through heat generation from energy sources present in the drill pipe. More specifically, the 

vertical temperature distribution throughout the drill pipe is a result of (Santoyo-Gutiérrez, 

1997): 
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 the convective heat transfer within the fluid column 

 the rate of convective heat transfer between the fluid, the drill pipe wall, and the annular 

fluid 

 heat generation from fluid friction 

 

Picture an arbitrary point in the wellbore where the annulus temperature exceeds that of the 

drill pipe. Because of the temperature difference, a convective heat transfer occurs between the 

moving annulus fluid and the outer surface of the drill pipe. When the outer wall of the drill 

pipe is heated up, heat is transferred through the thickness of the pipe wall via conduction to 

the relatively cooler inner wall. The heat is further transferred via convection between the 

surface of the pipe wall and the moving drill pipe fluid, resulting in a temperature increase at 

that reference point. Note that vertical conduction is also present in the fluid column. However, 

forced convection is the dominant process during circulation and conduction within the fluid is 

normally neglected. This is a reasonable assumption adopted by for example Raymond (1969), 

Marshall and Bentsen (1982), and Santoyo-Gutiérrez (1997). 

 

Section 2 in the illustration below, represents the drill bit. The length of this section is negligible 

compared to the length of the wellbore, and section 2 is accordingly considered as a single 

point. Still, heat generated at this point will have an impact on the wellbore temperature 

distribution. One of the energy sources present is the frictional pressure losses across the bit. 

Compared to the annular pressure losses, the bit pressure loss typically accounts for a larger 

portion of the total pressure losses throughout the wellbore (Warren, 1989; Aadnøy, 2010). 

Thus, heat generation due to fluid friction is greater at the bit than for the entire annulus section. 

Another energy source at Section 2 is the heat generation from frictional forces between the bit 

and the formation during drilling. It appears to be a lack of studies regarding the actual amount 

of energy released during this process. Keller, Couch, and Berry (1973) proposed that the total 

mechanical energy input required to rotate the drill pipe is converted to heat and that 40% of it 

is necessary to cut the rock. Corre, Eymard, and Guenot (1984) on the other hand, suggested 

that about 10% was sufficient.  

 

After the drilling fluid has passed through the bit, it enters section 3, namely the annulus. As 

the fluid flows up the annulus, the vertical temperature distribution is affected by (Santoyo-

Gutiérrez, 1997): 
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(2.1) 

(2.2) 

 the convective heat transfer within the fluid column 

 the rate convective heat transfer between the fluid, the drill pipe wall, and the drill pipe 

fluid 

 the convective heat transfer between the annulus fluid, any layers of casing and cement 

or fluid, and the formation 

 the conductive heat transfer from the formation 

 heat generation related to fluid friction and drill pipe rotation and movement 

 

Consider the location of point 3 in figure 2-1. Given that the formation temperature exceeds the 

wellbore temperature, heat will transfer via conduction from the formation and through the 

cement and casing. In the annulus, heat is transferred from the casing wall to the moving fluid 

by convection. Heat continues to flow up the annulus by convection within the fluid itself, and 

heat is lost to the drill pipe section by the processes described in the fourth paragraph in this 

chapter, if the temperature in the annulus is greater than the drill pipe temperature. 

 

As discussed, the wellbore temperature distribution is affected by formation temperature and 

heat conduction from the formation. To ensure an accurate estimation of these parameters, 

many authors have conducted investigations regarding formation temperature distribution and 

rate of heat transfer. A common approach is to consider a transient and radial heat conduction. 

Ramey (1962) evaluated the application of different solutions for radial heat conduction from 

an infinite long cylinder and gave recommended models for wellbore heat transfer applications. 

Chiu and Thakur (1991) have also presented and discussed the application of several models 

for transient heat loss in the formation. In this thesis, the approach from Hasan and Kabir (1991) 

is implemented. Hasan and Kabir (1991) presented a rigorous solution for the formation heat 

loss and improved the existing approaches recommended by Ramey (1962) by including 

Fourier’s law of heat conduction as a boundary for the formation/wellbore interface. 

Acknowledging that the solution would not be efficient in computer programs due to its 

complexity, an algebraic approximation was also given. The algebraic solution is based on 

trends in the results from the rigorous solution, and it is given by: 

 

𝑇𝐷 = 1.1281√𝑡𝑑(1 − 0.3√𝑡𝑑) for  𝑡𝑑 ≤ 1.5 

 

𝑇𝐷 = [0.4036 + 0.5 ln(𝑡𝑑)] [1 +
0.6

𝑡𝑑
]  for  𝑡𝑑 > 1.5 
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where  

𝑡𝑑 =
𝛼𝑡

𝑟𝑤𝑏
2 

and 

𝛼 =
𝑘𝑓

𝑐𝑝𝑓𝜌𝑓
 

 

Here, 𝑇𝐷 represents the dimensionless temperature and 𝑡𝑑 represents the dimensionless time as 

defined in Hasan and Kabir (1991). The dimensionless temperature gives the transient behavior 

of the formation temperature, and depending on the dimensionless time, equations (2.1) and 

(2.2) are applied in this thesis to derive a solution for and determine the wellbore temperature 

distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nomenclature 

𝑐𝑝𝑓: formation specific heat capacity, J/kg°C 

𝑘𝑓: formation conductivity, W/m°C 

𝑟𝑤𝑏: wellbore radius, m 

𝑡: time, s 

𝑇𝐷: dimensionless temperature 

𝑡𝐷: dimensionless time 

𝛼: formation heat diffusivity, m2/s 

𝜌𝑓: formation density, kg/m3  

Figure 2-1 Wellbore schematic 
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(2.3) 

(2.4) 

(2.5) 

2.2 Transport and thermophysical properties of drilling fluid 

2.2.1 Convective heat transfer coefficient 

Convection is defined as the heat transfer that occurs between a surface and a moving fluid at 

different temperatures (Bergman, Incropera, DeWitt, & Lavine, 2011). Simply put, a drilling 

operation involves pumping a fluid through a circular conduit. If the fluid and the surface of 

the conduit have different temperatures, a convective heat transfer will occur. More specifically, 

convection is a combination of two mechanisms (Bergman et al., 2011). Energy is transferred 

by both diffusion and the bulk motion of the fluid. Close to the wall of a conduit, fluid velocity 

approaches zero and diffusion (conduction) dominates the heat transfer. Here, heat is 

transferred from the wall surface to the nearby fluid layer by random molecular motion. The 

heat going into this layer is transferred further away from the wall by the bulk motion of the 

fluid, and into the high velocity region. The expression for the convective heat transfer process 

is given by Newton’s law of cooling: 

 

𝑞′′ = ℎ(𝑇𝑠 − 𝑇𝑚) 

 

where ℎ  is the convective heat transfer coefficient (CHTC), and 𝑇𝑠  and 𝑇𝑚  represent the 

temperature of the conduit surface and the mean temperature of the fluid, respectively.  

 

In chapter 2.1, the heat transfer processes that occur in a wellbore is discussed. It was mentioned 

that there exists a convective heat transfer between the drill pipe fluid, the drill pipe wall, and 

the annulus fluid. The same process occurs between the annulus fluid, the casing wall and a 

possible cement layer, and the formation. Instead of applying equation (2.3) to describe these 

processes individually, an overall heat transfer coefficient that considers the net resistance of 

heat flow over several layers, is used. The convective heat transfer is modeled by the following 

equations (Kabir, Hasan, Kouba, & Ameen, 1996): 

 

𝑄𝑎𝑝 = 2𝜋𝑟𝑝𝑖𝑈𝑝(𝑇𝑎 − 𝑇𝑝)𝑑𝑥 

 

𝑄𝑤𝑎 = 2𝜋𝑟𝑐𝑖𝑈𝑎(𝑇𝑤 − 𝑇𝑎)𝑑𝑥 
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(2.6) 

(2.7) 

(2.8) 

(2.9) 

where 𝑄𝑎𝑝  and 𝑄𝑤𝑎  represents the overall rate of heat transfer from the annulus to the drill pipe 

and from the formation/wellbore interface to the annulus, respectively. The overall heat transfer 

coefficient is denoted by 𝑈. Thompson and Burgess (1985) defined 𝑈𝑝 and 𝑈𝑎 as 

 

1

𝑈𝑝
=

1

ℎ𝑝
+

𝑟𝑝𝑖

𝑟𝑝𝑜

1

ℎ𝑎
+

𝑟𝑝𝑖

𝑘𝑝
ln (

𝑟𝑝𝑜

𝑟𝑝𝑖
) 

 

1

𝑈𝑎
=

1

ℎ𝑎
+

𝑟𝑐𝑖

𝑘𝑐
ln (

𝑟𝑐𝑜

𝑟𝑐𝑖
) +

𝑟𝑐𝑖

𝑘𝑐𝑒𝑚𝑒𝑛𝑡
ln (

𝑟𝑤

𝑟𝑐0
) 

 

For equation (2.7), it is possible to include additional casing strings and cement layers. 

 

Inspecting the equations above reveals that the CHTC plays an important role for the heat rate 

and thus the wellbore temperature distribution. The CHTC in pipe flow is determined by the 

dimensionless Nusselt number given below:  

 

𝑁𝑢 =  
ℎ𝐷

𝑘
 

 

where 𝑘 is the conductivity of the fluid and 𝐷 is the pipe diameter. The Nusselt number gives 

a relationship between the convective and the conductive heat transfer, and a large Nusselt 

number indicates an efficient convection process. For laminar flow, the Nusselt number takes 

a constant value of 

 

𝑁𝑢 = 4.36 

 

with the assumption of a uniform wall heat flux (Bergman et al., 2011; Rohsenow, Hartnett, & 

Cho, 1998). Estimating the Nusselt number for turbulent flow is more complex. Research show 

that the CHTC becomes a complicated function of fluid properties and flow geometry (Santoyo, 

Garcia, Espinosa, Santoyo-Gutiérrez, & González-Partida, 2003). It is therefore common to use 

correlations to estimate the Nusselt number for turbulent flow. Many researchers have presented 

work on this subject. A summary of the most common correlations is for example given in the 

work by (Santoyo et al., 2003). In this thesis, the well-known Dittus-Boelter correlation is 

applied to estimate the CHTC. The Dittus-Boelter equation gives the Nusselt number as a 

function of Reynolds number and Prandtl number: 
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(2.10) 

(2.11) 

(2.12) 

(2.13) 

 

𝑁𝑢 = 0.023𝑅𝑒0.8𝑃𝑟𝑛 

 

where 𝑛 is set to 0.3 for cooling processes and 0.4 for heating processes. Equation (2.10) is 

valid for: 

 

0.7 ≤ 𝑃𝑟 ≤ 160 

 

10 000 ≤ 𝑅𝑒 

 

10 ≤
𝐿

𝐷
 

 

And Reynolds number and Prandtl number are defined as 

 

𝑅𝑒 =
𝜌𝑣𝐷

𝜇
 

 

𝑃𝑟 =
𝑐𝑝𝜇

𝑘
 

  

Now, it is possible to express the CHTC as 

 

ℎ = 0.023 (
𝜌𝑣𝐷

𝜇
)

0.8

(
𝑐𝑝𝜇

𝑘
)

𝑛 𝑘

𝐷
 

 

Equation (2.13) provides valuable information about which parameters that control the CHTC 

and thus affect the wellbore temperature distribution. It is especially of interest to determine to 

what extent drilling fluid transport and thermal properties impact heat transfer processes in a 

wellbore system. A sensitivity analysis of the parameters in equation (2.13) is presented in 

chapter 3, and the models for drilling fluid density and viscosity is discussed further in the next 

chapters. 
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Nomenclature 

𝑐𝑝: fluid specific heat capacity, kg/J°C 

𝐷: pipe diameter, m 

ℎ: convective heat transfer coefficient, W/m2°C 

𝑘: fluid thermal conductivity, W/m°C 

𝐿: pipe length, m 

𝑁𝑢: Nusselt number 

𝑄: heat rate, J/s 

𝑞′′: heat flux, W/m2 

𝑟𝑐𝑖: casing inner radius, m 

𝑟𝑐𝑜: casing outer radius, m 

𝑟𝑝𝑖: drill pipe inner radius, m 

𝑟𝑝𝑜: drill pipe outer radius, m 

𝑇: temperature, °C 

𝑈: overall heat transfer coefficient, W/m2°C 

𝑣: fluid velocity, m/s 

𝜌: fluid density, kg/m3 

𝜇: fluid viscosity, Pas 

 

Subscripts 

𝑎: annulus 

𝑐: casing 

𝑚: mean  

𝑝: pipe 

𝑠: conduit surface 

𝑤: wellbore 

 

2.2.2 Density model 

Drilling fluid is a critical factor for drilling operations. Some of the most important functions 

of drilling fluids are to ensure borehole stability and well control. These functions are 

maintained through controlling the wellbore pressure and thus the drilling fluid density. 

Consequently, the drilling fluid density impacts the ability to ensure borehole stability and well 

control, and it becomes important to give accurate estimations of the density. Density of a 

drilling fluid varies with pressure and temperature. An increase of pressure will compress the 

drilling fluid and result in an increase of density. Increasing the temperature on the other hand, 

expands the drilling fluid and decreases the density. The wellbore temperature distribution will 

therefore affect critical functions of the drilling fluid. Variation in density with temperature and 

pressure are well-known effects, and the intention in this work is instead to investigate the effect 

density has on heat transfer processes. 
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(2.14) 

Take equation (2.13) as an example. It is evident that the CHTC and correspondingly the rate 

of convective heat transfer, is affected by density changes. The density will further affect the 

CHTC because of the pressure dependency of viscosity. In this thesis, the effect of drill pipe 

rotation as an energy source is discussed in chapter 2.4.1. The amount of generated heat from 

rotational effects are influenced by buoyancy forces and ultimately the drilling fluid density. 

These examples are mentioned to highlight that the effect of density on the wellbore 

temperature is complicated. Furthermore, as the density impacts heat transfer processes and the 

wellbore temperature, it will impose changes on itself through its variation with temperature, 

resulting in a coupled effect. It is therefore necessary to understand both how the density 

changes with temperature and the effects it has on the temperature distribution.  

 

The linearized equation of state as shown below, is applied to determine the density behavior 

with varying pressure and temperature (Stamnes, 2011). 

 

𝜌 = 𝜌0 +
𝜌0

𝛽
(𝑃 − 𝑃0) − 𝜌0𝛼(𝑇 − 𝑇0) 

 

Here, 𝜌0 , 𝑃0 , and 𝑇0  represents the density, pressure, and temperature at the point of 

linearization. The cubical expansion coefficient and the isothermal bulk modulus of the drilling 

fluid is given by 𝛼 and 𝛽 respectively. Stamnes (2011) state that the model is applicable for 

most drilling fluid for pressures and temperatures in the range of 

 

0 < 𝑃 < 500 𝑏𝑎𝑟 

 

0 < 𝑇 < 200 °C 

 

In this thesis, the cubical expansion coefficient and the isothermal bulk modulus have been 

determined through a regression analysis of PVT data for an OBM. The results from the 

regression analysis and the linearization points of the conducted experiment are given in table 

2-1. Figure 2-2 shows the variation in density with pressure and a selection of temperatures for 

the considered OBM.  
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Table 2-1 Experimental values for the linearized equation of state 

 

Nomenclature 

𝑃: pressure, Pa 

𝑇: temperature, °C 

𝛼: cubical expansion coefficient, 1/°C 

𝛽: isothermal bulk modulus, Pa 

𝜌: drilling fluid density, kg/m3 

 

2.2.3 Non-Newtonian viscosity 

Viscosity is a key parameter to consider when determining fluid rheology and how it affects 

the rate of heat transfer in the wellbore. Drilling fluid viscosity is a function pressure, 

temperature, and composition. At increasing pressures and isothermal conditions, a general 

trend of increased viscosity is observed, and increasing the temperature during isobaric 

𝜶 9.658 ∗ 10−4 1/°C 

𝜷 8.146 ∗ 1010 Pa 

𝝆𝟎 1205 kg/m3 

𝑷𝟎 105 Pa 

𝑻𝟎 24 °C 

Figure 2-2 Density behavior of the considered OBM 
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(2.15) 

(2.16) 

conditions results in a decrease of the viscosity (Poling, Prausnitz, & O'connell, 2001). It is 

therefore important to include pressure and temperature dependent viscosity behavior to 

determine the effect of viscosity on wellbore heat transfer. Another factor to consider is the 

non-Newtonian nature of drilling fluids. Santoyo et al. (2003) report that temperature dependent 

viscosities of Newtonian and non-Newtonian fluids differ significantly. Using a Newtonian 

viscosity model for drilling fluids in a temperature model will overestimate the CHTC and the 

rate of heat transfer in the wellbore.  

 

To include the factors mentioned above, rheology data of the OBM referred to in chapter 2.2.2. 

is implemented in this work. A high pressure high temperature rheometer was used to determine 

the rheological behavior of the drilling fluid for a pressure and temperature range of 40-160 bar 

and 25-80 °C respectively. The results are used in the temperature model to apply the correct 

viscosity according to the pressure and temperature variation throughout the wellbore. 

Analyzing the rheology data showed that a Herschel-Bulkley model provided the best fit 

overall. An example of that is given in figure 2-3, where the shear rate versus shear stress for 

the OBM at a pressure of 40 bar and temperature of 50 °C, is compared to estimated values by 

the Herschel-Bulkley model. The general Herschel-Bulkley model is given by equation (2.15) 

(Fan, Zhou, Wang, Peng, & Wang, 2014): 

 

𝜏 = 𝜏0 + 𝐾𝛾𝑛 

 

and the parameters for the example in figure 2-3 are provided in table 2-2.  

 

The apparent viscosity of a HB-fluid can be determined by the following model: 

 

𝜇𝑎𝑝𝑝 =
𝜏

𝛾
= 𝜏0𝛾−1 + 𝐾𝛾𝑛−1 

 

Unlike Newtonian fluid, the apparent viscosity of a non-Newtonian fluid depends on the shear 

rate and thus the flow rate. A relation between flow rate and rheological behavior is 

consequently necessary to determine the corresponding apparent viscosity and include the 

effect of non-Newtonian behavior on the heat transfer. In chapter 2.3.1, a pressure loss model 

for Herschel-Bulkley fluids is presented. This model includes a relation between wall shear 
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stress and flow rate that is taken advantage of to obtain the apparent viscosity.  More details 

about this approach is given in the respective chapter.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nomenclature 

𝐾: consistency index, Pasn 

𝑛: flow index 

𝛾: shear rate, s-1 

𝜏: shear stress, Pa 

𝜏0: yield stress, Pa 

 

 

 

 

𝝉𝟎 2.4689 Pa 

𝑲 0.0577 Pasn 

𝒏 0.8549 - 

Table 2-2 Experimental Herschel-Bulkley parameters 

Figure 2-3 Comparison of experimental values with the Herschel-Bulkley model 
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2.3 Pressure losses 

As discussed in chapters 2.2.2. and 2.2.3., thermal properties of drilling fluids are sensitive to 

transport properties such as density and viscosity. It was also suggested that the effect of non-

Newtonian behavior on viscosity should not be ignored. The transport properties are functions 

of both pressure and temperature and pressure loss calculations will ultimately influence the 

thermal properties and the accuracy of the temperature distribution. Additionally, the pressure 

losses through a wellbore serves as an energy source which add heat to the system. It is therefore 

important to choose an appropriate pressure loss model. To ensure a representative estimation 

of the pressure losses and to obtain the apparent viscosity, a model that considers non-

Newtonian effects for both the drill pipe the and annulus is implemented in this thesis. 

Furthermore, a model for bit pressure loss that includes an optimized nozzle discharge 

coefficient for roller cone bits, is applied and presented in chapter 2.3.2. 

 

2.3.1 Non-Newtonian pressure loss 

There are many authors that have published articles addressing the topic of non-Newtonian 

flow and frictional pressure losses. One of the most cited articles related to this subject is a 

study by Metzner and Reed (1955). They performed experiments with Power Law fluids and 

defined how the friction factor varies with Reynolds number for laminar, transitional, and 

turbulent flow. Four decades later, Reed and Pilehvari (1993) presented an analytical procedure 

for the determination of frictional pressure losses for Power Law, Bingham Plastic, and 

Herschel-Bulkley fluids based on the work of Metzner and Reed (1955). A more recent study 

by Fan et al. (2014) that provides a hydraulic model for Herschel-Bulkley fluids, is adopted in 

this thesis. It follows the same approach as Reed and Pilehvari (1993), but with a new definition 

of an effective diameter for annular flow. The basic idea behind this approach is to utilize 

established equations for Newtonian pipe flow to model non-Newtonian flow in both pipes and 

concentric annuli. Introducing a generalized effective diameter enables classical relations for 

Newtonian pipe flow to apply for non-Newtonian fluids and annular geometry. Fan et al. (2014) 

successfully validated their model by comparing results with measurements obtained from 

experimental data and field cases. The model is presented below. 
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(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

Flow rate 

Pipe flow 

For steady-state laminar flow of time-independent viscous fluids in pipes, flow rate is related 

to wall shear stress by the following equation: 

 

𝑄 =
𝜋𝑅3

𝜏𝑤
3 ∫ 𝜏2𝛾𝑑𝜏

𝜏𝑤

0

 

 

This is a general expression for viscous fluids, which may be extended to include yield stress 

fluids and non-Newtonian behavior by integrating over the interval [𝜏0, 𝜏𝑤]. 

 

𝑄 =
𝜋𝑅3

𝜏𝑤
3 ∫ 𝜏2𝛾𝑑𝜏

𝜏𝑤

𝜏0
s 

 

Combining equation (2.15) with (2.18) and integrating, gives a relationship for pipe flow rate 

and wall shear stress for Herschel-Bulkley fluids as shown below. 

 

𝑄𝑝 =
𝑛𝜋𝑅3

3𝑛 + 1
(

𝜏𝑤

𝐾
)

1
𝑛

(1 −
𝜏0

𝜏𝑤
)

𝑛+1
𝑛

[1 +
2𝑛

2𝑛 + 1
(

𝜏0

𝜏𝑤
) +

2𝑛2

(𝑛 + 1)(2𝑛 + 1)
(

𝜏0

𝜏𝑤
)

2

] 

 

 Annular flow 

To derive the relationship between flow rate and shear stress for annular flow, a slot model is 

applied. In this approach, two thin ring elements with a thickness dr and radii of (R0+Ri)/2+r 

and (R0+Ri)/2-r are considered and used in the derivations. The flow rate is given as 

 

𝑄 = ∫ 2𝜋(𝑅0 + 𝑅𝑖)𝑢𝑑𝑟

𝑅𝛿
2

0

= 2𝜋(𝑅0 + 𝑅𝑖) (𝑢𝑟|0

𝑅𝛿
2 − ∫ 𝑟

𝑑𝑢

𝑑𝑟
𝑑𝑟

𝑅𝛿
2

0

) 

 

where u is the velocity evaluated at a distance r from the center of the annular segment and the 

annular clearance is defined as 

 

𝑅𝛿 =  𝑅0 − 𝑅𝑖  
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(2.22) 

(2.23) 

(2.24) 

(2.26) 

(2.27) 

(2.28) 

(2.25) 

At the annulus wall where r is equal to Rδ/2, the velocity becomes zero with the assumption of 

no slip at the wall. Consequently, the first term inside the last bracket of equation (2.20) also 

becomes zero and equation (2.20) simplifies to: 

 

𝑄 = 2𝜋(𝑅0 + 𝑅𝑖) (∫ 𝑟 (−
𝑑𝑢

𝑑𝑟
) 𝑑𝑟

𝑅𝛿
2

𝛿
2

) 

 

where du/dr represents the shear rate. Here, the integration interval is updated to account for 

yield stress fluids at which the shear rate is zero when r is less than δ/2. Equation (2.23) gives 

the shear stress of a fluid at position r. 

 

𝜏 =
∆𝑃𝑟

𝐿
 

 

The shear stress at the annular wall can be expressed in a similar manner by the introduction of 

a hydraulic diameter Dh as shown below. 

 

𝜏𝑤 =
∆𝑃𝐷ℎ

4𝐿
=

∆𝑃𝑅𝛿

2𝐿
 

where  

𝐷ℎ = 𝐷0 − 𝐷𝑖 

 

Dividing equation (2.23) by (2.24) yields:  

 

𝜏

𝜏𝑤
=

2𝑟

𝑅𝛿
 

 

Reorganizing equation (2.26) and applying differentials give the two following expressions: 

 

𝑟 =
𝑅𝛿

2𝜏𝑤
𝜏 

 

𝑑𝑟 =
𝑅𝛿

2𝜏𝑤
𝑑𝜏 
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(2.29) 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

Furthermore, by using the fact that shear rate is a function of shear stress and implementing 

equations (2.27) and (2.28) to equation (2.22), the flow rate may be expressed as 

 

𝑄 =
𝜋(𝑅0 + 𝑅𝑖)𝑅𝛿

2

2𝜏𝑤
2 ∫ 𝜏𝛾𝑑𝜏

𝜏𝑤

𝜏0

 

 

Finally, annular flow rate for a Herschel-Bulkley fluid is obtained by inserting equation (2.15) 

into equation (2.29) and integrating over the given interval.  

 

𝑄𝑎 =
𝑛𝜋𝑅𝛿

2

2(2𝑛 + 1)𝜏𝑤
2𝐾

1
𝑛

(𝑅0 + 𝑅𝑖)(𝜏𝑤 − 𝜏0)
𝑛+1

𝑛 (𝜏𝑤 +
𝑛

𝑛 + 1
𝜏0) 

 

Generalized flow index 

Metzner and Reed (1955) developed a method of extending their results for Power Fluids to 

account for all time-independent, non-Newtonian fluids by defining the generalized flow index 

shown below. 

 

𝑛′ =
𝑑 ln 𝜏𝑤

𝑑 ln (
8𝑣
𝐷 )

 

 

They also gave a generalized expression for the wall shear rate. 

 

𝛾𝑤 =
3𝑛′ + 1

4𝑛′ (
8𝑣

𝐷
) 

 

For comparison, the wall shear rate for Newtonian pipe flow is given in equation (2.33). 

 

𝛾𝑤,𝑁 =
8𝑣

𝐷
 

 

Note that in the model by Fan et al. (2014), n’ represents the general flow index for a Herschel-

Bulkley fluid. 
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(2.34) 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

(2.39) 

(2.40) 

 Pipe flow 

For pipe flow, equations (2.31) and (2.32) are given as  

 

𝑛𝑝
′ =

𝑑 ln 𝜏𝑤

𝑑 ln (
8𝑣
𝐷 )

 

 

𝛾𝑤,𝑝 =
3𝑛𝑝

′ + 1

4𝑛𝑝
′ (

8𝑣

𝐷
) 

 

 Annular flow 

With respect to annular flow, Fan et al. (2014) employs an approach that deviates slightly from 

that of Reed and Pilehvari (1993). First, they present the Newtonian wall shear rate for a 

concentric annulus. 

 

𝛾𝑤,𝑎,𝑁 =
12𝑣

𝐷ℎ
 

 

This equation is rearranged to put it in the same form as for pipe flow. 

 

𝛾𝑤,𝑎 =
8𝑣

2
3 𝐷ℎ

 

 

Here, Fan et al. (2014) use a relation for annular flow rate as given in (2.38) and combine it 

with equation (2.29) to produce equation (2.39). 

 

𝑄𝑎 = 𝜋(𝑅0 + 𝑅𝑖)𝑅𝛿𝑣 

 

8𝑣

2
3 𝐷ℎ

𝜏𝑤
2 = 3 ∫ 𝜏𝛾𝑑𝜏

𝜏𝑤

𝜏0

 

 

Moreover, equation (2.39) is restructured and given on the following form: 
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(2.41) 

(2.43) 

(2.44) 

(2.45) 

𝛾𝑤,𝑎 =
2

3
(

8𝑣

2
3 𝐷ℎ

) +
1

3

𝑑 (
8𝑣

2
3 𝐷ℎ

)

𝑑𝜏𝑤
𝜏𝑤 

 

From the latter equation, an expression for the generalized flow index in annuli is derived. 

 

𝑛𝑎
′ =

𝑑 ln 𝜏𝑤

𝑑 ln (
8𝑣

2
3 𝐷ℎ

)

 

 

And finally, the expression for a generalized annulus wall shear stress becomes: 

 

𝛾𝑤,𝑎 =
2𝑛𝑎

′ + 1

3𝑛𝑎
′ (

8𝑣

2
3 𝐷ℎ

) 

 

Generalized effective diameter 

As mentioned previously, applying a generalized effective diameter provides the opportunity 

to determine non-Newtonian pressure loss using established analytical models for Newtonian 

pipe flow. From equations (2.35) and (2.42) the effective diameter is defined as 

 

𝐷𝑒𝑓𝑓,𝑝 =
4𝑛𝑝

′

3𝑛𝑝
′ + 1

𝐷 

 

𝐷𝑒𝑓𝑓,𝑎 =
2𝑛𝑎

′

2𝑛𝑎
′ + 1

𝐷ℎ 

 

Now, the wall shear rate for non-Newtonian flow may be expressed in the same form as for 

Newtonian pipe flow given in equation (2.33). 

 

𝛾𝑤 =
8𝑣

𝐷𝑒𝑓𝑓
 

 

Additionally, the Reynolds number is also generalized to account for any non-Newtonian fluid 

by introducing the effective diameter as shown below. 

(2.42) 
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(2.47) 

(2.48) 

(2.49) 

(2.50) 

(2.51) 

 

𝑅𝑒𝑔 =
𝜌𝐷𝑒𝑓𝑓𝑣

𝜇𝑤,𝑎𝑝𝑝
 

 

For a Herschel-Bulkley fluid, the apparent viscosity at the wall is given by equation (2.47) and 

the generalized Reynolds number for pipes and annuli is given by equation (2.48) and (2.49) 

respectively. 

 

𝜇𝑤,𝑎𝑝𝑝 =
𝜏𝑤

𝛾𝑤
= 𝜏0𝛾𝑤

−1 + 𝐾𝛾𝑤
𝑛−1 

 

𝑅𝑒𝑔,𝑝 =

𝜌 (
4𝑛𝑝

′

3𝑛𝑝
′ + 1

) 𝐷𝑣

𝜇𝑤,𝑎𝑝𝑝
 

 

𝑅𝑒𝑔,𝑎 =

𝜌 (
2𝑛𝑎

′

2𝑛𝑎
′ + 1

) 𝐷ℎ𝑣

𝜇𝑤,𝑎𝑝𝑝
 

 

Friction factor 

The generalized Reynolds number is applied to the fanning friction factor to determine the 

pressure drop of laminar flow.  

 

𝑓 =
64

𝑅𝑒𝑔
 

 

For transitional and turbulent flow, the friction factor is obtained by equation (2.51), which is 

a modified version of Colebrook’s equation that is valid for any time-independent fluids 

flowing through pipes and concentric annuli.  

 

1

√𝑓
= −4 log10 [

0.27𝜀

𝐷𝑒𝑓𝑓
+

1.26(𝑛′)
−1.2

[𝑅𝑒𝑔𝑓(1−0.5𝑛′)]
(𝑛′)−0.75] 

 

Pressure loss 

The expressions for pressure loss for pipe and annular flow are given by equations (2.52) and 

(2.53).  

(2.46) 
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(2.52) 

(2.53) 

 

𝑑𝑃

𝑑𝐿𝑝
=

𝑓 𝜌𝑣2

2𝐷
 

 

𝑑𝑃

𝑑𝐿𝑎
=

𝑓 𝜌𝑣2

2𝐷ℎ
 

 

Finally, the apparent viscosity and the pressure drop for a Herschel-Bulkley fluids can be 

computed by following the procedures given below. 

 

Pipe flow 

 

1. Give the flow rate and solve equation (2.19) to obtain the wall shear stress 𝜏𝑤,𝑝 

2. Use 𝜏𝑤,𝑝 in equation (2.15) and solve for the wall shear rate 𝛾𝑤,𝑝 

3. Solve equation (2.35) to obtain the generalized flow index for pipe flow 

4. Determine the apparent viscosity for the drill pipe by applying 𝜏𝑤,𝑝 and 𝛾𝑤,𝑝 to equation 

(2.47) 

5. Calculate the generalized Reynolds number in equation (2.48) with the apparent 

viscosity from step 4. 

6. Apply the generalized Reynolds number and determine the friction factor from equation 

(2.50) or (2.51) depending on the flow regime - use the generalized effective diameter 

from equation (2.43) 

7. Employ the friction factor from step 6 to calculate the pressure loss from equation (2.52)  

 

Annular flow 

 

1. Give the flow rate and solve equation (2.30) to obtain the wall shear stress 𝜏𝑤,𝑎 

2. Use 𝜏𝑤,𝑎 in equation (2.15) and solve for the wall shear rate 𝛾𝑤,𝑎 

3. Solve equation (2.42) with the hydraulic diameter given in equation (2.25) to obtain the 

generalized flow index for annular flow 

4. Determine the apparent viscosity for the annulus by applying 𝜏𝑤,𝑎 and 𝛾𝑤,𝑎 to equation 

(2.47) 

5. Calculate the generalized Reynolds number in equation (2.49) with the apparent 

viscosity from step 4. 

6. Apply the generalized Reynolds number and determine the friction factor from equation 

(2.50) or (2.51) depending on the flow regime - use the generalized effective diameter 

from equation (2.44) 

7. Employ the friction factor from step 6 to calculate the pressure loss from equation (2.53)  

 

 

Nomenclature 

𝐷: pipe diameter, m 

𝐷𝑒𝑓𝑓: effective diameter, m 

𝐷ℎ: hydraulic diameter, m 

𝑓: friction factor 

𝐾: consistency index, Pasn 

𝐿: length, m 
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(2.54) 

(2.55) 

𝑛: flow index 

𝑛′: generalized flow index 

𝑃: pressure, Pa 

𝑄: flow rate, m3/s 

𝑟: distance from annulus center, m 

𝑅: pipe radius, m 

𝑅𝑖: radius of inner cylinder, m 

𝑅0: radius of outer cylinder, m 

𝑅𝛿: annular clearance, m 

𝑅𝑒𝑔: generalized Reynolds number 

𝑢: velocity, m/s 

𝑣: average velocity, m/s 

𝛾: shear rate, s-1 

𝜀: pipe roughness 

𝜇𝑤,𝑎𝑝𝑝: apparent viscosity at the wall, Pas 

𝜏: shear stress, Pa 

𝜏0: yield stress, Pa 

𝜌: flud density, kg/ m3 

 

Subscripts 

𝑎: annulus 

𝑁: Newtonian 

𝑝: pipe 

𝑤: wall 

 

2.3.2 Bit pressure loss 

Pressure loss over the bit nozzles may be derived by applying a continuity equation and 

Bernoulli’s principle. The continuity equation gives: 

 

𝑄 = 𝑣𝑎𝐴𝑎 = 𝑣𝑏𝐴𝑏 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 

where v is the velocity and A is the area at two arbitrary reference points a and b. Neglecting 

the gravitational term and assuming a frictionless and incompressible system, Bernoulli’s 

principle for the pressure loss over the bit gives: 

 

𝑣𝑎
2

2
+

𝑃𝑎

𝜌
=

𝑣𝑏
2

2
+

𝑃𝑏

𝜌
 

 

Reference points a and b in equation (2.55) corresponds to the drill pipe and bit nozzles 

respectively. By comparing drill pipe velocity with nozzle velocity, the drill pipe velocity is 

found negligible and equation (2.55) simplifies to: 
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(2.56) 

(2.57) 

 

∆𝑃𝑏𝑖𝑡 = 𝑃𝑎 − 𝑃𝑏 =
𝜌

2
𝑣𝑏

2 

 

Experiments have shown that pressure loss across the bit is slightly different than predicted by 

the latter equation (Aadnøy, 2010). Therefore, a nozzle discharge coefficient is often introduced 

to improve the results. Applying the discharge coefficient and the continuity equation gives the 

pressure loss over the bit as 

 

∆𝑃𝑏𝑖𝑡 =
𝜌𝑄2

2𝐴2𝐾𝑑
2 

 

The discharge coefficient is normally set to 0.95 (Moore, 1974; Warren, 1989; Aadnøy, 2010). 

However, Warren (1989) conducted experiments on a large-scale drilling test machine to 

measure the pressure loss through roller cone bits and reported that using a discharge coefficient 

of 0.95 produce an average error of 14.7% compared to measurements. Results indicate that the 

pressure loss is in fact over predicted by equation (2.57) using the given value for the discharge 

coefficient. Other researchers have reported the same over prediction (Warren, 1989). A 

phenomenon referred to as pressure recovery is believed to have an impact on the discrepancies 

between calculated and measured values. The pressure recovery occurs when a fluid moves 

from a high velocity region in proximity of the bit nozzles to a lower velocity region in the 

annulus further away from the bit. When the velocity decreases, the pressure will increase 

according to Bernoulli’s principle, and some of the pressure is thus recovered.  

 

Still, Warren (1989) was unable to determine the actual effect the pressure recovery imposed 

on the discrepancy. Other flow effects were also discussed, and the pressure loss across the bit 

is believed to be of a more complex nature than proposed by equation (2.57). Examples of such 

effects are jet velocity, borehole pressure, nozzle- to bore-diameter ratio, and mud density. 

Despite the challenges of giving a definite explanation to the discrepancy, Warren (1989) 

provided an improvement of the nozzle discharge coefficient. Through experiments with 

different muds and after evaluating 770 data points, a value of 1.023 for roller cone bits gave 

an absolute mean error of 4.1%. Therefore, the proposed value of 1.023 is applied to equation 

(2.57) in this thesis. Note that this value only applies to roller cone bits. The discharge 

coefficient for different PDC bits did not follow a clear trend such as for roller cone bits. 
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Nomenclature 

𝐴: total nozzle area, m2 

𝐾𝑑: nozzle discharge coefficient 

𝑃𝑎: drill pipe pressure, Pa 

𝑃𝑏: pressure at the bit nozzles, Pa 

𝑄: flow rate, m3/s 

∆𝑃𝑏𝑖𝑡: bit pressure loss, Pa 

𝑣: velocity, m/s 

𝜌: fluid density, kg/m3 
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2.4 Energy source terms 

There are many mathematical models that describe the temperature distribution of circulating 

drilling fluids. Raymond (1969) presented numerical solutions of the temperature profile for a 

circulating fluid system during transient and pseudo steady-state conditions. One year later, 

Holmes and Swift (1970) published an article that gives an analytical solution of the 

temperature distribution assuming steady-state heat transfer between the annulus and the drill 

pipe. Another study on the temperature of drilling fluids during circulation was given by Kabir 

et al. (1996). The intention of these models is to provide estimates of the temperature and a 

better understanding of downhole conditions that might occur during drilling operations. This 

information may be used to for example optimized mud selection. However, these models do 

not consider processes during a drilling operation that introduce additional heat to the wellbore 

system. Heat generation from energy sources present during drilling may have significant effect 

on the temperature distribution (Keller et al., 1973). To provide a more realistic solution, the 

following energy source terms are implemented in this work 

 

1. Drill pipe rotation 

2. Drill bit friction 

3. Frictional pressure losses 

4. Joule-Thomson coefficient 

 

2.4.1 Drill pipe rotation 

Friction refers to the force that resists relative motion of two solid objects in contact. The 

mechanical energy that exists in the process where two solid objects slide against each other is 

converted to heat. Researchers believe that practically all the dissipated energy related to 

frictional processes will be converted to heat (Bhushan, 2000).The energy dissipation which is 

termed frictional heating, results in a temperature increase at the interface between the two 

objects. In a deviated wellbore, the drill pipe tends to lay at the low side of the wellbore. 

Consequently, friction occurs at the drill pipe and casing/formation interface and heat is 

generated during rotation. The frictional force is proportional to the normal force applied by 

the drill pipe. In highly deviated sections or sharp bends and doglegs where the normal force 

may be large, a significant amount of heat can be generated. To quantify the amount of heat 

that is generated because of wellbore friction, the following equation is applied (Kumar & 

Samuel, 2013): 
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(2.58) 

(2.59) 

(2.60) 

(2.61) 

 

𝑃𝑤𝑓 = 𝜏(𝛼) ∙ 2𝜋 ∙  𝑟𝑝𝑠 

 

where 𝑃𝑤𝑓 is regarded as the heat rate or downhole power loss, 𝜏 is the torque acting on the 

drill pipe due to wellbore friction and 𝑟𝑝𝑠 represents the drill pipe rotations per second.  

 

The torque is calculated by a 3D wellbore friction model given by Aadnoy, Fazaelizadeh, and 

Hareland (2010). This model gives an analytical solution of torque and drag that applies for 

straight sections, build-up-bends, drop-off-bends, side bends, and any combination of these 

situations. Additionally, it offers the opportunity to include the effect of combined axial motion 

and rotation. The equations that are applied to calculate the torque and thus the frictional heating 

due to wellbore friction is presented below. Note that combined motion is included here.  

 

Straight sections 

For a straight section, the torque that is acting on the drill pipe is expressed as 

 

𝜏 = 𝜇𝑟𝛽𝑤∆𝐿 sin 𝛼 cos 𝜓 

 

Curved sections 

For any type of bend, the axial force in the drill pipe is determined by 

 

𝐹2 = 𝐹1 + 𝐹1(𝑒±|𝜃2−𝜃1| − 1) sin 𝜓 + 𝛽𝑤∆𝐿 [
sin 𝛼2 − sin 𝛼1

𝛼2 − 𝛼1
] 

 

where + indicates tripping out and − indicates tripping in. The parameters 𝐹2 and 𝐹1 refers to 

the axial force at the top and bottom of a drill pipe element of the length ∆𝐿. Since this is a 3D 

model, the absolute change of direction is considered by implementing the dogleg. The dogleg 

may be determined from the equation below.  

 

cos 𝜃 = sin 𝛼1 sin 𝛼2 cos(𝜙1 − 𝜙2) + cos 𝛼1 cos 𝛼2 

 

Here, the subscripts 1 and 2 represents two successive survey measurements. Finally, the torque 

for a curved section is determined by equation (2.62).  
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(2.62) 

(2.63) 

𝜏 = 𝜇𝑟𝐹1 |𝜃2 − 𝜃1|cos 𝜓 

 

For all the equations above, 𝜓  represents the angle between the axial and tangential pipe 

velocities during combined motion. The parameter is obtained from the following relationship: 

 

𝜓 = tan−1 (
𝑉ℎ

𝑉𝑟
) = tan−1 (

60𝑉ℎ

2𝜋𝑁𝑟𝑟
) 

 

More details regarding the derivation of the model and corresponding theory is found in Aadnoy 

et al. (2010). 

 

Nomenclature 

F: axial force, N 

L: length, m 

Nr: rotary pipe speed, 1/min 

Pwf: heat rate, J/s 

r: pipe radius, m 

rps: rotations per second, 1/s 

Vh: axial pipe velocity, m/s 

Vr: tangential pipe speed, m/s 

w: unit pipe weight, N/m 

α: angle of inclination, radians 

β: buoyancy factor 

θ: dogleg angle, radians 

μ: friction factor 

τ: torque, Nm 

ϕ: azimuth, rad 

ψ: angle between axial and tangential pipe velocities, radians 

 

2.4.2 Drill bit friction 

When the drill bit works on the formation to crush the rock, friction occurs at the interface of 

the bit and the formation and heat is generated. As stated previously, it is reasonable to assume 

that all the energy dissipation in this process is converted to thermal energy. However, it was 

also mentioned in chapter 2.1 that there seems to be a lack of research on how to quantify the 

amount of mechanical energy that is necessary to crush the rock and thus how large the potential 

of heat generation is. Keller et al. (1973) suggested that 40% of the mechanical input used to 

rotate the drill pipe is spent on drilling the formation. Corre et al. (1984) stated that depending 

on the lithology, about 10% of the mechanical input would be enough. Still, none of them gave 

any reasoning behind the proposed percentages, making it hard to assess who is more correct. 
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(2.64) 

(2.65) 

The intention of this thesis will therefore shift from quantifying the exact amount of heat 

generated from crushing the rock to evaluating the actual effect heat generation from the bit 

impose on the temperature distribution. 

 

If the effect of frictional heating from the bit reveals to have a significant impact on the 

temperature distribution, it will be an advantage to have an idea of which parameters to adjust 

to control the heat generation. Mechanical specific energy (MSE) is a term that is commonly 

utilized as a measure of drilling efficiency. The term gives the energy required to remove a unit 

volume of rock (Hamrick, 2011). MSE is defined by the general expression: 

 

𝑀𝑆𝐸 =
𝑡𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑖𝑛𝑝𝑢𝑡

𝑣𝑜𝑙𝑢𝑚𝑒 𝑟𝑒𝑚𝑜𝑣𝑒𝑑
 

 

The expression can also be given as (Hamrick, 2011) 

 

𝑀𝑆𝐸 =
𝑊𝑂𝐵

𝐴𝑟𝑒𝑎
+

2𝜋 ∙ 𝑟𝑝𝑚 ∙ 𝜏

𝐴𝑟𝑒𝑎 ∙ 𝑅𝑂𝑃
 

 

The idea behind defining MSE is to use it as a tool for increasing drilling efficiency. 

Manipulating the operational parameters in equation (2.65) to minimize the MSE gives a 

favorable ratio of energy input to volume of rock removed. Keeping track of and minimizing 

MSE during an operation may also be used to minimize the heat generation from both the 

rotation of the pipe and the drilling of the formation as it is affected by the mechanical energy 

input. 

 

Nomenclature 

𝐴𝑟𝑒𝑎: wellbore area, m2 

𝑅𝑂𝑃: rate of penetration, m/min 

𝑟𝑝𝑚: rotations per minute, 1/min 

𝑊𝑂𝐵: weight on bit, N 

𝜏: torque, Nm 

 

2.4.3 Frictional pressure losses 

Another source of heat occurs as drilling fluid is circulated through the drill pipe and the 

annulus. Whenever a fluid flows through a pipe, a velocity gradient is present in the fluid. The 

velocity gradient appears because the fluid in contact with the pipe surface has zero velocity 
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(2.66) 

(2.67) 

(2.68) 

according to the no-slip condition (Munson, Young, & Okiishi, 2006). Close to the wall, the 

velocity gradient will be large and layers of fluid will move relative to each other. The friction 

that occurs between these layers because of fluid viscosity, results in a pressure drop and 

consequently heat generation during circulation. In this thesis, all the mechanical energy 

required to overcome the pressure drop is converted to heat. The applied pressure loss 

calculations are given in chapter 2.3. 

 

2.4.4 Joule-Thomson coefficient 

As a liquid or a gas is either compressed or expanded, a subsequent change of temperature is 

experienced. Whether the temperature decreases or increases depends on the original state of 

the fluid. To consider this effect in the temperature model, the Joule-Thomson coefficient is 

implemented. The Joule-Thomson coefficient describes how the temperature of a fluid is 

affected by changes in pressure at constant enthalpy (Maghari & Safaei, 2007). The change of 

temperature due to pressure changes is mathematically described in the temperature model as 

 

𝜇𝐽𝑇

∆𝑃

∆𝑥
 

 

where 𝜇𝐽𝑇  represents the Joule-Thomson coefficient. The approach from Alves, Alhanati, and 

Shoham (1992) has been employed to calculate the Joule-Thomson coefficient for the drilling 

fluid.  

 

𝜇𝐽𝑇 =
1

𝑐𝑝
{𝑇 [

𝜕

𝜕𝑇
(

1

𝜌
)]

𝑃

−
1

𝜌
} 

 

By introducing the linearized density model given in chapter 2.2.2, equation (2.67) becomes 

 

𝜇𝐽𝑇 =
1

𝑐𝑝
{𝑇

𝜌0𝛼

(𝜌0+
𝜌0
𝛽

(𝑃−𝑃0)−𝜌0𝛼(𝑇−𝑇0))

2 −
1

𝜌0+
𝜌0
𝛽

(𝑃−𝑃0)−𝜌0𝛼(𝑇−𝑇0)
}  

 

The Joule-Thomson coefficient may take a positive or negative sign. The point at which the 

sign changes is referred to as the inversion point (Maghari & Safaei, 2007). As an example, the 

sign for water will stay negative given that the temperature is below 250 °C. With the range of 
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temperature experienced in this thesis, the sign of the Joule-Thomson coefficient for the 

considered drilling fluid is also found to stay negative. A negative sign indicates that the drilling 

fluid will heat as it expands and cool as it compresses. Consequently, the reduction in pressure 

with the flow direction in the annulus will introduce heat to the system. However, a reduction 

of temperature occurs in the drill pipe as the pressure increases with the flow direction.  

 

Nomenclature 

𝑐𝑝: specific heat capacity, J/kg°C 

𝑃: pressure, Pa 

𝑃0: pressure at point of linearization, Pa 

𝑇: temperature, °C 

𝑇0: temperature at point of linearization, °C 

𝑥: measured depth, m 

𝛼: cubical expansion coefficient, 1/°C 

𝛽: isothermal bulk modulus, Pa 

𝜇𝐽𝑇 : Joule-Thomson coefficient, °C/Pa 

𝜌: drilling fluid density, kg/m3  
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(2.69) 

(2.70) 

(2.71) 

(2.72) 

(2.73) 

2.5 Temperature model 

2.5.1 Derivation 

A derivation of the developed temperature model is presented below, where figure 2-4 

represents a general wellbore element at which the derivation is based on. In the drill pipe, the 

flow direction is set downwards and heat will therefore enter the system at 𝑥 and leave the 

system at 𝑥 + 𝑑𝑥. Heat will also enter the system due to heat transfer with the annulus and heat 

generation from additional energy sources within the drill pipe. Consequently, the energy 

balance for the wellbore element is expressed by: 

 

𝑄𝑝(𝑥+𝑑𝑥) − 𝑄𝑝(𝑥) = 𝑄𝑎𝑝 + 𝜙𝑝 

 

where 𝑄𝑎𝑝  represents the rate of heat transfer with the annulus and 𝜙𝑝 represents the energy 

sources present within the drill pipe. The change in thermal energy over the element is given 

by (Bergman et al., 2011): 

 

𝑄𝑝(𝑥+𝑑𝑥) − 𝑄𝑝(𝑥) = 𝑚𝑐𝑝𝑝(𝑇𝑝(𝑥+𝑑𝑥) − 𝑇𝑝(𝑥)) 

 

while the heat transfer across the drill pipe is expressed as (Kabir et al., 1996) 

 

𝑄𝑎𝑝 = 2𝜋𝑟𝑝𝑖𝑈𝑝(𝑇𝑎 − 𝑇𝑝)𝑑𝑥 

 

where 𝑟𝑝𝑖  is the inner radius of the drill pipe and 𝑈𝑝  represents the overall heat transfer as 

explained in chapter 2.2.1. Combining equations (2.69-2.71) gives the following differential 

equation for the drill pipe temperature distribution: 

 

𝑑𝑇𝑝

𝑑𝑥
= 𝐴𝑇𝑎 − 𝐴𝑇𝑝 +

1

𝑚𝑐𝑝𝑝

𝜙𝑝

𝑑𝑥
 

where 

𝐴 =
2𝜋𝑟𝑝𝑖𝑈𝑝

𝑚𝑐𝑝𝑝
 

 

For the annulus, the flow direction is set upwards and heat will consequently enter the system 

at 𝑥 + 𝑑𝑥 and leave the system at 𝑥. Additional heat enters the system by heat transfer from the 
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(2.74) 

(2.75) 

(2.76) 

(2.77) 

(2.78) 

formation and heat generation due to energy sources in the annulus, and heat will also leave the 

system through the interface with the drill pipe. The energy balance for the wellbore element 

becomes: 

 

𝑄𝑎(𝑥+𝑑𝑥) − 𝑄𝑎(𝑥) = 𝑄𝑎𝑝 − 𝑄𝑓 − 𝜙𝑎 

 

where 𝑄𝑓 gives the heat transfer from the formation to the wellbore interface and 𝜙𝑎 represents 

the energy sources in the annulus. Following Bergman et al. (2011), the thermal energy over 

the annulus element may be expressed by: 

 

𝑄𝑎(𝑥+𝑑𝑥) − 𝑄𝑎(𝑥) = 𝑚𝑐𝑝𝑎(𝑇𝑎(𝑥+𝑑𝑥) − 𝑇𝑎(𝑥)) 

 

The rate of heat transfer across the drill pipe remains the same as in equation (2.71) and the 

heat flow from the formation to the wellbore is given in the equation below (Kabir et al., 1996). 

 

𝑄𝑓 =
2𝜋𝑘𝑓

𝑇𝐷
(𝑇𝑓 − 𝑇𝑤)𝑑𝑥 

 

Here, 𝑇𝑤  is the temperature at the interface between the formation and the wellbore. An 

approximation for the dimensionless temperature 𝑇𝐷 in equation (2.76), is determined by the 

equations given in chapter 2.1. The heat transfer from the wellbore/formation interface to the 

annulus is given in equation (2.77).  

 

𝑄𝑤𝑎 = 2𝜋𝑟𝑐𝑖𝑈𝑎(𝑇𝑤 − 𝑇𝑎)𝑑𝑥 

 

Combining equation (2.76) and (2.77) to eliminate 𝑇𝑤, the heat flow from the formation to the 

annulus is expressed by:  

 

𝑄𝑓 =
2𝜋𝑟𝑐𝑖𝑈𝑎𝑘𝑓

𝑘𝑓 + 𝑟𝑐𝑖𝑈𝑎𝑇𝐷
(𝑇𝑓 − 𝑇𝑎)𝑑𝑥 

 

Updating the energy balance in equation (2.74) with the expressions in equations (2.71), (2.75) 

and (2.78) yields the differential equation for the annulus temperature distribution as shown 

below. 
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(2.79) 

(2.80) 

(2.81) 

(2.82) 

(2.83) 

(2.84) 

(2.85) 

 

𝑑𝑇𝑎

𝑑𝑥
= 𝐶(𝑇𝑎 − 𝑇𝑝) − 𝐵(𝑇𝑓 − 𝑇𝑎) −

1

𝑚𝑐𝑝𝑎

𝜙𝑎

𝑑𝑥
 

where  

𝐶 =
2𝜋𝑟𝑝𝑖𝑈𝑝

𝑚𝑐𝑝𝑎
 

 

𝐵 =
2𝜋𝑟𝑐𝑖𝑈𝑎𝑘𝑓

(𝑘𝑓 + 𝑟𝑐𝑖𝑈𝑎𝑇𝐷)𝑚𝑐𝑝𝑎

 

 

Considering equations (2.72) and (2.79), there is a set of two equations and two unknowns, 

explicitly 𝑇𝑝  and 𝑇𝑎  .To take the derivation further, equation (2.72) is rearranged to the 

following form: 

 

𝑇𝑎 =
1

𝐴

𝑑𝑇𝑝

𝑑𝑥
+ 𝑇𝑝 −

1

𝐴

1

𝑚𝑐𝑝𝑝

𝜙𝑝

𝑑𝑥
 

 

Substituting 𝑇𝑎 in equation (2.79) with the expression above and solving for 𝑇𝑝 gives 

 

𝑑2𝑇𝑝

𝑑𝑥2
− 𝐷

𝑑𝑇𝑝

𝑑𝑥
− 𝐴𝐵𝑇𝑝 = 𝑔(𝑥) 

where  

𝐷 = −𝐴 + 𝐵 + 𝐶 

and 

𝑔(𝑥) = −𝐴𝐵𝑇𝑓 −
𝐵 + 𝐶

𝑚𝑐𝑝𝑝

𝜙𝑝

𝑑𝑥
−

𝐴

𝑚𝑐𝑝𝑎

𝜙𝑎

𝑑𝑥
 

 

Before proceeding, it is important to acknowledge that the chosen derivation procedure contains 

a constraint. The differential equation in (2.83) is solved by utilizing the Undetermined 

Coefficients method. This method requires that the coefficients A, B, and C are constants. On 

the contrary, these coefficients are not constant throughout the wellbore because they involve 

the overall heat transfer coefficient. The overall heat transfer coefficient contains temperature 

dependent parameters such as drilling fluid density and viscosity and neither A, B, or C can be 

regarded as constants for the length of the wellbore. An analytical solution is consequently not 

achievable.  
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(2.86) 

(2.87) 

(2.88) 

Numerical approach 

Because of the constraint mentioned in the latter paragraph, a numerical approach is 

implemented to obtain a solution of the wellbore temperature distribution. Using a numerical 

approach allows the wellbore to be divided into a certain number of boxes. For each box, all 

the parameters that varies throughout the wellbore are updated and treated as constants over the 

box length, which allows equation (2.80) to be solved by the Undetermined Coefficients 

method. Since a numerical approach is implemented, the notation of the discretized wellbore 

given in figure 2-5 is now employed. Here, 𝑖 refers to a random box in the discretized wellbore.   

 

The formation temperature 𝑇𝑓 in equation (2.85) varies with depth. For a vertical wellbore, it is 

common to express the formation temperature with a constant surface temperature and a linear 

geothermal gradient such as in equation (2.86). 

 

𝑇𝑓(𝑥) = 𝑇𝑠 + 𝐺𝑥 

 

But the objective of this work is to develop a temperature model for deviated wellbores. Taking 

advantage of the numerical approach, the following function has been implemented: 

 

𝑇𝑓(𝑖) = 𝑇𝑓(𝑖−1) + 𝐺 cos(𝐼(𝑖)) (𝑥(𝑖) − 𝑥(𝑖−1)) 

 

Here, 𝑇𝑓(𝑖−1) and 𝑥(𝑖−1) refers to the formation temperature and the measured depth at box 𝑖 −

1, and 𝑥(𝑖) and 𝐼(𝑖) represents measured depth and the angle of inclination for box 𝑖. Equation 

(2.83) can now be expressed as 

 

𝑑2𝑇𝑝(𝑖)

𝑑𝑥2
− 𝐷

𝑑𝑇𝑝(𝑖)

𝑑𝑥
− 𝐴𝐵𝑇𝑝(𝑖) = −𝐴𝐵[𝑇𝑓(𝑖−1) + 𝐺 cos(𝐼(𝑖)) (𝑥(𝑖) − 𝑥(𝑖−1))] 

−
𝐵 + 𝐶

𝑚𝑐𝑝𝑝

𝜙𝑝(𝑖)

𝑑𝑥
−

𝐴

𝑚𝑐𝑝𝑎

𝜙𝑎(𝑖)

𝑑𝑥
 

 

Finally, solving the second order inhomogeneous differential equation above yields the general 

expression for the temperature distribution in the drill pipe: 

 

 

 



 36 

(2.90) 

(2.91) 

(2.92) 

(2.89) 𝑇𝑝(𝑖) = 𝐶1𝑒𝜃1𝑥(𝑖) + 𝐶2𝑒𝜃2𝑥(𝑖) + 𝑇𝑓(𝑖−1) + 𝐺 cos(𝐼(𝑖)) 𝑥(𝑖) − 𝐺 cos(𝐼(𝑖))𝑥(𝑖−1) 

−
𝐷

𝐴𝐵
𝐺 cos(𝐼(𝑖)) +

𝐵 + 𝐶

𝐴𝐵

1

𝑚𝑐𝑝𝑝

𝜙𝑝(𝑖)

𝑑𝑥
+

1

𝐵𝑚𝑐𝑝𝑎

𝜙𝑎(𝑖)

𝑑𝑥
 

 

Furthermore, substituting equation (2.89) for 𝑇𝑝 in equation (2.82) gives the general solution of 

the temperature distribution in the annulus. 

 

𝑇𝑎(𝑖) = (1 +
𝜃1

𝐴
) 𝐶1𝑒𝜃1𝑥(𝑖) + (1 +

𝜃2

𝐴
) 𝐶2𝑒𝜃2𝑥(𝑖) + 𝑇𝑓(𝑖−1) + 𝐺 cos(𝐼(𝑖)) 𝑥(𝑖) − 𝐺 cos(𝐼(𝑖))𝑥(𝑖−1)

+ (
1

𝐴
−

𝐷

𝐴𝐵
) 𝐺 cos(𝐼(𝑖)) + (

𝐵 + 𝐶

𝐴𝐵
−

1

𝐴
)

1

𝑚𝑐𝑝𝑝

𝜙𝑝(𝑖)

𝑑𝑥
+

1

𝐵𝑚𝑐𝑝𝑎

𝜙𝑎(𝑖)

𝑑𝑥
 

where 

𝜃1 =
𝐷 + √𝐷2 + 4𝐴𝐵

2
 

 

𝜃2 =
𝐷 − √𝐷2 + 4𝐴𝐵

2
 

 

Equations (2.89) and (2.90) are solved to determine the wellbore temperature distribution for 

each box in the wellbore. Note that the following coefficients that are not constant, must be 

determined for each box: 

 

𝐶1, 𝐶2, 𝜃1, 𝜃2, 𝐴, 𝐵, 𝐶, 𝐷 

 

Also, note that equations (2.87), (2.89), and (2.90) are valid for: 

 

𝑥(𝑖−1) ≤ 𝑥 ≤ 𝑥(𝑖) 

 

Energy source terms 

A summary of the source terms that are included in the different regions of the wellbore is given 

in table 2-3. 
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Figure 2-4 Wellbore element 

Figure 2-5 Discretized wellbore 
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Drill pipe Bottom of the wellbore Annulus 

- drill pipe rotation drill pipe rotation 

- drill bit friction - 

frictional pressure losses frictional pressure losses frictional pressure losses 

Joule-Thomson coefficient Joule-Thomson coefficient Joule-Thomson coefficient 

 

 

 

 

Nomenclature 

𝑐𝑝: specific heat capacity, J/kg°C 

𝐺: geothermal gradient, °C/m 

𝑘: thermal conductivity, W/m°C 

𝑚: mass rate, kg/s 

𝑄: rate of heat, J/s 

𝑟: radius, m 

𝑇: temperature, °C 

𝑇𝐷: dimensionless temperature 

𝑈: overall heat transfer coefficient, W/m2°C 

𝑥: measured depth, m 

𝜙: energy source term, J/s 

 

Subscripts 

𝑝: drill pipe 

𝑎: annulus 

𝑓: formation 

𝑤: wellbore 

𝑖: inner 

𝑐: casing 

𝑠: surface 

 

2.5.2 Algorithm 

This chapter presents the algorithm applied to obtain a solution for the wellbore temperature 

distribution. The procedure starts at the bottom of the well and relies on a given temperature to 

calculate the temperature distribution throughout the wellbore. Consider the illustration in 

figure 2-5. Here, the wellbore is divided into a certain number of boxes. The bottom of the 

wellbore and the total number of boxes, is represented by the letter 𝑛. At this point, it is 

necessary to give an initial guess of the bottom hole temperature as a boundary condition. A 

reasonable choice of boundary condition for a drilling operation is: 

Table 2-3 Energy source terms 
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(2.93) 

(2.94) 

 

𝑇𝑝(𝑛) = 𝑇𝑎(𝑛) = 𝑇𝑏  

 

where 𝑇𝑏  represents the guess of wellbore temperature at the bottom of box number 𝑛, as 

indicated by the red mark in figure 2-5. The corresponding depth and angle of inclination are 

given by: 

 

𝑥 = 𝑑𝑥 ∗ 𝑛 

 

𝐼 = 𝐼(𝑛) 

 

where 𝑥 is the measured depth and 𝑑𝑥 is the measured depth of a single box. 

 

Substituting 𝑇𝑝 and 𝑇𝑎 with 𝑇𝑏 in equations (2.89) and (2.90) gives a system of equations with 

two variables, explicitly 𝐶1(𝑛) and 𝐶2(𝑛). 

 

𝑇𝑏 = 𝐶1(𝑛)𝑒𝜃1𝑑𝑥∗𝑛 + 𝐶2(𝑛)𝑒𝜃2𝑑𝑥∗𝑛 + 𝑇𝑓(𝑛−1) + 𝐺 cos(𝐼(𝑛)) 𝑑𝑥 −
𝐷

𝐴𝐵
𝐺 cos(𝐼(𝑛)) +

𝐵 + 𝐶

𝐴𝐵

1

𝑚𝑐𝑝𝑝

𝜙𝑝(𝑛)

𝑑𝑥

+
1

𝐵𝑚𝑐𝑝𝑎

𝜙𝑎(𝑛)

𝑑𝑥
 

 

𝑇𝑏 = (1 +
𝜃1

𝐴
) 𝐶1(𝑛)𝑒𝜃1𝑑𝑥∗𝑛 + (1 +

𝜃2

𝐴
) 𝐶2(𝑛)𝑒𝜃2𝑑𝑥∗𝑛 + 𝑇𝑓(𝑛−1) + 𝐺 cos(𝐼(𝑛)) 𝑑𝑥

+ (
1

𝐴
−

𝐷

𝐴𝐵
) 𝐺 cos(𝐼(𝑛)) + (

𝐵 + 𝐶

𝐴𝐵
−

1

𝐴
)

1

𝑚𝑐𝑝𝑝

𝜙𝑝(𝑛)

𝑑𝑥
+

1

𝐵𝑚𝑐𝑝𝑎

𝜙𝑎(𝑛)

𝑑𝑥
 

 

Here, equations (2.89) and (2.90) have also been updated with the following relation: 

  

𝐺 cos(𝐼(𝑛)) 𝑑𝑥 ∗ 𝑛 − 𝐺 cos(𝐼(𝑛))𝑑𝑥 ∗ (𝑛 − 1) = 𝐺 cos(𝐼(𝑛)) 𝑑𝑥 

 

In this case, equations (2.93) and (2.94) are valid for:  

 

𝑑𝑥 ∗ (𝑛 − 1) ≤ 𝑥 ≤ 𝑑𝑥 ∗ 𝑛 
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A convenient method to solve equations (2.93) and (2.94) for 𝐶1(𝑛)  and 𝐶2(𝑛)  is matrix 

multiplication. The coefficients 𝐶1(𝑛)  and 𝐶2(𝑛) can be determined by rearranging equations 

(2.93) and (2.94) to the following form:  

 

[
𝐶1(𝑛) 

𝐶2(𝑛)
] = [

𝑎 𝑏
𝑐 𝑑

]
−1

[
𝑦1

𝑦2
] 

where 

𝑎 = 𝑒𝜃1𝑑𝑥∗𝑛 

 

𝑏 = 𝑒𝜃2𝑑𝑥∗𝑛 

 

𝑐 = (1 +
𝜃1

𝐴
) 𝑒𝜃1𝑑𝑥∗𝑛 

 

𝑑 = (1 +
𝜃2

𝐴
) 𝑒𝜃2𝑑𝑥∗𝑛 

 

𝑦1 = 𝑇𝑏 − (𝑇𝑓(𝑛−1) + 𝐺 cos(𝐼(𝑛)) 𝑑𝑥 −
𝐷

𝐴𝐵
𝐺 cos(𝐼(𝑛)) +

𝐵+𝐶

𝐴𝐵

1

𝑚𝑐𝑝𝑝

𝜙𝑝(𝑛)

𝑑𝑥
+

1

𝐵𝑚𝑐𝑝𝑎

𝜙𝑎(𝑛)

𝑑𝑥
)  

 

𝑦2 = 𝑇𝑏 − (𝑇𝑓(𝑛−1) + 𝐺 cos(𝐼(𝑛)) 𝑑𝑥 + (
1

𝐴
−

𝐷

𝐴𝐵
) 𝐺 cos(𝐼(𝑛)) + (

𝐵+𝐶

𝐴𝐵
−

1

𝐴
)

1

𝑚𝑐𝑝𝑝

𝜙𝑝(𝑛)

𝑑𝑥
+

1

𝐵𝑚𝑐𝑝𝑎

𝜙𝑎(𝑛)

𝑑𝑥
)  

 

Assuming the coefficients 𝐶1(𝑛)  and 𝐶2(𝑛)  are constant for box 𝑛 , 𝑇𝑝(𝑛−1)  and 𝑇𝑎(𝑛−1)  are 

calculated at the boundary between box 𝑛 and box 𝑛 − 1 by using 𝐶1(𝑛) and 𝐶2(𝑛) in equations 

(2.86) and (2.87) respectively. Note that the depth and angle of inclination at this point are given 

by: 

 

𝑥 = 𝑑𝑥(𝑛 − 1) 

 

𝐼 = 𝐼(𝑛) 

 

After 𝑇𝑝(𝑛−1) and 𝑇𝑎(𝑛−1) have been determined, they will serve as the boundary temperatures 

for box number 𝑛 − 1, and 𝐶1(𝑛−1) and 𝐶2(𝑛−1) are calculated with the same approach as above 

to obtain 𝑇𝑝(𝑛−2) and 𝑇𝑎(𝑛−2). This procedure is repeated for the remaining boxes to get the 



 41 

(2.95) 

(2.96) 

total wellbore temperature distribution. In a general notation, 𝐶1(𝑖)  and 𝐶2(𝑖)  are calculated 

based on the boundary temperatures 𝑇𝑝(𝑖) and 𝑇𝑎(𝑖) and used in equations (2.89) and (2.90) to 

obtain 𝑇𝑝(𝑖−1) and 𝑇𝑎(𝑖−1). The depth and angle of inclination for box number 𝑖 becomes: 

 

𝑥 = 𝑑𝑥(𝑖 − 1) 

 

𝐼 = 𝐼(𝑖) 

 

When 𝑖 = 1 and box number 1 is reached, the depth and the angle of inclination will be 

 

𝑥 = 0 

 

𝐼 = 𝐼(1) 

 

and equations (2.89) and (2.90) reduce to  

 

𝑇𝑝(0) = 𝐶1(1) + 𝐶2(1) + 𝑇𝑓(0) −
𝐷

𝐴𝐵
𝐺 cos(𝐼(1)) +

𝐵 + 𝐶

𝐴𝐵

1

𝑚𝑐𝑝𝑝

𝜙𝑝(1)

𝑑𝑥
+

1

𝐵𝑚𝑐𝑝𝑎

𝜙𝑎(1)

𝑑𝑥
 

 

𝑇𝑎(0) = (1 +
𝜃1

𝐴
) 𝐶1(1) + (1 +

𝜃2

𝐴
) 𝐶2(1) + 𝑇𝑓(0) + (

1

𝐴
−

𝐷

𝐴𝐵
) 𝐺 cos(𝐼(1)) + (

𝐵 + 𝐶

𝐴𝐵
−

1

𝐴
)

1

𝑚𝑐𝑝𝑝

𝜙𝑝(1)

𝑑𝑥

+
1

𝐵𝑚𝑐𝑝𝑎

𝜙𝑎(1)

𝑑𝑥
 

 

With this last step, the temperature distribution for the entire wellbore has been calculated. To 

summarize, consider the following stepwise approach as a representation of the algorithm for 

calculating the wellbore temperature distribution: 

  

1. Give a guess for the bottom hole temperature 𝑇𝑏 

2. Determine the coefficients 𝐶1(𝑛) and 𝐶2(𝑛) 

3. Calculate 𝑇𝑝(𝑛−1) and 𝑇𝑎(𝑛−1) 

4. Set 𝑖 = 𝑛 − 1 and update the coefficients that are not constant 

5. Determine 𝐶1(𝑖) and 𝐶2(𝑖) 

6. Calculate 𝑇𝑝(𝑖−1) and 𝑇𝑎(𝑖−1) 
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7. Set 𝑖 = 𝑖 − 1 and repeat step 4 to 6 

8. Stop when 𝑖 = 1 

 

Nomenclature 

𝑐𝑝: specific heat capacity, J/kg°C 

𝑑𝑥: box length, m 

𝐺: geothermal gradient, C/m 

𝐼: angle of inclination, deg 

𝑚: mass rate, kg/s 

𝑛: number of boxes 

𝑇: temperature, C 

𝑥: measured depth, m 

𝜙: energy source term, J/s 

 

Subscripts 

𝑎: annulus 

𝑏: bottom 

𝑓: formation 

𝑖: arbitrary box number 

𝑖𝑛: inlet 

𝑛: total number of boxes 

𝑝: pipe 

 

2.5.3 Shooting method 

The algorithm in chapter 2.5.2 may be defined as a boundary value problem with the following 

set of equations and boundary conditions: 

 

𝑇𝑝(𝑖) = 𝐶1𝑒𝜃1𝑥(𝑖) + 𝐶2𝑒𝜃2𝑥(𝑖) + 𝑇𝑓(𝑖−1) + 𝐺 cos(𝐼(𝑖)) 𝑥(𝑖) − 𝐺 cos(𝐼(𝑖))𝑥(𝑖−1) −
𝐷

𝐴𝐵
𝐺 cos(𝐼(𝑖))

+
𝐵 + 𝐶

𝐴𝐵

1

𝑚𝑐𝑝𝑝

𝜙𝑝(𝑖)

𝑑𝑥
+

1

𝐵𝑚𝑐𝑝𝑎

𝜙𝑎(𝑖)

𝑑𝑥
 

 

𝑇𝑎(𝑖) = (1 +
𝜃1

𝐴
) 𝐶1𝑒𝜃1𝑥(𝑖) + (1 +

𝜃2

𝐴
) 𝐶2𝑒𝜃2𝑥(𝑖) + 𝑇𝑓(𝑖−1) + 𝐺 cos(𝐼(𝑖)) 𝑥(𝑖) − 𝐺 cos(𝐼(𝑖))𝑥(𝑖−1)

+ (
1

𝐴
−

𝐷

𝐴𝐵
) 𝐺 cos(𝐼(𝑖)) + (

𝐵 + 𝐶

𝐴𝐵
−

1

𝐴
)

1

𝑚𝑐𝑝𝑝

𝜙𝑝(𝑖)

𝑑𝑥
+

1

𝐵𝑚𝑐𝑝𝑎

𝜙𝑎(𝑖)

𝑑𝑥
 

 

𝑇𝑝(𝑛) = 𝑇𝑎(𝑛) = 𝑇𝑏 

 

𝑇𝑝(0) = 𝑇𝑖𝑛 
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where 𝑇𝑖𝑛 is the drill pipe inlet temperature. The problem is solved by utilizing the shooting 

method, which is a numerical solution of boundary value problems. In general, the idea of this 

method is to reduce boundary value problems to initial value problems. This is achieved by 

considering one of the boundary conditions to be a known initial value and solving the problem 

with the objective of finding the initial value that satisfies the other boundary condition.  

 

Take figure 2-6 as a representation of the boundary value problem presented above. The left 

boundary illustrates box number 𝑛 and the bottom of the wellbore. Following the shooting 

method, a guess is made for 𝑇𝑏 to calculate the total wellbore temperature distribution, thus 

redefining 𝑇𝑏 from a boundary condition to a known initial value and reducing the problem to 

an initial value problem. If the guess of 𝑇𝑏 results in a temperature distribution where 𝑇𝑝(0) 

satisfies the boundary condition at 𝑥 = 0, the problem is solved. If the boundary condition is 

not satisfied, 𝑇𝑏 is adjusted until the solution converges.  

 

The structure of the calculation procedure used to implement the shooting method is shown in 

figure 2-7. In the main program, the initial guess of 𝑇𝑏 is defined. After defining the input value, 

the main program calls for “itsolver_t” to provide the solution of the initial value problem. The 

function “itsolver_t” is based on a nonlinear algebraic equation solver called the Bisection 

Method. The Bisection Method is a root finder that solves problems on the form 

 

𝑓(𝑥) = 0 

 

This approach takes advantage of the Intermediate Value Theorem which states that if 𝑓(𝑥) is 

a continuous function for a given interval [𝑎, 𝑏] and 𝑓(𝑎) and 𝑓(𝑏) have opposite signs, there 

must be a point 𝑐 on the interval [𝑎, 𝑏] that gives 𝑓(𝑐) = 0. An illustration of this statement is  

presented in figure 2-8. The Bisection Method finds the root of 𝑓(𝑥) by repeatedly bisecting 

the interval [𝑎, 𝑏] until a there is a midpoint 𝑐 in the interval such that 𝑓(𝑐) converges to 0. 

Normally, a tolerance is set such that a solution is accepted when 

 

𝑎𝑏𝑠[𝑓(𝑐)] < 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 

 

To apply the Bisection Method to the current calculation procedure, the initial interval [𝑎, 𝑏] is 

defined based on 𝑇𝑏 and 𝑓 is defined as 
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(𝑇𝑏) = 𝑇𝑝(0) − 𝑇𝑖𝑛 = 𝑔(𝑇𝑏) − 𝑇𝑖𝑛 

 

For each iteration, the function “itsolver_t” calls for “temperature_bt” with the inputs given in 

table 2-4 to provide 𝑓. The function “temperature_bt” contains the algorithm explained in 

chapter 2.5.2. A while loop runs in “itsolver_t” until the following condition is met: 

 

𝑎𝑏𝑠[𝑇𝑝(0) − 𝑇𝑖𝑛] < 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 

 

Finally, the shooting method has provided a value of 𝑇𝑏  that satisfies the boundary value 

problem stated in the beginning of this chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-7 Flowchart of the Shooting Method 

Figure 2-6 Boundary problem 
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Nomenclature 

𝑎: start of interval, C 

𝑏: end of interval, C 

𝑐: midpoint of interval, C 

𝐸: energy, J/s 

𝐼: angle of inclination, deg. 

𝑛: number of boxes 

𝑃: pressure, Pa 

𝑇: temperature, C  

𝑥: measured depth, m 

𝜇: viscosity, Pas 

 

Subscripts 

𝑎: annulus 

𝑓: formation 

𝑖𝑛: inlet 

𝑝: pipe 

𝑅: rotation 

𝑠: surface  

Parameter Input 1 Input 2 

𝑻𝒃 ✓ - 
𝒂 - ✓ 
𝒃 - ✓ 

𝒄 - ✓ 

Table 2-4 Input parameters 

Figure 2-8 Intermediate Value Theorem 
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3 Results and discussion 

3.1 Introduction 

In this section, a sensitivity analysis of the developed temperature model is presented with 

respect to a drilling operation. The objective is to determine to what extent a set of parameters 

of the temperature model will impact the temperature distribution. Results are compared to a 

base case to determine the effect of each parameter. For the analysis of a given parameter, all 

the other parameters of the base case remain constant while investigating a range for the given 

parameter unless specified otherwise. The set of parameters for the base case is given in table 

3-1. The sensitivity analysis is based on a scenario where an 8.5-inch section is drilled using a 

5-inch drill pipe. Figure 3-1 illustrates the wellbore trajectory for the base case, which starts 

with a vertical section before kicking off to a deviated section with a constant inclination of 45 

degrees from vertical. The total length of the wellbore is 2500 meters MD and there is no change 

in azimuth. At the top of the trajectory, the drill pipe inlet temperature and the initial formation 

temperature are defined. Note that the top of the trajectory is not supposed to represent the 

surface, but rather a start depth of choice. Therefore, the initial formation temperature for the 

base cases is set to 30 °C. As an example, taking a subsea well with 4 °C at the seabed and a 

geothermal gradient of 30 °C per kilometer will give a formation temperature of 30 °C at 

approximately 850 meters below the seabed. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3-1 Wellbore trajectory 
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Nomenclature 

𝑐𝑝: drilling fluid specific heat capacity, J/kg°C 

𝐺: geothermal gradient, °C/m 

𝐼: wellbore inclination, degrees 

𝑘: drilling fluid thermal conductivity, W/m°C 

𝑞: flow rate, l/min 

𝑇𝑓𝑖: initial formation temperature, °C 

𝑇𝑖𝑛: drill pipe inlet temperature, °C 

𝜌: drilling fluid density, kg/m3 

 

Subscripts 

𝑓: formation 

𝑝: drill pipe 

 

3.2 Base case 

For the base case, the energy source terms discussed in chapter 2.4 are neglected, which 

basically means that this is a circulation scenario. The resulting wellbore temperature 

distribution is shown in figure 3-2, where the blue and red curves illustrate the drilling fluid 

temperature distribution in the drill pipe and the annulus. The formation temperature indicated 

by the black curve, is calculated based on the non-linear geothermal gradient given in equation 

(2.87). 

 

The temperature of the fluid at the drill pipe inlet is 20 °C. This satisfies the boundary value 

problem discussed in chapter 2.5.3, where the condition of 𝑇𝑝(0) = 𝑇𝑖𝑛 was set. Moving down 

the drill pipe, the temperature increases due to heat flow from the relatively warmer annulus 

   

𝒄𝒑 4182 J/kg°C 

𝑮 0.03 °C/m 

𝑰 45 degrees 

𝒌 0.6 W/m°C 

𝒌𝒇 2.25 W/m°C 

𝒌𝒑 50 W/m°C 

𝒒 1500 l/min 

𝑻𝒇𝒊 30 °C 

𝑻𝒊𝒏 20 °C 

𝝆 1205 kg/m3 

Table 3-1 Base case parameters 
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fluid. At the bottom of the wellbore, the temperatures in the drill pipe and the annulus are equal, 

indicating that the other boundary condition of 𝑇𝑝(𝑛) = 𝑇𝑎(𝑛) is satisfied. Another observation 

is that the maximum temperature in the wellbore occurs further up in the annulus and not at the 

bottom, which is a consequence of the boundary condition. The temperature distribution in the 

annulus is a result of heat transfer with both the formation and the drill pipe. Consider the depth 

of 1000 meters in figure 3-2. Here, the annulus fluid will gain heat from the formation and give 

heat to the drill pipe. Close to the top of the wellbore on the other hand, the temperature in the 

annulus exceeds both the formation and the drill pipe temperature, resulting in a heat loss from 

the annulus to both interfaces.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3 Flow rate 

Flow rate is a critical parameter for the temperature distribution. It is a factor in several of the 

heat transfer processes that are included in the temperature model. Additionally, frictional 

pressure losses are approximately proportional to the square of the flow velocity. Changes in 

flow rate will therefore affect the wellbore pressure distribution and thus the pressure dependent 

properties such as drilling fluid density and viscosity. To investigate the effect of flow rate on 

the temperature distribution, simulations have been performed using the base case with varying 

Figure 3-2 Temperature distribution - base case results 



 49 

(2.71) 

(2.6) 

(2.13) 

flow rates from 100 l/min to 2250 l/min. The results of flow rates at 500 l/min and 2000 l/min 

are given by figures 3-3 and 3-4 respectively.  

 

Inspecting the results reveal that the flow rate imposes a significant effect. The bottom hole 

temperature for a flow rate of 500 l/min has increased with more than 30% compared to the 

base case results given in figure 3-2. On the contrary, increasing the flow rate results in a 

decrease of bottom hole temperature as illustrated by the results of 2000 l/min. The results also 

reveal that for a general reduction in flowrate, the entire temperature distribution will shift 

towards higher temperatures, and increasing the flow rate will shift the temperature distribution 

towards lower temperatures.  

 

Another effect is that for increasing flow rates, the temperature distributions in the drill pipe 

and the annulus approach each other. For a flow rate of 500 l/min, the temperature difference 

between the drill pipe inlet and the annulus outlet is approximately 17 °C. The simulation results 

with a flow rate of 2000 l/min give a temperature difference of only 10 °C. Considering the 

equation below might explain the effect. 

 

𝑄𝑎𝑝 = 2𝜋𝑟𝑝𝑖𝑈𝑝(𝑇𝑎 − 𝑇𝑝)𝑑𝑥 

 

Equation (2.71) gives the rate of heat transfer between the annulus and the drill pipe. Here, the 

overall heat transfer 𝑈𝑝 is determined by:  

 

1

𝑈𝑝
=

1

ℎ𝑝
+

𝑟𝑝𝑖

𝑟𝑝𝑜

1

ℎ𝑎
+

𝑟𝑝𝑖

𝑘𝑝
ln (

𝑟𝑝𝑜

𝑟𝑝𝑖
) 

 

and the CHTC is calculated from equation (2.13) given that the flow is turbulent.  

 

ℎ = 0.023 (
𝜌𝑣𝐷

𝜇
)

0.8

(
𝑐𝑝𝜇

𝑘
)

𝑛 𝑘

𝐷
 

 

Consequently, increasing the flow rate will increase the CHTC, the overall heat transfer and 

thus the rate of heat transfer between the annulus and the drill pipe. This will lead to less thermal 

resistance between the annulus and the drill pipe and less difference in the temperature 

distributions.  
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The increase of flow rate will also result in a more even temperature distribution throughout 

the wellbore. Looking at the results for 500 l/min, there is a noticeable change of temperature 

in the annulus from the bottom of wellbore to the annulus outlet. As the flow rate increases, the 

change is less obvious and the temperature gradient in the annulus will reduce. For the case of 

2000 l/min, the difference between the bottom hole temperature and the temperature at the 

annulus outlet is less than 5 °C. These results may be justified by looking at equation (2.75) 

and rearranging it to the following form:  

 

(𝑇𝑎(𝑥+𝑑𝑥) − 𝑇𝑎(𝑥)) =
𝑄𝑎(𝑥+𝑑𝑥) − 𝑄𝑎(𝑥)

𝑚𝑐𝑝𝑎
 

 

Here, the flow rate is represented in the form of mass rate. Increasing the flow rate and thus the 

mass rate will decrease the temperature difference across a wellbore element and give a more 

even temperature distribution.  

 

The simulation results for the entire range of flow rates from 100 l/min to 2250 l/min is given 

in figure 3-5. Figure 3-5 shows the variation in maximum, bottom hole, and annulus outlet 

temperature with flow rate. This plot indicates that the change in maximum and bottom hole 

temperature in the wellbore is significant for varying flow rates. The variation is less 

pronounced for the outlet temperature.  

 

  

 

 

 

 

  

 

 

 

 

 

 

 

 

 Figure 3-3 Temperature distribution - flow rate: 500 l/min 
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Figure 3-4 Temperature distribution - flow rate: 2000 l/min 

Figure 3-5 Temperature vs. flow rate 
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3.4 Specific heat capacity 

Specific heat capacity is defined as the amount of heat per unit mass required to increase the 

temperature of an object by one Kelvin (Schroeder, 2000). A material with a low specific heat 

capacity will therefore need less energy to increase its temperature by a given amount compared 

to a material with a high specific heat capacity. Water has a high specific heat capacity. The 

value for pure liquid water is 4182 J/kg-°C at 20 °C, which is the value used in the base case. 

To determine how sensitive the wellbore temperature distribution is to drilling fluid specific 

heat capacity, simulations are performed with values in the range of 2000-4500 J/kg-°C.  

 

Figures 3-6 and 3-7 show the results for specific heat capacities of 3000 and 2000 J/kg-°C 

respectively. Comparing these results to the base case, it is evident that decreasing the specific 

heat capacity will increase the temperatures in the wellbore. The maximum temperatures for 

the given cases have increased with 38% and 16% compared to the base case, indicating that 

the specific heat capacity has a significant effect on the temperature distribution. Another trend 

is that the annulus temperature distribution approaches the formation temperature and higher 

annulus temperature gradients are observed as the specific heat capacity is decreased. As 

discussed in the latter paragraph, an object with a low specific heat capacity will need less 

energy to increase its temperature by a certain amount. Since the formation temperature remains 

the same compared to the base case and has the same potential of heat transfer, a drilling fluid 

on the low end of the simulation range will therefore gain heat from the formation more easily 

and thus approach the formation temperature. To show this effect more clearly, the results for 

a specific heat capacity of 2000 J/kg-°C and a flow rate of 500 l/min is given in figure 3-8. 

Additionally, if the annulus temperature exceeds that of the formation, a drilling fluid with a 

low specific heat capacity will lose heat more easily to the formation and the temperature 

difference between the annulus and formation will decline.  

 

Results for the entire range of specific heat capacities with respect to maximum, bottom hole, 

and outlet temperatures, are presented in figure 3-9. Similar to the results for flow rate, the 

maximum and bottom hole temperature is highly sensitive to changes in specific heat capacity. 

The outlet temperature demonstrates little to practically no effect. It varies with only a few 

degrees from a value of 30 °C, which is because the annulus temperature will approach the 

initial formation temperature of 30 °C.  
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Figure 3-6 Temperature distribution - specific heat capacity: 3000 J/kg-°C 

Figure 3-7 Temperature distribution - specific heat capacity: 2000 J/kg-°C 
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Figure 3-8 Temperature distribution – specific heat capacity: 2000 J/kg-°C, flow rate: 500 l/min 

Figure 3-9 Temperature vs. specific heat capacity 
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3.5 Thermal conductivity 

3.5.1 Drilling fluid 
 

Drilling fluid thermal conductivity is one of the mechanisms of a convective heat transfer 

process as described in chapter 2.2.1. It affects the CHTC, the overall heat transfer coefficient, 

and ultimately the rate of heat transfer between the annulus and the drill pipe fluid. Intuitively, 

increasing the thermal conductivity will decrease the resistance to heat flow and thus increase 

the rate of heat transfer at the annulus/formation interface and the annulus/drill pipe interface. 

This is verified by considering the related mathematical expressions given in chapter 2.2.1. A 

range of thermal conductivity from 0.3 to 0.9 W/m-°C have been considered in the simulations. 

The base case value of 0.6 W/m-°C represents water. In general, water has a lower thermal 

conductivity than solids, but higher than gas and oil. The selected range will therefore account 

for any low conductivity OBM and drilling fluids with high solids content.  

 

The results for thermal conductivities of 0.4 and 0.8 W/m-°C are presented in figures 3-10 and 

3-11. For the first case, a decrease of temperatures is seen compared to the base case. An 

increase of temperatures is found in the results with a conductivity of 0.8 W/m-°C. For example, 

the difference between the maximum temperature of the base case and the case with 0.9 W/m-

°C is about 6%. This indicates that the drilling fluid thermal conductivity makes a difference, 

but not as pronounced as the flow rate effects. Consequently, the energy transfer by the bulk 

motion of the fluid is what dominates the overall convective heat transfer in the wellbore. The 

results for the entire range of considered thermal conductivity values are presented in figure 3-

12.   
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Figure 3-10 Temperature distribution - thermal conductivity: 0.4 W/m-°C 

Figure 3-11 Temperature distribution - thermal conductivity: 0.8 W/m-°C 
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(2.76) 

3.5.2 Formation 

The thermal conductivity of the formation will affect the heat transfer process at the 

annulus/formation interface. Looking at equation (2.76) reveals that an increase of formation 

thermal conductivity will increase the rate of heat transfer across the interface. 

 

𝑄𝑓 =
2𝜋𝑘𝑓

𝑇𝐷
(𝑇𝑓 − 𝑇𝑤)𝑑𝑥 

 

The simulation results include thermal conductivities in the range of 1.75 to 3.5 W/m-°C. This 

will include values of conductivity for sandstones at about 1.7 W/m-°C to pure quartz minerals 

at approximately 3 W/m-°C. Without field data, it is hard to give a proper guess and the base 

case value is therefore in between the given range. Note that in the base case, an 8.5-in open 

hole section is considered and the effect of conduction through any layers of casing or cement 

is consequently not included here. 

 

Results of the simulations are given in figures 3-13 to 3-15. Figure 3-13 represents the results 

with a formation conductivity of 1.75 W/m-°C. Compared to the base case, the reduction of 

thermal conductivity has not produced any significant changes. A reduction of the maximum 

temperature at about 2 °C was found. Increasing the thermal conductivity from the base case 

value of 2.25 W/m-°C to 3 W/m-°C increased the maximum temperature with approximately 

Figure 3-12 Temperature vs. drilling fluid thermal conductivity 
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7%. The temperature distribution is shown in figure 3-14. Formation thermal conductivity does 

have an impact on the wellbore temperature distribution and a proper estimation of the 

parameter is therefore important, but it will not produce the large effects as seen with flow rate 

and specific heat capacity. At last, Figure 3-15 gives the summary of the considered simulation 

range.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-13 Temperature distribution – formation thermal conductivity: 1.75 W/m-°C 

Figure 3-14 Temperature distribution – formation thermal conductivity: 3 W/m-°C 
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3.5.3 Drill pipe 

The drill pipe thermal conductivity impacts the rate of conductive heat transfer across the drill 

pipe wall. For example, a drill pipe with a low thermal conductivity will act as a thermal 

insulator and restrict the heat transfer between the annulus and the drill pipe fluid, leading to a 

large temperature gradient over the wall. The effect of drill pipe thermal conductivity on the 

wellbore temperature distribution acts according to the expression for the overall heat transfer 

given by equation (2.6). Increasing the thermal conductivity will increase the overall heat 

transfer and reduce the temperature difference between the annulus and the drill pipe. Results 

from the simulations may determine to what extent the effect is present. The simulations 

presented in this thesis are performed over a range of 20 to 80 W/m-°C. As an example, stainless 

steel has a value of 16 W/m-k and chromium 94 W/m-°C. The base case value is 50 W/m-k, 

which is similar to carbon steel. 

 

Figures 3-16 to 3-18 give the simulation results. The effect of drill pipe thermal conductivity is 

as expected. Increasing the thermal conductivity leads to less difference between the annulus 

and the drill pipe temperatures. However, the effect is minimal and it can be neglected. 

Recording the difference between the annulus and the drill pipe temperature for every box in 

the wellbore at a thermal conductivity of 30 W/m-°C and taking an average of the differences 

gives an average value of 13.65 °C. The same procedure for 80 W/m-°C gives an average 

difference of 13.55 °C, which implies that the thermal drill pipe thermal conductivity produces 

Figure 3-15 Temperature vs. formation thermal conductivity 
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no effect on the rate of heat transfer between the annulus and the drill pipe. The wellbore 

temperature distributions for the two cases are given in figures 3-16 and 3-17, and the results 

for the entire simulation range is presented in figure 3-18. Evidently, variations in the drill pipe 

thermal conductivity produce practically no effect on the wellbore temperature distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Figure 3-16 Temperature distribution – drill pipe thermal conductivity: 30 W/m-°C 

Figure 3-17 Temperature distribution – drill pipe thermal conductivity: 80 W/m-°C 
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3.6 Viscosity 

In this work, drilling fluid viscosity is treated as a function of both pressure and temperature. 

The apparent viscosity is determined by utilizing rheology data from experiments on an OBM 

as explained in chapter 2.2.3, and the viscosity will thus vary for each box in the wellbore. The 

viscosity for the base case varies within the range of 30-75 cP. It is hard to determine the exact 

effect of viscosity on the wellbore temperature distribution when it is changing throughout the 

wellbore. To make the effect clearer, simulations are performed by assuming a constant 

viscosity instead. The simulations cover a range of viscosity from 1 cP to 100 cP. Results are 

presented in figures 3-19 to 3-21. 

 

At first sight, it is obvious that decreasing the viscosity will increase the bottom hole 

temperature and result in a larger temperature gradient. Decreasing the viscosity from 100 cP 

to 1 cP gives a 58% increase of bottom hole temperature. The effect of viscosity on the wellbore 

heat transfer is included in equation (2.13) and the calculation of the CHTC. A low viscosity 

results in a large CHTC and ultimately an efficient overall heat transfer rate from the formation 

to the wellbore system. It is therefore crucial to include the non-Newtonian viscosity behavior 

of drilling fluids. Simplifying calculations by using a Newtonian viscosity model for drilling 

fluids leads to lower viscosity values and consequently an overestimation of the CHTC and the 

maximum temperatures in the wellbore.  

Figure 3-18 Temperature vs. drill pipe thermal conductivity 
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Another effect of decreasing viscosity is the reduction of difference between the temperatures 

in the drill pipe and the annulus. The trend is seen by comparing figures 3-19 and 3-20. The 

results of figure 3-20 with a viscosity of 1 cP show that the temperatures of the drill pipe and 

the annulus fluids are much closer than in figure 3-19. A decrease of viscosity leads to an 

increase of the CHTC and ultimately a larger heat transfer rate between the annulus and the 

drill pipe fluids according to equation (2.6). As the heat transfer increases, the differences in 

temperature will diminish and the results obtained in figure 3-20 will occur. Also, inspecting 

the mentioned figures reveals that maximum temperature in the wellbore occurs further down 

in the wellbore when the viscosity is decreased. This is a consequence of the increased heat 

flow between the annulus and the drill pipe. As the drill pipe fluid becomes warmer, the bottom 

hole temperature will increase due to the boundary condition 𝑇𝑝 = 𝑇𝑎  and approach the 

maximum temperature. 

 

The results of the full range of viscosities are presented in figure 3-21. These results indicate 

the effect of the viscosity is more pronounced at the low end of the range. In fact, the effect 

fades with increasing viscosity. The statement that the maximum temperature in the wellbore 

moves further down with decreasing viscosity is also obvious in this figure as the bottom hole 

and maximum temperature approach each other for lower viscosities. An interesting 

observation is that the outlet temperature decreases with decreasing viscosities, which is the 

opposite effect of the bottom hole temperature. The increased heat transfer rate will move the 

outlet temperature towards the drill pipe inlet temperature of 20 °C.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3-19 Temperature distribution – viscosity: 100 cP 
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Figure 3-21 Temperature vs. viscosity 

Figure 3-20 Temperature distribution – viscosity: 1 cP 
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3.7 Drilling fluid density 

The density model employed in this thesis is based on an OBM with a reference point of 1205 

kg/m3 at ambient conditions. The fluid behavior with respect to pressure and temperature has 

been established through a PVT analysis. To determine the effect of drilling fluid density on 

the temperature distribution, the reference point is varied over a range of 1000-1900 kg/m3. 

Figures 3-22 and 3-23 give the results for drilling fluids with a density of 1000 and 1700 kg/m3 

respectively. Increasing the density results in an overall reduction of wellbore temperature. 

Comparing the maximum temperature of the base case with the results of 1700 kg/m3 gives a 

reduction of 14%. The effect is much like the one experienced with flow rate, but less 

significant. Increasing the density will increase the mass flow rate. This results in a larger heat 

transfer rate over an annulus element according to equation (2.75). Therefore, the heat that is 

introduced to the system will also leave the system faster and thus leaving less impact on the 

temperatures in the system. Figure 3-24 shows the variation in temperatures with density over 

the entire simulation range. It is obvious that drilling fluid density has a noticeable effect on the 

wellbore temperature distribution.  

 

  

Figure 3-22 Temperature distribution – density: 1000 kg/m3 
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Figure 3-23 Temperature distribution – density: 1700 kg/m3 

Figure 3-24 Temperature vs. drilling fluid density 
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3.8 Geothermal gradient 

The geothermal gradient represents the rate of increase in formation temperature with depth. 

The amount of heat flow from the formation to the annulus is governed by the temperature 

difference between them. A larger temperature difference results in an increased rate of heat 

transfer as expressed by equation (2.78). Consequently, changes in the geothermal gradient will 

affect the rate of heat transfer from the formation and thus the wellbore temperature distribution. 

Simulations are performed for geothermal gradients in the range of 20-45 °C/km to evaluate 

the impact. Results are presented by figures 3-25 to 3-27.  

 

Inspecting figures 3-25 and 3-26 reveals that the overall temperature distribution increases with 

increasing geothermal gradients. Also, note how the maximum formation temperature increases 

from about 70 °C in figure 3-25 to over 110 °C in figure 3-26. Compared to the base case with 

a value of 30 °C/km, decreasing the geothermal gradient by 10 °C/km results in a reduction of 

the maximum wellbore temperature by approximately 17%. Increasing the gradient by 10 

°C/km results in an increase of maximum temperature by 15% as illustrated in figure 3-26. This 

indicates a nearly linear trend between the geothermal gradient and the maximum temperature. 

Figure 3-27 verifies this statement and that the trend is also representative for the bottom hole 

and the outlet temperature. Another observation from figure 3-27 is that the slopes of each curve 

reveal that the maximum temperature is most sensitive to the geothermal gradient, followed by 

the bottom hole temperature and finally the outlet temperature.  

 

  

Figure 3-25 Temperature distribution – geothermal gradient: 20 °C/km 
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Figure 3-26 Temperature distribution – geothermal gradient: 40 °C/km 

Figure 3-27 Temperature vs. geothermal gradient 
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3.9 Energy source terms 

3.9.1 Joule-Thomson coefficient 

The Joule-Thomson coefficient determines the change in drilling fluid temperature with 

changes in pressure. The wellbore pressure distribution will therefore have a direct impact on 

the temperature distribution. Varying the flow rate will affect the frictional pressure losses and 

ultimately the pressure distribution. Therefore, simulations are performed with the same flow 

rates as in chapter 3.3 and with the effect of the Joule-Thomson coefficient. All the other 

parameters of the base case remain constant. The depth of the wellbore is also kept constant 

and the contribution from hydrostatic effects will remain the same. Results are shown in figures 

3-28 to 3-29. 

 

Figure 3-28 gives a plot of bottom hole temperature versus flow rate for the base case and a 

case where the Joule-Thomson coefficient is included. The comparison reveals that the bottom 

hole temperature decreases when the effect of the Joule-Thomson coefficient is considered. 

This is because as pressure increases in the drill pipe with flow direction, the drilling fluid 

compresses and cools according to the discussion in chapter 2.4.4. The reduction in drill pipe 

temperature will consequently decrease the bottom hole temperature. For the base case flow 

rate of 1500 l/min, comparing the results without the effect of the Joule-Thomson coefficient 

and with the effect gives a reduction of bottom hole temperature by 4%. Furthermore, the effect 

diminishes with increasing flow rate. 

 

A comparison of the outlet temperature with and without the effect of the Joule-Thomson 

coefficient is given in figure 3-29. The results indicate the opposite effect for the outlet 

temperature. Including the effect of the Joule-Thomson coefficient increases the outlet 

temperature compared to the base case and the effect increases with increasing flow rate. Again, 

according to chapter 2.4.4, the pressure decreases with the flow direction in the annulus and the 

drilling fluid will expand and become warmer. The increase of outlet temperature for the base 

case flow rate is by 3%. Consequently, the effect of the Joule-Thomson coefficient will impact 

the temperature distribution, but it is not a dominating factor for the wellbore temperature 

distribution.   
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Figure 3-28 Bottom hole temperature vs. flow rate 

Figure 3-29 Outlet temperature vs. flow rate 
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3.9.2 Drill pipe rotation 

The amount of heat generation from drill pipe rotation is governed by the wellbore torque and 

the drill pipe rotational speed as given by equation (2.58). Two critical factors for torque in an 

ERD well are wellbore inclination and friction. A section with a high inclination gives a large 

normal force because a large portion of the drill pipe weight will lay on the low side of the 

wellbore, ultimately leading to significant frictional forces. Also, a high friction factor increases 

the frictional forces. Therefore, the sensitivity analysis is performed with respect to these two 

parameters together with the rotational speed of the drill pipe. Note that the torque is calculated 

by the model of Aadnoy et al. (2010). Some of the most important input parameters of this 

model and the corresponding values used in this thesis, is given in table 3-2. The wellbore 

inclination, pipe rotational speed, and friction factor have been varied to obtain the results in 

figures 3-30 and 3-31.  

 

Figure 3-30 shows the effect of pipe rotation on the temperature distribution. The effect is 

compared to the base case given in chapter 3.2, only now the base case includes varying 

wellbore inclination. Maximum temperatures obtained by simulating the effect of pipe rotation 

are compared to the maximum temperatures of the base case and given in figure 3-30 as a 

percentage increase. The friction factor used for the simulations shown in figure 3-30 is 0.3. 

Result reveal that heat generation from pipe rotation is not a contributing factor to the overall 

temperature distribution. The largest increase of maximum temperature occurs at an inclination 

of 80 degrees with 150 RPM, yielding a 3% increase. Compared to a handful of the other 

parameters investigated in chapter 3, these results are insignificant. However, note that the 

wellbore in the base case is only 2500 meters MD. A longer section will increase the total torque 

losses and a more pronounced effect might occur. Still, drilling fluid parameters would 

dominate the temperature distribution.  

 

Even though the drill pipe rotation does not generate a significant amount of heat, the 

temperature model in this thesis can be used to determine how parameters in the torque model 

affect the wellbore temperature. For example, in figure 3-31 a friction factor of 0.15 has been 

used to generate the results. The largest increase of maximum temperature is now less than 

1.6%, which is a reduction of almost 50% compared to the largest increase in figure 3-30. Also, 

it obvious from both figures that increasing the wellbore inclination and RPM will increase the 

effect of pipe rotation on the temperature distribution. It is also possible to determine the effect 

of the other parameters given in table 3-2, but since it has been established that pipe rotation 
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does not generate a significant amount of heat, investigation of other parameters related to the 

torque model is not a part of the objective in this work. 

 

 

Axial speed (ROP) 30 m/hr 

RPM 100 1/min 

Friction factor 0.3 - 

Pipe unit weight 450 N/m 

WOB 90 kN 

Bit torque 10 kNm 

 

 

 

 

 

  

Table 3-2 Torque model parameters 

Figure 3-30 Increase in maximum temperature vs. wellbore inclination – friction factor: 0.3 
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3.9.3  Drill bit friction 

Heat generation from drill bit friction is in this thesis related to the effect of pipe rotation. As 

mentioned in chapter 2.4.2, some authors have suggested that a certain percentage of the total 

mechanical input used to rotate the drill pipe is spent on overcoming frictional forces between 

the drill bit and the formation. However, the exact percentage is not a known factor. Simulations 

are therefore performed with varying percentages to evaluate the effect of bit friction on the 

temperature distribution. Compared to the heat generation from pipe rotation which is 

distributed along the wellbore, the heat generation from drill bit friction is only present as a 

heat source at the bottom of the wellbore. Based on that note, the effects of drill bit friction on 

the bottom hole temperature is presented in figure 3-32. Furthermore, to include the effect, the 

total heat generated from pipe rotation only is multiplied with the given percentage and used to 

represent the amount of heat introduced by the bit.  

 

Figure 3-32 shows a plot of bottom hole temperature versus wellbore inclination. The blue 

curve represents the bottom hole temperature including the effects of pipe rotation as explained 

in chapter 3.9.2, but the drill bit friction is not included, hence 0% for the legend. Table 3-2 is 

used to obtain these results. First, the general observations without the drill bit friction is 

studied. The trend of the blue curve shows an increase of bottom hole temperature from 10-30 

Figure 3-31 Increase in maximum temperature vs. wellbore inclination – friction factor: 0.15 
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degrees before the bottom hole temperature decreases. Without the effect of pipe rotation at all, 

bottom hole temperature will decrease with increasing inclination. This is because sections with 

high inclinations are less deep in terms of TVD and the formation temperature will 

consequently be lower. On the contrary, including the effect of pipe rotation gives an increase 

of bottom hole temperature from 10-30 degrees as shown in figure 3-32, indicating that the heat 

generation from pipe rotation counteracts the effect from reduction of formation temperature. 

From 30-80 degrees, the effect of lower formation temperatures dominates and the bottom hole 

temperature decreases.  

 

When the effect of drill bit friction is included, the increase of bottom hole temperature from 

10-30 degrees becomes more pronounced as the percentage of mechanical input required to 

overcome the drill bit friction is increased. This shows that the bit friction influences the 

temperature distribution. However, it must be emphasized that the effect bit friction impose on 

the temperature distribution is marginal. At an inclination of 30 degrees, comparing the bottom 

hole temperature for the 0%-curve to the temperature at the 40%-curve gives an increase of less 

than 1%.  

 

The effect of drill bit friction on maximum wellbore temperature is shown in figure 3-33. Again, 

the blue curve represents temperatures with the effect of pipe rotation without including the 

drill bit friction. It is obvious that the maximum temperature for this curve decreases with 

increasing wellbore inclinations. As the effect of drill bit friction is included and increased by 

percentage, it will counteract the effects of reduced formation temperature from 10-30 degrees 

just as in figure 3-33. Still, the effects of including bit friction are small. Considering results 

from both figures in this chapter, it is concluded that the effect bit friction impose on the 

temperature distribution in this work, is negligible.  
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Figure 3-32 Bottom hole temperature vs. wellbore inclination 

Figure 3-33 Maximum temperature vs. wellbore inclination 
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3.9.4 Frictional pressure losses 

As explained in chapter 2.4.3, frictional pressure losses will introduce heat to the wellbore 

system. The effect of frictional pressure losses on the wellbore temperature distribution is 

expected to increase with increasing flow rate and correspondingly larger pressure losses. 

Simulations are performed using the base case with varying flow rates in the range of 100-2250 

l/min. The effects of including the frictional pressure losses are compared to the base case 

results with no source terms. 

 

Figure 3-34 shows the maximum wellbore temperature versus flow rate, where the red curve 

represents the results including the effect of frictional pressure losses and the blue curve 

represents the base case results with no source term. Evidently, including heat generation from 

frictional pressure losses yields little to no effect on the maximum wellbore temperature. Figure 

3-35 reveals that the effect is also minimal on the bottom hole temperature. At a flow rate of 

2250 l/min where the effect is largest, the bottom hole temperature for the two scenarios differ 

by only 2%. Thus, heat generation from frictional pressure losses produce a small effect on the 

wellbore temperature distribution.  

 

  

Figure 3-34 Maximum temperature vs. flow rate 
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Figure 3-35 Bottom hole temperature vs. flow rate 
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4  Conclusion 

Analyzing the simulation results reveals that flow and drilling fluid properties are the dominant 

factors for the wellbore temperature distribution. Changes in flow rate are found to have a large 

effect on the maximum and bottom hole temperatures. Increasing the flow rate results in 

reduced wellbore temperatures and more even temperature distributions in the drill pipe and the 

annulus. The same effect but less pronounced, occurs while increasing the drilling fluid density. 

Moreover, an increase of these two parameters results in a stronger convective heat transfer 

within the fluid column, which ultimately reduce the impact of the formation temperature on 

the wellbore temperature distribution. 

 

Another parameter that produce a noticeable impact on the temperature distribution is the 

drilling fluid specific heat capacity. Results indicate that drilling fluids with a low specific heat 

capacity tend to have temperatures much closer to the formation temperature. Decreasing the 

specific heat capacity of the fluid will increase its ability to gain heat and thus increase its 

temperature. Furthermore, the maximum and bottom hole temperatures are highly sensitive to 

this parameter. It is therefore critical to have correct estimations of the specific heat capacity to 

avoid any unforeseen high wellbore temperatures.  

 

Drilling fluid viscosity is also found to be a dominant factor for the temperature distribution. 

Results from the simulations show that drilling fluids with viscosities close to that of water give 

significantly higher wellbore temperatures compared to more viscous fluids. A low viscosity 

fluid yields a higher CHTC and consequently a more efficient heat transfer with the formation. 

This emphasize that it is important to apply an appropriate model and to ensure accurate 

estimations of the viscosity. Including the non-Newtonian behavior of drilling fluids to 

determine the viscosity is therefore of great importance, and the use of viscosity measurements 

to determine the rheological behavior of the considered OBM in this thesis has provided a more 

accurate temperature model. 

 

The effects of energy source terms that occur during drilling is also investigated in this work. 

In general, results show that the overall contribution from these terms is not predominant. For 

example, the Joule-Thomson coefficient will impact the bottom hole pressure but to a much 

less extent than the flow rate or the viscosity. Heat generation due to friction is also found to 

produce little to no effect on the temperature distribution. However, considering a wellbore 
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with a longer horizontal section might give a more pronounced impact. From another 

perspective, including heat generation due to frictional forces offers the ability to determine 

how wellbore design and operational parameters such as RPM and WOB impact the 

temperature distribution. Also, considering energy source terms will improve the accuracy of 

the temperature model and it is suggested that they are not neglected. After all, ERD wells may 

encounter conditions where only a small increase of temperature makes a difference.  
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