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Abstract

In this thesis, a mathematical model describing gel contraction is derived and studied. The
mathematical model describes the process where cells are compressing the gel, and the model
is therefore used to study the cell traction forces, in for example cancer cells. In order for the
cells to leave the primary tumor and invade through the tissue and extracellular matrix towards
other parts of the body, they need to extract forces(Mierke, Rösel, Fabry, & Brábek, 2008).
These forces are studied using the mathematical model, which is derived in this thesis. The main
equations used when deriving the mathematical model are the mass balance equations for the
gel and cells, together with the momentum balance equation. In order to solve the mass balance
equation, equations describing the force exerted by the cells on the gel and an equation describing
the evolution of cell-produced chemicals are included, together with several initial and boundary
conditions. The di�erent equations needed in the numerical simulations are then converted into
a new coordinate system to make the computations easier, before the equations are discretized.

The mathematical models include seven di�erent parameters which were investigated. During
the numerical simulations, the parameters were altered to see how they a�ected the cell traction
forces. The results were that the contact inhibition parameter, bulk viscosity, proportionality
constant for the chemical �ux out of the gel and decay rate of the cell-produced chemicals should
be high, while the isothermal compressibility, the parameter describing cell traction (τ0) and
preferred density should be low in order to obtain low cancer cell traction forces.

The numerical results were compared with experimental data from ((Moon & Tranquillo, 1993),
(Raymond & Thompson, 1990)). It was seen that both the numerical results from the mathe-
matical model and the experimental results gave very similar shapes of the graphs representing
gel radius over time (which is a measure of the cell traction forces), together with similar end
values of the gel radius as well. It was therefore concluded that the mathematical model is rep-
resenting the cell traction forces in a satisfactory manner, and can therefore be used in further
investigations of cancer cell traction forces in the future.

Towards the end of the thesis, cancer metastases was investigated. It was then seen from an
experimental paper (Fenner et al., 2014) that an increased sti�ness of the collagen gel decreased
the possibility of cancer metastases. A high sti�ness corresponds to a low isothermal compress-
ibility, which can be accomplished by for instance decreasing the temperature in the collagen gel
or increasing the pressure (Table 1-42 Isothermal compressibility of liquids @ONLINE , n.d.).

The relationship between the cancer cell traction forces and metastases were also investigated,
using di�erent papers (e.g. (Kraning-Rush, Califano, & Reinhart-King, 2012), (Indra et al.,
2011)). The logical conclusion would be that an increase of the cancer cell traction forces would
increase the degree of metastases, since the cell traction forces are needed in order for the can-
cer cells to move from the primary tumor to other parts of the body. This is also what is the
most common conclusion, and what can be concluded from the results in (Kraning-Rush et al.,
2012). However, the results from (Indra et al., 2011) give the opposite conclusion, which means
that the relationship between cancer cell traction forces and cancer metastases might not be as
straightforward as one might think. Future experiments should therefore be conducted on the
relationship between the size of cancer cell traction forces and cancer metastases.
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Contents

1 Introduction

Mechanical interactions between cells and the extracellular matrix are to be studied with regards to tumor
cells. Mechanical interactions bewteen cells and the extracellular matrix is also important in many other bi-
ological processes including such as in wound healing and the structures pattern in limb buds in the embryo.
(Green, Bassom, & Friedman, 2013) The mathematical model derived and used in this thesis could therefore
also be used when studying wound healing and the pattern of structures. The mathematical model is useful
as a �rst step when making more complicated models when investigating interactions happening during for
example tissue development and regeneration. (Green et al., 2013)

90% of all cancer deaths today are due to metastases, which is cancer cells spreading to other parts of
the body. (Christofori, 2006)In order for the cancer cells to be metastatic, there are several steps they must
go through. First, they need to leave the primary tumor and invade through the tissue and extracellular
matrix. Then they are transported to di�erent sites by entering a near blood and lymph vessel. (Mierke
et al., 2008) There are some uncertainty regarding the next steps, but in order for the cancer cells to leave
the primary tumor and invade the tissue and extracellular matrix, the tumor cells must exert forces (Mierke
et al., 2008), and these traction forces will be studied more closely in this thesis, by �rst deriving and later
using a mathematical model.

The extracellular matrix in the model, and in other experiments, corresponds to a gel with cells seeded
within. The gel consists of components forming parts of the extracellular matrix, and collagen is often
used since collagen is a major component in the extracellular matrix. (Green et al., 2013) The cells will
compact the gel until it reaches a steady state after some days, depending on di�erent parameter values.
These parameters will be investigated to see how they a�ect the radius of the collagen gel, and therefore
also the cell traction forces. The mathematical model is used in order to obtain a better understanding of
the tumor cell-exerted traction forces, because the decrease in gel radius over time gives a measurement of
the cell-exerted forces.

Below is a �gure (which is taken from (Stevenson et al., 2010)) showing the gel seeded with cells, where
the dark blue area represents the area of in�uence, which will be described later. The contraction of the
collagen gel from the start of the numerical simulations towards the end can be clearly seen. As will be
shown later, the cell density will initially be slightly greater towards the center of the collagen gel when
using the mathematical model, but the �gure gives an understanding of how the collagen gel seeded with
cells can look like.
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Figure 1: Gel seeded with cells (Stevenson et al., 2010)

In this thesis,the mathematical model will �rst be derived, where the most important parts are the mass
balance equations for the cells and gel, and the momentum balance equation between the cells and the gel.
The model is then converted into another coordinate system in order to make the numerical computations
easier. The numerical results are then displayed, and the e�ects from the parameters will be shown by
changing these in the mathematical model. The published experimental data ((Moon & Tranquillo, 1993),
(Raymond & Thompson, 1990)) will then be used to compare with the results from the numerical compu-
tations in this thesis to see how the cell traction forces with its parameters will a�ect how the cancer cells
spread through the body.

The main objectives in this thesis are therefore:

� Derive the mathematical model

� Examine how the di�erent parameters a�ect the tumor radius and cell traction forces

� Investigate how the results can be used to decrease the death rate from cancer
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In the thesis, there are a number of important letters which represents di�erent parameters. These letters
are listed in the table below, with a short explenation of each parameter.

Table 1: Parameter Description

Character Description

ρ Collagen gel density

n Cell density

u Velocity vector of the gel boundary

t Time

σ Stress tensor of the gel

P Pressure

F Force per unit volume exerted by the cells

λ Contact inhibition parameter

τ0 A measure of cell traction

β Isothermal compressibility of the gel

κ Bulk viscosity of the gel

α1 Decay rate of the cell-produced chemicals

γ Proportionality constant of the chemical �ux at gel boundary

ρc Preferred density parameter

D Di�usion coe�cient of the cells

µ Dynamic viscosity of the gel

α2 Production rate of the cell-produced chemicals
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2 The mathematical model

In this thesis, forces exerted by cells are to be studied. The cells are seeded within a gel which occupies a
region Ω∗(t), and the density of cells are denoted by n(x), while the density of the extracellular matrix is
denoted by ρ(x). The velocity of the extracellular matrix is given the symbol u(x, t) where x is referring to
the position within the gel and t is referring to time. The cells can produce chemicals, where the chemical
concentration is denoted c(x, t), which might a�ect the forces exerted by the cells as will be seen later.
Collagen production or degradation by the cells are here assumed negligible, and cell proliferation and cell
death are ignored (Green et al., 2013)

In order to study the forces exerted by the cells, �ve governing equations must be derived. Two mass
balance equations must also be derived, one for the collagen and one for the cells. Then a momentum
balance equations for the forces exerted by the cells and gel will be derived. Then an equation relating pres-
sure and density will be derived, before an equation describing the evolution of the chemical concentration
produced by the cells will be derived. The two mass balance equations will now be derived.

2.1 Deriving the Mass Balance Equation for the Collagen Gel

Since the production and degradation by the cells are assumed negligible in this derivation, the expression
for the �nal mass can be expressed as:

Final mass = Original mass + mass in�ow−mass out�ow

The derivation needed in order to �nd the expression for the conservation of mass for the collagen gel is
shown in Appendix A, and the result is shown here:

∂ρ

∂t
+∇ · (ρu) = 0 (1)

2.2 Deriving the Mass Balance Equation for the Cells

During the derivation of the mass balance equation for the cells, cell proliferation and cell deaths were
ignored. The mass balance for the cell does also have to take into account the di�usion, so the mass balance
expression for the cells will have the following form, where the velocity vector u is the same for both the
collagen gel and the cells:

∂n

∂t
+∇ · (nu) = Di�usion term (2)

where n in this context refers to the density of the cells. The di�usion term on the right side of the equation
needs to be derived, and this is done in Appendix B. The derivation gave an expression for the conservation
of mass for the cells as shown below:

∂n

∂t
+∇ · (nu) = D∗∇2n (3)

2.3 The momentum balance equation

The momentum balance equation is then to be derived, by �rst deriving the general force balance expression,
before inserting the expression for the stresses for the gel and introducing the Laplacian. Then these things
are used together to get the momentum balance equation.

2.3.1 The general force balance

The momentum balance equations between the gel and cells is an important part of the model, and the
derivation for the general expression is shown in Appendix C. The compaction of the gel is slow, and it is
therefore assumed that the inertial e�ects can be neglected. (Green et al., 2013) The equation derived in
Appendix C is:
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∇ ·


σx τyx τzx

τxy σy τzy

τxz τyz σz

+ F = 0, (4)

which is equivalent to writing:

∇ · σ + F = 0, (5)

where σ is the stress tensor of the gel and F is the force per unit volume exerted by the cells on the gel.

The next step in deriving the momentum balance equation is then to get the expression for σij , before
deriving the divergence of σ, ∇ · σ, which will then give the desired expression for the momentum balance
equation.

2.3.2 The expression for the stresses for the gel

Previous experiments have tested how well the collagen gel could be treated as an upper-convected Maxwell
(UCM) �uid, which can be used in a viscoelastic model. ((Knapp et al., 1997), (Green et al., 2013)) For a
UCM-�uid, the relative importance of elastic and viscous e�ects can be measured by calculating the Deborah
number, De:

De =
µ∗

G∗T ∗

where G and µ represent the shear modulus and shear viscosity, respectively, while T is the time-scale of gel
compaction. The experiments gave a value of the Deborah number approximately around 0.1-0.01 (Green et
al., 2013), meaning that the elastic e�ects are so small that they can be neglected, and the result is that the
gel can be approximated as a compressible Stokes �uid with the following expression for the stress (Green
et al., 2013):

σij = −Pδij + 2µ∗εij +

(
κ∗ − 2

3
µ∗
)
εkkδij , (6)

where P is included because it is the e�ective stress which is of interest, and not just the total stress. µ∗

and κ∗ represents the dynamic viscosity and bulk viscosity. εij represents the rate of strain tensor:

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
,

where the subscripts i and j can be any of the three number 1, 2 or 3, which represents the x, y and z-
direction, respectively.(Course 12.800 Fluid Dynamics of the Atmosphere and Ocean, Chapter 3 @ONLINE ,
2006) εkk represents the rate of volume expansion:

εkk = ∇ · u =
∂ui
∂x

+
∂uj
∂y

+
∂uk
∂z

The Kronecker's delta is de�ned as (Fjaer, Horsrud, Raaen, Risnes, & Holt, 1992)

δij =

{
1, if i = j,

0, if i 6= j,

so that the �rst and third term to the right side of equation (6) will be zero for shear stresses. By substituting
the expression for the rate of strain tensor, εij into the expression for the stress, σij , it is shown in Appendix
D that the result is:
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−∇P +

[
µ∗
(
∂2ui
∂x2

+
∂2ui
∂y2

+
∂2ui
∂z2

)
+ (λ∗ + µ∗)

(
∂2ui
∂x2

+
∂2uj
∂y∂x

+
∂2uk
∂z∂x

)
+ Fx

]
î

+

[
µ∗
(
∂2uj
∂x2

+
∂2uj
∂y2

+
∂2uj
∂z2

)
+ (λ∗ + µ∗)

(
∂2ui
∂x∂y

+
∂2uj
∂y2

+
∂2uk
∂z∂y

)
+ Fy

]
ĵ

+

[
µ∗
(
∂2uk
∂x2

+
∂2uk
∂y2

+
∂2uk
∂z2

)
+ (λ∗ + µ∗)

(
∂2ui
∂x∂z

+
∂2uj
∂y∂z

+
∂2uk
∂z2

)
+ Fz

]
k̂ = 0 (7)

These expressions can be simpli�ed by introducing some identities, namely the Laplacian operator, the
gradient and the divergence, which is done in the following.

2.3.3 The vector Laplacian

In Appendix E, it is shown that the vector Laplacian, ∇2A can be written as

∇2A = ∇(∇ ·A)−∇× (∇×A), (8)

which will give a more compact expression for the momentum balance equation shown below.

2.3.4 Momentum balance equation

The momentum balance equation can then be derived using the results from above. By taking the Laplacian
of u, the result is:

∇2u = ∇2(ui)̂i+∇2(uj)ĵ +∇2(uk)k̂

=

(
∂2ui
∂x2

+
∂2ui
∂y2

+
∂2ui
∂z2

)
î+

(
∂2uj
∂x2

+
∂2uj
∂y2

+
∂2uj
∂z2

)
ĵ +

(
∂2uk
∂x2

+
∂2uk
∂y2

+
∂2uk
∂z2

)
k̂

Then the gradient of the divergence of u will be utilized. (Adams & Essex, 2010) This can be written as:

∇(∇ · u) = ∇
[
∂ui
∂x

+
∂uj
∂y

+
∂uk
∂z

]
=

[
∂2ui
∂x2

+
∂2uj
∂x∂y

+
∂2uk
∂x∂z

]
î+

[
∂2ui
∂y∂x

+
∂2uj
∂y2

+
∂2uk
∂z∂x

]
ĵ +

[
∂2ui
∂z∂x

+
∂2uj
∂z∂y

+
∂2uk
∂z2

]
k̂

∇2u is then multiplied with µ and ∇(∇ · u) is multiplied with λ + µ, and then the equations are added
together to give the following:

µ∗ · ∇2u+ (λ+ µ∗) · ∇(∇ · u) (9)

= µ∗ ·
(
∂2ui
∂x2

+
∂2ui
∂y2

+
∂2ui
∂z2

)
î+ µ∗ ·

(
∂2uj
∂x2

+
∂2uj
∂y2

+
∂2uj
∂z2

)
ĵ + µ∗ ·

(
∂2uk
∂x2

+
∂2uk
∂y2

+
∂2uk
∂z2

)
k̂

+ (λ∗ + µ∗)·
[
∂2ux
∂x2

+
∂2uy
∂x∂y

+
∂2uk
∂x∂z

]
î+(λ∗ + µ∗)·

[
∂2ux
∂y∂x

+
∂2uy
∂y2

+
∂2uk
∂z∂x

]
ĵ+(λ∗ + µ∗)·

[
∂2ux
∂z∂x

+
∂2uy
∂z∂y

+
∂2uk
∂z2

]
k̂

which can be rewritten in a more compact form as:[
µ∗ ·

(
∂2ui
∂x2

+
∂2ui
∂y2

+
∂2ui
∂z2

)
+ (λ∗ + µ∗)

(
·∂

2ui
∂x2

+
∂2uj
∂x∂y

+
∂2uk
∂x∂z

)]
î

+

[
µ∗ ·

(
∂2uj
∂x2

+
∂2uj
∂y2

+
∂2uj
∂z2

)
+ (λ∗ + µ∗) ·

(
∂2ui
∂y∂x

+
∂2uj
∂y2

+
∂2uk
∂z∂x

)]
ĵ

+

[
µ∗ ·

(
∂2uk
∂x2

+
∂2uk
∂y2

+
∂2uk
∂z2

)
+ (λ∗ + µ∗) ·

(
∂2ui
∂z∂x

+
∂2uj
∂z∂y

+
∂2uk
∂z2

)]
k̂
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The only di�erence between this equation and equation (7) is now −∇P , F and the zero on the right side of
the equation. This means that equation (5) can be written in a compact form including the expression for
the stress tensor by adding expression (9) with −∇P and F , and then setting this equal to the zero-vector
as follows:

−∇P + µ∗∇2u+ (λ∗ + µ∗)∇(∇ · u) + F = 0

which can be rearranged as follows by substituting for λ∗ to give the momentum balance equation:

−∇P + µ∗∇2u+

(
κ∗ +

µ∗

3

)
∇(∇ · u) + F = 0 (10)

2.4 Force function

The force exerted by the cells is assumed to be the sum of forces exerted by the cells at point x′ to points
x within the sphere of in�uence. The strength of each force is dependent on the distance between x′ and x,
where a smaller distance would indicate a stronger force. The forces are also dependent on the cell density,
collagen gel density and chemical concentration at the cell position x′. A general expression for the force
exerted by the cells can then be written as:

F =

ˆ
V

K (x− x′)F (n(x′), ρ(x′), c(x′)) dx′, (11)

where K (x− x′) is the force per volume exerted from the cells at x′ to the gel at x. F is also included,
since the magnitude of the force depends on the cell density, gel density and the chemical concentration at
the position of the exerted force, x′.

Taylor expansion is used when expressing a point x′ within the sphere of in�uence of x. Taylor expansion
in one dimension, by considering f(x) around x = x0 + δ, can be written as:

f(x) = f(x0) + δf ′(x0) +
1

2
δ2f ′′(x0) + ...

In two dimensions, around x = x0 + h and y = y0 + k, this becomes:

f(x, y) = f(x0, y0)+fx(x0, y0)∆x+fy(x0, y0)∆y+
1

2

[
fxx(x0, y0)∆x2 + 2fxy(x0, y0)∆x∆y + fyy(x0, y0)∆y2

]
+..

which, by including x = x0 + h and y = y0 + k, gives the rewritten expression:

f(x, y) = f(x0, y0) +

(
h
∂f

∂x
+ k

∂f

∂y

)
+

1

2

(
h2 ∂

2f

∂x2
+ 2hk

∂2f

∂x∂y
+ k2 ∂

2f

∂y2

)
+ ...

The expansion to three dimensions, where x = x0 + δx0, y = y0 + δy0 and z = z0 + δz0, is:

f(x, y, z) = f(x0, y0, z0) + δ

(
x0
∂f

∂x
+ y0

∂f

∂y
+ z0

∂f

∂z

)
+ ...

This can be rewritten by introducing the gradient operator, and that x′ = x, y, z and x = x0, y0, z0:

f(x′) = f(x) + δ (x · ∇) f + ...

which is evaluated around x, and can therefore be further rewritten as:

f(x′) = f(x) + δ (x · ∇) f |x + ...

A general version of equation (11) can be written as

F =

ˆ
V

K (x− x′)F(x′)dx′.

11



This is a vector, and therefore has three components. The �rst component can be written as

F1 =

ˆ
V

K1 (x− x′)F(x′)dx′,

where 1 refers to component 1. The functionK (x− x′) is assumed to be an odd function of its argument,
and it is assumed that it can have the expression

K (x− x′) = f (|x− x′|) (x− x′)

The �rst component can therefore be written as:

K1 = f(δ|x1|)(−δx11),

where x11 represents the �rst component of x1. This leads to a rewritten form of F1:

F1 =

ˆ
f(δ|x′

1|)(−δx11)(x′)dx′

By using the Taylor expansion, where x = x11 + δx11, y = x12 + δx12 andz = x13 + δx13, the expression
for F becomes:

F(x, y, z) = F(x11, x12, x13) + δ

(
x11

∂F
∂x

+ x12
∂F
∂y

+ x13
∂F
∂z

)
+ ...

where the non-local component of F is the second term to the right of the equality sign, which can also be
written in a more compact form as δ (x1 · ∇)F , which again is the same as writing

δ(x1 · ∇)F = δ

3∑
j=1

x1j
∂F
∂xj

Since this is the non-local component of F , this is inserted into the general expression for F1 further up
(since F1 is a global force function at the moment) together with the expression for K1. This gives:

F1 = −
ˆ
f(δ|x1|)δx11δ

3
3∑
j=1

x1j
∂F
∂xj

∣∣∣∣
x

d3x1

By including all three components, this becomes:

Fi = −δ5

ˆ
V

f(δ|x1|)
3∑
i=1

x1i

3∑
j=1

x1j
∂F
∂xj

∣∣∣∣
x

d3x1

The equations are considered inside a region Ω, but when considering cells very close to the boundary
of the region Ω, problems arise because then the whole sphere of in�uence is not inside this region. The
distance between the cells lying inside the region Ω (x) and the boundary of the region must therefore always
be greater than the radius of the sphere of in�uence δ. This must therefore be ful�lled for the following
equations to be valid.

Since the function f only depends on an absolute value of x1 · δ, the value of f will be the same both for
x1i and the negative version −x1i. When lying inside the region ω(x) with a distance greater than δ to the
boundary and i 6= j, it follows that the integrand of the expression

Iij =

ˆ
S1

−f(δ|x1|)
3∑
i=1

x1i

3∑
j=1

x1jd
3x1

is an isotropic integral with an odd-valued integrand in terms of x1i (the same is true for x1j), and the
integration will therefore give zero as a result.

Due to the isotropic integral above, which is included in the expression for Fi, the force tensor F (x) can
be written as an integral times the gradient of F to give:

12



F (x) = K1∇F ,

which is a local force function, because it is only valid when lying inside the region ω(x) with a distance
smaller than δ to the boundary of the region. K1 in Cartesian coordinates is:

δ5

ˆ
S1

−f(δ|x1|)
3∑
i=1

x1i

3∑
j=1

x1jd
3x1

K1 should rather be written in spherical coordinates. The gel is assumed to remain spherical through the
whole compation process so that the dependence on the polar and azimuthal angles can be neglected. F (x)
therefore only depends on r and so should therefore also K1 do. Angle integration is therefore performed
explicitly to give 4π

3 , while x1i and x1j gives one r each while the Jacobian give r2 which in total results in
r4. The expression for K1 depending only on r can therefore be written as:

K1 = −4π

3

ˆ 1

0

f(δr1)r4
1dr1

The cell stress tensor in (Moon & Tranquillo, 1993) has the expression

σ =
τ0ρn

1 + λn2
I,

where I is the unit tensor. By taking the divergence of this, the expression becomes essentially the same as
the expression for F derived above, only with di�erent parameters. Including the parameters from (Moon
& Tranquillo, 1993) in the expression for F gives the �nal expression for the local force function F

F = τ0∇
(

ρn

1 + λn2

)
(12)

2.5 The relationship between the gel density and pressure

A relationship between gel density and pressure is desired. The density at a given pressure can be written
as a reference density minus this reference density times the relative change in volume between the reference
pressure and the given pressure for which the new density value is to be calculated at. This can be written
in the form of an equation by assuming isothermal �ow an low pressure (Georgiou & Crochet, 1994):

ρ = ρ0 − ρ0
1

V0

(
∂V

∂p

)
P0,T

(p− p0)

This can be written in a more compact form by introducing the isothermal compressibility(Georgiou &
Crochet, 1994):

ρ = ρ0 + ρ0β
∗ (p− p0) = ρ0 [1 + β∗(p− p0)] , where β∗ = − 1

V0

(
∂V

∂p

)
P0,T

.

V0 and ρ0 is the volume and density at reference pressire P0, and T is temperature. In order to further
simplify this expression, the gage pressure is used instead of absolute pressure to obtain:

ρ = ρ0(1 + β∗p)

By also assuming no cell exerted forces, the gel density at reference pressure is constant since the temperature
is also constant, and given the symbol ρi. This gives the �nal simpli�ed relationship between density and
pressure for the gel to be:

ρ = ρi (1 + β∗p) (13)
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2.6 The evolution of the cell-produced chemicals

An equation describing the change of chemical concentration is also needed. The chemicals are produced by
the cells, but they are also assumed to be subject to the processes of di�usion and decaying. Di�usion is the
most rapid one of the three processes mentioned, a due to this a quasi-steady state can be assumed for the
production and decaying of the chemicals, and the equation therefore does not contain any time-derivatives
of the rates. The di�usion is expressed in the same manner as in equation (3), only replacing the density
with the chemical concentration. The di�usion rate of the chemicals is denoted by Dc, the decay rate is
denoted by α1 and the production rate is denoted by α2. The expression for the chemical concentration can
then be expressed as:

Dc∇2c− α1c+ α2n = 0 (14)

where c denotes the chemical concentration(Green et al., 2013). The cell density n is computed in another
equation, and can then be inserted into the other equation afterwards to update equation (12) above for new
time-steps.

The equations which has been shown is to be solved inside the gel, which has a domain denoted by Ω∗(t).
Boundary conditions are needed in order to solve the equations, and they are stated below:

Ω∗|t=0 = Ω∗0, ρ|t=0 = ρ∗0(x), n|t=0 = n∗0(x) (15)

n̂ · (nu−D∇n) = 0, σ · n̂ = 0, u · n̂ = V on Γ∗(t) (16)

Γ∗(t) is the gel boundary de�ned as Γ∗(t) = ∂Ω∗(t), while n̂ andV ∗ are respectively the unit outward normal
to and the normal velocity of the gel boundary. In order to impose condition for the �ux of the concentration,
it is assumed that there exists a a large well of growth medium in which the gel resides, but the culture
medium does not contain any of the chemical to be studied. Therefore, the �ux of the chemical out of the
gel is proportional to the chemical concentration at the gel boundary, and this proportionality is expressed
using the proportionality constant γ∗. (Green et al., 2013)The �ux condition for the chemical can then be
expressed as:

−D∗c n̂ · ∇c = γ∗c on Γ∗(t), (17)

where the negative sign on the left side of the equation is due studying the �ux out of the gel, and that �ux
is de�ned positive when in�ux.

2.7 Non-dimensionalization

In order to generalize the equations above, the variables are non-dimensionalized. This is done in following,
where the thildes are representing the non-dimensional variables:

t = T ∗ · t̃, x = R0x̃ ρ = ρiρ̃, n = niñ, u =
R0

T ∗
ũ,

σ =
µ∗

T ∗
σ̃, P =

µ∗

T ∗
P̃ , F =

µ∗

T ∗R0
F̃ , c =

α∗2niR
2
0

Dc
c̃

T is a typical time-length for the compaction, R0 is a typical length of the gel, while ni and ρi are the
average initial densities. The di�erent steps showing the derivation from the dimensional form of the �ve
governing equations to the non-dimensional form are shown in Appendix F, and the results are shown below.
The equations which were non-dimensionalized were the initial- and boundary conditions together with the
following �ve equations:
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∂ρ

∂t
+∇ · (ρu) = 0

∂n

∂t
+∇ · (nu) = D∗∇2n

−∇P + µ∗∇2u+

(
κ∗ +

µ∗

3

)
∇(∇ · u) + F = 0

Dc∇2c− α1c+ α2n = 0

ρ = ρi (1 + β∗p)

As shown in Appendix F, the non-dimensional versions are of the initial-and boundary conditions are:

Ω(t)|t=0 = Ω0, ρ|t=0 = ρ0(x), n|t=0 = n0(x)

n̂ ·
(
nu− P−1

e ∇n
)

= 0

σ · n̂ = V

u · n̂ = V

n̂ · ∇c = −γc

where ω0, ρ0 and n0 are the non-dimensional counterparts of ω∗0 , ρ
∗
0 and n

∗
0, while V is the non-dimensional

normal velocity of Γ(t).

The non-dimensional versions of the �ve governing equations, whose dimensional versions were shown earlier,
are shown below together with the force function:

∂ρ

∂t
+∇ · (ρu) = 0

∂n

∂t
+∇ · (nu) = P−1

e

∂2

∂x2
n

−∇P +∇2u+

(
κ+

1

3

)
· ∇(∇ · u) + F = 0

∇2c− α∗1c+ n = 0

F = τ0∇
(

ρn

1 + λn2

)
ρ = 1 + βp

These equations will be converted to other coordinate systems, and later discretized before implementing
them on the computer in order to investigate how the di�erent parameters are e�ecting the cell exerted
forces and to compare with experimental data to see if the experimental data and numerical model gives
good agreement.

2.8 Spherical coordinates

The Cartesian versions of the equations derived earlier will now be converted to spherical coordinates, which
is a useful step before implementing the equations on the computer later. But �rst, some mathematical
operators should be converted to spherical coordinates, which is shown in Appendix G, with only the results
shown here. The gel is assumed to stay spherical through the whole compaction process, and the parameters
will therefore not be dependent on the polar and azimuthal angles. The velocity and the cell-induced forces
are assumed to be zero, except in the radial direction, and in mathematical terms this can be written as

u = u(r, t)r̂, F = Frr̂
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Due to this, the inverse Péclet number (which is de�ned in Appendix F) is small, and can be neglected.
As stated above, the dependence on the polar and azimuthal angles can be neglected, which will simplify
the derivation for the spherical versions of the equations. The expressions for the gradient and divergence
in spherical coordinates is shown in Appendix G together witht the derivation of the vector Laplacian and
scalar Laplacian, and the results are shown below:

∇f(r) =
∂f

∂r
r̂

∇ · F =
1

r2

∂

∂r

(
r2Fr

)
∇2(u) = −2u

r2
+

2

r

∂u

∂r
+
∂2u

∂r2
=

1

r2

∂

∂r

(
r2 ∂u

∂r

)
− 2u

r2

∇2u =
1

r2

∂

∂r

(
r2 ∂u

∂r

)
The relationship between the vector Laplacian,∇2u, and scalar Laplacian,∇2u, can then be written as:

∇2(u) =
1

r2

∂

∂r

(
r2 ∂u

∂r

)
− 2u

r2
= ∇2u− 2u

r2

A �gure showing the spherical coordinate system is shown below, and is taken from (Tuckerman, 2011)

Figure 2: Spherical coordinate system (Tuckerman, 2011)

The equations needed in the computations in order to study the forces exerted by the cells must be
transformed to spherical coordinates, which is to be done in the following.

2.8.1 Mass balance equations

The �rst equations to be converted into spherical coordinates are the mass balance equations. Since the
Péclet number was negligible, the right side of the cell mass balance equation becomes zero. This means that
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both expressions become the same, only that the gel density is considered in the �rst, while the cell density
in the second. The expressions are the same, so the the conversion into spherical coordinates is shown for
the gel density, but is the same for the density of the cells. The gel density is chosen, and the left side of the
equation is shown below (the right side of the equation is zero):

∂ρ

∂t
+∇(ρu)

The �rst step is to rewrite the divergence of the product of ρ and u in Cartesian coordinates:

∇ · (ρu) =
∂

∂x
(ρu1) +

∂

∂y
(ρu2) +

∂

∂z
(ρu3) = ρ

∂u1

∂x
+ u1

∂ρ

∂y
+ ρ

∂u2

∂y
+ u3

∂ρ

∂z
+ ρ

∂u3

∂z
,

which can be rewritten in a more compact form as

∇ · (ρu) = ρ

(
∂u1

∂x
+
∂u2

∂y
+
∂u3

∂z

)
+ u ·

(
∂ρ

∂x
+
∂ρ

∂y
+
∂ρ

∂z

)
.

This can be simpli�ed to:
∇ · (ρu) = ρ (∇ · u) + u (∇ρ)

Then, the expressions for divergence and gradient for spherical coordinates showed further up are utilized:

∇ · (ρu) = ρ (∇ · u) + u (∇ρ) =
∂ρ

∂r
r̂ · u · r̂ + ρ

(
1

r2

∂

∂r
(r2u)

)
,

which is equivalent to writing

∇ · (ρu) =
∂ρ

∂r
u+

ρ

r2

∂

∂r
(r2u) =

∂ρ

∂r
u+

ρ

r2

(
2 · r · u+ r2 ∂u

∂r

)
.

This gives:

∇ · (ρu) =
∂ρ

∂r
u+

2ρu

r
+ ρ

∂u

∂r

which can be rewritten as the following to get a more compact expression:

∇ · (ρu) =
1

r2

∂

∂r

(
r2ρu

)
This expression can then be inserted into the mass balance equation for the gel:

∂ρ

∂t
+∇(ρu) =

∂ρ

∂t
+

1

r2

∂

∂r

(
r2ρu

)
(18)

Since the expression for mass balance for the cells is the same, this can also be written in spherical
coordinates as:

∂n

∂t
+∇(nu) =

∂n

∂t
+

1

r2

∂

∂r

(
r2nu

)
(19)

2.8.2 Momentum balance equation

The next expression which will be converted from Cartesian coordinates to spherical coordinates is the force
balance between the gel and cells. The expression in Cartesian coordinates was written earlier but repeated
here:

−∇P +∇2u+

(
κ∗ +

1

3

)
· ∇(∇ · u) + F = 0
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This can be converted to spherical coordinates by using the expressions for the gradient, divergence and
Laplacian for spherical coordinates shown earlier. Since all the terms are in the radial direction, the unit
vector in r-direction is dropped, and the result for the force balance is:

∂P

∂r
+

1

r2

∂

∂r

(
r2 ∂u

∂r

)
− 2u

r2
+

(
κ+

1

3

)
∂

∂r

(
1

r2

∂

∂r
(r2u)

)
= 0,

which is equivalent to writing

∂P

∂r
+∇2u+

(
κ+

1

3

)
∂

∂r

(
1

r2

∂

∂r
(r2u)

)
= 0. (20)

It is shown that ∇2u = 1
r2

∂
∂r

(
r2 ∂u

∂r

)
− 2u

r2 in Appendix G.

2.8.3 Evolution of the chemicals

The equation describing the evolution of the chemical concentration is converted to spherical coordinates
using the expression for the Laplacian further up:

∇2c− α1 + n =
1

r2

(
∂

∂r
(r2 ∂c

∂r
)

)
− α1c+ n

This is equivalent to writing:

∇2c− α1 + n =
2

r

∂c

∂r
+
∂2c

∂r2
− α1 + n = 0 (21)

2.8.4 Summary of the expressions in the spherical coordinates

The �ve governing equations and the force function written in spherical coordinates is summarized below:

∂ρ

∂t
+

1

r2

∂

∂r
(r2ρu) = 0

∂n

∂t
+

1

r2

∂

∂r
(r2nu) = 0

−∂P
∂r

+∇2u+

(
κ+

1

3

)
∂

∂r

(
1

r2

∂

∂r
(r2u)

)
+ Fr = 0

∂2c

∂r2
+

2

r

∂c

∂r
− α1cD + n = 0

F = τ0
∂

∂r

(
ρn

1 + λn2

)
ρ = 1 + βP

The change in the gel radius with respect with time is equal to the gel velocity at the gel boundary, which
in mathematical terms becomes:

dR

dt
= u(R(t), t) (22)

2.8.5 Initial and boundary conditions

The initial conditions are treated �rst. The gel density is assumed to be uniform and equal to 1 initially,
while the initial cell density is slightly higher near the center of the gel. The cell density varies slightly,
because if both of the densities were uniform, equilibrium would already have been established, and the cell
forces could not have been studied. The mathematical versions of the three initial conditions are stated
below:
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ρ(r, 0) = 0, R(0) = 0, n(r, 0) = ni(r) (23)

Then to the boundary conditions: The �rst boundary condition is zero movement of the gel at the gel center,
and the second boundary condition is that there is zero stress at the gel boundary, which can be expressed
in mathematical terms as:

u = 0, at r = 0. (24)

It is also assumed that at r = R(t) there is no stress, meaning that the stress boundary condition in spherical
coordinates becomes:

− P + 2εij +

(
κ− 2

3

)
εkk = 0 (25)

where the expressions for εij and εkk in spherical coordinates is εij = ∂u
∂r and εkk = 1

r2
∂
∂r (r2u) (using

the expressions for divergence shown earlier), which gives rise to the following boundary condition for the
stresses:

− P + 2
∂u

∂r
+

(
κ− 2

3

)
1

r2

∂

∂r
(r2u) = 0, at r = R(t). (26)

The third boundary condition is that the chemical �ux is zero at r = due to symmetry, and in mathematical
terms this becomes:

∂c

∂r
= 0, at r = 0. (27)

At r = R(t), the boundary condition is di�erent:

∂c

∂r
= −γc, at r = R(t). (28)

2.9 The compressibility and bulk viscosity of the gel from experiments

The gel compressibility and the bulk viscosity can be determined from laboratory experiments when no cells
are present in the gel. A known radial stress is applied on the gel, and the measured results are used to get
the values for the gel compressibility and bulk viscosity. (Green et al., 2013) This is useful when inserted
into the mathematical model, because two of the parameters are then known values, and then only the other
�ve parameters can then be changed.

In Appendix H, it were shown that the expressions for the bulk viscosity, κ, and the gel compressibility,β,
used when measuring them during experiments are:

κ =
∑

(t)

Ṙ(0)
(29)

The bulk viscosity depends on the externally applied stress at time t and the measured initial rate change
of the radius, R. Both of these parameters can be measured in the laboratory, and the value of the bulk
viscosity can then be inserted into the mathematical model. In order to derive the expression for β, it is
assumed that β

∑
(t) is less than one.

The expression for the isothermal compressibility of the gel is:

β =
1−R−3

t→∞∑
(t)

(30)
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where Rt→∞ is the steady state value of the radius, R. The isothermal compressibility of the gel therefore
depends on the steady state value of the radius and the externally applied stress. The externally applied
stress is known, since it is the stress applied, and the steady state value of the radius can be measured in the
same experiment. The isothermal compressibility of the gel can therefore also be determined from laboratory
experiments and together with the bulk viscosity be inserted into the mathematical model to learn more
about the �uid in question when both κ and β are known values.

2.10 New coordinates (ζ, τ)

The spherical coordinates used so far have been (r, t), but this will now be converted to the coordinates
(ζ, τ). The spherical coordinates could have been used when implementing the equations on the computer,
but in order to further simplify the implementations, the new coordinate system is introduced. The equations
including such as mass balance and force balance which were derived for the spherical coordinates further
up will therefore now be converted to the coordinate system (ζ, τ). The same method used to convert
the equations from Cartesian to spherical coordinates will be used, but it will here be utilized from the
beginning that the polar and azimuthal angles can be neglected in order to simplify the derivation. First
the relationship between r and ζ is shown (Green et al., 2013), before moving on to the derivation:

r = R(t)ζ (31)

This expression is then inserted into the expressions for x, y and z:

x = R(t)ζ cos(φ) sin(θ)

y = R(t)ζ sin(θ) sin(φ)

z = R(t)ζ cos(θ)

The partial derivatives can then be written as:

∂

∂x
=
∂ζ

∂x

∂

∂ζ
+
∂θ

∂x

∂

∂θ
+
∂φ

∂x

∂

∂φ

∂

∂y
=
∂ζ

∂y

∂

∂ζ
+
∂θ

∂y

∂

∂θ
+
∂φ

∂y

∂

∂φ

∂

∂z
=
∂ζ

∂z

∂

∂ζ
+
∂θ

∂z

∂

∂θ
+
∂φ

∂z

∂

∂φ

The partial derivatives on the right side of the equations must then be calculated:

∂ζ

∂x
=

x

ζR(t)R(t)
=
ζR(t) cos(φ) sin(θ)

ζR(t)R(t)
=

cos(φ) sin(θ)

R(t)

∂ζ

∂y
=

y

ζR(t)R(t)
=
ζR(t) sin(θ) sin(φ)

ζR(t)R(t)
=

sin(θ) sin(φ)

R(t)

∂ζ

∂z
=

z

ζR(t)R(t)
=
ζR(t) cos(θ)

ζR(t)R(t)
=

cos(θ)

R(t)

The expression for the partial derivative of angle θ with respect to x, y and z is:
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∂θ

∂x
=

xz√
x2+y2

x2+y2+z2 (x2 + y2 + z2)
3
2

=
cos(θ) cos(φ)

R(t)ζ
,

∂θ

∂y
=

cos(θ) sin(φ)

R(t)ζ
,

∂φ

∂z
= −R(t)ζ sin(θ)

The partial derivatives of the angle φ with respect to x, y and z is:

∂φ

∂x
= − sin(θ)

R(t)ζ sin(θ)
,

∂φ

∂y
=

cos(φ)

R(t)ζ sin(θ)
,

∂θ

∂z
= − sin(φ)

R(t)ζ

Inserting the partial derivatives into the expressions for ∂
∂x ,

∂
∂y and ∂

∂z :

∂

∂x
=

cos(φ) sin(θ)

R(t)

∂

∂ζ
+

cos(θ) cos(φ)

R(t)ζ

∂

∂θ
− sin(φ)

R(t)ζ sin(θ)

∂

∂φ

∂

∂y
=

sin(φ) sin(θ)

R(t)

∂

∂ζ
+

cos(θ) sin(φ)

R(t)ζ

∂

∂θ
+

cos(φ)

R(t)ζ sin(θ)

∂

∂φ

∂

∂z
=

cos(θ)

R(t)

∂

∂ζ
− sin(θ)

R(t)ζ

∂

∂φ

Since it is the Laplacian operator which is of interest, the second derivatives must be calculated. This is

done in Appendix I, but the results are used here: By summing the expressions for ∂2

∂x2 ,
∂2

∂y2 and ∂2

∂z2 and

using factorization gives that ∂
∂ζ and ∂2

∂ζ2 can be written as:

∂

∂ζ

[
sin2(φ)

R2ζ
+

cos2(φ) cos2(θ)

R2ζ
+

sin2(φ)

R2ζ
+

cos2(φ)

R2ζ
+

sin2(φ) cos2(θ)

R2ζ

]

=
∂

∂ζ

1

R2ζ

[
1 + sin2(θ) + cos2(θ)

(
cos2(φ) + sin2(φ)

)]
=

2

R2ζ

∂

∂ζ
,

and:
∂2

∂ζ2

[
cos2(φ)

R2
+

cos2(φ) sin2(θ)

R2
+

sin2(θ) sin2(φ)

R2

]
.

∂2

∂ζ2

1

R2

[
cos2(φ) + sin2(θ)

(
cos2(φ) + sin2(φ)

)]
=

1

R2

∂2

∂ζ2

Since both the polar and azimuthal angles can be neglected, the expression for the Laplacian operator
becomes:

∇2 =
2

R2ζ

∂

∂ζ
+

1

R2

∂2

∂ζ2

which gives the scalar Laplacian operator of u to be:

∇2u =
2

R2ζ

∂u

∂ζ
+

1

R2

∂2u

∂ζ2

21



The divergence of u in the coordinate system (ζ, τ) is:

∇ · u =
1

r2

∂

∂r
(r2u) =

1

R2ζ2

1

R

∂

∂ζ

(
R2ζ2u

)
=

1

Rζ2

∂

∂ζ

(
ζ2u
)
,

which gives that

∇(∇ · u) =
∂

∂ζ

(
1

R2ζ2

∂

∂ζ

(
ζ2u
))

=
1

R2

(
− 2

ζ3

∂

∂ζ
(ζ2u) +

1

ζ2

∂2

∂ζ2
(ζ2u)

)
=

1

R2

(
− 2

ζ3
(2ζu+ ζ2 ∂u

∂ζ
) +

1

ζ2

∂

∂ζ
(2ζu+ ζ2 ∂u

∂ζ
)

)

= − 4u

R2ζ2
− 2

R2ζ

∂u

∂ζ
+

1

R2ζ2

(
2u+ 2ζ

∂u

∂ζ
+ 2ζ

∂u

∂ζ
+ ζ2 ∂

2u

∂ζ2

)
= − 4u

R2ζ2
− 2

R2ζ

∂u

∂ζ
+

2u

R2ζ2
+

2

R2ζ

∂u

∂ζ
+

2

R2ζ

∂u

∂ζ
+

1

R2

∂2u

∂ζ2

As shown further up for the spherical coordinates, the vector Laplacian, ∇2(u), can be written equal to
the gradient of the divergence of u because the polar and azimuthal angles are neglected. This is also the
case for the new coordinate system, which gives:

∇2(u) = ∇(∇ · u) = − 2u

R2ζ2
+

2

R2ζ

∂u

∂ζ
+

1

R2

∂2u

∂ζ2
= − 2u

R2ζ2
+∇2u, (32)

where ∇2(u) represents the scalar Laplacian.

The mass balance equations for the collagen gel and cells in new Coordinates

The mass balance equations for the gel and cells will now be converted to the new coordinate system
with (ζ, τ):

The �rst term of the mass balance equations:

∂ρ

∂t
=
∂ρ

∂τ
+
∂ρ

∂ζ

∂ζ

∂R

∂R

∂τ

where the expression for ∂ζ
∂R is calculated as:

ζ =
r

R
which gives the partial derivative

∂ζ

∂R
= − r

R2
= −Rζ

R2
= − ζ

R
.

This is then inserted into the expression for∂ρ∂t to get:

∂ρ

∂t
=
∂ρ

∂τ
− ζ

R
Ṙ
∂ρ

∂ζ

The second term of the mass balance equations:

1

r2

∂

∂r
(r2ρu) =

1

R2ζ2

∂

∂ζ

∂ζ

∂r

(
R2ζ2ρu

)
,

where
∂ζ

∂r
=

1

R
.

This is then inserted to give:

1

r2

∂

∂r
(r2ρu) =

1

R3ζ2

∂

∂ζ

(
R2ζ2ρu

)
=

1

Rζ2

∂

∂ζ

(
ζ2ρu

)
which means that the mass balance equations for the gel and cells in the coordinates (ζ, τ) become:
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∂ρ

∂τ
− ζ Ṙ

R

∂ρ

∂ζ
+

1

Rζ2

∂

∂ζ
(ζ2ρu) = 0

∂n

∂τ
− ζ Ṙ

R

∂n

∂ζ
+

1

Rζ2

∂

∂ζ
(ζ2nu) = 0

The momentum balance equation in the new coordinates (ζ, τ)

Then the force balance between the gel and cells is also going to be converted into the new coordinate
system:

The �rst term of the momentum balance equation:

−∂P
∂r

= − 1

R

1

β

∂ρ

∂ζ
= − 1

Rβ

∂ρ

∂ζ

The second and third term of the momentum balance equation were converted further up as:

∇2(u) = ∇(∇ · u) = − 2u

R2ζ2
+

2

R2ζ

∂u

∂ζ
+

1

R2

∂2u

∂ζ2
= − 2u

R2ζ2
+∇2u

The fourth term of the momentum balance equation:

∂

∂r

(
1

r2

∂

∂r
(r2u)

)
where

∂

∂r
=

∂

∂ζ

∂ζ

∂r
=

1

R

∂

∂ζ

This is then inserted into the fourth term of the momentum balance equation to give:

∂

∂r

(
1

r2

∂

∂r
(r2u)

)
=

1

R

∂

∂ζ

(
1

R2ζ2

1

R

∂

∂ζ
(R2ζ2u)

)
=

1

R2

∂

∂ζ

(
∂

∂ζ
(ζ2u)

)
This means that the momentum balance equation in the coordinates (ζ, τ) can be written as:

− 1

Rβ

∂ρ

∂ζ
− 2u

R2ζ2
+∇2u+

1

R2

(
κ+

1

3

)
∂

∂ζ

(
∂

∂ζ
(ζ2u)

)
+ Fr = 0

And by multiplying the above equation with R:

− 1

β

∂ρ

∂ζ
− 2u

Rζ2
+R∇2u+

1

R

(
κ+

1

3

)
∂

∂ζ

(
∂

∂ζ
(ζ2u)

)
+RFr = 0 (33)

Equation describing chemical evolution in new coordinates

Then, moving on to the equation describing the chemical evolution:

∂2c

∂r2
+

2

r

∂c

∂r
− α1c+ n = 0

Using again that ∂
∂r = 1

R
∂
∂ζ to get the expression for the chemical evolution in the coordinates (ζ, τ):

1

R2

∂2c

∂ζ2
+

2

R2ζ

∂c

∂ζ
− α1 + n = 0 (34)
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Change of gel radius at outher boundary in new coordinates

The expression for the change of gel radius at outher boundary in the coordinate system (ζ, τ) can be
written as the velocity of the gel at the boundary, at ζ = 1:

dR

dτ
= Ṙ = u|ζ=1 (35)

Initial conditions in new coordinates

By using that ∂
∂r = 1

R
∂
∂ζ and that ρ = 1 + βP , the initial conditions in the coordinate system (ζ, τ)

become:
ρ(ζ, 0) = 0, and n(ζ, 0) = ni(ζ). (36)

Boundary conditions in the new coordinates (ζ, τ)

Then, by still using that ∂
∂r = 1

R
∂
∂ζ , the boundary conditions converted to the new coordinate system

become:
u(0, τ) = 0 (37)

−
(
ρ− 1

β

)
+

1

R

(
κ− 2

3

)(
1

ζ2

∂

∂ζ
(ζ2u)

)
+

2

R

∂u

∂ζ
= 0, at ζ = 1. (38)

∂c

∂ζ
= 0 at ζ = 0,

∂c

∂ζ
= −Rγc at ζ = 1. (39)

The two partial di�erential equations describing the mass balance for the gel and cells, the momentum
balance equation, the partial di�erential equation describing the evolution of the cell-produced chemicals
together with the boundary and initial conditions are summarized below:

∂ρ

∂τ
− ζ Ṙ

R

∂ρ

∂ζ
+

1

Rζ2

∂

∂ζ
(ζ2ρu) = 0

∂n

∂τ
− ζ Ṙ

R

∂n

∂ζ
+

1

Rζ2

∂

∂ζ
(ζ2nu) = 0

− 1

β

∂ρ

∂ζ
− 2u

Rζ2
+R∇2u+

1

R

(
κ+

1

3

)
∂

∂ζ

(
∂

∂ζ
(ζ2u)

)
+RFr = 0

1

R2

∂2c

∂ζ2
+

2

R2ζ

∂c

∂ζ
− α1 + n = 0

dR

dτ
= Ṙ = u|ζ=1

u(0, τ) = 0

−
(
ρ− 1

β

)
+

1

R

(
κ− 2

3

)(
1

ζ2

∂

∂ζ
(ζ2u)

)
+

2

R

∂u

∂ζ
= 0, at ζ = 1.

∂c

∂ζ
= 0 at ζ = 0,

∂c

∂ζ
= −Rγc at ζ = 1.

ρ(ζ, 0) = 0, and n(ζ, 0) = ni(ζ)
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2.11 Di�erent types of contractions

The gel density is initially uniformly distributed, while there are slightly more cells near the center of
the sphere compared to the rest of the sphere in order to describe gel compaction. If both the cell- and gel
densities were uniform, there would be no net forces, and there would already be an equilibrium and therefore
no gel compaction to study. A cosine function is therefore used to express the the initial cell densities, since
the cosine function has its maximum value at the center of the sphere:

ni = 1 +
1

100
cos
(πr

2

)
which in the ζ coordinate system becomes:

ni = 1 +
1

100
cos

(
πRζ

2

)
(40)

2.11.1 Mechanical Driven Contraction

Mechanical driven contraction means that the force exerted on the gel by the cells is assumed not to be
dependent on the chemical produced by the cells, but only on the cell- and gel densities. Two di�erent types
of mechanical driven contraction will be investigated here.
The �rst force function has the following expression (Green et al., 2013):

Fr = τ0
∂

∂r

(
nρ

1 + λn2

)
(41)

where τ0 and λ are positive constants. By using that ∂
∂r = 1

R
∂
∂ζ , this is converted to the new coordinate

system as:

Fζ =
τ0
R

∂

∂ζ

(
nρ

1 + λn2

)
(42)

The force exerted by the cells is increasing with increasing gel densities, and decreasing with overcrowding,
where overcrowding means that the cell density becomes so high that the cells are interacting in such a way
that the cell exerted forces decreases. (Green et al., 2013)This can be seen from 1 +λn2 in the denominator.
It were also suggested in (Green et al., 2013) that 1 + λn2 in

Fr = τ0
∂

∂r

(
nρ

1 + λn2

)
,

should be replaced by 1 + λρ2 instead due to two reasons:

� The cells are often spread too much for cell overcrowding to have an e�ect (Barocas, Moon, Tranquillo,
et al., 1995)

� As can be seen from the experimental values from �gure 5 taken from (Moon & Tranquillo, 1993), an
increase in cell density should increase the gel compaction.

The mechanical force function for the cells which does not include the preferred extracellular matrix
density then becomes:

Fr = τ0
∂

∂r

(
nρ

1 + λρ2

)
,

and in the new coordinate system:

Fζ =
τ0
R

∂

∂ζ

(
nρ

1 + λρ2

)
(43)

By using ρ in the denominator instead of n as earlier gives a very similar result, but it is more biologically
correct to express it like this.
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The next type of mechanical driven contraction force function takes into account that cells have a certain
maximum density for which it will continue to compact the gel. The reason for this is that the gel compacts
because the cell traction forces initially are greater than the elastic forces which the gel can resist without
compacting. When the gel is compacted, the elastic modulus (which describes the ratio between stress and
strain (Fjaer et al., 1992)) of the gel increases. This means that the cells must exert a greater force in order
to compact the gel a speci�c percent, relative to when the gel was less compacted. The density of the gel
will therefore after some time reach an equilibrium. A preferred density parameter is therefore included in
the force function, where the preferred density parameter represents the maximum gel density inside the
sphere of in�uence of the cell where the cell continue to compact the gel, and the force expression can then
be written as:

Fr = τ0
∂

∂r
(nρ(ρc − ρ)) ,

where ρc is the preferred density parameter. (Green et al., 2013) In the new coordinate system, this equation
becomes:

Fζ =
τ0
R

∂

∂ζ
(nρ(ρc − ρ)) , (44)

2.11.2 Chemically Driven Contraction

As mentioned earlier, chemicals are produced by the cells. These chemicals can a�ect the traction forces
from the cells. Two di�erent expressions for the force functionFr will be investigated further below.

In the �rst expression, it is assumed that Fr is proportional to the product nρc as seen below(Green et
al., 2013):

Fr = τ0
∂

∂r
(nρc) ,

which in the new coordinate system becomes:

Fζ =
τ0
R

∂

∂ζ
(nρc) . (45)

The other expression for Fr is including both the e�ect caused by the chemical c, and the preferred
density parameter as follows(Green et al., 2013):

Fr = τ0
∂

∂r
(nρc(ρc − ρ))

This is also converted into the new coordinate system, and the equation becomes:

Fζ =
τ0
R

∂

∂ζ
(nρc(ρc − ρ)) (46)

These force functions will later be used when discretizing the mathematical model when investigating
the role of the di�erent parameters, and when the mathematical model is compared to experimental data.

2.12 Discretization

The mathematical model is now to be discretized in one dimension. The equation describing the momentum
balance equation has the expression

− 1

β

∂ρ

∂ζ
− 2u

Rζ2
+R∇2u+

1

R

(
κ+

1

3

)
∂

∂ζ

(
∂

∂ζ
(ζ2u)

)
+RFr = 0

Since this is now to be discretized in one dimension, the expression from equation (30), which can be rewritten

as 2
R2ζ

∂u
∂ζ + 1

R2
∂2u
∂ζ2 = ∇2u. This is substituted into the equation above to give the equation
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− 1

β

∂ρ

∂ζ
+

1

Rζ2

∂

∂ζ

(
ζ2 ∂u

∂ζ

)
− 2u

Rζ2
+

1

R

(
κ+

1

3

)
∂

∂ζ

(
1

ζ2

∂

∂ζ
(ζ2u)

)
+RFr = 0,

which will be used during the one dimensional discretization of the mathematical model below.
The equations which will be shown how to discretized below, are:

∂ρ

∂τ
− ζ Ṙ

R

∂ρ

ζ
+

1

Rζ2

∂

∂ζ

(
ζ2ρu

)
= 0

Fζ =
τ0
R

∂

∂ζ

(
nρ

1 + λn2

)
− 1

β

∂ρ

∂ζ
+

1

Rζ2

∂

∂ζ

(
ζ2 ∂u

∂ζ

)
− 2u

Rζ2
+

1

R

(
κ+

1

3

)
∂

∂ζ

(
1

ζ2

∂

∂ζ
(ζ2u)

)
+RFr = 0

1

R2

∂2c

∂ζ2
+

2

R2ζ

∂c

∂ζ
− α1c+ n = 0,

(47)

(48)

(49)

(50)

where the gel density and the cell density is de�ned at the cell centers, while the velocity is de�ned at the
cell boundaries.

The initial conditions and boundary conditions which is used are:

ρ(ζ, 0) = 1

n(ζ, 0) = ni(ζ)

u(0, τ) = 0

−
(
ρ− 1

β

)
+

1

R

(
κ− 2

3

)(
1

ζ2

∂

∂ζ
(ζ2u)

)
+

2

R

∂u

∂ζ
= 0

∂c

∂ζ
= 0 at ζ = 0

∂c

∂ζ
= −Rγc at ζ = 1

(51)

(52)

(53)

(54)

(55)

(56)

For each new time interval, the new gel radius must be updated. This is accomplished using the following
equation:

dR

dτ
= Ṙ = u|ζ=1 (57)

The di�erent cell blocks are represented by i, where an integer value for i means the center of the cell,
while fraction value for i means at the cell boundary. The distance between each cell center is denoted by
∆ζ. The �rst cell block is i = 1, while the last cell block is represented by N , while the di�erent time steps
are represented by n, so that the next time step is written as n + 1. Below is a �gure showing the spatial
domain:

Figure 3: Figure showing the total discretization domain from i=1:N

There are �ve steps during the numerical simulations, and they are written below:
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� First, the momentum balance equation is solved with respect to the velocity u, using the boundary
conditions (53) and (54).

� Then, the values for u is inserted into the mass balance equation for the gel and for the cells. The
initial conditions used in order to solve for ρ and n are equations (51) and (52). The mass balance
equation for the gel is equation (47), but the cells have an equivalent expression, only replacing the gel
density ρ with the cell density n.

� The equation describing the chemical evolution (equation (50)) is then solved using the values for the
cell density n from the previous step, together with the boundary conditions (55) and (56).

� The force function (48) is then updated using the values for the gel density and cell density, ρ and n.
If another force function is used than (48), the same procedure is followed, only change equation (48)
to the desired force function.

� The last step is to use equation (57), which describes the rate at which the gel radius is changing, in
order to update the gel radius, before starting at the �rst step again for the next time step.

2.12.1 Mass balance equation

The mass balance equation for the gel is then to be discretized. The equation is �rst repeated together with
the boundary conditions which are used during the numerical computation:

∂ρ

∂τ
− ζ Ṙ

R

∂ρ

ζ
+

1

Rζ2

∂

∂ζ

(
ζ2ρu

)
= 0

ρ(ζ, 0) = 1

n(ζ, 0) = ni(ζ)

The discretized version of this equation is written �rst, before it is shown how it was discretized:

ρn+1
i = ρni +

∆τ

∆ζ
(FII − FI)− bρ,i

∆τ

∆ζ
(EII − EI) ,

where FII , FI , EII and EI is de�ned further down in the discretization.

Substitution is used in order to simplify mass balance equation during the discretization and the imple-
mentation on the computer later:

∂ρ

∂ζ
− aρ

∂ρ

ζ
+ bρ

∂

∂ζ

(
ζ2ρu

)
= 0,

where aρ = ζ ṘR and bρ = 1
Rζ2 . Term two and three are discretized by subtracting the �ux going out of

cell i to the right with the �ux coming in to cell i from the left, and dividing this by ∆ζ.

The second term in the mass balance equation is discretized as follows:

FII = aρ,iρi+ 1
2

= aρ,i

(
ρi+1 + ρi

2

)
− |aρ,i|

2
(ρi+1 − ρi)

FI = aρ,iρi− 1
2

= aρ,i

(
ρi + ρi−1

2

)
− |aρ,i|

2
(ρi − ρi−1)

This gives the discretization of the second term to be:

aρ
∂ρ

∂ζ
=
FII − FI

∆ζ

28



The third term in the mass balance equation is also discretized using the �uxes:

EII =
(
ζ2ρu

)
i+ 1

2

=
(
ζ2u
)
i+ 1

2

(
ρi+1 + ρi

2

)
−

(
ζ2|u|

)
i+ 1

2

2
(ρi+1 − ρi)

EI =
(
ζ2ρu

)
i− 1

2

=
(
ζ2u
)
i− 1

2

(
ρi + ρi−1

2

)
−

(
ζ2|u|

)
i− 1

2

2
(ρi − ρi−1)

By subtracting the �uxes, EII − EI before dividing by the spatial distance between the cells, ∆ζ, gives:

bρ
∂

∂ζ

(
ζ2ρu

)
= bρ

EII − EI
∆ζ

The �rst term is discretized as:

∂ρ

∂τ
=
ρn+1
i − ρni

∆τ

These discretized terms are then inserted into the momentum balance equation to give:

∂ρ

∂τ
− ζ Ṙ

R

∂ρ

ζ
+

1

Rζ2

∂

∂ζ

(
ζ2ρu

)
≈ ρn+1

i − ρni
∆τ

−
(
FII − FI

∆ζ

)
+ bρ

(
EII − EI

∆ζ

)
= 0

=⇒ ρn+1
i = ρni +

∆τ

∆ζ
(FII − FI)− bρ,i

∆τ

∆ζ
(EII − EI)

The mass balance equation for the cells is discretized the exact same way, only replacing ρ with n.

2.12.2 Boundary condition for the momentum balance equation

Equation (54), which is the boundary condition needed when solving the momentum balance equation, is
repeated below:

−
(
ρ− 1

β

)
+

1

R

(
κ− 2

3

)(
1

ζ2

∂

∂ζ
(ζ2u)

)
+

2

R

∂u

∂ζ
= 0,

at ζ = 1, meaning cell block N .
This is the boundary condition for the velocity at the outer boundary of the gel, so it gives an expression for
uN+ 1

2
, which will be used together with boundary condition (53) when solving equation (49) numerically.

The discretized expression is �rst written, before it is shown how the equation was discretized:

uN+ 1
2

= G− uN− 1
2
·H,

where

G =
ρN − 1

β · (b+ 2a− aζ2
N )

and H =

[
−aζ2

N − b
]

[b+ 2a− aζ2
N ]
.

This equation was discretized as follows:

−ρ
n
N − 1

β
+

a

ζ2
N+ 1

2

∆ζ

[
(uζ2)N+1 − (uζ2)N

]
+

b

∆ζ
[uN+1 − un] = 0

−ρ
n
N − 1

β
+

a

ζ2
N+ 1

2

∆ζ

[
(uζ2)N+ 1

2
− (uζ2)N

1
2

]
+

b

∆ζ

[
uN+ 1

2−uN
1
2

]
= 0
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Putting uN+ 1
2
and uN outside of the parenthesis gives:

uN+ 1
2

[
2aζ2

N+ 1
2

ζN+ 1
2
∆ζ

+
2b

∆ζ

]
+ uN

[
− 2aζ2

N

ζN+ 1
2
∆ζ

]
=

(
ρN − 1

β

)
Using that ζN+ 1

2
= 1, gives the expression:

uN+ 1
2

[
2a+ 2b

∆ζ

]
+

(
uN+ 1

2
+ uN− 1

2

2

)[
−2aζ2

N

∆ζ
− 2b

∆ζ

]
=
ρN − 1

β

uN+ 1
2

[
b+ 2a

∆ζ
− aζ2

N

∆ζ

]
+ uN− 1

2

[
−aζ

2
N

∆ζ
− b

∆ζ

]
=
ρN − 1

β

which gives the �nal expression for uN+ 1
2
:

uN+ 1
2

=
ρN − 1

β ·
(
b+2a
∆ζ −

aζ2N
∆ζ

) − uN− 1
2

[
−aζ

2
N

∆ζ −
b

∆ζ

]
[
b+2a
∆ζ −

aζ2N
∆ζ

]
uN+ 1

2
=

ρN − 1

β · (b+ 2a− aζ2
N )
− uN− 1

2

[
−aζ2

N − b
]

[b+ 2a− aζ2
N ]

This expression for the boundary velocity is used below when �nalizing the discretization of equation
(54), and therefore some substitution is made in order to make the below discretization more lucid:

uN+ 1
2

= G− uN− 1
2
·H,

where

G =
ρN − 1

β · (b+ 2a− aζ2
N )

and H =

[
−aζ2

N − b
]

[b+ 2a− aζ2
N ]
.

2.12.3 Force function

The force function Fζ for mechanical driven compaction on the form of equation (48) is one of several force
functions which can be used during the implementation on the computer, but the discretization for the other
force functions has the same procedure are equation (48). The force function is needed when when solving
the momentum balance equation on the computer, and it will shown how the force function on the form as
equation (48) is discretized below, �rst repeating the equation:

Fζ =
τ0
R

∂

∂ζ

(
nρ

1 + λn2

)
,

and will be discretized below. Discretized, this force function from the cells is:

Fζ ≈
τ0
R∆ζ

[(
nρ

1 + λn2

)
i+1

−
(

nρ

1 + λn2

)
i

]
The discretization of the other force functions, is accomplished using the same method as was used in the
force function above.
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2.12.4 Momentum balance equation

The momentum balance equation will then be discretized. The discretized version of the force function
shown above will be used when implementing the momentum balance equation on the computer, together
with the boundary condition (53) and (54). The momentum balance equation (equation (49)) is repeated
below:

− 1

β

∂ρ

∂ζ
+

1

Rζ2

∂

∂ζ

(
ζ2 ∂u

∂ζ

)
− 2u

Rζ2
+

1

R

(
κ+

1

3

)
∂

∂ζ

(
1

ζ2

∂

∂ζ
(ζ2u)

)
+RFr = 0,

This will be solved using the implicit method, which gives a matrix structure as follows (it will be shown
how to get this matrix structure below):


Bi=1 Ci=1 0

Ai=2 Bi=2 Ci=2

0 Ai=3 Bi=3 −H · Ci=3

 ·

u 3

2

u 5
2

u 7
2

 =


ai=1

∆ζ (ρn2 − ρn1 )−RFr,i=1

ai=2

∆ζ (ρn3 − ρn2 )−RFr,i=2

ai=3

∆ζ (ρn4 − ρn3 )−RFr,i=3 −G · C


In order to simplify the momentum balance equation), some substitution is made as a �rst step in showing
how the to get the matrix structure shown above:

a =
1

β
, b =

1

Rζ2
, c =

2

Rζ2
and d =

1

R

(
κ+

1

3

)
This gives the following simpli�ed expression for the momentum balance equation:

−a∂ρ
∂ζ

+ b
∂

∂ζ

(
ζ2 ∂u

∂ζ

)
− cu+ d

∂

∂ζ

(
1

ζ2

∂

∂ζ
(ζ2u)

)
+RFr = 0

The fourth term in the equation above is discretized as follows (not including d = 1
R

(
κ+ 1

3

)
):

∂

∂ζ

(
1

ζ2

∂

∂ζ
(ζ2u)

)
=

∂

∂ζ
(fi) ≈

fi+1 − fi
∆ζ

,

where f = 1
ζ2

∂
∂ζ (ζ2u).

The expressions for fi+1 and fi are discretized as follows:

fi =
1

ζ2
i

(
(ζ2u)i+ 1

2
− (ζ2u)i− 1

2

∆ζ

)

fi+1 =
1

ζ2
i+1

(
(ζ2u)i+ 3

2
− (ζ2u)i+ 1

2

∆ζ

)
Subtracting fi+1 with fi and dividing with ∆ζ gives the expression for the discretized fourth term (not

including d = 1
R

(
κ+ 1

3

)
):

fi+1 − fi
∆ζ

=
1

ζ2
i+1

(
(ζ2u)i+ 3

2
− (ζ2u)i+ 1

2

∆ζ2

)
− 1

ζ2
i

(
(ζ2u)i+ 1

2
− (ζ2u)i− 1

2

∆ζ2

)

The second term (not including b = 1
Rζ2 ) is discretized as shown below:

∂

∂ζ

(
ζ2 ∂u

∂ζ

)
=

∂

∂ζ
(ki) ≈

ki+1 − ki
∆ζ

,

where k = ζ2 ∂u
∂ζ .
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The expressions for ki+1 and ki are discretized below:

ki = ζ2
i

(
ui+ 1

2
− ui− 1

2

∆ζ

)

ki+1 = ζ2
i+1

(
ui+ 3

2
− ui+ 1

2

∆ζ

)
The expression for ki+1 is then subtracted with ki, before dividing the whole expression with ∆ζ to give:

ki+1 − ki
∆ζ

= ζ2
i+1

(
ui+ 3

2
− ui+ 1

2

∆ζ2

)
− ζ2

i

(
ui+ 1

2
− ui− 1

2

∆ζ2

)
These discretized expressions are then inserted into equation (49) to give:

− a

∆ζ

(
ρni+1 − ρni

)
+ b

[
ζ2
i+1

(
ui+ 3

2
− ui+ 1

2

∆ζ2

)
− ζ2

i

(
ui+ 1

2
− ui− 1

2

∆ζ2

)]
− c · ui+ 1

2

+d

[
1

ζ2
i+1

(
(ζ2u)i+ 3

2
− (ζ2u)i+ 1

2

∆ζ2

)
− 1

ζ2
i

(
(ζ2u)i+ 1

2
− (ζ2u)i− 1

2

∆ζ2

)]
+RFr = 0

This can be rewritten further in order to later using a matrix structure:

ui+ 1
2

[
−
bζ2
i+1

∆ζ2
− bζ2

i

∆ζ2
− c−

ζ2
i+ 1

2

d

ζ2
i+1∆ζ2

−
dζi+ 1

2

ζ2
i ∆ζ2

]
+ ui+ 3

2

[
bζ2
i+1

∆ζ2
+

dζ2
i+ 3

2

ζ2
i+1∆ζ2

]

+ui− 1
2

[
bζ2
i

∆ζ2
+
dζi− 1

2

ζ2
i ∆ζ2

]
=

a

∆ζ

(
ρni+1 − ρni

)
−RFr

where the parenthesis can be substituted in order to further simplify the expression:

ui+ 1
2
·B + ui+ 3

2
· C + ui− 1

2
·A =

a

∆ζ

(
ρni+1 − ρni

)
−RFr

where

A =

[
bζ2
i

∆ζ2
+
dζi− 1

2

ζ2
i ∆ζ2

]
, B =

[
−
bζ2
i+1

∆ζ2
− bζ2

i

∆ζ2
− c−

ζ2
i+ 1

2

d

ζ2
i+1∆ζ2

−
dζi+ 1

2

ζ2
i ∆ζ2

]
and C =

[
bζ2
i+1

∆ζ2
+

dζ2
i+ 3

2

ζ2
i+1∆ζ2

]
.

This expression will then be rewritten in matrix form, and in order to show how this is done, the entire
spatial domain is split into four parts. When i is an integer, it refers to the cell center, while otherwise it
refers to cell boundary.

Figure 4: Spatial domain split into four grid blocks
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i = 1 : A · u 1
2

+ u 3
2
·B + u 5

2
· C =

a

∆ζ
(ρn2 − ρn1 )−RFr,i=1,

which, by using that u 1
2

= 0, can be written as

i = 1 : u 3
2
·B + u 5

2
· C =

a

∆ζ
(ρn2 − ρn1 )−RFr,i=1.

i = 2 : u 3
2
·A+ u 5

2
·B + u 7

2
· C =

a

∆ζ
(ρn3 − ρn2 )−RFr,i=2

i = 3 : u 5
2
·A+ u 7

2
·B + uN+ 1

1
· C =

a

∆ζ
(ρn4 − ρn3 )−RFr,i=3,

which, by inserting the expression for uN+ 1
2
, gives for cell number three (i = 3):

u 5
2
·A+ u 7

2
·B +

(
G− u 7

2
·H
)
· C =

a

∆ζ
(ρn4 − ρn3 )−RFr,i=3.

By moving all expressions which do not contain a velocity term over to the right side of the equality sign,
gives for cell number three (i = 3):

i = 3 u 5
2
·A+ u 7

2
(B −H · C) =

a

∆ζ
(ρn4 − ρn3 )−RFr(i = 3)−G · C

The matrix structure then becomes:
Bi=1 Ci=1 0

Ai=2 Bi=2 Ci=2

0 Ai=3 Bi=3 −H · Ci=3

 ·

u 3

2

u 5
2

u 7
2

 =


ai=1

∆ζ (ρn2 − ρn1 )−RFr,i=1

ai=2

∆ζ (ρn3 − ρn2 )−RFr,i=2

ai=3

∆ζ (ρn4 − ρn3 )−RFr,i=3 −G · C

 (58)

The value for u 1
2
equals zero, and the expression for u 9

2
= G− u 7

2
·H.

2.12.5 Cell-produced chemical evolution

The equation describing the evolution (equation (50)) of the chemicals is then to be discretized. The equation
is �rst repeated, together with the two boundary conditions:

1

R2

∂2c

∂ζ2
+

2

R2ζ

∂c

∂ζ
− α1c+ n = 0

The boundary conditions which is used for the equation describing the chemical evolution is:

∂c

∂ζ
= 0 at ζ = 0,

and

∂c

∂ζ
= −Rγc at ζ = 1.

In order to solve equation (50), the implicit method is used, and the result is:
Bc,i=2 Dc,i=2 0

Ac,i=3 Bc,i=3 Dc,i=3

0 Ac,i=4 Bc,i=4

 ·

c2

c3

c4

 =


−n2 − n1

α1
Ac,i=2

−n3

−n4 − nN
bcRγ+α1

Dc,i=4
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Below, it will be shown how to get this matrix structure for equation (50). In order to simplify the
deduction of the matrix structure, the equation describing the chemical evolution can be rewritten as

ac
∂2c

∂ζ2
+ bc

∂c

∂ζ
− α1c+ n = 0,

where ac = 1
R2 and bc = 2

R2ζ .
The discretization is then shown below:

ac
∆ζ2

(ci+1 − 2ci + ci−1) +
bc
∆ζ

(
ci+ 1

2
− ci− 1

2

)
− α1ci + ni = 0

ac
∆ζ2

(ci+1 − 2ci + ci−1) +
bc

2∆ζ
(ci+1 + ci − ci − ci−1)− α1ci + ni = 0

For cell i = 2 : N − 1, the expression is:

ci+1

(
ac

∆ζ2
+

bc
2∆ζ

)
+ ci

(
− 2ac

∆ζ2
− α1

)
+ ci−1

(
ac

∆ζ2
− bc

2∆ζ

)
= −ni

where the expressions inside the parenthesis are substituted as capital letters in order to make the imple-
mentation easier when using the implicit scheme:

ci+1Dc + ciBc + ci−1Ac = −ni
where Dc = ac

∆ζ2 + bc
2∆ζ , Bc = − 2ac

∆ζ2 − α1 and Ac = ac
∆ζ2 −

bc
2∆ζ .

The expressions for c1 and cN are calculated using the following boundary conditions:

At ζ = 0 :
∂c

∂ζ
= 0

=⇒ c1 =
n1

α1

At ζ = 1 :
∂c

∂ζ
= −Rγc =⇒ −bcRγcN − α1cN = −nN

=⇒ cN =
nN

bcRγ + α1

Five grid cells are now used to display how the implicit scheme becomes:

Figure 5: Spatial domain split into �ve grid blocks

i = 1 =⇒ c1 =
n1

α1

i = 2 =⇒ c1Ac,i=2 + c2Bc,i=2 + c3Dc,i=2 = −n2
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i = 3 =⇒ c2Ac,i=3 + c3Bc,i=3 + c4Dc,i=3 = −n3

i = 4 =⇒ c3Ac,i=4 + c4Bc,i=4 + c5Dc,i=4 = −n4

i = 5 = N =⇒ cN =
nN

bcRγ + α1

In matrix form, this becomes:
Bc,i=2 Dc,i=2 0

Ac,i=3 Bc,i=3 Dc,i=3

0 Ac,i=4 Bc,i=4

 ·

c2

c3

c4

 =


−n2 − n1

α1
Ac,i=2

−n3

−n4 − nN
bcRγ+α1

Dc,i=4

 (59)

3 Results

Numerical simulations is now performed using the mathematical model which was discretized above. The
di�erent parameters are �rst changed, in order to see how they a�ect the cell traction forces, before the
numerical results are compared to experimental data in order to see if there is good agreement between the
mathematical model and the experimental data.

3.1 Changing the parameters

The seven di�erent parameters which is used in the mathematical model is then to be investigated further.
Six of the seven parameters are kept constant, while the last parameter is given three di�erent values to see
how this parameter is a�ecting the gel radius, and therefore also the cell exerted traction forces. The �rst
parameter to have three di�erent values is the contact inhibition parameter, as shown below.

3.1.1 Contact inhibition parameter

The traction force exerted from the cells, Fr, increases with increasing cell densities, but when the cell den-
sities become su�ciently large (overcrowding) the traction force from the cells will start to decrease due to
cell contact inhibition. λ , which is the contact inhibition parameter, is a measure of how the neighboring
cells are reducing the traction force. (Murray, 2003) Since the cells are often well spaced when compacted,
the cell density is often not su�ciently large for signi�cant cell contact inhibition to occur. (Barocas et al.,
1995)

From �gure 8, it can be seen that an increase in λ, meaning that the e�ect from overcrowding increases,
causes the �nal gel radius to be higher compared to a lower contact inhibition parameter λ. It can also be
seen from the �gure that an increase in λ from λ = 0.08 to λ = 0.3 also delays the decrease in the gel radius
and the slope where R decreases for a higher λ value. The reason that the gel radius will decrease more
for lower contact inhibition parameters, is because the e�ect of contact inhibition will then be lower and
therefore the cell traction force will be greater, causing the gel radius to decrease more.

From �gure 9, it can be seen that a lower λ-value will give a higher ρ-value closer to the center of the
gel, but a lower λ-value will also cause the gel density to start decreasing closer to the gel center compared
to a higher contact inhibition parameter.

An interesting thing which can be seen �gure 10 is that the density goes up to about ρ = 8 at the gel
cancer before it starts to decrease at later times. This might be due to overcrowding of the cells, which
causes the cell traction forces to decrease, and therefore the gel density decreases due to the elastic forces
from the gel.
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3.1.2 A measure of the cell traction

τ0 is a measure of the cell traction (Moon & Tranquillo, 1993) As can be seen from �gure 11, an increase in
the cell traction parameter τ0 causes the gel radius to decrease at an earlier time, increases the gel radius
decreasing slope and the gel radius is reduced to a lower �nal value. This is because by increasing τ0, the
cell traction force increases and therefore the gel radius will decrease faster and also to a lower �nal value.

3.1.3 Isothermal compressibility

β represents the isothermal compressibility of the gel (Green et al., 2013), and an increase in β should
therefore cause the gel to be more compressed at �nal time, meaning a higher �nal gel density, and also a
lower �nal gel radius. From �gure 12, it can be seen that a higher isothermal compressibility gives a more
rapid decrease in the gel radius and the gel radius also decreases down to a lower value compared to higher
isothermal compressibility.

From �gure 13, it can be seen that ρ is highest near the gel center for higher isothermal gel compress-
ibility, but starts to decrease closer to the center of the gel compared to lower β-values. It can also here be
seen the e�ect from overcrowding, which is most signi�cant for higher β-values.

3.1.4 Bulk viscosity

κ represents the bulk viscosity of the gel. (Green et al., 2013) While shear viscosity describes the resistance to
deformation, bulk viscosity describes the resistance a �uid (the gel) has in changing its volume (Denicol, 2016)

From �gure 14, it can be seen that the �nal radius will be the same for all κ-values, but a larger bulk
viscosity will cause the gel radius to decrease at a slower rate so that it takes more time to reach the same
�nal gel radius. This is because a higher bulk viscosity means that the resistance to a volume change in-
creases, and therefore it should take more time to get to the same �nal gel radius.

Equation (46) is used for γ, ρc and α1. This is because equation (46) also takes into account for the
chemicals produced by the cells, which will a�ect the traction force the cells are exerting on th egel. It also
takes into account for the preferred cell density ρc. The next parameter to be studied is α1.

3.1.5 Decay rate of the cell-produced chemicals

As noted earlier, α1 is the rate at which the chemicals are decaying, so a higher α1 would mean more chemical
decay. From �gure 15, it can be seen that an increase in α1, chemical decay, will cause the gel radius to
decrease to take more time and also cause the �nal gel radius to be slightly higher compared to a situation
with less chemical decay. Around the gel center, the chemical concentration will be much higher for a lower
α1, which is due to less chemical decay. The chemicals are therefore causing a more rapid decrease in radius
and a slightly lower radius at �nal time.

3.1.6 Proportionality constant of the chemical �ux out of the boundary

The chemical can �ow out of the gel, and this �ux of chemicals out of the gel is proportional to the chemical
concentration at the boundary. The proportionality constant describing this relationship is γ. From �gure
16, it can be seen that only small γ-values will give changes in the gel radius. A small γ-value gives a more
rapid decrease in R, and R also becomes slightly smaller in the end for a small γ. By decreasing the γ-value,
less chemicals would be leaving the gel, and there would therefore be more chemicals contributing to higher
cell traction forces, and the gel radius would therefore decrease to a lower value compared to a higher γ-value.

3.1.7 Preferred density parameter

As mentioned earlier, there is a certain maximum gel density, ρc, for which the cells will no longer compact
the gel at any higher gel densities. A higher ρc should therefore lead to a lower gel density, which can also

36



be seen from �gure 17. From the graph, it can also be seen that a higher ρc makes the gel radius to start
decreasing at an earlier time compared to higher ρc-values.

3.1.8 Summary of the results

From �gure 18 and 19, it can be seen that a low γ-value and α1-value would lead to a higher chemical
concentration. This is because a lower γ means a lower chemical �ux out of the gel boundary, and a lower
α1 means a lower decay rate, which again leads to higher cell traction forces.

As seen in the above discussion, high λ, κ, γ and α1-values, and low β, τ0 and ρc-values would give lower cell
traction forces. This is also summarized in table 2 below, where it is shown what parameter values which
contributed to high cell traction forces, and what parameter values which gave low cell traction forces. Ap-
proximately 90% of cancer deaths comes from cancer metastases(Christofori, 2006), and it would therefore
be important to know the e�ect the cell traction forces has on cancer metastases. As will be shown below
some experimental data shows that an increase in cancer cell traction forces also increases the probability
of getting cancer metastases, while some experiments gives the opposite conclusion. This will be discussed
further later, but �rst the numerical results will be compared to experimental data.

Table 2: Cell traction force.

Cell traction force λ β κ τ0 γ ρc α1

High 0.03 5 1 6 0.1 6 0.1

Low 3 0.5 10 2 100 2 10

3.2 Comparing the numerical results with experimental data

The experiments which was used to get the results in �gure 6 ( from reference (Moon & Tranquillo, 1993))
used a spherical collagen gel, which was also assumed in the mathematical model. When comparing the
numerical results with those in �gure 6, the results give the same shape, where the gel radius �rst decreases
slowly, before changing rapidly, and then slowing down before reaching steady state.

Figure 10, which used the force function from equation (42) (mechanical driven contraction) has the same
shape as the �gure 6 below, which is taken from reference (Moon & Tranquillo, 1993). The human skin
�broblast cells, which is what has been used in (Moon & Tranquillo, 1993), is therefore not signi�cantly
a�ected by the chemicals produced by the cells, because that would give a shape of the graph more equal
the �gures which used equation (46) (chemical driven contraction) as the force function (�gure 14-16).

In the experiments conducted to get �gure 7 below (from reference (Raymond & Thompson, 1990)), collagen
discs are used instead of collagen spheres, which means that the results cannot be directly compared, but
the shape of the graphs can be compared to give an indication whether the cells studied in (Raymond &
Thompson, 1990) is mechanically driven contracted or chemically driven contracted.

As seen from �gure 7 below, it can be clearly seen that the graph, which shows contraction of the gel
over time, is much smoother and with a much less steep slope (but the slope starts earlier). This shape
is similar to that of chemically driven contraction as �gures 14-16, using equation (46) as force function,
meaning that pigment epithelial cells (which was studied in reference (Raymond & Thompson, 1990)) is best
explained by chemically driven contraction.

As can be seen from �gure 10, it starts to decrease slightly before that of �gure 6, which is from the
experimental results. The slopes from the two �gure are very similar and goes down to similar �nal values.
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This is important, because it describes the cell traction forces, and if they were not similar, the mathematical
model would not describe the cell traction forces well. Since the mathematical model does give a very similar
shape as the experimental results shown in �gure 6, the mathematical model gives a good description of the
cell traction forces, and can be further used in the future when studying cancer cell traction forces to learn
more about the behavior of the cancer cells.

Figure 6: Graph showing how the radius changes with time, for di�erent initial cell concentrations. The
�gure is taken from (Moon & Tranquillo, 1993)
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Figure 7: Graph showing how the gel area (and therefore also the gel radius) changes with time. The �gure
is taken from (Raymond & Thompson, 1990)

3.3 Comparing the numerical results from this thesis with those from another

paper

The numerical results using the discretization in section 2.12 gave slightly di�erent results compared to those
in (Green et al., 2013), which used the same mathematical model. By comparing �gure 3 from (Green et
al., 2013) with �gure 10 from this thesis, it can be seen that the shape of the graphs is very similar, and
the gel radius also starts to decrease at the same time. The �nal gel radius however, is slightly di�erent.
This di�erence in �nal gel radius, is therefore probably due to di�erent discretization methods used. The
discretization method which has been used for �gure 2 and onwards in (Green et al., 2013), has not been
shown, and can therefore not be veri�ed.

3.4 Can the mathematical model be further simpli�ed?

The proportionality constant of the chemical �ux out of the gel boundary, γ, and the bulk viscosity of the gel,
κ, don't have a large impact on the �nal gel radius, but they have a small impact. These two parameters had
the smallest impact on the �nal gel radius, and therefore also on the cell traction forces. It could therefore
be considered to simplify the model by neglecting these two parameters, but since they actually has a small,
but not insigni�cant, e�ect it is recommended to include them as well. The model should therefore not be
further simpli�ed.

4 Relating the cell traction forces to cancer metastases

Using the mathematical model, the cell traction forces exerted by the cancer cells have been investigated,
and it has been seen how the di�erent parameters are a�ecting the cell traction forces. Cancer metastases
will be investigated below, to see what parameters are a�ecting this, and also of what a�ect the cancer cell
traction forces has on this. First cancer metastases will be described in general, and then the e�ects from the
sti�ness of the collagen gel and bulk modulus on cancer metastases will be described, before the relationship
with cancer cell traction forces will be described.

4.1 Cancer metastases

Localized tumors, meaning tumors which haven't spread to other parts of the body, can be treated with
surgery and/or with radiation. Metastatic cancer is a much more complicated and dangerous case, because

39



it means that the cancer has detached itself from the primary (original) tumor and spread to other parts of
the body. (Understanding Advanced Cancer, Metastatic Cancer, and Bone Metastasis@ONLINE , 2016)

Metastasis means that the cells from the primary tumor travel to other parts of the body where it can
damage important organs. Metastases in most solid tumors demands that the cells exert a force in order to
detach from the primary tumor and to travel to tissues and organs in other parts of the body. (Kraning-Rush
et al., 2012)

It is an important objective to �nd prognostic biomarkers for metastatic cancer, so that those with higher
probability for having metastatic cancer would get a more aggressive treatment, and the other patients would
receive a lighter treatment (since it is easier to cure localized cancer). It would also be important to see if
there is something which can be done to avoid the cancer cells to be metastatic.

4.2 Sti�ness on the Collagen Gel

Experiments (Fenner et al., 2014) have been done to test if the sti�ness of the tumors would be a prognostic
biomarker in breast cancer, in order to increase the decision-making quality for the cancer treatment of such
patients. Sti�ness is de�ned as (Baumgart, 2000):

Stiffness =
stress

strain
,

and the compliance is the inverse of sti�ness (Tarantola, 2006) so that:

Compliance =
1

Stiffness
=
strain

stress

The experiments were performed on mice. Mouse breast cancer were implanted in laboratory mice. Excised
mammary tumors were then compressed using a piston in order to determine the sti�ness. The tests showed
that the mammary tumors with the highest compliance (least sti�ness) had a markedly higher degree of
metastases than those with lower compliance. (Fenner et al., 2014)The compliance of tumors can therefore
be used to identify patients with higher risk of metatheses, and therefore also as a prognostic biomaker in
breast cancer, although there should be several other prognostic biomakers as well in order to increase the
quality of the decision making process when planning the best treatment for the patient.

4.3 Bulk Modulus

Collagen is the primary component in the extracellular matrix in breast cancer, and the bulk compression of
these tumors is therefore heavily dependent on the amount of collagen. The laboratory tests from (Fenner
et al., 2014) showed that there exists a direct correlation between high collagen amount and high bulk
modulus, and that there is a clear inverse relationship between bulk modulus and metastases. This means
that a higher collagen content in the extracellular matrix should indicate lower metastases. However, there
are other studies showing that the amount of collagen in breast tissue did not change the probability of
death (Indra et al., 2011), and the e�ect of the extracellular matrix content is therefore uncertain due to
this di�erent results. The changes in the content of the extracellular matrix is therefore just one of several
extracellular parameters which is impacting the probability of metastases.

The relationship between sti�ness, bulk modulus and isothermal compressibility will then be discussed.The
bulk modulus is a measure of the compressibility of the �uid, and is de�ned as(Properties of �uids@ONLINE ,
n.d.):

K = −V dP
dV

,

where K is the symbol of the bulk modulus.
The isothermal compressibility is de�ned as(Celli, 1997):
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β = − 1

V

(
∂V

∂P

)
T

As can be seen from these two de�nitions, the bulk modulus is the inverse of the isothermal compressibil-
ity. A high isothermal compressibility would therefore indicate a low ratio of the relative change in volume
over change in pressure, which again leads to a low stress to strain ratio. Since the sti�ness was de�ned as
the stress to strain ratio (Baumgart, 2000), it follows that a high isothermal compressibility therefore leads
to a low sti�ness. A high isothermal compressibility therefore means a low bulk modulus and low sti�ness.
The opposite is also true; A low isothermal compressibility, means a high bulk modulus and a high sti�ness.

Therefore a low bulk modulus would also mean a high compliance, which should indicate a higher oc-
curens of metastases. This was also veri�ed by the experiments (Fenner et al., 2014), showing that there
was a clear inverse relationship between the bulk modulus and cases with metastasis.

Below is shown three examples of how to obtain a low isothermal compressibility, but since a low isothermal
compressibility also means a high sti�ness and bulk modulus, they are also examples of how one might obtain
a high sti�ness and bulk modulus (which decreases the probability of cancer metastases):

� Increase pressure would decrease the isothermal compressibility, β (Table 1-42 Isothermal compress-

ibility of liquids @ONLINE , n.d.)

� Decrease the temperature in the collagen gel would decrease the isothermal compressibility, β (because
at a lower temperature, the atoms will move less, and it will be easier to compress the collagen gel)

� Increase density of the collagen gel would decrease the isothermal compressibility , β (because atoms
gets closer and therefore stronger repelling forces occur)

4.4 Relationship between Cell Traction Forces and metastases

Several di�erent experiments have been conducted on the relationship between cell traction forces and metas-
tases, and reported in other papers such as ((Kraning-Rush et al., 2012), (Indra et al., 2011)). The logical
results would be that higher cell traction forces would lead to a higher degree of cancer metastases, because
the cancer cells must exert forces in order to leave the primary tumor and invade the surrounding tissue. This
is also what most experimental results shows (like (Kraning-Rush et al., 2012)), but there is an experiment
showing opposite results also (Indra et al., 2011). Reasons for the di�erent results is uncertain, but might
be due to di�erences in the cell and tissue structures, and di�erences in the extracellular matrix, or due to
di�erent experimental system used during the experiments.

Reference (Kraning-Rush et al., 2012) concluded that higher cancer cell traction forces would lead to more
cancer metastases. In order to avoid this, low cell traction forces are therefore needed. In order to get low
cell traction forces, high α1, γ and λ -values and low a τ0 value would be necessary. In order to accomplish
this, one opportunity is to inject chemicals which will decrease the production of the chemicals produced
by the cells (which contributes to higher Fr-values), and increase the decay rate of the chemicals, α1. One
could also inject something which increases the proportionality constant of the �ux of chemicals out of the
gel (γ). A decrease in the collagen density would also contribute to lower cell traction forces. (Kraning-Rush
et al., 2012) Since the relationship between cell traction forces and metastases is uncertain, this should be
studied more extensively in the future.
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5 Conclusion

Compliance of a tumor strongly a�ects the degree of cancer metastases (Fenner et al., 2014), and metastases
is responsible for approximately 90% of all cancer deaths in today's society.(Christofori, 2006) Compliance
of the tumor can be used as a prognostic biomarker in order to increase the decision making quality of the
treatment of each cancer patient, but the compliance of a tumor can also be altered. A sti�er tumor decreases
the probability of metastases (Fenner et al., 2014), and a decrease in the compliance of the tumor can be
accomplished by for example decreasing the temperature and increasing the pressure (Table 1-42 Isothermal

compressibility of liquids @ONLINE , n.d.). An increase in the density of collagen might also accomplish this.

The mathematical model describing cell traction forces was compared to experimental data ((Moon & Tran-
quillo, 1993), (Raymond & Thompson, 1990)), and it was shown that the model gave very similar rate of the
gel radius over time, and similar �nal values (at least for the two lowest initial cell densities). From this, it
can be concluded that the mathematical model describes the cell traction forces (which is what causes the
change in gel radius) well, and can therefore be used further when investigating cell traction forces in order
to get a better understanding of the e�ect it has on cancer cell metastases.

The cancer cell traction forces in the mathematical model depends on di�erent parameters, where seven
di�erent parameters were investigated to see how they a�ect the cancer cell traction forces. The numerical
results from using the mathematical model showed that in order to have low cell traction forces, the pa-
rameters isothermal compressibility, bulk viscosity, the proportionality constant for the �ux out of the gel
boundary and the decay rate of the chemicals must be high, while the contact inhibition parameter, the
measure of cell traction force (τ0) and the preferred density parameter must be low. This can be accom-
plished by for instance decreasing the temperature in the tumor or injecting some chemicals into the tumor
which will increase the decay rate of the cell-produced chemicals and also decrease the production of the
cell-produced chemicals.

The logical conclusion is that an increase in cell traction forces would increase the degree of cancer metas-
tases, and this is also what the experiments in (Kraning-Rush et al., 2012) showed. There is however, an
experiment giving the opposite result (Indra et al., 2011), so there is no certain relationship between cancer
cell traction forces and cancer metastases, and there should therefore be conducted more experiments to learn
more about this relationship. Some reasons for the opposite results might come from di�erent experimental
system used in the experiments, di�erences in the cell and tissue structures or di�erences in the extracellular
matrix.

6 Future Work

The mathematical model gave good results compared to the experimental data ((Moon & Tranquillo, 1993),
(Raymond & Thompson, 1990)), but more could have been included in the model to make it more biologically
correct. Below is mentioned several examples of things which can be included in the model in the future:

� Taking into account that the gel velocity and cell velocity can be di�erent by introducing a two phase
model

� Include the e�ects from �uids leaving the gel

� The elastic modulus and viscosity has an e�ect on the collagen density, and therefore introduce a
relationship between these (Green et al., 2013)

� A three dimensional model instead of one dimensional which was implemented in this theses
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Some experimental results show that cell traction forces gives rise to more metastases (Kraning-Rush et
al., 2012), while another experiment gives the opposite conclusion (Indra et al., 2011). More experiments
should therefore be conducted to understand the reason for the di�erent results, and to obtain a better
understanding on the relationship between the magnitude of the cell traction forces and the degree of cancer
cell metastases.
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Appendix for the �gures from the numerical experiments

The numerical results from using the mathematical model derived in this thesis are shown in the �gures
below. Six of the seven parameters are kept constant for each �gure, while one of the parameters are given
three di�erent values to see how the cell traction forces responds to the di�erent values.

Figure 8: R vs t for λ. Equation (42) used as the force function.
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Parameter values used in the �gure: β = 1, κ = 5 and τ0 = 4.
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Figure 9: ρ vs r for λ.Equation (42) used as the force function.
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Figure 10: ρ vs r .Equation (42) used as the force function.
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Figure 11: R vs t for τ0. Equation (42) used as the force function.
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Figure 12: R vs t for β. Equation (42) used as the force function.
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Figure 13: ρ vs r for β. Equation (42) used as the force function.
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Figure 14: R vs t for κ. Equation (42) used as the force function.
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Figure 15: R vs t forr α1. Equation (46) used as the force function.
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Figure 16: R vs t forγ. Equation (46) used as the force function.
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Figure 17: R vs t for ρc. Equation (46) used as the force function.
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Figure 18: c vs r for γ .Equation (46) used as the force function.
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Figure 19: c vs r for α1 . Equation (46) used as the force function.

r
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9C

h
e
m

ic
a
l 
c
o
n
c
e
n
tr

a
ti
o
n

0

20

40

60
alpha1=0.1

r
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1C

h
e
m

ic
a
l 
c
o
n
c
e
n
tr

a
ti
o
n

0

2

4

6
alpha1=1

r
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1C

h
e
m

ic
a
l 
c
o
n
c
e
n
tr

a
ti
o
n

0

0.1

0.2

0.3

0.4
alpha1=10

Parameter values used in the �gure:β = 1, κ = 5, τ0 = 4, λ = 0.3, γ = 20 and ρc = 4

55



Appendices for the mathematical derivations

A Mass balance for the collagen gell

The expression for the conservation of mass for the collagen is here to be derived. Due to the assumption
that there is no production or degradation by the cells, the expression for the �nal mass of the collagen gel
can be expressed as:

Final mass = Original mass + mass in�ow−mass out�ow

By integrating the densities over the whole control volume and dividing by the time-interval, the mass rate
within the control volume can be calculated:

ṁ =
∂

∂t

ˆ
CV

ρdV

The �ux of mass can also be written as a surface integral, using a control surface, where the negative sign is
because �ux of mass is de�ned positive when in�ux, while the surface integral gives the �ux out:

ṁ = −
˛

S

ρun̂dS

A �gure (taken from (Navier Stokes - Lecture 4@ONLINE , 2011)) showing the relationship between a
control volume and a control surface is shown below, where the blue lines are representing stream lines of
the �uids:

Figure 20: Relationship between control volume and control surface (Navier Stokes - Lecture 4@ONLINE ,
2011)

Both the expressions above represents �ux of mass, so they must be equal:

∂

∂t

ˆ
CV

ρdV = −
˛

S

ρun̂dS (60)

The divergence theorem (Adams & Essex, 2010) is then used to convert the surface integral to a volume
integral. The divergence theorem states that:

˛

S

ρun̂dS =

ˆ
V

∇ · (ρu)dV

The divergence theorem is therefore used to convert the right side of equation (60) to a volume integral:

−
˛

S

ρun̂dS = −
ˆ
V

∇(ρu)dV
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By substituting this into equation (60), the result is:

∂

∂t

ˆ
CV

ρdV = −
ˆ
V

∇ · (ρu)dV

In order to simplify the equation above, an assumption that both the density and its derivative with respect
to time in the �xed control volume is continuous, and it is then used that the derivatives outside of the
integral above can be taken inside of the integral (Conrad, n.d.). The expression is then simpli�ed to :

ˆ
V

∂ρ

∂t
dV +

ˆ
V

∇ · (ρu)dV = 0

which can be further simpli�ed to:

ˆ
V

[
∂ρ

∂t
+∇ · (ρu)]dV = 0

From the above equation, it is clear that the expression inside the brackets has to be zero in order for the
equality to hold for all control volumes. So, the result for conservation of mass of collagen gel is:

∂ρ

∂t
+∇ · (ρu) = 0

B Mass balance for the cells

The mass balance equation for the cells will be derived below, where cell proliferation and cell deaths are
ignored. The expression is equal to that of the collagen gel, but the mass balance for the cells also has a
di�usion term, which is to be derived.

∂n

∂t
+∇ · (nu) = Di�usion term (61)

where n in this context refers to the density of the cells. This di�usion term will be derived below.
The �gure (taken from (Introduction cell systems biology, di�usion, �ck's law@ONLINE , 2009)) showing

the set up in the derivation is shown to make the derivation easier to understand, where the red dots are
representing the cells and the arrows the direction they are heading:

Figure 21: Figure used in the derivation (Introduction cell systems biology, di�usion, �ck's law@ONLINE ,
2009)

57



Consider a cross-sectional area A with cell moving through at random motion. Due to the random motion
of the cells, the probability that the cell mass moving to from a position x to the left of the cross-sectional
area to x+ ∆x can be set to a value P . The cell mass rate traveling from x to x+ ∆x is denoted by ṁ, and
expressed as:

ṁ =
P [m(x)−m(x+ ∆x)]

∆t
= −P [m(x+ ∆x)−m(x)]

∆t
(62)

where m represents mass at the di�erent positions. This expression can also be written in terms of density
instead of mass as follows:

ṁ =
P [n(x+ ∆x)A∆x− n(x)A∆x]

∆t

where n represents density and ∆x is the width between the two x-positions. Then, by looking at the density
gradient with respect to x-position:

∆n

∆x
=
n(x+ ∆x)− n(x)

(x+ ∆x)− x
=
n(x+ ∆x)− n(x)

∆x
,

and when ∆x becomes in�nitely small:

dn

dx
=
n(x+ dx)− n(x)

dx
=
m(x+ dx)−m(x)

dx2A

The equation above is used to get an expression for the change of mass between the two positions:

m(x+ dx)−m(x) =
dn

dx
dx2A

This expression for m is then substituted into equation (53) above to get:

ṁ =
PA

dt

dn

dx
dx2 = −A ·Ddn

dx
, (63)

where the di�usion coe�cient D is assumed constant, and have the expression D = P
dtdx

2.
Then, consider cell mass traveling through a small control volume CV during a small time-interval ∆t.

The control-volume has a cross-sectional area A and a depth ∆x (when considering the x-direction), where
the x-position at the left boundary of CV is denoted by x, while the right boundary of CV is denoted by
x+∆x. By assuming no cell proliferation or death and utilizing equation (62) above, the �nal di�usion term
will be the result. The �rst step is to use that the change of cell mass inside the control volume during the
small time-interval ∆t can be written in several ways, where two of them will be used here:

The �rst method: This method considers the di�erence in mass rates between the two x-positions, mul-
tiplied by the time-interval:

[ṁ(x)− ṁ(x+ ∆x)]∆t

The second method: This method considers the change in density in the control volume during the time-
interval ∆t, and multiplies this with the volume of CV:

[n(t+ ∆t)− n(t)]A∆x

Since the two expressions above represents the same, because mass m = nA∆x, they can be written in the
same equation as:

[ṁ(x)− ṁ(x+ ∆x)]∆t = [n(t+ ∆t)− n(t)]A∆x

Then by letting ∆x and ∆t approach zero, and rearranging the equation above:
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∂n

∂t
= − 1

A

∂ṁ

∂x
(64)

The derivative of equation (63) above is then calculated for further use:

ṁ =
PA

dt

dn

dx
dx2 = −A ·D∗ dn

dx

=⇒ ∂ṁ

∂x
= −A ·D∗ ∂

2n

∂x2

This expression is then inserted into equation (64) to get:

∂n

∂t
=

(
− 1

A

)
·
(
−A ·D∗ ∂

2n

∂x2

)
= D∗

∂2n

∂x2

This derivation is done by only considering the x-direction, but the same procedure holds for the y-direction
and z-direction as well. So, by also including the y- and z-directions, the total di�usion term becomes:

∂n

∂t
= D∗

[
∂2n

∂x2
+
∂2n

∂y2
+
∂2n

∂z2

]
= D∗∇2n

This expression for the total di�usion is then inserted into equation (61) to get the total conservation of
mass equation for the cells:

∂n

∂t
+∇ · (nu) = D∗∇2n

C General force balance

In this section, the general force balance equation between the gel and the cells is derived. The inertial
e�ects are neglected, due to the slow compaction of the gel.

The �gure shown below (taken from (Fjaer et al., 1992)) is only in two dimensions, but gives an under-
standing of how the force balance will look like also in three dimensions:

Figure 22: Two dimensional stresses (Fjaer et al., 1992)

The force balance in the x-direction can be written as:
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[(σx +
∂σx
∂x

dx)− σx]dydz + [(τyx +
∂τyx
∂y

dy)− τyx]dxdz + [(τzx +
∂τzx
∂z

dz)− τzx]dxdy + fx = 0

In the y-direction:

[(σy +
∂σy
∂y

dy)− σy]dxdz + [(τzy +
∂τzy
∂z

dz)− τzy]dxdy + [(τxy +
∂τxy
∂x

dx)− τxy]dydz + fy = 0

In the z-direction:

[(σz +
∂σz
∂z

dz)− σz]dxdy + [(τxz +
∂τxz
∂x

dx)− τxz]dydz + [(τyz +
∂τyz
∂y

dy)− τyz]dxdz + fz = 0

where f represents the force per unit volume exerted on the gel by the cells, while the stresses are from the
gel. σ and τ represents the normal and shear stress components, respectively. Then, by dividing the three
equations above with dxdydz the result is:

∂σx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

+ Fx = 0

∂σy
∂y

+
∂τxy
∂x

+
∂τzy
∂z

+ Fy = 0

∂σz
∂z

+
∂τxz
∂x

+
∂τyz
∂y

+ Fz = 0

where F = f
dxdydz .

This can also be written in another form by introducing the divergence of the stresses, and the general
expression for the force balance between the cells and the gel can then be written as

∇ ·


σx τyx τzx

τxy σy τzy

τxz τyz σz

+ F = 0

because the divergence of a tensor gives a vector, and not a scalar as the divergence of a vector (�rst order
tensor) would have given. (Tensor Calculus I@ONLINE , n.d.) Or in a more compact form:

∇ · σ + F = 0

D Expression for the stresses for the gel

By substituting the expression for the stress from equation (2.4 i heftet) into equation (2.3 i heftet) and
using that λ∗ = κ∗ − 2

3µ
∗, the following expressions are obtained:[

∂

∂x
(−P + 2µ∗εii + λ∗εkk) +

∂

∂y
(2µ∗εji) +

∂

∂z
(µ∗εki) + Fx

]
î+[

∂

∂x
(2µ∗εij) +

∂

∂y
(−P + 2µ∗εjj + λ∗εkk) +

∂

∂z
(2µ∗εkj) + Fy

]
ĵ+[

∂

∂x
(2µ∗εik) +

∂

∂y
(2µ∗εjk) +

∂

∂z
(−P + 2µ∗εkk + λ∗εkk) + Fz

]
k̂ = 0
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The expressions for the rate of strain tensor and rate of volume expansion are then substituted into
equation (15) above to get:[

∂

∂x

(
−P + 2µ∗

(
∂ui
∂x

)
+ λ∗

(
∂ui
∂x

+
∂uj
∂y

+
∂uk
∂z

))
+

∂

∂y
µ∗
(
∂uj
∂x

+
∂ui
∂y

)
+

∂

∂z
µ∗
(
∂uk
∂x

+
∂ui
∂z

)
+ Fx

]
î+[

∂

∂x
µ∗
(
∂ui
∂y

+
∂uj
∂x

)
+

∂

∂y

(
−P + 2µ∗

∂uj
∂y

+ λ∗
(
∂ui
∂x

+
∂uj
∂y

+
∂uk
∂z

))
+

∂

∂z
µ∗
(
∂uk
∂y

+
∂uj
∂z

)
+ Fy

]
ĵ+[

∂

∂x
µ∗
(
∂ui
∂z

+
∂uk
∂x

)
+

∂

∂y
µ∗
(
∂uj
∂z

+
∂uk
∂y

)
+

∂

∂z

(
−P + 2µ∗

∂uk
∂z

+ λ∗
(
∂ui
∂x

+
∂uj
∂y

+
∂uk
∂z

))
+ Fz

]
k̂ = 0

Then, by including the partial derivatives inside of the parentheses:

− ∂P

∂x
î− ∂P

∂y
ĵ − ∂P

∂z
k̂

+

[(
2µ∗

∂2ui
∂x2

)
+ λ∗

(
∂2ui
∂x2

+
∂2uj
∂y∂x

+
∂2uk
∂z∂x

)
+ µ∗

(
∂2uj
∂x∂y

+
∂2ui
∂y2

)
+ µ∗

(
∂2uk
∂x∂z

+
∂2ui
∂z2

)
+ Fx

]
î

+

[
µ∗
(
∂2ui
∂y∂x

+
∂2uj
∂x2

)
+

(
2µ∗

∂2uj
∂y2

+ λ∗
(
∂2ui
∂x∂y

+
∂2uj
∂y2

+
∂2uk
∂z∂y

))
+ µ∗

(
∂2uk
∂y∂z

+
∂2uj
∂z2

)
+ Fy

]
ĵ

+

[
µ∗
(
∂2ui
∂z∂x

+
∂2uk
∂x2

)
+ µ∗

(
∂2uj
∂z∂y

+
∂2uk
∂y2

)
+ 2µ∗

∂2uk
∂z2

+ λ∗
(
∂2ui
∂x∂z

+
∂2uj
∂y∂z

+
∂2uk
∂z2

)
+ Fz

]
k̂ = 0

The expression for the pressure can be written as the gradient of the pressure to simplify the expression
above:

−∇P +

[(
2µ∗

∂2ui
∂x2

)
+ λ∗

(
∂2ui
∂x2

+
∂2uj
∂y∂x

+
∂2uk
∂z∂x

)
+ µ∗

(
∂2uj
∂x∂y

+
∂2ui
∂y2

)
+ µ∗

(
∂2uk
∂x∂z

+
∂2ui
∂z2

)
+ Fx

]
î

+

[
µ∗
(
∂2ui
∂y∂x

+
∂2uj
∂x2

)
+

(
2µ∗

∂2uj
∂y2

+ λ∗
(
∂2ui
∂x∂y

+
∂2uj
∂y2

+
∂2uk
∂z∂y

))
+ µ∗

(
∂2uk
∂y∂z

+
∂2uj
∂z2

)
+ Fy

]
ĵ

+

[
µ∗
(
∂2ui
∂z∂x

+
∂2uk
∂x2

)
+ µ∗

(
∂2uj
∂z∂y

+
∂2uk
∂y2

)
+ 2µ∗

∂2uk
∂z2

+ λ∗
(
∂2ui
∂x∂z

+
∂2uj
∂y∂z

+
∂2uk
∂z2

)
+ Fz

]
k̂ = 0

It will then be assumed that the partial derivatives above are continuous, which means that the partial
derivatives are symmetric. This will be used to rewrite expressions further down to make the expressions
more compact (Feldman, 2004):

−∇P +

[
µ∗
(
∂2ui
∂x2

+
∂2ui
∂y2

+
∂2ui
∂z2

)
+ (λ∗ + µ∗)

(
∂2ui
∂x2

+
∂2uj
∂y∂x

+
∂2uk
∂z∂x

)
+ Fx

]
î

+

[
µ∗
(
∂2uj
∂x2

+
∂2uj
∂y2

+
∂2uj
∂z2

)
+ (λ∗ + µ∗)

(
∂2ui
∂x∂y

+
∂2uj
∂y2

+
∂2uk
∂z∂y

)
+ Fy

]
ĵ

+

[
µ∗
(
∂2uk
∂x2

+
∂2uk
∂y2

+
∂2uk
∂z2

)
+ (λ∗ + µ∗)

(
∂2ui
∂x∂z

+
∂2uj
∂y∂z

+
∂2uk
∂z2

)
+ Fz

]
k̂ = 0

E Vector Laplacian

The expression for the vector Laplacian operator includes the gradient of the divergence of the vector and
the the cross product of the cross product of the vector. This will be showed below.

The �rst step is therefore to �nd an expression for ∇× (∇×A): In order to simplify the derivation, let
B = ∇×A:
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B =

∣∣∣∣∣∣∣∣∣∣∣∣

î ĵ k̂

Ax Ay Az

∂
∂x

∂
∂y

∂
∂x

∣∣∣∣∣∣∣∣∣∣∣∣
=⇒ B = î

(
∂Ay
∂z
− ∂Az

∂y

)
− ĵ

(
∂Ax
∂z
− ∂Az

∂x

)
+ k̂

(
∂Ax
∂z
− ∂Ay

∂x

)
So:

∇×B =

∣∣∣∣∣∣∣∣∣∣∣∣

î ĵ k̂(
∂Ay
∂z −

∂Az
∂y

) (
∂Ax
∂z −

∂Az
∂x

) (
∂Ax
∂z −

∂Ay
∂x

)
∂
∂x

∂
∂y

∂
∂x

∣∣∣∣∣∣∣∣∣∣∣∣

= î

[
− ∂

∂z

(
∂Ax
∂z
− ∂Az

∂x

)
− ∂

∂z

(
∂Ax
∂z
− ∂Ay

∂x

)]
− ĵ

[
∂

∂z

(
∂Ay
∂z
− ∂Az

∂y

)
− ∂

∂x

(
∂Ax
∂z
− ∂Ay

∂x

)]
+k̂

[
∂

∂y

(
∂Ay
∂z
− ∂Az

∂y

)
+

∂

∂x

(
∂Ax
∂z
− ∂Ay

∂x

)]

= î

(
−∂

2Ax
∂z2

+
∂2Az
∂z∂x

− ∂2Ax
∂y∂z

+
∂2Ay
∂z∂x

)
+ ĵ

(
−∂

2Ay
∂z2

+
∂2Az
∂z∂y

+
∂2Ax
∂x∂z

− ∂2Ay
∂x2

)

+k̂

(
∂2Ay
∂y∂z

− ∂2Az
∂y2

+
∂2Ax
∂x∂z

− ∂2Az
∂x2

)
The divergence of A in Cartesian coordinates is de�ned as (Adams & Essex, 2010):

∇ ·A =
∂Ax
∂x

+
∂Ay
∂y

+
∂Az
∂z

,

which means that:

∇(∇ ·A) =
∂

∂x

(
∂Ax
∂x

+
∂Ay
∂y

+
∂Az
∂z

)
î+

∂

∂y

(
∂Ax
∂x

+
∂Ay
∂y

+
∂Az
∂z

)
ĵ +

∂

∂x

(
∂Ax
∂x

+
∂Ay
∂y

+
∂Az
∂z

)
k̂

Then, by subtracting ∇× (∇×A) with ∇(∇ ·A):

∇×(∇×A)−∇(∇·A) = −î
[
∂2Ax
∂x2

+
∂2Ax
∂y2

+
∂2Ax
∂z2

]
−ĵ
[
∂2Ay
∂x2

+
∂2Ay
∂y2

+
∂2Ay
∂z2

]
−k̂
[
∂2Az
∂x2

+
∂2Az
∂y2

+
∂2Az
∂z2

]
which is also equal to the negative value of the Laplacian operator of A so that:

∇× (∇×A)−∇(∇ ·A) = −∇2A

This means that the expression for the vector laplacian is:

∇2A = ∇(∇ ·A)−∇× (∇×A)
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F Non-dimensionalization

The non-dimensionalization of the initial- and boundary conditions together with the �ve governing equations
are derived below. The tildes are representing the non-dimensional variables:

t = T ∗ · t̃, x = R0x̃ ρ = ρiρ̃, n = niñ, u =
R0

T ∗
ũ,

σ =
µ∗

T ∗
σ̃, P =

µ∗

T ∗
P̃ , F =

µ∗

T ∗R0
F̃ , c =

α∗2niR
2
0

Dc
c̃

T is a typical time-length for the compaction, R0 is a typical length of the gel, while ni and ρi are the
average initial densities.
The dimensional variables above are then used in the equations below:
The mass balance equation for the cells are �rst to be non-dimensionalized, and the dimensional version is
repeated below:

∂ρ

∂t
+∇ · (ρu) = 0

Since it is a one dimensional case, the following simpli�cations can be done during the non-dimensionalization:

∂ρ

∂t
+∇ · (ρu) =

∂ρ

∂t
+

∂

∂x
(ρu)

This can be rewritten as

1

T ∗
∂(ρiρ̃)

∂t̃
+

1

R0

∂

∂x̃

(
ρiρ̃

R0

T ∗
ũ

)
=

ρi
T ∗

∂ρ̃

∂t̃
+
ρi
T ∗

∂

∂x̃
(ρ̃ũ) = 0.

This can then be simpli�ed to:
∂ρ̃

∂t̃
+

∂

∂x̃
(ρ̃ũ) =

∂ρ̃

∂t̃
+∇ · (ρ̃ũ)

The non-dimensional version of the mass balance for the cells is therefore:

∂ρ̃

∂t̃
+∇ · (ρ̃ũ) = 0

The non-dimensionalization of the mass balance for the gel is shown below:

∂n

∂t
+∇ · (nu) = D∇2n,

which can be rewritten as

1

T ∗
∂(niñ)

∂t̃
+

1

R0

∂

∂x̃

(
niñ

R0

T ∗
ũ

)
= D

1

R2
0

∂2

∂x̃2
(niñ) .

This equation can be simpli�ed to

ni
T ∗

∂ñ

∂t̃
+
ni
T ∗

∂

∂x̃
(ñũ) = D

ni
R2

0

∂2

∂x̃2
ñ.

Then, by introducing the Péclet number, Pe, the equation becomes:

∂ñ

∂t̃
+

∂

∂x̃
(ñũ) = D

T ∗

R2
0

∂2

∂x̃2
ñ = P−1

e

∂2

∂x̃2
ñ,

63



where Pe =
R2

0

DT∗ .
The mass balance equation for the gel in non-dimensional form can therefore be written as:

∂ñ

∂t̃
+∇ · (ñu) = P−1

e

∂2

∂x̃2
ñ

The non-dimensionalization of the momentum balance equation is done in the following, �rst repeating
the dimensional version:

−∇P + µ∗∇2u+

(
κ∗ +

µ∗

3

)
· ∇(∇ · u) + F = 0

Inserting the non-dimensional versions of the parameters gives:

− 1

R0

∂

∂x̃

(
µ∗

T ∗
P̃

)
+

1

R2
0

∂2

∂x̃2

(
R0µ

∗

T ∗
ũ

)
+

(
κ∗ +

1

3

)
µ∗

R2
0

∂2

∂x̃2

(
R0

T ∗
ũ

)
+

µ∗

T ∗R0
F̃ = 0,

which can be rewritten as:

− µ∗

R0T ∗
∂

∂x̃
P̃ +

µ∗

R0T ∗
∂2

∂x̃2
ũ+

(
κ∗ +

1

3

)
µ∗

R0T ∗
∂2

∂x̃2
ũ+

µ∗

T ∗R0
F̃ = 0.

Multiplying with R0T
∗ gives:

−µ∗ ∂
∂x̃
P̃ + µ∗

∂2

∂x̃2
ũ+

(
κ∗ +

1

3

)
µ∗

∂2

∂x̃2
ũ+ µ∗F̃ = 0

The two terms involving ∂2

∂x̃2 are then factorized as one term:

−µ∗ ∂
∂x̃
P̃ +

(
µ∗ + κ∗ +

µ∗

3

)
∂2

∂x̃2
ũ+ µ∗F̃ = 0,

which can be rewritten as

−µ∗ ∂
∂x̃
P̃ +

(
4

3
µ∗ + µ∗

κ∗

µ∗

)
∂2

∂x̃2
ũ+ µ∗F̃ = 0.

This expression can be further simpli�ed to:

−µ∗ ∂
∂x̃
P̃ +

∂2

∂x̃2
ũ+

(
1

3
+ κ

)
∂2

∂x̃2
ũ+ µ∗F̃ = 0,

where κ = κ∗

µ∗ .
The non-dimensional version of the momentum balance equation can therefore be written as:

−∇P̃ +∇2ũ+

(
κ+

1

3

)
· ∇(∇ · ũ) + F̃ = 0

The equation showing the relationship between the gel density and pressure is then non-dimensionalized as
shown below, starting with repeating the equation:

ρ = ρi (1 + β∗p)

Inserting the non-dimensional version of the parameters:

ρiρ̃ = ρi

(
1 + β∗

µ

T
p̃
)

The non-dimensionalized version can then be written as:

ρ̃ = 1 + βp̃
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where β = β∗ µT
The equation showing the evolution of the cell-produced chemicals is then to be non-dimensionalized:

D∗c∇2c− α∗1c+ α∗2n = 0

The non-dimensional versions of the parameters are then inserted for the dimensional parameters to give:

D∗c
1

R2
0

∂2

∂x̃2

(
α∗2niR

2
0

D∗c
c̃

)
− α∗1

α∗2niR
2
0

D∗c
c̃+ α∗2nin̂ = 0,

which can be simpli�ed to

α∗2ni
∂2

∂x̃2
c̃− α∗1

α∗2niR
2
0

D∗c
c̃+ α∗2nin̂ = 0.

Then, by dividing by α∗2ni gives
∂2

∂x̃2
c̃− α∗1

R2
0

D∗c
c̃+ ñ = 0

This can be simpli�ed by introducing α1:

∂2

∂x̃2
c̃− α1c̃+ ñ = 0,

where α1 = α∗1
R2

0

D∗c
.

The non-dimensional version of the equation describing the cell-produced chemical evolution can therefore
be written as:

∇2c̃− α∗1c̃+ ñ = 0

Then, to sum up the last �ve non-dimensionalized equations, they are rewritten below without the tildes,
and the expression for the force function is also included:

∂ρ

∂t
+∇ · (ρu) = 0

∂n

∂t
+∇ · (nu) = P−1

e

∂2

∂x2
n

−∇P +∇2u+

(
κ+

1

3

)
· ∇(∇ · u) + F = 0

∇2c− α∗1c+ n = 0

F = τ0∇
(

ρn

1 + λn2

)
ρ = 1 + βp

The equation for the e�ective stresses for the gel is to then be non-dimensionalized. The equation is �rst
repeated, before non-dimensionalizing it:

σij = −Pδij + 2µ∗εij +

(
κ∗ − 2

3
µ∗
)
εkkδij

Introducing the non-dimensional parameter expressions gives

µ∗

T ∗
σ̃ij = −µ

∗

T ∗
P̃ δij + 2µ∗ε̃ij +

(
κ∗ − 2

3
µ∗
)
ε̃kk

R0

T ∗R0
δij ,

where σ̃ij and ε̃kk are the rescaled versions of the stress tensor rate. The non-dimensional version of equation
(6) therefore becomes:
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σ̃ij = −P̃ δij + 2ε̃ij +

(
κ∗ − 2

3

)
ε̃kkδij ,

The non-dimensional versions of the initial conditions and the boundary conditions are then to be shown:

Ω(t)|t=0 = Ω0, ρ|t=0 = ρ0(x), n|t=0 = n0(x)

The boundary condition
n̂ · (nu−D∇n) = 0,

is non-dimensionalized as follows:

n̂ · (nu−D∇n) = 0.

By introducing the non-dimensional versions of the parameter gives:

n̂

(
niñ

R0

T ∗
ũ−Dc

1

R0

∂

∂x̃
(niñ)

)
= 0

Then, dividing by ni
R0

T∗ gives:

n̂

(
ñũ−Dc

T ∗

R2
0

∂

∂x̃
ñ

)
= 0

Introducing the Péclet number, Pe, gives:

n̂

(
ñũ− P−1

e

∂

∂x̃
ñ

)
= 0,

where Pe =
R2

0

DcT∗
. The dimensional version of the �rst part of equation (2.12 a) therefore becomes:

n̂
(
ñũ− P−1

e ∇ñ
)

= 0

The boundary condition
σ · n̂ = 0,

is non-dimensionalized as:

σ̂
µ∗

T ∗
· nin̂ = 0.

Multiplying this with T∗

µ∗ gives the dimensionless version of the equation to become:

σ̂ · n̂ = 0

The boundary condition

u · n̂ = V,

is non-dimensionalized as:

ũ
R0

T ∗
· nin̂ = V.

Multiplying this with T∗

R0ni
and introducing V ∗ gives the dimensional version of the equation:

ũ · n̂ = V ∗,

where V ∗ = V T∗

R0
. The last equation to be non-dimensionalized is:
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−D∗c n̂ · ∇c = γ∗c, on Γ∗(t).

Introducing the non-dimensional parameters:

−D∗c n̂
1

R0

∂

∂x̃

(
α∗2niR

2
0

D∗c
c̃

)
= γ∗

α∗2niR
2
0

D∗c
c̃

This can be rewritten as:

n̂α∗2niR0
∂

∂x̃
c̃ = −γ∗α

∗
2niR

2
0

D∗c
c̃

Further simpli�cations, and introducing the parameter γ gives:

n̂
∂

∂x̃
c̃ = −γ∗R0

D∗c
c̃ = −γc̃,

where γ = γ∗ R0

D∗c
.

The dimensionless version of
−D∗c n̂ · ∇c = γ∗c, on Γ∗(t).

is therefore:

n̂∇c̃ = −γc̃.

The dimensionless boundary conditions and initial conditions are repeated below, skipping the tildes, but
they are still dimensionless:

Ω(t)|t=0 = Ω0, ρ|t=0 = ρ0(x), n|t=0 = n0(x)

n̂ ·
(
nu− P−1

e ∇n
)

= 0

σ · n̂ = V

u · n̂ = V

n̂ · ∇c = −γc

ω0, ρ0 and n0 are the non-dimensional counterparts of ω∗0 , ρ
∗
0 and n∗0, while V is the non-dimensional

normal velocity of Γ(t).
The other non-dimensionalized equations and the force function are also repeated below:

∂ρ

∂t
+∇ · (ρu) = 0

∂n

∂t
+∇ · (nu) = P−1

e

∂2

∂x2
n

−∇P +∇2u+

(
κ+

1

3

)
· ∇(∇ · u) + F = 0

∇2c− α∗1c+ n = 0

F = τ0∇
(

ρn

1 + λn2

)
ρ = 1 + βp
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G Gradient, divergence, scalar Laplacian and vector Laplacian in

spherical coordinates

The expression for the gradient and the divergence in spherical coordinates are shown below together with
the derivation of the spherical coordinate versions of the vector Laplacian and the scalar Laplacian. The
assumption that the collagen gel remains spherical through the whole compaction is important to keep in
mind, because from this assumption it follows that none of the operators which is to be derived below (or
in this whole theses) depends on the polar or azimuthal angles. (Green et al., 2013) This will simplify the
derivation. A �gure (taken from (Tuckerman, 2011)) showing the spherical coordinates is shown �rst, before
the de�nition of the gradient:

Figure 23: Spherical coordinate system (Tuckerman, 2011)

Gradient
The gradient in Cartesian coordinates (Adams & Essex, 2010):

∇f(x, y, z) =
∂f

∂x
î+

∂f

∂y
ĵ +

∂f

∂z
k̂

The gradient in spherical coordinates (Adams & Essex, 2010):

∇f(r, φ, θ) =
∂f

∂r
r̂ +

1

r

∂f

∂φ
φ̂+

1

r sin(φ)

∂f

∂θ
θ̂

which due to neglecting the azimuthal and polar angles is simpli�ed to:

∇f(r) =
∂f

∂r
r̂

Divergence
The divergence in Cartesian coordinates (Adams & Essex, 2010):

∇ · F (x, y, z) =
∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z
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where F = F1î+ F2ĵ + F3k̂.
The divergence in spherical coordinates(Adams & Essex, 2010):

∇ · F =
1

r2

∂

∂r

(
r2Fr

)
+

1

r sin(θ)

∂(Fθ sin(θ))

∂θ
+

1

r sin(θ)

∂Fφ
∂φ

where F = Fr r̂ + Fθ θ̂ + Fφφ̂. This can be simpli�ed to only the �rst term to the right of the equality sign
due to neglection of azimuthal and polar angles as follows:

∇ · F =
1

r2

∂

∂r

(
r2Fr

)
The Laplacian in spherical coordinates

The expression for the vector Laplacian for spherical coordinates is now going to be derived. As for the
Cartesian coordinates, the expression is also:

∇2A = ∇(∇ ·A)−∇× (∇×A)

It will now be shown that the cross-product becomes zero because of the neglection of polar and azimuthal
angles: B will also here be de�ned as ∇ ×A, and then one can calculate ∇ × (∇ ×A) as follows, where
C = ∇×B:

C =

∣∣∣∣∣∣∣∣∣∣∣∣

r̂ rθ̂ r sin(θ)φ̂

∂
∂r

∂
∂θ

∂
∂φ

Br rBθ r sin(θ)Bφ

∣∣∣∣∣∣∣∣∣∣∣∣
· 1

r2 sin(θ)
= 0

because all the terms will be dependent on either the polar angle or the azimuthal angle, or both. This
means that the vector Laplacian in the case considering here equals the gradient of the divergence of the
vector u:

∇2(u) = ∇(∇ · u) = ∇
(

1

r2

∂

∂r

(
r2ur

))
=

∂

∂r

(
1

r2

∂(r2u)

∂r

)

= − 2

r3

(
2ru+ r2 ∂u

∂r

)
+

1

r2

∂

∂r

(
2ru+ r2 ∂u

∂r

)

= −4u

r2
− 2

r

∂u

∂r
+

1

r2

(
2u+ 2r

∂u

∂r
+ 2r

∂u

∂r
+ r2 ∂

2u

∂r2

)
= −4u

r2
+

2u

r2
− 2

r

∂u

∂r
+

2

r

∂u

∂r
+

2

r

∂u

∂r
+
∂2u

∂r2

This then gives the expression for the vector Laplacian of u to be:

∇2(u) = −2u

r2
+

2

r

∂u

∂r
+
∂2u

∂r2

In order to simplify the expression above, the scalar Laplacian in spherical coordinates should be derived:
First, the de�nition of the new spherical coordinates (Tuckerman, 2011):

x = r cos(φ) sin(θ)

y = r sin(θ) sin(φ)

z = r cos(θ)

The expression for θ and φ can be visually seen from a �gure above to be:
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cos(θ) =
z√

x2 + y2 + z2
, sin(θ) =

√
x2 + y2√

x2 + y2 + z2
, θ = cos−1

(
z√

x2 + y2 + z2

)
.

cos(φ) =
x√

x2 + y2
, sin(φ) =

y√
x2 + y2

, φ = cos−1

(
x√

x2 + y2

)
.

The Laplacian operator in Cartesian coordinates (Adams & Essex, 2010) will �rst be brie�y looked at in
order to use this as a starting point in the derivation for spherical coordinates:

∇2F =
∂2F

∂x2
+
∂2F

∂y2
+
∂2F

∂z2

From x = r cos(φ) sin(θ), the following partial derivative expressions for F can be written:

∂F

∂x
=
∂F

∂r

∂r

∂x
+
∂F

∂θ

∂θ

∂x
+
∂F

∂φ

∂φ

∂x

∂F

∂y
=
∂F

∂r

∂r

∂y
+
∂F

∂θ

∂θ

∂y
+
∂F

∂φ

∂φ

∂y

∂F

∂z
=
∂F

∂r

∂r

∂z
+
∂F

∂θ

∂θ

∂z
+
∂F

∂φ

∂φ

∂z

which, by removing F is written as:

∂

∂x
=
∂r

∂x

∂

∂r
+
∂θ

∂x

∂

∂θ
+
∂φ

∂x

∂

∂φ

∂

∂y
=
∂r

∂y

∂

∂r
+
∂θ

∂y

∂

∂θ
+
∂φ

∂y

∂

∂φ

∂

∂z
=
∂r

∂z

∂

∂r
+
∂θ

∂z

∂

∂θ
+
∂φ

∂z

∂

∂φ

Then the partial derivatives of r should be calculated:

∂r

∂x
=

1

2

(
x2 + y2 + z2

)− 1
2 · 2x = x ·

(
x2 + y2 + z2

)− 1
2 =

x

r
= cos(φ) sin(θ)

∂r

∂y
=

1

2

(
x2 + y2 + z2

)− 1
2 · 2y = y ·

(
x2 + y2 + z2

)− 1
2 =

y

r
= sin(θ) sin(φ)

∂r

∂z
=

1

2

(
x2 + y2 + z2

)− 1
2 · 2z = z ·

(
x2 + y2 + z2

)− 1
2 =

z

r
= cos(θ)

where the expressions for x, y, z and r was used to get the �nal results to the utter right end in the three
equations above. The next step is to calculate the partial derivatives of θ and φ:

∂θ

∂x
=

xz√
x2+y2

x2+y2+z2 (x2 + y2 + z2)
3
2

=
z cos(φ)r

r3
=

cos(φ) cos(θ)

r

By using the same method as above, the partial derivatives of θ with respect to y and z can also be calculated:

∂θ

∂y
=

cos(θ) sin(φ)

r

∂θ

∂z
= − sin(θ)

r
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φ is independent on z- values, so the partial derivative of φ is only with respect to x and y, which is
shown below:

∂φ

∂x
=

∂

∂x

[
cos−1

(
x√

x2 + y2

)]
= −

√
y2

x2+y2√
x2 + y2

= − sin(φ)

r sin(θ)

∂φ

∂y
=

cos(φ)

r sin(θ)

These partial derivatives are then inserted into the expressions for ∂
∂x ,

∂
∂y and ∂

∂z from the previous page:

∂

∂x
= sin(θ) cos(φ)

∂

∂r
+

cos(θ) cos(φ)

r

∂

∂θ
− sin(φ)

r sin(θ)

∂

∂φ

∂

∂y
= sin(θ) sin(φ)

∂

∂r
+

cos(θ) sin(φ)

r

∂

∂θ
+

cos(φ)

r sin(θ)

∂

∂φ

∂

∂z
= cos(θ)

∂

∂r
− sin(θ)

r

∂

∂θ

Since it is the second derivatives which are needed, the partial derivatives of the three equations right
above are also calculated:

∂2

∂x2
=

[
sin(θ) cos(φ)

∂

∂r
+

cos(θ) cos(φ)

r

∂

∂θ
− sin(φ)

r sin(θ)

∂

∂φ

] [
sin(θ) cos(φ)

∂

∂r
+

cos(θ) cos(φ)

r

∂

∂θ
− sin(φ)

r sin(θ)

∂

∂φ

]
It is important to note that it is not a multiplication between the two large paranthesis, but like [ ∂∂x ][ ∂∂x ] so
that:

∂2

∂x2
=

[
sin2(θ) cos2(φ)

∂2

∂r2
− sin(θ) cos(θ) cos2(φ)

r2

∂

∂θ
+

sin(θ) cos(θ) cos2(φ)

r

∂2

∂r∂θ
+

cos(φ) sin(φ)

r2

∂

∂φ
− cos(φ) sin(φ)

r

∂2

∂r∂φ

]

+

[
cos2(θ) cos2(φ)

r

∂

∂r
+

sin(θ) cos(θ) cos2(φ)

r

∂2

∂θ∂r
− sin(θ) cos(θ) cos2(φ)

r2

∂

∂θ
+

cos2(φ) sin2(φ)

r2

∂2

∂θ2
+

cos2(θ) cos(φ) sin(φ)

sin2(θ)

∂

∂φ
− cos(φ) sin(φ)

r2 sin(θ) cos(φ)

∂2

∂θ∂φ

]

+

[
sin2(φ)

r

∂

∂r
− sin(φ) cos(φ)

r

∂2

∂φ∂r
+

sin2(φ) cos(θ)

r2 sin(θ)

∂

∂θ
− sin(φ) cos(θ) cos(φ)

sin(θ)r2

∂2

∂φ∂θ
+

sin(φ) cos(φ)

r2sin2(θ)

∂

∂φ
+

sin2(φ)

r2 sin2(θ)

∂2

∂φ2

]
Then over to ∂2

∂y2 :[
sin(θ) sin(φ)

∂

∂r
+

1

r
cos(θ) sin(φ)

∂

∂θ
+

1

r

cos(φ)

sin(θ)

∂

∂φ

] [
sin(θ) sin(φ)

∂

∂r
+

1

r
cos(θ) sin(φ)

∂

∂θ
+

1

r

cos(φ)

sin(θ)

∂

∂φ

]
which gives:

∂2

∂y2
=

=

[
− sin(θ) cos(θ) sin2(φ)

r2

∂

∂θ
+

sin(θ) cos(θ) sin2(φ)

r

∂2

∂r∂θ
+ sin2(θ) sin2(φ)

∂2

∂r2
− sin(φ) cos(φ)

r2

∂

∂φ
+

sin(φ) cos(φ)

r

∂2

∂r∂φ

]
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+

[
cos2(θ) sin2(φ)

r

∂

∂r
+

cos(θ) sin(θ) sin2(φ)

r

∂2

∂θ∂r
− cos(θ) sin(θ) sin2(φ)

r2

∂

∂θ
+

cos2(θ) sin2(θ)

r2

∂2

∂θ2
− cos2(θ) cos(φ) sin(φ)

r2 sin2(θ)

∂

∂φ

]

+

[
cos(θ) sin(φ) cos(φ)

r2 sin(θ)

∂2

∂θ∂φ

]

+

[
cos2(φ)

r

∂

∂r
+

cos(φ) sin(φ)

r

∂2

∂φ∂r
+

cos2(φ) cos(θ)

r2 sin(θ)

∂

∂θ
+

cos(φ) cos(θ) sin(φ)

r2 sin(θ)

∂2

∂φ∂θ
− cos(φ) sin(φ)

sin2(θ)r2

∂

∂φ
+

cos2(φ)

r2 sin2(θ)

∂2

∂φ2

]
The �nal second partial derivative to calculate is ∂2

∂z2 , which is done below:

∂2

∂z2
=

[
cos(θ)

∂

∂r
− sin(θ)

r

∂

∂θ

] [
cos(θ)

∂

∂r
− sin(θ)

r

∂

∂θ

]

= cos2(θ)
∂2

∂r2
+

sin(θ) cos(θ)

r2

∂

∂θ
−cos(θ) sin(θ)

r

∂2

∂r∂θ
+

sin2(θ)

r

∂

∂r
− sin(θ) cos(θ)

r

∂2

∂θ∂r
+

sin(θ) cos(θ)

r2

∂

∂θ
+

sin2(θ)

r2

∂2

∂θ2

Since the expressions for ∂2

∂x2 ,
∂2

∂y2 and ∂2

∂z2 are to be summed in order to get the Laplacian operator,
the di�erent partial derivatives in the three expressions calculated above are factorized in order to simplify,

because some of the terms will sum to zero. The expressions inside the paranthesis for ∂2

∂r∂θ ,
∂2

∂θ∂φ ,
∂2

∂r∂φ and
∂
∂φ equals zero, so these terms will cancer out:

∂2

∂r∂θ

[
−cos(θ) sin(θ)

r
− cos(θ) sin(θ)

r
+

cos(θ) sin(θ) cos2(φ)

r
+

cos(θ) sin(θ) cos2(φ)

r
+

sin(θ) cos(θ) sin2(φ)

r

]

+
∂2

∂r∂θ

[
sin(θ) cos(θ) sin2(φ)

r

]
= 0

∂2

∂θ∂φ

[
−cos(θ) cos(φ) sin(φ)

r2 sin(θ)
− sin(φ) cos(θ) cos(φ)

r2 sin(θ)
+

sin(φ) cos(θ) cos(φ)

r2 sin(θ)
+

cos(θ) cos(φ) sin(φ)

r2 sin(θ)

]
= 0

∂2

∂r∂φ

[
−cos(φ) sin(φ)

r2
− cos(φ) sin(φ)

r2
+

cos(φ) sin(φ)

r2
+

cos(φ) sin(φ)

r2

]
= 0

∂

∂φ

[
cos(φ) sin(φ)

r2
+

cos2(θ) cos(φ) sin(φ)

r2 sin2(θ)
− cos(φ) sin(φ)

r2
+

sin(φ) cos(φ)

r2 sin2(θ)
− cos2(θ) cos(φ) sin(φ)

r2 sin2(θ)
− sin(φ) cos(φ)

r2 sin2(θ)

]
= 0

The second partial derivative with respect with φ is shown below:

∂2

∂φ2

[
sin2(φ)

r2 sin2(θ)
+

cos2(φ)

r2 sin2(θ)

]
=

∂2

∂φ2

[
1

r2 sin2(θ)

]
The expression for the partial derivative with respect with r is:

∂

∂r

[
sin2(θ)

r
+

cos2(θ) cos2(φ)

r
+

sin2(φ)

r
+

cos2(θ) sin2(φ)

r
+

cos2(φ)

r

]

=
∂

∂r

[
1

r
(sin2(φ) + cos2(φ)) +

1

r

(
cos2(θ) sin2(φ) + sin2(θ) + cos2(θ) cos2(φ)

)]
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=
∂

∂r

[
1

r
+

1

r
cos2(θ)

(
sin2(φ) + cos2(φ)

)
+

1

r
sin2(θ)

]
=

∂

∂r
(
1

r
+

1

r
) =

2

r

∂

∂r

The second partial derivative with respect with θ has the expression:

∂2

∂θ2

[
sin2(θ)

r2
+

cos2(θ) cos2(φ)

r2
+

cos2(θ) sin2(θ)

r2

]
=

1

r2

[
sin2(θ + cos2(θ)

(
cos2(φ) + sin2(φ)

)] ∂2

∂θ2
=

1

r2

∂2

∂θ2
,

while the second partial derivative with respect with r is

∂2

∂r2

[
cos2(θ) + sin2(θ) cos2(φ) + sin2(θ) sin2(φ)

]
=

∂2

∂r2

[
cos2(θ) + sin2(θ)

(
cos2(φ) + sin2(φ)

)]
=

∂2

∂r2

The expression for the partial derivative with respect to θ is a bit more lengthy:

∂

∂θ

[
sin(θ) cos(θ)

r2
+

sin(θ) cos(θ)

r2
− sin(θ) cos(θ) cos2(φ)

r2
+

sin2(φ) cos(θ)

r2 sin(θ)
− sin(θ) cos(θ) sin2(φ)

r2

]

+
∂

∂θ

[
−cos(θ) sin(θ) sin2(φ)

r2
+

cos2(φ) cos(θ)

r2 sin(θ)
− cos(θ) sin(θ) cos2(φ)

r2

]

=
∂

∂θ

1

r2

[
2 sin(θ) cos(θ) +

sin2(φ) cos(θ) + cos2(φ) cos(θ)

sin(θ)
− sin(θ) cos(θ)

(
cos2(φ) + sin2(φ)

)]

+
∂

∂θ

1

r2

[
− cos(θ) sin(θ)

(
sin2(φ) + cos2(φ)

)]
=

∂

∂θ

1

r2

(
cos(θ)

sin(θ)

)
Then, the �nal expressions for ∂2

∂x2 ,
∂2

∂y2 and
∂2

∂z2 have been greatly simpli�ed, and by adding them together
the scalar Laplacian in spherical coordinates is the result:

∇2 =
1

r2 sin2(θ)

∂2

∂φ2
+

2

r

∂

∂r
+

1

r2

∂2

∂θ2
+

∂2

∂r2
+

cos(θ)

r2 sin(θ)

=

(
2

r
+

∂

∂r

)
∂

∂r
+

(
cos(θ)

r2 sin(θ)
+

1

r2

∂

∂θ

)
∂

∂θ
+

1

r2 sin2(θ)

∂2

∂φ2

which can be rewritten as follows to give the expression for the Laplacian operator in spherical coordinates:

∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin(θ)

∂

∂θ

(
sin(θ)

∂

∂θ

)
+

1

r2 sin2(θ)

∂2

∂φ2

Since both the polar angle and the azimuthal angle is neglected in the case which are studied in this
thesis, the Laplacian operator for a scalar can be further simpli�ed to :

∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
This gives the expression for ∇2u:

∇2u =
1

r2

∂

∂r

(
r2 ∂u

∂r

)
which can be inserted into the expression for the vector Laplacian to give the following when both the polar
and azimuthal angles are neglected, where ∇2(u) is the vector Laplacian and ∇2u is the scalar Laplacian:

∇2(u) =
1

r2

∂

∂r

(
r2 ∂u

∂r

)
− 2u

r2
= ∇2u− 2u

r2
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H Expressions for the measured values of gel compressibility and

bulk viscosity

The compressibility β and bulk viscosity κ of the gel can be determined from experiments when there are
no cells present in the gel. The experiments use a known radial stress on the gel, and the expressions for the
gel compressibility and bulk viscosity using this method is derived below. The radial stress is exerted on the
sphere-surface of the cell-free gel. During the experiments, there are no cells present in the gel (n is zero),
and no cell-exerted forces causes Fr to be zero as well. The chemicals are produced by the cells, but since
there are no cells present, it follows that there will be no chemicals either, so c = 0. (Green et al., 2013)
Since the forces are imposed on the gel sphere surface, the right side of equation

−P + 2
∂u

∂r
+

(
κ− 2

3

)
1

r2

∂

∂r
(r2u) = 0, at r = R(t).

is no longer zero, but equal to the externally exerted forces, and hence:

−P + 2
∂u

∂r
+

(
κ− 2

3

)
1

r2

∂

∂r
(r2u) =

∑
(t), at r=R(t).

The form of the desired solution is:

ρ = ρ(t), P = P (t), u = A(t)r,

The expression for ρ can be derived using the spherical equation for mass balance of the gel:

∂ρ(t)

∂t
+

1

r2

∂

∂r

(
r2ρ(t)A(t)r

)
= 0,

which is the same as writing
∂ρ(t)

∂t
+

1

r2
ρ(t)A(t)

∂

∂r
r3 = 0.

By calculating the derivative of the second term in the expression above, the expression above becomes

1

ρ(t)

∂ρ(t)

∂t
= −3A(t)

Integrating with respect to t on both sides of the equation above gives the expression

ln|ρ| = −3A(t)t+ c1,

which is the same as writing:
ρ = e−3A(t)t+c1 = e−3B(t),

where B(t) = A(t)t − 1
3c1 = A(t)t + c2. The expression for the pressure can then be found from from the

equation describing the relationship between the gel density and pressure:

ρ = 1 + βP

P =
ρ− 1

β
=
e−3B(t) − 1

β

In order to simplify the expression for pressure, e−B(t) is given the symbol 1
R(t) . The expression for pressure

and velocity is then substituted into the equation for the boundary condition for the stresses:

−P + 2
∂u

∂r
+

(
κ− 2

3

)
1

r2

∂

∂r
(r2u) =

∑
(t), at r=R(t).
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By inserting for P and using that u = A(t)r gives:

−R
3 − 1

β
+ 2

∂(A(t)r)

∂r
+

(
κ− 2

3

)(
1

r

∂

∂r

(
r2A(t)r

))
=
∑

(t)

By calculating the derivatives in the expression above, the resulting expression is:

−R
3 − 1

β
+

(
κ− 2

3

)(
3r2A(t)

)
+ 2A(t) =

∑
(t)

Then, by multiplying with R
3κ , the equation becomes:(

1−∑ β

3βκ

)
R(t)− 1

3R2(t)βκ
+A(t)R(t)− 2

3
R(t)A(t) +

2

3
R(t)A(t) = 0

which is equivalent to writing(
1−∑ β

3βκ

)
R(t)− 1

3R2(t)βκ
+A(t)R(t) = 0.

A(t)R(t) can be rewritten as:

A(t)R(t) = A(t)eB(t) = A(t)eA(t)t+c1 =
d(eA(t)t+c1)

dt
=
dR(t)

dt

This is then inserted for A(t)R(t) in the stress boundary condition:

dR(t)

dt
+

(
1− β∑(t)

3κβ

)
R(t)− 1

3κβR2(t)
= 0

The expression for R is then to be derived. In order to simplify the derivation, 1
3κβ is given the symbol

a, while 1−β
∑

(t)
3κβ is given the symbol b:

dR

dt
− a

R2
+ bR = 0,

which can be factorized as
dR

dt
+

1

R2
(bR3 − a) = 0.

Multiplying the above equation with R2 and dt, while dividing with (bR3 − a) gives:

R2dR

bR3 − a
= −dt

By multiplying the above equation with −1 avoids the negative sign to the right of the equality sign:

R2dR

a− bR3
= dt

Then, by using u-substitution in order to easier solve the di�erential equation above:

u = a− bR3 which means that
du

dR
= −3bR3.

The expression for du is then inserted into the di�erential equation to give:

− 1

3b

(
du

u

)
= dt which can be rearranged as− du

u
= 3bdt.

This expression is then integrated as follows:
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−
ˆ
du

u
= 3b

ˆ
dt,

which gives
ln|u| = −3bt+ c1.

The equation is then solved with respect to u to give:

u = e−3bt · ec1

Substituting back for u gives:

a− bR3 = e−3bt · ec1

Then, substituting back for a and b:

1

3κβ
−
(

1− β∑(t)

3κβ

)
R3 = e

−3

(
1−β

∑
(t)

3κβ

)
t
ec1

By moving all of the above expression to the right side of the equation, except R3 gives:

R3 =

(
3κβ

1− β∑(t)

)(
1

3κβ
− e

(
β
∑

(t)−1
κβ

)
t
ec1

)

Rearranging the equation above, and using that the constant ec1 is the same as writing c2 gives:

R3 =
1

1− β∑(t)

(
1− 3κβe

(
β
∑

(t)−1
κβ

)
t
· c2

)

Then, using the boundary condition R(0) = 1 gives the following expression for the constant c2:

R(0) =

[
1

1− β∑(t)

(
1− 3κβe0 · c2

)] 1
3

= 1,

which gives the expression for c2 to be

c2 =
∑

(t)

3κ
.

Then, inserting for c2 in the expression for R:

R3 =
1− e

(β
∑

(t)−1)t
κβ

1− β∑(t)

Then, by knowing the value of the applied stress and measuring the change in radius R(t) with time, both
compressibility β and bulk viscosity κ can be calculated using the equations which will now be derived: In
order to derive the expression for κ, time is set to approach zero, so that the initial rate of change of R
becomes (using that R(0) = 1):

dR(0)

dt
=
β
∑

(t)

3κβ
+

1

3κβ
− 1

3κβ
=
β
∑

(t)

3κβ
= Ṙ

which then gives the expression for κ:

κ =
∑

(t)

Ṙ(0)

In order to derive the expression for β, it is assumed that β
∑

(t) is less than one. Then, using the
expression for R3 above when time goes to in�nity:
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Rt→∞ =

(
1− β∑(t)e−∞

1− β∑(t)

) 1
3

= (1− β∑(t))
− 1

3 ,

which gives the expression for the isothermal compressibility of the gel to be:

β =
1−R−3

t→∞∑
(t)

I Expressions for the second derivatives in the coordinates (ζ, τ)

∂2

∂x2
=

(
cos(φ) sin(θ)

R(t)

∂

∂ζ
+

cos(θ) cos(φ)

R(t)ζ

∂

∂θ
− sin(φ)

R(t)ζ sin(θ)

∂

∂φ

)(
cos(φ) sin(θ)

R(t)

∂

∂ζ
+

cos(θ) cos(φ)

R(t)ζ

∂

∂θ
− sin(φ)

R(t)ζ sin(θ)

∂

∂φ

)

=

(
cos2(φ) sin2(θ)

R2

∂2

∂ζ2
− cos(θ) sin(θ) cos2(φ)

R2ζ2

∂

∂θ
+

sin(θ) cos(θ) cos2(φ)

Rζ

∂2

∂ζ∂θ
+

cos(φ) sin(φ)

R2ζ2

∂

∂φ
− cos(φ) sin(φ)

R2ζ

∂2

∂ζ∂φ

)

+

(
cos2(φ) cos2(θ)

R2ζ

∂

∂ζ
+

cos(θ) sin(θ) cos2(φ)

R2ζ

∂2

∂θ∂ζ
− sin(θ) cos(θ) cos2(φ)

R2ζ2

∂

∂θ
+

cos2(φ) cos2(θ)

R2ζ2

∂2

∂θ2

)

+

(
cos2(θ) cos(φ) sin(φ)

R2ζ2 sin2(θ)

∂

∂φ
− cos(θ) cos(φ) sin(φ)

R2ζ2 sin(θ)

∂2

∂θ∂φ

)

+

(
sin2(φ)

R2ζ

∂

∂ζ
− sin(φ) cos(φ)

R2ζ

∂2

∂φ∂ζ
+

sin2(φ) cos(θ)

R2ζ2 sin(θ)

∂

∂θ
− sin(φ) cos(φ) cos(θ)

R2ζ2 sin(θ)

∂2

∂φ∂θ
+

sin(φ) cos(φ)

R2ζ2 sin2(θ)

∂

∂φ
+

sin2(φ)

R2ζ2 sin2(θ)

∂2

∂θ2

)

The second partial derivative with respect to y is:

∂2

∂y2
=

(
sin(φ) sin(θ)

R(t)

∂

∂ζ
+

cos(θ) sin(φ)

R(t)ζ

∂

∂θ
+

cos(φ)

R(t)ζ sin(θ)

∂

∂φ

)(
sin(φ) sin(θ)

R(t)

∂

∂ζ
+

cos(θ) sin(φ)

R(t)ζ

∂

∂θ
+

cos(φ)

R(t)ζ sin(θ)

∂

∂φ

)

=

(
sin2(θ) sin2(φ)

R2

∂2

∂ζ2
− sin2(φ) cos(θ) sin(θ)

R2ζ2

∂

∂θ
+

sin2(φ) cos(θ) sin(θ)

R2ζ

∂2

∂ζ∂θ
− sin(φ) cos(φ)

R2ζ2

∂

∂φ
+

sin(φ) cos(φ)

R2ζ

∂2

∂ζ∂φ

)

+

(
sin2(φ) cos2(θ)

R2ζ

∂

∂ζ
+

sin2(φ) sin(θ) cos(θ)

R2ζ

∂2

∂ζ∂θ
− sin2(φ) sin(θ) cos(θ)

R2ζ2

∂

∂θ
+

sin2(φ) cos2(θ)

R2ζ2

∂2

∂θ2

)

+

(
−cos2(θ) cos(φ) sin(φ)

R2ζ2 sin2(θ)

∂

∂φ
+

cos(θ) sin(φ) cos(φ)

R2ζ2 sin(θ)

∂2

∂θ∂φ

)

+

(
cos2(φ)

R2ζ

∂

∂ζ
+

cos(φ) sin(φ)

R2ζ

∂2

∂ζ∂φ
+

cos2(φ) cos(θ)

R2ζ2 sin(θ)

∂

∂θ
+

cos(φ) sin(φ)

R2ζ2 sin(θ)

∂2

∂φ∂θ
− cos(φ) sin(φ)

R2ζ2 sin2(θ)

∂

∂φ
+

cos2(φ)

R2ζ2 sin2(θ)

∂2

∂φ2

)
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The expression for the second partial derivative with respect to z is:

∂2

∂z2
=

(
cos(φ)

R(t)

∂

∂ζ
− sin(φ)

R(t)ζ

∂

∂φ

)(
cos(φ)

R(t)

∂

∂ζ
− sin(φ)

R(t)ζ

∂

∂φ

)

=

(
cos2(φ)

R2

∂2

∂ζ2
+

cos(φ) sin(φ)

R2ζ2

∂

∂φ
− cos(φ) sin(φ)

R2ζ

∂2

∂ζ∂φ
+

sin2(θ)

R2ζ

∂

∂ζ
− sin(φ) cos(φ)

R2ζ

∂2

∂φ∂ζ

)

+

(
sin(φ) cos(φ)

R2ζ2

∂

∂φ
+

sin2(φ)

R2ζ2

∂2

∂φ2

)
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