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The quark-meson model is often used as an effective low-energy model for QCD to study the
chiral transition at finite temperature T and baryon chemical potential µB . The parameters in the
quark-meson model can be found by expressing them in terms of the sigma mass mσ, the pion mass
mπ, the constituent quark mass mq and the pion decay constant fπ. In practice, this matching is
done at tree level, which is inconsistent once loop effects of the effective potential are taken into
account. We show how to properly perform the matching in the quark-meson model by using the
on-shell and the modified minimal subtraction renormalization schemes relating the physical masses
and the pion decay constant to the running mass parameter and couplings. We map out the phase
diagram in the µB–T plane and compare our results with other approximations.

I. INTRODUCTION

The first phase diagram of quantum chromodynamics
(QCD) appeared in the 1970s, where it was suggested
that it consists of a confined low-temperature phase of
hadrons and a deconfined high-temperature phase of
quarks and gluons. Since the appearance of this phase
diagram, large efforts have been made to map it out in
detail. The only existing first-principles method used to
calculate the properties of finite-temperature QCD be-
low the chiral transition is lattice simulation. However,
due to the sign problem, it is difficult to perform lattice
simulations at finite baryon chemical potential. Map-
ping out the phase diagram is therefore based on model
calculations, in particular in the region of low temper-
ature and large baryon chemical potential. See Refs.
[1, 2] for reviews.

The O(4)-symmetric linear sigma model (LSM) is
probably the simplest low-energy model of QCD. The
degrees of freedom are the pions and the sigma particle.
Often this model is augmented by an isospin doublet of
fermions. In the old days, the fermionic doublet was
identified with the neutron and proton. Now the isospin
doublet consists of a u and a d quark. This extended
model is referred to as the quark-meson (QM) model
or the linear sigma model with quarks (LSMq). One
may object to having both quark and mesonic degrees
of freedom present at the same time. At very low tem-
peratures, this is a valid objection since quarks are con-
fined. This has led to the introduction of the Polyakov
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loop in these models in order to mimic confinement in
QCD in a statistical sense by coupling the chiral mod-
els to a constant SU(Nc) background gauge field Aaµ [3].
One can express this background gauge field in terms of
the complex-valued Polyakov loop variable Φ and con-
sequently the effective potential becomes a function of
the expectation value of the chiral condensate and the
expectation value of the Polykov loop. The latter then
serves as an approximate order parameter for confine-
ment [4]. Finally, one adds the contribution to the free
energy density from the gluons via a phenomenological
Polyakov loop potential [5, 6]. At finite temperature
and chemical potential, the (P)QM is often treated in
the large-Nc limit which implies that one takes into ac-
count the one-loop correction to the effective potential
from the fermions, but treats the mesonic degrees of free-
dom at tree level [7]. In some cases, one also neglects
the vacuum fluctuations from the fermions and therefore
renormalization issues altogether. This is sometimes re-
ferred to as the “no-sea” approximation.

The Lagrangian of the QM model has several para-
meters that can be expressed in terms of the physical
quantities mσ, mπ, mq, and fπ. In this way one can
fix the parameters of the model such that it reproduces
the vacuum physics correctly. However, in most renor-
malization schemes, the tree-level relations between the
parameters in the Lagrangian and physical quantities
receive radiative corrections. It is therefore inconsistent
to use tree-level values for these parameters in for exam-
ple the calculation of the effective potential. While the
on-shell parameters take their tree-level values, the pa-
rameters in MS scheme are running and depend on the
renormalization scale Λ, which has been introduced to
keep the canonical dimension of the loop integrals. The
idea is then to calculate the counterterms in the on-shell



scheme as well as in the MS scheme and relate the renor-
malized parameters in the two. The calculation of the
effective potential is then carried out using (modified)
minimal subtraction and the relations between the run-
ning parameters and the on-shell parameters, i.e. phys-
ical quantities are then used as input. This procedure
has been well-known for decades by people doing loop
calculations in the Standard Model, [8–11], but seems
not to have been appreciated by practitioners in finite-
temperature field theory, see however Refs. [12–16].

The paper is organized as follows. In Sec. II we briefly
discuss the quark-meson model. We also calculate the
self-energies and extract the counterterms in the on-shell
scheme. In Sec. III, we derive relations between the
physical quantities and the running parameters. In Sec.
IV, we apply our results to the quark-meson model to
map out the phase diagram in the µ–T plane. In the
appendix, we list the integrals that are necessary in our
calculations.

II. QUARK-MESON MODEL

In this section we briefly discuss the quark-meson
model and calculate the one-loop self-energies in the
large-Nc limit. We also derive the counterterms in the
on-shell scheme.

A. Lagrangian and self-energies

The Lagrangian of the two-flavor quark-meson model
in Minkowski space is

L =
1

2

[
(∂µσ)2 + (∂µπ)2

]
− 1

2
m2(σ2 + π2)

− λ

24
(σ2 + π2)2 + hσ + ψ̄

[
i/∂ + (µ+ 1

2τ3µI)γ
0

−g(σ + iγ5τ · π)
]
ψ , (1)

where ψ is a color Nc-plet, a four-component Dirac
spinor as well as a flavor doublet

ψ =

(
u
d

)
. (2)

Moreover, µB = 3µ = 3
2 (µu + µd) and µI = (µu − µd)

are the baryon and isospin chemical potentials expressed
in terms of the quark chemical potentials µu and µd, τi
(i = 1, 2, 3) are the Pauli matrices in flavor space, and
π = (π1, π2, π3).

Apart from the global SU(Nc) symmetry, the La-
grangian (1) has a U(1)B × SU(2)L × SU(2)R symme-
try for h = 0 and a U(1)B × SU(2)V symmetry for
h 6= 0. When µu 6= µd, this symmetry is reduced to

U(1)B×UI3L(1)×UI3R(1) for h = 0 and U(1)B×UI3(1)
for h 6= 0. In the remainder of this paper we take h = 0,
i.e. we work in the chiral limit. We also set µI = 0.

In the vacuum, the sigma field acquires a nonzero ex-
pectation value φ0. We can therefore write

σ = φ0 + σ̃ , (3)

where σ̃ is a quantum fluctuating field with a zero ex-
pectation value. At tree level, the masses of the sigma,
the pion, and the quark are

m2
σ = m2 +

λ

2
φ2

0 , (4)

m2
π = m2 +

λ

6
φ2

0 , (5)

mq = gφ0 . (6)

The tree-level potential Vtree is

Vtree =
1

2
m2φ2

0 +
λ

24
φ4

0 , (7)

and whose minimum is being identified with the pion
decay constant fπ. The relations (4)–(6) can be solved
with respect to the parameters of the Lagrangian (1).
This yields

m2 = −1

2

(
m2
σ − 3m2

π

)
, (8)

λ = 3
(m2

σ −m2
π)

f2
π

, (9)

g2 =
m2
q

f2
π

. (10)

The Eqs. (8)–(10) are the parameters determined at tree
level and are often used in practical calculations. How-
ever, as pointed out in the introduction, this is incon-
sistent in calculations that involve loop corrections un-
less one uses the on-shell renormalization scheme. In the
on-shell scheme, the divergent loop integrals are regular-
ized using dimensional regularization, but the countert-
erms are chosen differently from the minimal subtraction
scheme. The counterterms in the on-shell scheme are
chosen so that they exactly cancel the loop corrections
to the self-energies and couplings evaluated on shell, and
as a result the renormalized parameters are independent
of the renormalization scale and satisfy the tree-level re-
lations (8)–(10).

We need to introduce the counterterms for the pa-
rameters in the Lagrangian (1), δm2, δλ, and δg2, the
wave function counterterms δZσ, δZπ, and δZψ. We
then write

σB =
√
Zσσ , πiB =

√
Zππi , (11)

ψB =
√
Zψψ , m2

B = Zmm
2 , (12)

λB = Zλλ , g2
B = Zg2g

2 , (13)
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where Zσ = 1 + δZσ etc. The counterterms δm2, δλ,
and δg2 are expressed in terms of the counterterms δm2

σ,
δm2

π, δmq, and δf2
π . From Eqs. (4)–(6), using Eqs. (11)–

(13), one finds

δm2 = −1

2

(
δm2

σ − 3δm2
π

)
, (14)

δλ = 3
δm2

σ − δm2
π

f2
π

− λδf
2
π

f2
π

, (15)

δg2 =
δm2

q

f2
π

− g2 δf
2
π

f2
π

. (16)

In the large-Nc limit δmq = 0 and (16) directly relates
δg2 and δf2

π . In this limit there are also no loop cor-
rections to the pion-quark vertex, which means that the
associated counterterms must cancel as well, leading to
δg2 = −g2δZπ. Together with (16) we can rewrite (15)
as

δλ = 3
δm2

σ − δm2
π

f2
π

− λδZπ . (17)

In the Feynman diagrams below, a solid line represents
a sigma, a dashed line represents a pion, and the solid
line with an arrow represents a quark. We work in the
large-Nc limit, which implies that we are taking into
account only fermion loops in the self-energies. The one-
loop Feynman diagrams contributing to the self-energy
of the sigma are shown in Fig. 1.

FIG. 1. One-loop self-energy diagrams for the sigma particle.

The corresponding contributions to the sigma self-
energy are given by

Σσ(p2) = −8g2Nc
[
A(m2

q)− 1
2 (p2 − 4m2

q)B(p2)
]

+
4λgφ0Ncmq

m2
σ

A(m2
q) , (18)

where the integrals A(m2) and B(p2) are defined in Ap-
pendix A.

The diagrams contributing to the self-energy of the
pion are shown in Fig. 2.

FIG. 2. One-loop self-energy diagrams for the pion.

The corresponding contributions to the pion self-
energy are given by

Σπ(p2) = −8g2Nc
[
A(m2

q)− 1
2p

2B(p2)
]

+
4λgφ0Ncmq

3m2
σ

A(m2
q) . (19)

FIG. 3. Counterterm for the two-point functions for the
sigma and pion.

The counterterm diagrams are shown in Fig. 3.
We do not need the quark self-energy since it is of

order N0
c . Thus Zψ = 1 and δmq = 0 at this order.

The one-loop diagram that contributes to the one-
point function together with the counterterm are shown
in Fig. 4.

FIG. 4. Tadpole diagram for the sigma particle and the coun-
terterm.

It reads

δΓ(1) = −8NcgmqA(m2
q) + iδt , (20)
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where δt is the counterterm for the tadpole, which can
be expressed in terms of the other counterterms.

B. On-shell renormalization conditions

The inverse propagator for the sigma or pion can be
written as

p2 −m2
σ,π − iΣσ,π(p2)+counterterms . (21)

In the on-shell scheme, the physical mass is equal to the
renormalized mass in the Lagrangian, i.e. m = mpole.1

Thus we can write

Σos(p2 = m2
σ,π)+counterterms = 0 . (22)

The residue of the propagator on shell equals unity,
which implies

∂

∂p2
Σσ,π(p2)

∣∣∣
p2=m2

σ,π

+counterterms = 0 . (23)

The equation of motion is that the one-point func-
tion vanishes. At tree level, the equation of motion is
t = m2

πφ0 = 0, and in the broken phase the pion mass
is zero in accordance with Goldstone’s theorem. The
renormalization condition is then

δΓ(1) = 0 . (24)

The counterterms that correspond to Figs. 3 and 4 are
given by

Σct
σ (p2) = i

[
δZσ(p2 −m2

σ)− δm2
σ

]
, (25)

Σct
π (p2) = i

[
δZπ(p2 −m2

π)− δm2
π

]
, (26)

Σct2
σ = 3Σct2

π =
iλφ2

0

2m2
σ

δm2
π , (27)

δt = −φ0δm
2
π . (28)

The on-shell renormalization constants are given by the
self-energies and their derivatives evaluated on shell.
Combining Eqs. (22)–(26), we find

δm2
σ = −iΣσ(m2

σ) , (29)

δm2
π = −iΣπ(0) , (30)

δZσ = i
∂

∂p2
Σσ(p2)

∣∣∣
p2=m2

σ

, (31)

δZπ = i
∂

∂p2
Σπ(p2)

∣∣∣
p2=m2

π

. (32)
From Eqs. (18) and (19), we find 2

δm2
σ = 8ig2Nc

[
A(m2

q)− 1
2 (m2

σ − 4m2
q)B(m2

σ)
]
,(33)

δm2
π = 8ig2NcA(m2

q) , (34)

δZσ = 4ig2Nc
[
B(m2

σ) + (m2
σ − 4m2

q)B
′(m2

σ)
]
, (35)

δZπ = 4ig2NcB(0) . (36)

Using Eqs. (14)–(16), we find expressions for the coun-
terterms δm2

OS, δλOS, and δg2
OS,

δm2
OS = 8ig2Nc

[
A(m2

q) + 1
4 (m2

σ − 4m2
q)B0(m2

σ)
]

= = δm2
div +m2 4g2Nc

(4π)2

[
log

(
Λ2

m2
q

)
+

4m2
q

m2
σ

+

(
1−

4m2
q

m2
σ

)
F (m2

σ)

]
, (37)

δλOS = −12ig2Nc
f2
π

(m2
σ − 4m2

q)B(m2
σ)− 4iλg2NcB(0)

= δλdiv +
12g2Nc
(4π)2

m2
σ

f2
π

[(
2−

4m2
q

m2
σ

)
log

(
Λ2

m2
q

)
+

(
1−

4m2
q

m2
σ

)
F (m2

σ)

]
, (38)

δg2
OS = −4ig4NcB(0) = δg2

div +
4g4Nc
(4π)2

log

(
Λ2

m2
q

)
, (39)

δZOS

σ = δZσ,div −
4g2Nc
(4π)2

[
log

(
Λ2

m2
q

)
+ F (m2

σ) + (m2
σ − 4m2

q)F
′(m2

σ)

]
, (40)

δZOS

π = δZπ,div −
4g2Nc
(4π)2

log

(
Λ2

m2
q

)
, (41)

1 In defining the mass, we ignore the imaginary parts of the self-
energy.

2 The self-energies are without the tadpole contributions.
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where F (m2) and F ′(m2) are defined in Appendix A,
and the divergent quantities are

δm2
div = m2 4g2Nc

(4π)2ε
, (42)

δλdiv =
8g2Nc
(4π)2ε

(
λ− 6g2

)
, (43)

δg2
div =

4g4Nc
(4π)2ε

, (44)

δZσ,div = δZπ,div = − 4g2Nc
(4π)2ε

. (45)

The divergent parts of the counterterms are the same in
the two schemes, i.e. δm2

div = δm2
MS

and so forth.

III. RELATIONS BETWEEN PARAMETERS IN
THE TWO SCHEMES

Since the bare parameters are independent of the
renormalization scheme, we can immediately write down
the relations between the renormalized parameters in the
on-shell and MS schemes. We find

m2
MS

=
ZOS
m

ZMS
m

m2 ≈ m2 + δm2
OS − δm2

MS
, (46)

λMS =
ZOS

λ

ZMS

λ

λ ≈ λ+ δλOS − δλMS , (47)

g2
MS

=
Z<OS

g2

ZMS

g2

g2 ≈ g2 + δg2
OS − δg2

MS
. (48)

Using Eqs. (37)–(39), we find the running parameters
in the MS scheme

m2
MS

= m2 + 8ig2Nc
[
A(m2

q) + 1
4 (m2

σ − 4m2
q)B(m2

σ)
]
− δm2

MS

= − 1
2m

2
σ

{
1 +

4m2
qNc

(4π)2f2
π

[
log

(
Λ2

m2
q

)
+

4m2
q

m2
σ

+

(
1−

4m2
q

m2
σ

)
F (m2

σ)

]}
, (49)

λMS = λ− 4iλg2Nc

[(
1−

4m2
q

m2
σ

)
B(m2

σ) +B(0)

]
− δλMS

=
3m2

σ

f2
π

{
1 +

4m2
qNc

(4π)2f2
π

[(
2−

4m2
q

m2
σ

)
log

(
Λ2

m2
q

)
+

(
1−

4m2
q

m2
σ

)
F (m2

σ)

]}
, (50)

g2
MS

= g2 − 4ig4NcB(0)− δg2
MS

=
m2
q

f2
π

{
1 +

4m2
qNc

(4π)2f2
π

log

(
Λ2

m2
q

)}
, (51)

where the physical on-shell values are related to the me-
son and quark masses given by Eqs. (8)–(10).

The running parameters m2
MS

(Λ), λMS(Λ), and g2
MS

(Λ)
satisfy a set of renormalization group equations, which
in the large-Nc limit are

Λ
dm2

MS
(Λ)

dΛ
=

8m2
MS

(Λ)g2
MS

(Λ)Nc
(4π)2

, (52)

Λ
dg2

MS
(Λ)

dΛ
=

8g4
MS

(Λ)Nc
(4π)2

, (53)

Λ
dλMS(Λ)

dΛ
=

16Nc
(4π)2

[
λMS(Λ)g2

MS
(Λ)− 6g4

MS
(Λ)
]
,(54)

The solutions to Eqs. (52)–(54) are

m2
MS

(Λ) =
m2

0

1− 4g20Nc
(4π)2 log Λ2

m2
q

, (55)

g2
MS

(Λ) =
g2

0

1− 4g20Nc
(4π)2 log Λ2

m2
q

, (56)

λMS(Λ) =
λ0 − 48g40Nc

(4π)2 log Λ2

m2
q(

1− 4g20Nc
(4π)2 log Λ2

m2
q

)2 , (57)

where m2
0, g2

0 , and λ0 are the values of the running mass
and couplings at the scale Λ = mq. They are found by
evaluating Eqs. (49)–(51) at this scale.

In the Nambu-Jona-Lasinio model, we have the re-
lation mσ = 2mq [18], while there is no such relation
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between the sigma mass and quark mass in the quark-
meson model. However, it is interesting to note that
for mσ = 2mq, the tree-level relation λ = 12g2 is
valid at the one-loop level in the large-Nc limit; using

λ0 = 3
m2
σ

f2
π

= 12g2
0 , we find λMS(Λ) = 12g2

MS
(Λ).

IV. RESULTS AND DISCUSSION

In this section, we calculate the one-loop effective po-
tential and study the phase diagram. We are working in
the large-Nc limit, which implies that only fermion loops
are taken into account. This is often referred to as the
mean-field approximation. The one-loop contribution to
the effective potential is straightforward to calculate in
this limit and reads

V1 = −4Nc
∑∫
{P}

log
[
P 2 + ∆2

]
, (58)

where the sum-integral is defined in Appendix A. Af-
ter redefining the field φ0 and renormalizing the mass
parameter m2 and coupling constants g2 and λ, we find

V1−loop =
1

2
m2

MS
(Λ)

∆2

g2
MS

(Λ)
+
λMS(Λ)

24

∆4

g4
MS

(Λ)
+

2Nc∆
4

(4π)2

[
log

Λ2

∆2
+

3

2

]
−4NcT

∫
p

{
log
[
1 + e−β(E−µ)

]
+ log

[
1 + e−β(E+µ)

]}
, (59)

where µ = µu = µd is the quark chemical potential, and E =
√
p2 + ∆2. Substituting the running parameters Eqs.

(55)–(57) into Eq. (59), the effective potential becomes independent of the renormalization scale Λ and reads

V1−loop = −1

4
m2
σf

2
π

{
1 +

4m2
qNc

(4π)2f2
π

[(
1−

4m2
q

m2
σ

)
F (m2

σ) +
4m2

q

m2
σ

]}
∆2

m2
q

+
1

8
m2
σf

2
π

{
1−

4m2
qNc

(4π)2f2
π

[
4m2

q

m2
σ

(
log

(
∆2

m2
q

)
− 3

2

)
−

(
1−

4m2
q

m2
σ

)
F (m2

σ)

]}
∆4

m4
q

−4NcT

∫
p

{
log
[
1 + e−β(E−µ)

]
+ log

[
1 + e−β(E+µ)

]}
. (60)

In the remainder of the paper, we set Nc = 3. Moreover,
the mass of the sigma particle is not known very accu-
rately [17]. It is therefore common to vary it within the
range of 400–800 MeV to study the effects on the phase
diagram.

In Fig. 5, we show the normalized tree-level (dashed
line) as well as the one-loop (solid line) effective potential
in the vacuum (µ = T = 0) as a function of ∆ for
mσ = 600 MeV. This corresponds to the NJL relation
between the sigma mass and the constituent quark mass,
mσ = 2mq. Both potentials have a minimum at ∆ = 300
MeV, but the one-loop effective potential is significantly
deeper.

In Fig. 6 we also show the normalized tree-level
(dashed line) as well as the one-loop (solid line) effec-
tive potential in the vacuum (µ = T = 0) as a function
of ∆ for mσ = 800 MeV. Qualitatively, the potential

looks the same as in Fig. 5.

In Fig. 7, we show the phase diagram in the µ–T plane
for mσ = 600 MeV. If one excludes the vacuum fluctua-
tions of the fermions and hence ignores renormalization
issues altogether, the model predicts a first-order tran-
sition in the entire µ–T plane. For vanishing chemical
baryon potential µ, universality arguments suggest that
it is second order [19], and strongly suggests that one
should take the vacuum fluctuations of any model seri-
ously [20–22]. Moreover, the first-order transition that
starts at T = 0, ends at the tricritical point indicated by
a red dot and located at (µ, T ) = (303.24 MeV, 55 MeV).

In Fig. 8, we show the phase diagram in the µ–T plane
formσ = 800 MeV. The transition is now of second order
in the entire µ–T plane, if one includes vacuum fluctu-
ations and first order if they are neglected. For both
values of mσ, the critical temperature increases signif-
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FIG. 5. Vacuum effective potential normalized to f4
π as a

function of ∆ for mσ = 600 MeV. Dashed line is the tree-level
potential and the solid line is the one-loop effective potential
in the large-Nc limit.
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FIG. 6. Vacuum effective potential normalized to f4
π as a

function of ∆ for mσ = 800 MeV. Dashed line is the tree-level
potential and the solid line is the one-loop effective potential
in the large-Nc limit.

icantly by including the vacuum fluctuations and one-
loop corrections to the parameters of the Lagrangian
(1). Our results for a sigma mass of 600 MeV and 800
MeV are in very good agreement with those of Ref. [16],
where the authors use Pauli-Villars regularization and
the pole mass definition to study the phase diagram of
the QM model. There are a number of other studies of
this model; however, a quantitative comparison is diffi-
cult since the curvature of the effective potential is used
to define the sigma mass (see discussion below) or be-
cause matching is done at tree level. Qualitatively, the
functional-renormalization group (FRG) study in Ref.
[23] predicts a more complicated phase structure at low
T . The second-order line starting at µ = 0 ends at a

0 50 100 150 200 250 300
0

50

100

150

μ(MeV)

T
(M
eV

)

mσ=600 MeV

FIG. 7. The phase diagram in the µ–T plane for mσ = 600
MeV. A dashed line indicates a second-order transition, while
a solid indicates a first-order transition. The red dot shows
the tricritical point. The blue solid line is phase boundary
in the no-sea approximation.

tricritical point. The first-order transition bifurcates at
larger values of µ where one of the branches is first or-
der, while the second branch initially is first order and
then second order. This more complicated structure may
very well be related to the fact that the FRG includes
mesonic fluctuations.
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FIG. 8. The phase diagram in the µ–T plane for mσ = 800
MeV. A dashed line indicates a second-order transition, while
a solid indicates a first-order transition. The blue solid line
is the phase boundary in the no-sea approximation.

A common, but incorrect definition of the sigma mass
is the second derivative of the effective potential in the
minimum. This is often referred to as the curvature
mass. The effective potential is the generator of the n-
point functions of the theory at vanishing external mo-
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menta and so the curvature mass is equivalent to defining
the sigma mass using the self-energy evaluated at vanish-
ing momentum. The difference between the two masses
is finite, but a priori difficult to quantify. In hot gauge
theories, the correct way of defining the mass has a long
history, and we emphasize that the pole definition is the
physical and gauge invariant one [24, 25]. If different def-
initions of masses are used or if tree-level relations are
applied at the loop level, one cannot compare different
model predictions quantitatively. It is therefore impor-
tant to determine the parameters in the Lagrangian in
the correct way.

To summarize, we have calculated the running param-
eters m2, λ, and g2 at one loop by relating the MS and
on-shell schemes and the experimental values for the me-
son and quark masses and pion decay constant. We used
this as input to the one-loop effective potential that was
used to map out the phase diagram in the µ–T plane.
We will present a more complete analysis including the
Polyakov loop variable Φ and the possibility of inhomo-
geneous phases in a forthcoming publication [26]. The
correct determination of the parameters in the quark-
meson model should be useful in other contexts. For
example, the SU(3) quark-meson model has been used
to study the phase diagram of QCD and quark stars.
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INTEGRALS AND SUM INTEGRALS

The divergent loop integrals are regularized using di-
mensional regularization. We define the dimensionally
regularized integrals by

∫
p

=

(
eγEΛ2

4π

)ε ∫
dDp

(2π)D
, (61)

where D = 4− 2ε, γE is the Euler-Mascheroni constant,
and Λ is the renormalization scale associated with the

MS scheme. Specifically, we need the integrals

A(m2) =

∫
p

1

p2 −m2

=
im2

(4π)2

(
Λ2

m2

)ε [
1

ε
+ 1

]
, (62)

B(p2) =

∫
k

1

(k2 −m2)[(k + p)2 −m2]

=
i

(4π)2

(
Λ2

m2

)ε [
1

ε
+ F (p2)

]
, (63)

B′(p2) =
i

(4π)2
F ′(p2) , (64)

where the functions q, F (p2), and F ′(p2) are

q =

√
4m2

p2
− 1 , (65)

F (p2) = −
∫ 1

0

dx log

[
p2

m2
x(x− 1) + 1

]
= 2− 2q arctan

(
1
q

)
, (66)

F ′(p2) =
4m2q

p2(4m2 − p2)
arctan

(
1
q

)
− 1

p2
. (67)

In the imaginary-time formalism for thermal field the-
ory, a fermion has Euclidean 4-momentum P = (P0,p)
with P 2 = P 2

0 + p2. The Euclidean energy P0 has dis-
crete values: P0 = (2n + 1)πT + iµ, where n is an in-
teger. Loop diagrams involve a sum over P0 and an
integral over spatial momenta p. With dimensional reg-
ularization, the integral is generalized to d = 3− 2ε spa-
tial dimensions. We define the dimensionally regularized
sum-integral by ∑∫

{P}
= T

∑
{P0}

∫
p

, (68)

where Λ is the renormalization scale in the modified min-
imal subtraction scheme MS and∫

p

=

(
eγEΛ2

4π

)ε ∫
ddp

(2π)d
. (69)

Specifically, we need the sum-integral

I0 =
∑∫
{P}

log
[
P 2 +m2

]
. (70)

Summing over the Matsubara frequencies P0, we obtain

I0 = −
∫
p

√
p2 +m2 − T

∫
p

{
log
[
1 + e−β(E−µ)

]
+ log

[
1 + e−β(E+µ)

]}
. (71)
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The first term is ultraviolet divergent and in dimensional
regularization it reads∫

p

√
p2 +m2 = − 2m4

(4π)2

(
Λ2

m2

)ε [
1

ε
+

3

2

]
. (72)
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