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Abstract. We show that a Hilbert scheme of conics on a Fano fourfold double
cover of P2 ×P2 ramified along a divisor of bidegree (2,2) admits a P1-fibration with
base being a hyper-Kähler fourfold. We investigate the geometry of such fourfolds
relating them with degenerated EPW cubes, with elements in the Brauer groups
of K3 surfaces of degree 2, and with Verra threefolds studied in [Ver04]. These
hyper-Kähler fourfolds admit natural involutions and complete the classification of
geometric realizations of anti-symplectic involutions on hyper-Kähler 4-folds of type

K3[2].
As a consequence we present also three constructions of quartic Kummer surfaces

in P3: as Lagrangian and symmetric degeneracy loci and as the base of a fibration of
conics in certain threefold quadric bundles over P1.
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By a hyper-Kähler manifold or equivalently by an irreducible holomorphic symplectic
(or IHS) 2n-fold we mean a 2n-dimensional simply connected compact Kähler manifold
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with trivial canonical bundle that admits a unique (up to a constant) non-degenerate
holomorphic 2-form (called the symplectic form) and is not a product of two manifolds
[Bea83]. In this paper we are studying the geometry of some families of IHS fourfolds
that are deformation equivalent to the Hilbert scheme of two points on a K3 surface
(of type K3[2]).

Recall from [BD85] that Hilbert schemes of lines on smooth cubic hypersurfaces in P5

are IHS fourfolds of type K3[2] characterized by the fact that they admit a polarization
of Beauville degree q = 6 (i.e degree 3∗36). In [O’G06] O’Grady described the complete

family of polarized IHS fourfolds of K3[2] type with Beauville degree q = 2. He found
out that such manifolds are double covers of sextic hypersurfaces defined as Lagrangian
degeneracy loci. Next [IM11] described constructions of IHS fourfolds with q = 2 as
bases of P1 fibrations on Hilbert schemes of conics on Fano fourfolds of degree 10.

The aim of this article is to investigate a special 19-dimensional family U of IHS
fourfolds of type K3[2] admitting a polarization of Beauville degree q = 4 (i.e degree
48). In fact, the family U represents a component of the hyperelliptic locus in the

moduli space of all IHS fourfolds of type K3[2] admitting a polarization of Beauville
degree q = 4. The elements of the family U are obtained as double covers of some special
Lagrangian degeneracy loci on a cone over P2 × P2. The same family U is obtained by
considering for a general Fano fourfold Y being the double cover of P2 × P2 branched
along a bi-degree (2,2) divisor (we call such Y Verra fourfolds) the Hilbert scheme
F (Y ) of conics on Y . We show that a general fivefold F (Y ) admits a natural P1

fibration such that its base is an IHS fourfold in U . Finally, we show also that the
generic element from U is a moduli space of twisted sheaves on a K3 surface.

The IHS fourfolds from U appear naturally in the following context: Recall that van
Geemen classified two torsion elements in the Brauer group Br(S) of a general K3
surface S that admits a polarization of degree 2, [vG05]. He showed that there are
three types of elements in Br(S)2 ≃ (Z2)21 and that they give rise to three type of
varieties Yαi for i = 1,2,3 respectively:

● a smooth complete intersection of three quadrics in P5, or
● a cubic fourfold containing a plane, or
● a double cover of P2 × P2 ramified along a hypersurface of bi-degree (2,2);

such that a twist of the polarized Hodge structure defined by αi is Hodge isometric to
a primitive sublattice of the middle cohomology of Yαi for i = 1,2,3. There are direct
geometric constructions relating (S,αi) with the variety Yαi . In the first case Mukai
[Muk87] showed that a moduli space of bundles on Yα1 is isomorphic to S. In [Bho86]
it is shown that Yα1 is isomorphic to the moduli space of certain orthogonal bundles
on S; giving the relation in the other direction. Note, however, that the twist is not
apparent in these construction. One may ask whether the K3 surface Yα1 of degree 8
is isomorphic to a moduli space of twisted sheaves on K3 surfaces of degree 2 with the
twist α1 [MSTVA14, §1].

In the second case for (S,α2) a geometric relation was described in [MS12]. It
was shown that a moduli space of twisted sheaves on (S,α2) is birational to the IHS
fourfold being the Hilbert scheme of lines on a cubic fourfold containing a plane. Our
construction completes the picture by showing that the moduli space of twisted sheaves
on (S,α3) is isomorphic to an IHS fourfold from U i.e. is constructed from the Hilbert
scheme of conics on the corresponding fourfold Yα3 .

0.1. Construction via Lagrangian Degeneracy loci. Section 2 is devoted to the
construction of elements of U as double covers of appropriate Lagrangian degeneracy
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loci inside a cone C(P2×P2) ⊂ P9 over the Segre embedding of P2×P2. This construction
is analogous to the construction of EPW sextics [O’G06], [EPW01]. It is also naturally
related to special EPW cubes [IKKR16]. Let us be more precise: Let U1, U2 be 3-
dimensional vector spaces with fixed volume forms. Consider the cone over the Segre
embedding of P(∧2U1) × P(U2)

CU1 ∶= C(P(∧2U1) × P(U2))

interpreted as a subset

CU1 = G(3, U1 ⊕U2) ∩ P(∧3U1 ⊕ (∧2U1 ⊗U2)) ⊂ P(∧3(U1 ⊕U2)).

Note that we use the notation P(B) to denote the space of 1-dimensional subspaces of
B. Consider the vector subspace (∧2U1 ⊗ U2) ⊕ (U1 ⊗ ∧2U2) ⊂ ∧3(U1 ⊕ U2) equipped
with a symplectic form corresponding to wedge product. Each point [U] of the cone
CU1 corresponds to a three-space U ⊂ U1 ⊕ U2 such that dim(U ∩ U1) ≥ 2. To U we
associate the Lagrangian subspace

T̄U ∶= (∧2U ∧ (U1 ⊕U2))/ ∧3 U1 ⊂(∧3U1 ⊕ (∧2U1 ⊗U2) ⊕ (U1 ⊗ ∧2U2))/ ∧3 U1

≅ (∧2U1 ⊗U2) ⊕ (U1 ⊗ ∧2U2).

Let Ā ⊂ (∧2U1⊗U2)⊕(U1⊗∧2U2) be a general Lagrangian subspace. To this subspace
Ā we can associate degeneracy loci for each k > 0:

DĀ
k = {[U] ∈ CU1 ∣dim(T̄U ∩ Ā) ≥ k}.

The variety DĀ
1 is a special quartic section of CU1 that we call an EPW quartic section

(abusing the name of the first degeneracy locus in G(3,6) considered in [DK15]). We

shall prove that for a generic choice of Ā the fourfold DĀ
1 is singular exactly along

the surface DĀ
2 ⊂ P(∧3(U1 ⊕ U2)) which has degree 72. The main result of the above

construction is the following:

Theorem 0.1. For a generic choice of Ā ∈ LG(9, (∧2U1 ⊗ U2) ⊕ (U1 ⊗ ∧2U2)) there

exists a natural double cover XĀ → DĀ
1 branched along DĀ

2 such that XĀ is an IHS

fourfold of K3[2] type that admits a polarization of Beauville degree q = 4.

The proof is presented in Section 2. The subset U of the moduli space of polarized
IHS fourfolds deformation equivalent to K3[2] and with polarization of Beauville degree
4 that parametrizes manifolds constructed in Theorem 0.1 is of dimension 19.

0.2. Relation to EPW cubes. The construction of EPW quartic sections is more
natural when seen in the context of EPW cubes. Recall that in [IKKR16] we con-
structed a 20-dimensional family (locally complete) of polarized IHS sixfolds deforma-

tion equivalent to the Hilbert scheme of three points on a K3-surface (i.e. of type K3[3])
and admitting a polarization of Beauville degree q = 4. The elements of this family are
natural double covers of special codimension 3 subvarieties of the Grassmannian G(3,6)
that we called EPW cubes. The EPW quartic sections can be seen as subvarieties of
special EPW cubes. Recall that for a Lagrangian subspace A ⊂ ∧3V6 we define

D2
A = {[U] ∈ P(∧3V6)∣dim(A ∩ ((∧2U) ∧ V6)) ≥ 2}.

When A is general D2
A is called an EPW cube. If now A ⊂ ∧3V6 is a general Lagrangian

subspace that contains ∧3U1, for some U1 ⊂ V6 of dimension 3 then D2
A is a special

EPW cube. Now for every decomposition V6 = U1⊕U2 we have a natural identification
3



CU1 = C(P(U1) × P(∧2U2)) = T[U1]
∩ G(3, V6), where T[U1]

is the projective tangent
space to G(3, V6) in [U1]. Under this identification we have

D1
Ā =D2

A ∩CU1 ,

with Ā = A/(∧3U1) ⊂ (∧3U1)⊥/(∧3U1).
0.3. Construction via Hilbert scheme. Our second construction of IHS fourfolds
from the family U is the subject of Section 3. It uses Hilbert schemes of conics on so-
called Verra Fano fourfolds. Let U1 and U2 be 3-dimensional vector spaces. We call a
Verra fourfold [Ver04], [Ili97] an element of the 19-dimensional family of Fano fourfolds
which is the intersection Y of the cone C(P(U1)×P(∧2U2)) ⊂ P(C⊕(U1⊗∧2U2)) with a
quadric hypersurface Q. Equivalently Y is the double cover of P(U1)×P(∧2U2) = P2×P2

branched along a divisor Z of bi-degree (2,2). The threefold Z will be called the
Verra threefold associated to the Verra fourfold Y . Note that Z can be identified
with the section of Y by the hyperplane polar to the vertex of the cone C(P(U1) ×
P(∧2U2)) via the quadric Q. Verra threefolds were introduced by A. Verra in [Ver04]
as counterexamples to the Torelli problem for Prym varieties of unbranched double
coverings of plane sextics.

The linear system of quadrics containing C(P(U1)×P(∧2U2)) ⊂ P(C⊕(U1⊗∧2U2)) is
then naturally isomorphic to P(U1⊗∧2U2), via a volume form on U1⊗∧2U2 ≅ U1⊗U∨

2 .
The linear system of quadrics containing Y ⊂ P9 is therefore naturally isomorphic
to P(C ⊕ (U1 ⊗ ∧2U2)) and its dual is naturally isomorphic to P(C ⊕ (∧2U1 ⊗ U2)).
The fourfold Y admits two natural projections π1 and π2 onto P(U1) and P(∧2U2)
respectively. We denote by F (Y ) the Hilbert scheme of plane conic curves on Y of
type (1,1) i.e. conics that projects to lines by both π1 and π2.

Let [C] ∈ F (Y ) be a (1,1)-conic on Y , then C spans a plane PC ⊂ P(C⊕(U1⊗∧2U2)),
and the locus HC of quadrics containing Y ∪ PC is a hyperplane, i.e. a point [HC] ∈
P(C⊕ (∧2U1 ⊗U2)) in the dual space. In this way we define a map

ψQ ∶ F (Y ) → P(∧3U1 ⊕ (∧2U1 ⊗U2)); [C] ↦ [HC]
We identify the image of this map in the following way. Note that the quadric
hypersurface Q, such that Y = Q ∩ C(P(U1) × P(∧2U2)), induces a quadric Q′ ⊂
P(U1 ⊗ ∧2U2) defining the branch locus Z of the double cover Y → P(U1) × P(∧2U2)
via Z = Q′ ∩ (P(U1) ⊗ P(∧2U2)). The quadric Q′ is defined by a symmetric linear map
q′∶ (U1 ⊗∧2U2) → (∧2U1 ⊗U2). The graph of such a symmetric map q′ is a Lagrangian
subspace that we denote ĀQ ⊂ (∧2U1 ⊗ U2) ⊕ (U1 ⊗ ∧2U2). We shall prove that the
image ψQ(F (Y )) coincides with the first degeneracy locus

D
ĀQ

1 ⊂ C(P(∧2U1) × P(U2)).
Furthermore by studying fibers of the map we obtain a factorization ψQ = ρ○φ with φ a

P1 fibration and ρ a 2:1 map branched exactly in D
ĀQ

2 . Combining this with Theorem
0.1 we obtain:

Theorem 0.2. The Hilbert scheme of conics on a general Verra fourfold Y = Q ∩
C(P(U1)×P(∧2U2)) admits a P1-fibration (a smooth map whose all fibers are isomorphic
to P1) over the IHS fourfold XĀQ

∈ U . Moreover, a general IHS fourfold X ∈ U appears

in this way.

As a consequence of the proof of Theorem 0.2 we observe furthermore that in the

above notation the surface D
ĀQ

2 is on one hand isomorphic to the fixed locus of an
antisymplectic involution on the IHS fourfold XĀQ

and on the other it admits an étale
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double cover by the Hilbert scheme of conics on the Verra threefold Z (see Proposition
3.6).

0.4. Moduli space of twisted sheaves. In Section 4 we show a further alternative
construction of the elements of U : as moduli spaces of twisted sheaves [Yos06] on K3
surfaces. More precisely we prove:

Theorem 0.3. A general fourfold X ∈ U is isomorphic to the moduli space of stable
twisted sheaves on a polarized K3 surface of degree 2 with a two-torsion Brauer element.

0.5. Properties. Our main motivation to study the family U is to understand the
relation between the three geometric constructions considered. As a result we present
relations of different points of view: Hodge-theoretic, moduli-theoretic, geometric, and
arithmetic. In particular we prove, that the generic element of U has Picard group of
rank 2 does not admit any polarization of Beauville degree 2 and is not isomorphic to
a moduli space of sheaves on a K3 surface. Moreover, each element of the family U
admits two Lagrangian fibrations and is a 8 ∶ 1 ramified cover of P2 × P2.

In section 2 we also discuss our construction in the context of the classification of
automorphisms of IHS fourfolds of type K3[2]. In particular, we shall see that U is the
unique 19-dimensional irreducible family of IHS fourfolds of type K3[2] that is not in
the closure of the family of double EPW sextics, such that each element admits an anti-
symplectic involution [OW13]. In particular, the family U can be seen as a component

of the hyperelliptic locus of the moduli space of polarized IHS fourfolds of type K3[2]

with q = 4. Indeed, for a general IHS fourfold of type K3[2] with polarization of
Beauville degree q = 4 the map defined by the polarization is birational. The following
remains a challenge:

Problem 0.4. Describe the generic polarized IHS fourfold of type K3[2] of Beauville
degree q = 4.

The description as double covers of Lagrangian degeneracy loci can also be applied
to study degenerations of the family U and permit to complete the classification of
geometric realizations of automorphisms of IHS of type K3[2] given in [MW15]. Note
that as a direct consequence from [MW15, §5.1] we obtain the following:

Corollary 0.5. Any IHS fourfold X of type K3[2] that admits non-symplectic auto-
morphism of prime order p ≠ 3,23 is either in the closure of the family of double EPW
sextics or in the closure of the family U , or X is isomorphic to a moduli space of stable
objects on a K3 surface and the automorphism is induced from an automorphism of
the K3 surface.

Finally in section 5 we study the invariants of the two dimensional fixed loci of
the involution on the elements from the family U . Recall that Beauville studied the
invariants of the fixed loci of antisymplectic involutions on IHS fourfolds in general. In
the case of 19-dimensional families of involutions on IHS fourfolds with b2 = 23 it follows
from [Bea11, Theorem 2] that the invariants of the fixed locus F are K2

F = 288 and
χ(OF ) = 37. Using Proposition 3.6 we are able to deduce the invariants of a Hilbert
schemes of conics on a Verra threefold Z. The computation of all invariants is included
in Proposition 5.1.

0.6. Relation to Kummer surfaces. In section 1, we describe a ”Baby case” of
our constructions by presenting two constructions of the Kummer surfaces first as
Lagrangian degeneracy loci (as in [EPW01, Theorem 9.2]) and next as a quotient of
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the base of a fibration on the Hilbert scheme of (1,1)-conics on a quadric section of
a cone C(P1 × P2) ⊂ P6 over the Segre embedding P1 × P2 ⊂ P5. The relation to the
description of the EPW quartic section is explained in Section 3.1. In particular, we
shall see that the EPW quartic section admits two fibrations by Kummer surfaces.
The descriptions of EPW quartic sections via Lagrangian degeneracy loci and Hilbert
scheme fibration restrict to the obtained descriptions of Kummer surfaces.

Furthermore, in Section 1 we provide in addition a third construction for a general
Kummer surface: as a component of the discriminant locus of the system of quadrics
containing the Verra fourfold, or equivalently as the associated symmetric degeneracy
locus.
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L. Manivel for helpful comments. A. Iliev was supported by SNU grant 0450-20130016,
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Ranestad by RCN grant 239015.

0.7. Notation. Let us explain here some of the notation used in the paper. Let V be
a complex 6-dimensional complex vector space, and fix an isomorphism vol ∶ ∧6V → C.
It induces a natural skew-symmetric form

(0.1) η ∶ ∧3V × ∧3V → C, (ω,ω′) ↦ vol(ω ∧ ω′).
We denote by LGη(10,∧3V ) the variety of 10-dimensional isotropic (i.e. Lagrangian)
subspaces of ∧3W with respect to η. For any 3-dimensional subspace U ⊂ V , the
10-dimensional subspace

TU ∶= ∧2U ∧ V ⊂ ∧3V

belongs to LGη(10,∧3V ), and P(TU) is the projective tangent space to G(3, V ) ⊂
P(∧3V ) at [U]. Therefore, the family {TU ∣ [U] ∈ G(3, V )} forms a symplectic vector
bundle of rank 10 over G(3, V ).

For any [A] ∈ LGη(10,∧3V ) and k ∈ N, we consider the following Lagrangian degen-
eracy locus, with natural scheme structure [PR97],

DA
k = {[U] ∈ G(3, V ) ∣ dim(A ∩ TU) ≥ k} ⊂ G(3, V ).

The variety DA
2 is an EPW cube. In the present paper we study special EPW cubes

corresponding to the choice of Lagrangian space A ∈ Σ, where

Σ = {[A] ∈ LGη(10,∧3V ) ∣ P(A) ∩G(3, V ) /= ∅}
as in [O’G13] and [IKKR16]. From the same references we recall the notation for the
following additional subsets of LGη(10,∧3V ):

∆ = {[A] ∈ LGη(10,∧3V ) ∣ ∃v ∈ V ∶dimA ∩ (v ∧ (∧2V )) ≥ 3},

Γ = {A ∈ LGη(10,∧3V ) ∣ ∃[U] ∈ G(3, V )∶dimA ∩ TU ≥ 4}.
For [U1] ∈ P(A) ∩ G(3, V ) the Lagrangian space A ⊂ ∧3V is contained in (∧3U1)�,

and thus defines a Lagrangian space ĀU1 ⊂ (∧3U1)�/(∧3U1). Clearly

TU ⊂ (∧3U1)� ⊂ ∧3V

for any [U] ∈ G(3, V ) ∩ P(TU1) so we define

D
ĀU1

k = {[U] ∈ G(3, V )∩P(TU1) ∣ dim(ĀU1∩(TU/(∧3U1))) ≥ k} = G(3, V )∩P(TU1)∩DA
k+1.
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The variety D
ĀU1
1 is an EPW quartic section.

Denote after O’Grady [O’G13]:

Σ̃ ∶= {([U], [A]) ∈ G(3, V ) × LG(10,∧3V ) ∣ ∧3 U ⊂ A},

Σ̃(d) ∶= {([U], [A]) ∈ Σ̃ ∣ dim(A ∩ (∧2U ∧ V )) ≥ d + 1},
ΘA ∶= {[U] ∈ G(3, V ) ∣ ∧3 U ⊂ A}.
Σ+ = {[A] ∈ Σ ∣ Card(ΘA) > 1},

If π∶G(3, V ) × LG(10,∧3V ) → LG(10,∧3V ) is the projection, then we set Σ[d] ∶=
π(Σ̃(d)).

1. Kummer surfaces–the first case

In this section we present a special construction of the Kummer quartic surface as
a first Lagrangian degeneracy locus and at the same time as a symmetric degeneracy
locus, as well as the base of a fibration on the Hilbert scheme of conics on a Fano
threefold. This shows, in particular, that the Kummer quartic can be seen as the
”baby case” of the EPW sextic construction. In the section 3.1 we shall see that the
Kummer quartic is a building block in the construction of our 19-dimensional family
U .

1.1. Kummer surfaces as Lagrangian degeneracy loci. Denote by V = V2⊕V4 the
complex 6-dimensional vector space decomposed in the direct sum of a 2-dimensional
space V2 and a 4-dimensional space V4. Set an isomorphism vol ∶ ∧6V = ∧2V2⊗∧4V4 → C
by fixing isomorphisms voli ∶ ∧iVi → C. The isomorphism induces a natural skew
symmetric form

(1.1) η ∶ ∧3V × ∧3V → C, (ω,ω′) ↦ vol(ω ∧ ω′),
which restricts to a nondegenerate skew symmetric form η2,4 on the 12-dimensional
subspace

V2,4 = V2 ⊗ ∧2V4 ⊂ ∧3V.

For each v ∈ V4 the 6-dimensional subspace

Fv ∶= V2 ⊗ V4 ∧ v ⊂ V2,4

is Lagrangian with respect to η2,4. Let A ⊂ V2,4 be a general Lagrangian 6-space, and
let

DA
i = {[v] ∈ P(V4)∣ rankA ∩ (V2 ⊗ V4 ∧ v) ≥ i}.

Lemma 1.1. DA
1 is a Kummer quartic surface singular in DA

2 ; a set of 16 points.

Proof. Let LG(6, V2,4) denote the Lagrangian Grassmannian parameterizing the La-
grangian subspaces of V2,4, and let F be the universal rank 6 quotient bundle on
LG(6, V2,4). The map

φ ∶ P(V4) → LG(6, V2,4); [v] ↦ [Fv]
is an embedding, and the pullback φ∗(F) is a rank 6 bundle FP(V4)

on P(V4). By

construction Fv is a direct sum of two copies of a plane P(V4 ∧ v) ⊂ P(∧2V4), so FP(V4)

is a direct sum of two copies of a bundle F0 on P(V4) with total Chern class c(F0) =
1 + 2h + 2h2, where h is the class of hyperplane in P(V4). Therefore FP(V4)

has total
Chern class

c(FP(V4)
) = 1 + 4h + 8h2 + 8h3 + 4h4.
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The class in P(V4) of the degeneracy DA
i is now the degeneracy of the natural map

φ∗(A) → FP(V4)
. The first bundle φ∗(A) is trivial, so, by the formulas of Pragacz and

Ratajski [PR97, Theorem 2.1], these degeneracy classes are given by the Chern classes
of FP(V4)

:

[DA
1 ] = c1(FP(V4)

) = 4h, [DA
2 ] = (c1c2 − 2c3)(FP(V4)

) = 16h3.

�

Remark 1.2. Similarly, for any 3-dimensional subspace U ⊂ V4, the subspace

V2 ⊗ ∧2U ⊂ V2,4

is Lagrangian with respect to η2,4. The degeneracy loci

D̂A
i = {[U] ∈ P(V ∨

4 )∣ rankA ∩ (V2 ⊗ ∧2U) ≥ i}, (i = 1,2)
are then again a Kummer surface D̂A

1 and 16 points D̂A
2 forming the singular locus of

D̂A
1 .

The Lagrangian degeneracy loci DA
i , may also be interpreted as symmetric degener-

acy loci:

1.2. Kummer surfaces as symmetric degeneracy loci. Fix a decomposition V4 =
⟨v0⟩ ⊕ V3 and the Lagrangian subspace Fv0 = V2 ⊗ V4 ∧ v0 ≅ V2 ⊗ V3, and let B ⊂ V2,4

be a Lagrangian subspace such that Fv0 ∩ B = 0. Then B is naturally isomorphic to
F∨

v0
≅ V ∨

2 ⊗∧2V3. The Lagrangian spaceA is then the graph in V2,4 = Fv0⊕B ≅ Fv0⊕F ∨

v0
of

a linear symmetric map Fv0 → F∨

v0
. Composing with the natural isomorphism V2⊗V3 →

Fv0 and its transpose F∨

v0
→ V ∨

2 ⊗ ∧2V3, we obtain a linear map

qA ∶ V2 ⊗ V3 → V ∨

2 ⊗ ∧2V3

inducing a symmetric bilinear form that, by abuse of notation, we shall denote by the
same name

qA ∶ (V2 ⊗ V3) × (V2 ⊗ V3) → C.
Denote by QA = {[α]∣ qA(α,α) = 0} ⊂ P(V2 ⊗ V3) the quadric defined by qA. Abusing
notation again QA will also be the quadric polynomial defined by QA(α) ∶= qA(α,α)
defining the quadric QA. Similarly, for every v ∈ V3 the map (v2 ⊗ v3) ↦ v2 ⊗ v3 ∧ v
extends linearly to a symmetric bilinear map

qv ∶ (V2 ⊗ V3) × (V2 ⊗ V3) → C.
Denote by Qv = {[α]∣ qv(α,α) = 0} ⊂ P(V2 ⊗ V3) the quadric defined by qv and again
also the quadratic polynomial defining the quadric. Notice that Qv vanishes on the
Segre 3-fold

Σ2,3 = {[v′2 ⊗ v3] ∈ P(V2 ⊗ V3)∣ v2 ∈ V2, v3 ∈ V3},
and in fact [v] ↦ Qv defines an isomorphism

P(V3) → P(H0(IΣ2,3(2))).
Let SA = Σ2,3 ∩QA. Then there is similarly a natural isomorphism

V4 ≅H0(ISA
(2)); v + λv0 ↦ qv + λqA.

Let
Di = {[v] ∈ P(V4)∣ corank qv ≥ i}

be the i-th degeneracy locus in P(V4) of the linear system of quadrics {Qv ∣[v] ∈ P(V4)}.
Since the quadrics in the ideal of Σ2,3 have rank 4, i.e. corank 2, we get that D1

contains the plane P(H0(IΣ2,3(2))) with multiplicity 2, and D2 contains this plane
8



with multiplicity 1. The relation between the Lagrangian loci DA
i and the symmetric

loci Di is described in the following:

Lemma 1.3. DA
i ∪ P(H0(IΣ2,3(2))) = Di

Proof. It suffices to show that if β = qA(α) and (α ∧ v0 + β) ∈ Fv+λv0 ∩A , then

(qv + λqA)(α) = 0.

To show this we may assume that

α = v2 ⊗ v3 + v′2 ⊗ v′3 ∈ V2 ⊗ V3

and let
qA(α) = β = v2 ⊗ β1 + v′2 ⊗ β2

with βi ∈ ∧2V3. Then

v0 ∧ α + β ∈ A ∈ Fv+λv0 ∩A iff (v0 ∧ α + β) ∧ (v + λv0) = 0.

The right hand side is

v0 ∧ α ∧ v + β ∧ (v + λv0) =
v2 ⊗ (v3 ∧ v ∧ v0 + β1 ∧ v + λβ1 ∧ v0) + v′2 ⊗ (v′3 ∧ v ∧ v0 + β2 ∧ v + λβ2 ∧ v0) = 0

and is equivalent to

β1 ∧ v = β2 ∧ v = 0 and λβ1 = −v3 ∧ v, λβ2 = −v′3 ∧ v.
But then

(qv + λqA)(α) = v2 ⊗ v3 ∧ v + v′2 ⊗ v′3 ∧ v + λv2 ⊗ β1 + λv′2 ⊗ β2

= v2 ⊗ v3 ∧ v + v′2 ⊗ v′3 ∧ v − v2 ⊗ v3 ∧ v − v′2 ⊗ v′3 ∧ v = 0

so the implication and the lemma follows. �

Remark 1.4. The intersection SA = Σ2,3 ∩ QA is a del Pezzo surface of degree 2.

The plane P(H0(IΣ2,3(2))) ⊂ P(H0(ISA
(2))) intersects the Kummer surface DA

i ⊂
P(H0(ISA

(2))) in a plane quartic curve. One may show, that for general A, this
curve is smooth. Considering the similar symmetric degeneracy locus of quadrics for
a hyperplane section SA ∩H and a double hyperplane section SA ∩H ∩H ′, one may
show that the corresponding plane quartics are a singular quartic and a double conic,
respectively.

That the symmetric degeneracy locus D1 ⊂ P(H0(ISA
(2))) has a component that is

a Kummer surface can be seen considering conics on SA. The surface D1 is clearly a
sextic, being the discriminant of a space of quadrics in P5. Since the quadrics in the
ideal of the Segre cubic scroll all have rank 4, the plane P(H0(IΣ2,3(2))) is a component
of multiplicity 2 in D1, so the residual component is a quartic surface. We show that
16 pairs of conic curves on SA correspond to 16 planes in P(H0(ISA

(2))) that each
contain 6 rank 4-quadrics that contain SA, but not Σ2,3. Furthermore there are 16
rank 4-quadrics on the quartic surface in D1 outside the plane P(H0(IΣ2,3(2))), so the
quartic is a Kummer surface.

Let π1 ∶ SA → P1 and π2 ∶ SA → P2 be the two projections to the factors of Σ2,3. Then,
for a general quadric QA every line in the intersection SA = Σ2,3 ∩QA is contracted by
the map π1.

Proposition 1.5. Assume that SA is smooth and that every line in SA is contracted
by π1. Then

(1) SA contains 12 lines, that form the components of 6 singular conics.
9



(2) SA contains 32 smooth conic sections that are not fibers of π1. They form 16
pairs that each intersect in a scheme of length 2.

(3) SA contains 32 pencils of twisted cubic curves, that are pairwise complementary
in hyperplane sections.

Proof. The fibers of the projection π1 ∶ SA → P1 are plane conics, so SA is birational to
a ruled surface. Let H be the class of a hyperplane section on A and F the class of a
fiber, then the canonical divisor is, by adjunction on Σ2,3,

KSA
= −2H + F.

So K2
SA

= 2 and SA is isomorphic to a rational ruled surface blown up in 6 points, and

therefore has 6 singular conics, i.e. 12 lines that intersect in 6 pairs and (1) follows.
Consider next the projection π2 ∶ SA → P2. It is 2 ∶ 1 and given by divisors in the class

H −F . The general curve in this class is an elliptic quartic curve which is mapped 2 ∶ 1
onto a line with 4 branch points. In particular, the branch curve in P2 is a quartic curve
with 28 bitangent lines. The preimage in SA of each of these lines is a pair of rational
curves intersecting in 2 points lying over the two branch points. Now, every line L in
SA is mapped to a line by π2, and π−1

2 (π2(L)) is the union of L and a twisted cubic
curve CL with C2

L = −1. Since there are 12 lines on SA, there must be 16 bitangents to
the branch curve whose preimage in SA does not contain a line. Since the preimages
have degree 4 on SA, they must decompose into two smooth conics that intersect in a
scheme of length 2. On the other hand, any conic that is not in a fiber of π1 must be
section of π1 and is therefore mapped to a line by π2, so (2) follows.

Notice that each of these conic sections have self intersection −1 and intersect 15
other conic sections among the 32 in one point.

Consider any conic section C that is a section of π1, and its complement C ′ in the
preimage of its image by π2. Then C intersect 6 lines in SA, one from each singular
fiber of π1, while C ′ intersect the remaining 6. Let L be on of the lines intersecting C,
then the divisor class C+L contains a pencil of twisted cubic curves without basepoints
on SA. If L′ is the line in SA that intersect L, then C ′ +L′ contains a pencil of twisted
cubic curves without basepoints and C +L+C ′ +L′ =H. Now, if C ′′ is a conic section
in SA that do not intersect C, and L′′ is a line that intersect C ′′ but neither of C and
L, then (C +L) ⋅ (C ′′ +L′′) = 0 and the two divisor classes C +L and C ′′ +L′′ coincide.
Since (C ′ + L′) ⋅ (C ′′ + L′′) = 3, we also have C ′ ⋅C ′′ = C ′ ⋅ L′′ = C ′′ ⋅ L′ = 1. Let L′′ be
one of the 5 lines in SA besides L′ that do not intersect C, then C ′ ∪ L′ ∪ L′′ spans a
hyperplane, so the divisor class H − C ′ − L′ − L′′ contains a unique curve C ′′, a conic
section that must be a section of π1. We may conclude that that in the pencil ∣C +L∣
of twisted cubic curves there are 6 singular fibers. We conclude that each conic section
C that is a section of π1 is a component of a fiber in 6 pencils of twisted cubic curves,
and that each such pencil has 6 singular fibers. Adding up we find 16 pairs of base
point free pencils of twisted cubic curves on SA and (3) follows. �

Notice that the linear span of each twisted cubic curve is contained in unique quadric
that contains SA, a quadric of rank at most 4 that does not belong to the ideal of Σ2,3.
A hyperplane section of this quadric that contains the twisted cubic, will contain a
twisted cubic of the complementary pencil, so the quadric must have rank 4. On the
other hand any rank 4 quadric in the ideal of SA that does not contain Σ2,3, will define
on SA two base point free pencils of twisted cubic curves. We may therefore conclude:

Corollary 1.6. In the ideal of SA there are exactly 16 quadrics of rank 4 that do not
contain Σ2,3. Each of them define a pair of base point free pencils of twisted cubic
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curves on SA. Furthermore, let C and C ′ be a pair of conics in SA that intersect in a
scheme of length 2 and let P and P ′ be the planes spanned by these conics. Then the
net of quadrics that contain SA and P contains also P ′, and the net contains exactly 6
rank 4-quadrics that do not contain Σ2,3.

Proof. It remains only to remark that each quadric in the net that contain SA and P
contain both C ′ and the line of intersection P ∩ P ′, so also P ′. �

The dual surface K∨ to a Kummer quartic surface K is also a Kummer quartic, with
each plane tangent along a conic through 6 nodes on K corresponding to a node on
K∨, so we conclude:

Corollary 1.7. Let DA
1 ⊂ P(H0(ISA

(2))) be the Kummer surface, such that D1 =
DA

1 ∪ P(H0(IΣ2,3(2)). Then the dual Kummer surface

(DA
1 )∨ ⊂ P(H0(ISA

(2))∨)
is singular in each point [H0(ISA∪⟨C⟩(2))] ∈ P(H0(ISA

(2))∨), where C ⊂ SA is any of
the 32 conics whose spanning plane ⟨C⟩ is not contained in Σ2,3. These conics occur

in pairs that define the same point, thus accounting for the 16 nodes of (DA
1 )∨.

1.3. Kummer surfaces from a Hilbert scheme of conics. We relate the La-
grangian and symmetric descriptions of Kummer surfaces to the Hilbert scheme of
conics in a certain Fano threefold.

First we note a general lemma that identifies the discriminant locus of a family of
quadrics with base locus a quadric section of a cone with the discriminant of the family
of quadrics defining the branch locus of the induced double cover.

Lemma 1.8. Let X ⊂ Pn be a manifold defined by quadrics and let CX ⊂ Pn+1 be
a cone over X with vertex p ∈ Pn+1. Let Q be a general quadric form in Pn+1. Let
YQ = CX ∩ {Q = 0} and let Yr ⊂ X be the branch locus of the 2 ∶ 1 map induced by
the projection from p of YQ onto X. Let DCX ⊂ P(H0(Pn+1, ICX(2))) and DYQ ⊂
P(H0(Pn+1, IYQ(2))) be the discriminants. The projective space P(H0(Pn+1, ICX(2)))
is a hyperplane in P(H0(Pn+1, IYQ(2))), so we consider the inclusions

DCX ⊂DYQ ⊂ P(H0(Pn+1, IYQ(2))).
Similarly, we consider the inclusions in P(H0(Pn, IX(2))) and P(H0(Pn, IYr(2)))

DX ⊂DYr ⊂ P(H0(Pn, IYr(2))).
Then there exists a linear isomorphism P(H0(Pn, IYr(2))) → P(H0(Pn+1, IYQ(2))) map-
ping DYr ∖DX isomorphically to DYQ ∖DCX .

Proof. Observe that in an appropriate choice of coordinates in Pn+1 we have

Q(z, x0, . . . , xn) = z2 −Q′(x0, . . . , xn)
and p is the point (0, . . . ,0,1). It is the clear that in this setup Yr is defined in Pn
with coordinates x0, . . . xn as X ∩ {(x0 ∶ ⋅ ⋅ ⋅ ∶ xn)∣Q′(x0 ∶ ⋅ ⋅ ⋅ ∶ xn) = 0}. Note that
H0(ICX(2)) =H0(IX(2)). Consider the map:

φ ∶H0(Pn, IYr(2)) →H0(Pn+1, IYQ(2))
such that φ∣H0(IX(2)) = id and φ(Q′) = Q. Clearly φ is an isomorphism that doesn’t
change the corank of the quadrics that do not belong to IX(2), while it increases the
corank by one for each quadric in IX(2). The complement DYr ∖ DX is therefore
isomorphic to DYQ ∖DCX . �
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Consider the 6-space P(C⊕ (V2 ⊗ V3))(= P6), a general quadric hypersurface QA in
this space and the 3-fold obtained as the intersection

TA = C(P(V2) × P(V3)) ∩QA ⊂ P(C⊕ (V2 ⊗ V3)).
Denote by p the vertex of C(P(V2)×P(V3)), and letHA,p be the polar of p with respect to
the quadric QA, and let QA,p = QA∩HA,p and SA = TA∩HA,p. Following Lemma 1.8, the
restriction map H0(P(C⊕(V2⊗V3),ITA(2)) →H0(HA,p,ISA

(2)) is an isomorphism not
just between the vector spaces, but also between the components of the discriminants
residual to the planes P(H0(IC(P(V2)×P(V3))

(2))) and P(H0(IΣ2,3(2))), respectively.

The discriminant in P(H0(ITA(2))) is the union of the plane P(H0(IC(P(V2)×P(V3))
(2)))

and a surface that we therefore may identify with the Kummer surface DA
1 . Dual to

DA
1 is the Kummer surface (DA

1 )∨ ⊂ P(H0(ITA(2))∨.
The 3-fold TA has natural projections, π1 ∶ TA → P(V2) and π2 ∶ TA → P(V3). A

conic in TA that is mapped birationally to P(V2) and birationally onto a line in P(V3)
is called a (1,1)-conic. We denote by F (TA) the Hilbert scheme of (1,1)-conics in TA.

Proposition 1.9. F (TA) admits a morphism

ψQA
∶ F (TA) → (DA

1 )∨ ⊂ P(H0(ITA(2))∨

whose general fiber is a pair of P1’s.

Proof. The proof requires several lemmas. First we define ψQA
. For any (1,1)-conic

C ⊂ TA we let PC be the plane spanned by C. Then the subspace

HC ∶=H0(ITA∪PC
(2)) ⊂H0(ITA(2))

has codimension one, and hence defines a point in

[HC] ∈ P(H0(ITA(2))∨.
We shall show that (DA

1 )∨ is the image of the map

ψQA
∶ F (TA) → P(H0(ITA(2))∨, [C] ↦ [HC].

First, however, we show that the general fiber of ψQA
is a pair of P1’s.

Lemma 1.10. Assume that QA is general, so that TA is smooth. Let [C] ∈ F (TA),
then the subscheme defined by the net of quadrics HC is a complete intersection, the
union of TA and a quadric threefold QC of rank at most 4. For general C, the quadric
QC has rank 4 with singular point pC ∉ TA, and the intersection QC ∩ TA is a Del
Pezzo quartic surface inside TA. The two pencils of planes in QC , define two pencils
of (1,1)-conics on TA.

Proof. We first show that the quadrics in HC define a complete intersection. Note that
since C is a (1,1)-conic, the plane PC is not contained in the cone C(P(V2) × P(V3)),
so the net of quadrics HC cannot contain the cone. Therefore, the net of quadrics HC

contains a pencil of quadrics that contain this cone. The base locus of this pencil is
the union of the cone and a P4

C that intersects the cone in a quadric 3-fold QCC . If
the net of quadrics HC contains the P4

C , then QCC is a component of TA, against the
genericity of TA. Therefore every component in the base locus of HC has codimension
3 and HC defines a complete intersection.

This base locus is therefore the union of TA and a quadric 3-fold QC in P4
C . Since

QC contains the plane PC , it has rank at most 4, with equality for general C. The
intersection TA ∩QC = QCC ∩QC is a Del Pezzo surface, which is smooth for a general
C. In particular, the singular point pC of the quadric QC cannot lie on this surface.
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The two pencils of planes in QC , intersect TA in two pencils of conics, both of type
(1,1). The fiber of the map ψ−1

Q (HC) is therefore two disjoint P1’s. �

Corollary 1.11. The Hilbert scheme of (1,1)-conics F (TA) is a threefold.

Proof. The general net of quadrics H ⊂ H0(ITA(2)) defines a reducible complete in-
tersection TA ∪ Q, where Q is a quadric threefold. The quadric Q is singular for a
codimension one, i.e. 2-dimensional family of nets H, in which case the pencil of
planes in Q intersect TA in (1,1)-conics. �

To identify the image of ψQA
with the Kummer surface (DA

1 )∨, we show that the net
of quadrics HC ⊂H0(ITA(2) defines a plane P(HC) that is tangent to the discriminant

DA
1 , so that the point [HC] ∈ (DA

1 )∨.
First we show that when C is a (1,1)-conic on TA, then the net of quadrics HC

contains a quadric Qc that is singular in the base locus of HC .

Lemma 1.12. Let [C] ∈ F (TA), and let QC be the quadric 3-fold of rank at most 4 in
P4
C , such that the base locus of HC is TA∪QC . Let pC ∈ QC be the singular point. Then

there is at least one quadric Qc ⊂ P(C⊕ V2 ⊗ V3) that belongs to HC and is singular at
pC .

Proof. The net of quadrics HC defines a complete intersection 3-fold TA∪QC of degree
8, and QC ⊂ P4

C . There is a pencil of hyperplanes in P(C ⊕ V2 ⊗ V3) that contain P4
C .

Every quadric in HC contains pC ∈ QC , and has a tangent space at pC that contains
P4
C , so one of these quadrics, say Qc is singular at the point pC . �

The next lemma implies that the plane P(HC) ⊂ P(H0(ITA(2)) is tangent to the

discriminant surface DA
1 .

Lemma 1.13. Let W be a linear space of quadrics in a projective space P and let
Z ⊂ P be the base locus of the quadrics in W . Let D ⊂ W be the discriminant. If
[Q] ∈W is a singular quadric with singular point at p ∈ Z, then the discriminant D is
singular at [Q].
Proof. The tangent space to D in W at a quadric [Q] that is singular at p ∈ P is the
hyperplane in W of quadrics that vanish at p. So if p is in the base locus Z, then the
hypersurface D is singular at [Q]. �

Let C ⊂ TA be a general (1,1)-conic, let HC be the net of quadrics vanishing on
TA ∪ PC , and let TA ∪ QC be the base locus of HC . Let pC ∈ P(C ⊕ V2 ⊗ V3) be the
singular point in the quadric 3-fold QC of rank 4. Then, by Lemma 1.10, pC ∉ TA and,
by Lemma 1.12, pC is a singular point of a quadric Qc in HC . Therefore, by Lemma
1.13, P(HC) ∩DA

1 is singular at [Qc], so P(HC) is the tangent plane to DA
1 at [Qc].

In particular ψQA
maps to (DA

1 )∨. Since F (TA) is a threefold and the fibers are
curves, the map is onto.

�

1.4. From the Hilbert scheme of conics to a Lagrangian degeneracy locus.
Finally we relate the base of the fibration on the Hilbert scheme F (TA) directly to the
Lagrangian degeneracy locus defined in 1.1. Let us consider the space

TA = C(P(V2) × P(V3)) ∩QA ⊂ P(C⊕ (V2 ⊗ V3)).
Choose a coordinate system in C⊕(V2⊗V3) in such a way that QA(z, x) = z2 −Q′

A(x),
i.e. such that z = 0 is the hyperplane polar to the vertex of the cone with respect
to the quadric QA. Note that we then have TA ∩ {z = 0} = SA. The quadric Q′

A
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corresponds to a symmetric map q′A ∶ V2 ⊗ V3 → (V2 ⊗ V3)∨. Let now V4 ∶= Cv0 ⊕ V3.
Thus ∧2V4 = v0 ∧ V3 ⊕ ∧2V3 and:

V2 ⊗ ∧2V4 = (V2 ⊗ v0 ∧ V3) ⊕ (V2 ⊗ ∧2V3).
We shall from now on interpret V2 ⊗ ∧2V4 as a subspace in ∧3(V2 ⊕ V4). Then, up to
choices of volume forms vol2 and vol4 in V2 and V4 respectively, we have a natural skew-
symmetric form η2,4 on V2 ⊗ ∧2V4 induced by the wedge product. The decomposition
V2 ⊗ ∧2V4 = (V2 ⊗ v0 ∧ V3) ⊕ (V2 ⊗ ∧2V3) is then a decomposition into a sum of two
Lagrangian spaces with respect to η2,4. Furthermore the graph A ⊂ (V2 ⊗ V3) ⊕ (V2 ⊗
∧2V3) of q′A is also Lagrangian. Hence to A we can associate a Kummer surface:

D̂A
1 ∶= {[U] ∈ P(V ∨

4 )∣ dim(A ∩ (V2 ⊗ ∧2U)) ≥ 1},
singular in

D̂A
2 ∶= {[U] ∈ P(V ∨

4 )∣ dim(A ∩ (V2 ⊗ ∧2U)) ≥ 2}.
On the other hand the system of quadrics containing TA is naturally isomorphic to

V4 = C⊕ V3 via

V4 = C⊕ V3 ∋ (z, v) ↦ (z ⋅QA +Qv) ∈H0(ITA(2)),
with Qv defined by Qv(z, x) = x ∧ x ∧ v where (z, x) ∈ C⊕ (V2 ⊕ V3).

We, consider the map ψQA
∶ F (TA) → P(H0(ITA(2))∨) = P(V ∨

4 ) associating to a
conic C the system HC of quadrics vanishing on TA and the plane PC spanned by C
and prove:

Proposition 1.14. The map ψQA
factors as ρQA

○φQA
, where φQA

∶ F (TA) →XA is a

P1-fibration and ρQA
∶XA → D̂A

1 is 2 ∶ 1 onto its image. Furthermore XA is an abelian
surface, and ρQA

is a double cover of its Kummer surface.

In Proposition 1.9 we showed that (DA
1 )∨ is the image of ψQA

. We shall now see

that the image of ψQA
is in fact also described as D̂1

A.

Lemma 1.15. For any (1,1)-conic C ⊂ TA i.e. [C] ∈ F (TA) we have ψQA
([C]) ∈ D̂A

1 ,

furthermore if C ⊂ SA = TA ∩ {z = 0} then ψQA
([C]) ∈ D̂A

2 .

Proof. Fix the notation above. We start by describing the map ψQA
in coordinates.

Consider three general points (z1, β1), (z2, β2), (z3, β3) ∈ C ⊂ TA ⊂ C(P(V2)×P(V3)). By
assumption, βi ∈ V2⊗V3 are decomposable tensors that can be written as β1 = u1⊗(v0∧
v1), β2 = u2⊗(v0∧v2), β3 = (u1+u2)⊗(v0∧(v1+v2)) (recall that we interpret elements
of V3 as two-forms v0∧∗) for appropriate choice of basis (u1, u2) of V2 and (v1, v2, v3) of
V3 satisfying vol4(v0∧v1∧v2∧v3) = 1, vol2(u1∧u2) = 1 . We keep this basis until the end
of the proof. Clearly the component of ψQA

(C) ∈ P(V ∨

4 ) = P(C⊕ ∧2V3) corresponding
to the part ∧2V3 is then v1 ∧ v2. We need to determine the remaining part of ψQA

(C).
Let αi = q′A(βi) ∈ V2 ⊗ ∧2V3 which is equivalent to αi + βi ∈ A ⊂ (V2 ⊗ V3) ⊕ (V2 ⊗ ∧2V3)
and implies also Q′

A(βi) = αi∧βi. Since A is Lagrangian we have (αi+βi)∧(αj +βj) = 0
for all i, j which implies αi ∧ βj = αj ∧ βi =∶ ci,j for i ≠ j. Now

QA(λ1(zi, βi) + λ2(zj , βj)) = (zi + λzj)2 −Q′

A(λ1βi + λ2βj) =
= (λ1zi + λ2zj)2 − (λ1αi + λ2αj) ∧ (λ1βi + λ2βj)

= λ2
1QA((zi, βi)) + λ2

2QA((zj , βj)) + 2λ1λ2(zizj − ci,j).
But QA((zi, βi)) = 0, since (zi, βi) ∈ C ⊂ TA. So we deduce that

QA(λ1(zi, βi) + λ2(zj , βj)) = 2λ1λ2(zizj − ci,j)
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Now

(t0QA + t1Q(v1∧v2)
∗)(λ1(zi, βi) + λ2(zj , βj)) = 2t0λ1λ2(zizj − ci,j) + 2t1λ1λ2

it follows that the ψQA
(C) = [(zizj − ci,j , v1 ∧ v2)] ∈ P(C ⊕ ∧2V3)) which means, in

particular, that:

z1z2 − c1,2 = z1z3 − c1,3 = z2z3 − c2,3 =∶ cC .
If now UC =< [(cC , v1 ∧ v2)] >⊥⊂ C⊕ V3 we have

∧2UC = {γ ∈ (v0 ∧ V3) ⊕ ∧2V3∣γ ∧ v1 ∧ v2 = γ ∧ v1 ∧ (cCv3 + v0) = γ ∧ v2 ∧ (cCv3 + v0) = 0}

We deduce

V2 ⊗ ∧2UC = {ω ∈ V2 ⊗ ∧2V4∣ω ∧ v1 ∧ v2 = ω ∧ v1 ∧ (cCv3 + v0) = ω ∧ v2 ∧ (cCv3 + v0) = 0}

We shall prove that A ∩ (V2 ⊗ ∧2UC) ≠ 0. We know ∑3
i=1 λi(αi + βi) ∈ A for λi ∈ C.

It is therefore enough to prove that the following system of equations has a nonzero
solution (λ1, λ2, λ3):

E1(λ1, λ2, λ3) ∶= (
3

∑
i=1

λi(αi + βi)) ∧ v1 ∧ v2 = 0

E2(λ1, λ2, λ3) ∶= (
3

∑
i=1

λi(αi + βi)) ∧ v1 ∧ (v0 + cCv3) = 0

E3(λ1, λ2, λ3) ∶= (
3

∑
i=1

λi(αi + βi)) ∧ v2 ∧ (v0 + cCv3) = 0

Observe now that E1(λ1, λ2, λ3) ≡ 0 since both αi ∧ v1 ∧ v2 = 0 and βi ∧ v1 ∧ v2 = 0.
Furthermore, we have:

E2(λ1, λ2, λ3) ∧ v1 = E2(λ1, λ2, λ3) ∧ v2 = E2(λ1, λ2, λ3) ∧ v3 = E2(λ1, λ2, λ3) ∧ v0 = 0,

as well as

E3(λ1, λ2, λ3) ∧ v1 = E3(λ1, λ2, λ3) ∧ v2 = E3(λ1, λ2, λ3) ∧ v3 = E3(λ1, λ2, λ3) ∧ v0 = 0.

Finally, the three equations

E2(λ1, λ2, λ3) ∧ u1 = z2
1λ1 + z1z2λ2 + z1z3λ3 = 0,

E3(λ1, λ2, λ3) ∧ u2 = z1z2λ1 + z2
2λ2 + z2z3λ3 = 0,

(E2(λ1, λ2, λ3) +E3(λ1, λ2, λ3)) ∧ (u1 + u2) = z1z3λ1 + z2z3λ2 + z2
3λ3 = 0,

are proportional, so the above equations reduce to the following linear equations in
the λi: E2(λ1, λ2, λ3) ∧ u2 = 0 and one of the above proportional equations. It follows
that the system is a rank 2 system of equations, it hence admits a nontrivial solution
implying dim(A ∩ ∧2UC) ≥ 1, which proves:

ψQA
([C]) ∈ D̂A

1 .

If now C is contained in the branch locus SA = TA ∩z = 0, then the system of equations
is of rank 1 since the three above proportional equations vanish, so ψQA

([C]) ∈ D̂A
2 . �

We can now pass to the proof of Proposition 1.14.
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Proof of Proposition 1.14. Note that there is a natural involution on F (TA) induced
by the involution (z, β) ↦ (−z, β). A conic is fixed by this involution if and only if it
is contained in {z = 0}. Note also that from the explicit formula it follows that the
involution acts on the fibers of ψQA

. From Lemma 1.10 we know that such a fiber is
either a disjoint union of two P1s or a single P1. On the other hand, we know that a
nontrivial involution on P1 has two fixed points. By Proposition 1.5, there are exactly
16 pairs of (1,1)-conics on SA = TA ∩ {z = 0}. Each pair intersect in two points, so we
deduce that the involution exchanges the P1s in the general fiber and acts on the P1s
in 16 fibers whose images are the 16 singular points of the Kummer surface D̂A

1 . Hence

the Stein factorization of ψQA
gives the desired decomposition. Moreover, XA → D̂A

1

is a double cover branched in the 16 singular points of D̂A
1 and is therefore an Abelian

surface. �

Note that, as observed above, combining Proposition 1.14 with Proposition 1.9 we
obtain.

Corollary 1.16. The Kummer surface D̂A
1 is projective dual to the Kummer surface

DA
1 .

Remark 1.17. Note that Corollary 1.16 provides further analogies between our de-
scription of Kummer surfaces and that of EPW sextics. Indeed a choice of Lagrangian
A provides two constructions leading to birational and projectively dual varieties D̂A

1

and DA
1 which are both Kummer surfaces. In the context of EPW sextics a choice of

Lagrangian space also gives rise to two birational and projectively dual EPW sextics.

2. First construction - singular EPW cubes

In this section we present the first construction of the family U . Let us first discuss a
natural context where the elements from U appear. We shall investigate IHS fourfolds
deformation equivalent to the Hilbert scheme of two points on a K3 surface (of K3[2]-
type) which admit an antisymplectic involution ι (i.e. that changes the sign of the
symplectic form).

Involutions of K3 surfaces were first studied from a lattice-theoretic point of view
by Nikulin [Nik80]. For higher dimensions a classification of invariant lattices of non-
symplectic automorphisms of prime order was given in [BCS16] and [BCMS16]. The
problem of finding a geometric realization of non-symplectic automorphisms on IHS
fourfolds was addressed in [OW13] and [MW15].

It follows from [Bea11, 3.4, Theorem 2] and [O’G06] that there exists exactly one

irreducible 20-dimensional family of IHS fourfolds of K3[2] type which admit anti-
symplectic involutions. By [O’G06], the invariant polarisation in this family has Beauville
degree q = 2 and the quotient of such an involution for a generic element is a special
sextic hypersurface in P5 called an EPW sextic. In [OW13] the authors classified all
the possible invariant lattices H2(X,Z)ι of 19 parameter families of IHS fourfolds of

K3[2] type. They found that any such lattice is hyperbolic and 2-elementary. In
[OW13, thm. 2.3] they distinguished five families of IHS fourfolds of K3[2]-type with
anti-symplectic involutions. In fact there are only four isomorphism classes of invariant
sublattices H2(X,Z)ι ⊂ H2(X,Z). They are U , U(2), and ⟨2⟩ ⊕ ⟨−2⟩ such that the
generator g with q(g) = −2 has divisibility either 2 or 1 (we call them the cases 1,2,3,4
respectively). Moreover, they found that there is a unique 19-dimensional irreducible
family that admits the invariant lattice from each of the cases 1,2,4 respectively and two
families in the case 3. The families in the cases 1,3,4 admit polarisations of Beauville
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degree q = 2, it is not hard to see [MW15, Rem. 5.7] that they can be described as
families of resolutions of special singular double EPW sextics.

Our aim is to study the geometry of the missing family of IHS fourfolds with involu-
tions from the case 2 above i.e. with invariant lattice U(2). Note that each element of
this family admits a natural polarization of Beauville degree 4 and as proved in [Add16,
Proposition. 4] the generic element of this family is not isomorphic to a moduli space of
sheaves on a K3-surface. Note finally that the family with invariant lattice U also ad-
mits a polarisation of degree q = 4 that is invariant with respect to the non-symplectic
involution.

From [OW13] there is only one possible invariant lattice of rank two

H2(X,Z)ι ∶= {x ∈H2(X,Z)∣ι∗(x) = x}.
that does not admit a polarization of Beauville degree q = 2, namely:

U(2) = [0 2
2 0

] .

Let X be an IHS fourfold with an involution and an invariant lattice U(2). Then,
by [Bea11], the invariant lattice has signature (1,1) for some n. In particular X is
projective. Let h1 and h2 be the generators of the lattice with q(h1) = q(h2) = 0. We
are interested in the invariant polarization h = h1 + h2 of Beauville degree q(h1 + h2) =
4. If (X,H) is a polarized IHS fourfold of type (K3)[2] with q(H) = 4, we infer
H4 = 3 ⋅ (4)2 = 48, and from the Riemann–Roch theorem we find h0(OX(H)) = 10
[Nie03, Theorem 5.2]. Thus, our polarization h gives a map f ∶X → P9 that factors
through the involution ι. Hence, we expect that f is 2 ∶ 1 to a degree 24 fourfold. Our
aim is to describe the image of this map. We shall first show that this image can be
realized as a subset of a degenerated EPW cube and next prove that in fact X is an
element of U .

2.1. Degenerate EPW cubes. In this section we consider double EPW cubes con-
structed from a general Lagrangian subspace A ∈ Σ, in particular with P(A)∩G(3, V ) =
[U1]. Let T be the Lagrangian subbundle T ⊂ OG(3,V ) ⊗ ∧3V whose fiber over [U] ∈
G(3, V ) is T[U] = TU = ∧2U ∧ V . The degeneracy locus DA

2 = {[U] ∈ G(3, V )∣dim(A ∩
TU) ≥ 2} is called an EPW cube. Our 19-dimensional family of IHS fourfolds will be
constructed from the subvariety DA

2 ∩ P(TU1), when P(A) ∩G(3, V ) = [U1].
The following description of a projective tangent space P(TU) to G(3, V ) at [U] is

classical [Don77].

Lemma 2.1. Let [U] ∈ G(3, V ) and P(TU) = P(∧2U ∧ V ) ⊂ P(∧3V ) be the embedded
projective tangent space to G(3, V ) ⊂ P(∧3V ) in [U]. Then the intersection

CU ∶= P(TU) ∩G(3, V )
is a cone in the 9-dimensional linear space P(TU) with vertex [U] over the Segre em-
bedding of P(∧2U) × P(V /U).

Proof. See [Don77, Lemma 3.5]. The tangent space P(TU) is spanned by the spaces U ′

that intersect U in codimension 1. These spaces are naturally parameterized by pairs
(M2,N1), where M2 ⊂ U is 2-dimensional, N1 ⊂ V /U is 1-dimensional and U ′∩U =M2,
U ′/M2 = N1. �

Note that for each [U] ∈ CU1 we have [U1] ∈ P(TU) ∩ P(A). It follows that CU1 ⊂
DA

1 . Observe, that since A is Lagrangian and ∧3U1 ⊂ A then A ⊂ (∧3U1)⊥. Similarly
TU ⊂ (∧3U1)⊥ for each [U] ∈ CU1 . There is moreover an exact sequence:
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(2.1) 0→ OCU1
→ T ∣CU1

→ T̄ → 0,

with T̄ a subbundle of the trivial bundle OCU1
⊗ (∧3V )/(∧3U1) with fibers T̄U =

TU/(∧3U1) over [U] ∈ CU1 . Consider the space

(∧3U1)⊥/(∧3U1) ⊂ (∧3V )/(∧3U1)
equipped with the symplectic form η̄ induced by η. Clearly both Ā = A/(∧3U1) and
the fibers T̄U = TU/(∧3U1) of T̄ are contained in (∧3U1)⊥/(∧3U1) and are Lagrangian
with respect to the symplectic form η̄. The natural map

ι ∶ CU1 → LGη̄(9, (∧3U1)⊥/(∧3U1)); [U] ↦ [T̄U ]
is an embedding, since it is the restriction of the embedding

G(3, V ) → LGη(10,∧3V ), [U] ↦ [TU ]
to CU1 . Denote the corresponding Lagrangian degeneracy loci by

DĀ
k = {[U] ∈ CU1 ∣dim(T̄U ∩ Ā) ≥ k}.

These degeneracy loci are simply the restrictions to ι(CU1) of the universal degeneracy

loci DĀk on LGη̄(9, (∧3U1)⊥/(∧3U1)) [PR97].

Lemma 2.2. Let [A] ∈ (Σ − (Σ+ ∪ Σ[1])) ⊂ LGη(10,∧3W ) such that [U1] ∈ P(A) ∩
G(3, V ). Then CU1 ⊂DA

1 , and DĀ
i = CU1 ∩DA

i+1, when i = 1,2. Furthermore, DĀ
1 is an

intersection of CU1 ⊂ P9 with a quartic hypersurface QA, and DĀ
2 is a surface of degree

72 contained in the singular locus of DĀ
1 .

Proof. First, we simply note that Ā∩ T̄U = (A∩TU)/(∧3U1), so we obtain CU1 ∩DA
i+1 =

DĀ
i . To compute invariants, recall that the P9-bundle P(T ) is the projective tangent

bundle on G(3, V ), so T ∨ fits into an exact sequence

0→ ΩG(3,V )(1) → T ∨ → OG(3,V )(1) → 0.

Therefore T ∨ has total Chern class

c(T ∨) = c(OG(3,V )(1))/(ΩG(3,V )(1))
= 1 + 4σ1 + 8σ2

1 + (8σ2
1 + 6σ1σ2 − 6σ3) + (24σ2

1σ2 − 24σ1σ3)
+ (30σ1σ

2
2 − 30σ2σ3) + (10σ3

2 + 24σ1σ2σ3 − 24σ2
3) + 18σ2

2σ3 + 12σ2σ
2
3 + 4σ3

3

where σi = ci(QG) and QG is the universal quotient bundle on G(3, V ). Furthermore,

by the exact sequence 2.1, ci(T
∨) ∩CU1 = ci(T ∨) ∩CU1 for all i. Applying the Pragacz

Ratajski formulas [PR97, Theorem 2.1] for the classes of the Lagrangian degeneracy

loci DĀ
i we get

[DĀ
1 ] = c1(T

∨) ∩ [CU1] = c1(T ∨) ∩ [CU1] = 4σ1 ∩ [CU1],
so DĀ

1 is an intersection of CU1 ⊂ P9 with a quartic hypersurface QA. Furthermore

[DĀ
2 ] = (c2c1 − 2c3)(T

∨) ∩ [CU1] = (c2c1 − 2c3)(T ∨) ∩ [CU1]
= (c2c1 − 2c3)(T ∨) ∩ [CU1] = (16σ3

1 − 12σ1σ2 + 12σ3) ∩ [CU1].
The class of [CU1] in G(3, V ) is (σ2

2 − σ1σ3) ∩ [G(3, V )], so

degDĀ
2 = ∫

[G(3,V )]

σ2
1 ⋅ (σ2

2 − σ1σ3) ⋅ (16σ3
1 − 12σ1σ2 + 12σ3) = ∫

[G(3,V )]

36σ2
1σ

3
2σ3 = 72.
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The last statement is a standard result on degeneracy loci. �

To proceed with the construction we need to know precisely the singular locus of the

Lagrangian degeneracy locus DĀ
1 .

Lemma 2.3. Let [A] ∈ (Σ − (Σ+ ∪ Σ[1]) and let [U1] be the unique point in Θ(A).

Then the Lagrangian locus CU1 ∩DA
2 = DĀ

1 is smooth outside SĀ = DĀ
2 = CU1 ∩DA

3 .

Moreover, the tangent cone to DĀ
1 in points of SĀ is a cone over a smooth conic curve.

Proof. The proof will be analogous to that of [IKKR16, Lemma 2.9]. Let [U1] be the

unique point in Θ(A). Observe that, by assumption, [U1] ∉ DĀ
1 . Fix [U0] ∈ CU1 ∩DĀ

1

and choose a 3-space U∞ such that U∞ ∩U1 = 0 and U∞ ∩U0 = 0. Let

U = {[U] ∈ G(3, V )∣U ∩U∞ = 0}.
It is an open neighbourhood of [U0] in G(3, V ).

For [U] ∈ U the Lagrangian space TU defines a symmetric linear map TU0 → T∨U0
that

we denote by qU and a corresponding quadratic form on TU0 that we denote by QU .
We shall describe QU in local coordinates. Let (u1, u2, u3), (u4, u5, u6) be a basis for
U0 resp. U∞.

Observe that for any [U] ∈ G(3, V ),
TU ∩ TU∞ = 0↔ U ∩U∞ = 0

and that any such subspace U is the graph of a linear map βU ∶ U0 → U∞. In particular,
there is an isomorphism:

ρ ∶ U→Hom(U0, U∞); [U] ↦ βU

whose inverse is the map

α ↦ [Uα] ∶= [(u1 + α(u1)) ∧ (u2 + α(u2)) ∧ (u3 + α(u3))].
In the given basis for U0 and U∞ we let BU = (bi,j)i,j∈{1...3} be the matrix of the linear
map βU . In the dual basis, we let (m0,M), with M = (mi,j)i,j∈{1...3}, be the coordinates
in

T∨U0
= (∧3U0 ⊕ ∧2U0 ⊗U∞)∨ = (∧3U0 ⊕Hom(U0, U∞))∨

In these coordinates, the map

ι ∶ U ∋ [U] ↦ QU ∈ Sym2T∨U0

is defined by

(2.2) QU(m0,M) = ∑
i,j∈{1...3}

bi,jM
i,j +m0 ∑

i,j∈{1...3}

Bi,j
U mi,j +m2

0 detBU ,

where M i,j , Bi,j
U are the entries of the matrices adjoint to M and BU . To see this,

write the map ∧3U0⊕∧2U0⊗U∞ → ∧3U∞⊕∧2U∞⊗U0 whose graph is ∧3U ⊕∧2U ⊗U∞
in coordinates, where U is the graph of the map U0 → U∞ given by the matrix BU .

Let now qA be the symmetric map TU0 → TU∞ = T∨U0
whose graph is A and QA the

corresponding quadratic form. In this way

DA
l ∩ U = {[U] ∈ U∣dimTU ∩A) ≥ l} = {[U] ∈ U∣ rk(qU − qA) ≤ 10 − l},

hence DA
l is locally defined by the vanishing of the (11 − l) × (11 − l) minors of the

10 × 10 matrix with entries being polynomials in bi,j .
We now consider the restriction of the map ι ∶ [U] ↦ QU to CU1 ∩ U.
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The map f ∶ U0 → U∞, whose graph is U1, has rank 1, since [U0] ∈ CU1 ∩DĀ
1 and

CU1 ∩ U = {g ∈ Hom(U0, U∞)∣rk(g − f) ≤ 1}. After possible changes of basis for U0

and U∞, we may assume that f ∈Hom(U0, U∞) is given by a matrix with one nonzero
entry in the upper left corner. The restriction of the map ι is then given by

(2.3) QU(m0,M) = ∑
i,j∈{1...3}

bi,jM
i,j +m0 ∑

i,j∈{2,3}

Bi,j
U mi,j .

We now observe that all quadrics QU with [U] ∈ CU1 are singular in the point
[U1] with coordinates m0 =m1,1 /= 0 and mi,j = 0; (i, j) /= (1,1). Passing to the quotient
TU0/∧3U1 and denoting the induced quadrics on the quotient space by Q̄U and Q̄A = QĀ
and the corresponding symmetric linear maps by q̄U and qĀ respectively. We have

(2.4) Q̄U(M) = ∑ bi,jM
i,j .

We can now follow the proof of [IKKR16, Lemma 2.9] for the first degeneracy locus

DĀ
1 around [U0]. In U the locus

DĀ
1 ∩U = {[U] ∈ U∩CU1 ∣dim(TU/ ∧3 U1) ∩ Ā) ≥ l} = {[U] ∈ U∩CU1 ∣ rk(q̄U − qĀ) ≤ 9− l},

i.e. DĀ
1 is defined by the determinant of a 9 × 9 symmetric matrix with entries being

regular functions on U ∩ CU1 . We may assume that qĀ is given by a diagonal matrix
with 0’s and 1’s on the diagonal, and let K ∶= ker qĀ = Ā∩TU0/ ∧3 U1. By 2.3, we know
that the differential of the map ι∣CU1

in [U0] maps onto the linear system of quadrics

generating the ideal of the image Ĉ of the projection of the cone CU0 ⊂ P(TU0) from
the point [U1]. In other words, the linear forms of the matrix of polynomials

ῑ ∶ U ∩CU1 ∋ [U] ↦ Q̄U ∈ Sym2(TU0/ ∧3 U1)∨

for a chosen coordinate chart of CU1 in [U0] define the linear system of quadrics con-

taining Ĉ. We then observe that if P(A) ∩ G(3,6) = [U1] then P(A/ ∧3 U1) ∩ Ĉ = ∅
hence K ∩ Ĉ = 0 and remark that Ĉ satisfies the assertion of [IKKR16, Lemma 2.8].
More precisely, we have:

Lemma 2.4. If P ⊂ P(TU0/ ∧3 U1) ∖ Ĉ is a linear subspace of dimension at most 1,
then the restriction map rP ∶H0(P(TU),IĈ(2)) →H0(P,OP (2)) is surjective.

Proof. Note that Ĉ is defined in P8 = P(TU0/ ∧3 U1) by 5 quadrics obtained as 2 × 2
minors of a 3 × 3 matrix of linear forms that do not involve the upper left entry. Since
Ĉ is defined by quadrics the lemma is proven for dimP = 0. If dimP = 1 it is enough
to observe that Ĉ can be seen as a cone over a section of the Grassmannian G(2,5)
by two hyperplanes. Let G = G(2,5) ⊂ P9 and consider the rational map δ ∶ P9 → P4

defined by the quadrics that generate the ideal of G. Observe that the closures of the
fibers of δ are P5 spanned by 4-dimensional quadrics in G. It follows that the image
δ(l) of any line l , with l ∩G = ∅ is a smooth conic. If now CG ⊂ P10 is a cone over G,
then the map defined by quadrics containing CG factorizes as the composition δ ○ πp
of the projection from the vertex p of the cone CG and δ. It follows that δ(πp(l)) is
a conic for any line l ⊂ P10 such that l ∩CG = ∅. This means that the restriction map
from the system of quadrics containing CG to quadrics on the line l is surjective if
l ∩CG = ∅. Now, since Ĉ appears as a section of CG we conclude that the system of
quadrics containing Ĉ contains the system of restrictions of quadrics containing CG.
The latter restricts surjectively onto quadrics on the line P since P ∩ CG = ∅, which
proves the lemma. �
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Let us now denote the components of Φ ∶= det(q̄U − qĀ) of degree i by Φi. If now

[U0] ∈ DĀ
1 ∖DĀ

2 then dimK = 1, then Φ0 = 0 and Φ1 is the linear entry of (q̄U − qĀ)
corresponding to the restrictions to Sym2K. It follows, by Lemma 2.4, that Φ1 ≠ 0

hence DĀ
1 is smooth in [U0]. If now [U0] ∈DĀ

2 , then dimK = 2 so Φ0 = Φ1 = 0 and then
Φ2 is the determinant of the restriction of q̄U − qĀ to Sym2K. Again, by Lemma 2.4,
we get that Φ2 is a rank 3 quadric which concludes the proof.

�

Lemma 2.5. The variety DĀ
1 is integral.

Proof. By Lemma 2.3, DĀ
1 is a divisor in CU1 that is smooth outside the codimen-

sion two locus DĀ
2 ; in particular it is reduced. By Lemma 2.2, the locus DĀ

1 is the
intersection of CU1 with a quartic hypersurface, so if it was reducible, it would have

singularities in codimension one which would contradict Lemma 2.3. Therefore DĀ
1 is

integral. �

From Lemmas 2.3 and 2.5 we conclude that DĀ
1 is an irreducible 4-fold with quadratic

singularities along the surface DĀ
2 . We proceed to construct a natural resolution of

singularities. For this define the incidences

D̃Ā
1 = {([U], [ω]) ∈ CU1 ×G(1, Ā)∣ TU ⊃ ⟨ω⟩},

and
D̃Ā1 = {([L], [ω]) ∈ LGη̄(9, (∧3U1)⊥/(∧3U1)) ×G(1, Ā)∣ L ⊃ ⟨ω⟩},

which fit in the following diagram:

CU1 LGη̄(9, (∧3U1)⊥/(∧3U1))

DĀ
1 DĀ1

D̃Ā
1 D̃Ā1

ι

ι∣
DĀ

1

⊆ ⊆

ᾱ

ι̃

φ

where ᾱ and φ are the projections on the first factor.

Lemma 2.6. The variety D̃Ā
1 as well as the exceptional divisor E of ᾱ are both smooth.

In particular ᾱ is a resolution of singularities of DĀ
1 .

Proof. Once we have proved Lemma 2.3, and observed that DĀ
3 = ∅ the proof is com-

pletely analogous to [IKKR16, Lemma 3.3]. �

We can now perform the construction of a smooth double cover of DĀ
1 branched

in DĀ
2 . Note that the exceptional divisor in D̃Ā

1 is an even divisor. To see this,
denote by H a Plücker hyperplane section on LGη̄(9, (∧3U1)⊥/(∧3U1)), denote by h a
Plücker hyperplane section on G(3, V ) restricted to CU1 , and denote by R a Plücker
hyperplane section on G(1, Ā). Then, by [IKKR16, Lemma 2.4] and the fact that
ι∗(H) = c1(T ∨) ∩CU1) = 4h, the divisor E can be expressed as

E = ι∗(H − 2R) = 4h − 2ι∗(R).
Hence, E is divisible by 2 and there exists a unique double cover f̃ ∶ X̃Ā → D̃Ā

1 branched

along E. Clearly the preimage of f̃−1(E) is contracted by a birational morphism ψ
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defined by some multiple of the system f̃∗ᾱ∗H on X̃Ā. The proof that the image

XĀ = ψ(X̃Ā) of this morphism is smooth is similar to the proof of [IKKR16, Proposition

3.1]. It amounts to observing that the restriction of φ to the strict transform on X̃Ā

of a generic surface linear section of DĀ
1 is the contraction of (−1)-curves on a smooth

surface. Denote by

(2.5) pX ∶XĀ →DĀ
1

the induced double cover, ramified over DĀ
2 .

Let [A] ∈ (Σ − (Σ+ ∪Σ[1] ∪ Γ) and let [U1] = P(A) ∩G(3, V ). In [IKKR16, Section
3] a 6-fold double cover YA → DA

2 ramified along DA
3 is constructed over the second

degeneracy locus DA
2 ⊂ G(3, V ) of the Lagrangian subspace A. Note that our construc-

tion of the double cover pX is just the restriction of that construction to DA
2 ∩ CU1 .

Indeed, we proceed as shown in the diagram 2.6. The intersection DA
2 ∩CU1 coincides

with DĀ
1 and DA

3 ∩ CU1 = DĀ
2 . Also the resolution of singularities D̃A

2 → DA
2 restricts

to the resolution of singularities D̃Ā
1 → DĀ

1 . The double cover ỸA → D̃A
2 restricts to a

double cover of D̃Ā
1 branched along E. It hence follows by uniqueness of double cover

that the strict transform of D̃Ā
1 under the double cover ỸA → D̃A

2 is isomorphic to X̃A.

(2.6)

X̃A
//

((
��

ỸA

��
((

XĀ
//

��

YA

��
D̃Ā

1
//

''
D̃A

2
''

CU1 ∩DA
2 DĀ

1
= // DA

2
// G(3, V )

DĀ
2

OO

// DA
3

OO

Therefore XĀ coincides with the strict transform of DĀ
1 under the double covering

YA →DA
2 . Finally pX is then the restriction of the double cover YA →DA

2 to XĀ:

Proposition 2.7. Let [A] ∈ (Σ − (Σ+ ∪ Σ[1] ∪ Γ), let [U1] = P(A) ∩ G(3, V ) and

pY ∶ YA → DA
2 ⊂ G(3, V ) be 6-fold double cover ramified over DA

3 . Then pX ∶ XĀ → DĀ
1

coincides with the restriction of the double cover pY to the preimage p−1
Y (DA

2 ∩CU1).

We construct in this way a 19-dimensional family, parametrized by

Σ − (Σ+ ∪Σ[1]),
of hyperkähler fourfolds admitting polarizations of degree 48 that define antisymplectic
involutions.

2.2. The construction. We need to prove that XĀ are hyper-Kähler manifolds.

Proposition 2.8. Let [A] ∈ (Σ − (Σ+ ∪ Σ[1] ∪ Γ)), let [U1] = P(A) ∩G(3, V ) and let

pX ∶XĀ →DĀ
1 be the double cover of (2.5). Then XĀ is a smooth manifold with trivial

first Chern class.

Proof. The smoothness of XĀ was noted above, so it remains to compute the canonical

class. For this we start with DĀ
1 , a quartic hypersurface section of the cone CU1 , see

Lemma 2.2, with quadratic singularities along the surface DĀ
2 . Let C̃U1 → CU1 be the

blowup of the cone CU1 in the vertex. Then C̃U1 is a P1-bundle over P2 × P2. The

pullback h to C̃U1 of a hyperplane divisor on P2 × P2, coincides with the pullback of
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a hyperplane divisor on CU1 . The pullback of a canonical divisor on P2 × P2 is −3h,

while the relative canonical divisor over P2×P2 is −h, so the canonical divisor on C̃U1 is

−4h. By adjunction the fourfold DĀ
1 has trivial canonical sheaf. Since the singularities

along the surface DĀ
2 are quadratic, the canonical divisor of the smooth fourfold D̃Ā

1 is

half the class of the exceptional divisor. The double cover X̃Ā, therefore has canonical

divisor equal to the ramification divisor Ẽ. On the smooth fourfold XĀ, this divisor is
blown down, so XĀ has trivial first Chern class. �

Theorem 2.9. There exists a 19-dimensional family of polarized IHS fourfolds (X,H)
such that ∣H ∣ defines a 2 ∶ 1 morphism to P9 and the image is the intersection of a cone
over a Segre product P2 ×P2 with a special quartic QĀ, with the branch locus being the
surface SĀ defined in Lemma 2.2. Moreover, each fourfold in this family admits two
Lagrangian fibrations and a polarization with q = 4.

Let us be more precise. Let A ∈ LGη(10,∧3V ) such that P(A) intersects transversally
G(3, V ) in one point (i.e. [A] ∈ (Σ−(Σ+∪Σ[1])). In this case without, loss of generality
we let XĀ ⊂ YA be the fourfold defined in (2.5) and Proposition 2.8.

In order to prove that XĀ is IHS we need to find a degeneration of XĀ that is
birational to the Hilbert scheme of two points on a K3 surface. For this, we first
consider, for v ∈ V , the 10-dimensional Lagrangian subspace

F[v] ∶= ⟨v⟩ ∧ (∧2V ) ⊂ ∧3V.

Recall that

∆ = {[A] ∈ LGη(10,∧3V )∣ ∃v ∈ V ∶dimA ∩ F[v] ≥ 3}.
We shall use an [A] ∈ Σ ∩∆ to find the suitable degeneration.

By dimension count we infer the following, using the notation of 0.7:

Lemma 2.10. The set (Σ ∩∆) − (Σ+ ∪Σ[1] ∪ Γ) is nonempty of dimension 18.

Proof. By a direct count, we first compute that dim(Σ ∩ ∆) = 53. Let v ∈ V and let
P ⊂ P(F[v]) be a plane. The set of triples F[v], P and [U] ∈ G(3, V )∩P⊥ depend on 5+
(3∗7)+6 = 32 parameters. The set of Lagrangian subspaces A such that P(A) ⊃ ⟨P, [U]⟩
is isomorphic to a LG(6,12) so its dimension is 21. It follows that (Σ ∩∆) contains a
component corresponding to general pairs (P, [U]). We shall compute dimensions of
the intersections of this component with Σ+, Σ[1] and Γ separately:

(1) For a general [A] ∈ Σ+ ∩ ∆, the linear space P(A) contains a pair (P, [U])
and a point [U ′] ∈ G(3, V ) ∩ ⟨P, [U]⟩⊥. Since P and [U] are general, we have
G(3, V ) ∩ ⟨P, [U]⟩ = [U] and

dim(G(3, V ) ∩ ⟨P, [U]⟩⊥) = 5.

It follows that [U ′] ∉ ⟨P, [U]⟩ and the space of choices of U ′ is 5-dimensional.
A dimension count yields 32 + 5 + dim(LG(5,10)) = 52

(2) For a general [A] ∈ Σ[1] ∩ ∆, the linear space P(A) contains a pair (P, [U])
and a line l ⊂ P(TU) through [U]. Since A is Lagrangian we get that l ⊂
P(TU) ∩ ⟨P, [U]⟩⊥, and the number of parameters for A given (P, [U]) and the
line l is dim LG(5,10) = 15

When P and [U] are general the number of parameters for l is

dim(G([U],1,P(TU) ∩ ⟨P, [U]⟩⊥)) = 5.

So summing up we get that Σ[1]∩∆ has dimension 32+5+dim(LG(5,10)) = 52.
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(3) For a general [A] ∈ Γ∩Σ∩∆, the linear space P(A) contains a pair (P, [U]), and
intersects T[U ′] for some [U ′] ∈ G(3, V ) such that dim(P(TU ′) ∩ P(A)) = 3. Let
dim(P(TU ′) ∩ ⟨P, [U]⟩⊥) = 5 + d1 and therefore dim(P(TU ′) ∩ ⟨P, [U]⟩) = d1 − 1.
The set of 4-dimensional subspaces W4 ⊂ ∧3V such that P(W4) ⊂ P(T[U ′]) ∩
⟨P, [U]⟩⊥ and meets ⟨P, [U]⟩ in dimension d1 is a Schubert cycle of dimension
8 for d1 = 0 and 9 for d1 = 1. On the other hand the dimension of the set of
Lagrangian spaces A such that P(A) contains ⟨P(W4),P, [U]⟩ is

dim(LG(2 + d1,4 + 2d1)) =
(2 + d1)(3 + d1)

2
.

To complete the dimension count we compute the dimension of the set of sub-
spaces U ′ corresponding to d1 = 0 and d1 = 1. For d1 = 0 the set of subspaces
U ′ is an open set in G(3, V ), so the dimension is 9, so the set of Lagrangian
subspaces A in this case has dimension 32 + 9 + 3 + 8 = 52. Whereas, for d1 = 1
the set of subspaces U ′ such that P(T[U ′]) ∩ ⟨P, [U]⟩ /= ∅ has dimension 5, so
the set of Lagrangian subspaces A in this case has dimension 32+ 5+ 6+ 9 = 52.

�

Definition 2.11. Let v0 ∈ V . We call LGη(10,∧3V )v0 the set of Lagrangian subspaces
A ⊂ ∧3V that satisfy the following conditions:

(1) There exists a codimension 1 subspace V0 ⊂ V such that ∧3V0 ∩A = 0.
(2) v0 ∈ U for at most one [U] ∈ ΘA.
(3) If v0 ∈ U and [U] ∈ ΘA, then A ∩ (∧2U ∧ V ) = ∧3U

Recall that for A ∈ LG(∧3V )v0 O’Grady defined a surface SA(v0) as follows [O’G13]:
By the first two conditions V = ⟨v0⟩ ⊕ V0. Consider the isomorphism

λ ∶ ∧2V0 → Fv0 = v0 ∧ (∧2V ); α ↦ v0 ∧ α.
Let K0

A = λ−1(A ∩ Fv0) ⊂ ∧2V0. Given a volume form on V0, there is an isomorphism
∧3V0 ≅ ∧2V ∨

0 , and hence the annihilator AnnK0
A ⊂ ∧3V0 defines a linear section F 0

A =
P(AnnK0

A) ∩ Gr(3, V0) ⊂ P(∧3V0). Now, K0
A is 3-dimensional, so the linear section

F 0
A has codimension 3 in Gr(3, V0) and is a Fano 3-fold. The first assumption in 2.11

implies that A is the graph of a linear map

qA ∶ ∧2V0 → ∧3V0 ⊂ ∧3V

such that qA(α) = β ↔ (v0 ∧ α + β) ∈ A. Since A, F[v0]
and ∧3V0 are Lagrangian, the

map qA is symmetric, while kerqA =K0
A, so qA induces an isomorphism

∧2V0/K0
A → AnnK0

A ⊂ ∧3V0

whose inverse defines a quadratic form

Q∗

A ∶ β ↦ vol(α ∧ β), where qA(α) = β
on AnnK0

A. The surface SA(v0) is the intersection F 0
A ∩ {Q∗

A = 0}.
O’Grady proves that if ΘA is finite, then SA(v0) is reduced and irreducible with

explicitly described singular locus. Moreover, if it has du Val singularities, then the

minimal resolution SA(v0) → SA(v0) is a K3 surface [O’G13, Corollaries 4.7 and 4.8].

Lemma 2.12. Let [A] ∈ (Σ∩∆)−(Σ+∪Σ[1]∪Γ) be generic, then there exists a unique
[v] ∈ P(V ) such that dim(A ∩ F[v]) ≥ 3. Moreover, [A] ∈ LG(∧3V )v and the surface
SA(v) is a K3 surface with one node.
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Proof. Consider F[v] for a general v ∈ V and a general projective plane P ⊂ P(F[v]) and
let [U] be a general point in G(3, V ) ∩P⊥. By Lemma 2.10, the general Lagrangian
space A such that P(A) contains [U] ∪P is an element of (Σ ∩∆) − (Σ+ ∪ Σ[1] ∪ Γ).
Clearly A and v then satisfy the assumption of 2.11 i.e. A ∈ LGη(10,∧3V )v.

We need to prove that SA(v) is a K3 surface with one node. We build on the proof
of [O’G13, Proposition 4.6]. The Fano threefold FA = P⊥ ∩G(3, V0) is smooth and the
surface SA(v) is a quadric section of FA that is smooth outside one point. It follows
that the singularity is an ordinary double point. �

We denote by SA(v) → SA(v) the minimal resolution of singularities on SA(v).
Consider the 6-fold Lagrangian degeneracy locus YA ⊂ G(3, V ) called an EPW cube in
[IKKR16], defined as

YA = {[U] ∈ G(3, V )∣dimA ∩ TU ≥ 2}.
When [A] ∈ (Σ ∩∆) − (Σ+ ∪Σ[1]) we shall define a rational map

ψ∶SA(v)[3] ⇢ YA,

as in [IKKR16, §4].
First we consider the natural isomorphism:

V ∨ = V ∨

0 ⊕ ⟨v∗0 ⟩ →H0(ISA(v)(2)); v∗ + cv∗0 ↦ qv∗ + cq∗A,
where Qv∗ is the restriction to AnnK0

A of the quadratic form on ∧3V0 defined by

Qv∗(ω) = vol(ω(v∗) ∧ ω).
Let [β1] and [β2] be two points in SA(v), such that the line ⟨[β1], [β2]⟩ is not contained
in SA(v), then H0(ISA(v)∪⟨β1,β2⟩

(2)) is a hyperplane in H0(ISA(v)(2)) ≅ V ∨. Therefore

φ∶SA(v)[2] ⇢ P(V ); ([β1], [β2]) ↦ [H0(ISA(v)∪⟨β1,β2⟩
(2))]

defines a rational map. The rational map ψ∶SA(v)[3] ⇢ G(3, V ) is now defined by

ψ(β1, β2, β3) = [⟨φ(β1, β2), φ(β1, β3), φ(β2, β3)⟩] ∈ G(3, V )
For general A, both φ and ψ are morphisms that are 2 ∶ 1 onto their image [IKKR16,
Proposition 4.1].

We consider a restriction of the map ψ to show

Proposition 2.13. Let [A] ∈ (Σ∩∆)−(Σ+ ∪Σ[1]∪Γ). Let [U] = G(3, V )∩P(A), and

let Ā = A/ ∧3 U . Then XĀ is birational to SA(v)
[2]

.

Proof. Let U be the unique element in ΘA. Consider the decomposition V = v0⊕V0. By
[O’G13, Corollary 4.7], the K3-surface S ∶= SA(v0) in P(∧3V0) is singular in p ∶= [∧3U ′]
where U ′ is the projection of U onto V0. Moreover, by Lemma 2.12, the point p is a
node in S. Let κ ∶ S → S be the blow up giving the resolution of the node p. Consider
the following rational map ξ defined on pairs of distinct points on S.

ξ ∶ S[2] → G(3,H0(IS(2)); ξ([p1, p2]) =H0(IS∪⟨lp1 ,lp2 ⟩
(2)) ⊂ G(3,H0(IS(2)),

where lpi is the line spanned by p and κ(pi) when p ≠ κ(pi) and the line in the tangent
cone of p corresponding to pi when κ(pi) = p. Moreover, ⟨lp1 , lp2⟩ is the plane spanned
by lp1 and lp2 .

Lemma 2.14. The map ξ is generically 2:1, well defined and unbranched outside a set
of codimension 2.
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Proof. The proof is analogous to the proofs of Proposition 4.1 and Proposition 4.5 of
[IKKR16]. We need only to observe that S is the intersection of a smooth Fano threefold
F with a quadric Q and hence every twisted cubic passing through p is tangent to the
quadric Q in p. This implies that the involution on SA(v)[3] given by ψ above restricts
to an involution on the locus of triples on SA(v) containing p, and ξ can be considered
as the restriction of ψ to this locus. �

The next step is to prove that the image of ξ is contained in the cone CU = G(3, V )∩
P(TU) = {[L] ∈ G(3, V ) ∶ dim(L ∩U) ≥ 2}. By [IKKR16, Lemma 4.2], we have

ξ([p1, p2]) = ψ([p, p1, p2]) = ⟨φ([p, p1]), φ([p, p2]), φ([p1, p2])⟩

in the above notation. To prove that ξ([p1, p2]) ∈ CU it is enough to prove that
φ([p, pi]) ∈ U . Let i = 1. We follow the proof of [IKKR16, Proposition 4.1]. Indeed let

∧3U = u1 ∧ u2 ∧ u3 = v0 ∧ α + v1 ∧ v2 ∧ v3

with v1, v2, v3 ∈ V0 and α ∈ ∧2⟨v1, v2, v3⟩, then, by [O’G13, Corollary 4.7], the singular
point of the K3 surface S is p = v1 ∧ v2 ∧ v3. Without loss of generality we may then
assume that p1 = v1 ∧ v4 ∧ v5. Then, by [IKKR16, Equation 4.1], we have φ([p, p1]) =
[vol(α ∧ v1 ∧ v4 ∧ v5)v0 + v1]. To check that it is an element of U we compute

(vol(α ∧ v1 ∧ v4 ∧ v5)v0 + v1) ∧ (v0 ∧ α + v1 ∧ v2 ∧ v3)
= v1 ∧ v0 ∧ α + vol(α ∧ v1 ∧ v4 ∧ v5)v0 ∧ v1 ∧ v2 ∧ v3.

The latter is an element of ∧4⟨v0, v1, v2, v3⟩ and the wedge product with v4 ∧ v5,

(v1 ∧ v0 ∧ α + vol(α ∧ v1 ∧ v4 ∧ v5)v0 ∧ v1 ∧ v2 ∧ v3) ∧ v4 ∧ v5

= (−v0 ∧ α ∧ v1 ∧ v4 ∧ v5 + vol(α ∧ v1 ∧ v4 ∧ v5)(v0 ∧ . . . ∧ v5)
= (−vol(α ∧ v1 ∧ v4 ∧ v5) + vol(α ∧ v1 ∧ v4 ∧ v5))(v0 ∧ . . . ∧ v5) = 0,

so (vol(α∧v1 ∧v4 ∧v5)v0 +v1) ∈ U . With the same argument for i = 2 we conclude that
ξ([p1, p2]) ∈ CU , in particular ξ([p1, p2]) ∈D1

Ā
⊂ CU .

Therefore XĀ → D1
Ā

and ξ ∶ S[2]
A → D1

Ā
are two double covers which are well defined

and unbranched outside a set of codimension 2. It follows that XĀ is birational to

S
[2]
A as in [IKKR16, §5] and further still following [IKKR16, §5] we get XĀ is IHS and

deformation equivalent to a K3[2] for general Ā. �

Remark 2.15. The intersection lattice of S̄
[2]
A , where S̄A is the minimal resolution of

the nodal SA, is the diagonal matrix with entries 10,−2,−2. After a change of base to
(h1, h2, θ) we obtain:

⎡⎢⎢⎢⎢⎢⎣

0 2 0
2 0 0
0 0 −10

⎤⎥⎥⎥⎥⎥⎦
We find that the map ξ is given by h1+h2. Since there is a divisor with self-intersection
−10 and divisibility 2 perpendicular to h1 + h2, it follows that ξ contracts a P2 to a
point (see [HY15, §5.1] or [Mon15, §2]). We can identify this P2 as the set of pairs of
points on SA such that the line spanned by these points is contained in the threefold
section of G(2,5) containing SA.

Remark 2.16. We can find another 18-dimensional subfamily of U such that the
elements are birational to the Hilbert scheme of two point on a K3 surface. Let us
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take a K3 surface S that is a hyperplane section of a Verra threefold Z ⊂ P8. The
intersection lattice of S[2] is

⎡⎢⎢⎢⎢⎢⎣

2 4 0
4 2 0
0 0 −2

⎤⎥⎥⎥⎥⎥⎦
.

After an integral linear change of coordinates the matrix takes the form:

⎡⎢⎢⎢⎢⎢⎣

0 2 0
2 0 0
0 0 −6

⎤⎥⎥⎥⎥⎥⎦
with basis l1, l2, η

′. Then l1 + l2 gives a 2 ∶ 1 map to an EPW quartic section containing
the vertex of the cone and singular at it. We can show that this map contracts two
planes P2 to this vertex point.

3. The second construction- the Hilbert scheme of conics on the Verra
4-fold

We describe the second construction of elements from U that is parallel to the con-
struction of Kummer surfaces given in section 1.3. Let U1 and U2 be three dimensional
complex vector spaces, fix moreover a volume form on each space U1, U

∨

2 such that
∧2U1 = U∨

1 and ∧2U∨

2 = U2, and let η ∶ ∧3U1 ⊗ ∧3U∨

2 → C be the product volume form.
Let Y ⊂ P9 be the intersection of the cone C(P(U1) × P(∧2U2)) ⊂ P(C ⊕ (U1 ⊗ ∧2U2))
with a quadric hypersurface. Such a fourfold is a smooth Fano fourfold when Q is
chosen generically: we call it a Verra fourfold. We have a 19-dimensional family of
Verra fourfolds.

Note that a Verra fourfold is naturally a double cover of P(U1) × P(∧2U2). Its
ramification locus Z is the intersection of Y with the hyperplane polar to the vertex of
the cone via the quadric Q. In terms of coordinates, this means that if coordinates are
chosen in such a way that Q is defined by a quadric {z2 −Q′ = 0} then Z = Y ∩{z = 0}.
We call Z the Verra threefold associated to Y . We shall sometimes also identify Z with
the branch locus P(U1) × P(∧2U2) ∩ {Q′ = 0}.

Notice the following properties of Verra fourfolds.

Lemma 3.1. If Y ⊂ C(P(U1) × P(∧2U2)) is a smooth Verra fourfold then:

(1) Y does not pass through the vertex of the cone C(P(U1) × P(∧2U2));
(2) Y contains no quadric threefold;
(3) the preimage of each quadric surface P(L∨) × P(M∨) ⊂ P(U1) × P(∧2U2) by the

double cover Y → P(U1) × P(∧2U2) is irreducible.

Proof. Clearly Y being a smooth complete intersection of C(P(U1) × P(∧2U2)) with a
quadric cannot pass through the singular point of the cone. For (2), if Y contained
a quadric threefold, then this threefold would be contained in C(P(U1) × P(∧2U2))
and hence would be a cone over a quadric surface in P(U1) × P(∧2U2). This leads to
a contradiction with (1). Finally assume that the preimage of some quadric surface
P(L∨)×P(M∨) ⊂ P(U1)×P(∧2U2) is reducible. Then it must decompose as the union of
two quadric surfaces and the branch locus of the projection onto P(L∨)×P(M∨) is then
a double conic. It follows that the branch locus Z of the projection Y → P(U1)×P(∧2U2)
meets the P3 spanned by P(L∨)×P(M∨) in a double conic. By Zak’s Tangency theorem
[Zak93], this implies that Z is singular and in consequence Y is also singular. �
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The linear system of quadrics containing C(P(U1) ×P(∧2U2)) ⊂ P(C⊕ (U1 ⊗∧2U2))
is naturally isomorphic to P(U1 ⊗ ∧2U2). In fact let w ∈ U1 ⊗ ∧2U2 = U1 ⊗ (U2)∨ and
(w0,w

′) ∈ C⊕ (U1 ⊗ ∧2U2) = C⊕ (U1 ⊗ (U2)∨), then

Qw(w0,w
′) = η(w ∧w′ ∧w′)

is a quadratic form on C⊕ (U1 ⊗ ∧2U2), and the map

U1 ⊗ ∧2U2 →H0(IC(P(U1)×P(∧2U2))
(2)); w ↦ Qw

is an isomorphism. Thus

IY,2 ∶=H0(IY (2)) ≅ C⊕ (U1 ⊗ ∧2U2),
and the linear system of quadrics containing Y ⊂ P9 is naturally isomorphic to P(C ⊕
(U1 ⊗∧2U2)) and is dual to P(C⊕ (∧2U1 ⊗U2)). By abuse of notation, we denote also
by Qw the quadric hypersurface corresponding to [w] ∈ P(U1) ⊗ P(∧2U2).

Consider the two natural projections πi of Y onto P(U1) and P(∧2U2) for i = 1,2
respectively. We denote by F (Y ) the Hilbert scheme of conics on Y of type (1,1) i.e.
conics that project to lines by both π1 and π2.

Let us now relate the Hilbert scheme F (Y ) corresponding to the quadric Q with
an EPW quartic section. Let C be a conic on Y , then C spans a plane PC ⊂ P(C ⊕
(U1 ⊗ ∧2U2)). Consider the locus HC of quadrics containing Y ∪ PC . Clearly HC

is a hyperplane in the space of quadrics containing Y i.e. naturally a point HC ∈
P(∧3U1 ⊕ (∧2U1 ⊗U2)). In this way we defined a morphism

ψQ ∶ F (Y ) → P(∧3U1 ⊕ (∧2U1 ⊗U2)).

Proposition 3.2. The image ψQ(F (Y )) is isomorphic to an EPW quartic section.

Proof. We first introduce the EPW quartic section that we claim is ψQ(F (Y )).
For that, choose a coordinate chart (z, β) on C ⊕ (U1 ⊗ ∧2U2) in which Q(z, β) =

z2 −Q′(β). Note, that in this case Q′ ∩ (P(U1) × P(∧2U2)) is the branch locus of the
projection map of Y from the vertex of the cone.

Now, the vector space ((∧2U1)⊗U2)⊕(U1⊗(∧2U2)) is equipped with the symplectic
form η̄(α,β) = vol(α ∧ β). Observe that ((∧2U1) ⊗ U2) ⊕ (U1 ⊗ (∧2U2)) is then a
decomposition into a sum of Lagrangian spaces with respect to η̄. In particular η̄
defines the canonical isomorphism ((∧2U1) ⊗ U2)∨ ≃ (U1 ⊗ (∧2U2)). Now Q′ defines a
symmetric map q′ ∶ (U1 ⊗ (∧2U2)) → (U1 ⊗ (∧2U2))∨ = ((∧2U1) ⊗U2), the graph of this
map in ((∧2U1) ⊗U2) ⊕ (U1 ⊗ (∧2U2)) is a Lagrangian space that we call ĀQ′ .

Since we know that the subset of the Hilbert scheme of conics in Y parameterizing
smooth conics is dense in the whole Hilbert scheme of conics the following lemma
completes the proof of the proposition.

Lemma 3.3. Let P be a plane in P(C⊕(U1⊗∧2U2)) meeting Y in a smooth conic curve
C of type (1,1), then the hyperplane HP of quadrics containing Y ∪P is an element of

the EPW quartic section D̄
ĀQ′

1 . Furthermore, if C is contained in the branch locus Z

then [HP] ∈ D̄ĀQ′

2 .

Proof. Let us consider the cone

C(P(U1) × P(∧2U2)) ⊂ P(C⊕ (U1 ⊗ (∧2U2))) = P((∧3U2) ⊕ (U1 ⊗ (∧2U2)))
as

P((U1 ⊕U2) ∧ (∧2U2)) ∩G(3, U1 ⊕U2) ⊂ P(∧3(U1 ⊕U2)).
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Let

P = ⟨(z1, β1), (z2, β2), (z3, β3)⟩,
such that

(zi, βi) ∈ C(P(U1)×P(∧2U2)) ⊂ P((U1⊕U2)∧(∧2U2))∩G(3, U1⊕U2) ⊂ P(∧3(U1⊕U2)).
Since P meets G(3, U1⊕U2) in a conic curve, there exists then a basis u1, u2, u3, v1, v2, v3

of U1 ⊕U2 such that we have

β1 = u1 ∧ v1 ∧ v2, β2 = u2 ∧ v1 ∧ v3, β3 = (u1 + u2) ∧ v1 ∧ (v2 + v3).
In such basis the coordinate of HP ∈ P(C⊕(∧2U1)⊗U2) corresponding to ∧2U1 ∧U2 is
u1 ∧ u2 ∧ v1. Moreover, by the definition of ĀQ′ , for each β ∈ U1 ∧ ∧2U2 there exists an
α ∈ (∧2U1) ∧U2 such that Q′(β) = α ∧ β or equivalently α + β ∈ ĀQ′ . Let us denote by
αi the elements corresponding to βi under the above. Since (αi +βi) ∧ (αj +βj) = 0 for
all i, j we get αi ∧ βj = αj ∧ βi =∶ ci,j for i ≠ j. Now

Q(λ1(zi, βi) + λ2(zj , βj)) = (zi + λzj)2 −Q′(λ1βi + λ2βj) =

= (zi+λzj)2−(λ1αi+λ2αj)∧(λ1βi+λ2βj) = λ2
1q((zi, βi))+λ2

2q((zj , βj))+2λ1λ2(ziz2−ci,j).
But Q((zi, βi)) = 0 by assumption, so

Q(λ1(zi, βi) + λ2(zj , βj)) = 2λ1λ2(ziz2 − ci,j).
Now

(t0Q + t1Q(u1∧u2∧v1)
∗)(λ1(zi, βi) + λ2(zj , βj)) = 2t0λ1λ2(zizj − ci,j) + 2t1λ1λ2.

It follows that the HP = [(zizj − ci,j , u1 ∧ u2 ∧ v1)] ∈ P(C⊕ U1 ∧ (∧2U2)) which means,
in particular, that:

z1z2 − c1,2 = z1z3 − c1,3 = z2z3 − c2,3 = cP.
HP is also an element of the cone C(P(∧2U1) × P(U2)) ⊂ P(C⊕ ∧2U1 ∧U2)

The corresponding T̄HP
is described by

{ω ∈ ((∧2U1)⊗U2)⊕((∧2U2)⊗U1)∣ω∧u1∧u2 = ω∧u1∧(v1+cPu3) = ω∧u2∧(v1+cPu3) = 0}.
We shall prove that ĀQ′ ∩ T̄HP

≠ 0. We know that ∑3
i=1 λi(αi + βi) ∈ ĀQ′ for λi ∈ C,

it is therefore enough to prove that the following system of equations has a nonzero
solution (λ1, λ2, λ3):

E1(λ1, λ2, λ3) ∶= (
3

∑
i=1

λi(αi + βi)) ∧ u1 ∧ u2 = 0

E2(λ1, λ2, λ3) ∶= (
3

∑
i=1

λi(αi + βi)) ∧ u1 ∧ (v1 + cPu3) = 0

E3(λ1, λ2, λ3) ∶= (
3

∑
i=1

λi(αi + βi)) ∧ u2 ∧ (v1 + cPu3) = 0

Observe now that E1(λ1, λ2, λ3) ≡ 0 since both αi ∧ u1 ∧ u2 = 0 and βi ∧ u1 ∧ u2 = 0.
Furthermore, we have:

E2(λ1, λ2, λ3) ∧ u1 = E2(λ1, λ2, λ3) ∧ u2 = E2(λ1, λ2, λ3) ∧ u3 = E2(λ1, λ2, λ3) ∧ v1 = 0,

as well as

E3(λ1, λ2, λ3) ∧ u1 = E3(λ1, λ2, λ3) ∧ u2 = E3(λ1, λ2, λ3) ∧ u3 = E3(λ1, λ2, λ3) ∧ v1 = 0.
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Finally

E2(λ1, λ2, λ3) ∧ v2 = z2
1λ1 + z1z2λ2 + z1z3λ3,(3.1)

E3(λ1, λ2, λ3) ∧ v3 = z1z2λ1 + z2
2λ2 + z2z3λ3,(3.2)

(E2(λ1, λ2, λ3) +E3(λ1, λ2, λ3)) ∧ (v2 + v3) = z1z3λ1 + z2z3λ2 + z2
3λ3,(3.3)

are proportional, so the above equations reduce to two linear equations in the λi:

E2(λ1, λ2, λ3) ∧ v3 = 0

and one of the above 3 proportional equations. It follows that the linear system has
rank 2 and therefore admits a nontrivial solution implying dim(ĀQ′ ∩ T̄HP

) ≥ 1, which
proves the first part of the lemma.

It remains to prove that the image of the Hilbert scheme of (1,1)-conics contained

in the ramification locus Y ∩{z = 0} of the projection maps to D̄
ĀQ′

2 . Clearly points on
such conics satisfy zi = 0 and the three proportional equations above are then trivial,
hence the system has two-dimensional solution i.e. dim(ĀQ′ ∩ T̄HP

) ≥ 2. �

�

We shall now describe the Stein factorization of the morphism

ψQ ∶ F (Y ) → D̄
ĀQ′

1 .

Consider the diagram:

P(F) πÐÐÐ→ P(∧2U1) × P(U2)

f
×××Ö

P(C⊕ (∧2U1 ⊗U2))
where

(3.4) F = π∨1 ((OP(∧2U1)
(1)) ⊗ π∨2 (OP(U2)

(1))) ⊕C)
is a vector bundle on P(∧2U1) × P(U2) such that π is the projection. Moreover, f is
given by OP(F )(1) such that the image of f is the cone over P(∧2U1) × P(U2) and f is
the blow-up of the vertex with exceptional divisor E.

Consider the rank 5 bundle G over P(∧2U1)×P(U2), such that for (L,M) ∈ P(∧2U1)×
P(U2) the fiber G(L,M) is

C⊕ (L∨ ⊗M∨) ⊂ C⊕ (U1 ⊗ ∧2U2).
There is a natural restriction map IY,2 → Sym2G∨

(L,M)
. When Y contains no quadric

threefold, this map has rank 2, and the image is a pencil of quadric threefolds that
defines a complete intersection that we denote by D(L,M). Thus for each (L,M) ∈
P(∧2U1) × P(U2) there is a natural surjective restriction map

π(L,M) ∶ IY,2 → ID
(L,M)

,2 ∶=H0(P(G(L,M)),ID(L,M)
(2)) ⊂ Sym2G∨

(L,M)
.

For each element Q ∈ ID
(L,M)

,2, let HQ ⊂ IY,2 be the hyperplane of quadrics whose image
in ID

(L,M)
,2 is proportional to Q. We define degeneracy loci

DQ
r = {([HQ], (L,M))∣Q ∈ ID

(L,M)
,2, rank(Q) ≤ 5−r} ⊂ P(C⊕(∧2U1⊗U2))×P(∧2U1)×P(U2).

Notice that DQ
r ⊂ P(F). Consider the projections

f ∣
DQ

r
∶DQ

r → P(C⊕ (∧2U1 ⊗U2)); ([HQ], (L,M)) ↦ [HQ] r = 1,2.
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We claim

Lemma 3.4. f(DQ
1 ) = ψQ(F (Y )).

Proof. A (1,1)-conic C is mapped to a unique pair of lines P(L∨) ⊂ P(U1) and P(M∨) ⊂
P(∧2U2), and is therefore contained in a unique complete intersection D(L,M), so if
Q ∈ ID

(L,M)
,2 is the quadric threefold that contains the plane PC spanned by C, then

HC ⊂ IY,2 is the hyperplane of quadrics that contain PC , i.e. ψ[C] = f([HQ], (L,M)).
On the other hand, if Q ∈ ID

(L,M)
,2 is singular, then, by Lemma 3.1(4), it has rank 4 or

3, and the planes in Q intersect D(L,M) in conics that are (1,1)-conics on Y . �

Next, we claim that f restricted to DQ
1 has an inverse f−1 ∶ f(DQ

1 ) → P(F). Indeed,
the quadrics in the ideal of Y define a rational map:

P(C⊕ (U1 ⊗ ∧2U2)) ⇢ P(C⊕ (∧2U1 ⊗U2)).

The preimage of a point p ∈ CP(∧2U1) × P(U2), outside the vertex, is the union

Y ∪Qp,

where Qp ∈ ID
(L,M)

,2, and, by abuse of notation, at the same time Qp is a quadric

threefold in P(C ⊕ (L∨ ⊗M∨)). Therefore, the quadrics in the hyperplane HQ with
Q ∈ ID

(L,M)
,2 define the pair (L,M) and hence also Q, so f has an inverse.

We choose coordinates such that Y is the intersection of C(P(∧2U1)×P(U2)) with a
quadric {z2−Q′ = 0}, where {Q′ = 0} is a cone with vertex at the vertex of C(P(∧2U1)×
P(U2)), and z is nonzero at the vertex.

The pencil ID
(L,M)

,2 contains in general 5 rank 4 quadrics. One is the rank 4 quadric

C(P(L∨) × P(M∨)). The planes in this quadric intersect D(L,M) in conics that are

contracted, by the projection to either P(U1) or P(∧2U2), so these are not (1,1)-
conics. A plane in any of the other singular quadrics in ID

(L,M)
,2, intersects D(L,M)

in a (1,1)-conic. When Q ∈ ID
(L,M)

,2 has rank 4, the fiber ψ−1
Q ([HQ]) is therefore two

P1’s of conics defined on D(L,M) by the two pencils of planes in Q. The two pencils
coincide precisely when Q has rank 3.

The double cover Y → P(U1) × P(∧2U2) is branched along the Verra threefold Z =
Y ∩{z = 0}. It defines an involution on Y , that for each (L,M) restricts to an involution
on D(L,M) and on each threefold quadric Q, where Q ∈ ID

(L,M)
,2. In particular, when Q

has rank 4, the two pencils of planes in the quadric are interchanged by this involution.
Finally, when Q ∈ ID

(L,M)
,2 has rank 3, then D(L,M) is singular in two points on the

vertex of Q. So the double cover

D(L,M) → P(L∨) × P(M∨) ⊂ P(U1) × P(∧2U2)

is branched along a curve with two singular points, i.e. a pair of conics C ∪C ′, corre-
sponding to the fixed points of the involution on the pencil of planes in Q. The pair of
conics C ∪C ′ lies in the hyperplane {z = 0}, i.e. in the Verra threefold Z = Y ∩{z = 0}.
Conversely, a (1,1)-conic C in Z is mapped to a pair of lines P(L∨) and P(M∨) and is
a component of the ramification locus of the double cover D(L,M) → P(L∨) × P(M∨).
The other component C ′ is also a (1,1)-conic contained in Z and C and C ′ intersect in
a scheme of length 2. The complete intersection D(L,M) is singular along this scheme,
which is the intersection of the vertex of a rank 3 quadric Q ∈ ID

(L,M)
,2 and D(L,M).

Thus, we have identified the set of pairs ([HQ], (L,M)) ∈ DQ
2 where Q has rank 3

with the set of pairs of (1,1)-conics C ∪C ′ in Z that intersect in a scheme of length 2.
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By Lemma 3.3, we infer f(DQ
2 ) =DĀQ′

2 . Summing up, we have precisely described the
Stein factorization of the map ψQ.

Proposition 3.5. The Stein factorization of ψQ is

ψQ = φ ○ ρ

with φ ∶ F (Y ) → XQ a P1 fibration and ρ ∶ XQ → D
ĀQ′

1 a 2:1 cover branched precisely

in D
ĀQ′

2 .

Moreover, we have proven the following relation between the singular locus of an
EPW quartic and its associated Verra threefold.

Proposition 3.6. Let Y = Q∩C(P(∧2U1)×P(U2)) be a general Verra fourfold and let
Z = (P(∧2U1) × P(U2)) ∩Q′ = Y ∩ {z = 0} be its associated Verra threefold. Then the
map

ψQ∣F (Z)∶F (Z) → C(P(∧2U1) × P(U2))

is an étale 2 ∶ 1 map to the set D
ĀQ′

2 ⊂ C(P(∧2U1) ×P(U2)). Thus the singular set of a
general EPW quartic section admits an étale double cover being the Hilbert scheme of
conics on the corresponding Verra threefold Z.

Finally, Theorem 0.2 appears also as a direct consequence of the above arguments.

Proof of Theorem 0.2. Let XĀ ∈ U , then XĀ is a double cover of DĀ
1 for some La-

grangian Ā ⊂ ((∧2U1) ⊗ U2) ⊕ (U1 ⊗ (∧2U2)). Let QĀ ⊂ P((U1 ⊗ (∧2U2)) be the corre-
sponding quadric and ZĀ be the corresponding Verra threefold and YĀ the correspond-

ing Verra fourfold. Then both XQĀ
and XĀ appear as double covers of DĀ

1 branched in

DĀ
2 hence are isomorphic. It follows that XĀ is the base of a P1 fibration on F (YĀ). For

the converse we just need to recall that there is a 1:1 correspondence between general
Lagrangian subspaces Ā and general quadrics QĀ. �

Remark 3.7. Observe that if V6 a 6-dimensional vector space and [A] ∈ LG(10,∧3V6)
such that P(A) ∩ G(3, V6) = {[U1]} then to A we associate a unique EPW quartic
section D1

Ā
and also a unique Verra fourfold VA. The Verra fourfold appears as follows.

First, for a fixed choice of [U2] ∈ G(3, V6) such that U2 ∩U1 = {0} consider

qA,U2 ∶ T[U2]
/ < [U2] >→ (T[U1]

/ < [U1] >) = (T[U2]
/ < [U2] >)∨

the symmetric map whose graph is A/ < [U1] > and let QA,U2 be the corresponding
quadric. Let CU2 = T[U2]

∩ G(3, U) and PU2 = P(∧2U2) × P(U1) be the corresponding
Segre embedding

P2 × P2 ⊂ T[U2]
/ < [U2] >≃ (T[U1]

/ < [U1] >)∨.

Define ZA,U2 = PU2 ∩QA,U2 the Verra threefold associated to A and U2 and VA,U2 the
corresponding Verra fourfold. We claim that in fact ZA,U2 (and in consequence VA,U2) is
independent from the choice of U2. Indeed, if we choose a different [U ′

2] ∈ G(3, V6) then
we have a canonical isomorphism T[U ′2]

/ < [U ′

2] >≃ (T[U1]
/ < [U1] >)∨ ≃ T[U2]

/ < [U2] >
induced by the symplectic form and under this identification we have QA,U2 −QA,U ′2 ∈
H0(IPU2

(2)) =H0(IPU ′
2
(2)).
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3.1. Two Lagrangian fibrations. Observe that a general double EPW quartic sec-

tion X admits two fibrations. Indeed, consider the composition of maps XĀ → DĀ
1 ⊂

C(P(∧2U1) × P(U2)) = C(P2 × P2), with DĀ
1 the EPW quartic section defined by

the Lagrangian subspace Ā ⊂ (∧3U1)�/(∧3U1). The projections to the factors of
P(∧2U1) × P(U2) induces two fibrations π1 and π2. Since XĀ is IHS the fibers are
abelian surfaces. Let us study these fibrations in more details. We shall consider the

fibration of the EPW quartic section DĀ
1 ⊂ C(P(∧2U1) × P(U2)).

Proposition 3.8. The general fibers of the two natural fibrations π1 ∶ DĀ
1 → P(∧2U1)

and π2 ∶DĀ
1 → P(U2) of the EPW quartic section DĀ

1 are Kummer quartic surfaces.

Proof. We consider the fibers of the second projection π2, the fibers of π1 are treated
similarly. Let v ∈ P(U2) be generic. Denote by P(V2) ⊂ P(∧2U2) the line dual to
v. This induces a subset C(P(U1) × P(V2)) ∩QĀ of the corresponding Verra fourfold
C(P(U1) × P(∧2U2)) ∩QĀ.

We can identify the fiber π−1
2 (v) as the image by ψQĀ

of the conics contained in
C(P(U1) × P(V2)) ∩QĀ. It follows from Proposition 1.9 that this fiber is a Kummer
surface. �

Remark 3.9. Note that from the adjunction formula π1 and π2 induces two Lagrangian
fibrations on XĀ. The Kummer surfaces above can be seen as quotient of the Abelian
surfaces in the fibers.

Remark 3.10. Note that also the original description of the EPW quartic section as
a Lagrangian degeneracy locus induces naturally a description of the Kummer quartic
fibers as Lagrangian degeneracy loci in P3. That description is consistent with Lemma
1.1 in the following sense. We analyze both fibrations separately:

(1)The fibers of π2 ∶DĀ
1 → P(U2). We know that

DĀ
1 ⊂ C(P(∧2U1) × P(U2))

hence a fiber Du2 of the projection π2 ∶ DĀ
1 → P(U2) of a point [u2] ∈ P(U2) is the

intersection of

P[u2]
= P((∧3U1) ⊕ ((∧2U1) ⊗ u2))) ∩G(3, U1 ⊕U2) = C(P(∧2U1)),

with the Lagrangian degeneracy locus DĀ
1 :

Du2 = P[u2]
∩ D̄Ā

1 = {[U] ∈ P[u2]
∩G(3,∧2U1 ⊕U2)∣dim(T̄U ∩ Ā) ≥ 1}.

Let
K4 = U1 ⊕ ⟨u2⟩.

then

∧3K4 = ∧3U1 ⊕ ((∧2U1) ⊗ u2))) ⊂ ∧3V.

Thus, for all [U] ∈ Pu2 we have ∧3U ⊂ ∧3K4 and

TU = ((∧2U) ∧ V ) ⊃ (∧3K4)
Since TU is Lagrangian with respect to the wedge product form on ∧3V , we have
TU ⊂ (∧3K4)⊥.

Consider the 12-dimensional quotient space (∧3K4)⊥/(∧3K4), with the nondegener-
ate 2 form induced by the wedge product form. Then

TU/(∧3K4) ⊂ (∧3K4)⊥/(∧3K4)
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is a Lagrangian subspace. The Lagrangian subspace A ⊂ ∧3V contains ∧3U1 so has a
Lagrangian quotient Ā ⊂ (∧3U1)⊥/(∧3U1). It follows that the image ĀK4 ∶= Imϕ of the
natural projection

ϕ ∶ Ā ∩ (∧3K4)⊥/(∧3U1) → (∧3K4)⊥/(∧3K4)
is an isotropic subspace.

By the genericity of Ā, we have Ā ∩ ((∧3K4)/(∧3U1)) = 0 (for every u2 ∈ U2), so
dim(ĀK4) = 6 and ĀK4 is Lagrangian (for every u2 ∈ U2).

Finally for [U] ∈ Pu2 i.e. U ⊂K4,

[U] ∈Du2 ⇐⇒ dim(T̄U ∩ Ā) ≥ 1 ⇐⇒ dim((TU/(∧3K4)) ∩ ĀK4) ≥ 1,

i.e. the fiber Du2 is a Lagrangian degeneracy locus associated to the family of La-
grangian subspaces

{TU/(∧3K4)∣U ⊂K4}
and the fixed space ĀK4 as Lagrangian subspaces of (∧3K4)⊥/(∧3K4).

With a choice of decomposition V =K4 ⊕K2 we may identify

(∧3K4)⊥/(∧3K4) = (∧2K4) ⊗K2 ⊂ ∧3V,

and identify the 6-dimensional subspace ĀK4 with a Lagrangian subspace in (∧2K4) ⊗
K2, finally we identify:

TU = (∧2U) ⊗K2 ⊂ (∧2K4) ⊗K2.

In this context Du2 ⊂ P(K∨

4 ) is the first degeneracy locus

{[U] ∈ P(K∨

4 )∣dim((∧2U) ⊗K2) ∩ ĀK4) ≥ 1}.
This degeneracy locus was described in Section 1 as a Kummer quartic singular in 16
points given by:

{[U] ∈ P(K∨

4 )∣dim((∧2U) ⊗K2) ∩ ĀK4) ≥ 2}.
(2) Consider next a fiber of the first projection π1 ∶ DĀ

1 → P(∧2U1) from the La-
grangian degeneracy locus

DĀ
1 ⊂ C(P(∧2U1) × P(U2)).

Let M2 ⊂ U1 be a 2- dimensional subspace and denote by DM2 the fiber π−1
1 ([∧2M2]).

Let U ⊃M2 be 3-dimensional subspace of V , then

∧3U ∈ ∧2M2 ∧ V ⊂ ∧3V.

Thus we may identify the sets {[U] ∈ G(3, V )∣U ⊃M2} = P[M2]
where

P[M2]
∶= P(∧2M2 ∧ V ) ⊂ P(∧3V )

The fiber π−1
1 ([∧2M2]) is then

DM2 =DĀ
1 ∩ P[M2]

.

Notice that for each [U] ∈ PM2 ,

∧2M2 ∧ V ⊂ TU = ((∧2U) ∧ V ).
In particular

∧2M2 ∧ V ⊂ TU1 = ∧3U1 ⊕ ((∧2M2) ⊗U2) ⊂ ∧3V.

Since TU is Lagrangian with respect to the wedge product form on ∧3V , we have
TU ⊂ (∧2M2 ∧ V )⊥. Consider the 12-dimensional quotient space

(∧2M2 ∧ V )⊥/(∧2M2 ∧ V ),
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with the nondegenerate 2-form induced by the wedge product. Then

TU/(∧2M2 ∧ V ) ⊂ (∧2M2 ∧ V )⊥/(∧2M2 ∧ V )
is a Lagrangian subspace. The Lagrangian subspace A ⊂ ∧3V contains ∧3U1, so has a
Lagrangian quotient Ā ⊂ ∧3U�

1 / ∧3 U1. So the subspace Ā ∩ ((∧2M2 ∧ V )�/(∧3U1)) of
Ā is isotropic. The projection

φ ∶ Ā ∩ ((∧2M2 ∧ V )�/(∧3U1)) → (∧2M2 ∧ V )⊥/(∧2M2 ∧ V )
therefore has an image

Im φ ∶= ĀM2 ⊂ (∧2M2 ∧ V )⊥/(∧2M2 ∧ V ).
which is isotropic. By the genericity of Ā we have Ā ∩ ((∧2M2 ∧ V )/(∧3U1)) = 0 (for
every M2 ⊂ U1), so dim ĀM2 = 6, and ĀM2 is in fact a Lagrangian subspace for every
M2 ⊂ U1.

Finally for [U] ∈ PM2 i.e. U ⊃M2,

[U] ∈DM2 ⇐⇒ dim(T̄U ∩ Ā) ≥ 1 ⇐⇒ dim((TU/((∧2M2 ∧ V )) ∩ ĀM2) ≥ 1,

i.e. the fiber DM2 ⊂ P[M2]
is the first Lagrangian degeneracy locus associated to the

family of Lagrangian subspaces

{TU/(∧2M2 ∧ V )∣U ⊃M2}
and the fixed space ĀM2 as Lagrangian subspaces of (∧2M2 ∧ V )⊥/(∧2M2 ∧ V ), i.e.

DM2 = {[U] ∈ P[M2]
∣dim(∧2U ∧ V /((∧2M2) ∧ V )) ∩ ĀM2) ≥ 1}.

If we set V2 =M2 and decompose V = V2 ⊕ V4, then

(∧2M2 ∧ V )⊥/(∧2M2 ∧ V ) ≅ (∧2V2 ∧ V4)�/ ∧2 V2 ∧ V4 ≅ V2 ⊗ ∧2V4.

On the one hand we can identify the space {U ⊃ M2} with {⟨v⟩ = U ∩ V4}. If A′ is
the Lagrangian subspace corresponding to ĀM2 via these isomorphisms, then the fiber
π−1

1 ([∧2M2]) is isomorphic to

DM2 ≅ {[v] ∈ P(V4)∣rankA′ ∩ (V2 ⊗ V4 ∧ v) ∩A′) ≥ 1}.

This degeneracy locus is the Lagrangian degeneracy locus DA′

1 of Lemma 1.1 and is a
Kummer quartic surface singular in 16 points.

Corollary 3.11. The general fibers of the fibrations P(∧2U1) ← XĀ → P(U2) are

abelian surfaces. The projections factor through the double cover XĀ → DĀ
1 , which for

each fiber is the double cover of a Kummer quartic surface branched in its 16 singular
points.

4. The third construction-moduli space of twisted sheaves

It was observed by G. Mongardi, that the generic element from the family U can be
constructed as the moduli space of twisted sheaves on a K3 surface of degree 2. We
know that the generic element from the family X ∈ U admits two Lagrangian fibrations
πi∶X → P2. In particular, we obtain two sextic curves as discriminant curves of the
fibrations on the bases. The double cover of P2 branched along a curve of degree 6 is
a K3 surface of degree 2. For a given X we can associate naturally two such surfaces.
Those will be naturally the base of our moduli space of stable twisted sheaves.

Recall that the moduli space of stable twisted sheaves were described by Yoshioka
in [Yos06]. In order to construct such a moduli space Mv(S,α) =M(v) we need to fix
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a K3 surface S with an element α in the Brauer group Br(S) and a Mukai vector v.
Recall that for a K3 surface we have

Br(S) = Hom(TS ,Q/Z),
where

TS = NS(S)⊥ = {v ∈H2(S,Z)∶ ∀ m ∈ NS(S) v ⋅m = 0}
is the transcendental lattice of S. For a cyclic element α ∈ Br(S) of order n denote by

T⟨α⟩ = ker(α∶TS → Q/Z) ⊂ TS
the sublattice of index n.

Now let S be a general K3 surface of degree 2 such that NS(S) = Zh. In [vG05] van
Geemen classified the order 2 elements in Br(S) by classifying the possible index two
sublattices of TS = ⟨−2⟩ ⊕ 2U ⊕ 2E8(−1) and found three possibilities. Recall that an
element of order n in the group Br(S) can be represented as a Brauer-Severi variety
being a rank n bundle on S. As suggested to us by A. Kresch it is convenient to look
at the three geometric realizations of the order two elements in Br(S) in the following
way:

● a (2,2,2)-complete intersection is the base locus of a net of quadric 4-folds, then
the space of planes in the quadric 4-folds is generically P3 ∪ P3 and over the
sextic discriminant curve is just P3; Therefore it is a P3-bundle over the double
cover of P2 branched along the discriminant sextic (an element of Br(S)2 is
also an element from Br(S)4 so gives a rank 4 bundle).

● for the cubic fourfold containing a plane, the projection from the plane yields
a quadric surface fibration over P2, the discriminant locus is a sextic curve, the
space of lines in the quadrics give a P1-bundle over the double cover branched
along the sextic.

● the double cover of P2 × P2 branched along a (2,2) hypersurface is a quadric
surface bundle (by the projection to the first factor), the discriminant locus is
a sextic and the spaces of lines give a P1-bundle over the corresponding double
cover.

We are interested in the last case, discussed in detail in [vG05, §9.8]. Then

T⟨α3⟩
= ⟨−2⟩ ⊕U ⊕U(2) ⊕ 2E8(−1)

is Hodge isometric to a primitive sublattice of the middle cohomology of the Verra
fourfold. Note that T⟨α3⟩

admits two embeddings as an index 2 sublattice of TS . Note
also that Hassett and Varilly-Alvarado [HVA13] showed that the Brauer elements α3

that we consider can obstruct the Hasse principle.

Proposition 4.1. Let X ∈ U be general then X is isomorphic to the moduli space of
stable twisted sheaves on a K3 surface of degree 2 with twist α3 ∈ Br(S).

Proof. Since the Picard group of X has rank two and X admits two Lagrangian fibra-
tions it follows that the movable cone of X is isomorphic to the nef cone. Thus it is
enough to prove that X is birational to the moduli space of twisted sheaves.

We argue similarly as [Add16] using the global Torelli theorem [Ver13]. Let us
use the notation from [Huy15, Proposition 4.1]. We have to show that there is an

embedding H2(X,Z) ↪ H̃(S,α3) (into the Hodge structure of the twisted K3 surface
see [Huy15, Definition 2.5]) that is compatible with the Hodge structure. Given the

embedding, we find a vector v ∈ H̃(S,α3) in the orthogonal complement of the image
of H2(X,Z) having (v, v) = 2. For such v let M(v) = Mv(S,α3) be the moduli space
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of stable twisted sheaves on S. We know from [Yos06, Theorem 3.19] that there is a
distinguished embedding

H2(M(v),Z) ≃ v⊥ ↪ H̃(S,α3).
We deduce an isomorphism H2(X,Z) ≃H2(M(v),Z) and conclude by the global Torelli

theorem for deformations of K3[2] [Mar11, Corollary 9.8] that M(v) and X are bira-
tional.

We denote the hyperbolic plane by U , i.e. Z2 with the intersection form ( 0 1
1 0

).

Denote by
Λ̃ = I ⊕ J ⊕M ⊕N ⊕ 2E8(−1),

where I, J,M,N are copies of the hyperbolic lattice U . We can assume (by choosing

an appropriated marking) that H2(X,Z) = Λ⊕ ⟨−2⟩ = η⊥ ⊂ Λ̃, where Λ ≃ 3U ⊕E8(−1)
and η is some element with η2 = 2 contained in I. We know that the Hodge structure
on H2(X,Z) ⊗C is determined by the choice of

x ∶= ⟨H2,0(X)⟩
such that the algebraic part H1,1(X) of x� contains the lattice U(2) ⊂ Λ̃. We are
thus in the context of [Huy15, Lemma 2.6]. From the improved Eichler’s criterion

[BHPVdV04, thm I.2.9] it follows that there is a unique (up to O(Λ̃)) embedding of

a lattice of type U(2) ⊕ ⟨η⟩ into Λ̃. In particular, we can assume that U(2) ⊂M ⊕N
such that if u1, u2 and v1, v2 are standard generators of M and N respectively, then the
image of the embedding is defined by e = u1 + v1, f2 = u2 + v2. We find that the lattice
generated by ⟨e, f⟩, where f = u2 (or f = v2) spans a hyperbolic plane U . We obtain a
new special decomposition

(4.1) Λ̃ = U ⊕Λ

(this decomposition is different from the one in the definition of Λ̃). Since x is orthog-
onal to e, it admits a decomposition x = λe+σ with respect to (4.1) with σ ∈ Λ⊗C and
λ ∈ C.

By the surjectivity of the period map we can find a K3 surface S that realizes
σ ∈ Λ ⊗C (we have two such K3 surfaces). We claim that S admits a polarization of
degree 2. Indeed, observe that η ∈ I, so we have η ∈ Λ. Moreover,

0 = (η.x) = (η.(λe + σ)) = (η.σ) = (η.σ̄)
and η2 = 2. It follows that η induces a polarisation of degree 2 on S; the claim follows.

Let us identify the twist. As in [Huy15, Lemma 2.6] we decompose with respect to
(4.1) the element f2 = γ + 2f + ke with γ ∈ Λ. We compute that γ = v2 − u2 ∈ Λ and
denote B ∶= 1

2γ =
1
2(v2 − u2). We define the Brauer class α′3 ∈ Br(S) as the image of B

under the exponential map

Λ⊗Q ≃H2(S,Q) →H2(S,O∗S)tors ≃ Br(S).
Finally, if we identify Ze ⊂ U ⊂ Λ⊕U (with respect to (4.1)) with H4(S,Z) we obtain an

isometry with H̃(S,α′3) and the Hodge structure determined by x on Λ̃ (and a second
isometry for f = v2).

In order to identify the element α′3 with the element α3 described above, we use
[vG05, §2.1]. Indeed, we associate to B a map b∶TS → Q/Z, where TS ⊂ Λ is the
perpendicular lattice to η (in particular TS ≃ ⟨−2⟩ ⊕ 2U ⊕ 2E8(−1) = ⟨−2⟩ ⊕ Λ′ and
B ∈ Λ′), such that b(t) = [t.B] (in particular aα′3 = 0 and d = 1 in the notation of [vG05,

Proposition 9.2]) i. e. we are in the case of [vG05, Proposition 9.8]. �
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Remark 4.2. By analogy with the generic cubic fourfold containing a plane we expect
that the generic Verra fourfold is not rational. We hope that the IHS fourfold from U
related to a Verra fourfold can be used to attack this problem [MS12].

Remark 4.3. We saw in the proof above that X admits two structures of moduli
spaces of stable twisted sheaves on K3 surfaces of degree 2. The elements of these
moduli spaces are torsion sheaves that are supported on curves on the linear system of
degree 2 on S, so define two Lagrangian fibrations.

We are now ready to give a proof of our main Theorem.

Proof of Theorem 0.1. It follows from Theorem 2.9 and Proposition 2.13 that the La-

grangian degeneracy locus DĀ
1 admits a double cover branched along DĀ

2 being an

IHS fourfold of type K3[2] such that the double cover XĀ → DĀ
1 is given by an anti-

symplectic involution. Moreover, XĀ moves in a 19-dimensional family. It follows
from [OW13] that the invariant lattice of the involution is one of the lattices U , U(2),
⟨−2⟩⊕⟨2⟩. On the other hand XĀ admits a polarisation of Beauville degree 4 and, from
Section 3.1, two Lagrangian fibrations: thus the invariant lattice is U(2).

The fact that the Hilbert scheme of conics on Y admits a P1 fibration with base a
fourfold from U , follows from Proposition 3.6. The isomorphism with the moduli space
of twisted sheaves follows from Proposition 4.1. �

5. The Fano surface of the Verra threefold Z

Let Z = (P2
1 × P2

2) ∩Q be a general Verra threefold, and let F = F (Z) be the Fano
surface of conics of bidegree (1,1) on Z, i.e.

F = {[C] ∶ C ⊂ Z is a conic,C ⋅ h1 = C ⋅ h2 = 1}
where the hi is the pullback to Z of a line in P2

i . On F there is a natural regular
involution

i ∶ F → F, [C] ↦ [C ′] = i([C])
described as follows: Since any [C] ∈ F is of bidegree (1,1) then C can degenerate
only to a pair Co = L +M of intersecting lines, one of bidegree (1,0) and the other of
bidegree (0,1). Indeed if Co = 2L is a double line, then the bidegree deg(Co) = (2,0)
or (0,2), a contradiction. Let pi ∶ Z → P2

i , i = 1,2, be the two projections. Then, for
any [C] ∈ F the projections

Li = pi(C) ⊂ P2
i , i = 1,2

are lines, and the conic C lies on the smooth quadric surface

S2 = L1 ×L2 ⊂ P2
1 × P2

2.

Since Z is a quadratic section P2
1 × P2

2 ∩Q and C ⊂ Z, then

S2 ∩Z = S2 ∩Q = C +C ′,

where also C ′ is a (1,1)-conic on Z. It is bisecant to C. The involution on F is defined
by

i ∶ [C] ↦ [C ′].
Clearly [C] = i([C ′]), and C ′ is the unique conic on Z bisecant to C. The Fano surface
F = F (Z) of the general Z is smooth, the involution i ∶ F → F is regular and has no
fixed points; in particular the quotient Fano surface

F0 = F0(Z) = F /i
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of Z is smooth [Ili97], [DIM11]. Note that, by Proposition 3.6, the quotient Fano
surface F0 is isomorphic to the singular locus of the EPW quartic section associated
to the Verra fourfold Y being the double cover of P2

1 ×P2
2 branched in Z. In particular

F0 is isomorphic to the fixed locus of an antisymplectic involution on an IHS fourfold
of K3 type from the family U .

5.1. The two conic bundle structures on Z and invariants of the Fano surface.
[Ver04], [Ili97]

Let Z = (P2
1 × P2

2) ∩ Q be general. For a point x ∈ P2
i denote by Cx = p−1

i (x) the
fiber of pi over x. If x ∈ P2

1 (resp. x ∈ P2
2) then Cx ⊂ Z is a conic of bidegree (0,2)

(resp. of bidegree (2,0)). For the general Z any degenerate fiber Cx of any of the two
projections pi has rank two, i.e. Cx = p−1

i (x) = L′x +L′′x is a pair of lines, intersecting at
a point

fi(x) = L′x ∩L′′x = Sing Cx,

and the discriminant curves

∆i = {x ∈ P2
i ∶ Cx = L′x +L′′x} ⊂ P2

i

are smooth plane sextics, see [Ver04]. The maps

fi ∶ ∆i → P8, x↦ fi(x) = Sing Cx, i = 1,2

are called the the Steiner maps of the conic fibrations pi.
Let

∆̃i = {([L], x) ∶ L ⊂ Cx, x ∈ ∆i}
be the curve of components of degenerate fibers p−1

i (x) = Cx = L′x + L′′x of pi, i = 1,2.
Let

πi ∶ ∆̃i →∆i, ([L], x) ↦ x

i = 1,2 be the induced étale double covering, and let εi ∈ Pic2(∆i) be the 2-torsion
sheaf defining πi. Then for i = 1,2 the two coverings πi (resp. the two pairs (∆i, εi))
define two Prym varieties

Pri = Prym(∆i, εi)
which are both principally polarized abelian varieties (p.p.a.v.) of dimension 9 = g(∆i)−
1. Let also

J(Z) =H1(Ω2
Z)∗/H3(Z,Z)

be the principally polarized (p.p.) intermediate jacobian of Z. By the results of [Ver04],
Pr1 and Pr2 are both isomorphic to each other and to J(Z) as p.p.a.v..

Proposition 5.1. Let Z =W ∩Q ⊂ P8 be a general Verra threefold. Then:
(A) The Fano surface F = F (Z) has invariants K2 = 576, c2 = 312, pg = 82, q = 9.
(B) The quotient Fano surface F0 = F (Z)/i has invariants K2 = 288, c2 = 156,

pg = 36, q = 0.

Proof. The irregularity q(F ) = 9 follows from the Abel-Jacobi isomorphism Alb(F ) ≅
J(Z), from where q(F ) = h1,0(F ) = h2,1(Z) = 9.

We have seen that F0 is isomorphic to the fixed locus of the an IHS fourfold from
U . Starting from this, we compute the invariants of F (Z) and F0. The facts that
K2
F0

= 288 and χ(OF0) = 37 follows from [Bea11] since Y moves in a 19 dimensional
family. By Noether’s formula, we infer c2(F0) = 156.
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Now, by [Bea82], the class of F in J(Y ) is [F ] = 2Θ7/7!, where Θ is the theta divisor
of the principal polarization on J(Y ). Moreover from [Voi90, Corollary 3.17] the Abel-
Jacobi map is surjective. Thus, by [Voi90, Corollary 3.18], we deduce that the invariant
part H0(KF (Z))+ of the involution i on H0(KF (Z)) has dimension 36. It follows that
pg(F0) = 36.

Since F (Z) → F0 is a 2-sheeted unbranched covering, then

K2
F (Z)

= 2 ⋅K2
F0

= 576,

c2(F (Z)) = 2 ⋅ c2(F0) = 2 ⋅ 156 = 156,

and χ(OF ) = 2 ⋅ χ(OF ) = 37 ⋅ 2 = 74. Therefore, since pg(F0) − q(F0) + 1 = χ(OF0) then

q(F0) = pg(F0) − χ(OF0) + 1 = 36 − 37 + 1 = 0.

Thus we find q(F0) = 0. �

Remark 5.2. Note that the Chow group CH0(F (Z)) was studied in [Voi90, Proposi-
tion 1.1]. In particular, we find a description of the class 2([C] + [C ′]) ∈ CH0(F (Z))
where C and C ′ are two involutive conics.

Remark 5.3. Note that the Hilbert scheme of (1,1) conics on Z was already studied
in [Ver04, §6] and [DIM11]. Verra considers a natural birational map u∶F (Z) → D6

Z ,
where D6

Z is the intersection of the closure of the locus of rank 6 quadrics containing
Z but not P2 × P2 with the locus of quadrics containing P2 × P2.

Note that in [DIM11] it is proved that each nodal prime Fano threefold X10 of
degree 10 is birational to a Verra threefold ZX . From [DIM11, Proposition 6.6., §5.4]
the Fano surface of conics on X10 and (1,1) conics ZX are two birational Beauville
special subvarieties Sodd and Seven respectively.

By [Bea82], the class of Z in J(Z) is [Z] = 2Θ7/7!, where Θ is the theta divisor of
the principal polarization on J(Z). Also KZ is numerically equivalent (on Z) to 2Θ∣Z .
Therefore we recompute

K2
Z = (2Θ∣Z)2 = (2Θ)2.2Θ7/7! = 8Θ9/7! = 8.9!/7! = 8.8.9 = 576

since the Abelian 9-fold J(Z) is principally polarized by Θ, this yields Θ9/9! = 1.

Remark 5.4. We also have the following relation KF0 = 2H + e where H is the hy-
perplane section on C(P2 × P2) ⊂ P9 and e is the torsion divisor defining the cover
i.
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