Jernalderbebyggelsen på Tastarustå

\varnothing vre Tasta, gnr. 28, bnr. 54, 63, 11 og 26, Stavanger kommune.

Niall J. O. Armstrong og Gitte Kjeldsen

AmS saksnummer: 157/1998, 25/2000, 022/2004
Journalnummer: 99/7619-32/733
Dato: 27.06.2008
Sidetall:
Opplag: 12
Oppdragsgiver:
Stavanger kommune

Stikkord:

Bosetningsspor fra jernalder
Hus fra førromersk jernalder, merovingertid og vikingtid
Grav fra tidlig kristen tid
To verksteder fra førromersk jernalder
Kokegropfelt fra førromersk jernalder
Ildslagningsstein fra folkevandringstid
Spinnehjul fra vikingtid
Polert perle i melkekvarts
Boplasskeramikk

Jernalderbebyggelsen på Tastarustå
 Øvre Tasta, gnr. 28, bnr. 54, 63, 11 og 26, Stavanger kommune.

Niall J. O. Armstrong og Gitte Kjeldsen

InNHOLD:

1. Sammendrag 2006 2
2. InNLEDNING 4
2.1 Beliggenhet 5
2.2 REGISTRERTE KULTURMINNERI OMRÅDET 5
2.3 PRoblemstillinger og málsetninger før utgravning 6
2.4 Stedhistorie og terrengbeskrivelse 7
3. Tidsrom og deltakere 7
3.1 GJennomføring, Verforhold og tidsbruk 7
3.2 Deltakere (INKL. GRAVEMASKINSJAFør OG SELSKAP) 8
4. Metode og Graveteknikk. 8
4.1 Dokumentasjon 8
4.2 Tegning 9
4.3FOTOGRAFERING. 9
4.4 InNSAMLING AV PRøVER 9
4.5 Funn (NUMMERERING OG KATALOGISERING) 9
4.6 InNMÁLING (KOORDINATSYSTEM) 9
4.7 UTGRAVNINGENS FORLøP 10
5. Stratigrafi og kildekritiske forhold. 11
6. Funnmateriale 11
6.1 Funnmengde, funnkategorier og materialtyper 11
6.2 GJenstandsbeskrivelse 11
7. Beskrivelse av Anlegg/strukturer 13
8. Naturvitenskapelige undersøkelser. 14
8.1 PRøVEMATERIALE TIL ${ }^{14} \mathrm{C}$-DATERINGER 15
8.2 Pollen- OG MAKROFOSSILPRøVER 15
9. Tolkning av Lokaliteten ilys av strukturer og funn 16
9.1 MuLig fjernet gravhaug. 16
9.2 Hus 1 16
9.3 Hus 2. 19
9.4 Hus 4 27
9.5 Hus 5. 29
9.6 Hus 6 32
9.7 Antatt tom grav 34
9.8 Hus 8 35
9.9 Grøft 11125 (Hus 7) 39
10. SAMMENDRAG 2007 41
11. INNLEDNING 42
2.1 Beliggenhet 43
12. TIDSROM OG DELTAKERE 43
3.1 Gjennompøring, Vferforhold og tidsbruk 43
3.2 DeLTAKERE (INKL. GRAVEMASKINSJAFØR OG SELSKAP) 44
13. Metode og Graveteknikk 44
4.1 Dokumentasjon 44
4.2 Tegning 44
4.3 Fotografering 45
4.4INNSAMLING AV PRøVER 45
4.5FUNN (NUMMERERING OG KATALOGISERING). 45
4.6 INNMALING (KOORDINATSYSTEM) 45
4.7 UTGRAVNINGENS FORLøP 46
5 StRATIGRAFI og KILDEKRITISKE FORHOLD 49
5.1 Horisontalt. 49
5.2 Vertikalt 49
5.3 ANDRE FORHOLD (FORSTYRRELSER ETC) 49
14. Funnmateriale 49
6.1 FUNNMENGDE, FUNNKATEGORIER OG MATERIALTYPER 49
15. Beskrivelse av anlegg/strukturer 49
16. Naturvitenskapelige undersøkelser 50
8.1 PRøVEMATERIALE TIL ${ }^{14} \mathrm{C}$-DATERINGER 50
8.2 POLLEN- OG MAKROFOSSILPRøVER 50
17. TOLKNING AV LOKALITETEN I LYS AV STRUKTURER OG FUNN 51
9.1 Hus 7 51
9.2 Hus 11 61
9.3 Hus 14 68
9.4 Hus 15 75
9.5 Hus 10 77
9.6 Hus 9 (Firestolper) 79
9.7 Hus 13 (Firestolper) 80
9.8 Hus 17 (Firestolper) 80
9.9 FIRESTOLPERNE GENERELT 81
9.10 AKTIVITETER I ULIKE FASER 82
18. AKTIVITETER, ANTATT ALDER OG LOKALITETSFUNKSJON 82
19. FORMIDLING OG PUBLIKUMSKONTAKT 86
20. LITTERATUR 87
21. VedLegg 881. Liste over Anlegg / strukturer
22. LISTE OVER TEGNINGER
23. FUNNLISTE
24. Katalog
25. LISTE OVER VITENSKAPELIGE PRøVER
26. DATERINGSSKJEMAER OG -RESULTATER
27. OVERSIKTSKART OVER OMRADET
28. OVERSIKTSKART OVER LOKALITET
29. Detaljkart over lokalitet
30. LISTE OVER KOORDINATER
31. LISTE OVER INNMALTE PUNKTER
32. PLAN OG PROFILTEGNINGER AV UTVALGTE STRUKTURER
33. Avisutklipp etc.
34. FOTOLISTE

Vår ref.:
99/7619-32

Saksbehandler:
Arkivkode 1103-28, A-433

Dato:
17.08.2006

Kommune:	Stavanger
Gardsnavn:	Øvre Tasta
Gnr:	28
Bnr:	$26,54,63$
Lokalitetsnavn:	Tastarustå
Tiltakshaver:	Stavanger kommune
Adresse:	Olav Kyrresgt 23, 4005 Stavanger

Sakens navn:

Fu saksnr:
157/1998, 25/2000, Flyfotoreg nr:
C 123075
022/2004
Brevjournalnr:
Fornminnenr:
ID (Askeladden:)
Kartblad og UTM: AK 023-5-2 Hoh:

Fra 55 til 63 m
Aksesjonsnr: 2006/9

Museumsnr:

Natvit. prøvenr:
Fotonr:

Befart (dato):	24.11.98
Av:	Linda Julshamn (RFK) og Olle Hemdorff (AmS)
Feltundersøkelse (tidsrom):	$02 / 05 / 06-02 / 09 / 06$
Ved:	Niall Armstrong og Gitte Kjeldsen

Gjelder: Arkeologiske undersøkelser på Tastarustå, regulering for plan 1731.

1. SAMMENDRAG 2006

De arkeologiske resultater

Det ble som forventet ikke funnet store mengder av gjenstander. Funnkategorien fordeler seg på litt flint, boplasskeramikk og ubestemmelige jernfragmenter. Av særlige gjenstander ble det funnet et spinnehjul i Hus 2 (fra stolpehull Felt I), et velbevart eksemplar av en beltestein fra folkevandringstid (Felt II), og en sjelden slipt perle i melkekvarts fra vikingtid (Felt I). De 2 sistnevnte gjenstander kom frem i dagens lys under den maskinelle flateavdekkingen.

Tre hovedfelt og to større søkesjakter ble avdekket første feltsesong. Felt I, hovedfeltet, måler 105 m NØ-SV, 55 m NV-S \varnothing, til sammen $3657 \mathrm{~m}^{2}$. Felt II, sørøst for felt I, måler 69 m N-S og $33 \mathrm{~m} \varnothing-\mathrm{V}$, til sammen $2024 \mathrm{~m}^{2}$. Felt III, $63 \mathrm{~m} \mathrm{~N} \varnothing$ for Felt I, måler 57 m NØ-SV, og 40 m NV-SØ, til sammen $1783 \mathrm{~m}^{2}$. Søkesjakten ble lagt 64 m NV for Felt I, og måler 40 m NØ-SV og 10 m NV-S \varnothing, til sammen $387 \mathrm{~m}^{2}$. Sjakten gjennom åkerrein ble trukket 10 m N \varnothing for sjakt III, og målte 15 m NV-SØ, 3 m NØSV, til sammen $41 \mathrm{~m}^{2}$. Totalt ble det avdekket $7892 \mathrm{~m}^{2}$.

I hovedfeltene og i søkesjakten ble det utført maskinell flateavdekking. Ved maskinell flateavdekking fjernes matjordlaget, slik at tidligere tiders nedgravninger, så som stolpehull, ildsteder, kokegroper, grøfter, graver osv, står fram som strukturer i undergrunnen. Når et system av ulike strukturer er blitt identifisert og tolket blir disse undersøkt og dokumentert.

Ved undersøkelse av åkerreiner graves grøften gjennom både pløyelag, underliggende lag og øverste del av undergrunnen. Ettersom åkerreinen består av oppsamlede masser som har erodert fra den høyereliggende åkeren, ligger lagene uforstyrret. Ut i fra naturvitenskapelige prøver fra lagene kan jordbruksaktiviteten dateres, samt vegetasjonshistorien beskrives.

FELT III (Gnr.28, Bnr. 54)
Felt III er lokalisert lengst øst på gnr. 28/53 i en åker som skråner gradvis mer mot nord. I følge grunneier har området vært utsatt for fukt i tidligere tider.
Forundersøkelsene viste at området var forholdsvis funnfattig, hvilket forklarer at det ikke ble lagt søkesjakter i den østligste delen av området. Det skulle imidlertid vise seg at dette området var ganske rikt med strukturer. Dette hadde flere konsekvenser for det videre arbeidet. Området er avgrenset i øst mot en veiskjæring, i vest og nord mot et funntomt område. Felt III ble avgrenset i sør mot en potetåker hvor det sees et hus som fortsetter inn under feltkanten (ca. halvparten av huset er avdekket). Det resterende skal avdekkes i feltsesongen 2007.
\varnothing stligst i Felt III ble en steinsetting avdekket, med tilstøtende kulturlag. Undersøking av dette tydet på at det utgjorde et golvag i en bygning, her kalt Hus 8. Det ble innmålt 380 arkeologiske strukturer på Felt III. Sjakta til åkerreinen ble lagt hvor den var mest markant (ligger i forlengelse av Felt III). Profilen viste bl.a. et myrlag samt en avsviingsfase forut for dyrkingslagene. Den 40 m lange søkesjakta, lengst vest på gnr. 28/54, ble lagt for å kontrollere resultatene fra forundersøkelsen, ettersom
funnene i Felt III skapte usikkerhet om funnmengden. Denne sjakten bekreftet at det var lite strukturer (ett enkelt ildsted) i området.

FELT I (Gnr. 28, Bnr.
63)

Forundersøkelsen viste at Felt I hadde flest registrerte strukturer. Derfor ble undersøkelsen i første feltsesong også konsentrert til dette området som skråner jevnt mot øst og sørøst.
Avdekkingen
bekreftet
forundersøkelsens inntrykk. Området ble avgrenset mot nord (vannledning), i sør mot grensegjerde, i øst og vest mot funntomme områder.

Fig 1: Hus og mulige graver i Felt I. Lengst vest ble det avdekket en mulig plyndret og nedpløyd gravhaug. Det ble innmålt 797 arkeologiske strukturer i dette feltet.

FELT II (Gnr. 28, Bnr. 11)
Feltet skråner mot sørøst i forlengelse av Felt I. Området ble avgrenset i nord og vest langs grensegjerder, i sør og øst mot funntomme områder. Feltet er avdekket og vil bli innmålt i løpet av 2006 og 2007, samt undersøkes og tolkes i 2007. Det som inntil videre er avdekket stemmer i hovedsak overens med forunders \varnothing kelsen fra 1999. Det er innmålt 215 arkeologiske strukturer på Felt 2.

Det er på de undersøkte områdene blitt registret syv treskipede langhus fra jernalderen. Det er tatt ut jordprøver fra alle husenes takbærende stolpehull og av relevante veggstolper. C-14 prøvene fra Beta Analytic viser at husene dateres til jernalderen i tidsrommet; eldre jernalder opptil vikingtid (fra $360-1040 \pm 40$ AD). Hus 1 og Hus 2 (Felt 1) er begge datert til vikingtid, mens de andre er eldre. I tilknytning til bosetningen (Felt II og III) er det funnet flere tydelige forhistoriske ardspor, samt spor etter mulige gjerdesystemer.

2. INNLEDNING

Undersøkelsene var resultat av utbygningsplaner ved Stavanger kommune, samt omregulering av deler av området til boligformål. Etter forundersøkelsene har utbyggingsplanene blitt revidert og deler av planområdet i vest og sør vili ikke bli utbygget.

Stavanger kommune bestilte arkeologiske undersøkelser i 2006 og 2007 innenfor plan 1731, Tastarustả, i henhold til vedtaket hos Riksantikvaren. Siden vedtaket har grunneierforholdene innenfor deler av planområdet endret seg. Ti av de største grunneierne har solgt utbyggingsarealer til selskapet Tastarustå byutvikling as. Bak dette selskapet står Øgreid eiendom as., Partner Tre as., og Kruse Bolig as. Eierskiftet endrer ikke på kommunens vedtak om at Tastarustå skal være et kommunalt hovedutbyggingsområde, dvs at kommune er tiltakshaver for tilretteleggingsaktivitetene ${ }^{1}$.

I 1998-99 påviste Rogaland fylkeskommune bebyggelses- og åkerspor under markoverflaten som ble antatt å være overveiende fra jernalderen.
Forundersøkelsene ble utført oktober-november (Saksnr 98/08212-010). Begrenset tid gjorde at enkelte mindre områder måtte prioriteres bort.

Prosiektorganisering

Prosjektplanen er ufformet på grunnlag og innenfor rammen av "Håndbok for prosjektstyring ved $\mathrm{AmS}^{\prime \prime}$ datert 01.01.06.

Referansegruppe

Større arkeologiske undersøkelser ved AmS vili utgangspunktet være organisert med en referansegruppe. Referansegruppen blir vanligvis satt sammen av avdelingsleder for fornminnevern, dokumentasjon og samlinger, avdelingsleder for konservering og prosjektansvarlig. Forskningssjef skal ivareta den forskningsmessige oppfølgingen av prosjektet. Gruppen vil eventuelt bli supplert med annet faglig personale ved AmS, enten som tillegg eller som stedfortreder for avdelingsleder. Gruppen kan også suppleres med minimum to eksterne medlemmer. En utvidet referansegruppe med eksterne medlemmer vil normalt sett være egen post i budsjettet.

Prosjekt Tastarustå støttes av føılgende interne referansegruppe 2006:

Forskningssjef:
Amanuensis, prosjektansvarlig:
Amanuensis, dokumentasjon:
Avdelingsleder, konservering:
Amanuensis, naturvitenskap:
Avdelingsleder, Moesgård museum, Arhus
Avdelingsleder/prosjektleder, AmS

Lotte Selsing
Gitte Kjeldsen
Asa Hauken Dahlin
Bitten Bakke
Eli Christine Soltvedt
Peter Hambro Mikkelsen
Arne Johan Nærøy

Referansegruppen har ansvar for å følge opp prosjektet med spesiell sikte på å:

[^0]- å utnytte det faglige grunnlaget og potensialet i undersøkelsen på best mulig måte
- å bidra til at fremdriften i prosjektet er etter planen
- å bidra til at økonomi er innenfor budsjetterte rammer

Referansegruppen kan suppleres med interne eller eksterne medlemmer etter behov.

Referansegruppe og ansvarsfordeling:

Avdelingsleder for fornminnevern har overordnet ansvar for arkeologiske undersøkelser utført med hjemmel i kulturminneloven av Arkeologisk museum i Stavanger. Forskningssjef har overordnet ansvar for oppfølgning av forskningsprosjekt på AmS.

Prosjektansvarlig har det daglige, faglige og administrative ansvaret for prosjektet og rapporterer til avdelingsleder. De øvrige medlemmene i referansegruppen med unntak av avdelingsleder for fornminnevern, har rådgivende funksjon både når det gjelder faglige og administrative forhold.

Referansegruppen møtes med jevne mellomrom etter avtale. Feltundersøkelsen følges opp med regelmessige befaringer i forbindelse med feltundersøkelsen fra en eller flere i referansegruppen - fortrinnsvis avdelingsleder og konservator, arkeolog - som støtte både faglig og administrativt for prosjektansvarlig.

2.1 beliggenhet

Tastarustå ligger på gården Øvre Tasta (Gnr 28), nordligst i Stavanger kommune, nær grensen til Randaberg. Området er et høydedrag med preg av jordbruk og spredt villabebyggelse langs vegen. Fra høydedraget er det utsikt både nordøst mot Åmøy og Ryfylke, sørøst mot Ullandhaug, og vest mot Randaberg. Åsen er høyest lengst mot vest, med nakent berg, og skråner gradvis mot øst og nordøst, noe brattere mot sørøst.
Utgravningsområdet for sesongen 2006 ligger på Gnr.28, Bnr. 63 (Felt 1), Gnr.28, Bnr. 11 (Felt 2) og Gnr.28, Bnr. 54 (Felt 3).

2.2 REGISTRERTE KULTURMINNERI OMRADET

På $Ø$ vre og Nedre Tasta er det kjent til sammen 19 faste kulturminner som har vært eller er synlig på markoverflaten, derav 2 hustufter, 13 rundhauger, to langhauger og et helleristningsfelt. Tor Helliesen registreringer fra 1900 angir et omfang av 18 synlige kulturminner i området som lå på toppen eller langs ryggen av det markerte høydedraget mellom Byfjorden og Store Stokkavatnet, på mindre terrasser enten i skråningen ned til vannet eller på det mindre høydedraget (Byhaugen) i syd ovenfor Lille Stokkavatn. Frem til 1993 er omfanget av synlige kulturminner redusert til restene etter to ødelagte gravhauger, samt to helleristningslokaliteter. Lengst vest i planområdet, like ved områdets høyeste punkt, ligger en sterkt skadet gravhaug (3075, C12-R2). Dette er det eneste gjenværende registrerte synlige kulturminnet i planområdet.

Fra Tasta foreligger til sammen 14 løse kulturminner fra steinalder, bronsealder og jernalder i museets samlinger. Med unntak av ett gravfunn er alle løsfunnene i samlingene fra Øvre Tasta. I tillegg foreligger det sikre opplysninger om til sammen
fem gravfunn herav er bare to av gravfunnene (fra jernalderen) levert inn til museets samlinger. Tidligere undersøkelser fra områder på Stavangerhalvøya antyder at landskapet på Tasta på overgangen mellom eldre og yngre steinalder var velegnet for en økonomi basert på sanking, fangst og jakt og muligvis tidlig jordbruk.

2.3 PROBLEMSTILLINGER OG MÅLSETNINGER FØR UTGRAVNING

Følgende problemstillinger ble formulert før prosjektet startet:

Arkeologi

Det er behov for kulturhistorisk og naturhistorisk kunnskap som både kan utvide og utfylle dagens status over jordbruksbosetningen på Øvre Tasta både i forhold til nabogården Nedre Tasta, samt den øvrige forhistoriske bosetningen på Stavangerhalvøya. Forutsetningen for å kunne oppspore en tidlig bosetning både innenfor en fangsttradisjon og en jordbrukstradisjon er tilstede. I Rogaland er det liten kunnskap om oppkomst, utvikling og bruksdeling av sentrale gårdstun i forhold til innmark og utmark som følge av kontinuitet/diskontinuitet i tunplassering fra forhistorisk til historisk tid, hva slags bebyggelsesspor som er karakteristisk for et slikt bosetningsforløp, og om de følger eller avviker fra byggeskikk og organisering av gravskikk i forhold til resten av landet.

Det kan utskilles og avgrenses fire aktuelle hovedproblemstillinger:

1. Er det spor etter tidlig bosetning på Øvre Tasta?
2. Hva slags gårdsbebyggelse finnes på Øvre Tasta?
3. Hva slags aktiviteter finnes i områder utenfor tun i forhistoriske tid og middelalder på Øvre Tasta?
4. Hva slags gravskikk er knyttet til gårdsbebyggelsen?

Naturvitenskap:
Dagens kunnskap kommer stort sett fra undersøkelser utenfor høydedraget på Øvre Tasta. I Rogaland er det behov for å få klarlagt og avgrenset bruken av arealene i hus og tun i forhold til arealer utenfor bebyggelsen. Dette gjelder blant annet lokalisering av åker-, beite og utmarksarealer i forhold til tunområder.

Det kan utskilles to aktuelle hovedproblemstillinger:

1. Er det spor etter tidlig jordbruk på $\varnothing v r e$ Tasta?
2. Hvilken type naturmiljø, landskapssystem og bruksarealer finnes det utenfor tunområder fra forhistorisk tid og middelalder på Øvre Tasta?

Målsetning:

Undersøkelsene skal dokumentere bosetningsutviklingen og landskapssystemer i forhistorisk tid og middelalder, blant annet ved å:

- Avdekke, dokumentere og datere ikke-synlige kulturminner med henblikk på å kartlegge sikre husgrunnplaner
- Undersøke et gravanlegg eller eventuelt rester etter slike
- Undersøke gjerder for å oppspore, dokumentere og analysere førmoderne forseglede kulturlag
- Utføre fosfatanalyse for å påvise eventuell gjødsling av åker nær husene
- Utføre arkeobotaniske analyser for å klarlegge hvilke planter som er dyrket og nyttet
- Utføre jordmikromorfologiske analyser for å klarlegge om jorda er blitt dyrket og gjødslet eller ikke
- Klarlegge de lokalklimatologiske forhold på høydedraget for å klarlegge boplass- og dyrkningsforhold og jorderosjon

2.4 STEDSHISTORIE OG TERRENGBESKRIVELSE

Øvre Tasta gnr. 28 er en av to gårder (Tasta Øvre og Nedre) rett nord for den eldre bykjernen i Stavanger kommune. Gården grenser i nordvest, vest og sydvest til Nedre Tasta, i nord til Dusavik, og i øst ligger det brede sundet Byfjorden mellom fastlandet og Buøy. Nedre Tasta grenser i vest til Randaberg kommune, i nordvest til gårdene Finnestad og Høye, i sør til Litla Stokkavatnet og Store Stokkavatnet, et ferskvann som tidligere også er kalt Tastavandet, med gårdene Øvre og Nedre Stokka. Betydningen av navnet Tasta er ukjent, men antas å ha et eldgammelt opphav som kan gå tilbake til yngre steinalder og være 4000 år gammelt. Stedsnavnet Tastarustå er knyttet til det markerte høydedraget mellom Byfjorden og Store Stokkavatnet, og språklig sammensatt med -rusta, som nok betyder "bergryggen på Tasta". Begge gårdene er nevnt i kilder fra senmiddelalderen og i senere kilder fra 1600-tallet. Det er derfor lite sannsynlig at Tasta lå øde i dette tidsrommet.

Terrengbeskrivelse

Undersøkelsesområdet ligger på Stavangerhalvøya på en høy bergrygg som går i øst-vestlig retning mellom Byfjorden og Store Stokkavatnet. Undersøkelsesområdet på Tastarustå ligger mellom $30-80 \mathrm{moh}$. For 13000 år siden lå stranden 25 m høyere enn i dag. Bortsett fra enkelte høydedrag lå store deler av landmassene under vann. Fjellryggen som danner Tasta, stakk opp av havet.

I dag er høydedraget som er markert i forhold til terrenget omkring, flatt og vidstrakt på toppen, og faller skarpt mot nord, vest, syd, og svakere mot øst. I vest stikker fjellet opp i dagen ved "Varden" som er bevokst med barskog og kratt. Området hører geomorfologisk til "Strandflaten" som kan følges langs kysten fra Troms til Jæren (Prøsch-Danielsen \& Simonsen 2000). Geologisk består undergrunnen av myk fylitt, en bergart som forvitrer lett og danner et fruktbart jordsmonn for jordbruk (Thomsen 1988b). Tykkelsen på jordsmonnet i undersøkelsesområdet er imidlertid vekslende, hvilket kan ha hatt betydning for bosetningens karakter. I dag er området sterkt nedpløyd som følge av moderne jordbruk.

3 TIDSROM OG DELTAKERE

Utgravningen foregikk fra 02.05.06 til 11.08.06, i alt 15 uker.

3.1 Gjennomføring, V犮rforhold og Tidsbruk
 Avdekking ble gjennomført fra 2. til 29. mai. Snitting og annen utgravning ble påbegynt 30. mai. Digital oppmåling startet 11. mai og pågikk resten av sesongen.

Den usedvanlige tørre sommeren, med Jærens sedvanlige vind, medførte at utgravningsområdene var meget uttørket, og arkeologiske spor ofte vanskelige å se.

3.3 DeLTAKERE (INKL. GRAVEMASKINSJAFøR OG SELSKAP)

Ansatte ved AmS:

Gitte Kjeldsen
Eli-Christine Soltvedt

Prosjektansvarlig/arkeolog Botaniker

Feltpersonell 2006:
Niall Armstrong
Christian Roll Valen
Sigrunn Wølstad Dorthe Nistad
Trond Linge Johnny Kristiansen
Edvard Aarrestad Maskinfører

1. konsulent (feltleder)

Feltassistent
Feltassistent
Feltassistent
Feltassistent
Tiltaksarbeider
Edvard Aarestad Maskin
08.05-14.07 og 31.07-1.08
02.05-11.08
02.05-11.08
06.06-28.07
06.06-28.07
02.05-11.08
02.05-29.05

4. METODE OG GRAVETEKNIKK

Tre hovedfelt og to større søkesjakter ble avdekket første feltsesong. Felt I, hovedfeltet, måler 105 m N \varnothing-SV, 55 m NV-SØ, til sammen $3657 \mathrm{~m}^{2}$. Felt II, sørøst for Felt I, målte 69 m N-S og $33 \mathrm{~m} \varnothing-\mathrm{V}$, til sammen $2024 \mathrm{~m}^{2}$. Felt III, $63 \mathrm{~m} \mathrm{~N} \varnothing$ for Felt I, målte 57 m NØ-SV, og 40 m NV-S \varnothing, til sammen $1783 \mathrm{~m}^{2}$. Søkesjakten ble lagt 64 $\mathrm{m} N V$ for Felt I, og målte 40 m N \varnothing-SV og 10 m NV-S \varnothing, til sammen $387 \mathrm{~m}^{2}$.

Sjakten gjennom åkerrein ble trukket 10 m N \varnothing for Sjakt III, og målte 15 m NV-SØ, 3 m NØ-SV, til sammen $41 \mathrm{~m}^{2}$. Totalt ble det avdekket $7892 \mathrm{~m}^{2}$.

4.1 Dokumentasjon

Et viktig aspekt ved årets feltsesong var implementeringen av to nye systemer for digital innmåling: Leica totalstasjon 1240 og Intrasis Explorer 2.1 og Intrasis Analysis 1.0. Dette hadde markante konsekvenser for de fleste aspektene av dokumentasjonen. Det var som forventet noen oppstartsproblemer de første ukene.

Intrasis er et arkeologisk feltdokumentasjonssystem som er utarbeidet av Riksantikvarieämbetet i Sverige, avdelingen för Arkeologiska Undersökningar (UV). Utviklingen skjedde i tidsrommet 1998 til 2001, men systemet ble alt tatt i bruk i år 2000. LandFocus AB stod for programmeringens, mens Ulf Bodin, UV, hadde ansvaret for GIS-delen (Intrasis GIS). Denne delen gjør det enkelt å bearbeide undersøkningsdata i ArcView fordi den lagrer oppmålingsdataene som shape-filer. Intrasis er et objektorientert system der databaser og geometri er integrert. Intrasis Explorer tar imot data fra totalstasjon, GPS eller andre kilder og lagrer dem i shapefiler. Data for hver utgravning lagres som databaser på en SQL-server. På skjermbildet er det objektdata med kart og filhierarkier som dominerer. En egen enhet, Intrasis analysis/ Intrasis GIS, samler data for analyse og presentasjon og overføring til ArcGIS, ArchEd, Access og andre programmer.

Sentralt i Intrasis er en nomenklatur med forhåndsbestemt inndeling. Objektene er inndelt i generelle klasser, kategorisert i systemklasser, kontekstklasser, observasjonsklasser og beskrivelsesklasser. Disse 25 klassene er felles. En inndeling av klassene i subklasser skjer etter behov ved den enkelte undersøkelsen. Kontekstrelasjonene dannes av relasjoner over/under (tilhører/består av, foreldre/barn) i et single context-system. Det er ingen innebygd matrisemodell, men det arbeides med en slik med innebygd sjekk av stratigrafisk input. Innmålte data defineres som et GeoObjekt. Dette er koblet til det fysiske arkeologiske objektet som det har målt inn deler av eller til større arkeologiske enheter.
Intrasis er i dag i bruk ved alle UVs utgravninger i Sverige. Systemet er også i bruk utenom Sverige og det forsøkes solgt i hele Nord-Europa. I Norge er det blitt tatt i bruk ved Kaupangundersøkelsene i 2000 (Kristensen 2004), men ikke forsøkt ved andre utgravninger (Molaug et al, 2006). Flere opplysninger finnes på www.intrasis.com. Arkeologisk museum i Stavanger blir derfor det første museum i Norge som utprøver Intrasis- analysis.

4.2 Tegning

Større groper og andre anlegg ble tegnet på egne ark. Åkerreinen ble tegnet med overlagstegning. Disse ble tegnet i målestokk 1:10 eller 1:20.

4.3 Fotografering

Både dias-film (farge) og digitale bilder. Sterk sollys uten skygge skapte et problem som ble forsøkt løst med improvisert skjerming. I løpet av feltsesongen sviktet automat-fokuset på det ny innkjøpte digitale kameraet. Dette har resultert i enkelte ufokuserte bilder.

4.4 INNSAMLING AV PRøVER

Naturvitenskapelige prøver ble tatt av fra alle strukturer som enten var tolket som tilhørende huse eller strukturer som hadde andre signifikante trekk. Fra husene ble det tatt prøver fra ildsteder, mulige dørstolper, og fra utvalgte vegg- og takbærende stolper. I to hus ble det tatt prøver fra alle takbærende stolpehull. Samtlige prøver ble flotert og pakket i felt.

Makrofossiler eller eventuelt trekull fra utvalgte anlegg ble sendt til BETA Labs, Florida, USA, til datering.

4.5 Funn (Nummerering og katalogisering)

Funnene fra første utgravningssesong fikk følgende museumsnummer (S-nr):
Fra Felt I (28/63): S-12253
Fra Felt II (28/11): S-12254
Fra Felt III (28/54): S-12252
For å unngå forvirring ved bruken av Intrasis systemet til funnbehandlingen ble det tradisjonelle funnlistesystemet også brukt for à sikre mot eventuelle feil.

4.6 INNMALING (KOORDINATSYSTEM)

Ettersom koordinatsystemet til Intrasis krever positive verdier ble EU89- UTM systemet brukt. Femten fix-punkter ble oppmålt av Interconsult.

4.7 UTGRAVINGENS FORLøP

FELT III (Gnr.28, Bnr. 54)

Den første uken med avdekking ble ledet av Olle Hemdorff, ettersom Gitte Kjeldsen og Niall Armstrong var opptatt med Intrasis-kurs.

Felt III, lengst øst på 28/53, ligger i en åker som skråner gradvis mer mot nord. Ifølge grunneier Leif Egeland har området vært plaget med fuktighet i tidligere tider.
Forundersøkelsene viste at området var forholdsvis funnfattig hvilket forklarer at det ikke ble lagt søkesjakter i den østligste delen av området. Det skulle i imidlertid vise seg at dette området var ganske funnrikt. Dette hadde flere konsekvenser for det videre arbeidet. Området er avgrenset i øst mot en veiskjæring, i vest og nord mot funntomt område. Felt III ble avgrenset i sør mot en potetåker ettersom det her hadde blitt, ved en feiltakelse, allerede satt poteter. Denne delen skal avdekkes i feltsesongen 2007.

Østligst i felt III ble en steinsetting avdekket, med tilstøtende kulturlag. Undersøking av dette tydet på at det utgjorde et golviag i en bygning, her kalt Hus 8 (datert til førromersk jernalder).

Det ble innmålt 380 arkeologiske objekt på felt 3.
Av stolpehull 219 stk (191 + 28 f)
Av staurhull, 91 stk.
Av groper, 38 stk.
Av ildsted, 9 stk
Av grøfter, 11 stk.
Av kulturlag, 8 stk.
Av steinlegginger, 3 stk.
Sjakta til åkerreinen ble lagt hvor den var mest markant (ligger i forlengelse av Felt III). Den ble noe kort i sørenden, og skal forlenges neste sesong. Profilen viste bl.a. et myrlag samt en avsviingsfase forut for dyrkingslagene.

Den 40 m lange søkesjakta, lengst vest på 28/54, ble lagt for å sjekke resultatene på forundersøkelsen, ettersom funnene i Felt III skapte usikkerhet om funnmengden. Denne sjakten bekreftet at det var lite strukturer (ett enkelt stående ildsted) i området.

FELT I (Gnr. 28, Bnr. 63)
Området skråner forsiktig mot øst og sørøst. Forundersøkelsen viste at Felt I hadde tettest innhold av strukturer. Derfor ble undersøkelsen i første feltsesong også konsentrert om dette området. Avdekkingen bekreftet forunders $ø$ kelsens inntrykk. Området ble avgrenset i nord mot IVAR-vannledning, i sør mot grensegjerde, i $ø$ st og vest mot funntomme områder. Lengst vest ble det avdekket en mulig plyndret og nedpløyd gravhaug.

Det ble innmålt 797 arkeologiske objekt i dette feltet.
Av stolpehull 704 stk ($686+21$ f-3 fg)

Av groper, 47 stk.
Av ildsted, 26 stk
Av grøfter, 12 stk.
Av kokegroper, 2 stk.
Av kullkonsentrasjoner, 5 stk.

FELT II (Gnr. 28, Bnr. 11)

Feltet skråner mot sørøst i forlengelse av Felt l. Området ble avgrenset i nord og vest mot granskog langs grensegjerder, og i sør og øst mot funntomme områder. Feltet er blitt avdekket og innmålt, men ikke nøyere undersøkt, dette vil bli gjort i 2007. Det som har blitt avdekket stemmer i hovedsak overens med forundersøkelsen fra 1999 (deler av innmålingen på forundersøkelsen er feil).

Det har, inntil videre, blitt innmålt 215 arkeologiske objekt i dette feltet.
Av stolpehull, 198 stk
Av groper, 11 stk.
Av ildsted, 1 stk
Av grøfter, 1 stk.
Av kokegroper, 1 stk.
Av kullkonsentrasjoner, 3 stk.

5. STRATIGRAFI OG KILDEKRITISKE FORHOLD

Utgravningsområdet var generelt ganske nedpløyd etter årtiers moderne jordbrukaktivitet. Det sees moderne pløyespor jevnt spredt utover området. På Felt I ble Hus 2 forstyrret av nedgravningen til IVARs vannledning (NV del). På Felt III lå det en moderne steinsetting/greft inntil Hus 8, foruten flere spredte moderne groper/hull fylt opp med søppel.
Flere forhold diskuteres under samme punkt i rapporten fra 2007 under.

6. FUNNMATERIALE

6.1 Funnmengde, Funnkategorier og Materialtyper

Det ble som forventet ikke funnet store mengder av gjenstander. Funnkategorien fordeler seg på litt flint, boplasskeramikk og ubestemmelige jernfragmenter. Av særlige gjenstander ble det funnet et spinnehjul i Hus 2 stolpehull ID 813 (Felt I), et velbevart eksemplar av en beltestein fra folkevandringstid (Felt II), og en sjelden fasettslepen perle i melkekvarts (Felt I) antakelig fra vikingtid i følge Bjørn Myhre (pers. medd). De 2 sistnevnte gjenstander kom frem i dagens lys under den maskinelle flateavdekkingen.

6.2 GJenstandsbeskrivelse

Herunder er enkelte gjenstander beskrevet mer utførlig.
Beltesteinen (f.nr. 599)

Beltesteinen ble funnet ved avdekking av nordvestre del av Felt lla, i 2006. Den ble ikke funnet i direkte tilknytning til noe anlegg og ingen nærliggende anlegg, som f.eks. en grav, pekte seg ut som sannsynlig opprinnelse til funnet.

Beltesteinen er av en lang spissoval form med kantrille (Form 5 iflg llkjær 1993, s.235). Den har en framside som har større overflate enn baksiden. Den har en polert og flat profil med mange korte og grove slagmerker på framsiden, og et veldefinert og dypt spor på baksiden. Materialet er en gråbrun bergart med mørke-grå innslag.

Den maksimale, framsidige lengden er på $13,0 \mathrm{~cm}$; baksiden har en lengde på 12,1 cm , imens lengden innenfor kantrillen er på $11,85 \mathrm{~cm}$. Bredden er på $3,30 \mathrm{~cm}$, både på framsiden og baksiden. Tykkelsen er $1,94 \mathrm{~cm}$, hvorav båndsporet utgjør $0,5 \mathrm{~cm}$.

Beltesteiner er kjent fra yngre romertid og folkevandringstid (ca AD 300-570). De er en del av det personlige utstyret hengende fra beltet i mannsdrakten av denne perioden, og ble brukt til å lage ild. De er særlig kjent fra gravkontekster (bl.a. hos Samdal 2000, s. 36, 128, 130, 136, 138, 156, 183), men er også funnet blant myrofferfunn (llkjær 1993, s.235) og iblant på bosetninger, slik som på Forsand samme året.

Denne beltesteinen har slitasje på begge sider. Dette tyder på at det var mulig å bruke begge sider, slik at steinen antageligvis har hengt fritt. Samtidig er slitasjen annerledes på de to sidene: framsiden har mange korte hakk, samlet i et tett felt; imens baksiden har kun et langt, dypt og tynt veldefinert spor. Om man skulle gjette seg til annerledes bruk av de to sidene, så ville man anta at framsiden hadde blitt brukt til ildslagning, og baksiden (kanskje) ble brukt til hvessing.

Melkekvartsperlen (f.nr. 11)

Denne steinperlen ble funnet ved avdekking, ca 2 m fra utkanten av en plyndret grav. Det er mulig at steinperlen stammer fra denne graven, selv om utgravningen av den plyndrede graven i seg selv ikke frembrakte noen funn.

Overflaten har vært polert glatt, men er noe skadet enkelte steder. Formen er ikke helt typisk, men kan beskrives som en meget avrundet sylinder, noe sammenpresset, eller som en avlang og sammenpresset tønneform, eller som en avrundet mandel. Den har altså en avstumpet oval lengde på $2,29 \mathrm{~cm}$. Den maksimale bredden, ca ved $2 / 3$ av lengden, målte $0,99 \mathrm{~cm}$, imens den minste bredden ved samme sted var på $0,75 \mathrm{~cm}$. Ved den smaleste enden så var den maksimale bredden $0,67 \mathrm{~cm}, \mathrm{og}$ den minste bredden $0,49 \mathrm{~cm}$. Ved den bredeste enden så var det tilsvarende $0,77 \mathrm{og}$ $0,58 \mathrm{~cm}$. Hullet gjennom perlen målte ca $0,26 \mathrm{~cm}$ ved den brede enden, og $0,20 \mathrm{~cm}$ ved den smale enden.

Materialet er en form for kvarts. Umiddelbart ser det ut som alminnelig melkekvarts, men det har blitt foreslått at det også kan være brent ametyst, dvs en opprinnelig fiolett farget form for kvarts, som har blitt gul etter at den ble utsatt for ild. Nå er det ikke mye gult å se i steinens masse, men heller en grovkrystallisert, gjennomskinnelig hvit farge, som er karakteristisk for melkekvarts.

Glassperlen (f.nr. 237)

Denne glassperlen ser umiddelbart ut som den hører til et moderne halskjede.

Formen kan beskrives som et rektifisert pentagonalt prisme, dvs et polyeder med to motstảende og parallelle pentagonale (femkantede) flater, som er adskilt av et regelmessig band med fem kvadrater og ti trekanter (som hver deler en kant med en av pentagonene, og to kanter med to forskjellige kvadrater). Det er boret et hull som forbinder pentagonene. Perlen måler $0,41 \mathrm{~cm}$ i diameter.
Men trass i denne antakelsen så var det forhold som tydet på at perlen kunne være gammel.

Først og fremst ble den funnet i sikker kontekst. Det var et stolpehull med uforstyrret masse, uten steiner som kunne ha rikket på seg og brakt moderne materiale inn. Stolpehullet var av samme karakter, med blandet brent og ubrent leire, som et sett med stolpehull lett identifiserbart som et hus. Dette huset er blitt datert med sikkerhet til ca 400 BC. Derfor antar vi at denne glassperlen enten er fra den tiden, eller er en moderne innblanding. Selv om begge disse situasjonene virker usannsynlige, er alternativene enda mindre sannsynlige.

Så kunne denne glassperlen virkelig stamme fra ca 400 BC? Det er lite glassproduksjon i den tiden, men det ble laget glassperler i det østre Middelhav den gang, i Egypt og Fønikia, men da særlig farget og dekorert glass, sjeldent fasettert (Dubin 1995: s. 14-20). Dog skjer det etter ca 800 BC også mye eksperimentering med gjennomsiktig glass.

Et søk i litteraturen (Israeli 1998, Dubin 1995, Stern 1977) har ikke avdekket noen forhistoriske glassperler som samsvarer med dette funnet, verken i form eller farge. Den totale gjennomsiktigheten og matematiske presisjonen tilsier at det er en moderne glassperle, men inntil videre er det fortsatt en mulighet at den kan være fra rundt 400 BC .

Spinnehjulet (f.nr 219)

Spinnehjulet ble funnet ved snitting i et stolpehull etter en takbærende stolpe, 2AS813, i et hus sikkert datert til vikingtid, Hus 2.

Den har svakt konkav overside, som har hatt en glatt overflate, imens den svakt konvekse undersiden har vært grovere. Begge flatene er dog ganske skadet. Mellom disse var det en glatt kant. Spinnehjulet er ikke helt rundt, men heller oval, og hullet står heller ikke helt i sentrum av hjulet. Den maksimale diameteren er på $4,24 \mathrm{~cm}$, imens den minste er på $4,04 \mathrm{~cm}$. Hjulet var $1,41 \mathrm{~cm}$ tykk, og hullet hadde en diameter på 0,8 cm.

Bryne (f.nr. 227)

Avlangt bryne, som er knekt i begge ender og tydelig tykkere i ene ende enn den andre. Den måler $7,45 \mathrm{~cm}$ i lengden. Tverrsnittet er som et parallellogram, nesten rombisk. Den smalle enden måler: $1,47 \mathrm{~cm}$ diagonalt, $1,02 \mathrm{~cm}$ bred, $1,00 \mathrm{~cm}$ tykk; imens den brede enden måler: $1,83 \mathrm{~cm}$ diagonalt, $1,45 \mathrm{~cm}$ tykk, $1,23 \mathrm{~cm}$ bred.

7. BESKRIVELSE AV ANLEGG / STRUKTURER

Det ble i alt innmålt 1390 definerte strukturer fordelt på de 3 avdekkete feltene:

1121 stolpehull, herav 231 unders $ø k t$
96 groper, herav 20 undersøkt
36 ildsteder, herav 12 undersøkt
24 grøfter, herav 8 undersøkt
3 kokegroper, herav 1 undersøkt
8 kulturlag, herav 5 områder undersøkt
8 kullkonsentrasjoner/kullpletter, herav 1 undersøkt
3 steinlegginger, herav 1 større undersøkt
91 staurhull
De anlegg/strukturer (heretter kalt anlegg) som ble nærmere undersøkt var dem som enten hadde en tilknytning til husene eller skilte seg ut på annen måte. Under innmålingen ble de ulike anleggene definert i ulike kategorier (se ovenfor).

Stolpehull: Det ble i alt snittet/undersøkt 231 stolpehull hvorav de fleste inngår som en del i et av de definerte husene på Felt I og Felt III. Det er generelt en forholdsvis stor variasjon i både diameter og (særlig) i dybden av stolpehullene. I tillegg sees enkelte dobbelte stolper i huskonstruksjonene.

8. NATURVITENSKAPELIG UNDERSØKELSER

Klimaundersøkelser

Landskapet på på Tastarustå er ekstremt homogent med store linjer. Den manglende vegetasjonen og det faktum at en befinner seg på toppen av et høydedrag, medfører at området er svært værutsatt for de fleste vindretninger. Det iøynefallende for området som til nå er undersøkt, er det hellende landskapet i 4 retninger. Topografi påvirker klimaet. Flater med ulike helning og orientering mottar forskjellige mengder strålingsenergi fra sola, og dermed oppstår det forskjeller i energibalanse og mikroklima. Denne forskjellen i energibalanse har stor påvirkning på vekstforhold og hvordan klimaet oppleves. Hvor mye en skråstilt flate mottar av direkte stråling vil avhenge av solstrålens innfallsvinkel som igjen avhenger av solhøyden, solas asimutvinkel og flatens helning og orientering.
Det er teoretisk mulig å beregne den mottatte sum av solenergi i løpet at et døgn på ulike steder med forskjellige helningsgrader. Området kan dermed graderes mht mottatt solenergi.

Når utgravningene er gjennomført i 2007, er det et ønske å sammenligne de graderte "solenergi områdene" med funnene i området, og klarlegge boplass- og dyrkningsforhold på Tastarustå innen de ulike tidsperioder.

Det er ikke funnet noen hus på toppen, men i den sørvendte skråningen der summen av solenergien er høyest. Spor etter husene er orientert relativt "hulter til bulter" mht til himmelretningene. Husene er ikke datert. Disse resultatene har ført til en nysgjerrighet om mengde solenergi har hatt betydning for hvordan man har orientert husene i forhistorien. For å kunne få svar på dette spørsmål er det nødvendig med et større funnmateriale. Det vil derfor være naturlig å trekke inn andre forvaltningsgraver i Rogaland der likhetstrekk mht landskapets form og husenes plassering (i
skråningen) er like, for eksempel Gausel, Jernaldergården på Ullandhaug, og Kvåle på Klepp (Nitter 2006).

Foreløpige naturvitenskapelig resultater

Det ble tatt ut jordprøver fra alle takbærende stolper i de identifiserte husene, samt fra ildsteder og andre typer anlegg som hadde/har tilknytning til bebyggelsen.
Jordprøvene ble vasket i felt for à plukke ut organisk materiale i form av kull, frø og ulike korntyper. Dette arkeobotaniske materiale inneholder informasjon om klima, arter og foretrukne avgrøde. Utvalgte prøver ble sent til Beta Analytic for datering. Det er inn til videre sent inn 15 prøver til c-14 datering. Dateringene viser at bebyggelsen strekker fra førromersk jernalder (ca 360 f. Kr.) opp til vikingtid (ca 1040 e.Kr).

Botaniker Eli-Christine Soltvedt har i løpet av feltsesongen 2006 vært i felt og bistått med uttak av makrofossilprøver i kulturlag og anleggspor etter forhistoriske hus og graver. I to profiler er det tatt ut pollenanalytiske prøver og makrofossilprøver.
Pollenprøvene er tatt ut etter vurdering av pollenanalytiker Lisbeth Prøsch-Danielsen.

8.1 PrøVEMATERIALE TIL ${ }^{14} \mathrm{C}$-DATERINGER

Prøver ble tatt fra ildsteder og kokegroper innenfor eller tilknyttet hus for mulig ${ }^{14} \mathrm{C}$ datering, samt fra åkerrein og grav.

Prave	Materiale	Kontekst	Hus	Ukalibrert	Kalibrert
223437	trekull, bjørk	Akerrein (10207), lag 6	Ȧkerein	$3650+1 / 40$	BC 2140-1910
223441	2 korn (bygg)	Stolpehull 4580	Hus 5	$1920+/-50$	BC 30-AD 220
226498	trekull	Grøft 15890	Hus 8	$2140+/-40$	BC 360-50
223438	2 korn (bygg og havre)	Kulturlag 14455	Hus 8	$2150+/-40$	BC 360-60
223440	Hasselnøtt	Stolpehull 5960	Hus 5	$1310+/-40$	AD 650-780
226499	trekull, bjørk	Stolpehull 3498	Hus 5	$1290+/-40$	AD 660-810
226500	trekull	Ildsted 8424	Hus 4	$1260+/-40$	AD 670-880
223435	2 korn	Dørstolpe 3598	Hus 2	$1200+/-40$	AD 710-960
226497	trekull, bjørk	Ildsted 1011	Hus 2	1140 +/-40	AD 770-980
223433	trekull, eik	Ildsted 2556	Hus 1	$1130+/-60$	AD 770-1020
223434	1 korn+2 fragment av korn	Stolpehull 3526	Hus 1	$1090+/-40$	AD 880-1020
223439	2 korn	Stolpehull 200029	Hus 2	$1020+/-40$	AD 970-1040
226496	trekull, eik	Grop 1975	Mulig grav	980 +/-40	AD 980-1160
226501	1 korn (bygg)	Stolpehull 21773	Hus 4	$390+/-40$	AD 1430-1630
223436	3 korn (bygg og havre)	Åkerrein (10207), lag 8	Âkerein	180 +/-40	AD 1650-1950

Tabell 1: Oversikt av ${ }^{14} \mathrm{c}$ dateringer

8.2 POLLEN- OG MAKROFOSSILPRøVER

Makrofossilprøver: 149 av de 171 prøvene ble tatt i kulturlag og strukturer fra bosetningsområdet. Alle disse prøvene er sortert. De foreløpige resultatene viser at det er rester etter dyrkede og innsamlete planter i noen av prøvene. Korn vitner om dyrkningsaktivitet. Forkullete fragmenter av hasselnøttskall viser at denne matressursen også har vært utnyttet. I prøvene er det også funnet forkullete frø fra ugrass. Prøvene er ikke analysert og sammenstilt ennå, men det kan antydes at makrofossilene som er funnet i kontekster undersøkt i 2006 ikke gjenspeiler dyrkningsfasen i siste del av steinalder eller eldste bronsealder i Rogaland. Det er
mer trolig at funnene gjenspeiler jordbruksaktiviteter i jernalder. Denne vurderingen gjøres på grunnlag av at havre, agnekledd bygg og relativt mange ugass fro er funnet i provene.

Pollenprøver: 57 pollenprøver er tatt ito profiler. Det ble tatt pollen- og makrofossilprøver i to profiler. Det ene profilet er i en sjakt i den nordøstre del av undersøkelsesområdet. Sjakten snitter en åkerrein. I profilet var det øverst en moderne dykningshorisonl, så et ca 40 cm tykt lag som ble antatt à være fossil åkerjord. Det var dette laget som utgjorde åkerreinen. Korn fra denne åkerjorden ble datert til $180 \pm 40 \mathrm{BP}$ (B223435). Lengre nede i profilet var det et torvlag, og i nedre del av dette var konsentrasjon av trekull høy. Trekull-horisonten ble tolket til å være et avsviingslag i forhistorien. Trekull herifra ble datert til $3650 \pm 40 \mathrm{BP}$ (B223437). Dateringen viser en avsviing i området i siste del av steinalder. Utfordringen blir å påvise dyrkning i lagene som ligger på dette nivået i profilet.

Prover ble også tatt i et profil på Felt II. På flaten foran profilet var det ardspor. Makrofossilprøvene fra profilet inneholdt forkullete ugrass frø. Målet med de videre naturvitenskaplige analysene er à kunne tidfeste dyrkningsaktiviteten nærmere.

9. TOLKNING AV LOKALITETEN I LYS AV STRUKTURER OG FUNN

9.1 Mulig fuernet gravhaug

Lengst nordvest på Felt I ble det avdekket et sett av grofter som antydningsvis dannet en sirkel (ID $325,725,1214,1241,1281$). Sirkelen avtegnet seg med en ganske tydelig gul- oransje farge i undergrunnen. I midten av sirkelen lả en grop med en del moderne materiale (ID 1735). Strukturene tolkes som restene etter en gravhaug med målene 12,5 til 13 m i diameter inkludert fotgroft (ca. 11,5 m uten fotgroft) og med plyndringshull.

Det er mulig at det er restene etter samme gravhaug som Tor Helliesen registrerte som det sjette kulturminne på Øvre Tasta. Helliesens kart er ikke helt korrekt da Tastarustảvegen er inntegnet med et stort sving mot sør, hvor veien er helt rett. Det sjette kulturminnet skal ifølge kartet ha ligget på sørsiden av Tastaruståvegen, lenger øst enn den ovennevnte gravhaugen, men fortsatt innenfor området til Felt I.
Beskrivelsen er som følger: "Rundhaug, ca. 11,5 m i tvermaal. Har været anvendt som poteteskjælder." Dette stemmer rimelig godt med den ovennevnte gravhaugen.
Det var ganske sikkert restene etter denne haugen vi avdekket.

9.2 Hus 1

Hus 1 tolkes som et treskipet langhus. Mot S og ca. midt på Felt I ble det avdekket ca. 41 strukturer herav et ildsted (Id.nr. 2556) med tilknytning til et langhus her kalt Hus 1. Hus 1 var orientert \varnothing-V og là S for Hus $2, N$ for Hus 6 og Hus 4 og rett V for Hus 5. Plasseringen ga det inntrykket at Hus 1 til en vis grad lå omgitt av de andre bygningene på feltet. I det avdekkede området kunne ca. 60 stolpehull ikke plasseres med sikkerhet til en og samme husfase. På planen over feltet er det tydelig at de innmålte stolpehull lå slik at de dannet formen til et to- eller treskibet langhus. Stolpehullene lå på (ulike) rekker som tolkes slik at huset har hatt flere bygningsfaser hvor det er blitt konstruert på omtrent den samme grunnflaten gjennom et ukjent antall bygningsfaser. Det er mest sannsynlig at stolpehullene var spor etter treskipet
langhus, og at stolpehullene var fra takbærende stolper, og ikke fra veggstolper. Felles for alle stolpehullene med tilknytning til Hus 1 er en relativ liten dybde, hvilket må sees i sammenheng med at Felt I var sterkt nedpløyd. Det er dog mulig å tolke noen av stolpehullene som parvise i en sannsynlig konstruksjon. Bredde- og dybdemål ble tatt i profil.

Fig. 2: Kart over Hus 1 med anleggsnummer.

Fig 3: Kart over Hus 1 sine prover og dateringer.

Takbærende stolper sett fra SV: ID 1874, 1893, 1949, 2406, 3095, 2395, 2758, 6055 (4212), 4386, 2122, 2100, 4543.

Stolpepar sett fra SV:

Stolpepar \# 1

ID 1874 hadde en bredde i profil på ca. 25 cm og dybde på ca. 11 cm .
ID 1893 hadde en bredde i profil på ca. 30 cm og en dybde på ca. 7 cm . Massen til begge stolpehull var spettet sand med litt brent leire. Begge stolpehull fremsto veldig grunne, kanskje bunnen av stolpehullet. Det var ca $3,4 \mathrm{~m}$ mellom stolpene.

Stolpepar \# 2
ID 1949 hadde en bredde i profil på ca. 21 cm 0 g dybde på ca. 14 cm
ID 2406 hadde en bredde i profil på ca. 25 cm og dybde på ca. 33 cm . Det var ca 3,6 m mellom stolpene.

Stolpepar \# 3
ID 3095 hadde en bredde på ca. 20 cm og dybde på ca. 10 cm
ID 2395 hadde en bredde på ca. 21 cm og dybde på ca. 12 cm . Det var ca 4,1 m mellom stolpene.

Stolpepar \# 4

ID 2758 hadde en bredde på ca. 28 cm og dybde på ca. 15 cm
ID 6055 hadde en bredde på ca. 21 cm og dybde på ca. 12 cm mens ID 4212 antakelig har vært støttestolpe til 6055 . Det var ca $4,0 \mathrm{~m}$ mellom stolpene.

Stolpepar \# 5

ID 4386 hadde kun bunnen av stolpehullet bevart, antakelig pga nedpløying
ID 2122 ble ikke snittet pga en feil. Det var ca 3,7 m mellom stolpene.

Stolpepar \# 6

ID 2100 hadde en bredde ca. 44 cm og en dybde på 17 cm . Det har ikke vært mulig å registrere en makker til ID 2100

ID 4543 er målt inn i Intrasis, men er ikke registrert på stolpehullsskjema. ID 4543 hører sannsynligvis til en av de takbærende stolpene i Hus 1.

Ildsted: ID 2556 var ca. 1 m bred i profil med en dybde på ca. 12 cm . Ildstedet lå i husets \varnothing stende ca midt mellom stolpe 2758 og 6055/4212. I flaten hadde ildstedet en "tunge" i østsiden som kunne ligne på en luftekanal fra en eventuell liten ovn. Dette viste seg og ikke være tilfellet. Ildstedet hadde et kompakt lag av sand og kull blandet med noe stein hvorfra det ble tatt en nat.vit. prøve, ID 3166.

Stolper i mulig skillevegg: ID 3156, 2739, 3187, 2212 representerer angivelig stolper i en skillevegg som deler bygningen ito rom.

Det er ikke mulig å gi noen nøyaktige lengde og bredde mål på bygningen. Det kan dog sies at huset i en av konstruksjonsfasene var minst 24 m langt, mens bredden mellom de takbærende stolpene variere fra minste avstand på $3,4 \mathrm{~m}$, til største avstand på 4,1 m. Det er heller ikke mulig å si noe om gavlenes dimensjoner og konstruksjon.

Datering

To ${ }^{14} \mathrm{c}$ dateringer fra Hus 1 ble sendt inn til datering. Den ene, tatt fra ildstedet, ble radiometrisk datert, til 1130 +/- 60 år BP, dvs til mellom 770 og 1020 e.Kr. (med 97 \%
sikkerhet). Den andre, tatt fra stolpehull ID 3526 (midtstolpe i vestlige ende av huset) ble datert med AMS til 1090 +/- 40 år BP, dvs til mellom 880 og 1020 e.Kr. (med 97 \% sikkerhet). Sammenfallet av dateringene tilsier større pålitelighet. Det er pålitelighet på rekkevidden av det kombinerte 1 Sigma for de to resultatene: Dette vil da si perioden mellom 870 og 1000 e.Kr, eller den andre halvdelen av Vikingtiden.

9.3 Hus 2

Hus 2 tolkes som et treskipet langhus (orientert N-S) med flere faser som det ikke har vært mulig å skille kronologisk. Huset var forstyrret i N av nedgravningen fra en (IVAR) vannledning. I S avgrenses huset av fallende terreng, hvor erosjonen antakelig har fjernet grunne nedgravninger. Huset målte minst 20 m fra $\mathrm{N}-\mathrm{S}$, og ca. $7,30 \mathrm{~m}$ fra \varnothing-V.
Strukturene fra Hus 2 besto av 1 veggrøft, 1 ildsted, 2 dørstolper, 10 veggstolper og 6 og 1/2 par takbærende stolper, med 21 stolper, totalt 33 stolper.

Vegggrøft: ID 2854

Veggrøften, langs husets SV-side målte $9,20 \mathrm{~m}$ fra N til S , og var ca. 8 cm dyp, samt ca. 40 cm bred, med en svak, men tydelig bue, særlig mot \varnothing i søndre ende. Dette tydet på at det avgrenset et hus som lå \varnothing for grøften. Grøftens tilstedeværelse i SVsiden, og ikke ellers rundt huset, kan forklares ved at terrenget ligger litt høyere ved grøften, mens andre lavere liggende strukturer rundt huset kan ha blitt pløyd vekk.

Fig 4a: Kart over Hus 2 med anleggsnummer
Fig 4b: Kart over Hus 2 med prøver og dateringer.

Ildsted: ID 1011
Huset hadde et enkelt ildsted, som var plassert på midtaksen i nordenden av huset. Det lå i rommet mellom de takbærende stolpene 1031, 1053, 1151 og 1115, ganske nær opp til de førstnevnte, som lå i nord. Ildstedet målte 68 cm i bredden, og var 9 cm dyp. Ildstedets plassering vil bli diskutert nedenfor. Det ble tatt en prøve fra ildstedet, ID 200033, datert til 1130 +/- 60 BP , dvs AD 770-1020.

Dørstolper: ID 3598 og 4102; 3867 og 1620 mulig lévegg: ID 3623, 12330, 12345, 2951,2940, 2928.

Det er blitt foreslått at huset hadde inngangen på den nordligste enden av vestre side. Dørstolpeparet, 3598 og 4102 , dannet en $1,39 \mathrm{~m}$ stor åpning. De lå $1,4 \mathrm{~m}$ utenfor, og vest for linjen for de vestligste veggstolpene, og ca. 0,5 m utenfor linjen til vegg-grøften (2854). Denne uvanlige plasseringen kan tyde på at dette har vært en åpning i en ytre lévegg, bestående av følgende (i tillegg til de to mulige dørstolpene): ID 3623, 12330, 12345, 2951, 2940, 2928. Disse stolpehullene var å finne langs yttersiden av vegg-grøften (2854), og målte fra 13 cm til 33 cm i dybden. Fra den ene mulige dørstolpen 3598 ble det tatt en prøve, ID 8536, datert til $1200+/-40 \mathrm{BP}$, dvs AD 710-960.
Hus 7 på Felt III, utgravd 2007, er samtidig eller noe eldre enn Hus 2. I tilknytning til førstnevnte ble det funnet ytre skråstivere. Det er mulig at den ovennevnte leveggen også har egentlig vært skråstivere. De har i så fall ikke vært festet til veggstolpene, slik som ved Hus 7, ettersom de er uregelmessig plassert i forhold veggstolpehullene. Dette er også vanlig ved enkelte samtidige hus i Danmark (f.eks. Schmidt 1999, s. 82, 87).

Det var dessuten en mulig døråpning ved den sørligste enden av den østre side. Dette dørstolpeparet, 3867 og 1620 , dannet en $1,35 \mathrm{~m}$ stor åpning. Det lå ca. 87 cm utenfor og \varnothing for linjen for de østligste veggstolpene. Begge dørstolpe-parene var ukarakteristiske, og høyst hypotetiske.

Veggstolper: Østlige: ID 1085, 1107, 3783, 1627, 1181, 4394, 200026, 1799, 1809; Vestlige: ID 4082, 3055, 3027, 3612, 3583.

Den østligste stolperekken lå i gjennomsnitt $1,6 \mathrm{~m}$ øst for de østligste takbærende stolpene, og fra ca. 1,6 m til $3,4 \mathrm{~m}$ fra hverandre. Stolpene målte fra 5 til 19 cm i dybden. De to grunneste (3783 og 1107, henholdsvis 5 og 9 cm dyp) lå i N , ved de grunne takbærende stolpene (se nedenfor). Den vestligste veggstolperekken lå i gjennomsnitt ca.1,6 m vest for de vestligste takbærende stolpene, og fra $2,4 \mathrm{~m}$ til 3,3 m fra hverandre. De målte fra 23 cm til 14 cm i dybden, med ett unntak av ID 3612 på 3 cm .

Takbærende stolper: ID 3658, 1041, 1031, 1065, 1053, 1151, 1115, 2996, 1170, 4301, 4313, 4330, 3851, 845, 200029, 1598, 1587, 813, 1757.
De takbærende stolpene besto av 6 og $1 / 2$ stolpepar, hvorav 3 av disse stolpeparene hadde støttestolper på begge sider. Det var i de fleste tilfellene mulig å identifisere en strategrafisk rekkefølge mellom de takbærende-stolpene og støttestolpene.

De enkelte stolpene:

ID 3658 var det østligste av et par hvor den vestligste var blitt ødelagt av grøften til IVAR-vannledningen. 3658 målte 50 cm i bredden, og 15 cm i dybden.

Nordligste stolpepar med støttestolpe:
ID 1041 var nordligst av de vestligste stolpene, (antatt) støttet av stolpe 1031, og par av 1065. 1041 målte 37 cm i bredde, og 30 cm i dybden.
ID 1065 var det østligste paret til 1041, (antatt) støttet av 1053. 1065 målte 32 cm i bredden, og 23 i dybden.
ID 1031 var (antatt) støttestolpe til 1041, og lå ca 7 cm Sø for denne. 1031 målte 29 cm i bredden, og 15 cm i dybden.
ID 1053 var (antatt) støttestolpe til 1065. 1053 lå S for 1065, og målte 36 cm i bredden, og 15 cm i dybden.

Figur 5: Stolpehull etter takbærende stolper i sørlige del av Hus 2, organisert i par, med sørligste par til venstre. (1. grind = stolpepar 6; 2. grind = stolpepar 5; 3 grind = stolpepar 4)

Stolpepar \#2:

ID 1151, det vestligste stolpehullet, målte 46 cm i bredden, og 10 cm i dybden.
ID 1115, det østligste, målte 25 cm i bredden, og 4 cm dybden.
Stolpepar \#2 fremsto som meget grunne. Det er mulig at disse enten har fungert som takbærende stolper, eller som støttestolper i konstruksjonen. Er sistnevnte tilfellet har
det nesten 7 m lange området mellom stolpepar \#1 og \#3 vært uten takbærende elementer. Antakelig har stolpehullet ID 1124 som lå i krysningspunktet mellom stolpepar \#1 og \#3, væit takbærende. Det er uten presedens, men det kunne forklare hvorfor ildstedet var plassert (ukarakteristisk) nært opp til stolpepar \#1.

Stolpepar \#3:
ID 2996, det vestligste stolpehullet, målte 36 cm i bredden, og 17 i dybden.
ID 1170, det østligstc, målte 30 cm i bredden og er 10 cm dybden.
Stolpepar \#4:
ID 4301, det vestligste av paret, var (antatt) støttet av 4313, og målte 44 cm i bredden og 26 cm i dybden.
ID 3851, det østligste av paret, var (antatt) støttet av 4330, og disse berørte hverandre uten at kronologien er klar. Målte ca. 45 cm i bredden og 28 cm i dybden.
ID 4313, (antatt) støttestolpe til 4301, lå rett S for 4301 . Målte ca. 46 cm i bredden og 27 cm i dybden.
ID 4330, (antatt) støttestolpe til 3851, lå inntil denne, men uten tydelig skille. 4330 målte 43 cm i bredden og 22 cm i dybden.

$\theta_{s t}$

Figur 6: Stolpehull etter takbærende stolper i nordlige del av Hus 2, organisert i par, med sørligste par til venstre. (4. grind = stolpepar 3; 5. grind = stolpepar 2; 6 grind = stolpepar 1; 7. grind = enslig)

Stolpe og støttestolpe overlapper hverandre ved både vestlige og østlige stolpe i stolpepar \# 4. Ettersom massen til stolpe og støttestolpe er temmelig lik, og store
steiner i skillet er de antatte relasjonene mellom stolpe og støttestolpe i disse tilfellene basert på andre kriterier. For det første så identifiserer kullinnholdet (i de antatte støttestolpene) hvilke stolpehull som sannsynligvis hørte sammen, imens, sekundært, den romlige organiseringen antyder hvilke av disse var støttestolper og hvilke var de opprinnelige stolpene. Kullet er i seg selv en mulig indikator at de antatte støttestolpene ble satt opp etter at huset allerede var i bruk. Samtidig er likheten i form og dybde (unntatt for den ekstra dype ID 1598) en mulig indikasjon at ikke for lang tid gikk før støttestolpene var tiltrengt.

Stolpepar \#5:

I likhet med stolpepar \# 4 hadde også stolpepar \#5 store steiner i skillet mellom hovedstolpe og støttestolpe, samt liknende masse i stolpene, slik det var vanskelig å identifisere kronologien. Dog tilsa den romlige plasseringen følgende orden:
ID 845, var (antatt) vestligste takbærende stolpe som gikk i ett med 200029. ID 845 målte 30 cm i bredden, og 34 cm i dybden.
ID 1587, var (antatt) østligste takbærende stolpe, som var overlappende med ID 1598, uten at kronologien lar seg tyde i profil. 1587 målte 40 cm i bredde, og 26 cm i dybden.
ID 200029, (antatt) støttestolpe for ID 845, lå på S-siden av 845.200029 målte 48 cm i bredden, og 38 cm i dybden. Fra dette stolpehullet ble en prøve tatt, ID 20761, datert til 1020 +/- 40 BP , dvs AD 970-1040.
ID 1598, (antatt) støttestolpe for 1587, lå på N-siden av 1587.1598 målte 40 cm i bredden, og 48 cm i dybden.

Stolpepar \#6

Dette stolpeparet fremsto noe usikkert, da målene ikke stemte helt overens. Tross dette stemte plasseringen av stolpeparet overens med den sannsynlige bygningskonstruksjonen av Hus 2.
ID 813, var det vestligste av paret, målte 25 cm i bredden, og 10 cm i dybden.
ID 1757, var det østligste av paret, målte 34 i bredde, og 35 cm i dybden.
Tolkningen av stolpepar \#4 og \#5 tilsa at hovedstolpene på V-siden hadde støttestolper mot S, mens de på \varnothing-siden hadde støttestolpene mot N. Tanken med dette kan ha vært å hindre en eventuell vridning av denne delen av huset. Det kan tolkes slik at reparasjonen ikke ble utført for å hindre at huset bikket over, men for å hindre at en vridning fikk bygningen til å kollapse på midten.

Stolpehullene til Hus 2 indikerte at bygningen kan ha vridd seg. Hvor kraftig og hva som har forårsaket vridningen er vanskelig å si. Man kunne forvente at krefter som forårsaket skader i huset ville ført til en uniform forskyvning, slik at man trengte støttestolper på samme side, eller utbytting av stolper. Vi må anta at glidningen ikke har skjedd under selve oppføringen, da man lettvint kunne rette feilen.

Vridningen kunne være en indikasjon på at huset kan ha hatt åstak, med dverger, og med sideåser som ga en sterk sammenknytning av henholdsvis de 2 vestre og de 2 østre takstolpene (men ikke nødvendigvis til andre stolper).
Forbindelsen (tappingen?) mellom dvergene og tverrbjelken må ha vært sterk, for å kunne ha overført vridningen til de motstående stolpene.

	Stolpefagdybde max	Ditto gj.snitt	Max Takb bredde	Max sideskip bredde	Total bredde	Grindkvotient TQ-verdi
Hus 1			$4.05(?)$			
Hus 2	4.89	2.75	3.00	1.5	6.10	2.03
Hus 3						
Hus 4	$2.78(4.31)$	2.22 (2.95)	2.80			
Hus 5	4.75	2.82	1.89	1.9	5.65	3.14
Hus 6	3.19	2.99	1.95			
Hus 8					$5.75(?)$	

Tabell 2 : Statistikk over enkelte mål hos husene utgravd 2006.
Hus 2 har TQ-verdi av cirka 2. (TQ-verdi er lik husets bredde fra veggstolpe til veggstolpe, delt på bredden mellom takbærende stolper i samme grind. Se Komber 1989, s. 26) Denne såpass lave verdien betyr at de takbærende stolpene er så langt fra hverandre i forhold til veggstolpene at en stor del av takets vekt hviler mellom de takbærende stolpene. Disse burde ha vært støttet opp av en "dverg", dvs at midtåsen har vært holdt oppe av en midtstolpe som hvilte på tverrbjelken mellom de takbærende stolpene.

Det er altså sannsynlig at Hus 2 har hatt en "dverg", som kunne ha fungert som roteringsakse og overført energien som ledet til den vridningen som det er argumentert for overfor. Man kan dog stille spørsmålet om dvergen har vært stabil og stødig nok til å ikke selv å ha blitt forskjøvet, framfor å tvinge de motstående takbærende stolpene å skyves i motsatt retning.

Som roteringsakse ville dvergen ha fungert som vektstang ved overføring av kraft. Ettersom dvergen ligger midt på tverrbjelken er det tilstrekkelig at den har hatt litt over halvparten av stillstandskreftene på seg i forhold til endepunktene (dvs ved de takbærende stolpene) for å ha overført svingkraft fra den ene enden til den andre. For dvergen vil denne kraften stamme fra vekten av taket, og muligens ved forbindelser mellom dvergene på de forskjellige grindene. For den takbærende stolpen vil også vekten fra taket utgjøre hovedandelen av dens stillstandskraft, men dette ville være forsterket av forbindelsen langs veggåsen med andre takbærende stolper i samme rekke.
Det er problematisk å vurdere hvorvidt dvergen kunne ha hatt mer enn halvparten av stillstandskraften fra de takbærende stolpene. Dette kan også være delvis avhengig av vekten av selve taket som kan ha variert. Det er god grunn til å anta at Hus 2 har hatt dverger i huskonstruksjonen. Og dvergen kunne ha hatt den nødvendige tyngden til å ha fungert som vektstang, og dermed overført kraften fra den ene fallende stolpen til motsatt fall av den andre stolpen i grinden.

Sporene kan kanskje også fortelle oss hva det var slags kollaps som skapte behovet for støttestolper. Den ekstra dype støttestolpen på sørøstre side (ID 1598 på 48 cm , mot ID 1587 på 26 cm) er en mulig indikator på, at de som grov ned støttestolpen mente at det var her huset trengte ekstra støtte, og som da forårsaket den
opprinnelige skaden. I så fall var det trykk på den sørøstre siden av huset som påførte skaden.

Overordnet beskrivelse av Hus 2 (oppsummering)

Hus 2 var lokalisert på N -siden av Felt I , litt V for midten av feltet, og nær områdets høyeste punkt i det NV hjørnet, ca. mellom 62,7-62,4 m.o.h. pà en flate som synker gradvis mot \varnothing, og mer markant mot S i søndre kant av huset. Rett V for Hus 2 ble det observert restene fra en mulig fjernet gravhaug. Ca. 8 m S for Hus 2 lå Hus 1. Undergrunnen i området var en kompakt siltholdig grus. Mot \varnothing var undergrunnen mer grå og mindre siltholdig, mens det mot V var gult og mer siltholdig. Området på 23 x 11 m inneholdt ca. 130 anleggspor. Konsentrasjonen av anlegg avtar i alle retninger, spesielt mot \varnothing. Området var ganske nedpløyd, men ikke så mye som lenger mot S på Felt 1

	Høyeste punkt	Laveste punkt	Differanse
Hus 1	62.27	61.66	61 cm
Hus 2	62.61	62.48	13 cm
Hus 4	61.18	60.64	54 cm
Hus 5	61.30	60.18	112 cm
Hus 6	61.32	60.80	52 cm
Hus 8	55.27	54.90	37 cm

Tabell 3: Høyde over havet for de forskjellige husene utgravd 2006
Hus 2 var orientert N -S med en forstyrrelse i N pga nedgravningen til en (IVAR) vannledning. I S avgrenses det av fallende terreng hvor erosjon har fjernet grunne nedgravninger. Det kan se ut som om sporene av huset stort sett var tilstede ettersom innsnevring av bredden, i begge ender, antydet at huset ikke fortsatte mye lenger. Hus 2 mälte minst 20 m fra N til S, og $7,30 \mathrm{~m}$ fra \varnothing til V (ca. $6,3 \mathrm{~m}$ mellom veggstolperekkene). Hus 2 tolkes som et treskipet hus som mest sannsynlig har hatt flere bygningsfaser. Det var ikke mulig à skille ut kronologiske faser av husets brukstid.

Stolpehull

Foruten ildsted og vegg-groft ble det identifisert/tolket 45 stolpehull knyttet til konstruksjonen av Hus 2. Stolpehullene lå stort sett parvise i identifiserbare linjer. Diameteren varierte fra 50 cm til 15 cm , med minste takbærende stolpe på 29 cm . Dybden varierte fra 48 cm til 3 cm , med gjennomsnitt på 20 cm . De takbærende stolpene var ordnet parvis i grinder. Det var blant disse at de fleste doble stolpehullene kunne identifiseres. De takbærende stolpene er listet opp i tabellen nedenfor, tellende fra N til S, ordnet etter østlig og vestlig side. De doble stolpene er benevnt a og b . Stolpepar 6 som là noe skjevt i forhold til husets midtlinje er noe tvilsom. Midtskipet målte på det største 3 mi bredden, mellom stolpepar 3 , og på det minste $2,14 \mathrm{~m}$ mellom stolpepar 6 , og $2,56 \mathrm{~m}$ mellom stolpepar 1 a .

Takbærende stolper, Hus 2	Vestlige stolper	Østlige stolper
Enslig stolpe		3658
Stolpepar 1a	1041	1065
Stolpepar 1b	1031	1053
Stolpepar 2	1151	1115
Stolpepar 3	2996	1170
Stolpepar 4a	4301	4330
Stolpepar 4b	4313	3851
Stolpepar 5a	845	1598
Stolpepar 5b	200029	1587
Stolpepar 6	813	1757

Tabell 3: Hus 2 sine takbærende stolper arrangert i stolpepar.

Tolkning

Variasjonen på stolpehullene til Hus 2 kunne umiddelbart virke problematisk. Systemet var imidlertid tydelig i overflaten hvor vegg-grøften i V samstemte med orienteringen av konstruksjonen. Stolpehullene i midten av huset (særlig ID 1115 og 1151, men også ID 1170 og 2996) hadde større variasjoner enn de stolpehullene som lå mot avslutningen av huset. Det var også karakteristisk at de stolpene som var dype var doble, både i N - og S-enden av huset.

Skade og erstatningsstolper

Stolpene i stolpehullene ID 4301, 3851, 845 og 1587, har trolig vært erstattet av stolpene ID 4313, 4330, 200029 og 1598. Stratigrafien var ikke helt entydig mellom disse, men orienteringen i forhold til de andre stolpene, nyanser ved jordsammensetningen og tolkning av kronologien tilsier den overnevnte tolkningen.

De 4 første stolpene dannet en regelmessig firkant som fulgte orienteringen til stolpehullene i resten av huset. De 4 sekundære stolpehullene dannet derimot et parallellogram, ettersom de vestligste stolpehullene lå S for de opprinnelige, mens de østligste lå N for de opprinnelige. Det så ut som om hele strukturen med disse 4 takbærende stolpene hadde vridd seg i motsatt retning. En slik vridning krever forklaring ettersom man kunne forvente at skaden ved et hus ville ha en uniform retning, nemlig i retning av den opprinnelige kraften.

Som beskrevet før er det en mulig forklaring at denne antatte vridningen skyldes at huset var bygd med "dverger", en midtstolpe som støtter opp mønsåsen i taket, og hviler på midten av tverrbjelken. Husets TQ-verdi på 2,0 støtter opp om tanken at huset har hatt dverger (Komber 1989, s. 34, 82). Tyngden av dvergen midt på tverrbjelken ville kunne fungere som en akse, hvorom kraften svinger, (så lenge vekten, fra taket, på midtstolpen var minst halvparten av vekten på hovedstolpene). Slik at om den ene av de takbærende stolpene beveget seg, så ville det tvinge fram en tilsvarende kraft på grindens andre takbærende stolpe, i motsatt retning.

Ved Hus 2 så har denne vridningen påvirket de to grindparene som er tydeligst i søndre del av huset. Disse har sannsynligvis også båret mest av vekta av taket i denne delen av huset. De andre tilgrensende grindene ville derfor ikke gi noe særlig ekstra støtte som kunne ha hindret eller begrenset vridningen. Den noe lette konstruksjonen til Hus 2, med dypt nedgravde stolper i nord og sør, men overflatiske stolpehull i midten, har altså muligvis vært en faktor i den antatte skaden huset har vært utsatt for.

Det er vanskelig å vite sikkert hvorvidt denne forklaringen på vridningen er korrekt. Men situasjonen i Hus 2 stemmer overens med en slik forklaring.

Datering

Tre prøver fra Hus 2 ble ${ }^{14} \mathrm{C}$-datert. Fra ildstedet (ID 2556) ble en trekullprøve, med bjørk (ID 200033) datert til 1140 +/- 40 BP, dvs AD 770-980. Fra det søndre stolpehullet i den antatte døråpningen (ID 3598) ble det tatt en makrofossilprøve (ID 8536) hvorfra 2 korn ble datert til 1200 +/- 40 BP, dvs AD 710-960. Fra den antatte støttestolpen for stolpepar 5 vest (ID 200029) ble det tatt en makrofossilprøve (ID 20761) hvorfra 2 korn ble datert til $1020+/-40$ BP, dvs AD 970-1040. Dette tilsier at huset ble bygget i vikingtid eller sen merovingertid, og ble reparert mot slutten av vikingtiden.

9.4 Hus 4

Hus 4 lå langs den sørlige kant av Felt I. Hus 4 var et treskipet langhus, orientert østvest. Det mangler spor etter veggstolper som antagelig er pløyd vekk. Huset er minst 18 m langt, og 3 m bredt, men dette er et absolutt minstemål. Sporene fra Hus 4 består av 17 stolpehull og et ildsted. De takbærende stolpene består av en enkeltstående stolpe og 8 stolpepar, telt fra vest. Parene ligger mellom $2,12 \mathrm{mog}$ $2,80 \mathrm{~m}$ fra hverandre med størst bredde mellom de midtre stolpene, særlig stolpepar \# 5. (Unntaket er stolpepar 1, som med sine 1,4 m antagelig utgjør gavl-enden i vest.) Stolpene i samme linje lå fra $1,79 \mathrm{~m}$ til $3,11 \mathrm{~m}$ fra hverandre (med unntak av rommet mellom 2 og 4 stolpepar på sørlige linje). Stolpehullene målte mellom 21 cm og 33 cm i bredden, med tre unntak på 17, 38 og 39 cm . I dybden målte de mellom 5 cm og 30 cm (2 stolper under 12 cm er noe tvilsomme).

Fig 8: Kart over Hus 4 sine praver og dateringer.

Ettersom ingen stolpehull etter veggstolper kunne bekreftes, er det ikke mulig å si mer om bredden på huset, og om mulig takkonstruksjon.
Ildstedet er noenlunde sirkulært, med en liten "tapp" mot \varnothing st, og målte $1,13 \mathrm{~m}$ i bredden og er 11 cm dyp. Den ligger i det nest østligste rommet, mellom stolpepar 6 \& 7 .

Det er ikke noen spor etter romoppdeling av huset, men vi kan anta at det vanlige mønsteret følges med oppholdsrom ved ildstedet, og med fjøs på vestre side.

Ildsted: ID 8424
Ildstedet var plassert mellom stolpehullene ID 12366, 21903, 21502 og 4931 (stolpepar \# $6 \& 7$ nedenfor). Anlegget målte $1,13 \mathrm{~m}$ i bredden og 11 cm dybden. Kullprøven (ID 22187) ble ${ }^{14} \mathrm{C}$-datert til 1260 +/- 40 BP, dvs AD 670-880. Da den andre dateringen fra huset ble moderne, så får denne dateringen stå for seg selv som en sannsynlig indikator på at huset stammer fra merovingertid, evt. tidlig Vikingtid.

Takbærende stolper: ID 22083, 22044, 21680, 5134, 4281, 21773, 5192, 21796, 21234, 4744, 4648, 12366, 21903, 21502, 4931, 21562, 21576
De takbærende stolpene besto av 8 stolpepar og en enkeltstående stolpe. Parene lå mellom $2,12 \mathrm{~m}$ og $2,80 \mathrm{~m}$ fra hverandre (med unntak av stolpepar \# 1, se nedenfor), med størst bredde mellom de midtre stolpene (særlig stolpepar \#5). Stolpene i samme linje lå fra 1,79 til $3,11 \mathrm{~m}$ fra hverandre (med unntaket av rommet mellom 2. og 4. stolpepar på sørlige linje). Stolpeparene nedenfor er listet fra V mot \varnothing. Breddeog dybdemål er tatt i profil.

Stolpepar \# 1:

ID 22083, nordlig stolpehull, 33 cm i bredden, og 23 cm i dybden.
ID 22044, sørlig stolpehull, 29 cm i bredden, og 30 cm i dybden.
Stolpene lå $1,4 \mathrm{~m}$ fra hverandre, 80 cm nærmere hverandre enn neste par, og synes dermed å utgjøre et gavl-bærende stolpepar.

Stolpepar \# 2:

ID 21680, nordlig stolpehull, 24 cm i bredden, og 30 cm i dybden.
ID 5134, sørlige stolpehull, 17 cm i bredden og 13 cm i dybden.
Enkeltstående stolpe:
ID 4281, i rekken av nordlige stolpehull, målte 24 cm i bredden, 12 cm i dybden.

Stolpepar \# 3:

ID 21773, nordlig stolpehull, 22 cm i bredden, og 20 cm i dybden. Fra makrofossilprøven (ID 22208) som ble tatt fra dette stolpehullet ble et byggkorn ${ }^{14} \mathrm{C}$ datert til 390 +/- 40 BP, dvs AD 1430-1630. Denne dateringen kaster noe tvil over hustolkningen, men veies opp av dateringen fra ildstedet nevnt ovenfor.
ID 5192, sørlig stolpehull, 38 cm i bredden, og 25 cm i dybden.
Stolpepar \# 4:
ID 21796, nordlig stolpehull, 25 cm i bredden, og 28 cm i dybden.
ID 21234, sørlig stolpehull, 21 cm i bredden, og 5 cm i dybden.
Dette stolpeparet hadde ikke samme dybde. Det nordlige stolpehullet var
sannsynligvis en enkeltstående stolpe, slik som ID 4281 (se ovenfor)
Stolpepar \# 5:
ID 4744, nordlig stolpehull, 31 cm i bredden, og 24 cm i dybden.
ID 4648, sørlige stolpehull, 30 cm i bredden, og 26 cm i dybden.
Stolpepar \# 6:
ID 12366, nordlig stolpehull, 30 cm i bredden, og 15 cm i dybden.
ID 21903, sørlig stolpehull, 25 cm i bredden, og 12 cm i dybden.
Stolpepar \# 7:
ID 21502, nordlig stolpehull, 28 cm i bredden, og 20 cm i dybden.
ID 4931, det sørlig stolpehull, 24 cm i bredden, 0 g 9 cm i dybden
Stolpepar \# 8:
ID 21562, nordlig stolpehull.
ID 21575, det sørlig stolpehull, 39 cm i bredden, og 17 cm i dybden.

9.5 Hus 5

Hus 5 lå langs østsiden av Felt I. Hus 5 er et treskipet langhus, orientert nordvestsørøst, og er tilsynelatende beskjært i sør av feltets avgrensning. Det mangler et ildsted, som antagelig er pløyd vekk. Huset målte minst 24 m fra nordvest til sørøst, og 6 m fra nordøst til sørvest. Sporene fra Hus 5 består av 2 dørstolper, 21 veggstolper og 4 par med takbærende stolper og 3 enkeltstående, totalt 37 stolper. Ingen vegg-grøfter eller ildsted ble funnet tilhørende huset.

Fig 9a: Kart over Hus 5, med anleggsnummer.
Fig 9b: Kart over Hus 5, med prøver og dateringer.

Avstanden mellom stolpeparene er regelmessig, mellom 1,77 og $1,89 \mathrm{~m}$, med ingen reduksjon mot gavl-endene. Avstandene mellom veggstolpene og de takbærende stolpene varierer dog, fra 2,03 til 1,13 i vest, og fra 1,88 til 0,93 i øst. Dette gjør at husets totale bredde er, på det bredeste (ved stolpepar 5 \& 6) $5,6 \mathrm{~m}$, imens det på det smaleste, like nord for stolpepar 1, er 3,7 m. Forholdet mellom indre rom og sideskip gir en grindkvotient (TQ-verdi) på 3,14 , som er markant høyere enn ved Hus 2 , men ikke uvanlig. Det er over verdien som er nødvendig for å ha et tak uten dverger (midtstolper oppe på tverrbjelken), og den høye kvotienten skulle også tilsi dype stolpefag (langt mellom stolper i husets lengderetning), noe gjennomsnittet på 2,82 m synes å innfri. Høy grindkvotient og dype stolpefag tilsier altså at huset var preget av lange, smale rom, med vekten av det torvtekte taket jevnt fordelt på både takbærende- og vegg-stolper. Dette kan forklare de tydelige og til dels dype veggstolpene i dette huset.

Om huset er symmetrisk, med lik lengde på hver side av det bredeste partiet, så er huset mellom 26 og 31 m langt. Huset smalner i nordre ende, nord for det siste takbærende stolpeparet, og enkelte av veggstolpene er særlig dype.

Det er en mulig dør på den nordøstre siden av huset. Det åpner mot mellomrommet mellom tredje og fjerde stolpegrind, en mulig inngangskorridor. De mulige dørstolpene ligger 22 cm utenfor linjen av veggstolpene med en åpning på 1,62 m. Dørstolpene målte 7 cm og 12 cm i dybden. En slik inngang med dørstolper på
utsiden av vegglinjen er uvanlig, men ikke unik. Det innebærer at taket over døren har vært hevet over høyden til taket ellers. Inngangen må allikevel sees som usikker.

Dørstolper: ID 19535 og 6500
De mulige dørstolpene lå ca. 22 cm utenfor linjen av veggstolpene, mellom veggstolpene 19561 og 6821 . De dannet en åpning på ca. 1,62 mi bredden, og målte henholdsvis 7 cm og 12 cm i dybden.

Veggstolper, vestre vegg: ID 20862, 6248, 6236, 5818, 5791, 5551, 3486, 4555, 16821, 16564, 8356, 16723.
Østre vegg: ID 20827, 5231, 5244, 19561, 6821, 4580, 6184, 16613.
Den vestlige veggstolperekken lå i gjennomsnitt $1,9 \mathrm{~m} \mathrm{~V}$ for de vestlig takbærende stolpene. Ved de to nordligste takbærende stolpene var det smalere, $1,47 \mathrm{mog} 1,13$ m . Veggstolpene lå i hovedsak mellom $2,1 \mathrm{~m} \mathrm{og} 2,95 \mathrm{~m}$ fra hverandre, med et par unntak, på $0,97 \mathrm{~m}$ og $1,81 \mathrm{~m}$ fra hverandre. De målte fra 9 cm til 31 cm i dybden, med de dypeste i nord, og de grunneste i midten. Den østligste veggstolperekken lå i gjennomsnitt $1,8 \mathrm{~m} \varnothing$ for de østlige takbærende stolpene. Ved de to nordligste takbærende var det også her smalere, $1,64 \mathrm{~m}$ og $0,93 \mathrm{~m}$.
Veggstolpene lå $1,82 \mathrm{~m}$ til $4,49 \mathrm{~m}$ fra hverandre. De målte fra 30 cm til 10 cm i dybden.

Takbærende stolper: ID 3498, 21759, (21461), 5497, 6067, 5870, (5777), 5906, 7254,
De takbærende stolpene besto av 4 sikre stolpepar, 2 mulige stolpepar, samt 2 enkeltstående stolper. Ett av stolpeparene har en mulig støttestolpe på østre side. Stolpeparene under er listet fra N mot S . Bredde- og dybdemål er tatt i profil.

Stolpepar \# 1

ID 3498, vestlig stolpehull, 34 cm i bredden, og 37 cm i dybden
ID 21759, (sannsynlig) østlig stolpehull, 30 cm i bredden, og 28 cm i dybden.
(ID 21461, var skjært av 21759 og tolkes derfor ikke som støttestolpe).

Stolpepar \# 2

Begge disse stolpene var spesielt grunne, da de lå rett inntil berggrunnen.
ID 5497, vestlig stolpehull, 24 cm i bredden, og 11 cm i dybden.
ID 6067, østlig stolpehull, 30 m i bredden, og 12 cm i dybden.
Stolpepar \# 3
ID 5777, kun synlig i flaten (restene etter stolpehull).
ID 5870, i østlig rekke av takbærende stolper, 27 cm i bredden, og 25 cm i dybden.

Stolpepar \# 4

ID 7254, vestlig stolpehull, 25 cm i bredden, og 20 cm i dybden.
ID 5906, østlig stolpehull, 28 cm i bredden, og 28 cm i dybden.

Stolpepar \# 5

ID 5958 kun synlig i flaten (restene etter stolpehull).
ID 6523, i østlig rekke av takbærende stolper, 36 cm bredden, og 14 cm i dybden.

Stolpepar \# 6

ID 19402, vestlig stolpehull, 33 cm i bredden, og 20 cm i dybden.
ID 6026, østlige stolpehull, 23 cm i bredden, og 30 cm i dybden.
Ensomme takbærende stolper
ID 6581, i østlig rekke av takbærende stolper, 34 i bredden, og 22 cm i dybden.
ID 20850, også i østlig rekke, måler 20 cm i bredde, og er 13 cm dybden.
Huset smalner i den nordlige delen hvor enkelte av veggstolpene var spesielt dype. Det har ikke vært mulig å utskille tydelige gavlender på huset.

Datering

Tre prøver er radiokarbondatert. De består av en hasselnøtt, tatt fra ID 5906 (østre takbærende stolpe i fjerde grind), to byggkorn fra ID 4580 (tredje veggstolpe fra nord på østre side), og en trekullprøve, av bjørk, fra ID 3498 (nordvestligste takbærende stolpe). Den førstnevnte er datert til AD 650-780 (ved 2 sigma sikkerhetsmargin), og den andre er datert til 30 BC - AD 220 (ditto), og den tredje til AD 660-810 (ditto). Den avvikende dateringen sees bort fra, slik at disse altså daterer huset til merovingertid, helst den senere del.

9.6 Hus 6

Hus 6 lå i nordre kant av hus 4, i sørøstre del av Felt I. Det var et treskipet langhus, orientert vest-øst, og hadde ingen tydelig avgrensning. Det manglet både veggstolper og ildsted, sistnevnte er antagelig pløyd vekk. Huset målte minst $12,5 \mathrm{~m}$ fra vest til \varnothing st, og 2 m fra nord til sør. Sporene fra Hus 6 besto av 4 par med takbærende stolper og 2 enkeltstående, samt 4 mulige støttestolper, totalt 14 stolper.

De takbærende stolpene måler fra 20 til 43 cm i bredden, og fra 18 til 40 cm i dybden. Unntaket fra dette er det nordlige stolpehullet i den østligste grinda, som målte 19 cm i bredden og 8 cm i dybden. Ut fra plasseringen er denne noe usikker som takbærende stolpe. Også de to enkeltstående stolpene lengst øst var noe tvilsomme, ettersom de var de grunneste tilhørende dette huset. I tillegg manglet parstolper på nordsiden.

Fig 10: Hus 6, med anleggsnummer.

Fig 11: Hus 6, med prøver

Takbærende stolper.

Takbærende stolper: ID 21974, 2785, 6350, 21827, 7404, 21533, 22213, 7429, 8391, 21839.

Stolpeparene sett fra \vee mot \varnothing :

Stolpepar \# 1

ID 21974, nordlig stolpehull, 29 cm i bredden, og 34 cm i dybden.
ID 2785, sørlig stolpehullet, 43 cm i bredden, 0 g 30 cm i dybden.

Stolpepar \# 2
ID 6350, nordlig stolpehull, var 30 cm i bredden, og 22 cm i dybden. Det var flere mulige støttestolper, ID 6340, 22222, og 6328.
ID 21827, sørlig stolpehull, 30 cm i bredden, og 30 cm i dybden.

Stolpepar \# 3

ID 7404, nordlig stolpehull, 23 cm i bredden, og 32 cm i dybden. Det har hatt en mulig støttestolpe i ID 7418.
ID 21533, sørlig stolpehull, 27 cm i bredden, og 40 cm i dybden.
Stolpepar \# 4
ID 22213, nordlig stolpehull 19 cm i bredden, 8 cm i dybden, og er dermed høyst usikker som takbærende stolpe.
ID 7429, sørlig stolpehull, 28 cm i bredden, og 33 cm i dybden.
To enkeltstående stolper, stående tett sammen langs sørlig stolperekke:
ID 8391, vestligste anlegg av de to, 35 cm i bredden og 18 cm i dybden.
ID 21839, østligste anlegg av de to, 20 cm i bredden og 20 cm i dybden.

Begge stolpehullene var noe grunnere enn resten av de takbærende stolpene i huset. I tillegg manglet flere par langs den nordlige stolperekken, hvilket gjør disse stolpene tvilsomme.

9.7 Antatt tom grav

I østre ende av Felt I, og ca. 9 m nordøst for nordligste stolpehull i Hus 5, lå grop 1975. Dette var en rektangulær grop, med avrundete hjørner, som målte $2,5 \mathrm{~m}$ østvest, og $2,1 \mathrm{~m}$ nord-sør, og var 30 cm dyp på den relativt flate bunnen. Fargen på massen i gropa var lys grà, og dermed var det i hovedsak den tydelige formen som gjorde det mulig å oppdage gropa. Dette er i seg selv en indikasjon på stor elde. Langs søndre kant var det et par hellere synlig, lagt pả høykant. Utgravning viste at fyllet lå i flere lag, noe ujevnt fordelt i gropa. Øverst og sentralt lå et lag (kalt lag 2 i tegning) med grågrønn leire- og sandholdig masse. Langs kantene samt under den førstnevnte var et lag (ditto 1) beskrevet som mørkbrun humusaktig masse med enkelte spor av trekull. Enkelte steder innenfor sistnevnte ble det også funnet et lag (ditto 3) med rødbrun fet leire- og sandholdig masse. Ved ytterligere utgravning ble det avdekket et ovalt ildsted i $\mathrm{S} \varnothing$ kvadrant, med mye bein, som lå i samme kulturlag som og var kilden til kullet ellers i graven (lag 1).

Ved prøvetaking til fosfatanalyse (midt på profilen C-X, på profiltegningen) ble det identifisert forskjellige lag. De øverste 15 cm besto av lys grå sand, slik det var observert på overflaten (som tilsvarer lag 2 ovenfor; fosfatprøve A tatt fra 12-15 cm). Mellom 15 og 17 cm lå et lag med brunlig rød sand (fosfatprøve B). Mellom 17 og 20 cm lå et lag med mid brun humusaktig sand (fosfatprøve C). Deretter var det mellom 20 og 22 cm et til lag med lys grå sand (fosfatprøve D), slik det også var øverst. Nederst, mellom 22 og 26 cm var sanden mid grå, med rødskjær (fosfatprøve E tatt fra 22-24 cm). Fra 26 cm og nedover var det steril lys grå aure (Fosfatprøve F). Prøvene G til L tilsvarer A til F, i det at de ble tatt fra samme dybde fra renset overflate, fra utenfor sørsiden av graven. Prøve M og N ble tatt $1,5 \mathrm{~m}$ nord for graven, henholdsvis 5 og 23 cm under overflaten, som kontrollprøver.
Det følgende er fra rapporten av Jon Amundsen, som foretok spot-testing av prøvene:

I alt ble 14 jordprøver tatt ut for fosfatanalyse i august 2007, i tillegg ble pH i jorden på stedet målt for å påvise om jorden omkring der beinmaterialet har ligget var mer alkalisk. pH -verdien i jorda er målt til mellom 4.9 og 5.7 både i og utenfor graven. Vi benyttet spottestmetoden slik den er beskrevet av A.Forsberg: Hundvåg 1993. Verdier av fosfatinnhold i den enkelte prøve gjøres ut fra en fargevurdering der teknikeren/ laboranten gir karakteren 1-5, hvor 5 angir høyeste verdi av fosfat. Figuren under viser prøvenummer og vurdert verdi/ karakter for fosfat i jorda.

Prøve/ jorddybde	Verdi P	Kommentar
A $12-15 \mathrm{~cm}$	4	Grav
B $15-17 \mathrm{~cm}$	3	$"$
C $17-20 \mathrm{~cm}$	3	$"$
D $20-22 \mathrm{~cm}$	4	$"$
E $22-24 \mathrm{~cm}$	4	$"$
F $26-28 \mathrm{~cm}$	3	$"$
G $12-15 \mathrm{~cm}$	5	Umiddelbart utenfor grav
H $15-17 \mathrm{~cm}$	4^{*}	$"$
I $17-20 \mathrm{~cm}$	4	$"$
J $20-22 \mathrm{~cm}$	5	$"$
K $22-26 \mathrm{~cm}$	5	$"$
L $26-28 \mathrm{~cm}$	3	$"$
M ca. 5 cm	4	1.5 meter fra grav
N ca. 23 cm	4	$"$

Prøvene A - F Fra antatt grav.
Prøvene G-L Umiddelbart utenfor graven.
Prøvene M-N 1.5 m utenfor graven.

* - prøve: H: mindre beinfragment.

Av tabellen fremgår det flere høye verdier av fosfat i jordprøvene. Normalverdier i jorda gis gjerne verdiene 1-2, men i dette tilfellet er alle prøver vurdert over, og styrker dermed sannsynligheten for at beinmateriale er lagt i jorda.
Prøvene er tatt ut mellom $12-28 \mathrm{~cm}$ under opprensket flate, og gjør påvirkning fra evt. moderne gjødsling begrenset.
De høye verdiene av fosfat vises også utenfor den antatte graven (prøvene G-N). En mulig årsak til dette kan være at fosfatet over tid har vært løst opp av surt miljø (kombinasjon sur nedbør/ sur våt jord) og med tiden seget utover selve graven, og at biologisk aktivitet i jorda kan ha omrotet jordmassene over lang tid.

Det bør legges til at prøvene M og N var ment som kontrollprøve, og at det at de ikke skilte seg nevneverdig fra prøvene fra grava bør sees på som at prøvene ikke ga noe entydig svar. De markante fosfatverdiene like utenfor graven kan ha framkommet pga utglidning av fosfat, men det kan vanskelig forklare at også kontrollprøvene hadde høye verdier. Derfor utgjør ikke fosfatprøvene noen ytterligere støtte til ovenstående tolkning av gropen som en grav, men de undergraver tolkningen heller ikke.

9.8 Hus 8

Hus 8 besto av en samling av strukturer som hypotetisk er tolket som et hus.
Strukturene besto av:
Kulturlagene ID 11915, 13599 og 14535
Steinleggingen ID 11802
Grøftene ID 12272, 15681, 15890, 15925, 16150, 16212 og 16358
Gropene ID 15858, 16278 og 16344
Stolpehullene ID 8950, 8961 og 8972

Fig 12: Hus 8, med anleggsnummer

Fig 13: Hus 8, med prøver og dateringer.

Steinleggingen ID11802, målte 5 m NV - SØ og 1,9 m NØ - SV, og var på det meste 28 cm tykk. Det besto av stein i varierende størrelse, fra nevestor til hodestørrelse. Steinleggingen var avgrenset i NØ av grøft ID 15890, samt en moderne dreneringsgrøft: ID 12068. Mot SV var steinleggingen avgrenset mot kulturlagene ID 11915 og ID 14535. Ett funn (ID 12329) fra steinleggingen ble tolket som moderne forstyrring.

Kulturlagene

Flere kulturlag ble oppdaget i området rundt steinleggingen ID11802. Blant disse var det også flere lag med blandet kull og aske (bl.a. ID 13749). Disse blandingslag av kull/aske lå for det meste i ujevne groper under andre lag. Lagene tolkes som rester av avsviing av området i treveltegroper. Det samme laget ble også identifisert i åkerreinsjakten.

Kulturlag 11915 var det øverste av de to kulturlagene som brer seg ut på SV-siden av steinlegging 11802. Laget hadde en ujevn form som målte $5,1 \mathrm{~m} \mathrm{NV}-\mathrm{S} \varnothing$ og $2,1 \mathrm{~m}$ N \varnothing - SV, med en dybde på maksimum 10 cm . Laget besto av en blanding av mørk brun humusholdig masse, samt grå-svart humusholdig sand. Øverst i laget var det enkelte flekker av rødbrent leire. Dette kulturlaget tolkes som eldre enn steinleggingen 11802, som synes å være gravet ned i kulturlaget (se tegning nr 16).

Kulturlag 14535 var det nederste av de to kulturlagene på SV-siden av 11802. Laget hadde form som en likebeinet trekant. Laget ble forstyrret av grøften 15890 i N \varnothing, og av grop 15858 i det vestlige hjørne. Kulturlaget besto av mørk kullholdig masse med maksimum dybde på 12 cm , og målte 5 m NNØ-SSV - $2,5 \mathrm{~m}$ VNV- $\varnothing S \varnothing$. Noe keramikk ble funnet i laget, deriblant funn nr 209, tilgrensende grøft 15890.

Kulturlag 13599 besto av et nyreformet uforstyrret kulturlag som målte ca. $0,5 \mathrm{~m} \mathrm{i}$ diameter. Den øverste delen av laget var 5 cm tykk, og besto av brent leire. Under var det ca. 10 cm med brunlig kulturjord (sannsynligvis samme masse som i kulturlag 11915).

Grøftene

Syv grøfter ble sett i sammenheng med Hus 8. Noen av disse (ID 15890, 16150, 12272 og, under tvil, 16358) utgjør muligvis en indre vegg-grøft, langs $\mathrm{N} \varnothing$ gavl-ende. De andre grøftene (ID 15681, 15925, 16212) ble relatert til 16150.

Grøft 15890 lå VNV- $\varnothing S \varnothing$, var 2,5 m lang, $0,4 \mathrm{~m}$ bred og 14 cm dyp. Grøften inneholdt følgende stratigrafiske lag: Nederst et lag med brun sand, deretter et tynt lag med kull, et lag med brun sand, og øverst et lag med rød brent leire. I tillegg ble det funnet noe keramikk (F.nr. 213). Fra trekull-laget ble det tatt en naturvitenskapelig prøve som ble ${ }^{14} \mathrm{C}$-datert til $2140+/-40 \mathrm{BP}$, dvs 360-50 BC.

Grøft 16150 var $7,3 \mathrm{~m}$ lang, $0,5 \mathrm{~m}$ bred og 10-12 cm dyp. Den lå VNV- $\varnothing S \varnothing$ og ble smalere og grunnere vest. Strukturen hadde et knekk, slik at den vestligste delen lå langs en noe nordligere linje enn den østlige delen. Grøften var en tydelig fortsettelse av 15890 mot vest, med noenlunde samme stratigrafi (men med mindre brent leire og kull). Denne forskjellen, og måten grøften ble grunnere og lysere mot vest, kan være et resultat av at dette området har vært mer utsatt for pløyning. ID 16150 krysset grøft 156814 m fra den vestlige ende.

Grøft 12272 var 3,8 m lang, 0,4 m bred, og max 15 cm dyp. Den var en fortsettelse av 15890 som buer mot øst og sørøst, til den blir beskjært av den moderne dreneringsgrøften (ID 12068). Også her var det noe brent leire og kull. Innmålingen av denne kan være noe forvansket av både en profilbenk, den moderne dreneringsgrøften, og tilgrensende strukturer.

Grøft 16358 var 3,1 m lang og 0,2 m bred. En kort grøft som lå VNV- \varnothing S \varnothing (ble ikke undersøkt). Det er mulig at dette var en fortsettelse av 12272, parallelt med, og 6 m unna 15890.

Grøft 15681 var $10,4 \mathrm{~m}$ lang, $0,3 \mathrm{~m}$ bred og $0,2 \mathrm{~m}$ dyp. Den vestligste halvdelen lå V \varnothing, den østligste lå SV- N \varnothing hvor den krysset grøft $161500,8 \mathrm{~m}$ før den svant bort. Det var vanskelig å skille de to grøftene. De kan være samtidige, men det er ogsả mulig at 15681 var eldst.

Groft 15925 var 2,7 m lang, 0,3 m bred og 0,1 m dyp. Dette var tilsynelatende en avstikker av 15681, siden den lå inn og ut fra denne i hjørnet hvor denne bøyer seg. Den hadde også samme orientering som 15681.

Grøft 16212 var $3,8 \mathrm{~m}$ lang og av varierende bredde, orientert SV-N \varnothing. Den lå nesten parallell med østdelen av 15681, og ender i kant mot 16150 i NØ.

Gropene

Grop 15858 lå under kulturlag 11915 (og gikk inn i 14535). Grop 15858 lå mellom 11915 og 14535 i stratigrafisk sammenheng. Anlegget besto av stein, grå og gråbrun sand, med innslag av grå aske- og sandlinser. Kanten av gropen var hakkete, med avtrykk av individuelle spadetak. Grop 15858 var omgitt av et lag av aske og kull (sannsynlig avsviingslag), fra en eldre grop.

Grop 16278 og 16344 lå inntil hverandre rett V for kulturlagsområdet, NV for grøft 16358.

Grop 16278, på NØ-siden, var den største av de to gropene (skjærer inn i 16344). Den målte 1 m i diameter, og var 27 cm dyp. På bunnen lå et lag med meget kompakt kull. Over dette laget lå det mørk, brun humusholdig sand, med flere store heller. Gropen hadde ikke karakter av ildsted eller kokegrop.
Grop 16344, på SV-siden, var minst av de to gropene (beskjært av 16278). Den målte 60 cm på det bredeste (der hvor den er beskjært), var 60 cm lang og 30 cm dyp, og inneholdt brun humusholdig sand uten kull.

Grøftene, ardspor og Hus 8

Tre stolpehull på rekke ble funnet parallelt med, og nordvest for grøft 15681. Disse utgjorde, sammen med andre mulige stolpehull (senere avvist), en parallell rekke stolpehull. Deres sammenheng med de andre strukturene i Hus 8 er høyst usikker.

Stolpehull 8950, målte 23 cm i diameter og 27 cm i dybden.
Stolpehull 8961, målte 20 cm i diameter og 30 cm i dybden.
Stolpehull 8972, målte 25 cm i diameter og 28 cm i dybden.

Området mellom grøft 16358 og 15890 var preget av mange ardspor. Disse gikk inn i avsviingslaget (ID 13749) under kulturlagene. Dette antyder at området har vært pløyd etter avsviing, men før kulturlagene ble deponert.

Tolkningen som et eventuelt hus var basert på:

1) En steinlegging (ID 11802) som sannsynligvis har vært et steinsatt gulv, f.eks. i et fjøs.
2) Funn av et mulig golvlag bestående av brent leire, både i bruddstykker på toppen av kulturlag (ID 13599), samt øverst i en mindre grøft (ID 15890).
3) Et nettverk av grøfter, mulige vegg-grøfter, som omkranser området (særlig 16150, 15890, 12272 og 16358).

Forhold som tilsier at sporene ikke er fra et hus:

1) En moderne steinsatt grøft (fra ca 1950 ifølge bondens vitneutsagn) skar gjennom det antatte huset. Funn av torv i åkerreinsjakta tilsier at dette området har vært utsatt for mye fuktighet, og har dermed vært ugunstig som boplass.
2) Grøftene i området krysser hverandre, og danner ellers ikke et enhetlig system. Det er mulig disse i stedet er enkle, grunne (ikke forhistoriske) dreneringsgrøfter.
3) Av de stolpehullene som ble undersøkt med henblikk som mulige takbærende var det bare én rekke som pekte seg ut som mulige. Disse lå også noe V for resten av anleggene som er definert som del av "Hus 8". Det er derfor ikke noen sammenhengende system av stolpehull til å bære dette huset, og vi vil derfor avskrive Hus 8.

Med steinsettingen i kontekst med leiredekket gulv og grøfter, så er det rimelig sikker at en eller annen huslignende struktur har stått der Hus 8 er identifisert.

9.9 GRøFT 11125 (Hus 7)

Grøft 11125 var 23 m lang og lå N -S midt på søndre halvdel av Felt III (fra N -enden av 11125 lå en grøft (10 m lang) orientert mot S \varnothing). Ettersom begge grøftene sluttet samme sted tolkes de som samtidige. De nordligste 6 m lå NNV-SSØ, mens de sørligste 17 m lå NNØ-SSV. Grøften fortsatte videre inn under potetåkeren i S (avdekkes i 2007). Grøften var 0,5 m bred, og 0,2 m dyp med en noe avflatet bunn. Det var flere stolpehull ved siden av grøften, tilsynelatende organisert parvis på hver sin side av grøften. Disse antydet at grøfta kan ha vært en del av et gjerdesystem. Dette kan da sees sammen med den lille grøften 17481, som lå 3 m ut fra berget i nordre halvdel av Felt III, motsatt grøft 11125.

På V-siden av grøft 11125 (de seks siste meterne før grøften forsvinner inn under potetåkeren), lå/ligger det flere anlegg som ikke ble undersøkt feltsesongen 2006 (hovedsakelig ID 18545 og 18621). Flere funn ble også gjort ved opprensning i dette området. Dette kan tyde på at grøft 11125 allikevel ikke er del av et gjerde, men nærmere en vegg-grøft. Dette spørsmålet vil forhåpentligvis bli bedre belyst ved
utgravningene i 2007. Se beskrivelse under "Hus 7" fra 2007 rapporten fra Tastarustå.

Innberetning til topografisk arkiv

Arkeologisk museum i Stavanger

Vår ref.:	Saksbehandler:	Arkivkode	Dato:
99/7619-32		$1103-28, \mathrm{~A}-433$	20.08 .2007

Kommune:	Stavanger
Gardsnavn:	Øvre Tasta
Gnr:	28
Bnr:	$26,54,63$
Lokalitetsnavn:	Tastarustå
Tiltakshaver:	Stavanger kommune
Adresse:	Olav Kyrresgt 23,4005 Stavanger

Sakens navn:
Fu saksnr:
157/1998, 25/2000, Flyfotoreg nr:
C 123075 022/2004
Brevjournalnr:
Fornminnenr:
ID (Askeladden:) Kartblad og UTM: AK 023-5-2 H oh: Fra 55 til 63 m
Aksesjonsnr:
2006/9
Museumsnr:
Natvit. prøvenr:
Foton:

Befart (dato):	24.11.98
Av:	Linda Julshamn (RFK) og Olle Hemdorff (AmS)
Feltundersøkelse	16/04/07-10/08/07
(tidsrom):	
Ved:	Niall Armstrong og Gitte Kjeldsen

Gjelder: Arkeologiske undersøkelser på Tastarustå, regulering for plan1731.

1. SAMMENDRAG 2007

De arkeologiske resultater

Også i 2007 så ble det som forventet ikke funnet store mengder gjenstander. Det ble funnet enkelte spredte flintartefakter, noe boplasskeramikk, en del brent leire, og noen jernfragmenter. Av særlige gjenstander så ble det funnet en knekt bryne ved opprensning av Hus 7 (Felt III), og en glassperle av uviss alder i et stolpehull i Hus 11 (Felt III).

Ett felt og en sjakt gjennom en åkerrein ble utvidet denne sesongen, et nytt underfelt ble avdekket, og ett felt som ble avdekket året før ble undersøkt. Felt III, i nordøst, ble utvidet fra opprinnelige $1783 \mathrm{~m}^{2}$ til $4490 \mathrm{~m}^{2}$, og målte nå 66 m NV-S \varnothing og 180 m NØ-SV. Åkerreinssjakten, like nordvest for Felt III, ble forlenget mot sør med 14 m , slik at denne nå målte 29 m i lengden, og dekket hele åkerreinen. Felt llb ble åpnet avdekket, like vest for Felt Ila, og målte 72 m NNV-SSØ og $32 \mathrm{~m} \varnothing N \varnothing-V S V$, og dekket et areal på $2498 \mathrm{~m}^{2}$. Totale avdekking for 2007 utgjorde $5247 \mathrm{~m}^{2}$, mens totalen for begge sesongene utgjorde $13139 \mathrm{~m}^{2}$.

FELT III (Gnr.28, Bnr. 54)
Felt III er lokalisert lengst øst på gnr. 28/53 i en åker som skråner gradvis mer mot nord. I følge grunneier har området vært utsatt for fukt i tidligere tider. Den nordre delen av området ble undersøkt i 2006. Ved utvidelsen så ble to hus, kalt Hus 7 og 11, samt et kokegropfelt avdekket. Restene etter Hus 7 var meget omfangsrike, ettersom de inneholdt både vegg-grøfter, ytre skråstivere, stolpehull etter veggstolper og takbærende stolper. Restene etter Hus 11 var mindre, men inneholdt også tre ovner, hvorav den midtre var av særdeles interesse.

FELT Ila (Gnr 28, Bnr 11)
Felt Ila ble avdekket I 2006, men først undersøkt I 2007. Her ble det funnet ett hus, kalt Hus 14, samt flere 4-stolpere, kalt Hus 13, 17 og 18. Hus 14 inneholdt rester etter tre faser, og ble bl.a. bredere jo lenger ned man kom i bakken.

FELT Ilb (Gnr 28, Bnr 17)
Felt llb er lokalisert like vest for felt lla. Her ble det undersøkt 3 hus, kalt Hus 10, 15 og 16, samt en dobbel 4-stolper, kalt Hus 9 . Hus 16 inneholdt en interessant ovn.

2. INNLEDNING

I løpet av to sesonger ble tre felt på til sammen $12660 \mathrm{~m}^{2}$ avdekket, hvori det ble funnet levninger etter tre hus fra vikingtid, fem hus fra merovingertid og fire hus fra førromersk jernalder. Av disse var seks bolighus, fem ulike uthus, og en usikker huskonstruksjon. I to av uthusene ble til sammen fire ovner undersøkt. I tillegg ble det funnet et område med kokegroper, datert til førromersk jernalder, og en tidlig kristen grav uten gravgods, samt spor etter et udatert forhistorisk gravminne.

Utgravningssesongen i 2007 var en fortsettelse av det samme område som beskrevet i rapporten fra 2006. Jordmikromorfologi og videre klimaundersøkelser utgår pga manglende kompetanse. Organiseringen av prosjektet, samt de formulerte problemstillingene videreføres uendret i 2007.

Prosjektorganisering

Prosjektplanen er utformet på grunnlag og innenfor rammen av "Håndbok for prosjektstyring ved AmS" datert 01.01.06.

Referansegruppe

Prosjekt Tastarustå støttes av følgende interne referansegruppe 2007:
Prosjektleder, avd.leder fornminnevern: Arne Johan Nærøy
Amanuensis, prosjektansvarlig:
Amanuensis, dokumentasjon:
Avdelingsleder, konservering:
Amanuensis, naturvitenskap:
Avdelingsleder, Moesgård museum, Ârhus

Gitte Kjeldsen
Âsa Hauken Dahlin
Bitten Bakke
Eli Christine Soltvedt
Peter Hambro Mikkelsen

Referansegruppen har ansvar for å følge opp prosjektet med spesiell sikte på å:

- å utnytte det faglige grunnlaget og potensialet i undersøkelsen på best mulig måte
- å bidra til at fremdriften i prosjektet er etter planen
- å bidra til at økonomi er innenfor budsjetterte rammer

Referansegruppen kan suppleres med interne eller eksterne medlemmer etter behov.

2.1 beLiggenhet

Tastarustå ligger på gården Øvre Tasta (Gnr 28), nordligst i Stavanger kommune, nær grensen til Randaberg. Området er et høydedrag med preg av jordbruk og spredt villabebyggelse langs vegen. Fra høydedraget er det utsikt både nordøst mot Âmøy og Ryfylke, sørøst mot Ullandhaug, og vest mot Randaberg. Åsen er høyest lengst mot vest, med nakent berg, og skråner gradvis mot øst og nordøst, noe brattere mot sørøst. Utgravningsområdet for sesongen 2007 ligger på Gnr.28, Bnr.63(Felt I), Gnr.28, Bnr. 11 (Felt Ila og Ilb) og Gnr.28, Bnr. 54 (Felt III).

For en mer utførlig beskrivelse av eksisterende kulturminner, stedshistorie, samt problemstillinger for utgravningen, se samme punkt i rapporten fra 2006 ovenfor.

3. TIDSROM OG DELTAKERE

Utgravningen foregikk fra 16.04 .07 til 10.08.07, i alt 17 uker.

3.1 Gjennomføring, Vferforhold og Tidsbruk

Avdekking av planområdet ble gjennomført fra 16. april til og med 10. mai. Den digitale oppmålingen startet 23. april og pågikk resten av sesongen. Snitting og annen utgravning ble påbegynt 21. mai. Den regnfulle sommeren resulterte i at mange spor var forholdsvis lette å se og dokumentere. Samtidig medførte det at papirarbeid ble vanskeliggjort, og det var nødvendig med mer opprensning av anleggene.

3.2 DeLtakere (INKL. GRAVEMASKINSJAFøR OG SELSKAP)

Ansatte ved AmS

Gitte Kjeldsen	Prosjektleder
Eli Christine Soltveit	Botaniker

Feltpersonell 2007

Niall Armstrong	1. konsulent (feltleder)	$16.04-10.08$
Christian Roll Valen Feltassistent	$16.04-10.08$	
Will Rhys Davies	Feltassistent	$16.04-10.08$
Anne Drageset	Feltassistent	$02.05-27.07$
Nora Polgar Pape	Feltassistent	$21.05-03.08$
Wenche Brun	Feltassistent	$07.06-29.06$
Edvard Aarrestad	Edvard Aarestad Maskin	$16.04-10.05$

4. METODE OG GRAVETEKNIKK

Denne sesongs hovedfelt ble utvidet (Felt III), et nytt felt avdekket (IIb), og et tredje ferdig dokumentert. Felt III ble utvidet til 88 m NØ-SV og 66 m NV - S \varnothing, totalt 4490 m^{2} (en utvidelse av feltet på $2707 \mathrm{~m}^{2}$ fra i fjor). Felt llb rett vest for Felt lla (kalt Felt II i fjor) ble avdekket i 2007, og målte $71 \mathrm{~m} \varnothing-\mathrm{V}, 36 \mathrm{~m} \mathrm{~N} \mathrm{-} \mathrm{S} ,\mathrm{totalt} 2498 \mathrm{~m}^{2}$. Felt Ila ble forsiktig opprenset (ca. 2 cm) ved hjelp av maskin, dokumentert og målt inn. I tillegg ble sjakten gjennom åkerreinen forlenget til en total lengde av 29 m .

Også i år var hovedteknikken maskinell flateavdekking. Ved maskinell flateavdekking fjernes matjordlaget, slik at tidligere tiders nedgravninger, så som stolpehull, ildsteder, kokegroper, grøfter, graver osv, står fram som strukturer i undergrunnen. Når et system av ulike strukturer er blitt identifisert og tolket blir disse undersøkt og dokumentert.

Ved undersøkelse av åkerreiner graves grøften gjennom både pløyelag, underliggende lag og øverste del av undergrunnen. Ettersom åkerreinen består av oppsamlede masser som har erodert fra den høyereliggende åkeren, ligger lagene uforstyrret. Ut i fra naturvitenskapelige prøver fra lagene kan jordbruksaktiviteten dateres, samt vegetasjonshistorien beskrives.

4.1 Dokumentasjon

Da vi i 2006 innførte bruk av Leica totalstasjon og Intrasis GIS-system, var det mye lettere å både videreføre og forbedre praksisen. Det ble i denne sammenhengen også målt opp punkter for terrengmodellering.

4.2 Tegning

Større groper og andre anlegg ble tegnet på egne ark. Åkerreinen ble tegnet med overlagstegning. Disse ble tegnet i målestokk 1:10 eller 1:20.

4.3 Fotografering

I 2007 utgikk foto på film til fordel for digital fotografering. Av sikkerhetsmessige årsaker ble det tatt dobbelt digitale sett med bilder. Dette vil vi i midlertidig ikke anbefale, da det ga ekstra unødig arbeid til både feltleder og bildearkiv.

4.4 InNSAMLING AV PRøVER

Naturvitenskapelige prøver ble tatt fra alle strukturer som enten var tolket som tilhørende hus eller strukturer som hadde andre signifikante trekk. Fra husene ble det tatt prøver fra ildsteder, mulige dørstolper, og fra utvalgte vegg- og takbærende stolper. Samtlige prøver ble flotert og pakket i felt.

Makrofossiler fra utvalgte anlegg ble sendt til BETA Labs, Florida, USA, til datering.

4.5 Funn (NUMMERERING OG KATALOGISERING)

Funnene fra andre utgravningssesong fikk samme museumsnummer (S-nr) som i første:

Fra Felt I (28/63): S-12253
Fra Felt II, a og b (28/11): S-12254
Fra Felt III (28/54): S-12252
Funnlister og naturvitenskapelige lister ble ikke holdt separat fra Intrasis, da fjorårets erfaring viste at dette var unødvendig.

4.6 INNMÂLING (KOORDINATSYSTEM)

Ettersom koordinatsystemet til Intrasis krever positive verdier ble EU89 - UTM systemet brukt. Tolv fix-punkter ble oppmålt av Interconsult, i tillegg til fjorårets femten. Enkelte ble målt om igjen i tilfelle de hadde blitt noe forandret siden i fjor.

Figur 1: Kart over feltene på Tastarustå

4.7 UTGRAVINGENS FORLøP

FELT III (Gnr.28, Bnr. 54)
Nordøstre del av dette feltet var allerede avdekket og undersøkt i fjor. Utvidelsen ble gjort mot sør til den grensende vegen Tastarustå i sør, og mot eiendomsskiftet i sørvest. Dette var området som var beplantet med poteter i fjor.
En grøft som ble avdekket i fjor, viste seg ved undersøkelsene i år å tilhøre et større hus, som ble kalt Hus 7 . Lenger vest ble det avdekket et sett med tre ovnslignende strukturer på linje, som var omgrenset av tydelige stolpehull som inneholdt leire.
Dette ble kalt Hus 11.
Det ble innmålt 380 arkeologiske objekter i 2006, og 681 i 2007 på Felt III. Totalt 1061 arkeologiske objekter fordelt på:
stolpehull 682 stk (dvs 463 nye, og 10 nye forstyrrelser)
staurhull 143 stk (dvs 52 nye)
groper 89 stk (dvs 51 nye) [+ 2 feilinnmålte "graver"]
ildsteder 30 stk (dvs 21 nye)
grøfter 28 stk (dvs 17 nye)
kulturlag 9 stk (dvs 1 ny)
steinlegginger 3 stk (dvs 0 nye)
kokegroper 14 stk (dvs 14 nye)
stein 6 stk (dvs 6 nye)
ovner 4 stk (dvs 4 nye)
kullkonsentrasjon 7 stk (dvs 7 nye)
vegg-grøfter 6 stk (dvs 6 nye)
åkerreinen forlenget til 29 m

Figur 2: Kart over Felt III med husene og kokegroper markert.
FELT Ila (Gnr. 28, Bnr. 11)
Feltet skråner mot sørøst i forlengelse av Felt I. Området ble avgrenset i nord og vest langs grensegjerder med bartrær, og i sør og øst mot funntomme områder. Feltet ble avdekket og delvis innmålt i 2006, men først ferdig innmålt i 2007. De to innmålingene stemte ikke helt overens. Enkelte nye stolpehull ble avdekket, og enkelte strukturer forsvant, antagelig fordi de var for grunne.

Det ble innmålt 495 arkeologiske objekter på Felt lla, fordelt på:
stolpehull, 427 stk (+ 10 forstyrrelser)
groper, 39 stk
ildsteder, 2 stk
grøfter, 3 stk
kokegroper, 1 stk
kullkonsentrasjoner, 3 stk
stein, 2 stk
røys, 1 stk
staurhull, 7 stk

Figur 3: Kart over søndre del av Felt II med strukturer markert. Felt IIa til høyre, og Felt Ilb til venstre.

FELT Ilb (Gnr. 28, Bnr. 17)
Feltet lå rett vest for Felt Ila, sør for Felt I, og adskilt fra begge ved steingjerder og bartrær. Området skråner til dels ganske bratt mot sør (evt. S - SØ) med avgrensningen mot funntomt område. Det viste seg senere at avgrensningen var litt noe for høyt oppe, ettersom Hus 16 ble ikke fullt avdekket.

Det ble innmålt 293 arkeologiske objekter på Felt llb, fordelt på:
stolpehull, 252 stk
groper, 18 stk
ildsteder, 3 stk
grøfter, 9 stk
kokegroper, 1 stk
kulturlag, 1 stk
ovn, 2 stk
staurhull, 7 stk

5. StRATIGRAFISKE FORHOLD OG FUNNFORDELING

5.1. Horisontalt

Det var generelt en stor mengde ulike anleggesspor på de avdekkede feltene på Tastarustå. Vi kunne ut ifra RFK forundersøkelser se hvilke områder som var funntomme. Som kontroll ble det trukket en $20 \mathrm{~m} \times 10 \mathrm{~m}$ lang søkesjakt i det funntomme området V for Felt III (2006). Anleggssporene besto i hovedsak av stolpehull fra langhus, kokegroper, ildsteder, ovner, større flekker med kulturlag, ardspor, samt noen anlegg som i flaten kunne være flatmarksgraver. Åkerreinen ble utvidet.

På Felt III hadde vi et område mot SØ hvor kokegroper og ildsteder lå forholdsvis tett, ikke langt fra Hus 7. Det ble generelt observert mer variasjon i boplassaktiviteten på Felt III enn på Felt lla og Ilb. Undergrunnen besto av smågruset sand med noen større jordfaste stein som stakk opp i dagen.

5.2 Vertikalt

Ut over flere lag i enkelte stolpehull ble det ikke avdekket bosetningsspor i ulike stratigrafiske lag. Sett ut i fra den store mengden av stolpehull er det ikke noen tvil om at flere av bygningene har hatt flere faser enn dem som vi var i stand til å utskille.

5.3 ANDRE FORHOLD (FORSTYRRELSER ETC.)

Som nevnt tidligere har området vært utsatt for intensiv jordbruk og pløyning, antakelig siden jernalderen og frem til i dag.

6. Funnmateriale

6.1 Funnmengde, Funnkategorier og Materialtyper

Andre sesong var enda mindre funnrikt enn året før. En god del boplasskeramikk ble funnet (særlig i Felt IIb), en antatt moderne glassperle, et bryne (begge i Felt III), og noen steingjenstander.

7. Beskrivelse av Anlegg / strukturer

Det er totalt innmålt 2647 definerte strukturer over de to sesongene:
2045 stolpehull, 562 unders $ø \mathrm{kt}$ (70 forstyrrelser)
191 groper, 52 undersøkt
64 ildsteder, 27 undersøkt
58 grøfter, 23 unders $\varnothing k t$
18 kokegroper, 6 undersøkt
10 kulturlag, 7 unders $ø k t$
15 kullkonsentrasjoner/kullpletter, 2 undersøkt
3 steinlegginger, alle undersøkt
157 staurhull, 14 unders $ø \mathrm{kt}$
1 røys, undersøkt
8 steiner,
6 ovner, alle undersøkt
1 sannsynlig funntom grav, undersøkt

De anlegg/strukturer (heretter kalt anlegg) som ble nærmere undersøkt var dem som enten hadde en tilknytning til husene eller skilte seg ut på annen måte. Under innmålingen ble de ulike anleggene definert i ulike kategorier (se ovenfor).

Stolpehull: Det ble i alt snittet/undersøkt 555 stolpehull hvorav de fleste inngår som en del i et av de definerte husene på Felt I (2006), Felt Ila, Ilb og III. Det er generelt en forholdsvis stor variasjon i både diameter og (særlig) i dybden av stolpehullene. I tillegg sees enkelte dobbelte stolper, samt antatte utskiftninger av stolper i huskonstruksjonene.

8. Naturvitenskapelig materiale

8.1 PrøVEmateriale til ${ }^{14}$ C-dateringer

Prøver ble tatt fra ildsteder og kokegroper innenfor eller tilknyttet hus for mulig ${ }^{14} \mathrm{C}$ datering.

Prøve	Materiale	Kontekst
45337	trekull	Kokegrop
45339	trekull	Kokegrop
44222	trekull	Kokegrop beskjært av vegg-grøft
45449	2 byggkorn	Ytre grøft (perpendikulær)
44378	trekull	Midt ildsted (nordligste rom)
44221	trekull	Side ildsted
44454	trekull	Takbærende stolpe
44395	trekull	Veggstolpe
46308	2 byggkorn	Lang ildsted
46307	trekull	Rundt ildsted
46075	3 havrekorn	Veggstolpe, sør
44944	trekull	Ovn, sørligste kullgrop (øvre)
46069	2 korn	Veggstolpe, nord
200493	trekull, or	Ovn, nordligste kullgrop (nedre)
49288	ugrasfrø	Takb. stolpe
51585	trekull	Ildsted (øvre lag)
51586	trekull	Ildsted (nedre lag)
52244	1 ubest korn	Takb.Stolpe
52270	2 byggkorn	Helledekt grøft
52142	trekull	Vegggrøft
52298	2 korn	Ovn, vestre side

Anl.nr	Struktur
22875	Kokegrop, Felt III
23077	Kokegrop, Felt III
23036	Hus 7 (eldre enn)
18545	Hus 7 (utenfor)
24072	Hus 7 (ikke tilkn.)
22598	Hus 7
24047	Hus 7
44193	Hus 7
29029	Hus 10
28983	Hus 10
38995	Hus 11
26631	Hus 11
32325	Hus 11
26631	Hus 11
42997	Hus 14
47855	Hus 14
47855	Hus 14
52219	Hus 15
52245	Hus 16
50920	Hus 16
51411	Hus 16

Ukalibrert	Kalibrert (2 Σ)
$2020+/-60$	BC $180-$ AD 90
$2260+/-60$	BC $410-180$
$2190+/-70$	BC $400-50$
$2260+/-40$	BC $400-200$
$3320+/-40$	BC $1690-1500$
$1160+/-40$	AD $770-980$
$1080+/-40$	AD $890-1020$
$1250+/-40$	AD $670-880$
$1280+/-40$	AD $660-810$
$1270+/-40$	BC $660-870$
$2410+/-40$	BC $750-400$
$2270+/-40$	BC $400-210$
$2360+/-40$	BC $520-380$
$2480+/-40$	BC $780-410$
$1240+/-40$	AD $670-890$
$1250+/-60$	AD $660-900$
$1320+/-50$	AD $640-780$
$2170+/-40$	BC $370-100$
$2110+/-40$	BC $340-40$
$3450+/-40$	BC $1880-1670$
$2230+/-40$	BC $390-190$

Tabell 1: Oversikt over radiokarbondateringer fra utgravningene 2007.

8.2 POLLEN- OG MAKROFOSSILPRøVER

Det ble tatt ut jordprøver fra halvparten av takbærende- og veggstolper i de identifiserte husene, samt fra ildsteder, ovner og andre typer anlegg som hadde tilknytning til bebyggelsen. Jordprøvene ble flottert i felt for å plukke ut organisk materiale i form av kull, frø og ulike korntyper. Dette arkeobotaniske materiale inneholder informasjon om klima, arter og foretrukne avgrøde. Utvalgte prøver ble sent til Beta Analytic for datering. Det ble sent inn 31 prøver til ${ }^{14} \mathrm{C}$-datering.

Dateringene viser at bebyggelsen strekker fra førromersk jernalder (ca $500 \mathrm{f} . \mathrm{kr}$.) opp til sen vikingtid (så sent som 1040 e.Kr.).

Forkullet plantemateriale

I feltsesongen 2007 ble det tatt 155 prøver. Prøvene ble flottert i felt ved hjelp av AmS flotasjonsmaskin. Alle prøvene er sortert av forskningstekniker Tamara Wirnovskaia og Jon Amundsen. Jon Amundsen har også identifisert trekull. Korn og ugrassfrø fra seksten prøver er ${ }^{14} \mathrm{C}$-datert.

I 26 av prøvene er det kornfragmenter og/eller korn. I de samme prøvene er det også forkullete ugrassfrø. Forkullete ugrassfrø ble funnet i ytterlige 41 prøver. I noen prøver er det også forkullete hasselnøttskall. Havre (Avena) og bygg (Hordeum) er identifisert.

Det eldste kornet er identifisert som havre (Avena) og er fra yngre bronsealder. Dette er et uventet resultat. Tidligere undersøkelser på Vestlandet har vist at havre ble vanlig i folkevandringstid. Imidlertid er havre (Avena) funnet i Danmark både i eldre og yngre bronsealderkontekst. De yngste kornene er datert til overgangen mellom merovingertid og vikingtid. Funn av korn og forkullete ugrass viser foreløpig at det har vært jordbruksaktivitet på området i yngre bronsealder, førromersk jernalder og i overgangen mellom merovingertid og vikingtid. Det skal nevnes at fragmenter av hasselnøttskall er robuste, og derfor vanlige å finne på forhistoriske boplasser.

Pollenanalyse
Det er preparert 30 prøver fra to åkerreiner. De ferdigpreparerte prøvene er oversendt Afdeling for Konservering og Naturvidenskab, Moesgård Museum i Århus for videre analysering. Cand. scient Renèe Enevold har ansvaret for analyseringen av prøvene. Dette arbeidet ble påbegynt i desember 2007 og er i skrivende stund ikke ferdigstilt.

9. TOLKNING AV LOKALITETEN I LYS AV STRUKTURER OG FUNN

9.1 Hus 7

Hus 7 tolkes som et treskipet langhus. Omtrent halvparten av vestre vegg-grøft i husets nordvestlige del ble avdekket i 2006, mens resten av huset ble avdekket i 2007. Hus 7 lå mellom Hus 8 i nordøst og Hus 11 i sørvest. Mot sørøst lå det en samling med kokegroper, hvorav noen mer eller mindre lå langs husets østre vegggrøft. Etter avdekkingen av vegg-grøftene var tolkningen av stolpehullene uten vanskeligheter, og husets form og avgrensning tydelig. Huset er orientert nord-sør, med en lengde på 24.5 m og en største bredde på 9.5 m (6.9 m mellom veggstolpene).

Bilde 1: Oversikt av Hus 7 mot sør, med takbærende- og veggstolper markert med hvite markører, og vegg-groftene markert med målestokker

Strukturene besto av veggrøfter (både på østre og vestre side), stolpehull etter takbærende stolper (7 grind), veggstolper (13 på hver side), skråstivere (6 på hver side), mulige dørstolper, ildsteder, enkelte andre groper, og en liten grøft etter mulig rom-deling. Ved snitting viste det seg at de takbærende stolpene var meget dype og tydelige. Dette gjaldt i stor grad ogsà veggstolpene, mens stolpehullene etter de ytre skråstiverne var i en tydelig orden, men ikke særlig dype.

Figur 4a: Kart over Hus 7 med anleggsnummer Figur 4b: Kart over Hus 7 med prøver og dateringer. Dateringer med sikker sammenheng med huset er uthevet.

Vegg-grøftene dannet en tydelig avslutning ved den nordlige nedre kant. Grøftene fra begge langsidene ledet ned bakken og unna huset, mot nordvest. Dette viste tydelig at grøftene var ment til å lede vann vekk fra huset. Høydeforskjellene var tydelige, med et gradvis fall mot nord, på nesten 1 m fra $ø$ verst til nederst (antakeligvis noe mer ettersom grøftene var dypere i nord enn i sør). I tillegg til avledningsgrøften i nord lå det grøfter på østre og vestre langside. På vestre side var grøftene (fra sør, ID 24258 og 11125) 22,8 m lang (i tillegg til avledningen på $5,8 \mathrm{~m}$), mens $ø$ stre side (fra nord, ID 23292, 23353, 23508, 23559), med brudd, målte $22,6 \mathrm{~m}$.

Takbærende stolper parvis fra sør: ID 22516, 22548, 22527, 44205, 22538, 22569, 22670, 22642, 23933, 30683, 24026, 24007, 24047, 11400. Det er generelt karakteristisk for disse stolpene at de var meget dype ($40-50 \mathrm{~cm}$) med bratte sider og avrundet bunn. Dessuten var massen i øvre del gjerne mer kullholdig og humus-aktig enn den mer sandige nedre delen.

Stolpefagdybden var, fra sør: $2,1 \mathrm{~m}, 2,3 \mathrm{~m}, 3,3 \mathrm{~m}, 5,1 \mathrm{~m}, 5,8 \mathrm{~m}$ og 3,1 m. Det største rommet inneholdt to ildsteder.

Stolpepar sett fra sør:
Stolpepar \# 1

ID 22516 (øst) hadde en bredde i profil på ca. 24 cm og dybde på ca. 45 cm . Massen besto av løs, mørk grå humus, med litt innslag av rødlig sand i øvre lag. Nedre lag besto av kull.
ID 22548 (vest) hadde en bredde i profil på ca. 28 cm og en dybde på ca. 48 cm . Massen besto av to fyll: øvre halvdel var mørk gråbrun med flere store steiner og små kullbiter, mens den nedre halvdelen besto av medium brun grå jord blandet med småstein og sand. Ingen kull.
Stolpene lâ $2,2 \mathrm{~m}$ fra hverandre.

Figur 5: Stolpehull etter takbærende stolper i sørlige del av Hus 7, organisert i par, med sørligste par til venstre.

Stolpepar \# 2
ID 22527 (øst) hadde en bredde i profil på ca. 21 cm og dybde på ca. 36 cm . Massen besto av to fyll: Øvre 22 cm besto av løs, mørk grå humus, med mye stein og spredt kull. Nedre 14 cm besto av lysere, mer grusig masse.
ID 44205 (vest) hadde en bredde i profil på ca. 37 og dybde på ca. 51 cm . Massen besto av fem "lag" (fylltyper), hvorav de fire øverste "lag" besto av halve massen, med mørk gråbrun humus med sand, mens nedre halvdel besto av en fyllmasse med noe lysere gråbrun humus blandet med sand og grus.
Stolpene lå $2,4 \mathrm{~m}$ fra hverandre.

Stolpepar \# 3

ID 22538 (øst) hadde en bredde på ca. 40 cm og dybde på ca. 45 cm . Uten noe klart skille var øvre del av massen mørkbrun humus med sand. Nedre delen var lysere blandet med sand og grus.
ID 22569 (vest) hadde en bredde på ca. 31 cm og dybde på ca. 43 cm uten tydelig skille. Besto av mørk grå humus med noe grus og småsteiner øverst, og lysere brunlig masse blandet med sand i nederste delen.
Stolpene lå $2,5 \mathrm{~m}$ fra hverandre.

Bilde 2: Eksempel på snitt av takbærende stolpe fra Hus 7: 2AS22670, fra stolpepar \#4.
Stolpepar \# 4
ID 22670 (øst) hadde en bredde på ca. 50 cm og dybde på ca. 55 cm . Mørk humusholdig masse som ble gradvis lysere mot bunnen.
ID 22642 (vest) hadde en bredde på ca. 40 cm og dybde på ca. 43 cm . $\varnothing \mathrm{vre} 21 \mathrm{~cm}$ besto av løs mørk grå-brun humus. De nederste 22 cm besto av medium brunlig sandig masse.
Stolpene lå $2,5 \mathrm{~m}$ fra hverandre.

Figur 6: Stolpehull etter takbærende stolper nordlige del av Hus 7, organisert i par, med sørligste par til venstre.

Stolpepar \# 5
ID 23933 (øst) hadde en bredde på ca. 72 cm og dybde på ca. 13 cm . Massen besto av brunlig humus.
ID 30683 (vest) hadde en bredde på ca. 42 cm og dybde på ca. 13 cm . Massen besto av mørk brun humus med noe sand. Disse to stolpehullene var ukarakteristisk grunne, men ut fra planen var de tydelige takbærende stolpehull.
Stolpene lå $2,6 \mathrm{~m}$ fra hverandre.
Stolpepar \# 6
ID 24026 (øst) hadde en bredde ca. 37 cm og en dybde på 51 cm . Massen besto av to hovedlag, hvorav de øvre 34 cm var mørk grålig humus med forskjellig mengde kull. De nederste 17 cm besto av lys, grå-brun, sandig humus.
ID 24007 (vest) hadde en bredde ca. 40 cm og en dybde på 55 cm . Øvre 35 cm besto av løs, mørk grå humus med trekull. De nederste 20 cm besto av mer kompakt lys grå jord med grus. Stolpene lå $2,5 \mathrm{~m}$ fra hverandre.

Stolpepar \# 7

ID 24047 (øst) hadde en bredde på 36 cm og en dybde på 43 cm . De øverste 40 cm besto av mørk grå humus med trekull, mens de nederste 3 cm besto av gul/oransje sand.
ID 11400 (vest) hadde en bredde på 40 cm , og en dybde på 51 cm . De øverste 35 cm besto av mørk brun humus med litt trekull, og de nederste 5 cm besto av medium brun sand.
Stolpene lå 2,4 m fra hverandre
Veggstolper, langs østre vegg, fra sør: ID 25230, 23710, (31931,) 31918, 41961, 42026, 44193, 24174, 44594, 44399, (25978,) 24096, 26017, 31029; langs vestre
vegg, fra sør: ID 22793, 41906, 40081, 18285, 18298 (innenfor 44309), 18512, 18211, 30711, 30744, 30774, 30805, 11340, 31211.

Langs vestre vegg lå stolpene mellom $1,4 \mathrm{~m}$ og $2,6 \mathrm{~m}$ fra hverandre, i gjennomsnitt ca. 1.9 m .

Langs østre vegg lå de mellom $1,2 \mathrm{~m}$ og $2,3 \mathrm{~m}$ fra hverandre, i gjennomsnitt $1,85 \mathrm{~m}$ (eller $1,5 \mathrm{~m}$ og $2,7 \mathrm{~m}$, og gjennomsnitt $2,0 \mathrm{~m}$ (hvis 25978 ikke defineres som et stolpehull). Dybden på de vestlige veggstolpene varierte mellom 26 cm og 49 cm , med et gjennomsnitt på 34 cm . De østre stolpehull varierte mellom $23 \mathrm{~cm} \circ \mathrm{~g} 39 \mathrm{~cm}$, med et gjennomsnitt på 31 cm (her er ikke det 13de usikre stolpehullet på 12 cm i dybden tatt med).

Bilde 3: Eksempel på snitt av veggstolpe fra Hus 7: 2AS11340, nest nordligst på vestre side

Distansen mellom de takbærende og veggstolpene varierte mellom sentrale og gavinære deler av huset med den minste distansen på 1,5 mi sørgavlen, og den største på 2,2 m ved grind \# 5 .

Forholdet mellom distansen mellom takbærende stolper og distansen mellom veggstolper kalles TQ ("trestle quotient"). For Hus 7 varierte TQ på 2,64 m ved stolpepar \# 4 og 2,36 m ved stolpepar \# 1. Forholdet mellom distansen mellom takbærende stolper og distansen mellom dreneringsgrøften også kjent som takets dryppkant, (et forhold vi kan kalle DQ "ditch quotient") varierte mindre: $3,19 \mathrm{~m}$ ved stolpepar \# 5 og 2,96 m ved stolpepar \# 7. Det siste tyder på at det er det sistnevnte forholdet som styrer det førstnevnte forholdet, iallfall for Hus 7, dvs at TQ er bestemt av DQ. I dette tilfellet, med DQ på ca $3,0 \mathrm{~m}$ har distansen mellom de takbærende stolpene vært tilnærmet lik distansen fra de og ut til hver av grøftene (på hver side), noe som ville vært lettvint å markere ved byggingen av huset.

	Stolpefag Dybde, max	Ditto gj.snit		Max Takb bredde	Max sideskip bredde	Total bredde	Grindkvotient TQ-verdi	Min. Takb. bredde	Min. Sideskip bredde
Hus 7	5,8	3,6		2,6	2,2	6,8	2,6	2,2	1,4
Hus 10	5,2		2,9	2,0				1,7	
Hus 11	2,5	2,0		1,8	0,9	3,4	1,8	1,5	0,7
Hus 14							2,3 øverst og		
	3,7		3,4	1,9	2	5,7	3.2 nederst	1,7	1,6
Hus 15				2,3	0,6	antatt 3,6	1,6		

Tabell 2: Mål, i meter, av forskjellige aspekter ved Hus 7 og de andre husene dokumentert i løpet av 2007.

Skråstivere langs østre vegg, fra sør: ID 23685, 23734, 23748, 23759, 23769, 23793, 23835, 23843, 23905; langs vestre vegg, fra sør: ID 39061, 22806, 25202, 25169, 18228, 44518, 30893, 30879.

Skråstiverne var meget grunne stolpehull, generelt ca. 10 cm dype, med avrundete bunner. Det var ikke mulig å se om disse hadde vært lagt på skrå i profilene. De var begrenset til midtre og søndre del av huset langs langsidene, mens det ikke ble funnet noen sikre skråstivere langs den nordre delen av huset. Den enkelte skråstiver lå 1 m utenfor hver sin veggstolpe, på yttersiden av vegg-grøften. Slike skråstivere er velkjent fra Danmarks vikingtid, hvor de assosieres bl.a. med de såkalte
Trelleborgene, de militære festningsanlegg fra ca 980 e.Kr. Men de er også kjent fra vanlige gårdshus, slik som på Omgård (Schmidt 1999, s. 72, 75, 77). På enkelte hus står skråstiverne likesom på Hus 7, i par med veggstolpene slik at de tydeligvis har vært festet til disse, imens på andre hus står skråstiverne mer tilfeldig organisert, slik at de antagelig har vært festet til åsene ovenfor veggstolpene.
Slike skråstivere er tenkt å ha blitt brukt til å gi støtte til taket slik at huset trengte færre takbærende stolper, og kunne ha større rom. Dette passer rimelig bra med Hus 7 , som har to større rom midt i huset, rom $4\left(2,5^{*} 5,1 \mathrm{~m}, 13,5 \mathrm{~m}^{2}\right)$ og rom $5(2,6 * 5,8$ $\mathrm{m}, 15,3 \mathrm{~m}^{2}$). Men samtidig har Hus 7 meget dype stolpehull, slik at man skulle tro at det ikke var nødvendig med skråstivere.

Bilde 4: Eksempel på snitt av skråstiverstolpe: 2AS23734, nest sørligst på østre side.

Uttrekte midtstolper, i vest 22688, og i øst 31135. Dette var et par tydelige stolpehull som lå mellom linjen til veggstolpene, og linjen til de takbærende stolpene ($0,3 \mathrm{~m}$ fra førstnevnte og $1,8 \mathrm{~m}$ fra sistnevnte) midt i huset, dvs. ca $11,4 \mathrm{~m}$ fra de ytterste veggstolpene, og 6,2 m fra hverandre. Begge disse stolpehullene hadde skoningsstein i tillegg til mye annen stein. Den vestre målte 36 cm i bredden og 34 cm i dybden. Den østre målte henholdsvis 29 cm i bredden og 44 cm i dybden. Den vestre var bredere med flat bunn, og den østre var smalere og mer avrundet i bunnen. Beliggenheten midt i huset kan tyde på at disse stolpene ikke har vært ment til å lage det fjerde rommet. De har nærmere hatt en ukjent funksjon tilknyttet huset som helhet.

Ildsteder: Det lå fire ildsteder/kokegroper innenfor huset (fra sør: 22598, 9465, 17916 og 24072). I tillegg var det seks ildsteder som ble berørt av vegggrøftene (fra sør i øst: 23036, 23056, 44467, 24112; og i vest 9741 og 9519). Av ildstedene innenfor huset, lå et ildsted langs midtaksen (24072) i det nordligste rommet. Det var 64 cm lang nord-sør, 28 cm bredt og 14 cm dypt. En prøve (ID 44378, nat.vit.nr 296) fra dette ildstedet ble datert til 3320 +/- 40 BP , dvs 1690-1500 BC, altså eldre bronsealder. Dette samsvarte ikke med andre dateringer fra huset, slik at dette ildstedet anses for å være uavhengig av huset.

I det nest nordligste rommet lå det to dype ildsteder noe vest for midtaksen. Den nordligste (ID 9465) målte 90 cm nord - sør, $66 \mathrm{~cm} ø s t-v e s t$, og 25 cm dyp med bratte sider og flat bunn. Massen var fylt med skjørbrent stein med et markert kullag i midten. Det sørligste ildsted (ID 22598) målte 83 cm nord - $s ø r, 75 \mathrm{~cm}$ øst - vest, var 24 cm dyp, også den med bratte sider og flat bunn. Massen hadde skjørbrente stein, samt en markert kullrand langs kanten. Fra dette ildstedet ble det tatt en kullprøve (ID 44221, nat.vit.nr 375) som ble datert (ID 200607) til 1160 +/- 40 BP (ved 2 sigma: AD 770-980). Det er antatt at det kun er disse to ildstedene som sikkert tilhører husets
bruk. På vestsiden av den vestre takbærende stolpen (24007) mellom de to nordligste rommene lå et tredje ildsted (ID 17916) som målte 89 cm i diameter, og 5 cm i dybden. Foruten kull inneholdt strukturen skjørbrente stein på overflaten.

De seks ildstedene langs veggrøften ble alle berørt/beskjært av vegg-grøftene. Dette indikerer at de er eldre enn grøftenes siste fase. Imidlertid kan ildstedene langs vegggrøftene ha vært assosiert med huset. Enten ved byggingen av huset, eller ved at grøftene ble gjengravel flere ganger i løpet av husets bruk. Det sørligste langs østre grøft (ID 23036) målte 91 cm i diameter og 10 cm i dybden. Vegggrøften lå tydelig stratigrafisk ovenfor denne.

Ildsted (ID 23056 mot nord) målte 65 cm i diameter og $4-5 \mathrm{~cm}$ i dybden. Strukturen lå stratigrafisk (tydelig) under vegg-grøften. Det nest nordligste ildstedet langs østre grøft (ID 44467) målte ca $100 \mathrm{~cm} \times 50 \mathrm{~cm}$ og 10 cm i dybden. Denne var vanskelig å definere pga forstyrrelser av en senere grop. Det nordligste ildsted (ID 24112) langs østre grøft målte 120 cm nord - sør, 86 cm øst - vest, og var kun $1,0 \mathrm{~cm}$ dyp. Forbindelsen med grøften var heller ikke sikker.

Av de to ildstedene på den vestlige siden var det den nordligste av de grøfteskjærte ildstedene (ID 9519) som lå under den delen av grøften som ledet vannet bort fra huset. Strukturen målte 1.3 m i diameter og 8 cm i dybde. Den var tydelig skjært av grøften. Det sørligste ildstedet på vestlig side (ID 9741) lå helt på utsiden av vegggrøften, og skjæringen var ikke entydig. Dette målte 42 cm i diameter, og 5 cm i dybden.

Grøfter utenom huset: På vestsiden av huset rett sør for midten lå det to steinsatte grøfter av usikker sammenheng. Den nærmest huset leder bort fra huset i en nesten 90 graders vinkel, med en lengde på $3,9 \mathrm{~m}$ og en bredde på $0,9 \mathrm{~m}$. Den andre står vinkelrett på den første, og dermed parallell med huset, og måler $2,2 \mathrm{~m} \mathrm{n}-\mathrm{s}$ og $0,7 \mathrm{~m}$ \varnothing-V. Det er usikkerhet om hvilken relasjon de kan ha hatt til Hus 7. Fra sistnevnte grøft ble det tatt en naturvitenskapelig prøve (ID 45449, nat.vit.nr 272) som ga to byggkorn som ble sendt til datering (ID 200578) og ble datert til $2260+/-40$ BP. Dette er samtidig med kokegropene rundt huset, og over tusen år eldre enn dateringene fra huset. Disse grøftene har derfor ikke noe med huset å gjøre.

Det er eksepsjonelt med Hus 7 at man har fire konstruksjonsdetaljer i bredden på huset (takbærende stolper, veggstolper, vegggrøft og skråstivere). Ytterligere spesielt er det at man har både meget dype stolpehull og skråstivere, noe som er uvanlig. Dette kan enten forklares med at området ikke har vært utsatt for dyp pløyning, slik at spor som ellers fjernes her var blitt spart; eller at dette huset var meget solid bygget.

Datering:

Det ble valgt ut seks dateringsprøver fra Hus 7. Tre av disse som hadde ganske god assosiasjon med huset, ble grovt sett datert til vikingtid. De tre andre som hadde mer usikker forbindelse med huset (nevnt ovenfor), viste seg å være fra forskjellige perioder.

Prøvene var som følgende fra yngste til eldste, med 2 sigma usikkerhet på kalibrert datering:
Fra nordøstligste takbærende stolpe, ID 24047, fra prøve 44454, nat.vit.nr 268, trekull:

1080 +/- 40 BP, dvs kalibrert AD 890 - 1020.
Fra sørlige av to midtre ildsteder, ID 22598, fra prøve 44221, nat.vit.nr 375, trekull: 1160 +/- 40 BP, dvs kalibrert AD 770 - 980.
Fra østre veggstolpe nr 6 fra sør, ID 44193, fra prøve 44395, nat.vit.nr 257, trekull: 1250 +/- 40 BP, dvs kalibrert AD 670-880.

Disse tre dateringene spriker noe, men gir en sikker datering til vikingtid. Ettersom det ikke var mulig å utskille noen faser i bruken av huset, så ville det være spekulativt å påstå at eldste datering stammet fra byggingen av huset, imens yngste datering stammet fra nedrivningen av huset. Men det at den midtre dateringen stammet fra ildstedet tilsier iallfall at huset var i bruk i vikingtiden.

9.2 Hus 11

Hus 11 tolkes som et mindre nord - sør orientert treskipet langhus. Hus 11 har hatt én hovedfase med utskiftning av stolper, samt støttestolper. Huset målte $9,2 \mathrm{~m} \mathrm{i}$ lengden, og $3,4 \mathrm{~m}$ mellom veggstolpene. Vi tolker huset som et verkstedshus eller eldhus pga de små dimensjonene, sett i tilknytning til de tre ovnene som lå langs husets akse. Hus 11 lå i den sørvestligste delen av Felt III, og sørvest for Hus 7. Stolpehullene var tydelige med blå og rød leire (ubrent og brent) i alle stolpehull. Terrenget faller mot NNV, med høyeste punkt på 57,16 m.o.h. i sør, og laveste punkt på 56,61 m.o.h. i nord. I nedre kant av huset, og rundt den nederste ovnen, ble det identifisert et større kulturlag. Ingenting annet enn den romlige assosiasjonen knytter derimot kulturlaget til huset.

Bilde 5: Oversiktsbilde av Hus 11, mot sør, med hvite markører på stolpehullene og målestokker på hver side av den midtre ovnen.

Strukturene besto av 3 rødbrente ovner med en grøft tilknyttet den midterste. I tillegg kan nevnes; 8 takbærende stolper med en erstatningsstolpe, samt to mulige støttestolper, 13 takbærende stolper, ett staurhull og to groper.

Figur 7a: Kart over Hus 11 med anleggsnummer
Figur 7b: Kart over Hus 11 med praver og dateringer.

Ovner: Den nordligste ovnen (ID 26579) lå innenfor kulturlaget (ID 32407) nord for Hus 11, og noe øst for husets midtakse. Ovnen markerte et område med rødbrent sand, som var utbredt i en skjev oval, spiss mot nord og avrundet i sør. Den målte $2.1 \mathrm{~m} \mathrm{~N}-\mathrm{S}$, og $0,75 \mathrm{~m} \varnothing-\mathrm{V}$. Ovnen lå etter alt å dømme delvis under og delvis utenfor husets nordre gavivegg.

Den sørligste ovnen (ID 26709) lå sør for de sørligste av de takbærende stolpene, noe vest for husets midtakse. Den fremsto som en rund og grunn grop med rød/brun brent sand blandet med leire. Den målte $36 \times 30 \mathrm{~cm}$ på overflaten, og 7 cm i dybden.

Den midtre ovnen (ID 26631) lå mellom de midterste takbærende stolpene. Den var oval med en spiss i nord, og målte $2,3 \mathrm{~m}$ N-S og $1 \mathrm{~m} \varnothing$-V. En grunn grøft (ID 32364) ledet fra ovnen og ut av huset mot VSV. Den var $2,6 \mathrm{~m}$ lang, og 6 cm dyp på renset overflate. Det er mulig at dette er en luftekanal for å sikre lufttifførsel til ovnen.

Det nederste laget i ovnen var rødbrent sand. Over dette laget, ca. i midten av ovnen lå et kompakt og hardt lag med blandet brent leire og aske/kull. Langs randen av det rødbrente sand lå det større konsentrasjoner av brent leire. Fire nedgravde
kullansamlinger på 10 til 15 cm i diameter ble tolket som mindre brente stolper. Stolpene lå på rekke fra midten av ovnen mot enden i nord, arrangert ito grupper av to. Det var 23 cm avstand fra den nordligste stolpe til neste stolpe, 57 cm fra denne til den neste, og 23 cm mellom de to nordligste stolpene. Av de to i midten lå den nordlige tydelig i et lavere stratigrafisk lag enn den søndre, ettersom den sistnevnte lå nedgravd i det kompakte laget, mens den førstnevnte lå under det samme laget. De to nordlige antatte stolpehullene lå utenfor det kompakte brente laget, og det aller nordligste også utenfor området med brent sand. Det eneste man altså kan si om stratigrafien til de nordlige kullansamlingene er at den indre av de to skjærer inn i den brente sanden. Men det at disse fire antatte stolpehullene lå på rekke i husets lengderetning. Dette indikerer at de er tilknyttet hverandre. Det at de to midterste lå på to distinkte stratigrafiske lag tilsier at de ikke har vært i bruk samtidig. Distansene mellom stolpehullene viser at man har hatt to par stolper, hvert par med 80 cm mellomrom og i to forskjellige faser. Dette må ha hatt en betydning for ovnens konstruksjon.

Figur 8: Plan (til venstre) og to profiler fra den midtre ovnen i Hus 11, 2AO 26631. Den øvre profilen er fra det sentrale snittet, markert i plan, og gropen prave nr 44944 (datert til 400-210 BC) ble tatt fra er markert 1 og 2 i denne. Den nedre profilen er fra det nordøstre snittet, og gropen prove nr 200493 (datert til 780-410 BC) ble tatt fra er markert 3 og $4 i$ denne.

Den midtre ovnen (2AO26631) var av en uvant karakter som var vanskelig å tolke. Mangelen på jernslagg i ovnen og i området ellers gjorde at en sammenheng med jernproduksjon ble vurdert som meget usannsynlig. Den store mengden med brent og ubrent leire i husets stolpehull gjorde at en eller annen form for keramikkproduksjon virket mulig, en tolkning som ble noe forsterket med en sammenligning med Hus VI på Moflaten i Ørsta i Møre og Romsdal (Diinhoff 2005).

Der ble det utgravet en ovn, ovnanlegg A93, som i plan og profil lignet på den midtre ovnen i Hus 11. Men trass i likheten så var det flere forhold som tydet på at ovnen i Hus 11 ikke var en keramikkovn: den totale mangelen på keramikk tilknyttet Hus 11 (i motsetning f.eks. til det nærliggende Hus 8); lokaliseringen langt unna mulige leireuttak; mangelen på større leiredepot i nærområdet. Konklusjonen var at ovn 26631 var mest sannsynlig heller ikke en keramikkovn.

Det ble vurdert om ovnen kunne blitt brukt til tørking av korn, noe ovnens store overflate kunne vært en fordel for. Men ettersom korn blir skadet hvis den blir varmet over 80-100 grader celsius, så syntes ovnen, med sitt store rødbrente felt og kompakte lag, å antyde alt for høye temperaturer til den slags bruk.

En tolkning som mulig røsteplass ble også vurdert som usannsynlig, ettersom disse er assosiert med kullgroper, funn av jernmalm og er generelt ikke nedgravde eller innenfor et hus (Rundberget 2007: 304-307).

Etter å ha funnet ut hva slags ovn det ikke er, så sitter man igjen med en ganske enkel tolkning av Hus 11. Det kan ha vært et hus av den typen man senere har kalt et eldhus, dvs et hus med tre ovner som har blitt brukt til diverse gjøremål, bl.a. brødbaking, badstue og andre aktiviteter med sterk varme som ikke egnet seg til å utføre i stuen i bolighuset. Særlig den midtre ovnen, med antydning til kuppel, kunne vært velegnet som en brødbakingsovn.

Takbærende stolper, parvis fra sør (støttestolper og utskiftninger i parentes): ID 26697 og 32772 (og 32762), 46021 og 38961, $40043(46085,45705)$ og 38980, (paret 26618 og 32350 ,) 45312 og 45139 (og 45153).

Det var spor etter tydelige utskiftninger som indikerer at huset hadde to faser. Generelt besto fyllen i de yngre stolpehullene av en mørkere masse.

Figur 9: Stolpehull etter takbærende stolper i Hus 11, organisert i par, med sørligste til venstre. (Stolpepar 3b ikke inkludert.)

Stolpepar \# 1:
ID 26697 (vest): hadde en bredde på 36 cm og en dybde på 20 cm . De øverste 12 cm inneholdt mørkere grå-brun jord med trekull og brent leire. De nederste 8 cm inneholdt medium brun jord.
ID 32772 (øst, beskjært av 32762): hadde en bredde på 12 cm (beskjært) og en dybde på 8 cm . Besto av mørk brun sandholdig masse.
ID 32762 (erstatning øst, beskjærer 32772): hadde en bredde på 29 cm og en dybde på 11 cm . Besto av mørk brun-grå masse med mye brent leire (konsentrert øverst).

Stolpepar \# 2:
ID 46021 (vest): hadde en bredde på 34 cm og en dybde på 23 cm . Den øvre delen besto av mørk brun sandig jord med mye brent/ ubrent leire og trekull. Den nederste delen besto av medium til mørk gråbrun sandig jord, med noe brent/ubrent leire. ID 38961 (øst): to faser som er utydelig atskilt. Den antatt eldste delen (mot sør) målte ca 10 cm i den avskjærte bredden, og ca. 16 cm i dybden. Besto av brun sandholdig masse med noe leire. Den antatt yngre delen (mot nord) målte ca 28 cm i bredden, og 20 cm i dybden. Besto av mørkbrun sandholdig masse med brent/ubrent leire og trekull.

Stolpepar 3:

ID 40043 (vest, antatt erstatningsstolpe): lå øverst av et sett av tre stolpehull. Det målte ca 37 cm i diameter og 25 cm i dybden. Besto av mørk sand med trekull, brent/ubrent leire og skoningsstein.
ID 46085 (vest, opprinnelig stolpe): lå nederst av de tre stolpehullene, klemt mellom de to andre. Det som var synlig målte 21 cm i bredden, og var 7 cm dypere enn ID 40043. Besto av brun sand med store mengder brent/ubrent leire.

ID 45705 (vest, antatt støttestolpe for 40043): skjærte ID 46085 og ble skjært av ID 40043. Målte 33 cm i bredden og 38 cm i dybden. Besto av mørkbrun sand med brent/ubrent leire, trekull og skoningsstein.
ID 38980 (øst): målte 39 cm i bredden og 29 i cm dybden. Besto av to distinkte fyll, hvor de øverste 14 cm inneholdt brent/ ubrent leire, lite jord og en skoningsstein. De nedereste 15 cm inneholdt mørkbrun sandig masse med trekull, og brent/ubrent leire.

Stolpepar 3b: (frittstående støttestolper som står noe skjevt i forhold til hverandre, men i rekkene med takbærende stolper).
ID 26618 (vest): målte 57 cm i bredden og 19 cm i dybden. Besto av mørkbrun sand, brent og ubrent leire og trekull. Formen var litt avvikende, antydningsvis kvadratisk. ID 32350 (øst): målte 39 cm i bredden og 33 cm i dybden. Besto av mørkbrun sand, brent/ubrent leire, og trekull.

Stolpepar 4:

ID 45312 (vest): var 24 cm bredden og 39 cm i dybden. Besto av medium gråbrun sandig jord med mye ubrent leire, trekull og brent leire. De nederste 5 cm inneholdt gul sand, med leire og trekull.
ID 45139 (øst): var 27 cm bredden og 34 cm dybden. Besto av brun sandig jord med mye ubrent, og noe brent leire, samt trekull.

ID 45153 (støttestolpe, øst): var 27 cm bredden og 10 cm i dybden. Besto av mørkbrun sand, brent/ubrent leire, og trekull.

Veggstolper langs vestre vegg fra sør: ID 26725, 26674, 39263, 30573, 45071, 44570 og 44461 . Langs $ø$ stre vegg fra sør: ID 32744, 38995, 26542, 26551, 32325, 45269.

De første stolpene langs begge veggene hadde tilknytning til en sørlig gavivegg. Den siste stolpen i den vestre rekken hadde tilknytning til en nordlig gavlvegg. Den østre stolpen fant vi ikke. Distansene mellom veggstolpene (utenom gavlveggene) langs vestre fra sør: $2,0 \mathrm{~m}, 1,3 \mathrm{~m}, 0,9 \mathrm{~m}$ og 2,0 m. Langs $ø$ stre fra $\mathrm{s} ø \mathrm{r}: 2,5 \mathrm{~m}, 1,0 \mathrm{~m}, 0,8 \mathrm{~m}$ og $2,0 \mathrm{~m}$. I likhet med de takbærende stolpene sto veggstolpene tettere i midten av huset.

Bilde 6: Eksempel på snitt av veggstolpe i Hus 11: 2AS26542, nr 4 fra nord på østre side, med stor mengde blå leire i bunnen.

Andre stolpe-/staurhull:

ID 32787: Stolpehull/grop, lå rett NØ for den østre takbærende stolpe i stolpepar 3.
Målte 30 cm i bredden og 21 cm i dybden. De øverste 15 cm besto av grønn finkornet sand med noe leire. De nederste 6 cm besto av mørkbrun sand med noe trekull. Det ble foreslått at den grønne sanda er levninger av lagret ekskrementer.
ID 42185: Stolpehull/grop, lå rett vest for vestre veggstolpe nr 3 (ID 39263). Målte 62 cm i bredden og 18 cm i dybden. Massen besto av lys grønn-grå sand som ble mer grålig mot bunnen. Det er sannsynlig at denne har samme opprinnelse som den nettopp nevnte ID 32787.
ID 45104: Staurhull, lå rett $\mathrm{S} \varnothing$ for østre takbærende stolpe i stolpepar 2 (ID 38961). Målte 9 cm i bredden og 8 cm i dybden. Massen besto stort sett av leire med litt brun sand.

ID 46046: Staurhull, 12 cm i bredden og 17 cm i dybden. Besto av brun sandig jord med trekull og leire. Lå innenfor ID 42185, ovenfor.
ID 32753: Stolpehull (?), 27 cm i bredden og $4-5 \mathrm{~cm}$ i dybden. Inneholdt kompakt sand blandet med lysgrå leire. Strukturen lå mellom østre rekke med takbærende stolper og den søndre gavlveggen. Den kan ha vært tilknyttet bygget, men var høyst tvilsom.
ID 46134: Staurhull (lå inntil 46021, takbærende, stolpepar 2 (vest), 8 cm i bredden og 14 cm i dybden. Inneholdt gråbrun jord med brent leire og trekull (lik 46021).

Datering

Det ble tatt datering fra fire prøver fra Hus 11. Alle fire daterer huset til perioden rundt $400 \mathrm{f} . \mathrm{Kr}$, dvs tidlig i førromersk jernalder; samtidig eller noe eldre enn det nærliggende Hus 8 . Prøvene var som følgende, fra yngste til eldste, med 2 sigma usikkerhet på kalibrert datering:

Fra sørligste brente stolpe i midtre ovn, ID 26631, fra prøve 44944, nat.vit.nr 376, trekull:

2270 +/- 40 BP , dvs kalibrert 400-210 BC. (1 sigma: 390-260 BC)
Fra østlige veggstolpe nr 2 fra nord, ID 32325, fra prøve 46069, nat.vit.nr 283, 2 korn:

2360 +/- 40 BP, dvs kalibrert 520-380 BC. (1 sigma: 410-390 BC)
Fra sørligste av østre veggstolper, ID 38995, fra prøve 46075, nat.vit.nr 287, 3 havrekorn:

2410 +/- 40 BP , dvs kalibrert 750-400 BC. (1 sigma: 530-400 BC)
Fra nordligste brente stolpe i midtre ovn, ID 26631, fra prøve 200493, nat.vit.nr 378, trekull:

2480 +/- 40 BP, dvs kalibrert 780-410 BC (1 sigma: 760-520 BC)
Det var ikke mulig å ta en datering fra den nest sørligste av de fire brente stolpene i ovnen, som var stratigrafisk under den sørligste, da prøven kun inneholdt furu og eik. Det ble antatt at denne var i relasjon med den nordligste av de brente stolpene, hvorfra altså prøve 200493 ble tatt. Forholdet mellom denne dateringen og den fra den sørligste brente stolpen samsvarte med den antatte stratigrafiske relasjonen: dvs den sørligste lå øverst stratigrafisk og ble datert til å være yngst ved ${ }^{14} \mathrm{C}$-datering.

Videre så var de to andre dateringene fra to ganske forskjellige veggstolper. Den søndre, og eldre, var en vanlig veggstolpe, imens den nordre, og yngre, er mer uvanlig. Den var én av fire meget store stolpehull (2AS 26618 og 32350, dvs stolpepar 3b, 45071 og 32325 selv) som lå tvers over husets nordre del; langs linjene vegg- og takbærende stolper, men ikke selv i linje. Disse kan ha vært senere støttestolper, noe som dateringen stemte overens med.

Bygningen har altså to faser, som samsvarer tidsmessig med den midtre ovnens to faser. Denne sikkerheten gjør at man kan ta i bruk en mindre sikkerhetsmargin ved ${ }^{14} \mathrm{C}$-dateringene (1 sigma), og sette dem dateringene opp mot hverandre. Ved 1 sigma usikkerhetsmargin så blir dateringen fra den yngre veggstolpen definert til 410390 BC , og den yngre bruken av ovnen til 390-260 BC. Om man antar at disse daterer samme aktivitet, så vil det si en datering til ca 400 BC , og helst noe senere. Når det gjelder de eldre dateringene ved 1 sigma usikkerhetsmargin, så blir den eldre veggstolpen datert til 530-400 BC, og den eldre bruken av ovnen til 760-520 BC. Om
vi også antar at disse daterer samme aktivitet, så vil det si en datering til ca 500 BC , og helst noe tidligere. Setter vi disse to bruksfasene sammen, så får vi et intervall mellom første og andre fase på ca 100 år, og kanskje noe mer, særlig når det gjelder bruken av ovnen. Et slikt intervall mellom bygging og reparasjon virker rimelig i forhold til et hus sin levetid.

9.3 Hus 14

Hus 14 tolkes som et treskipet langhus. Huset lå på en bratt sørvendt skråning orientert NNV-SSØ. Huset målte 18.2 m i lengden, og 6 m på det i bredeste (lengst ned i bakken). Det høyeste punktet er på 58 m.o.h., mens det laveste er 56.6 m.o.h, noe som gir et fall på $8,7 \%$. Strukturene fra Hus 14 besto av et sentralildsted og totalt 40 stolpehull, med 6 par takbærende stolper, 8 veggstolper på hver langside, et par sannsynlige dørstolper, 4 støttestolper, og 6 utbyttede stolper. I tillegg er det et ildsted og enkelte andre stolpehull som kan være tilknyttet huset. Mens veggstolpene står i ordnet sammenheng, så utgjør de takbærende et noe komplisert mønster, som kan være resultat av tre faser, hvor den siste fasen utgjøres av støttestolper til de fra fase to. I så fall tilhører ildstedet de to siste fasene, og veggstolpene alle tre faser. Det er dog lite som systematisk skiller stolpehullene fra hverandre, samt vanskelig å vurdere kronologien til overlappende stolpehull.

Figur 10a: Kart over Hus 14 med anleggsnummer
Figur 10b: Kart over Hus 14 med prover og dateringer.

Sentralildsted: ID 47855.
Dette ildstedet ligger i det som synes å måtte være det nordligste rommet i huset, mellom stolpepar 5 og 6 . Sørvestre hjørne av ildstedet er fjernet av en senere grop. Ildstedet målte $1,25 \mathrm{~m}$ Ø-V, og 1 m N-S, og var 14 cm dyp. To distinkte kull-lag ble identifisert, med brungul sand mellom. Begge kull-lagene besto av brent or. Prøver fra begge disse lagene ble sendt til ${ }^{14} \mathrm{C}$-datering: fra det $ø$ verste laget, ID 51585, som ble datert til AD 660-900; fra det nederste laget, ID 51586, datert til AD 640-780.

Bilde 7: Snitt av ildsted 2AI47855 i Hus 14, med de to distinkte kull-lagene synlige.

Ytre ildsted: ID 12933
Dette ildstedet ligger på østsiden av huset, mellom femte og sjette veggstolpe. Det er mulig at den er et ytre ildsted, slik som de mange langs Hus 7 sine vegger. Denne målte 66 cm i diameter, og var 15 cm dyp.

Takbærende stolper (organisert etter stolpepar og fase, fra sør):
Stolpepar \# 1 (fase a)
Vest: ID 42997, målte 33 cm i bredden, og 37 cm i dybden. Den inneholdt skoningsstein, og mørk gråbrun jord (noe lysere og grusig i de nederste 5 cm) med trekull. Prøven fra dette stolpehullet, ID 49288, ble sendt til ${ }^{14} \mathrm{C}$-datering, og datert til AD 670-890.

Øst: ID 46483, målte 31 cm i bredden, og 17 cm i dybden (men lå lavere i terrenget enn ID 42997). Den inneholdt lysbrun fet og grusig sand.

Figur 11: Stolpehull etter takbærende stolper i søndre del av Hus 14, organisert i par, med sørligste til venstre.

Stolpepar \# 2 (fase a)
Vest: ID 43049 , målte 29 cm i bredden, og 26 cm dybden. Besto av mørkbrun sandig humus, og skoningsstein. Sidene og bunnen var fastere og fetere.
Øst: ID 43038, målte 26 cm i bredden, og 10 cm i dybden. Besto av mørkbrun sandig masse, ingen brent stein eller trekull.

Stolpepar \# 3 (fase b+c)
Vest: ID 47963, målte 26 cm i bredden, og 38 cm i dybden. besto av mørkbrun, feit sandig masse med trekull.
Øst: ID 200288, målte 26 cm i bredden, og 33 cm i dybden. Besto av mørkbrun masse med trekull.
Øst: ID 43195 (fase c), målte 26 cm i bredden, og 34 cm i dybden. Besto av mørkbrun masse med trekull. Langs kanten (de nederste 10 cm) var massen lysbrun og mer sandig. Mellom 200288 og 43195 var jorden brun og sandholdig. Det har vært forstyrret i forbindelse med anleggelsen av det senere stolpehullet.

Bilde 8:Eksempel på snitt av takbærende stolpe i Hus 14: 2AS42997, sørligst på vestre side, og samtidig det stolpehullet som inneholdt dateringsprove datert til AD 670-890.

Stolpepar \# 4 (fase a)

Vest: ID 46559 , målte 25 i bredden, og 51 cm i dybden. De øverste 33 cm besto av beige undergrunnsaktig masse, mens de nederste 18 cm var rødbrun humus med trekull.
Øst: ID 200283, målte 35 cm i bredden og 39 cm i dybden. Mulig stolpeavtrykk, ca. 10 cm i bredden og ca. 28 cm i dybden. Løs brun sandig jord. Rundt og under denne var massen gråbrun og sandig med skoningsstein.

Figur 12: Stolpehull etter takbærende stolper i norddre del av Hus 14, organisert i par, med sørligste til venstre.
Stolpepar \# 5 (fase b+c)
Vest: Nord for ID 46559 lå ID 43416 med en stor stein mellom. Stolpehullet målte 28 cm i bredden, og 38 cm i dybden. Rett øst for denne igjen lå ID 20640 (fase c) som målte 34 cm i bredden, og 19 cm dybden. Besto av gråbrun sandig jord med trekull og sandlinser.
Øst: Nord for ID 200283 lå ID 43354 med flere middelsstore steiner mellom. Stolpehullet målte ca 45 cm i bredden, og 37 cm i dybden. Rett øst for denne igjen lå ID 46495 (fase c) som målte 29 cm i bredden, og 26 cm i dybden. De øvre 17 cm inneholdt gråbrun jord med mye trekull og brent stein. Rundt og under denne var det løs brun sandig jord.

Stolpepar \# 6 (fase a)
Vestre stolpe: ID 20629, målte 25 cm i bredde, og 33 cm i dybde. Tettpakkede skoningssteiner omringer stolpeskyggen, som var ca 12-13 cm bred, 15 cm dyp, og besto av mørk grå-brun sandig jord. Rundt og under denne var det brun jord med skoningsstein.
Østre stolpe: ID 46546, målte 27 cm i bredden, og 25 cm i dybden. Den inneholdt grå-brun siltig jord, med mye sand og noe trekull og brent stein.

Stolpepar \# 7 (fase b+c)
Vest: ID 47684, målte 39 cm i bredden, og 45 cm i dybden. Øverste delen besto av 20 cm med mørk brunrød humus med iblandet kull, og skoningsstein. Nederste delen besto av 23 cm med lysere rødbrun humus. Mellom disse lagene lå det en flat helle som en plattform. Rett øst for denne var støttestolpen ID 43390 (fase c) som målte 24 cm i bredden, og 25 cm i dybden. Besto av gråbrun humus med en stor konsentrasjon av trekull.

Øst: ID 43584, målte 34 cm i bredden, og 39 cm i dybden med rødbrun humus og mye trekull. Stolpeskyggen mellom skoningssteinene var 8-9 cm tykk og ca. 32 cm dyp. Rett øst for denne igjen lå ID 47808 (fase c) som målte 21 cm bredden, og 14 cm i dybden med lys rødbrun humus.

Stolpepar \# 8 (fase a)

Vest: ID 43609, målte 29 cm i bredden, og 24 cm i dybden med skoningsstein og brent stein. Besto av to lag med gråbrun humus hvor de øverste 15 cm var mørkere og mer grusig.
Øst: ID 14913, målte 29 cm i bredden og 23 cm i dybden. Besto av mørk sandig jord med skoningsstein og brent stein.

Stolpepar \# 9 (fase $b+c$)
Vest: ID 47934, målte 46 cm i bredden, og 47 cm i dybden. Besto av fem forskjellige typer fyllmasse, som i hovedsak var en mørkbrun sandig klebrig masse med skoningsstein og trekull i den øverst delen.
Rett øst for denne var støttestolpen ID 43521 (fase c) som skar inn i hovedstolpen ovenfor (ID 47934). Stolpen var 22 cm i bredde/dybde, og besto av mørk gråbrun humus med sand og mye trekull.

Øst: ID 43634, målte 32 cm i bredden, og 34 cm i dybden. Besto av (øverste 10 cm) mørk gråbrun sandig jord med noe trekull. I de nederste lagene var massen lysere, hadde skoningsstein og mindre kull. Ca 23 cm fra overflaten lå en helle lagt vannrett som en plattform.

Stolpepar \#10 (fase a?) inntrukket gavl, eller tilknyttet ildstedet; begge brede og grunne.
Vest: ID 47882, målte 42 cm i bredden og 19 cm i dybden. Fyllet besto av kompakt rødbrun jord med trekull.
Øst: ID 47727, målte 47 cm i bredden og 14 cm i dybden. Massen besto av mørk gråbrun sandig jord med trekull og skoningsstein.

Stolpepar \# 11: (fase b+c)
Vest: ID 43938, målte 28 cm i bredden, og 30 cm i dybden med to lag. De øverste 15 cm besto av mørk rødbrun løs masse med trekull. De nederste 13 cm besto av en gråbrun og mer grusig masse.
Øst: ID 47741, målte 32 cm i bredden, og 23 cm i dybden. Besto av to lag delt vertikalt, og med skoningsstein. Den vestre delen som inneholdt selve stolpen målte ca 18 cm i bredden, og besto av mørk gråbrun jord med sand og trekull. Den østre delen besto av mørkbrun sandig jord. Rett øst for denne lå støttestolpen ID 51587 (fase c) som var 23 cm i bredden, og 21 cm i dybden. Massen besto av mørk gråbrun sandig jord.

Som nevnt var det ingen systematisk forskjell mellom stolpehullene fra de antatte fasene. Dette gjør det vanskelig (bortsett for fase c) å definere faseinndelingen sikkert.

Veggstolper: organisert i to rekker av 8 stolpehull hver. Det er mulig at det var flere stolpehull i den sørlige enden av vestre vegg, men disse kunne også være en del av andre uidentifiserte strukturer. Nedenfor er stolpehullene listet opp for hver enkelt vegg, og telles fra sør. Massen i stolpehullene hadde stort sett samme varierte karakter som de takbærende stolpene.

Vestre vegg: bredden varierte mellom 23 cm og 36 cm , og dybden mellom 19 cm til 39 cm .
Veggstolpe nr 1: ID 42749, 23 cm bred, 23 cm dyp.
Mellom nr 1 og 2: ID 14669, 28 cm bred, 35 cm dyp.
Veggstolpe nr 2 : ID 43161, 30 cm bred, 26 cm dyp.
Veggstolpe nr 3: ID 43258, 29 cm bred, 39 cm dyp.
Mulig støttestolpe like S for forrige: ID 200274, 20 cm bred, 16 cm dyp.
Veggstolpe nr 4: ID 43114, 29 cm bred, 28 cm dyp.
Veggstolpe nr 5: ID 43859, 36 cm bred, 36 cm dyp.
Veggstolpe nr 6: ID 43595, 35 cm bred, 19 cm dyp.
Veggstolpe nr 7: ID 43844, 26 cm bred, 27 cm dyp.
Veggstolpe nr 8: ID 49260, 32 cm bred, 30 cm dyp.
Mulig støttesstolpe like N \varnothing for forrige: ID 49248, 37 cm bred, 27 cm dyp.
Østre vegg: bredden varierte mellom 26 cm og 38 cm , og dybden mellom 15 cm til 49 cm
Veggstolpe nr 1: ID 42905, 26 cm bred, 20 cm dyp.
Veggstolpe nr 2: ID 14262, 30 cm bred, 15 cm dyp.
Veggstolpe nr 3 : ID 14250, 26 cm bred, 24 cm dyp.
Veggstolpe nr 4 : ID 43431, 35 cm bred, 40 cm dyp.
Mellom nr 4 \& 5: ID 43595, 35 cm bred, 19 cm dyp.
Veggstolpe nr 5: ID 12960, 27 cm bred, 29 cm dyp.
Veggstolpe nr 6: ID 43670, 30 cm bred, 23 cm dyp.
Veggstolpe nr 7 : ID $13308,38 \mathrm{~cm}$ bred, 49 cm dyp.
Veggstolpe nr 8: ID 51611, 26 cm bred, 23 cm dyp.

Dørstolper

Mellom vestre veggstolperekke og de takbærende stolpene var det flere stolpehull som kunne være spor etter dørstolper, men kun ett par som pekte seg ut som et mulig dørstolpepar. Disse lå mellom vestre veggstolper nr 7 og 8 , til dels bak førstnevnte.
Søndre stolpehull: ID 44003, målte 34 cm i bredden og 17 cm i dybden.
Nordre stolpehull: ID 49237, målte 26 cm i bredden og 16 cm i dybden.

Datering

Det ble tatt datering fra tre prøver fra Hus 14. Alle tre daterer huset til perioden rundt 700 f.Kr, dvs merovingertid, samt muligens noe inn i vikingtid. Dette er omtrent samtidig med Hus 5 og Hus 10. Prøvene var som følgende, fra yngste til eldste, med 2 sigma usikkerhet på kalibrert datering:

Fra sørligste takbærende stolpe, østre side, ID 42997, prøve 49288, nat.vit.nr 329, ugrasfrø:

1240 +/- 40 BP, dvs kalibrert 670-890 AD. (1 sigma: 705-840 AD)
Fra ildsted, ID 47855, øvre kull-lag, fra prøve 51585, nat.vit.nr 384, trekull:

1250 +/- 60 BP , dvs kalibrert 660-900 AD. (1 sigma: 700-860 AD)
Fra ildsted, ID 47855, nedre kull-lag, fra prøve 51586, nat.vit.nr 385, trekull:
1320 +/- 50 BP, dvs kalibrert 640-780 AD. (1 sigma: 660-755 BC)
De to eldste dateringene stammer fra det samme ildstedet, som hadde to klare og adskilte kull-lag. Dateringene av disse samsvarer med den strategrafiske informasjonen, slik at det nedre kull-laget har et eldre, men overlappende, dateringsspenn enn det $\varnothing \mathrm{vre}$ kull-laget. Samtidig er dateringen fra stolpehullet praktisk talt samtidig med dateringen fra det øvre kull-laget. Det kan tyde på at disse dateringene stammer fra siste fase av bruken av huset, før stolpene ble tatt vekk. Disse korrespondansene gjør at vi kan stole mer på dateringene, og gjør det tryggere å anvende 1 sigma sikkerhetsmargin. I så fall blir dateringene begrenset til mellom 660 og 860 AD. Huset har, i følge dette, blitt bygget i merovingertiden, og har enten blitt forlatt i løpet av andre halvdel av samme eller i begynnelsen av vikingtiden.

9.4 Hus 15

Hus 15 tolkes som et treskipet langhus, orientert NNV-SSØ, og det hadde antakelig to faser. Kun den nordvestre delen av huset er dokumentert, ettersom resten er pløyd vekk, og huset fortsatte inn under grensegjerdet i øst. Huset målte 16.5 m i lengden, og 4.3 m i bredden (antatt ca 5.7 m bred fra dryppkant til dryppkant), og faller i høyde fra 58.9 m.o.h. i nord til 57.2 i sør, et fall på 9.8 prosent. Strukturene fra Hus 15 besto av 1 vegg-grøft, 1 ildsted og 27 stolpehull. Huset lot seg tolke ved at vegg-grøften i vest, og tettstilte veggstolper i nordvest og nord definerer husets omriss. I den nordre del lå veggstolpene tett (særlig på vestre side).

Figur 13a: Kart over Hus 15 med anleggsnummer Figur 13b: Kart over Hus 15 med prøver og datering.

Vegg-grøft: ID 49596.
Vegg-grøften definerte husets vestre kant, og har vært dreneringsgrøft langs langveggen. Den målte $9,5 \mathrm{~m}$ i lengden, ca. $0,8 \mathrm{~m}$ i bredden, og ca. 30 cm dyp.

Takbærende stolper

Det ble avdekket forholdsvis få sikre stolpehull etter takbærende stolper, slik at det er noe usikkerhet ved organiseringen av disse. Stolpene lả konsentrert i nordre og vestre del av huset.

Bilde 9: Eksempel på snitt av takbærende stolpe fra Hus 15: 2AS51227, med platform.

Fra sør har vi stolpepar \# 1
Vest: ID 51227, målte 64 cm i lengden (ca 30 cm i bredden), og 34 cm i dybden. Øst: ID 51517, målte 62 cm i lengden (ca 30 cm i bredden), og bare 4 cm i dybden. Men forskjellen i dybden er forklart ved at terrenget faller mot øst, slik at bunnen av begge stolpehullene lå like høyt (målt til henholdsvis 57,79 og 57,80 m.o.h.).

Av stolpepar \# 2 ble bare vestre stolpehull funnet: ID 52219 som målte 68 cm i lengden, og 23 cm i dybden.

Stolpepar \# 3,
Vest: ID 51116 målte 56 cm i bredden, og 57 cm i dybden.
Støttestolpe i vest: ID 28653 målte 48 cm i bredden, og 29 cm i dybden.
Øst: ID 28220
Veggstolper:
Fra sør (langs innsiden av vegg-grøften):
ID 52182 målte 36 cm i bredden, og 14 cm dyp.

ID 52170, målte 29 cm i bredden, og 14 cm dyp.
ID 52159
(nord for veggrøften:
ID 51495, (tvilsom) målte 20 cm i bredden, og 2 cm dyp.
ID 51093, målte 26 cm i bredden, og 10 cm dyp.
ID 51905, målte 24 cm i bredden, og 9 cm dyp.
ID 27232, målte 28 cm i bredden, og 15 cm dyp.
ID 51646, (dobbel?) målte 24 cm i bredden, og 12 cm dyp.
ID 51700, målte 28 cm i bredden, og 13 cm dyp.
ID 28666, (annet?), målte 37 cm i bredden, og 32 cm dyp.
ID 51152, målte 31 cm i bredden, og 13 cm dyp.
ID 51131, målte 22 cm i bredden, og 20 cm dyp.
ID 51786 (hjørnestolpe?), målte 34 cm i bredden, og 22 cm dyp.
(langs nordre gavivegg):
ID 51712, målte 36 cm i bredden, og 14 cm dyp.
ID 51186, målte 36 cm i bredden, og 17 cm dyp.
ID 51163, målte 15 cm i bredden, og 23 cm dyp.
ID 51847, målte 29 cm i bredden, og 14 cm dyp.
ID 51961 (høyst tvilsom), målte 34 cm i bredden, og 14 cm dyp.
ID 51749 (høyst tvilsom), målte 14 cm i bredden, og 11 cm dyp.
ID 51737 (hjørnestolpe?), målte 27 cm i bredden, og 32 cm dyp.
ID 52018 (usikker), målte 53 cm i bredden, og 29 cm dyp.
Ettersom mesteparten av huset var borte (særlig av den østlige siden) var husets bredde ikke umiddelbart åpenbar. Bredden kan imidlertid la seg anslà ut fra det ene par takbærende stolper (ID 51227 og 51517) sett i forhold til vegg-grøften (ID 49596). Bredden mellom de takbærende var ca 2.4 m , mens distansen mellom vestre takbærende stolpe og (midten av) grøften er på ca 1.1 m , slik at distansen mellom vegg-grøften og en antatt forsvunnet grøft på motsatt side skulle være på ca. 4.6 m . Tilsvarende mellom veggstolper (målt ved hjelp av ID 52170) skulle være ca. 3.6 m . Dette undergraver de presumptive nordlige hjørnestolpene (ID 51786 og 51737) da de lå 4 m fra hverandre.

Datering

Det var bare en prøve som ga daterbart materiale fra Hus 15. Det var fra stolpehull ID 52219, fra en takbærende stolpe, prøve nr 52244, nat.vit.nr 359. Herfra ble det tatt et stykk ubestemt korn, som ble datert til $2170+/-40 \mathrm{BP}$, dvs 370-100 BC kalibrert (2 sigma usikkerhetsmargin). Denne dateringen stemmer bra med funn av udekorert keramikk.

9.5 Hus 10

Hus 10 tolkes som et treskipet langhus, orientert NNV-SS \varnothing, med én fase. Huset ligger i Felt llb, og terrenget faller mot $\mathrm{S} \varnothing$. Huset besto av 5 par takbærende stolper (med to mulige støttestolper, totalt 12 stolper), et ildsted, en kokegrop og ingen veggstolper. Huset målte ca. 1.6 m til 1.9 m mellom de takbærende stolpene, og var ca. 13.6 m langt. Terrenget faller ganske bratt mot SSØ. Ut ifra husets totale lengde på 13.6 m faller det ca. 1.16 m , slik at fallet blir på 8.5%. Stolpehullene er unnselige, men tydelige, iallfall for de tre sentrale stolpeparrene. Det ble tatt makrofossilprøver fra alle stolpehullene i grind 2,3 og 4, samt fra ildstedet og kokegropen.

I husets nest nordligste rom lå det både en kokegrop og et ildsted langs husets lengdeakse, førstnevnte lengst mot nord.
Kokegrop/rundt ildsted: ID 28983, målte 43 cm i bredden, og var 22 cm dyp. En kullprøve herfra ble datert til 1270 +/- 40, dvs AD 660-810.

Ildsted: ID 29029, målte 125 cm i lengden, og var 12 cm dyp. Byggkorn herfra ble datert til $1280 \mathrm{BP}+/-40$ år, dvs. mellom 660 og 810 e.Kr.

Figur 14a: Kart over Hus 10 med anleggsnummer
Figur 14b: Kart over Hus 10 med prøver og dateringer.

Stolpepar \#1, fra nord (begge usikre):
Vest: ID 46287, 27 cm bred og 22 cm dyp. Rødbrun sandig masse
Øst: ID 46276, 35 cm bred og 19 cm dyp. Lysbrun sandig masse, med kull.
Stolpepar \#2:
Vest: 28997, 51 cm i bred og 15 cm dyp. (Det er mulig at den store bredden skyldes en støttestolpe, men dette lot seg ikke observere i profilen.) Rødbrun grusig masse. Øst: 29638, som målte 20 cm i bredden, og var 25 cm dyp. Rødbrun grusig masse Støttestolpe, øst (og like øst for forrige): ID 29629, 23 cm i bred og 13 cm dyp. Lys brun sandig masse.
Stolpepar \#3:
Vest: 28920, 16 cm bred og 18 cm dyp. Brun sandig masse med trekull.
Støttestolpe, vest (rett vest for forrige): ID 28931, 27 cm bred og 8 cm i dyp. Moderne funn gjør at det blir tvilsomt som stolpehull. Løs mørkbrun sandig masse.
Øst: 28910, 19 cm bred og 16 cm dyp.Brun sandig masse med trekull og brent bein.

Stolpepar \#4:
Vest:28949, 29 cm bred og 20 cm dyp. Rødbrun sandig masse.
\varnothing st: 28873, 24 cm bred og 17 cm dyp. Mørkbrun sandig masse med trekull og brent bein.
Stolpepar \#5:
Vest:28817, 36 cm bred og 17 cm dyp. Brun sandig masse med trekull.
Øst: 28844, 22 cm bred og 11 cm dyp. Rødbrun sandig masse med trekull.

Datering

Det ble tatt datering fra to prøver fra Hus 10. Begge daterer huset til perioden rundt $700 \mathrm{f} . \mathrm{Kr}$, dvs merovingertid, samt muligens noe inn i vikingtid. Dette er omtrent samtidig med Hus 5 og Hus 14. Prøvene var som følgende, fra yngste til eldste, med 2 sigma usikkerhet på kalibrert datering:

Fra det lange ildsted, ID 29029, prøve 46308, nat.vit.nr 307, 2 byggkorn: 1280 +/- 40 BP, dvs kalibrert 660-810 AD. (1 sigma: 670-770 AD) Fra kokegrop, ID 28983, fra prøve 46307, nat.vit.nr 306, trekull: 1270 +/- 40 BP, dvs kalibrert 660-870 AD. (1 sigma: 680-780 AD)

9.6 Hus 9 (Firestolper)

Hus 9 ble opprinnelig tolket som et mulig langhus, men ble senere omtolket til å bestå av to firestolpere på linje, den nordlige noe større enn den sørlige. De var begge orientert NNØ-SSV, og lå langs samme midtakse. Det ble tatt makrofossilprøver fra alle stolpehullene unntatt ID 28079. Det var generelt lite med makrofossiler. Hovedstolpene inneholdt generelt mye stein.

Den nordre 4-stolperen målte 2.9 m til 3.0 m mellom de følgende fem stolpehull: Mot nordvest: ID 28094, 16 cm bred og 21 cm dyp. Rødbrun grusig masse. Mot nordøst: ID 28087, 23 cm bred og 24 cm dyp. Rødbrun grusig masse med kull. Mulig støttestolpe mot nordøst: ID 28079, 21 cm bred og 13 cm dyp. Lys brun grusig masse.
Mot sørøst: ID 28002, 20 cm bred og 16 cm i dyp. Brun sandig masse. Mot sørvest: ID 28036, 23 cm bred og 17 cm dyp. Gråbrun grusig masse med skoningsstein.

Den søndre 4-stolperen målte 2.4 m mellom de følgende seks stolpehull:
Mot nordvest: ID 28027, 21 cm bred og 16 cm dyp. Gråbrun sandig masse Mot nordøst: ID 28363, 21 cm bred og 26 cm dyp. Brun sandig masse. Mot sørøst: ID 27977, 22 cm bred og 8 cm dyp. Rødlig grusig masse. Mulig støttestolpe mot sørøst: ID 27985, 24 cm bred og 15 cm i dyp. Rødbrun grusig masse.
Mot sørvest: ID 27970, 26 cm bred og 25 cm dyp. Gråbrun sandig masse med skjørbrent skoningstein
Mulig støttestolpe mot sørvest: ID 27962, 25 cm bred og 15 cm i dyp. Gråbrun sandig masse.

9.7 Hus 13 (Firestolper)

Hus 13 lå i søndre og nedre ende av Felt lla, rett sørvest for bunnen av Hus 14 i et terreng som faller markant mot SSØ. Den var en firestolper med særlig markante stolpehull. To andre stolpehull av lignende karakter var noe skjevt plassert langs motstående sider av firkanten. Disse tolkes som støttestolper slik at strukturen besto av seks anlegg. Distansen mellom hovedstolpene var på $3.1 \mathrm{~m}-3.2 \mathrm{~m}$. Denne konstruksjon var den største firestolper på feltet. Stolpehullene hadde både lignende fyll, og rette sider. Hovedstolpene hadde kraftige skoningssteiner på innsiden (dvs på østre side for vestlige stolpehull, og på vestre side for østlige stolpehull). I motsetning til hovedstolpene så hadde støttestolpene sine største skoningsstein på yttersiden.
Det ble tatt makrofossilprøver fra de to vestre hovedstolpene.
Mot nordvest lå ID 20408, som målte 45 cm i bredden, og 56 cm i dybden. Massen var en gråbrun homogen masse med noe kull. Et midtparti på ca. 17 cm bredde skilte seg ut som et mulig stolpeavtrykk, da det ikke inneholdt flekker av den oransje undergrunnen.
Mot nordøst lå ID 20354, som målte 43 cm i bredden, og 51 cm i dybden. Fyllet besto av gråbrun jord, iblandet undergrunn og trekull.
Mot sørvest lå ID 42633, som målte 35 cm i bredden og 48 cm i dybden. Gråbrun sandig masse, iblandet undergrunn, med noe kull og ubrent leire. Også ved dette stolpehullet skilte det seg ut et midtparti som kunne tolkes som et stolpeavtrykk, mellom skoningssteiner, som var ca. 14 cm bred.
Mot sørøst lå ID 46407, som målte 43 cm i bredden og 34 cm i dybden. Massen var gråbrun sandig masse, iblandet undergrunnssand med noe trekull.

Støttestolpe ID 42594 lå på vestre side, mellom ID 20408 og 42633 . Denne målte 50 cm i bredden og 50 cm i dybden. Besto av mørkere gråbrun homogen masse med litt trekull, og lysere sand langs sidene.
Støttestolpe ID 46426 lå på østre side, mellom ID 20354 og 46407. Denne målte 41 cm i bredden og 29 cm i dybden. Massen besto av gråbrun sandig humus blandet med undergrunnen, og litt trekull.

Det er noe uvisshet angående firestolpers bruk i forhistorien. Det er dog en gjennomgående enighet om at disse bygninger har vært en slags uthus eller lagringsplass. Vi finner også atskillige firestolpers i Danmark hvor de er forholdsvis vanlige itilknytning til langhusene. "Hus 13" hadde med sin store distanse mellom stolpene, sine solide stolper og dype og brede stolpehull (og med støttestolpene) en meget stor og informativ firestolper. Reparasjonen og den alminnelige soliditeten på denne synes å antyde at strukturen antakeligvis ikke var noen enkel og lett konstruksjon.

9.8 Hus 17 (Firestolper)

Denne lå også i Felt Ila, vest for Hus 14, i et terreng som faller bratt mot SSØ.
Stolpehullene dannet et kvadrat, orientert med sidene i kompassretningene, med en sidelengde på 2.7 m til 2.8 m .
Mot nordvest lå ID 15174, målte 60 cm i bredden, 0 g 30 cm i dybden. Mot nordøst lå ID 15020, målte 33 cm i bredden og det samme i dybden. Mot sørøst lå ID 46141, målte 32 cm i bredden, og 40 cm i dybden.
Mot sørvest lå ID 15189 , målte 40 cm i bredden, og 33 cm i dybden.

Denne firestolper hadde to støttestolper som lå sør for Hus 17 og NV for Hus 13, i det samme bratte terrenget som disse. Også her dannet stolpehullene et kvadrat orientert med sidene i kompassretningene (men noe skjevt), med sidelengder mellom 2.5 m og 2.7 m .

Skjevheten, støttestolpene og omfanget av stolpehull i området gjør at tolkningen av dette som en firestolper er tentativ.
Mot nordvest lå ID 40299 , målte 27 cm i bredden, og 23 cm i dybden.
Mot nordøst lå ID 15229, målte 22 cm i bredden, og 34 cm i dybden.
Mot sørøst lå ID 40266, målte 21 cm i bredden, og 34 cm i dybden.
Støttestolpen ID 40256 lå rett nordøst for forrige, og målte 32 cm i bredden, og 29 cm i dybden.

Mot sørvest lå ID 40288, som målte 31 cm både i bredden og dybden.
Støttestolpen ID 40277 lå rett nordøst for forrige, og målte 24 cm i bredden og 25 cm i dybden.

9.9 Firestolperne generelt

Hus 13 sine dype stolpehull og brede sider antyder en relasjon mellom disse forholdene hos firestolpene. Det er naturlig å anta et tilnærmet proporsjonalt forhold mellom dem, ettersom strukturens enkelhet ikke har andre elementer til å bære konstruksjonen. En slik proporsjonalitet er også det man finner når man lager en figur over de firestolpene funnet på Tastarustå. Figuren er basert på gjennomsnittlig dybde av stolpehullene, samt medianverdien for sidene. Hus 18 har en side som er kortere enn de andre.

Verdier: Hus 13 med gjennomsnittlig sidebredde på 315 cm og gjennomsnittlig stolpehullsdybde på 47 cm ; Hus 17 med bredde 275 cm og dybde 34 cm , Hus 18 med bredde 270 cm og dybde 30.5 cm ; Hus $9 \mathrm{~s} ø r$ med 240 cm og 19 cm ; Hus 9 nord med 295 cm og 19.5 cm)

Figur 15: Graf som viser forholdet mellom firestolpernes sidebredde og deres stolpehulls gjennomsnittlige dybde.

Tendenslinjen blir definert som den linjen som nærmest får med seg alle punktene, og her kan den matematisk beskrives som tilnærmet lik $0.375 \mathrm{x}-70.75=\mathrm{y}$. Et unntak fra tendensen er Hus 9 nord, slik det sees på figuren. Den har bredere sider enn Hus 9 sør, men ikke særlig mye dypere stolpehull. Dette kan være tilfeldig, basert på varierende dybde på pløyning eller avdekking, eller på ganske enkelt en enklere konstruksjon. Men det er ingenting i seg selv som antyder det, og det finnes en annen forklaring: kanskje vår første tanke om at disse stolpehullene var del av samme konstruksjon, Hus 9, var korrekt. De er tross alt helt på linje, og av lignende karakter. I så fall ser det ut som søndre del ble bygget først, som en vanlig firestolper, og deretter ble nordre del bygget på, som en firestolper som støttet seg til den eksisterende konstruksjonen.

En gjennomgang av firestolpene på Forsand, hvor det har blitt funnet flere titalls slike, viste også en tendens til at jo større areal de dekker, jo dypere er de. Men denne tendensen var ikke like distinkt som forventet ut fra eksempelet på Tastarustå, og Hus 9 nord faller godt innenfor normalen fra Forsand (Løken, pers medd 2008). Allikevel var sammenstillingen av disse firestolpene av slik en karakter at tolkningen ovenfor står ved lag.

9.10 AkTIVITETER I ULIKE FASER

I tilknytning til husene ble det funnet en forholdsvis stor mengde med både ildsteder og kokegroper langs vegg-grøftene til Hus 7. I tillegg lå det også en større samling av ildsteder og kokegroper sør og øst for Hus 7 på Felt III. Noen av anleggene kunne være vanskelige å definere klart som enten ildsted eller kokegrop. Området rundt og i nærheten av det største huset (Hus 7) gir inntrykk av en ganske intensiv boplassaktivitet. Litt nord for Hus 7 ble det funnet tydelige ardspor som vi dessverre ikke har kunnet datere pga av mangel på organisk materiale.

Utover de ovenfor nevnte anlegg ble det også funnet fire ovner

10 AKTIVITETER, ANTATT ALDER OG LOKALITETFUNKSJON

sammendrag: Jernalderbebyggelsen PÅ Tastarustâ

Det ble formulert ulike problemstillinger i forkant av de arkeologiske undersøkelsene i felt. Vi skal i følgende avsnitt tolke de arkeologiske resultatene ut i fra problemstillingene.
Det kan utskilles og avgrenses fire aktuelle hovedproblemstillinger:
Er det spor etter tidlig bosetning på Øvre Tasta?
Hva slags gårdsbebyggelse finnes på Øvre Tasta?
Hva slags aktiviteter finnes i områder uten for tun i forhistoriske tid og middelalder på Øvre Tasta?
Hva slags gravskikk er knyttet til gårdsbebyggelsen?

Naturvitenskap:
Dagens kunnskap kommer stort sett fra undersøkelser utenfor høydedraget på Øvre Tasta. I Rogaland er det behov for å få klarlagt og avgrenset bruken av arealene i hus og tun i forhold til arealer utenfor bebyggelsen. Dette gjelder blant annet lokalisering av åker-, beite og utmarksarealer i forhold til tunområder.

Det kan utskilles to aktuelle hovedproblemstillinger:
Er det spor etter tidlig jordbruk på Øvre Tasta?
Hvilken type naturmiljø, landskapssystem og bruksarealer finnes det utenfor tunområder fra forhistorisk tid og middelalder på Øvre Tasta?

I 2006 ble det registrert syv treskipede langhus fra jernalderen. Det er tatt ut jordprøver fra alle husenes takbærende stolpehull og av relevante veggstolper. ${ }^{14} \mathrm{C}$ prøvene fra Beta Analytic viser at husene dateres til jernalderen i tidsrommet; eldre jernalder opptil vikingtid (fra ca 360 BC til ca AD 1040). Hus 1 og Hus 2 (Felt I) er begge datert til vikingtid, mens de andre er eldre. I tilknytning til bosetningen (Felt II og III) er det funnet flere tydelige forhistoriske ardspor, samt rester etter en rund gravhaug

Husene

Felt I:
Hus 1 et treskipet langhus. Mot S og ca. midt på Felt I ble det avdekket ca. 41 strukturer herav et ildsted med tilknytning til et langhus her kalt Hus 1. Hus 1 var orientert \varnothing-V og lå S for Hus $2, N$ for Hus 6 og Hus 4 og rett V for Hus 5.
Plasseringen ga det inntrykket at Hus 1 til en viss grad lå omgitt av de andre bygningene på feltet. I det avdekkede området kunne ca. 60 stolpehull ikke plasseres med sikkerhet til et og samme husfase. På planen over feltet er det tydelig at de innmålte stolpehull lå slik at de dannet formen til et to- eller treskibet langhus. Stolpehullene lå på (ulike) rekker som tolkes slik at huset har hatt flere bygningsfaser hvor det er blitt konstruert på omtrent den samme grunnflaten gjennom et ukjent antall bygningsfaser. Det er mest sannsynlig at stolpehullene var spor etter treskipet langhus, og at stolpehullene var fra takbærende stolper, og ikke fra veggstolper. Felles for alle stolpehullene med tilknytning til Hus 1 er en relativ liten dybde, hvilket må sees i sammenheng med at Felt I var sterkt nedpløyd. Det er dog mulig å tolke stolpehullene som parvise i husets bærende konstruksjon. Huset er datert til vikingtid (1130 ± 60 og $1090 \pm 40 \mathrm{BP}$).

Hus 2 et treskipet langhus (orientert $\mathrm{N}-\mathrm{S}$) med flere faser som det ikke har vært mulig à skille kronologisk. Huset var forstyrret i N av nedgravningen fra en (IVAR) vannledning. I S avgrenses huset av fallende terreng, hvor erosjonen antakelig har fjernet grunne nedgravninger. Huset målte minst 20 m fra $\mathrm{N}-\mathrm{S}$, og ca. 7.30 m fra \varnothing V . Strukturene fra Hus 2 besto av 1 veggrøft, 1 ildsted, 2 dørstolper, 10 veggstolper og 6 og 1/2 par takbærende stolper, med 21 stolper, totalt 33 stolper. Tre dateringer ($1020 \pm 40,1140+/-40$ og 1200 ± 40 år BP) indikerer at huset er fra vikingtid.

Hus 4 et treskipet langhus, orientert \varnothing - V beliggende på Felt I lengst mot S tett inntil Hus 6. Det ble funnet spor etter takbærende stolper men ikke etter veggstolper.

Disse er høyst sannsynlig blitt pløyd vekk. Husets (minste) lengde var ca. 18 m langt, og ca. 3 m bredt, hvilket var absolutt minstemål. Sporene fra Hus 4 besto av 17 stolpehull og et ildsted. To avvikende dateringer framkom (1260 +/- 40 og $390+/-40$ BP), hvorav den eldste var mest pålitelig.

Hus 6 et treskipet langhus orientert $\mathrm{V}-\varnothing$ uten tydelig avgrensning. Huset målte minst 12.5 m fra V til \varnothing, og 2 m fra N til S . Sporene fra Hus 6 besto av 4 par med lakbærende stolper og 2 erkeltstående stolper, totalt 10 stolper. Det ble ikke funnet veggstolper eller ildsteder pga moderne jordbruksaktivitet. Prøvene fra stolpehullene har ikke gitt daterbare prøver. De resterende av stolpehullene ble snittet sesongen 2007 for å ta ut nye prøver til datering, men uten at flere daterbare prøver framkom.

Hus 5 tolkes som et treskipet langhus orientert NV - SØ. Anlegget var forstyrret i S av feltets avgrensning opp mot en anlagt sti. Huset målte minst 24 m fra NV til S \varnothing, og 6 m fra $\mathrm{N} \varnothing$ til SV. Sporene fra Hus 5 besto av 2 dørstolper, 21 veggstolper og 4 par med takbærende stolper og 3 enkeltstående stolper, totalt 37 stolper. Det ble ikke funnet vegg-grøfter eller ildsteder tilhørende huset (antagelig pløyd vekk).
Tre dateringer fra huset viste ($1290+/-40,1310 \pm 40$ og 1920 ± 50 år BP) fra henholdsvis merovingertid og eldre romertid, daterer huset til førstnevnte.

Felt III:
Hus 8 et langhus (sannsynligvis treskipet) uten sikker identifisering av stolpehull. Tolkningen er basert på en steinsetting, flere tilstøtende kulturlag, samt et system av grøfter. Lengde og bredde blir høyst hypotetisk satt til minst 21 m og 6 m .
Dateringene ($2140+/-40$ og 2150 ± 40 år BP) indikerer at huset er fra midtre eller senere del av førromersk jernalder. Dette stemmer overens med funn av keramikk.

Hus 7 ble delvis avdekket i 2006 og dette ble fullført i 2007. Hus 7 var et treskipet langhus med ildsteder, vegg-grøft, dørstolper, samt dype takbærende stolpehull med spor etter mulig rominndeling. Nær huset mot sørøst lå det et en større mengde med kokegroper og ildsteder. Huset lå orientert nord - sør, med en lengde på $24,5 \mathrm{~m}$, en ytre bredde på $9,5 \mathrm{~m}$ med $6,9 \mathrm{~m}$ mellom veggstolpene (se beskrivelse av Hus 7). Tre dateringer av huset ($1250 \pm 40,1160 \pm 40$ og $1080 \pm 40 \mathrm{BP}$) tilskriver huset til tidlig vikingtid.

Hus 11 tolkes som et mindre langhus orientert nord - sør med en hovedfase med flere utskiftninger av stolpene. Huset målte $9,2 \mathrm{~m}$ i lengden, og $3,4 \mathrm{~m}$ mellom veggstolpene. Det blir tolket som et verkstedshus eller eldhus pga de små dimensjonene og de tre ovnene som ligger langs konstruksjonens akse. Huset ligger i sørvestlige del av Felt III, og sørvest for Hus 7. Fire dateringer ble tatt fra huset $(2480 \pm 40,2410 \pm 40,2360 \pm 40$ og $2270 \pm 40 \mathrm{BP}$) som daterer huset til mellom 780 og 210 BC, og til to faser før og etter 400 BC .

Felt lla:

Hus 14 ble avdekket i 2006, og undersøkt i 2007. Huset tolkes som et treskipet langhus, orientert NNV-SSØ, beliggende på en sørvendt skråning. Huset målte 18,2 m i lengden, og på det meste 6 m i bredden. Strukturene fra Hus 14 besto av et sentral- ildsted og totalt 40 stolpehull, med 6 par takbærende stolper, 8 veggstolper på hver langside, et par sannsynlige dørstolper, 4 støttestolper, og 6 utbyttede
stolper. I tillegg er det et ildsted og enkelte andre stolpehull som kan være tilknyttet huset. Tre prøver ble tatt fra Hus 14 ($1320+/-50,1250+/-60$ og $1240 \pm 40 \mathrm{BP}$) som daterer det til yngre jernalder (merovingertid). Utover Hus 14 lå det tre fire - stolpers bygninger vest for huset. Disse små konstruksjoner har antagelig blitt brukt som uthus og oppbevaringsbygninger, og var ikke beboelseshus.

Felt llb:
Hus 15 et treskipet langhus med rester etter vegg-grøften. Huset er sterkt nedpløyd og har antagelig hatt to faser. Strukturene fra Hus 15 besto av vegg-grøft, ildsted og 27 stolpehull. Huset lot seg tolke da vegg-grøften i vest, og tettstilte veggstolper i nordvest og nord definerer husets omriss. Bygningen lå orientert NNV-SSØ og målte $15,5 \mathrm{~m}$ i lengden, og 4,3 m i bredden. Hus 15 er datert til $370-100 \mathrm{BC}$, dvs eldre jernalder (førromersk jernalder).
Hus 16 er sterkt ødelagt og det sees kun rester etter vegg-grøften, en ovn og noen få stolper. Den lå orientert NNØ-SSØ, rett sør for hus 15. Tre dateringer ble tatt fra Hus $16(3450 \pm 40,2230 \pm 40$ og $2110 \pm 40 \mathrm{BP})$ hvorav de to siste daterer ovnen som er datert til 340-40 BC, dvs eldre jernalder (førromersk jernalder). Dateringen ligger innenfor samme tidsperiode som Hus 15.

Hus 10 treskipet langhus med en fase. Huset lå orientert NNV-SS \varnothing, og faller mot $S \varnothing$. Huset besto av 5 par takbærende stolper (med to mulige støttestolper, så totalt 12 stolper), et ildsted, en kokegrop og ingen veggstolper. Huset målte 1,6 m til $1,9 \mathrm{~m}$ mellom de takbærende stolpene, og var ca $13,6 \mathrm{~m}$ langt. To prøver daterer ($1280 \pm$ 40 og $1270 \pm 40 \mathrm{BP}$) Hus 10 til yngre jernalder (merovingertid). Dateringen av Hus 10 ligger innenfor samme tidsperiode som hus 5 og hus 14.
I tillegg til beboelseshusene ble det funnet to firestolpers bygninger vest for Hus10.

Ettersom undersøkelsesområdet var sterkt nedpløyd ble det ikke funnet et stort antall gjenstander i løpet av de to utgravningssesongene 2006 og 2007. Utover en del keramikk bør det nevnes en (ildslagningsstein) beltestein med tydelig spor etter bruk. Den har antagelig hengt i beltet til en mann fra folkevandringstid. Videre ble det funnet et spinnehjul i et stolpehull fra et vikingtidshus (Hus 2), og en vakker liten sylinderformet perle i agat fra vikingtid.

Tastarustå undersøkelsen har uten tvil påvist nye og viktige resultater for bebyggelsesarkeologien i Rogaland. Det som gjør at denne undersøkelsen skiller seg ut, er funnet av den yngre jernalderbebyggelse med hus fra både merovingertid og vikingtid. Spesielt er merovingertidsbebyggelse forholdsvis fraværende i skandinavisk bebyggelsesarkeologi. At vi i tillegg fant et langhus av Trelleborgtype fra vikingtid er så vidt vi vet, det første av denne type hus som er påvist i Norge.

Sett ut fra de i forkant formulerte problemstillinger (se punkt 2.3 ovenfor) kan vi konkludere at det var tidlig bosetning på Øvre Tasta fra minimum bronsealder og mest sannsynlig tilbake til neolitikum. Det ble funnet flere områder med dyrkningsspor (ardspor) i nærheten av bebyggelsen. Jordbruksaktiviteten underbygges ytterlig av de fire "låvene" (firestolper) eller uthus til oppbevaring som lå i tilknytning til både langhusene og ardsporene. Vi kan også konkludere med, at vi har et avvik i byggeskikken med et beboelseshus av Trelleborgtypen fra vikingtid.

Undersøkelsesområdet bærer preg av variert aktivitet med mange kokegroper og ikke minst et eldhus/verkstedsbygning med ovner.

Bosetningen på Tastarustå har ut fra påviste og daterte hus hatt kontinuitet fra førromersk jernalder til vikingtid. I tillegg er det flere bronsealderinnslag; keramikk, og en bronsealderdatering fra et stolpehull i tilknytning til Hus 11 (eldhuset). Slik bildet tegner seg, ser det ut til at bosetningen sannsynligvis begynte på Felt III (men området var fortsatt i bruk i vikingtid) og nederst på Felt II, mens størsteparten av den yngre bosetningen ble etablert på høyderyggen, og opp på høyderyggens sørside (Felt I, lla, Ilb). Her finner vi tre hus fra merovingertid og to hus fra vikingtid. Vi har påvist tydelige spor etter jordbruk (ardspor) hvor man har dyrket jorden nedenfor husene; dvs fra høyderyggen og nedover både den lune sørskråningen og østskråningen.

I samsvar med bebyggelsen har vi spor etter en nedpløyd gravrøys, samt en flatmarksgrav fra sen vikingtid. Graven er uten gravgods, hvilket ikke er uvanlig for denne tidsepoken.

11. FORMIDLING OG PUBLIKUMSKONTAKT

Formidling 2006-2007
Det ble holdt åpen dag med omvisning for publikum 15 juni 2006.
Artikkel i Stavanger Aftenblad 14 juni: "Kom og se bakover i fortiden".
Artikkel i Stavanger Aftenblad 14 august: "Boliger på Tasta i over 3000 år".
Artikkel i Tasta Bydelsavis i juni 2006: "Detektivarbeid på Tastarustå".
Tirsdags foredrag på Arkeologisk museum i Stavanger om de arkeologiske undersøkelsene på Tastarustå den 13 februar 2007.
Populær vitenskapelig artikkel i Frá Haug \& Heidni: "Forstadsvikinger på Tasta;
Resultater fra første sesongs utgravninger på Tastarustå i Stavanger" No 12007.
Artikkel i Rogalands Avis 10 juni 2007: Gamle husskatter på Tasta
Artikkel i Rogalands Avis 20 juni 2007: Vikingtid på Tasta.
Det ble holdt åpen dag med omvisning for publikum 19 juni 2007.
Radioprogram/ intervju NRK Rogaland med feltleder Niall Armstrong 19 og 20 juni 2007.

12. LITTERATUR

Diinhoff, S. 2005. Den førromerske jordbruksbosætning på Moflaten ved Ørsta. i Fra funn til samfunn, (red. Bergsvik og Engevik) UBAS Nordisk 1,

Dubin, L.S. 1995. The History of Beads, From 30,000 BC to the Present, Thames and Hudson.

IIkjær, J. 1993, Illerup Addal. Die GürteI. Bind III
Israeli, Y. 1998 The Wonders of Ancient Glass, at The Israel Museum, Jerusalem. Israel Museum.

Komber, J. 1989. Jernalderens gårdshus, En bygningsteknisk analyse. AmS Varia 18.

Kristensen, S. 2004. Fra graving til data. Den digitale dokumentasjonen av vikingtidsbyen Kaupang. Nicolay nr 93.

Molaug, P. B, Petersen, A \& Risan, T. 2006, Evaluering av digitale dokumentasjonssystemer for arkeologiske utgravninger. NIKU Rapport 9.

Prøsch-Danielsen, L. og A. Simonsen. 2000. The deforestation patterns and the establishment of the coastal heathland of southwestern Norway. AmS-Skrifter 15.

Rundberget, Røsteplasser i Gråfjellområdet, s. 279-307 i Jernvinna i Gråfjellområdet, Gråfjellprosjektet Bind I, (red. B. Rundberget) Varia 63, KHM Oslo

Samdal, M. 2000, Amuletter, Gjenstander med amulettkarakter i vestnorske graver i tidsrommet 350-1000 e.Kr., upubl. hovedfagsoppg. Universitetet i Bergen

Schmidt, H. 1999, Vikingetidens byggeskik i Danmark, Jysk Arkæologisk Selskab.

Stern, E.M. 1977. Ancient glass at the Fondation Custodia. Archaeologica Traiectina 12.

Thomsen, H. 1988. Jærlandskapet forandrer seg. Hå kommune.

13. VEDLEGG

1. Liste over Anlegg / strukturer
2. LISTE OVER TEGNINGER
3. Funnliste
4. Katalog
5. LISTE OVER VITENSKAPELIGE PRøVER
6. DATERINGSSKJEMAER OG -RESULTATER
7. OVERSIKTSKART OVER OMRADET
8. OVERSIKTSKART OVER LOKALITET
9. Detaljkart over lokalitet
10. LISTE OVER KOORDINATER
11. LISTE OVER INNMALTE PUNKTER
12. Plan og profiltegninger av utvalgte strukturer
13. Avisutklipp etc.
14. Fotoliste

[^1]
殿量

部景意童
8

$\frac{5}{5}$
$\frac{3}{3}$

\qquad

篥部
8

量等

[^2]

[^3]

[^4]

11
 111 ！ II 111 11 1 III 11 11 要咅等 音部

Vakegg 1

[^5]

Kaloga 1

	Uno csuk elsestrelode Draveskie	Undrisekt andel	Aniotwets tyicigiel	el＇ry nutanam
	Toraveske	50		Anom
	Gravesers	100	racemg	
trexes atheonpusk Craikentil	Graveske	5010	7ruery	Rintugit
Aebte rimeoburisk Cros		9		Auners
	finenctu	（）		
		跸		Aruen
		4		
		3		
		＊		
		3		
		8		
		f		
		\％		
		\％		
		，		
		3		
		＂		
		0		
		0		
		\％		
4．2．33 Askerikuisk Stapehuli		\％		
		\％		
		3		
		0		
		＊		
40650 Anceckoratis Stulieterit		（1）		
409\％		1		
	Gayve	0		
		0		apmers
		3		
		0		
		\％		
		\％		
		6		
		\％		
		3		
		Q		
		${ }^{3}$		
		＇		
		\square		
		${ }^{6}$		
		\％		
		\％		
		0		
		\％		
		\％		
		）		
		\％		
		＇		
		0		
	chareske	\％		
		0	Nos	
		0		
		5		

$$
\frac{y}{4}
$$

Vedlegg 1

ill Ill hil 1

 R

Vedlegg 2

Arkeologisk museum i Stavanger

TEGNINGSLISTE

Liste nr \qquad 1

Aksesjonsnr
 \qquad

T-nr	Felt	Profil/Plan	Anleggsnr	Beskrivelse	A41A3...	Seksjon	Sign/Dato
1	1	Profil \& plan	1975	Antatt tom grav	A3	11754,-6	CRV 1/6-06
2	1	Plan	5255	Hellelagt grop	A3		DN 9/6-06
3	1	Plan	1124	Stolpehull fra Hus 2	A3		DN 14/6-06
4	1	Plan	1677 / 1281	Ildsted i fotgrøft	A3		CRV 14/6-06
5	1	Plan	6597	Steinsatt grop i kvadranter	A3		TEL 16/6-06
6	1	Profil	6597	Ditto	A3	1171,-3	TEL 16/6-06
7	3	Plan		Steinsetting/kulturlag, Hus 8	A3		DN 27/6-06
8	3	Profil	10207	Profil gjennom åkerrein	A3	10213	TEL 23/6-06
9	3	Profil	10207	Kopi av tegning 8, øvre del	A3	10213	ECS 27/6.06
10	3	Profil	10207	Ditto, nedre del	A3	10213	ECS 28/6-06
11	3	Plan		Steinsetting/kulturlag, renset	A3		DN 29/6-06
12	2	Profil		Dyrkingslag i kant av Felt lla	A3		TEL 29/6-06
13	3	Plan		Kulturlag i Hus 8	A3		DN 5/7-06
14	3	Plan		Ditto	A3		DN 1017-06
15	3	Profil		Ditto	A3		DN 1317-06
16	3	Profil		Profilbenk mot sør, Hus 8	A3	17600	SW 13/7-06
17	3	Plan \& profil	17481/17550	Greft	A3		CRV 1917-06
18	1	Plan	22144	Rektangulær flatbunnet grop	A3		CRV 8/8-06
19	1	Profil	22144	ditto	A3		CRV 9/8-06
				(hoppet over 20-29)			
				2007			
30	2b	Plan	51411	Ovn i Hus 16, på overflaten	A3		WD 6/8-07
31	2b	Plan \& profil	51411	Ditto, utgravd, m/ luftegroft	A3	52284	WD 718-07
32	2b	Profil \& Profil	51411	Ditto; profil av ovn og renne	A3	52280,-2	WD 6/8-07
33	3	Plan	18413/11125	Grop og Hus 7s vegg-groft	A3		CRV 5/6-07
34	2a	Profil	41054/41082	Grop med renne. Ovn?	A3	46443	AD 917-07
35	3	Profil	$32407 / 44605$	Nordre del av kulturlag	A3	44514	AD 14/6-07
36	3	Profil	26579/32407	Søndre av samme, \& ovn	A3	44514	CRV 13/6-07
37	3	Plan og Profil	26631/32364	Sentrale ovn i Hus 11	A3	44803	NJA 15/6-07

	Id A.	Fyndnummer	Material	Vekt	Antal	Anmårkning	InfoGroup
	200271	271	Organiskt material	0	0	Fra bunnen av leirkar (funn 200228)	28220
	200284	284	Ben	1	3		18512
	200285	285	Keramik	6	1	Moderne?	43195
	200286	286	Ben	2	1	Kneledd, mindre dyr: $1.79 \mathrm{~g}, 2.61 \mathrm{~cm}$	29065
	200287	287	Keramik	1	1	fragment emalje, moderne	14628
	200296	296	Веп	1	16	Funnet ved flottering, ett stort, flere smá fragm	43070
	200297	297	Järn	1	1	Sø-kvadrant	1975
	200298	298	Keramik	2	4	Funnet 10 cm øst for 28220	0
	200299	299	Ben	7	62	$\max 2.49 \mathrm{~cm}$	46507
	200300	300	Ben	2	43	max 1.57 cm	1975
	200301	301	Keramik	1	1	Moderne keramikk	14210
	200302	302	Keramik	29	5	Funnet i snitt	49596
	200303	303	Keramik	14	6	+ flere smá fragmenter	28653
	200304	304	Ben	1	1		52018
	200305	305	Ben	1	1	Fra flottering, oppsmuldret	43859
	200306	306	Keramik	3	1		15174
	200307	307	Ben	1	2		43114
	200308	308	Ben	1	1		28873
	200309	309	Flinta	8	1	Naturlig spaltet	51860
	200310	310	Glas	1	1	Funnet i nærheten av stolpehull 49237	0
	200311	311	Ben	1	2		32762
	200312	312	Keramik	1	1	Moderne porselen	32762
	200313	313	Järn	3	1	Nagl-hode (moderne?)	46467
	200314	314	Keramik	2	1		43566
	200315	315	Keramik	1	2	Veldig små fragmenter	51116
	200316	316	Bränd lera	57	0	Løs tilstand	51411
	200319	319	Bränd lera	15	0	Los tilstand	46021
	200320	320	Järn	1	3	Fra flottering. Korrodert jern?	43859
	200321	321	Flinta	17	1	Løsfunn, noe vannrullet, bit m/2 tydel avsp \& ret	29318
	200322	322	Ben	1	1		11125
	200323	323	Keramik	2	1		11125
	200324	324	Keramik	25	2		14455
	200325	325	Keramik	10	3		1281
	200326	326	Keramik	37	4		200021
	200327	327	Keramik	13	1		200021
	200595	595	Ben	1	1		0
	200596	596	Ben	1	1		0
	200597	597	Flinta	2	1	Natur	0
	200598	598	Keramik	1	1	Del av moderne porselen	0
	200599	599	Bergart	163	- 1		0
	200600	224	Bergart	404	1		0

KATALOGISERING TIL HOVEDKATALOGEN

Museumsnummer: S-12252
Aksesjonsnr.: 2006/9
Saksnr.: 157/1998, 25/2000, 022/2004
Lokalitetsnavn: Tastarustå, Felt III
Gårdsnavn (GAB): Tasta Øvre
Bruksnavn (GAB): Tastarustå
gnr.: 28
bnr.: 54
Kommune: Stavanger
Fornminnenr.: *
Flyfoto/reg.nr: *
OK-kooordinat: *
UTM: *
H o.h.: $54.5-58.5 \mathrm{~m}$
Funnkategori-1: Boplassfunn
Funnkategori-2: Husstrukturer
Funnmiljo-1: Åker
Funnmiljo-2: Under moderne dyrkningslag
Anlegg og kontekst: Tre boplasser med stolpehull, grøfter, ildsteder, kokegroper, ovner, delvis bevarte kulturlag, ardspor,
Terreng og lokalisering: Feltet (kalt Felt III) ligger i dyrket mark som skråner nedover mot nord. Gjerdevegen grenser i øst og vegen Tastarustå i sør, imens det er dyrket mark mot nord og nordvest, og det gamle gårdstunet mot vest. Feltet ligger på nordre side av det øst-vest orienterte høydedraget Tastarustå. Det utgravde området utgjør den østlige enden av bruket 28/54 inntil krysset mellom ovennevnte veger.

Funnomstendighet: Arkeologisk undersøkelse
Undersøkelse ved: Gitte Kjeldsen
Funnet når: 02.08.06-10.08.07
Funnet av: *
Innlevert av/ved: *
Gave fra: *
Diplom, dato: *
Andre funn: *
Arkeologisk datering: Eldre jernalder
14C-datering: Ti C14-dateringer: Nat.vit.prøvejournal 2006/15-128, 140, 272, 296, 375, 294, 287, 376, 295, 300.

Katalogisert av: Niall John Oma Armstrong
Dato: 07.03.08
Revidert av: Kristine Sørgaard
Dato: 29.05.08
Klassifikasjonssystem: *
Materialebestemmelser av: *
Systematisering/ordning for magasinering: *
Opplysninger i Top.ark.: *
Opplysninger, som vil komme senere: *
Andre opplysninger: *
Litteraturhenvisninger: *

KATALOGEN MED SLUTTOPPLYSNINGER I FRITEKST:

Funn fra boplasser datert til sen bronsealder og far-romersk jernalder

S 12252
a) En glassperle, fasettert, av usikker alder (Fra kontekst datert til ca 400 BC , men perlen er kanskje moderne, falt ned gjennom markhull.) Veier ca. 1 gram (F.nr. 237)
b) En knekt bryne, kanskje fra Eidsborg, forholdsvis smal; 75 mm lang, $14 \times 11 \mathrm{~mm}$ i bredden (F.nr. 227)
c) Ett hundre og tjueseks keramikkskår (i tillegg til mindre fragmenter av keramikk). Ett større randskår (F.nr. 2), et samlet funn som har vært del av et enkelt kar (F.nr. 213) og flere skår funnet nær dette (F.nr 208 og 209), i tillegg til enkelte funn av moderne porselen (F.nr. 312 og 598) og et dekorert skår (F.nr 214). Samlet vekt ca 787 gram (Fnr. 2-6, 8, 12, 208-214, 235, 244, 248, 251, 253, 261, 262, 267, $268,312,323,324,598$)
d) En knekt mikrolitt av flint, med vekt ca. 1 gram (F.nr 243)
e) En håndtakskjerne av flint, med vekt ca 26 gram (F.nr 254)
f) Fem ytterligere biter av flint. Samlet vekt er 18 gram. (F.nr. 232, 258, 260, 264, 597)
g) Tre jernfragmenter, hvorav én er et naglehode (f.nr 313). Samlet vekt 9 gram. (F.nr 9, 234, 313)
h) Rødbrent leire, muligvis leirklining. Femti fragmenter samt 15 gram med smuldret materiale iløs tilstand. Samlet vekt 153 gram. (Fnr. 207, 231, 240, 242, 246, 249, 256, 257, 265, 266, 316, 319)
i) Ett hundre og åttito fragmenter av brente bein. Fra 1 mm til 2.70 cm i størrelse. Samlet vekt er ca. 13 gram. (Fnr. 239, 250, 252, 284, 311, 322, 595, 596)
j) To fragment av glass, vekt under 1 gram. (F.nr. 241, 259)
k) Ett fragment av ett nøtteskall, med vekt under ett gram. (F.nr. 263)

1) Fire fragmenter av ubrent, blå leire. Vekt er 14 gram (F.nr. 247)
m) \AA tte fragmenter av skifrig stein. (F.nr 238) Samlet vekt 25 g .
n) Et hundre og åtte naturvitenskapelige prøver, hvorav sytti-en makrofossilprøver med ca. 5 liter masse per prøve (Nat.vit.nr 99, 102-103, 105, 126, 128-129, 131-132. 135-137, 139, 142.143, 150, 153-158, 242-267); tretti-fem kullprøver med varierende mengder masse (Nat.vit.nr. 98, 100-101, 104, 106, 127, 130, 133-134, 140-141, 146, 148, 230, 237, 239, 271, 288-301, 375-377, 379); og to fosfatprøver med forskjellig mengde masse.

KATALOGISERING TIL HOVEDKATALOGEN

Museumsnummer: S-12253
Aksesjonsnr.: 2006/9
Saksnr.: 157/1998, 25/2000, 022/2004

Lokalitetsnavn: Tastarustå, Felt I
Gårdsnavn (GAB): Tasta Øvre
Bruksnavn (GAB): Tastarustå
gnr.: 28
bnr.: 63
Kommune: Stavanger
Fornminnenr.: *
Flyfoto/reg.nr: *
ØK-kooordinat: *
UTM: *
H o.h.: 60-63.5 m

Funnkategori-1: Boplassfunn
Funnkategori-2: Husstrukturer
Funnmiljo-1: Åker
Funnmiljo-2: Under moderne dyrkningslag
Anlegg og kontekst: Fem husstrukturer med stolpehull, ildsteder, kokegroper, og to sannsynlige graver
Terreng og lokalisering: Feltet (kalt Felt I) ligger i dyrket mark som skråner svakt nedover mot sørøst. Dette er like på søndre side av høydedraget Tastarustå, som er orientert øst-vest, høyest i vest. Vegen Tastarustå grenser feltet mot nord, mot dyrket mark mot øst, mot boligeiendommen til 28/17 mot vest, og mot Felt II mot sør.

Funnomstendighet: Arkeologisk undersøkelse
Undersokelse ved: Gitte Kjeldsen
Funnet når: 02.08.06-10.08.07
Funnet av: *
Innlevert av/ved: *
Gave fra:
Diplom, dato: *
Andre funn: *

Arkeologisk datering: Yngre jernalder
14C-datering: Elleve C14-dateringer: Nat.vit.prøvejournal 2006/15-1, 4, 25, 29, 33, 177, 191, 194, 201, 217, 228.

Katalogisert av: Niall John Oma Armstrong
Dato: 25.03.08
Revidert av: Kristine Sørgaard
Dato: 29.05.08
Klassifikasjonssystem: *
Materialebestemmelser av: *
Systematisering/ordning for magasinering: *
Opplysninger i Top.ark.: *

Opplysninger, som vil komme senere: *
Andre opplysninger: *
Litteraturhenvisninger: *

KATALOGEN MED SLUTTOPPLYSNINGER I FRITEKST:

Funn fra boplasser datert til yngre jernalder
S 12253
a) En ametystperle, brent. Mandelformet og gjennomboret i lengden. Vekt ca 2 gram (F.nr.11)
b) Ett spinnehjul, i kleberstein. Vekt 42 gram. (F.nr. 219)
c) Åtte keramikkskår. Samlet vekt ca 60 g. (F.nr. 325, 326, 327)
d) Ett hundre og fem fragmenter av brente bein. Fra 1 mm til 2.49 cm i størrelse. Samlet vekt ca. 9 gram (F.nr. $299 \operatorname{og} 300$)
e) Ett jernfragment, på ca. 1 gram (F.nr. 297)
f) En glattestein, brukt til polering på en side, som veide 404 gram (F.nr 224)
g) Tre stk slagg, som veide 166 gram. (F.nr. 1)
h) Et hundre og atten naturvitenskapelige prøver, hvorav nitti-en makrofossilprøver (Nat.Vit.nr 3, 5-10, $12-25,33,36,71,159-162,164-174,176-178,180-208,210-213,215-216,218-229,231-232)$ med ca. 5 liter masse per prøve og ti kullprøver (Nat.Vit.nr 1-2, 4, 68, 175, 209, 234-236, 380) med varierende mengder masse. I tillegg ble det tatt to sett à seks forsfatprover, samt en ekstra, med ca 1 desiliter masse per prøve, totalt 13 fosfatprøver.

KATALOGISERING TIL HOVEDKATALOGEN

Museumsnummer: S-12254
Aksesjonsnr.: 2006/9
Saksnr.: 157/1998, 25/2000, 022/2004
Lokalitetsnavn: Tastarustå, Felt IIa og IIb
Gårdsnavn (GAB): Tasta Øvre
Bruksnavn (GAB): Tastarustå
gnr.: 28
bnr.: 11, 26
Kommune: Stavanger
Fornminnenr.: *
Flyfoto/reg.nr: *
ØK-kooordinat: *
UTM: *
H o.h.: 55-62.5 m
Funnkategori-1: Boplassfunn
Funnkategori-2: Husstrukturer
Funnmiljo-1: Åker
Funnmiljg-2: Under moderne dyrkningslag
Anlegg og kontekst: En boplass med stolpehull og ildsteder, fire-stolpere, ardspor.
Terreng og lokalisering: Feltet (kalt Felt IIa og IIb) lå i dyrket mark som skråner nedover mot sør. De to feltene, med IIa i øst og IIb i vest, var adskilt av et granbevokst steingjerde. Feltet grenset i nord, også med et granbevokst steingjerde, mot bruk 28/63 (Felt I). Mot øst og sør avgrenset feltet mot et ikke-avdekket del av åkeren. Mot vest grenset feltet mot eiendommen 28/17.

Funnomstendighet: Arkeologisk undersøkelse
Undersakelse ved: Gitte Kjeldsen
Funnet når: 02.08.06-10.08.07
Funnet av: *
Innlevert av/ved: *
Gave fra: *
Diplom, dato: *
Andre funn: *
Arkeologisk datering: Eldre jernalder og merovingertid
14C-datering: Åtte C14-dateringer: Nat.vit.prøvejournal 2006/15-128, 140, 272, 296, 375, 294, 287, 376, 295, 300.

Katalogisert av: Niall John Oma Armstrong
Dato: 07.03.08
Revidert av: Kristine Sørgaard
Dato: 29.05.08
Klassifikasjonssystem: *
Materialebestemmelser av: *
Systematisering/ordning for magasinering: *
Opplysninger i Top.ark.: *
Opplysninger, som vil komme senere: *
Andre opplysninger: *
Litteraturhenvisninger: *

KATALOGEN MED SLUTTOPPLYSNINGER I FRITEKST:
Funn fra boplasser datert til før-romersk jernalder og merovingertid
S 12254
a) Én beltestein, av bergart. Veide 163 gram. (F.nr. 599)
b) Sekstitre keramikkskår (i tillegg til mindre fragmenter av keramikk). Deriblant skårene fra hele bunnen av et kar (F.nr. 269), samt flere av det samme karets sideskår (F.nr 228) og antatt organisk masse fra samme kar (F.nr 270 og 271). Noe moderne skår er også inkludert (F.nr. 285, 287, 301). Samlet vekt ca 178 gram (Fnr 228, 233, 269, 285, 287, 298, 301-303, 306, 314-315)
c) Én vannrullet flintbit med to tydelige avspaltninger og retusj. Med vekt på 17 gram (F.nr 321)
d) Én flintbit, tilsynelatende naturlig spaltet. Veide 8 gram. (F.nr. 309)
e) Tre jernfragmenter, med samlet vekt på under ett gram (F.nr. 297, 320
f) Ett glassfragment. Veide under ett gram (F.nr. 310)
g) Femti-sju gram med brent leire, i løst tilstand (F.nr. 316)
h) Tjue-to fragmenter av brente bein. Fra 1 mm til 2.61 cm i størrelse. Samlet vekt ca. 3 gram. (F.nr. 286, 296, 305, 307)
i) Seksti-fem naturvitenskapelige prøver, hvorav seksti-to makrofossilprøver (Nat.Vit.nr 304-306, 308-$322,324-366,381$) med ca. 5 liter masse per prøve og tre kullprøver (Nat.Vit.nr 307, 384-385) med varierende mengder masse.

Vedlegg 5

[^6]

[^7]Mr. Gite Kjeldsen

Material Received: 11/152006
Arkeologisk Museum i Stavanger

$13 C / 12 C$
 Ratio

Conventional
Radiocarbon Age(${ }^{(1)}$

Beta - 223433
SAMPLE: 0655-1
ANALYSIS : Radiometric-Standard delivery
MATERIAL/PRFTREATMENT ; (charred material): acid/alkali/acid MATERIAL/PRFTREATMENT : (charred materials dedalkalracid to 930)
2 SIGMA CALIBRATION : Cal AD 770 to 1020 (Cal BP 1180 to

Beta -229434
$1001: 40 \mathrm{BP}$
$-25.10 \% 0$
$1090+40 \mathrm{BP}$

SAMPLE: 0615-25
ANALYSIS: AMS-Standard delivery
MATERIAL/PRETREATMENT : (seeds), acidimalionacid
2 SIGMA CALIBRATION : Cal AD 880 to 1020 (Cal BP 1070 to 930)

$-1180+10 \mathrm{BP}$	-23.90100
$1200+1-40 \mathrm{BP}$	

Beta -223435
SAMPLE: 06!5-33
ANALYSIS: AMS-Standard delivery
MATERTALPRETREATMENT: (seeds): acidalkali/acid
2 SIGMA CALIBRATION :
Cal AD 710 (0910 (Cal BP 1240 to 1040) AND Cal AD 920 to 960 (Cal 10310 10 1000)
\qquad

$$
180+1-40 \mathrm{BP}
$$

$80+4013 P$
-18.9060
Beta - 233436
SAMPLE: 0615-62
ANALYSIS: AMS-Standard delivery
MATER1ALTPRETREATMENT : (seeds): acid/alkali/acid
2 SIGMA CALIBRATION : Cal AD 1650 to 1710 (Cal BP 300 to 240) AND Cal AD 1720 to 1880 (Cal BP 230 to 70) Cal AD 1910 to $1950(\mathrm{CalBP} 40100)$
$3670+40 \mathrm{BP}$
$3650+1.40$ 阬
Beta -223437
SAMPLE: 0615-67
ANALYSIS: AMS-Standard delivery
MATERIAL/PRETREATMENT : (charred material): acid/alkaliacid
2 SIGMA CALIBRATION: Cal BC 2140 to 1910 (Cal BP 4090 to 3860)

Dates are reported as RCYBP (raduicarbon years before present, "present" $=1950$ A.D.). By International convention, the modern reference standard was 95% of the C14 content of the National Bureau of Standards' Oxalic Acid \& calculated using the Libby C14 half life (5568 years), Quoted errors represent 1 standard deviation statistics (68% probability) \& are based on combined measurements of the sample, background, and modern reference standards.

Measured C13/C12 ratios were calculated relative to international standard and the RCYBP ages were nom " -25 per mil. If the ratio and age are accompanied by angle C13/C12 value was estimated, based on valuated material type. The quoted results are NOT calibrate years. Calibration to calendar years should be the Conventional C14 age.

REPORT OF RADIOCARBON DATING ANALYSES

Dates are reported as RCYBP (raduicarbon years before present, present" $=1950$ A.D.). By International convention, the modern reference standard was 95% of the C14 content of the National Bureau of Standards' Oxalic Acid \& calculated using the Libby C14 half life (5568 years). Quoted errors represent 1 standard deviation statistics (68% probability) \& are based on combined measurements of the sample, background, and modern reference standards.

Measured C13/C12 ratios were calculated relative to the PDB-1 Intermational standard and the RCYBP ages were normalized to -25 per mil. If the ratio and age are accompanied by an ("), then the C13/C12 value was estimated, based on values typical of the material type. The quoted results are NOT calibrated to calendar years. Calibration to calendar years should be calculated using the Conventional C14 age.

Laboratorynamber: Retam23433
Conventional radiocarbots áat - $130 \pm 60 \mathrm{BP}$
2 Sigma calibrated rew (95\% probablity)

> Intercept data

Intercept of radiocarton age with calibration curve:
1 Sigma calibrated resull:
Cal AD 900 (Cal BP 1050)
Cal AD 870 to 990 (Cal BP 1080 to 960)

Whatatory unm ber:
Beta-2 2343

 (95\% probabilicy)

Intercept data
Intercept of radiocaroon age with calitiorion curve:

- Sigmacalibrated result:

Cal AD 980 (Cal BP970)
Cal AD 900 to 1000 (Cal BP 10506050) (68\% probability)
$1090 \pm 40 \mathrm{BP}$

References:
Dutubaseusert
JNTC ALP 8
Calibmitun Datanse
Ediorial Comment Picht H, 1998, Radiocarbon40(3), axij-xit
Stuiver, M, van der Phe Calibration
INTCAL98 Radiocarb 1098, Radiocarbon 40 (3), pl 041-1083
Stuiver, M. et al.,
ematles
A Simplified A ppratach to Calibrarimg Ratiocarbom 35 (3) p317-322
Talma, A. S., Vose... Radiocarbon Dating Laboratory
Beta Analy tic Radiocat-

CALIBRATION OF RADIOCARBON AGE TO CALENDAR YEARS

(Variables: C13C12=-23.9:1ab. mult=1)
Laboratorynumber: fenco 223135

Conyentional radiocarbonage:
2 Sigma calibrated resmet : (95% probablifsy)

1200:40 BP

CuAD 920 to 960 (Cal BP 1030 to 1000)

Intercept data

Intercepts of radiocarbon age with calibration curve:

1 Sigma calibrated result:

Cal AD $810(\mathrm{Cal} \mathrm{BP} \mathrm{1140)}$ and
Cal AD $840(\mathrm{Cal} \mathrm{BP} \mathrm{1110)}$ and
Cal AD 860 (Cal BP 1100)
CalAD 780 to 890 (Cal BP 1170 to 1060)
(68% probability)

References:
Dafiablaseused
int calgs
Calibration Dasabase
Ealiot ral Comment
Stulver, M, van der Plicht, H., 1998, Radiacarbon 40(3), pxit-xili
NTCAL.98 Radiocarban A ge Calibration
Stuiver. 1 at at 1998 Restiocarbon 40 (3), pl (if) $1-1083$
Mathematicy

Ta!me, A S, Yoge!, J. (., 1993, Radiocarbon 35(2), p317-323

LIBRATION OF RADIOCARBON AGETOCA
Laboratorynamber: Beta-223436
Conventlonak radiogartoo age: $180 \pm 4013 \mathrm{E}$
 (95% probability)

Cal AD 1720 to $1880(\mathrm{C}$ al BP 230 to 70) Ha 台
Cal AD 1910 to $1950(\mathrm{Cal} \mathrm{BP} 40$ to 0)
Intercepl data

Intercepts of radiocarbon age with calbration curve:

1 Sigma calibrated results:
(68% probability)

Cal AD 1670 (Cal BP 280) and Cal AD 1770 (CalBP 180) and Cal AD 1800 (CalBP 150) and Cal AD 1940 (Cal BP 10) and Cal AD 1950 (CalBP 0)
Cal AD 1660 to 1680 (Cal BP 290 to 260) ant
Cal AD 1730 to 1810 (Cal BP 220 to 140) and
Cal AD 1930 to 1950 (Cal BP 20 to 0)

References:
Dabaseuseal

$$
\text { INTCAL9 } 8
$$

Edintial Comment

NTCAE98 Radiocarb on Age Calibration
Mathematics

CALIBRATION OF RADIOCARBON AGE TO CALENDAR YEARS

(Variables: C13/C12=25.51ab, mult=1)
Laboratorynumber: Eetan 12349
Conveacional radiocarbonage:
2. Sigma calibrated result: Col PC2140 to 1910 ($\mathrm{CaIRP4090}$ to 3860) (95% probability)
$3650 \pm 408 x^{2}$

Intercept data
Intercept of radiocarbon age with calibration curve:

1 Sigmacalibrated results:
(68% probability)
CalBC 2020 (CalBP 3970)
Cal BC 2120 to 2100 (Cal BP 4060 to 4050) and Cal BC 2040 to 1950 (Cal BP 3990 to 3900)

Beta Analytic Radiocarbon Dating Laboratory
(Vatiables: C13/C)2-23:1ab,mult=1)
Laboratorymumber: Beta-z 23.338

Conventional radiocarboa age:
2 Sigma calibrated results: (95\% probability)
$2150 \pm 40 \mathrm{M}$:
Cal BC 360 to $280(\mathrm{Cal} \mathrm{BP} 2310$ to 2230) and
Cal BC 240 to 60 (Cal BP 2190 to 2010)
Intercept dâta

Cal BC 190 (Cal BP 2140)
Ca] BC 340 to $320(\mathrm{Cal} \mathrm{BP} 2290$ to 2270) and Cal BC 210 to 160 (Cal BP 2160 to 2100)
(68% probability)

References:
Datobaseused
INTCAL98
Cal㘯ration Dan abse
Edionrial Comment
Stuiver, M., van der Plichr, H., 1998 , Radiacarban 40(3), pxii-xin
AL. 98 Radiocarbon Age Calaration
INTCAL98 Radiocara on A808 Radiocarbon40 (3). Mill-1083
Stuiver, M.
Mathematics
A Simplified Appraach to Calibratitg Cl4D als

CALIBRATION OF RADIOCARBON AGE TO CALENDAR YEARS

(Variables: C $13 / \mathrm{C} 12=-251 \mathrm{lab} . \mathrm{mal}=1$)
Laboratory number: Beta-223639
Conventional radiocarbonage: 1020 a 40 BP
2 Sigma calibrated result: CalAD g7otolo 10 (CalBP980 to910)
(95% probability)
Intercept data
Intercept of radiocarbon age
with calibration curve: Cal AD 1010 (CalBP940)
1 Sigra calibrated result: Cal AD 990101030 (Cal BP960 to 920) (68% probability)

Beta Analytic Radiocarbon Dating Laboratory

BRATION OF RADIOCARBON
Laboratory max bes: Betach-22340

Conventional radiocarbotesters
2 Sigma calibrated result:
(95% probability)

Cai AD 650 to $780(\mathrm{Cal} \mathrm{BP} 1300$ to 1170$)$

Intercept data
Intercept of radiocarbon age with calibration curve:

1 Sigma calibrated restits: (68% probability)

Cal AD $690(\mathrm{Cal} \mathrm{BP} 1260)$
Cal AD $67010720(\mathrm{Cal} \mathrm{BP} 1280$ to 1230$)$ and Cai AD 740 to 760 (Cal BP 1210 to 1190)

Taima. 5 , Yogel C 1933, Radiocarbon 35 (2), p313-322
Beta Analytic Radiocarbon Dating Laboratory

CALIBRATION OF RADIOCARBON AGE TO CALENDAR YEARS

(Variables: C $13 / C 12=-23.3: 1 a b, m u t=1$)
Haboratorynumber: Beta-223441
Conventional radioearbonage: $1920 \pm 50 \mathrm{~B}$
2 Sigmamalibrated result: CalBC 30 to ©al Ad 220 (CalBP 1980 to 1730) $(95 \%$ probability)

Intercept data
Intercept of radiocarbon age
withealibration curve: Cal AD 80 (Cal BP 1870)
1 Sigmacalibrated result: Cal AD 40 to 130 (Cal BP 1900 to 1820)
(68% probability)

Talma, A. S, Yogel, J. C., 1993, Radiotarbon 35 (2), p317.322

Beta Analytic Inc.
4985 SW 74 Court
Miami, Florida 33155 USA
Director

Tel: 3056675167
Fax: 3056630964
ARKEOLOGUS : What:
ISTAVAPGIER
Mr. Ronald Hatfield
Consistent Accuracy Delivered On Time. beta@radiocarbon.com
www.radiocarbon.com

December 21, 2007
Mr. Gitte Kjeldsen
Arkeologisk Museum i Stavanger
Boks 478 Sentrum
Stavanger, N-4002 Norway
RE: Radiocarbon Dating Results For Samples 0615-272, 0615-287, 0615-307, 0615-329, 0615-359, 0615-363

Dear Mr. Kjeldsen:
Enclosed are the radiocarbon dating results for six samples recently sent to us. They each provided plenty of carbon for accurate measurements and all the analyses proceeded normally. As usual, the method of analysis is listed on the report with the results and calibration data is provided where applicable.

As always, no students or intern researchers who would necessarily be distracted with other obligations and priorities were used in the analyses. We analyzed them with the combined attention of our entire professional staff.

If you have specific questions about the analyses, please contact us. We are always available to answer your questions.

Our invoice is enclosed. Please, forward it to the appropriate officer or send VISA charge authorization. Thank you. As always, if you have any questions or would like to discuss the results, don't hesitate to contact me.

REPORT OF RADIOCARBON DATING ANALYSES

Mr. Gitte Kjeldsen
Report Date: 12/21/2007
Arkeologisk Museum i Stavanger
Material Received: 11/26/2007

Sample Data
Sample Data

> Measured Radiocarbon Age

$13 \mathrm{C} / 12 \mathrm{C}$ Ratio

Conventional Radiocarbon Age(*)

Beta $-237778 \quad 2220+/-40 \mathrm{BP} \quad-22.50 / 00 \quad 2260+/-40 \mathrm{BP}$
SAMPLE: 0615-272
ANALYSIS: AMS-Standard delivery
MATERIAL/PRETREATMENT : (charred material): acid/alkali/acid
2 SIGMA CALIBRATION : Cal BC 400 to 340 (Cal BP 2350 to 2290) AND Cal BC 330 to 200 (Cal BP 2280 to 2150)

Beta 237779	$2400+/-40 \mathrm{BP}$	$-24.1 \% \% 0$	$2410+/-40 \mathrm{BP}$

SAMPLE: 0615-287
ANALYSIS: AMS-Standard delivery
MATERIAL/PRETREATMENT : (charred material): acid/alkali/acid
2 SIGMA CALJBRATION: Cal BC 750 to 690 (Cal BP 2700 to 2640) AND Cal BC 660 to 640 (Cal BP 2610 to 2590) Cal BC 590 to 400 (Cal BP 2540 to 2340)

Beta $-237780 \quad 1270+1-40 \mathrm{BP} \quad-24.2 \% \% 0 \quad 1280+40 \mathrm{BP}$
SAMPLE: 0615-307
ANALYSIS : AMS-Standard delivery
MATERIAL/PRETREATMENT : (charred material): acid/alkali/acid
2 SIGMA CALIBRATION : Cal AD 660 to 810 (Cal BP 1290 to 1140)
$\begin{array}{lll}\text { Beta }-237781 & 1300+/-40 \mathrm{BP} & -28.5 \% \\ 1240+1-40 \mathrm{BP}\end{array}$
SAMPLE: 0615-329
ANALYSIS : AMS-Standard delivery
MATERIAL/PRETREATMENT : (seeds): acid/alkali/acid
2 SIGMA CALIBRATION : Cal AD 670 to 890 (Cal BP 1280 to 1060)

Beta -237782	$2140+/-40 \mathrm{BP}$	-23.0%
SAMPLE : $0615-359$		
ANALYSIS : AMS-Standard delivery		
MATERIAL/PRETREATMENT: (charred material): acid/alkal/acid		
2 SIGMA CALIBRATION : Cal BC 370 to 100 (Cal BP 2320 to 2050)		

Dates are reported as RCYBP (raduicarbon years before present, "present" = 1950A.D.). By International convention, the modern reference standard was 95% of the C14 content of the National Bureau of Standards' Oxalic Acid \& calculated using the Libby C14 half life (5568 years). Quoted errors represent 1 standard deviation statistics (68% probability) \& are based on combined measurements of the sample, tackground, and modern reference standards.

Measured C13/C12 ratios were calculated relative to the PDB-1 international standard and the RCYBP ages were normalized to -25 per mil. If the ratio and age are accompanled by an (*), then the C13/C12 value was estimated, based on values typical of the material type. The quated results are NOT calibrated to calendar years. Calibration to calendar years should be calculated using the Conventional C14 age.

REPORT OF RADIOCARBON DATING ANALYSES

Mr. Gitte Kjeldsen

Report Date: 12/21/2007

Sample Data	Measured Radiocarbon Age	$\begin{gathered} 13 C / 12 C \\ \text { Ratio } \end{gathered}$	Conventional Radiocarbon Age(*)
Beta - 237783	$2060+1-40 \mathrm{BP}$	-22.2 \%\%o	$2110+1.40 \mathrm{BP}$
SAMPLE: 0615-363			
ANALYSIS : AMS-Standard delivery			
MATERIAL/PRETREATMENT : (charred material): acid/alkal/acid			
2 SIGMA CALIBRATION	40 to 320 (Cal BP 229	ND Cal BC	P 2160 to 1990)

Dates are reported as RCYBP (raduicarbon years before present "present" = 1950A.D.). By International convention, the modern reference standard was 95% of the C14 content of the National Bureau of Standards' Oxalic Acid \& calculated using the Llbby C14 half life (5568 years). Quoted errors represent 1 standard deviation statistics (68% probability) \& are based on combined measurements of the sample, background, and modern reference standards.

Measured C13/C12 ratios were calculated relative to the PDB-1 international standard and the RCYBP ages were normalized to -25 per mil. If the ratio and age are accompanied by an ("), then the C13/C12 value was estimated, based on values typical of the material type. The quoted results are NOT calibrated to calendar years. Catibration to calendar years should be calculated using the Conventional C14 age.

CALIBRATION OFRADIOCARBON AGE TO CALENDAR YEARS

(Variables: $\mathrm{C} 13 / \mathrm{C} 12=-22.5$:lab. mult $=1$)
Laboratory number: Beta-237778
Conventional radiocarbon age: $2260 \pm 40 \mathrm{BP}$
2 Sigma calibrated results: Cal BC 400 to 340 (Cal BP 2350 to 2290) and (95% probability) Cal BC 330 to 200 (Cal BP 2280 to 2150)

Intercept data
Intercept of radiocarbon age with calibration curve: Cal BC 370 (Cal BP 2320)

1 Sigma calibrated results: Cal BC 390 to 360 (Cal BP 2340 to 2300) and (68% probability) Cal BC 290 to 240 (Cal BP 2240 to 2180)

References:
Database used
INTCALOA
Calibration Database
INTCALOA Radiocarbon Age Callbration
In Cal0 4: Calibration Issue of Radio carbon (Volume 46, nr 3, 2004).
Mathematics
A Simplified Approoch to Callbrating C1A Dates
Talma, A. S., Vogel.J. C., 1993, Radiocarbon 35(2), p317-322

Beta Analytic Radiocarbon Dating Laboratory

CALIBRATION OFRADIOCARBON AGE TO CALENDAR YEARS

(Variables: C13/C12=-24.1:lab. mult=1)
Laboratory number: Beta-237779
Conventional radiocarbon age: $2410 \pm 40 \mathrm{BP}$
2 Sigma calibrated results: Cal BC 750 to 690 (Cal BP 2700 to 2640) and
(95\% probability) Cal BC 660 to 640 (Cal BP 2610 to 2590) and
Cal BC 590 to 400 (Cal BP 2540 to 2340)
Intercept data
Intercept of radiocarbon age
with calibration curve: Cal BC 410 (Cal BP 2360)
1 Sigma calibrated result: Cal BC 530 to 400 (Cal BP 2480 to 2350) (68% probability)

References:

Database used

JNTCA LOA
Calibration Dasabase
INTCALOA Radlocarbon Age Callbration
In tCalo 4: Calibration Issue of Radiocarbon (Volume 46, nr 3, 2004).
Mathematics
A Simplified Approach to Callbrating C1ADates
Talma, A.S., VogeI, J. C., 1093 , Radiocarb on 35(2), p317-322

Beta Analytic Radiocarbon Dating Laboratory

CALIBRATION OFRADIOCARBON AGE TO CALENDAR YEARS

(Variables: $\mathrm{C} 13 / \mathrm{Cl} 2=-24.2$ lab. mult=1)
Laboratory number: Beta-237780
Conventional radiocarbon age: $\quad 1280 \pm 40 \mathrm{BP}$
2 Sigma calibrated result: Cal AD 660 to 810 (Cal BP 1290 to 1140) (95\% probability) Intercept data

Intercept of radiocarbon age
with calibration curve: Cal AD 690 (Cal BP 1260)
1 Sigma calibrated result: Cal AD 670 to 770 (Cal BP 1280 to 1180) (68% probability)

References:
Dara base used
INTCALOA
Cajbratlon Database
INTCAL04 Radiocarb on Age Callbration
Incal0 4: Calibration Issue of Radiocarbon (Volume 46, nr 3, 2004).

Marhemarles

A Simpllfed Approach to Callbrasing C14D ates
Talma. A. S., Vogel. J. C., 1993. Radiocarbon 35(2), p317-322

Beta Analytic Radiocarbon Dating Laboratory

CALIBRATION OFRADIOCARBON AGE TO CALENDAR YEARS

(Variables: $\mathrm{Cl} 3 / \mathrm{Cl} 2=-28.5$:lab. mult $=1$)
Laboratory number: Beta-237781
Conventional radiocarbon age: $1240 \pm 40 \mathrm{BP}$
2 Sigma calibrated result: Cal AD 670 to 890 (Cal BP 1280 to 1060) (95\% probability)

Intercept data
Intercept of radiocarbon age with calibration curve:

Cal AD 770 (Cal BP 1180)
1 Sigma calibrated result: Cal AD 690 to 810 (Cal BP 1260 to 1140) (68\% probability)

References:
Database used
INTCALO 4
Calibration \cap atabase
INTCAL04 Ra dlocarb on Age Callbration
In ICal0 4: Calibration Issue of Radiocarbon (Volume 46, nr 3, 2004)
Mathematics
A Simplified Apprach to Callbrating CIAD ates
Talma, A. S., Vogel, J. C, 1993 , Radiocarbon 35(2), p317-322

Beta Analytic Radiocarbon Dating Laboratory

CALIBRATION OFRADIOCARBON AGE TO CALENDAR YEARS

(Variables: $\mathrm{C} 13 / \mathrm{C} 12=-23: \mathrm{lab}$. mult $=1$)
Laboratory number: Beta-237782
Conventional radiocarbon age: $\quad 2170 \pm 40 \mathrm{BP}$
2 Sigma calibrated result: Cal BC 370 to 100 (Cal BP 2320 to 2050) (95\% probability) Intercept data

Intercept of radiocarbon age with calibration curve: Cal BC 200 (Cal BP 2150)
1 Sigma calibrated results: Cal BC 350 to 290 (Cal BP 2300 to 2240) and (68% probability) Cal BC 220 to 170 (Cal BP 2170 to 2120)

CALIBRATION OFRADIOCARBON AGE TO CALENDAR YEARS

(Variables: $\mathrm{Cl} 3 / \mathrm{Cl} 2=-22.2$:lab. $\mathrm{mult}=1$)
Laboratory number: Beta-237783
Conventional radiocarbon age: $2110 \pm 40 \mathrm{BP}$
2 Sigma calibrated results: Cal BC 340 to 320 (Cal BP 2290 to 2270) and
(95\% probability) Cal BC 210 to 40 (Cal BP 2160 to 1990)
Intercept data
Intercept of radiocarbon age
with calibration curve: Cal BC 160 (Cal BP 2110)
1 Sigma calibrated result: Cal BC 190 to 60 (Cal BP 2140 to 2010)
(68\% probability)

Beta Analytic Radiocarbon Dating Laboratory

Beta Analytic Inc.

January 29, 2008
Mr. Wite Kjeldsen
Arkeologisk Museum i Stavanger
Bows 478 Centrum
Stavanger, N-4002 Norway
RE: Radiocarbon Dating Results For Samples 0615-356, 0615-376, 0615-294, 0615-295, 0615-296,
0615-300, 0615-306, 0615-375, 0615-384, 0615-385
Dear Mr. Kjeldsen:
Enclosed are the radiocarbon dating results for ten samples recently sent to us. They each provided plenty of carbon for accurate measurements and all the analyses proceeded normally. As usual, the method of analysis is listed on the report with the results and calibration data is provided where applicable,

As always, no students or intern researchers who would necessarily be distracted with other obligations and priorities were used in the analyses. We analyzed them with the combined attention of our entire professional staff.

If you have specific questions about the analyses, please contact us. We are always available to answer your questions.

Our invoice is enclosed. Please, forward it to the appropriate officer or send VISA charge authorization. Thank you. As always, if you have any questions or would like to discuss the results, don't hesitate to contact me.

Sincerely,

BETA ANALYTIC INC.
UNIVERSITY BRANCH
4985 S.W. 74 COURT

REPORT OF RADIOCARBON DATING ANALYSES

Mr. Gitte Kjeldsen

Report Date: 1/29/2008
Arkeologisk Muscum i Stavanger
Material Received: 1/2/2008

Sample Data

> Measured Radiocarbon Age
13C/12C
Ratio

Conventional
Radiocarbon Age(*)

Beta 239266
$3480+1-40 \mathrm{BP}$
-27.1 o/oo
$3450+1.40 \mathrm{BP}$
SAMPLE: 0615-356
ANALYSIS : AMS-Standard delivery
MATERIAL/PRETREATMENT : (charred material): acid/alkali/acid
2 SIGMA CALIBRATION : Cal BC 1880 to 1670 (Cal BP 3830 to 3620)

Beta - 239267
$2290+1-40 \mathrm{BP}$
$-26.0 \% \% 0$
$2270+1-40 \mathrm{BP}$
SAMPLE: 0615-376
ANALYSIS : AMS-Standard delivery
MATERIAL/PRETREATMENT : (charred material): acid/alkali/acid
2 SIGMA CALIBRATION : Cal BC 400 to 340 (Cal BP 2350 to 2290) AND Cal BC 320 to 210 (Cal BP 2270 to 2160)
Beta $-239268 \quad 2200+/-70 \mathrm{BP} \quad-25.7 \% / 00 \quad 2190+1.70 \mathrm{BP}$

SAMPLE: 0615-294
ANALYSIS : Radiometric-Standard delivery
MATERIAL/PRETREATMENT : (charred material): acid/alkali/acid
2 SIGMA CALIBRATION: Cal BC 400 to 50 (Cal BP 2340 to 2000)

Dates are reported as RCYBP (raduicarbon years before present, "present" $=1950 \mathrm{~A} . \mathrm{D}$.$) . By International convention, the modern$ reference standard was 95% of the C14 content of the National Bureau of Standards' Oxalic Acid \& calculated using the Libby C14 half life (5568 years). Quoted errors represent 1 standard deviation statistics (68% probability) \& are based on combined measurements of the sample, background, and modern reference standards.

Measured C13/C12 ratios were calculated relative to the PDB-1 international standard and the RCYBP ages were normalized to -25 per mil. If the ratio and age are accompanied by an ("), then the C13/C12 value was estimated, based on values typical of the material type. The quoted results are NOT calibrated to calendar years. Calibration to calendar years should be calculated using the Conventional C14 age.

REPORT OF RADIOCARBON DATING ANALYSES

Mr. Gitte Kjeldsen

Report Date: 1/29/2008
Sample Data
Measured
Radiocarbon Age
$13 \mathrm{C} / 12 \mathrm{C}$
Ratio

Conventional
Radiocarbon Age(*)

Beta 239271
$2280+/-60 \mathrm{BP}$
$-26.50 \% 0$
$2260+/-60 \mathrm{BP}$
SAMPLE : 0615-300
ANALYSIS : Radiometric-Standard delivery
MATERIAL/PRETREATMENT : (charted material): acid/alkali/acid
2 SIGMA CALIERATION : Cal BC 410 to 180 (Cal BP 2360 to 2130)
Beta-239272 $\quad 1300+1-40 \mathrm{BP}$
SAMPLE : $0615-306$
ANALYSIS : AMS-Standard delivery
MATERIAL/PRETREATMENT : (charred material): acid/alkali/acid
2 SIGMA CALIBRATION : Cal AD 660 to 870 (Cal BP 1290 to 1080)

Beta - 239273
$1170+1.40 \mathrm{BP}$
-25.9 o/00
$1160+/ 40 \mathrm{BP}$
SAMPLE: 0615-375
ANALYSIS: AMS-Standard delivery
MATERIAL/PRETREATMENT : (charred material): acid/alkali/acid
2 SIGMA CALIBRATION : Cal AD 770 to 980 (Cal BP 1180 to 970)

Beta-239274
$1240+1.60 \mathrm{BP}$
$-24.10 / 00$
$1250+1-60 \mathrm{BP}$
SAMPLE : 0615-384
ANALYSIS : Radiometric-Standard delivery (with extended counting)
MATERIAL/PRETREATMENT : (charred material): acid/alkali/acid
2 SIGMA CALIBRATION: Cal AD 660 to 900 (Cal BP 1290 to 1050)

Beta-239275
$1300+1 / 50 \mathrm{BP}$
$-23.8 \mathrm{o} / 00$
$1320+/-50 \mathrm{BP}$
SAMPLE: 0615-38.5
ANALYSIS : Radiometric-Standard delivery
MATERIAL/PRETREATMENT : (charred material): acid/alkali/acid
2 SIGMA CALIBRATION : Cal AD 640 to 780 (Cal BP 1310 to 1170)

[^8]Measured C13/C12 ratios were calculated relative to the PDB-1 international standard and the RCYBP ages were normalized to -25 per mil. If the ratlo and age are accompanied by an ("), then the C13/C12 value was estimated, based on values typical of the material type. The quoted results are NOT callbrated to calendar years. Calibration to calendar years should be calculated using the Conventional C14 age.

CALIBRATION OF RADIOCARBON AGE TO CALENDAR YEARS

(Variables: C13/C12=-27.1:lab. mult=1)

$$
\begin{aligned}
& \text { Laboratory number: } \text { Beta-239266 } \\
& \text { Conventional radiocarbon age: } \mathbf{3 4 5 0 \pm 4 0 \mathrm { BP }} \\
& \mathbf{2} \text { Sigma calibrated result: } \text { Cal BC 1880 to } 1670 \text { (Cal BP 3830 to 3620) } \\
&(95 \% \text { probability) } \\
& \text { Intercept data } \\
& \text { Intercept of radiocarbon age } \\
& \text { with calibration curve: } \text { Cal BC } 1750 \text { (Cal BP 3700) } \\
& \text { 1 Sigma calibrated results: } \text { Cal BC 1870 to 1850 (Cal BP 3820 to 3800) and } \\
& \text { (68\% probability) } \text { Cal BC 1780 to 1730 (Cal BP 3730 to 3680) and } \\
& \text { Cal BC 1720 to } 1690 \text { (Cal BP 3660 to 3640) }
\end{aligned}
$$

References:
Database used
INTCA LOA
Ca lib ration Database
INTCALOA Radiocarbon Age Calibration
InICal04: Calibration Issue of Radiocarbon (Volume 46, nr 3, 2004).
Mathematics
A Simpllfied Approach to Calibrating C14Dafes
Talma, A. S., Yogel, J. C., 1993, Radiocarbon 35(2), p317-322

Beta Analytic Radiocarbon Dating Laboratory

CALIBRATION OFRADIOCARBON AGETO CALENDAR YEARS

(Variables: $\mathrm{C} 13 / \mathrm{Cl} 2=-26: 1 \mathrm{ab} . \mathrm{mult}=1$)
Laboratory number: Beta-239267
Conventional radiocarbon age: $2270 \pm 40 \mathrm{BP}$
2 Sigma calibrated results:
(95\% probability)
Cal BC 400 to 340 (Cal BP 2350 to 2290) and Cal BC 320 to 210 (CalBP 2270 to 2160)

Intercept data
Intercept of radiocarbon age
with calibration curve: Cal BC 380 (Cal BP 2330)
1 Sigma calibrated results: Cal BC 390 to 360 (Cal BP 2340 to 2310) and (68% probability) Cal BC 280 to 260 (Cal BP 2230 to 2200)

References:
Database used
INTCA LOA
Calibravion Database
INTCAL04 Radiocarbon Age Calibration
In ICal04: Calibration lssue of Radio carbon (Volume 46, nr 3, 2004)
Mathematics
A Simplified Approach to Callbrating C14 Dates
Talma, A. S., Vogel, J. C., 1993 , Radiocarb on 35(2), p317.322

Beta Analytic Radiocarbon Dating Laboratory

CALIBRATION OFRADIOCARBON AGETO CALENDAR YEARS

(Variables: C13/C12=-25.7:lab. mult=1)

Laboratory number: Beta-239268

Conventional radiocarbon age: $2190 \pm 70 \mathrm{BP}$
2 Sigma calibrated result: Cal BC 400 to 50 (Cal BP 2340 to 2000) (95\% probability) Intercept data

Intercepts of radiocarbon age
with calibration curve: Cal BC 340 (Cal BP 2290) and
Cal BC 320 (Cal BP 2270) and Cal BC 210 (Cal BP 2160)

1 Sigma calibrated result: Cal BC 370 to 170 (Cal BP 2320 to 2120) (68\% probability)

References:
Data base used
INTCALOA
Calibration Database
INTCAL04 Radiocarbon Age Calibration
In ICalO 4: Calibratlon Is sue of Radio carbon (Volume 46, nr 3, 2004).
Mathematics
A Simpllfed Approach to Calibrafing C14Dates
Talma, A.S., Vogel.J. C., 1993, Radiacarban 35(2), p317.322

Beta Analytic Radiocarbon Dating Laboratory

CALIBRATION OF RADIOCARBON AGE TO CALENDAR YEARS

(Variables: $\mathrm{Cl} 3 / \mathrm{Cl} 2=-25.9$:lab. mult $=1$)
Laboratory number: Beta-239269
Conventional radiocarbon age: $2020 \pm 60 \mathrm{BP}$
2 Sigma calibrated result: Cal BC 180 to Cal AD 90 (CalBP 2130 to 1860)
(95\% probability)
Intercept data
Intercept of radiocarbon age
with calibration curve: Cal BC 30 (Cal BP 1980)
1 Sigma calibrated result: Cal BC 90 to Cal AD 50 (Cal BP 2040 to 1900) (68% probability)

References:
Database used
INTCALOA
Calibrarion Database
INTCAL04 Radiocarb on Age Callbration
IntCal04: Calibration Issue of Radiocarbon (Volume 46, nr 3, 2004)
Mathemalles
A Simplified Approach to Calibrating C14 Dates
Talma, A. S., Vogel. J. C., 1093, Radiocarbon 35(2), p313-322

Beta Analytic Radiocarbon Dating Laboratory

CALIBRATION OFRADIOCARBON AGETO CALENDAR YEARS

(Variables: $\mathrm{C} 13 / \mathrm{Cl} 2=-26.6: \mathrm{lab} . \mathrm{mult}=1$)
Laboratory number: Beta-239270
Conventional radiocarbon age: $3320 \pm 40 \mathrm{BP}$
2 Sigma calibrated result: Cal BC 1690 to 1500 (Cal BP 3640 to 3450)
(95\% probability)
Intercept data
Intercept of radiocarbon age
with calibration curve: Cal BC 1610 (Cal BP 3560)
1 Sigma calibrated result: Cal BC 1650 to 1530 (Cal BP 3600 to 3480) (68% probability)

References:
Data base used
INTCALO4
Calibration Database
intcalo4 Radiocarb on Age Calibration
IntCal0 4: Calibration lssue of Radiocarbon (Volume 46, hr 3, 2004).
Mathematics
A Simplified Approach to Calitrating C1AD ates
Talma, A. S., Vogeh. J. C., 1993 , Radiocarbon 35(2), p317.322

CALIBRATION OFRADIOCARBON AGE TO CALENDAR YEARS

(Variables: $\mathrm{Cl} 3 / \mathrm{Cl} 2=-26.5$: lab. $\mathrm{mult}=1$)
Laboratory number: Beta-239271
Conventional radiocarbon age: $\quad 2260 \pm 60 \mathrm{BP}$
2 Sigma calibrated result: Cal BC 410 to 180 (Cal BP 2360 to 2130)
(95\% probability)
Intercept data
Intercept of radiocarbon age
with calibration curve: Cal BC 370 (Cal BP 2320)
1 Sigma calibrated results: Cal BC 390 to 350 (Cal BP 2340 to 2300) and
(68% probability) Cal BC 300 to 210 (Cal BP 2260 to 2160)

Beta Analytic Radiocarbon Dating Laboratory

CALIBRATION OFRADIOCARBON AGE TO CALENDAR YEARS

(Variables: C13/C12=-26.6:lab. mult $=1$)
Laboratory number: Beta-239272
Conventional radiocarbon age: $\quad 1270 \pm 40 \mathrm{BP}$
2 Sigma calibrated result: Cal AD 660 to 870 (Cal BP 1290 to 1080) (95\% probability)

Intercept data
Intercepts of radiocarbon age with calibration curve: Cal AD 710 (Cal BP 1240) and

Cal AD 750 (Cal BP 1200) and
Cal AD 760 (Cal BP 1190)
1 Sigma calibrated result: Cal AD 680 to 780 (Cal BP 1270 to 1170)
(68\% probability)

References:
Datubose used
INTCA LOd
Calibration Database
INTCALOA Radiocarhon Age Calibration
IntC all 4: Calibration Issue of Radiocarbon (Volume 46, 14 3, 2004).
Mathemarics
A Simplified Approach to Callbraling C14Dates
Talma, A. S., Vogel, J. C., 1993, Radiocarbon 35(2), p317-322

Beta Analytic Radiocarbon Dating Laboratory

CALIBRATION OFRADIOCARBON AGE TO CALENDAR YEARS

(Variables: C13/Cl2=-25.9:lab. mult $=1$)

Laboratorynumber: Beta-239273

Conventional radiocarbon age: $1160 \pm 40 \mathrm{BP}$
2 Sigma calibrated result: Cal AD 770 to 980 (Cal BP 1180 to 970)
(95\% probability)
Intercept data
Intercept of radiocarbon age
with calibration curve: Cal AD 890 (Cal BP 1060)
1 Sigma calibrated results: Cal AD 810 to 900 (Cal BP 1140 to 1050) and (68% probability) Cal AD 920 to 950 (Cal BP 1030 to 1000)

References:
Database used
intcalo 4
Calibration Database
INTCALOA Radiocarbon Age Callbration
IntCal04: Calibration Is sue of Radio carbon (Volume 46, nr 3, 2004).
Mathematics
A Simpllfied Approach to Callbrating C1A Dates
Talma, A, S., Vogel, J. C., 1993, Radiocarb on 35(2), p317-322

CALIBRATION OFRADIOCARBON AGETO CALENDAR YEARS

(Variables: C13/C12=-24.1:lab. mult=1)
Laboratory number: Beta-239274
Conventional radiocarbon age: $1250 \pm 60 \mathrm{BP}$
2 Sigma calibrated result: Cal AD 660 to 900 (Cal BP 1290 to 1050) (95\% probability) Intercept data
Intercept of radiocarbon age with calibration curve: Cal AD 770 (Cal BP 1180)

1 Sigma calibrated result: Cal AD 680 to 870 (Cal BP 1270 to 1080)
(68% probability)

CALIBRATION OFRADIOCARBON AGE TO CALENDAR YEARS

(Variables: $\mathrm{Cl} 3 / \mathrm{Cl} 2=-23.8$ lab. mult $=1$)
Laboratory number: Beta-239275
Conventional radiocarbon age: $1320 \pm 50 \mathrm{BP}$
2 Sigma calibrated result: Cal AD 640 to 780 (Cal BP 1310 to 1170) (95\% probability) Intercept data
Intercept of radiocarbon age
with calibration curve: Cal AD 670 (Cal BP 1280)
1 Sigma calibrated results: Cal AD 660 to 710 (Cal BP 1290 to 1240) and (68% probability) Cal AD 750 to 760 (Cal BP 1200 to 1190)

References:
Database used
INTCALO 4
Callbration Database
INTCALOA Radiocarbon Age Callbralion
InfCal04: Calibration Is sue of Radiocarbon (Volume 46, nr 3. 2004).
Marthematics
A Simpllfied Approach to Callbralling C14 Dates
Talma. A. S., Vogel J. C., 1993. Radiocarbon 35(2), p317.322

Beta Analytic Radiocarbon Dating Laboratory

Consistent Accuracy Delivered On Time.

Beta Analytic Inc. 4985 SW 74 Court Miami, Florida 33155 USA
Tel: 3056675167
Fax: 3056630964 beta@radiocarbon.com www.radiocarbon.com

ARKEOLOGISK MUSEUM
I STAVANGER

28 APR 2008
$\frac{\text { Int } \quad 99 / 7619-58}{\text { Ark. } 433 \text { Belay MHD }}$

April 17, 2008
Mr. Gitte Kjeldsen
Arkeologisk Museum i Stavanger
Boks 478 Centrum
Stavanger, N-4002
Norway

RE: Radiocarbon Dating Results For Samples 06-15-268, 06-15-257, 06-15-283, 06-15-365, 06-15-378
Dear Mr. Kjeldsen:
Enclosed are the radiocarbon dating results for five samples recently sent to us. They each provided plenty of carbon for accurate measurements and all the analyses proceeded normally. As usual, the method of analysis is listed on the report with the results and calibration data is provided where applicable.

As always, no students or intern researchers who would necessarily be distracted with other obligations and priorities were used in the analyses. We analyzed them with the combined attention of our entire professional staff.

If you have specific questions about the analyses, please contact us. We are always available to answer your questions.

Our invoice is enclosed. Please, forward it to the appropriate officer or send VISA charge authorization. Thank you. As always, if you have any questions or would like to discuss the results, don't hesitate to contact me.

REPORT OF RADIOCARBON DATING ANALYSES

Mr. Gitte Kjeldsen
Arkeologisk Museum i Stavanger

Report Date: 4/17/2008
Material Received: 3/13/2008

Sample Data

Measured
Radiocarbon Age

13C/12C
Ratio

Conventional
Radiocarbon Age(*)

$\begin{array}{llll}\text { Beta }-242467 & 1100+/ 40 \mathrm{BP} & -26.3 \% & 1080+1 / 40 \mathrm{BP}\end{array}$
SAMPLE: 06-15-268
ANALYSIS : AMS-Standard delivery
MATERIAL/PRETREATMENT : (charred material): acid/alkali/acid
2 SIGMA CALIBRATION : Cal AD 890 to 1020 (Cal BP 1060 to 930)

Beta - 242468
$1240+/ \ln 40 \mathrm{BP}$
-24.2 o/oo
$1250+/ .40 \mathrm{BP}$
SAMPLE: 06-15-257
ANALYSIS: AMS-Standard delivery
MATERIAL/RRETREATMENT : (charred material): acid/alkali/acid
2 SIGMA CALIBRATION : Cal AD 670 to 880 (Cal BP 1280 to 1070)

Beta - 242469
$2360+1-40 \mathrm{BP}$
-24.7 o/oo
$2360+/-40 \mathrm{BP}$
SAMPLE: 06-15-283
ANALYSIS: AMS-Standard delivery
MATERIAL/PRETREATMENT : (charred material): acid/alkali/acid
2 SIGMA CALIBRATION : Cal BC 520 to 380 (Cal BP 2470 to 2330)

Beta - 242470
$2020+/-40 \mathrm{BP}$
-12.4 o/oo
$2230+1-40 \mathrm{BP}$
SAMPLE: 06-15-365
ANALYSIS: AMS-Standard delivery
MATERIAL/PRETREATMENT : (charred material); acid/alkali/acid
2 SIGMA CALIBRATION : Cal BC 390 to 190 (Cal BP 2340 to 2140)

Beta - 242471
$2500+1.40 \mathrm{BP}$
-26.1 o/oo
$2480+/-40 \mathrm{BP}$
SAMPLE : 06-15-378
ANALYSIS: AMS-Standard delivery
MATERIAL/PRETREATMENT: (charred material); acid/alkali/acid
2 SIGMA CALIBRATION : Cal BC 780 to 410 (Cal BP 2730 to 2360)

Dates are reported as RCYBP (raduicarbon years before present, "present" = 1950A.O.). By International convention, the modern reference standard was 95% of the C14 content of the National Bureau of Standards' Oxalic Acid \& calculated using the Libby C14 half life (5568 years). Quoted errors represent 1 standard deviation statistics (68% probability) \& are based on combined measurements of the sample, background, and modern reference standards.

Measured C13/C12 ratios were calculated relative to the PDB-1 international standard and the RCYBP ages were normalized to -25 per mil. If the ratio and age are accompanied by an (*), then the $\mathrm{C} 13 / \mathrm{C} 12$ value was estimated, based on values typical of the material type. The quoted results are NOT calibrated to calendar years. Calibration to calendar years should be calculated using the Conventional C14 age.

CALIBRATION OF RADIOCARBON AGE TO CALENDAR YEARS

(Variables: C13/C12=-26.3:lab. mult=1)
Laboratory number: Beta-242467
Conventional radiocarbon age: $1080 \pm 40 \mathrm{BP}$
2 Sigma calibrated result: CalAD 890 to 1020 (Cal BP 1060 to 930)
$(95 \%$ probability) Intercept data

Intercept of radiocarbon age with calibration curve: Cal AD 980 (Cal BP 970)
1 Sigma calibrated results: Cal AD 900 to 920 (Cal BP 1050 to 1030) and (68% probability) Cal AD 950 to 1010 (Cal BP 1000 to 940)

References:
Dafabase used

$$
\text { INTCALO } 4
$$

Calibration Database
INTCALOA Radio carbon Age Calibration
IniCalO4: Calibration Issue of Radiocarbon (Volume 40, nr 3, 2004)
Mathematics
A Simplified Approach to Calibraling ClA Date
Talma, A.S., Vogel, J.C., 1993 , Radiocarbon 35(2), p317-322

Beta Analytic Radiocarbon Dating Laboratory

498.5 S.W. 74ih Cours, Miami, Florida 33155. Te! (305)667-5167. Fax: (305)663-0964• E-Mail: beta@radiocarbon, com

CALIBRATION OF RADIOCARBON AGE TO CALENDAR YEARS

(Variables: $\mathrm{Cl} 3 / \mathrm{Cl} 2=-24.2: \mathrm{lab} . \mathrm{mult}=1$)

Laboratory number: Beta-242468
Conventional radiocarbon age: $\quad 1250 \pm 40 \mathrm{BP}$
2 Sigma calibrated result: Cal AD 670 to 880 (Cal BP 1280 to 1070)
(95% probability)
Intercept data
Intercept of radiocarbon age
with calibration curve: Cal AD 770 (Cal BP 1180)
1 Sigma calibrated result: Cal AD 690 to 780 (C al BP 1260 to 1160) (68% probability)

Beta Analytic Radiocarbon Dating Laboratory

CALIBRATION OF RADIOCARBON AGE TO CALENDAR YEARS

(Variables: C13/C12=-24.7:lab. $\mathrm{mult}=1$)
Laboratory number: Beta-242469
Conventional radiocarbon age: $\mathbf{2 3 6 0} \pm \mathbf{4 0} B P$
2 Sigma calibrated result: CalBC 520 to 380 (Cal BP 2470 to 2330)
(95% probability)
Intercept data
Intercept of radiocarbon age
with calibration curve: CalBC 400 (Cal BP 2350)
1 Sigma calibrated result: Cal BC 410 to 390 (CalBP 2360 to 2340)
(68% probability)

References:
Database used
INTCALDA
Calibration Database
INTCALOA Radiocarbon Age Calibration
IntCal04: Calibration Issue of Radiocarbon (Yolunte 46, wr 3, 2004).
Mathematics
A Simpllfied Approach to Calibrafing C14 Dates
Talma, A.S., Kogel, J. C., 1993. Radiacarbon 15(2), p317-322
Beta Analytic Radiocarbon Dating Laboratory

CALIBRATION OF RADIOCARBON AGE TO CALENDAR YEARS

$$
\text { (Variables: C13/C12=-12.4:lab. mult }=1 \text {) }
$$

Laboratorynumber: Beta-242470
Conventional radiocarbon age: $\quad 2230 \pm 40 \mathrm{BP}$
2 Sigma calibrated result: CalBC 390 to 190 (CalBP 2340 to 2140) (95\% probability) Intercept data

Intercepts of radiocarbon age
with calibration curve: Cal BC 360 (Cal BP 2310) and Cal BC 280 (Cal BP 2230) and Cal BC 260 (Cal BP 2200)

1 Sigma calibrated results: Cal BC 380 to 340 (Cal BP 2330 to 2290) and (68% probability) Cal BC 320 to 210 (Cal BP 2270 to 2160)

CALIBRATION OF RADIOCARBON AGE TO CALENDAR YEARS

(Variables: C13/C12=-26.1:lab. mult=1)
Laboratory number: Beta-242471
Conventionalradiocarbon age: $\quad \mathbf{2 4 8 0} \pm 40 \mathrm{BP}$
2 Sigma calibrated result: Cal BC 780 to 410 (Cal BP 2730 to 2360)
(95\% probability) Intercept data
Intercepts of radiocarbon age
with calibration curve: Cal BC 740 (Cal BP 2690) and
Cal BC 690 (Cal BP 2640) and
Cal BC 660 (Cal BP 2610) and
CalBC 640 (Cal BP 2590) and
Cal BC 550 (Cal BP 2500)
1 Sigma calibrated result: CalBC 760 to 520 (CalBP 2710 to 2470)
(68% probability)

Beta Analytic Radiocarbon Dating Laboratory
1985S.W. 74th Cours, Mami, Florida 33155•Te1: 305)667-5167. Fax: (305)663-0961• E-Mail: bela@radiocarbon.com

Fixpunkter:
2006

	N	E	H
1	6543367.50	309695.20	64.78
2	6543340.34	309704.94	64.62
3	6543272.55	309742.20	60.23
4	6543194.97	309804.24	47.97
5	6543270.52	309808.18	55.82
6	6543403.37	309772.82	61.68
7	6543350.11	309860.34	57.65
8	6543300.16	309869.63	54.24
9	6543437.22	309855.76	59.01
10	6543489.05	309799.97	56.47
11	6543532.56	309876.48	54.28
12	6543474.11	309930.18	56.34
13	6543435.92	309742.57	60.78
14	6543436.33	309619.73	60.41
PP5476	6543343.33	309624.45	66.15

2007

	N	E	H
HP1	6543441.18	309852.27	58.66
HP2	6543469.20	309921.61	56.58
HP3	6543519.07	309906.40	54.51
HP4	6543293.10	309483.73	70.23
HP5	6543267.93	309439.12	71.35
HP6	6543290.91	309412.19	70.00
HP7	6543342.23	309707.17	64.48
HP8	6543272.54	309742.20	60.19
HP9	6543201.47	309805.38	47.55
HP10	6543279.12	309803.24	56.89
HP11	6543427.07	$309954.0 ?$	55.79
HP12	6543450.78	$3098 ? ? ? ?$	57.88
HP13	6543489.05	$3098 ? ? ? ?$	56.45

$s t b \mid \forall \forall \tau$
(1)

$$
\begin{aligned}
& \square \square \mathbb{N} \\
& \square^{\%}
\end{aligned}
$$

 assow ung 1 In : 7jorn (1)

 0) a monys troufacturra

- mpres ra mose W whoumemb
 Denne delen ffernet med sporede.
 1 tillegg en del seim. Har ilhe det Kvart $A: 6$ botter (6×121) masse. N

$$
\begin{aligned}
& \text { romone mus } \\
& \text { vounrif mo invol }
\end{aligned}
$$

$\frac{17}{\frac{2}{3}}$

$01: 123002597 \mathrm{~W}$

Tastarusta Ginr 28
Stavanger

$$
\begin{aligned}
& \text { Tegning nr. } 15 \\
& \text { 1:10 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { دa6uosions 8t Nub } \\
& \text { :10 }
\end{aligned}
$$

Tastarustá Grnr 28 Stavanger
Aks 2006/9
Hus 8
Profilbenk: tegning av profil
$1: 20 \quad$ i3/07/06
Tefnine Na. 16 (9) Kullhoidig silt lag
O Brent leire
0 Srin

(1!5od as)

Funcisn asuajg

G6apun ap asuajs

01:1 2x* L537yW

213)NサAVIS

- 1 SCYOVSV 1

150

 vunbapun (1)

vonstapun (1)
siny'stasve wit zap nixu! a yipas was upp
W! Jamerys subl!ph trooorsit -
LS3

(2) Merk grie fioe lysece en (3) (2) (1)

Houndicas sol fity (8)
$\theta_{\text {ST }}$

150

$153 \wedge$
(1) Mock gré humws med trekull og flece store steiner.
(2) Gul/orange sand

䍗

$\left.\begin{array}{c}\text { (6invadiwo } \\ \text { 2svady }\end{array}\right)$

Wu!sofys
Hamadions
"V:

01:1 3001537\%

 $6 / 900 \%$ UN $50 y$ a日y Noatas
86 ying yzanatisyl

 (1) Undegyinn

(9)

Fle cker
LDP32364
24546621
(4) © $\overparen{\oplus} \overparen{\oplus}$

Fyll ar ander xyering: Mook boun sadidig jod
(4) Ardee Fylla 1. -sjuering. Madion gidian sandig

Bart stein og, brat licice pi onffitute. To
 (3) Undergum

 (1) Buon sand med stove mengide lerie og breat leive.
Kakere med leve b bumen.

（1）Underguum
（2）Stoipenuli－morkikun
（3）Beige，Sandholdig masse
（4）Lyibeige sandmollig masie

萼

153

（1）Undecgrumn

- Mulig stettéstolpe

 (2) Medium boon jard med stein, trexall
ag give sach lenger (2) Medium bon

(3) Undergum

$$
\begin{aligned}
& \text { vrappos sif (8) }
\end{aligned}
$$

tektivarbeid på Tastarustå
 den ef

atsom skfuler seq 4-arifiorda pa 10.sta? - De mest detinq er de som Mke for vi har mont erdet: noment.er det. 2atheo Nyaral Armstrong.

Finrensinq av et forhistorisk lidsted. and i forskjellige jord og sand 1 grunt. gràt og sjatteringer av de vordende svart. mens de viker med svart menter spiker med

Det hender at man gilerede ved avdekking. Niall nevner en god del smảbiter av keramikkskår og
av steinredsikap:
-Vi har positivt identifisert at det merkelapper og identifikasjons-
ine nummer iden ene fekken forste den andre. Det betyr 1 fors ser omgang bare at ond undersskes interessante u of forteller at det niermere. Niall forte vanskelig i kan være ganske vanske jordsmonnet pa Tastarturer kan - Arkeologis jordmassenc ellers. godt ligne pat jor jo mer utydelige har de blitt.
har de blitt. m man gior funn
murerskge.
1 denne fasen skal det ogsà tas daturvitenskapelige prover, for narurvinpel kullprover fra ildstedes eksemper datering, eller pollen for a finne datering, elig kan holde seg veldig lenge og som kan hold ha slags vegetasjon fortelle om var i næromradde. tresorter. gom vars, ugress og om det val gress. ugress og fro av forskjellige dyrket. Korn og interessante for tveste tinn er \& fa laget Kil alle disse mulige strukturene.
dette brukes en "totalstasjon"
-hancy
graves ut.
jordbrukshistoriske sammenbenger. Arkeologiske utgravninger es mâlingsredskap som måler inn Arkeologiske utgrava gedigent lengde, bredde of dybde 1 et detektivarbeid og et gedigen rutesystem of mater verdiene direkte inn i en datamaskin. En dire Nialls jobber er a tolke og ay Nialls jober som henger vurdere for eksempel a sette sammen, for eksemper sammen stolpehull og ilds. Malet er en til et stolpehus. Malet er en strategi for hvor arkeologene skal grave videre. Fra na av er det mrye hảndarbeid. Redskapene tilpasses den oppgavene, men berommelige teskjeen er noke, og myte. Man bruker graveskje, og
detektivarberd Ifolge Neil har det puslespill. loige del mer enn det man trodde var her etter registreringsarbeidene for noen registreringsarbeider er aysatt til är siden. To sesonger er avasa. Om utgravninger det pa grunn av vinteren er dárlige lysforhold lkke mulig a dorlsette arbeidet utendors, selv fortsette arben er is i bakken. om det ikke er is inder tidspress.

Men de skal ta seg tid til en àpen Men de skal ta seg tid til en apen
dag torsdag 15 . juni. k1.17-18.30.
)
eggrofter, stolpehull, kokeroper, rydningsrayser eller andre royser. En legmann ser inkie wer enn noen steiner og kanskje

MAIEPUNKTER: AT
Dorthe Nistad
forgrunnen og arkeologisludent Christian Roll Valer; dellar t utgravninpene pá Tastarusth Hun andersaker en grop dekket av flate heller Han undersaker et Hidsted. De gule pinneme e: målopankter l et koordinatsystom isystem or lityer som ol punkts beijgoenthet bestemenes iforhold til

Kom og se bakover i fortiden

Ann Ramicke lieat on Ingemundsen I fees
gléspperie fra vilim tiden. Og hvem vet? Kenskic tan det senere kommet til dik. ke opp spor fra heth tilstemalderen? Ars not it ne vilue arker heller. De. of finne graver hill at dot kan ikke ake opp graver fra Jernalderen.
Forngyd med funt ane - Vi er forneyd med det v. - sunnes sier prosuektJeder Gitt KIcldsen :a Arleder Gits museum Foitie. der er Nilall Armutroniz. der er forhànd bindde ie regpet med a finne spor etter net med is oyiting av jor: oebygberkelte cteratiander. os det hor de nlisi e larede OS cet Finner da mer, oflaxygjort. Funner dence twones 1 nor de cr det A reyne for on ejestra bonus.

- funner bun fre of korn os kan se Databaselte cysteiner inoderne arkeologt PA feltetpa Trstarusta prover arkcologeve ut et nyere svense da trabasert system som er lis get av arkeologer, for arkeoioger.
Nytt dataprogram Et geagransk Informasjonssystem er kombiner med Innmalingsdata og et datrbase. Bystemet spare arkeologene for mye ette5 arbeld med a rentegne in formesjon om omradet, os gir dem en rekke analyse funksjoner og unledning : A komblnere mange heipe funksjones pた pc
Eam vsmilg 1 nyare sitkeo
logi, samarbelder arkeolorene med toly fra andre fas felt. Botanker Eti-Christin Solwodt hins tatt pegver fro

Anner bun frs of korn og kan se
hvás slags fordbruk som har vert hiva siags ordadet. Dette or godt materiale for C14-dasering, den beste kilden til sikker tiósbestemmelse

800 nye boliger

Regularingsplanen for dette. midet legger opp tar 000 nye oiger fordelt pa 15 bolgetelt pa Testanista, som ef omradel mellom Hiandabergveien. Oyerdevelen Tastarusta og Eucte veten.
140 ar boligene skal etter pis ten legyes I selve bydelssennent 105 tmahus og rekkehus lepgos 1 tre sejvbyggerfeit som forstegangsetablerere kan sake pu pesten av bollgene foresiás
 bevatmalt fire ctayjer. Neston maksindel ay hele ornrâdet bur ent ut som frareal. Kommunen ser for seg en etapperts, ut

Utgravningence er 1 en tad昭 fase, men arateolozen far fumbet spor av hus, kegroper og enken Misisho
$50 k=05 / 200$,

SA 14.06 .06

utte obbe

UGHTER: Sigrin Wolstad jant idd slagningsstein brukt for 1500 âr sideh. (Foto: Jon-Ingemundsen)

Tastarustå
 før Kristus

UTGRAVNINGER: De arkeologiske
utgravingene pá Tastarustả har pảvist funn fra 450 àr etter Kristus, men det kan dukke opp spor av bosetting tilbake til bronsealderen, 1800 är før Kristus. 2. DEL side 60

Imponerande litteraturplan

YTRINGSFRIDOM:- Til a mista pusten
av. Det meiner Kjellolaf Jensen Norske Pen om Stivanger kommune sin nye litteraturplan. 2 DEL side 55

FOTOLISTE Arkeologisk museum i Stavanger

-1

Oppdrag: Tastarustá							Flyfireg.nr./Fornm.nr.				
Sak nr: 22/2004			Gard: \quad Øvee Tasta				Gnr: 28	$\begin{array}{\|l\|} \hline \text { Bnr: } \\ \hline \text { Ams- } \\ \hline \end{array}$	Kommune: Stavanger		
Film nr:: 1/ark 3			Digitalt \square	Dias \square	Fotograf; Christian Roll Valen, Sigrun Welstad, Johnny Krisliansen				: Gitte Kjeldsen		
AmS arkivnr	Bildenr	Dato	UTM	Kartblad	Retn.mot	Motiv				UDK-nr	
	41	$27 / 4$			V	2AS 24060.1 - 0.3 m, JK					
	42	$27 / 4$			V	2AS 1916, JK					
	43	$27 / 4$			V	2AS 18930.1 -0.3, SW					
	44	$27 / 4$			Sø	2AS 1677 1-1.5 m plan, CRV					
	45	$27 / 4$			\varnothing	2AS 1975 1.2-0.4. Vestvendt profil I SV kvadrant. Profil, CRV					

Oppdrag: Tastarustå						Flyf.reg.nr./Fornm.nr.			
Sak nr: 22/2004			Gard: Øvre Tasla				Enr:	Kommune:	
Film nr.: 2/ ark1			Digitalt 区	Dias	Fotograf; Niall Armstrong, Dorthe Nistad, Sigrun Walstad, Trond Linge, Johnny Kristiansen, Gilte Kjeldsen		AmS-ansvarlig: Gitte Kjeldsen		
AmS arkivnr	Bildenr	Dato	UTM	Kartblad	Retn.mot	Motiv			UDK-nr
	1	09/6			V	2AS $31670.3 \times 0.3 \mathrm{~m}, \mathrm{SW}$			
	2	09/6			V	2AS $31770.3 \times 0.3 \mathrm{~m}, \mathrm{SW}$			
	3	09/6			V	$2 \mathrm{AS} 31560.3 \times 0.3 \mathrm{~m}$, SW			
	4	09/6			V	2AS $27390.3 \times 0.1 \mathrm{~m}$, SW			
	5	09/6			S	Hus 2. $1.5 \times 1.5 \times 1.5 \mathrm{~m}$,			
	6	09/6			S	Hus 2. $1.5 \times 1.5 \times 1.5 \mathrm{~m}$ (v	al, N		
	7	09/6			-	Arbeidsbilde (Niall Armstr	\& Ch	Valen), GK	
	8	09/6			V	2AS $49890.3 \times 0.3 \mathrm{~m}, \mathrm{JK}$			
	9	09/6			V	2AS $31870.3 \times 0.3 \mathrm{~m}$, SW			
	10	09/6			V	2AS $22120.3 \times 0.1 \mathrm{~m}$, SW			
	11	09/6			N	2AA 5255, DN			
	12	12/6			V	2AS 1620, TL			
	13	12/6			V	2AS 4394, TL			
	14	12/6			V	Dobbelt stolpehull: 2AS 1	\& 159), TL	
	15	12/6			V	Dobbelt stolpehull: 2AS 1	\& 179), TL	
	16	12/6			\varnothing	2AS 1398, JK			
	17	12/6			V	Dobbelt stolpehull: 2AS 8	2000	an) , TL	
	18	12/6			V	Dobbelt stolpehull: 2AS 4	\& 430), TL	
	19	12/6			V	2AS $11810.3 \times 0.3 \mathrm{~m}$, TL			
	20	12/6			V	$\overline{\text { Dobbelt stolpehull: 2AS } 105310}$	\& 106), TL	

Oppdrag: Tastarustȧ						Flyf.reg.nr./Fornm.nr.				
Sak nr: 22/2004			Gard: Øvre Tasta				Bnr:	Kommune:	Ştav	
Film nr.: $2 / \mathrm{a}$			Digitalt X	Dias	Fotograf; Christian Roll Valen, Trond Linge, Johnny Kristiansen, Gitte Kjeldsen		AmS-ansvarlig: Gitte Kjeldsen			
AmS arkivnr	Bildenr	Dato	UTM	Kartblad	Retn.mot	Motiv				UDK-nr
	21	12/6			V	Doble stolpehull 2AS1067 og 2AS 1085 i plan (se nr 29), TL				
	22	12/6			V	Doble stolpehull 2AS1067 og 2AS 1085 i plan, TL				
	23	12/6			N®	Ildsted, 2AI 1677, og grøft, 2AD1281, i profil, CRV				
	24	12/6			V	2AS 4330 og 2AS 3851, i plan, DN				
	25	12/6			\varnothing	2AS 2758, JK				
	26	12/6			\varnothing	2AS 3135, JK				
	27	12/6			N	2AS 3867, TL				
	28	12/6			V	2AS 2090, JK				
	29	12/6			V	Doble stolpehull 2AS1067 og 2AS 1085 i plan (se nr 21) , CRV				
	30	13/6			V	2AS 1627, TL				
	31	13/6			-	Doble stolpehull 2AS1067 og 2AS 1085 i profil, CRV				
	32	13/6			\varnothing	2AD1975, vestvendte profil, CRV				
	33	13/6			S	2AD1975, nordvendte profil, CRV				
	34	13/6			N	2AD1975, sørvendte profil, CRV				
	35	13/6			V	Doble stolpehull 2AS1053 og 2AS 1065 i plan, CRV				
	36	13/6			V	2AS 4256, JK				
	37	13/6			V	Doble stolpehull 2AS1053 og 2AS 1065 i profil, CRV				
	38	13/6			V	2AS 1151, TL				
	39	13/6			V	2AS 1170, TL				
	40	13/6			V	2AA 1627, TL				

Oppdrag: Tastarustá						Flyf.reg.nr./Fornm.nr,				
Sak nr: 22/2004			Gard: Øvre Tasta				Bnr:	Kommune:	Stavanger	
Film nr.: 2 / ar			Digitalt X	Dias	Fotograf; Chrislian Roll Valen, Dorthe Nistad, Trond Linge, Johnny Kristiansen, Gitte Kjeldsen		AmS-ansvarlig: Gitte Kjeldsen			
AmS arkivnr	Bildenr	Dato	UTM	Kartblad	Retn.mot	Motiv				UDK-nr
	61	15/6			\varnothing	Âpen dag. Christian Roll Valen forteller om Hus 2, GK				
	62	15/6			\varnothing	Ȧpen dag. Dorthe Nistad instruerer ang utgravning i ruter, GK				
	63	15/6			S	Âpen dag. Sigrunn Wølstad og Dorthe Nistad instruerer, GK				
	64	15/6			S	Åpen dag. Jon E. Amundsen demonstrerer flotteringsmaskinen, GK				
	65	15/6			S	Åpen dag. Jon E. Amundsen demonstrerer flotteringsmaskinen, GK				
	66	16/6			V	2AS 2200, JK				
	67	16/6			V	2AS 200029 og 845, i profil, TL				
	68	16/6			N	2AA 6597 plan, TL				
	69	16/6			VSV	Doble stolpehull 2AS 1587 og 1598, i profil, CRV				
	70	16/6			VSV	Doble stolpehull, 2AS 3851 og 4330, i profil. , DN				
	71	16/6			VSV	2AS 1757, i plan, CRV				
	72	16/6			VSV	2AS 1757, i profil, CRV				
	73	16/6			VNV	2AS 813 og 838, i plan, CRV				
	74	16/6			VNV	2AS 813 og 838, i profil, CRV				
	75	16/6			VSV	2AS 804, i plan, CRV				
	76	16/6			VSV	2AS 804 og 3066, i plan, CRV				
	77	16/6			VSV	2AS 804, i profil, CRV				
	78	19/6			VSV	2AS 3598, profil, DN				
	79	19/6			V	2AS 3027, profil, JK				
	80	19/6			VSVV	2AS̄ 3055, plan, CRV				

Oppdrag: Tastarustå							Flyf.reg.nr./Fornm.nr.			
Sak nr: 22/2004			Gard: Øvre Tasta				Gnr: 28	Bnr:	Kommune:	
Film nr.: 3, ark			S/H	Dias	Fotog	nd Linge		AmS-ansvarlig: Gitte Kjeldsen		
AmS arkivnr	Bildenr	Dato	UTM	Kartblad	Retn.mot	Motiv				UDK-nr
	1	13/6/6			-	Arbeids	hristian	alen r	pp stolpehu	
	2	13/6/6			V	2AS1693	, TL			
	3	13/6/6			V	2AS242	, TL			
	4	13/6/6			V	2AS188	, TL			
	5	13/6/6			V	2AS110	, TL			
	6	13/6/6			V	2AS191	, TL			
	7	13/6/6			V	2AS187	, TL			
	8	13/6/6			V	2AS193	, TL			
	9	13/6/6			V	2AS1927	, TL			
	10	13/6/6			V	2AS193	, TL			
	11	13/6/6			V	2AS194	, TL			
	12	13/6/6			V	2AS352	, TL			
	13	13/6/6			V	2AS314	, TL			
	14	13/6/6			V	2AS240	, TL			
	15	13/6/6			V	2AS314	, TL			
	16	13/6/6			SØ	2AS331	S3324,			
	17	13/6/6			V	2AS308	, TL			
	18	13/6/6			V	2AS309	, TL			
	19	13/6/6			V	2AS311	, TL			
	20	13/6/6			V	2AS275	, TL			

Oppdrag: Tastarustả						Flyf.reg.nr./Fornm.nr,			
Sak nr: 22/2004			Gard: \quad Øvre Tasta				Bnr:	Kommune:	
Film nr.: 4, ark 1			S/H	Dias \square	Fotograf; Christian Roll Valen, Trond Linge		AmS-ansvarlig: Git		Gitte Kjeldsen
AmS arkivnr	Bildenr	Dato	UTM	Kartblad	Retn.mot	Motiv			UDK-nr
	1					Orientering (mangler), T			
	2	13/6			V	2AS1809 og 2AS1799, p			
	3	13/6			V	2AS1587 og 2AS1598, p			
	4	13/6			V	2AS3851 og 2AS4330, p			
	5	13/6			V	2AS1181, profil, TL			
	6	13/6			V	2AS1627, profil, TL			
	7	13/6			V	2AS1170, profil, TL			
	8	13/6			V	2AS1115, profil, TL			
	9	13/6			-	Feilbilde (mälyjele), TL			
	10	13/6				2AI1677 og 2AD1281, p			
	11	13/6			-	Eggtjuv (mangler) , TL			
	12	13/6			V	2AS2748, profil, TL			
	13	13/6			V	2AS1031 og 2AS1041, pa			
	14	13/6			V	2AS845, plan, TL			
	15	13/6			V	2AS845, plan, TL			
	16	13/6			V	2AS4313 og 4301, plan,			
	17	13/6			V	2AS1058 og 2AS1065, pr	CRV		
	18	13/6			V	2AS3795, profil, CRV			
	19	13/6			V	2AS3795, profil, CRV			
	20	13/6			VSV	2AS1031 og 2AS1041, pla	CRVV		

side 15

Oppdrag: Tastarustả						Flyf.reg.nr./Fornm.nr.			
Sak nr: 22/2004			Gard: Øvre Tasta				Bnr:	Kommune:	
Film nr.: 7, ark 1			S/H	Dias 区	Fotograf; Nial\| Armstrong, Dorthe Nistad, Sigrun Welstad		AmS-ansvarlig: Gitte Kjeldsen		
AmS arkivnr	Bildenr	Dato	UTM	Kartblad	Retn.mot	Motiv			UDK-nr
	0	13/7			-	Christian Roll Valen, John	Kristia	Trond Ling	
	1	13/7			N	2AX16303, etter forflytnin	ed un	ende kull,	
	2	13/7			S	2AU15890, profil, DN			
	3	13/7			S	2AU15890, 2AG15858 og	J1453	i, DN	
	4	13/7			S	2AU15890, 2AG15858 og	1453	il, DN	
	5	13/7			S	2AU15890, 2AG15858 og	1453	I, DN	
	6	13/7			S	2AU15890, 2AG15858 og	1453	I, DN	
	7	13/7			N	Profilbenk, vestligste profi	s 8,	SW	
	8	13/7			N	Profilbenk, nestvestligste	, Hus	III, SW	
	9	13/7			N	Profilbenk, midterste profi	s 8, F	SW	
	10	13/7			N	Profilbenk, nestøstligste p	Hus	III, SW	
	11	13/7			N	Profilbenk, østligste profil	8, F	SW	
	12	13/7			N	Profilbenk, Oversiktsbilde	rofil,	Felt III, SW	
	13	13/7			N	Profilbenk, Oversiktsbilde	rofil,	Felt III, SW	
	14	14/7			N	2AS9030, profil, DN			
	15	$14 / 7$			V	2AS8934, profil, SW			
	16	14/7			V	2AS8684, profil, DN			
	17	14/7			V	2AS16087 og 2AD15681,	Il, SW		
	18	14/7			V	2AS8769, profil, DN			
	19	14/7			V	2AS8950, profil, SW			

Oppdrag: Tastarusta						Flyf.reg.nr./Fornm.nr.				
Sak nr: 22/2004			Gard: Øvre Tasta				Bnr:	Kommune:	Stavangor	
Film nr.: 12			Digitalt X	Dias	Fotograf; Christian Roll Valen, Sigrun Wølstad, Johnny Kristiansen		AmS-ansvarlig: Gitte Kjeldsen			
AmS arklvnr	Bildenr	Dato	UTM	Kartblad	Retn.mot	Motiv				UDK-nr
	41	18/7			V	2AS 9009, profil, CRV				
	42	18/7			V	2AS 8857, profil, SW				
	43	19/7			N	2AS 13665, profil, SW				
	44	19/7			V	2AS ????, plan, CRV				
	45	19/7			V	2AS 8884, profil, SW				
	46	19/7			V	2AŚ 8748, plan, CRV				
	47	19/7			NV	2AS 8996, plan, JK				
	48	19/7			V	2AS 8793, profil, SW				
	49	19/7			V	2AS 8869, plan, JK				
	50	19/7				? (2AD17481, plan ?) , CRV				
	51	19/7			V	2AS 8816, profil, SW				
	52	19/7			\bar{S}	2AS 18771, plan, SW				
	53	19/7			N	2AS 17536, 17550 og 2AD 17481, profil, CRV				
	54	19/7			S	2AS 18771, profil, SW				
	55	18/7			VSV	2AS 15925 og 2AD 15681, profil (siste beteg. 16150 på bildet), SW				
	56	18/7			NN®	2AS 15674 og 2AD 15681, profil, CRV				
	57	18/7			SSV	2AS 15984 og 2AD 15681, profil, CRV				
	58	18/7			N®	2AS 15665, JK				
	59	18/7			NNØ	2AS 2928, plan, JK				
	60	18/7			N	2AS 1767, plan, CRV				

Oppdrag: Tastarustà						Flyf.reg.nr./Fornm.nr.			
Sak nr: 22/2004			Gard: Øve Tasla				Bnr:	Kommune: Stavanger	
Film nr.: 12 ark 5			Digitalt X	Dias \square	Fotagraf; Chisisian Roll Valen, Sigrun Welstad, TrondLinge, Johnny Kistiansen Linge, Johnny Kristiansen		AmS-ansvarig: Gi		Gitte Kjeldsen
AmS arkivnr	Bildenr	Dato	UTM	Kartblad	Retn.mot	Motiv			UDK-nr
	81	$26 / 7$			NNV	2AS 6026 og 6041, profil, CR			
	82	$26 / 7$			NNV	2AS 19402, profil, CRV			
	83	$26 / 7$			NNV	2AS 5492, plan, SW			
	84	$26 / 7$			NV	2AS 6523, plan, TL			
	85	2617			NV	2AS 5497, profil, SW			
	86	$26 / 7$			NV	2AS 7254, profil, JK			
	87	$26 / 7$			NV	2AS 6523, profil, TL			
	88	$26 / 7$			NV	2AS 3498, profil, SW			
	89	$28 / 7$			NV	2AS 5908, platl, TL			
	90	2617			NV	2AS 5906, profil, TL			
	91	$26 / 7$			NV	2AS 5777, profil, JK			
	92	$26 / 7$			NV	2AS 3498, profil, SW			
	93	$27 / 7$			NV	2AS 5878, plan, JK			
	94	$27 / 7$			NV	2AS 8356, plan, SW			
	95	$27 / 7$			Sø	2AS 6067, profil, CRV			
	96	$27 / 7$			NV	2AS 8356, profil, SW			
	97	$27 / 7$			NV	2AS 16723, plan, SW			
	98	$27 / 7$			NV	2AS 3512 og 16637, plan, CRV			
	99	$27 / 7$			NV	2AS 5870, profil, JK			
	100	$27 / 7$			NV	2AS 16723, profil, SW			

Oppdrag: \quad Tastarustả \quad Flule							Flyf.reg.nr./Fornm.nr.			
Sak nr: 22/2004			Gard: Øvie Tasta				Gnr: 28	Bnr:	Kommune: Stavanger	
Film nr: 12			Digitalt X	Dias	Fotograf; Christian Roll Valen			AmS	: Gitte Kjeldsen	
AmS arklvnr	Bildenr	Dato	UTM	Kartblad	Retn.mot	Motiv				UDK.nr
	141	$2 / 8$			NV	2AI 3405, plan, CRV				

Oppdrag: Tastarustå			Flyf.reg.nr./Fornm.nr.							
Sak nr: 22/2004			Gard: Øvre Tasta				Bnr:	Kommune:	Stavanger	
Film nr.: 20, ark 1			Digital 区	Dias \square	Fotograf; Christian Roll Valen, Niall Amstrong		AmS-ansvarlig: Gitte Kjeldsen			
AmS arklvnr	Bildenr	Dato	UTM	Kartblad	Retn.mot	Motiv				UDK-nr
	1	18/4			\varnothing	2AD18621, Felt III (vestlige av par) 1.5x0.3m, NJA				
	2	18/4			S	2AS18545, Felt III (østlige av par) $1.5 \times 0.3 \mathrm{~m}$, NJA				
	3	18/4			S	Arbeidsbilde. Finrensning, Christian R. Valen og Will Davies, NJA				
	4	18/4			\varnothing	2AA1975, Felt I, 1.5×1.5, NJA				
	5	18/4			\varnothing	2AA1975, Felt I, 1.5×1.5, NJA				
	6	25/4			N	2AV23559, Felt III, CRV				
	7	25/4			N	2AV23559, Felt III, CRV				
	8	25/4			S	2AV23559, Felt III, CRV				
	9	25/4			S	2AV23559, Felt III, CRV				
	10	$7 / 5$			NV	Ardspor, Felt llb, 1.5m, NJA				
	11	$7 / 5$			V	Ardspor, Felt llb, 1.5m, NJA				
	12	$7 / 5$			V	Grøft, Felt llb, 1.5m, NJA				
	13	$7 / 5$			NV	Grøft, Felt llb, 1.5m, NJA				
	14	10/5				Arbeidsbilde. Will Davies, Christian R. Valen og Anne Drageset, NJA				
	15	10/5				Arbeidsbilde. Will Davies renser opp struktur, NJA				
	16	10/5				Arbeidsbilde. Christian R. Valen og Anne Drageset krafser, NJA				
	17	10/5				Arbeidsbilde. Will Davies legger blomsterpinne på anlegg, NJA				
	18	10/5				Arbeidsbilde. Edvard Aarrestad i gravemaskinen, NJA				
	19	10/5				Arbeidsbilde. Anne Drageset, Will Davies og Christian R. Valen, NJA				
	20	18/5				Arb.bilde. Christian R. Valen og Anne Drageset renser Hus 7, NJA				

Oppdrag: Tastarustá						Flyf.reg.nr./Fornm.nr.			
Sak nr: 22/2004			Gard: Øvre Tasta				Bnr:	Kommune:	
Film nr.: 20, a			S/H	Dias \square	Fotograf; Christian Roll Valen, Niall Armstrong, Will Davies, Nora Pape, Anne Drageset		AmS-ansvarlig: Gilte Kjaldsen		
AmS arklvnr	Bildenr	Dato	UTM	Kartblad	Retn.mot	Motiv			UDK-nr
	41	22/5			SØ	Arbeidsbilde. C.R.Valen, A.Drageset, N.Pape og W.Davies, NJA			
	42	22/5			N	2AS22538, profil, Hus 7, CRV			
	43	$22 / 5$			N	2AS22548, profil, Hus 7, WD			
	44	$22 / 5$			N	2AS22527, profil, Hus 7, AD			
	45	$22 / 5$			N	2AS22558, profil, Hus 7, NP			
	46	$22 / 5$			N	2AS22670, plan, Hus 7, CRV			
	47	22/5			N	2AS22642, plan, Hus 7, WD			
	48	22/5			NV	2AS22569 \& 39291, profil, Hus 7, NJA			
	49	23/5			N	2AS22661, plan, Hus 7, AD			
	50	23/5			N	2AN31703, profil, Hus 7, AD			
	51	23/5			N	2AS22622, plan, Hus 7, NP			
	52	23/5			N	2AS22670, profil, Hus 7, CRV			
	53	$23 / 5$			N	2AS22622, profil, Hus 7, NP			
	54	$23 / 5$			N	2AS30683, plan, Hus 7, NP			
	55	23/5			NV	2AS22661, profil, Hus 7, AD			
	56	23/5			N	2AS22642, profil, Hus 7, WD			
	57	23/5			NV	2AN31693, profil, Hus 7, AD			
	58	23/5			N	2AS30683, profil, Hus 7, NP			
	59	23/5			NØ	2AS31431, plan, Hus 7, AD			
	60	23/5			N	2AS24007, plan, Hus 7, WD			

side 43

Oppdrag: Tastarustả						Fly.reg.nr./Fornm.nr.			
Sak nr: 22/2004			Gard: Øvee Tasta				Bnr:	Kommune:	
Film nr.: 21, a			S/H	Dias \square	Fotograf; Christian Roll Valen, Niall Armstrong. Nora Pape, Anne Drageset		AmS-ansvarlig: Git		
AmS arkivnr	Bildenr	Dato	UTM	Kartblad	Retn.mot	Motiv			UDK-nr
	41	31/5			N	2AS22688, profil, Hus 7, NP			
	42	31/5			N	2AS22793, profil, Hus 7, AD			
	43	31/5			N	2AS22793, profil, Hus 7, AD			
	44	31/5			N	2AS31918, profil, Hus 7, CRV			
	45	31/5			N	2AS31918, profil, Hus 7, CRV			
	46	1/6			N	2AS42026, profil, Hus 7, CRV			
	47	$1 / 6$			N	2AS42026, profil, Hus 7, CRV			
	48	1/6			N	2AS41906, profil, Hus 7, AD			
	49	1/6			N	2AS41906, profil, Hus 7, AD			
	50	$1 / 6$			V	2AS30694, profil, Hus 7, NP			
	51	1/6			V	2AS30694, profil, Hus 7, NP			
	52	1/6			N	2Al22598, plan, Hus 7, NJA			
	53	1/6			N	2Al22598, plan, Hus 7, NJA			
	54	1/6			NV	2AS31741, plan, Hus 7, NP			
	55	1/6			NV	2AS31741, plan, Hus 7, NP			
	56	1/6			N	2AS40081, profil, Hus 7, AD			
	57	1/6			N	2AS40081, profil, Hus 7, AD			
	58	1/6			NV	2AS31741, profil, Hus 7, NP			
	59	1/6			NV	2AS31741, profil, Hus 7, NP			
	60	1/6			S	2AS18512 og 18492, plan, Hus 7, NP			

Oppdrag: Tastarustå						Flyf.reg.nr./Fornm.nr.			
Sak nr: 22/2004			Gard: Øvre Tasta			Gnr: 28	Bnr:	Kornmune:	
Film nr.: 21,			S/H		Fotog Pape,	istian Roll Valen, Niall Amsistrong, Nora gagesel, Gitte Kjeldsen	AmS-ansvarlig: Gitte Kjeldsen		
AmS arkivnr	Bildenr	Dato	UTM	Kartblad	Retn.mot	Motiv			UDK-nr
	61	4/6			S	2AS18512 og 18492, plan,	us 7 ,		
	62	4/6			\varnothing	2AG18440, plan, Hus 7, CRV			
	63	4/6			0	2AG18440, plan, Hus 7, CRV			
	64	4/6			N	2AI22598, profil, Hus 7, NJA			
	65	4/6			N	2Al22598, profil, Hus 7, NJA			
	66	4/6			N	2AS18285, profil, Hus 7, AD			
	67	4/6			N	2AS18285, profil, Hus 7, AD			
	68	4/6			V	2AS18512, profil, Hus 7, NPP			
	69	4/6			V	2ASS̄18512, profil, Hus 7, NPP			
	70	4/6			V	2AS̄18492, profil, Hus 7, NPP			
	71	4/6			V	2AS̄18492, profil, Hus 7, NPP			
	72	4/6			N	2AS'18298 plan, Hus 7, AD			
	73	4/6			N	2As18298 plan, Hus 7, AD			
	74	4/6			V	2AS18512, profil, Hus 7, NPP			
	75	4/6			V	2AS18512, profil, Hus 7, NPP			
	76	4/6			NV	2AS44251 \& 24096, profil, H	s 7,		
	77	4/6			NV	2AS44251 \& 24096, profil, H	\% 7, G		
	78	4/6			N	2AS25169, profil, Hus 7, AD			
	79	4/6			N	2AS25169, profil, Hus 7, AD			
	80	4/6				2Al24072, plan, Hus 7, NJA			

Oppdrag: Tastarustã						Flytireg.nr./Fornm.nr.			
Sak nr: 22/2004			Gard: Øvre Tasta			Gnr: 28	Enr:	Kommune:	
Film nr.: 21,			S/H	Dias	Fotograf; Christian Roll Valen, Niall Armstrong, Will Davies, Anne Drageset, Gitte Kjeldsen		AmS-ansvarlig: Gitte Kjeldsen		
AmS arkivnr	Bildenr	Dato	UTM	Kartblad	Retn.mot	Motiv			UDK-nr
	81	4/6			V	2Al24072, plan, Hus 7, NJA			
	82	4/6			N	2AS18228, plan, Hus 7, AD			
	83	4/6			N	2AS18228, plan, Hus 7, AD			
	84	4/6			N	2AS30893, profil, Hus 7, GK			
	85	4/6			N	2AS30893, profil, Hus 7, GK			
	86	4/6			N	2AS30879, profil, Hus 7, GK			
	87	4/6			N	2AS30879, profil, Hus 7, GK			
	88	4/6			N	2AS25230, profil, Hus 7, GK			
	89	4/8			N	2AS25230, prufil, Hus 7, GK			
	90	5/6			N	2AI29519, plan, Hus 7, WD			
	91	5/6			N	2Al29519, plan, Hus 7, WD			
	92	5/6			N	2AI29519, plan, Hus 7, WD			
	93	5/6			N	2AS18228, profil, Hus 7, AD			
	94	5/6			N	2AS18228, profil, Hus 7, AD			
	95	5/6			N	2AV24207, 2AG18413 \& 18440, profil, Hus 7, CRV			
	96	5/6			N	2AV24207, 2AG18413 \& 18440, profil, Hus 7, CRV			
	97	5/6			N	2AV24207, 2AG18413 \& 18440, profil, Hus 7. CRV			
	98	5/6			N	2AV24207, 2AG18413 \& 18440, profil, Hus 7, CRV			
	99	5/6			N	2AV24207, 2AG18413 \& 18440, profil, Hus 7, CRV			
	100	5/6			S	2AV24207, profil, Hus 7 (ved 18440) , CRV			

side 49

Oppdrag: Tastarustả						Flyf.reg.nr./Fornm.nr.			
Sak nr: 22/2004			Gard: Øure Tasta				Bnr:	Kommune:	
Film nr.: 22, ark 2			S/H	Dias \square	Fotograf; Niall Armstrong, Wenche Brun		AmS-ansvarlig: Gitte Kjeldsen		
AmS arkivnr	Bildenr	Dato	UTM	Kartblad	Retn.mot	Motiv			UDK-nr
	21	8/6			N	2AS23933, profil, Hus 7, WB			
	22	8/6			N	2AS23933, profil, Hus 7, WB			
	23	8/6			V	Ákerreinssjakt (3C39320) Del 7 fra sør, NJA			
	24	8/6			V	Åkerreinssjakt (3C39320) Del 7 fra sør, NJA			
	25	8/6			V	Ákerreinssjakt (3C39320) Del 6 fra sør, NJA			
	26	8/6			V	Ákerreinssjakt (3C39320) Del 6 fra sør, NJA			
	27	8/6			V	Ákerreinssjakt (3C39320) Del 6 fra sør, NJA			
	28	8/6			V	Ákerreinssjakt (3C39320) Del 5 fra sør, NJA			
	29	8/6			V	Ȧkerreinssjakt (3C39320) Del 5 fra sør, NJA			
	30	8/6			V	Âkerreinssjakt (3C39320) Del 4 fra sør, NJA			
	31	8/6			V	Ákerreinssjakt (3C39320) Del 4 fra sør, NJA			
	32	8/6			V	Ákerreinssjakt (3C39320) Del 3 fra sør, NJA			
	33	8/6			V	Âkerreinssjakt (3C39320) Del 3 fra sør, NJA			
	34	8/6			V	Arbeidsbilde. Will Davies bruker vannflaske, NJA			
	35	8/6			V	Ákerreinssjakt (3C39320) Del 2 fra sør, NJA			
	36	8/6			V	Ȧkerreinssjakt (3C39320) Del 2 fra sør, NJA			
	37	8/6			V	Âkerreinssjakt (3C39320) Del 1 fra sør, NJA			
	38	8/6			V	Ákerreinssjakt (3C39320) Del 1 fra sør, NJA			
	39	8/6			N	2AD31512, plan, Hus 7, WB			
	40	8/6			N	2AD31512, plan, Hus 7, WB			

side 53

Oppdrag:	arusta		Flyf.reg.nr./Fornm.nr.						
Sak nr: 22/2004			Gard: Øure Tasta				Bnr:	Kommune:	
Film nr.: 22, ark 4			S/H \square	Dias	Fotograf; Christian Roll Vaien, Nora Pape, Anne Dragesel, Gilte Kjeldsen, Wenche Brun		AmS-ansvarlig: Gitte Kjeldsen		
AmS arkivnr	Bildenr	Dato	UTM	Kartblad	Retn.mot	Motiv			UDK-nr
	61	11/6			N	2AG40000, plan, Felt III	usert		
	62	11/6			N	2AS23759, profil, Hus 7.	III, AD		
	63	11/6			N	2AS23759, profil, Hus 7,	III, AD		
	64	11/6			N	2AS23769, profil, AD			
	65	11/6			N	2AS23769, profil, AD			
	66	11/6			N	2AS44518, profil, AD			
	67	11/6			N	2AS44518, profil, AD			
	68	11/6			N	2AS23905, profil, Hus 7,	III, NP		
	69	11/6			N	2AS23905, profil, Hus 7,	III, NP		
	70	12/6			N	2AS25099 og 23890, profil	us 7,	WB	
	71	12/6			N	2AS25099 og 23890, pro	us 7,	WB	
	72	12/6			N	2AS31388, profil, Hus 7, F	III, WB		
	73	12/6			N	2AS31388, profil, Hus 7,	III, WB		
	74	12/6			S	2AS44594, profil, Hus 7,	III, WB		
	75	12/6			S	2AS44594, profil, Hus 7,	III, WB		
	76	12/6			ØNØ	2AO26579, profil/plan, Hu	1, Felt		
	77	12/6			ØNØ	2AO26579, profil/plan, Hu	, Felt		
	78	12/6			N	2AS26618, plan, Hus 11,	III, W		
	79	12/6			N	2AS26618, plan, Hus 11,	III, W		
	80	$12 / 6$			ØN \varnothing	2AO26579, profil, Hus 11,	It II, C		

Oppdrag: Taslarustå						Flyf.reg.nr./Fornm.nr.			
Sak nr: 22/2004			Gard: Øvre Tasta				Bnr:	Kommune:	
Film nr.: 22, ark 5			S/H	Dias \square	Fotograf; Chrisilan Roll Valen, Wenche Brun		AmS-ansvarlig: Gitte Kjeldsen		
AmS arkivnr	Bildenr	Dato	UTM	Kartblad	Retn.mot	Motiv			UDK-nr
	81	12/6			ØNØ	2AO26579, profil, Hus 1	It II,		
	82	12/6			\varnothing	2AS26618, profil, Hus 1	III, W		
	83	12/6			\varnothing	2AS26618, profil, Hus 1	III, W		
	84	12/6			\varnothing O®	2AS32762 og 32722, pla	us 11,	WB	
	85	12/6			\varnothing S®	2AS32762 og 32722, pla	us 11,	WB	
	86	13/6			0 O®	2AO26631 og 2AD3236	(ovn	1, Felt III), WB	
	87	13/6			ØSØ	2AO26631 og 2AD3236	n (ovn	1, Felt III) , WB	
	88	13/6			N	2AO26631 og 2AD3236	(ov	1, Felt III) , CRV	
	89	13/6			N	2AŌ2GG31 og 2AD3230	(0 V	1, Felt ili) , CRV	
	90	13/6			N	2AŌ26631 og 2AD3236	(0 V	1, Felt III) , $\overline{C R V}$	
	91	13/6			V	2AO32364, plan, Hus 1	III, W		
	92	13/6			V	2AO32364, plan, Hus 1	III, V		
	93	13/6			N	2AÓ26631, plan (ovn),	1, Fel		
	94	13/6			N	2AO26631, plan (ovn),	1, Fell		
	95	13/6			S	2AO32364, plan (renne)	11,	WB	
	96	13/6			S	2AO32364, plan (renne)	11,	WB	
	97	13/6			S	2AO26631, plan (ovn),	1, Fel		
	98	13/6			S	2AO26631, plan (ovn),	1, Fel		
	99	13/6			S	2AO26631 og 2AD3236	tet),	Felt III, CRV	
	100	13/6			S	2AO26631 og 2AD3236	tet),	Felt III, CRV	

side 57

side 59

side 61

Oppdrag: Tastarustả						Flyf.reg.nr./Fornm.nr.			
Sak nr: 22/2004			Gard: Ø̄vre Tasta				Enr:	Kommune:	
Film nr.: 25, ar			S/H	Dias	Fotog Drages	stian Roll Valen, Will Davies, Anne che Brun	AmS-ansvarlig: \quad Gitte Kjeldsen		
AmS arkivnr	Bildenr	Dato	UTM	Kartblad	Retn.mot	Motiv			UDK-nr
	81	26/6			SV	2AG29517, plan, CRV			
	82	26/6			SV	2AG29517, plan, CRV			
	83	26/6			N	2AS28997, profil, AD			
	84	26/6			N	2AS28997, profil, AD			
	85	26/6			N	2AS29638 og 2AS29629,	n, AD		
	86	26/6			N	2AS29638 og 2AS29629,	, AD		
	87	26/6			VNV	2Al29029, profil, WB			
	88	26/6			VNV	2AI29029, profil, WB			
	89	26/6			N	2AS29638 og 2AS29629,	fil, AD		
	90	26/6			N	2AS29638 og 2AS29629,	fil, AD		
	91	26/6			N	2AS28910, plan, WB			
	92	26/6			N	2AŚS28910, plan, WB			
	93	26/6			N	2AS46021, 2AS42173 og	3236	WD	
	94	26/6			N	2AS46021, 2AS42173 og	3236	WD	
	95	26/6			N	Detalje av 2AS46021 og	rhul , p		
	96	26/6			N	Detalje av 2AS46021 og s	rhul , Pa		
	97	26/6			N	2AS28910, profil, WB			
	98	26/6			N	2AS28910, profil, WB			
	99	26/6			N	2AS28931 og 2AS28920,	n, WB		
	100	26/6			N	2AS28931 og 2AS28920,	n, WB		

Oppdrag: Tastarustå						Flyf.reg.nr./Fornm.nr.			
Sak nr: 22/2004			Gard: Øvre Tasta				Bnr:	Kommune: Stavan	
Film nr.: 26, ark 1			S/H \square	Dias \square	Fotograf; Christian Roll Valen, Will Davies, Anne Drageset, Wenche Brun		AmS-ansvarlig: Gitte Kjeldsen		
AmS arkivnr	Bildenr	Dato	UTM	Kartblad	Retn.mot	Motiv			UDK-nr
	1	27/06			N	2AS28002, plan, WB			
	2	27/06			N	2AS28002, plan, WB			
	3	27/06			NV	2AS28087, plan, AD			
	4	27/06			NV	2AS28087, plan, AD			
	5	27/06			NV	2AS28036, plan, Hus 9, Felt lib, CRV			
	6	27/06			NV	2AS28036, plan, Hus 9, Felt Ilb, CRV			
	7	27/06			\varnothing	2AS46021 og 2AD32324, profil, WD			
	8	27/06			\varnothing	2AS46021 og 2AD32324, profil, WD			
	9	27/00			SV	$2 A 340043$ og 2A345705, profil, WD			
	10	$27 / 06$			SV	2AS40043 og 2AS45705, profil, WD			
	11	27/06			SV	2AS28002, profil, Hus 9, Feit llb, WB			
	12	$27 / 06$			SV	2AS28002, profil, Hus 9, Felt llb, WB			
	13	27/06			SV	2AS28363, plan, Hus 9, Felt Ilb, WB			
	14	27/06			SV	2AS28363, plan, Hus 9, Felt llb, WB			
	15	27/06			SV	2AS28027, plan, Hus 9, Felt llb, CRV			
	16	27/06			SV	2AS28027, plan, Hus 9, Felt llb, CRV			
	17	27/06			SV	2AS28036, profil, Hus 9, Felt Ilb, CRV			
	18	27/06			SV	2AS28036, profil, Hus 9, Felt llb, CRV			
	19	27/06			SV	2AS28087 og 2AS28079, profil, Hus 9, Felt llb (ufokusert), AD			
	20	27/06			SV	2AS28087 og 2AS28079, profil, Hus 9, Felt llb (ufokusert) , AD			

Oppdrag: Tastarustả						Flyf.reg.nr./Fornm.nr.			
Sak nr: 22/2004			Gard: Øvie Tasla				Bnr:	Kommune:	
Film nr.: 26, ark 2			$\mathrm{S} / \mathrm{H} \square$	Dlas \square	Fotograf; Christian Roll Valen, Will Davies, Anne Drageset, Wenche Brun		AmS-ansvarlig: Gitte Kjeldsen		
AmS arkivnr	Bildenr	Dato	UTM	Kartblad	Retn.mot	Motiv			UDK-nr
	21	27/06			SV	2AS28094, plan, Hus 9, F	b, AD		
	22	27/06			SV	2AS28094, plan, Hus 9, F	lb, AD		
	23	27/06			NV	2AS28363, profil, WB			
	24	27/06			NV	2AS28363, profil, WB			
	25	27/06			N	2AS46021 og 2AS42173,	fil, WD		
	26	27/06			N	2AS46021 og 2AS42173,	fil, WD		
	27	27/06			NV	2AS28027, profil, CRV			
	28	27/06			Nv	2AS28027, profil, CRV			
	29	27/06			SV	2AS28094, profil, AD			
	30	27/06			SV	2AS28094, profil, AD			
	31	27/06			SV	2AS27985 og 2AS27977,	, AD		
	32	27/06			SV	2AS27985 og 2AS27977,	, AD		
	33	27/06			SV	2AS27962 og 2AS27970,	n, CRV		
	34	27/06			SV	2AS27962 og 2AS27970,	, CRV		
	35	27/06			SV	2AS27926, plan, WD			
	36	27/06			SV	2AS27926, plan, WD			
	37	27/06			SV	Will Davies i oljehyre og m	bloms	ret, CRV	
	38	27/06			SV	Will Davies i oljehyre og	bloms	ret, CRV	
	39	27/06			SV	2AS27985 og 2AS27977,	fil, AD		
	40	27/06			SV	2AS27985 og 2AS27977,	fil, $A D$		

Oppdrag: T	arustá		Flyf.reg.nr./Fornm.nr.							
Sak nr: 22/2004			Gard: Øvere Tasta			Gnr: 28	Bnr:	Kommune:	Stavange	
Film nr.: 26, ark 3			s/H \square	Dias \square	Fotograf; Christian Roll Valen, Will Davies, Nora Pape, Anne Drageset, Niall Amstrong, Gitte Kjeldsen, Wenche Brun		AmS-ansvarlig: Gitte Kjeldsen			
AmS arkivnr	Bildenr	Dato	UTM	Kartblad	Retn.mot	Motiv				UDK-nr
	41	$27 / 06$			NV	2AS27926, profil, WD				
	42	$27 / 06$			NV	2AS27926, profil, WD				
	43	28/06			V	2AS27970 og 2AS27962, pro	fil, CRV			
	44	28/06			V	2AS27970 og 2AS27962, pro	fil, CRV			
	45	28/06			N	2AS29167, plan, WB				
	46	$28 / 06$			N	2AS29167, plan, WB				
	47	28/06			N	2AS27820, plan, WB				
	48	28/06			N	2AS27820, plan, WB				
	49	28/06			NNV	2AS40288 og 2AS40277, plan	, NP			
	50	28/06			NNV	2AS40288 og 2AS40277, plan	, NP			
	51	28/06			N	2AS40256, plan, WD				
	52	28/06			N	2AS40256, plan, WD				
	53	$28 / 06$			NV	2AS27938, profil, AD				
	54	28/06			NNV	2AS27938, profil, AD				
	55	28/06			NNV	2AS28949, plan, AD				
	56	28/06			NNV	2AS28949, plan, AD				
	57	28/06			NNV	2AS27820, profil, WB				
	58	28/06			NNV	2AS27820, profil, WB				
	59	28/06			NNV	2AS29167, profil, WB				
	60	28/06			NNV	2AS29167, profil, WB				

Oppdrag: Tastarustả						Flyf.reg.nr./Fornm.nr.			
Sak nr: 22/2004			Gard: Øvie Tasta				Bnr:	Kommune: Sta	
Film nr.: 26, ark 6			S/H \square	Dias \square	Fotograf; Christian Roll Valen, Will Davies, Anne Drageset, Wenche Brun		AmS-ansvarlig: Gitte Kjeldsen		
AmS arkivnr	Bildenr	Dato	UTM	Kartblad	Retn.mot	Motiv			UDK-nr
	101	29/06			NNV	2AG42772, plan, AD			
	102	29/06			NNV	2AG42772, plan, AD			
	103	29/06			N	2AS15189, profil, CRV			
	104	29/06			N	2AS15189, profil, CRV			
	105	29/06			N	2AS42420 (lavere, østlige, skoningssteiner fjernet) , profil, WD			
	106	29/06			N	2AS42420 (lavere, østlige, skoningssteiner fjernet) , profil, WD			
	107	29/06			N	2AS46141, plan, CRV			
	108	29/06			N	2AS46141, plan, CRV			
	109	29/06			N	2AŞ42532, 2AS42543 og 2AS42563, plan, WD			
	110	29/06			N	2AS42532, 2AS42543 og 2AS42563, plan, WD			
	111	29/06			NNV	2AS15229, profil, WB			
	112	29/06			NNV	2AS15229, profil, WB			
	113	29/06			N	2AS42532, profil, WD			
	114	29/06			N	2AS42532, profil, WD			
	115	29/06			NNV	2AG42772, profil, AD			
	116	29/06			NNV	2AG42772, profil, AD			
	117	29/06			N	2AS46141, profil, CRV			
	118	29/06			N	2AS46141, profil, CRV			
	119	29/06			N	2AS46141, profil/plan, CRV			
	120	29/06			N	2AS41256, plan, WB			

side 81

Oppdrag:	arustà					Flyf.reg.nr./Fornm.nr.			
Sak nr: 2212			Gard:	Qure	Tasta	Gnr: 28	Bnr:	Kommune:	
Film nr:: 27, a			S/4 \square	Dias	Fotog	stian Roll Valen, Will Davies, Nora Pape	Ams	Gitt	
AmS arkivnr	Bildenr	Dato	UTM	Kartblad	Retn.mot	Motiv			UDK-nr
	1(137)	2/7			N	2AS14804, profil, CRV			
	2(138)	2/7			N	2AS14804, profil, CRV			
	3(139)	$2 / 7$			0	2AS15174, profil, CRV			
	4(140)	2/7			\varnothing	2AS15174, profil, CRV			
	5(141)	2/7			N	2AS41719, plan, CRV			
	6(142)	$2 / 7$			N	2AS41719, plan, CRV			
	7(143)	$2 / 7$			N	2AS15212, plan, WD			
	8(144)	$2 / 7$			N	2AS15212, plan, WD			
	$9(145)$	$2 / 7$			N	2AS41719, profil, CRV			
	10(146)	2/7			N	2AS41719, profil, CRV			
	11(147)	$2 / 7$			N	2AS15020, plan, CRV			
	12(148)	$2 / 7$			N	2AS15020, plan, CRV			
	13(149)	$3 / 7$			N	2AS40972, plan, NP			
	14(150)	$3 / 7$			N	2AS40972, plan, NP			
	15(151)	$3 / 7$			N	2AS15212, profil, WD			
	16(152)	$3 / 7$			N	2AS15212, profil, WD			
	17(153)	$3 / 7$			N	2AS15020, profil, CRV			
	18(154)	3/7			N	2AS15020, profil, CRV			
	19(155)	$3 / 7$			N	2AS40972, profil, NP			
	20(156)	$3 / 7$			N	2AS40972, profil, NP			

Oppdrag: Tastaruslá						Flyf.reg.nr./Fornm.nr.			
Sak nr: 22/2004			Gard: Øvre Tasta				Bnr:	Kommune:	
Film nr.: 28, ark 5			S/H	Dias \square	Fotograf; Will Davies, Nora Pape, Anne Drageset, Niall Armstrong		AmS-ansvarlig: Gitte Kjeldsen		
AmS arkivnr	Bildenr	Dato	UTM	Kartblad	Retn.mot	Motiv			UDK-nr
	81	5/7/07			S	2AG42385 og 2AS46357,	fil, NJ		
	82	5/7/07			S	2AG42385 og 2AS46357,	fil, NJ		
	83	5/7/07			N	2AS14262, plan, WD			
	84	5/7/07			N	2AS14262, plan, WD			
	85	5/7/07			NNV	2AS14262, profil, WD			
	86	5/7/07			NNV	2AS14262, profil, WD			
	87	6/7/07			N	2AS42633, plan, WD			
	88	6/7/07			N	2AS42633, plan, WD			
	89	6/7/07			\varnothing ¢ \varnothing	2AS43143, profil, NP			
	90	6/7/07			\varnothing ®®	2AS43143, profil, NP			
	91	6/7/07			\varnothing S®	2AS43143, detalj 2AS4638	profil,		
	92	6/7/07			\varnothing ®®	2AS43143, detalj 2AS4638	profil		
	93	6/7/07			ØSØ	2AS43143 detalj 2AS4636	profil,		
	94	6/7/07			ØSØ	2AS43143 detalj 2AS4636	profil,		
	95	6/7/07			ØSØ	2AG41054 og 2AD41082,	fil, AD		
	96	6/7/07			ØSØ	2AG41054 og 2AD41082,	fil, AD		
	97	6/7/07			VSV	2AD41082, profil, AD			
	98	6/7/07			VSV	2AD41082, profil, AD			
	99	6/7/07			\varnothing ®®	2AS42735, plan, NP			
	100	6/7/07			ØSØ	2AS42735, plan, NP			

side 93

side 97

side 99

side 101

Oppdrag: Tastarustá						Flyf.reg.nr./Fornm.nr.				
Sak nr: 22/2004			Gard:	$\emptyset \mathrm{l}$ ¢ Tasta		Gnr: 28	Bnr:	Kommune: Stavanger		
Film nr.: 31, ark 1			S/H	Dias	Fotograf; Christian Roll Valen, Will Davies, Nora Pape		AmS-ansvarlig:	: Gitte Kjeldsen		
AmS arkivnr	Bildenr	Dato	UTM	Kartblad	Retn.mot	Motiv				UDK-nr
	1	23/7			NNV	2AS14106 og 2AG14087, profil, NP				
	2	23/7			NNV	2AS14106 og 2AG14087, profil, NP				
	3	23/7			SSV	2AS43566, profil, NP				
	4	23/7			SSV	2AS43566, profil, NP				
	5	23/7			S	2AS43104, plan, NP				
	6	23/7			S	2AS43104, plan, NP				
	7	23/7			S	2AS44027, plan, NP				
	8	23/7			S	2AS44027, plan, NP				
	9	23/7			N	Oversiktsbilde av SØ-del av Felt IIb, CRV				
	10	23/7			N	Oversiktsbilde av SØ-del av Felt Ilb, CRV				
	11	23/7			N	Oversiktsbilde av S \varnothing-del av Felt Ilb, CRV				
	12	23/7			N	Oversiktsbilde av S \varnothing-del av Felt Ilb, CRV				
	13	23/7			N	Oversiktsbilde av SØ-del av Felt IIb, CRV				
	14	23/7			V	Oversiktsbilde av S \varnothing-del av Felt IIb, CRV				
	15	23/7			V	Oversiktsbilde av S \varnothing-del av Felt IIb, CRV				
	16	23/7			V	Oversiktsbilde av S \varnothing-del av Felt Ilb, CRV				
	17	23/7			NV	2AG49501, plan, WD				
	18	23/7			NV	2AG49501, plan, WD				
	19	23/7			NNV	2AS43104, profil, NP				
	20	23/7			NNV	2AS43104, profil, NP				

Oppdrag: Tastarustå						Flyf.reg.nr./Fornm.nr.				
Saknr: 22/2004			Gard: Øvre Tasta				Bnr:	Kommune:	S̄ıava	
Film nr.: 31, ark 3			S/H	Dias	Fotograf; Christian Roll Valen, Nora Pape, Anna Drageset		AmS-ansvarlig: Gitte Kjeldsen			
AmS arklvnr	Bildenr	Dato	UTM	Kartblad	Retn.mot	Motiv				UDK-nr
	41	24/7			V	2AS44003, plan, NP				
	42	24/7			V	2AS44003, plan, NP				
	43	24/7			V	2AS44003 og 2AS49237, plan, NP				
	44	24/7			V	2AS44003 og 2AS49237, plan, NP				
	45	24/7			NNV	2A328830, plan, CRV				
	46	24/7			NNV	2AS28836, plan, CRV				
	47	24/7			S	2AS49237, plan, NP				
	40	24/7			S	2AS49237, plan, NP				
	49	$24 / 7$			VSV	2AG43649, profil, AD				
	50	24/7			VSV	2AG43649, profil, AD				
	51	24/7			NNV	2AS28836, profil, CRV				
	52	24/7			NNV	2AS28836, profil, CRV				
	53	$24 / 7$			NNV	2AS28844, plan, CRV				
	54	24/7			NNV	2AS28844, plan, CRV				
	55	$24 / 7$			NNV	2AS43938, plan, AD				
	56	24/7			NNV	2AS43938, plan, AD				
	57	25/7			V	2AS44003, profil, NP				
	58	25/7			V	2AS44003, profil, NP				
	59	25/7			V	2AS49237, profil, NP				
	60	25/7			V	2AS49237, profil, NP				

Oppdrag: Tastarustå						Flyf.reg.nr./Fornm.nr.			
Sak nr: 22/2004			Gard: Øvre Tasta				Enr:	Kommune:	
Film nr.: 31, ark 6			S / H	Dias	Fotog Drage	stian Roll Valen, Nora Pape, Anne	AmS-ansvarlig: Gitte Kjeldsen		
AmS arkivnr	Bildenr	Dato	UTM	Kartblad	Retn.mot	Motiv			UDK-nr
	101	$26 / 7$			VNV	2AS49260 og 2AS49248	fil, AD		
	102	26/7			VNV	2AS49260 og 2AS49248	fil, AD		
	103	26/7			VSV	2AS51227, plan, AD			
	104	26/7			VSV	2AS51227, plan, AD			
	105	26/7			NNV	2AS51611 og 2AS51598	fil, NP		
	106	26/7			NNV	2AS51611 og 2AS51598	, NP		
	107	26/7			NNV	2AS51611, profil, NP			
	108	26/7			NNV	2AS51611, profil, NP			
	109	26/7			\varnothing SØ	2AS51517, plan, NP			
	110	26/7			ØSØ	2AS51517, plan, NP			
	111	26/7			NV	2AS49289, profil, CRV			
	112	26/7			NV	2AS49289, profil, CRV			
	113	26/7			N	2AS51104, plan, NP			
	114	26/7			N	2AS51104, plan, NP			
	115	26/7			VSV	2AS51517, profil, NP			
	116	26/7			VSV	2AS51517, profil, NP			
	117	26/7			NV	2AS51093, plan, CRV			
	118	$26 / 7$			NV	2AS51093, plan, CRV			
	119	26/7			NNV	2AS51104, profil, NP			
	120	26/7			NNV	2AS51104, profil, NP			

Oppdrag: Tastarustå						Flyf.reg.nr./Fornm.nr.			
Sak nr: 22/2004			Gard: Øvre Tasta				Bnr:	Kommune:	
Film nr.: 31, ark 7			S/H \square	Dias	Fotograf; Chrisiian Roll Valen, Nora Pape, Anne Drageset, Niall Armstrong		AmS-ansvarlig: Gilte Kjeldsen		
AmS arkivnr	Bildenr	Dato	UTM	Kartblad	Retn.mot	Motiv			UDK-nr
	121	$27 / 7$			SV	2AS51227, profil, AD			
	122	27/7			SV	2AS51227, profil, AD			
	123	$27 / 7$			NN®	Oversiktsbilde av Hus 14, med hovedstolper, NJA			
	124	27/7			NNØ	Oversiktsbilde av Hus 14, med hovedstolper, NJA			
	175	$27 / 7$			ØNØ	Oversiktsbilde av I lus 14, med hovedstolper, NJA			
	126	27/7			ØNØ	Oversiktsbilde av Hus 14, med hovedstolper, NJA			
	127	$27 / 7$			NNØ	Oversiktsbilde av Hus 14, med støttestolper, NJA			
	128	$27 / 7$			NN®	Oversiktsbilde av Hus 14, med støttestolper, NJA			
	129	27/7			ØNØ	Oversiktsbilde av Hus 14, med støttestolper, NJA			
	130	27/7			ØNØ	Oversiktsbilde av Hus 14, med støttestolper, NJA			
	131	$27 / 7$			SV	2AS51080, plan, NP			
	132	$27 / 7$			SV	2AS51080, plan, NP			
	133	$27 / 7$			NV	2AS51093, profil, CRV			
	134	$27 / 7$			NV	2AS51093, profil, CRV			
	135	$27 / 7$			SV	2AS51080, profil, NP			
	136	27/7			SV	2AS51080, profil, NP			
	137	$27 / 7$			SV	2AS29368, plan, NP			
	138	$27 / 7$			SV	2AS29368, plan, NP			
	139	27/7				Arbeidsbilder, CRV			
	140	$27 / 7$				Arbeidsbilder, CRV			

Oppdrag: Tastarustá							Flyf.reg.nr./Fornm.nr.			
Sak nr: 22/2004			Gard: Øvre Tasta				Gnr: 28	Bnr:	Kommune:	
Film nr.: 32, ark 5			S/H	Dias \square	Fotograf; Will Davies, Nora Pape			AmS-ansvarlig: Gitte Kjeldsen		
AmS arkivnr	Bildenr	Dato	UTM	Kartblad	Retn.mot	Motiv				UDK-nr
	81	2/8			NØ	2AS51646, p	, WD			
	82	2/8			NØ	2AS51646, p	, WD			
	83	2/8			NØ	2AS51646, p	fil, WD			
	84	2/8			NØ	2AS51646, p	fil, WD			
	85	2/8			NV	2AS51495, p	, WD			
	86	2/8			NV	2AS51495, p	, WD			
	87	2/8			NNV	2AS51771 og	AG5180	fil, NP		
	88	2/8			NNV	2AS51771 og	2AG51807	fil, NP		
	89	2/8			NV	2AS51495, p	fil, WD			
	90	2/8			NV	2AS51495, p	fil, WD			
	91	2/8			NNV	2AS51860, p	fil, NP			
	92	2/8			NNV	2AS51860, p	fil, NP			
	93	2/8			NV	2AG51411, 2	G51398,	2014	52117, plan	
	94	2/8			NV	2AG51411, 2	G51398,	2014	52117, plan	
	95	2/8			NV	2AG51411 og	forbundne	gg, pla	gøyde, WD	
	96	2/8			NV	2AG51411 og	forbundne	gg, pla	g gle, WD	
	97	2/8			NV	2AG51411 og	forbundne	gg, W		
	98	2/8			NV	2AG51411 og	forbundne	gg, W		
	99	$2 / 8$			NNV	Oversikt over	elt lib, m	ra Pa		
	100	2/8			NNV	Oversikt over	elt lib, m	ra Pa		

Oppdrag: Tastarustả						Flyf.reg.nr./Fornm.nr.			
Sak nr: 22/2004			Gard: Øvre Tasta				Bnr:	Kommune:	
Film nr.: 32, ark 6			S/H	Dias	Fotograf; Will Davies, Nora Pape, Niall Amstrong		AmS-ansvarlig: Gitte Kjeldsen		
AmS arkivnr	Bildenr	Dato	UTM	Kartblad	Retn.mot	Motiv			UDK-nr
	101	2/8			NNV	Oversikt over Felt Ilb og Hus 15, WD			
	102	2/8			NNV	Oversikt over Felt llb og Hus 15, WD			
	103	2/8			S	2AG51411, 2AS52104,2AS52117 og 2AG 51398, WD			
	104	2/8			S	2AG51411, 2AS52104,2AS52117 og 2AG 51398, WD			
	105	2/8			SSV	2AS52081, plan, NP			
	106	2/8			SSV	2AS52081, plan, NP			
	107	2/8			NNV	2AV50920, profil, NJA			
	108	2/8			NNV	2AV50920, profil, NJA			
	109	2/8			NØ	2AU51534, 2AS27241 og 2AS51199, profil, NJA			
	110	2/8			N®	2AU51534, 2AS27241 og 2AS51199, profil, NJA			
	111	2/8			NV	2AS52018, profil, NP			
	112	2/8			NV	2AS552018, profil, NP			
	113	3/8			VSV	2AD51675, profil, NP			
	114	3/8			VSV	2AD51675, profil, NP			
	115	3/8			NNV	2AS51712, profil, NJA			
	116	3/8			NNV	2AS51712, profil, NJA			
	117	3/8			NNV	2AS51387, plan, NJA			
	118	3/8			NNV	2AS51387, plan, NJA			

Oppdrag: Tastarustả						Fiyf.reg.nr./Fornm.nr.				
Sak nr: 22/2004			Gard: Øvie Tasta				Bnr:	Kommune	Stavang	
Film nr.: 33, ark 2			S/H	Dias \square	Fotograf; Will Davies, Niall Armstrong		AmS-ansvarlig: Gitte Kjeldsen			
AmS arklvnr	Bildenr	Dato	UTM	Kartblad	Retn.mot	Motiv				UDK-nr
	21	6/8			NV	2AS52117, plan, NJA				
	22	6/8			NV	2AS52117, plan, NJA				
	23	6/8			NV	2AS51411, grøft øst for anlegg (skorsteinsgrøften), WD				
	24	6/8			NV	2AS51411, grøft øst for anlegg (skorsteinsgrøften), WD				
	25	0/8			3 V	2A351411, greft øst for anlegg (skorsteinsgrøften), WD				
	26	6/8			SV	2AS51411, grøft øst for anlegg (skorsteinsgrøften), WD				
	27	6/8			N	2AS49371, plan, NJA				
	20	6/8			N	2AS49371, plan, NJA				
	29	6/8			S	2AS49371, profil, NJA				
	30	6/8			S	2AS49371, profil, NJA				
	$3 \uparrow$	6/8			NNV	2AS49371, profil av baksiden, inngang til 2AD52245, NJA				
	32	6/8			NNV	2AS49371, profil av baksiden, inngang til 2AD52245, NJA				
	33	6/8			N	2AV52245, profil , WD				
	34	6/8			N	2AV52245, profil, WD				
	35	$7 / 8$			NNV	2AG51411, vestre halvdel, profil, WD				
	36	$7 / 8$			NNV	2AG51411, vestre halvdel, profil, WD				
	37	718			NNV	2AG51411, østre halvdel, profil, WD				
	38	$7 / 8$			NNV	2AG51411, østre halvdel, profil, WD				
	39	$7 / 8$			SV	2AG51411, skjæring til v side av toppen av "skorsteinsgrøft", WD				
	40	$7 / 8$			SV	2AG51411, skjæring til v side av toppen av "skorsteinsgrøft", WD				

Oppdrag: Tastarustả						Flyf.reg.nr./Fornm.nr.			
Sak nr: 22/2004			Gard: Øvre Tasta				Bnr:	Kommune: Stavan	
Film nr.: 33, ark 6			S/H	Dias \square	Fotograf; Will Davies, Niall Armstrong		AmS-ansvarlig: Gitte Kjeldsen		
AmS arklvnr	Bildenr	Dato	UTM	Kartblad	Retn.mot	Motiv			UDK-nr
	101	8/8			ØNØ	2AG51411, steiner på bunnen av vestre side, plan, WD			
	102	8/8			ØNØ	2AG51411, steiner på bunnen av vestre side, plan, WD			
	103	9/8			Nv	2AS51961 og 2AG51941, plan, WD			
	104	9/8			Nv	2AS51961 og 2AG51941, plan, WD			
	105	9/8			N	2AS51749, pladı, WD			
	106	9/8			N	2AS51749, plan, WD			
	107	9/8			NØ̄	2AO26631, i Hus 11, før preparatuttak, NJA			
	108	9/8			NØ	2AO26631, i Hus 11, før preparatuttak, NJA			
	109	9/8			NØ	2AO26631, i Hus 11, før preparatuttak (med omliggende) , NJA			
	110	9/8			NØ	2AO26631, i Hus 11, før preparatultak (med omliggende), NJA			
	111	9/8			NV	2AO26631, i Hus 11, før preparatuttak, NJA			
	112	9/8			NV	2AO26631, i Hus 11, for preparatuttak, NJA			
	113	9/8			NV	2AO26631, i Hus 11, før preparatuttak (med omliggende), NJA			
	114	9/8			NV	2AO26631, i Hus 11, før preparatuttak (med omliggende), NJA			
	115	9/8			N	2AS51737, profil, WD			
	116	9/8			N	2AS51737, profil, WD			
	117	9/8			S	Will Davies tegner			
	118	9/8			NV	Oversikt over Hus 15, med tallerkener, NJA			
	119	9/8			NV	Oversikt over Hus 15, med tallerkener, NJA			
	120	9/8			NV	Oversikt over Hus 15, med tallerkener, NJA			

[^9]

Consistent Accuracy Delivered On Time.

ARKEOLOGISK MUSEUM I STAVANGER

09 JAN. 2007

December 12, 2006
Mr. Gite Kjeldsen
Arkeologisk Museum i Stavanger
Boas 478 Centrum
Stavanger, N-4002 Norway
RE: Radiocarbon Dating Results For Samples 0615-1, 0615-25, 0615-33, 0615-62, 0615-67, 0615-128, 0615-177, 0615-191, 0615-201

Dear Mr. Kjeldsen:

Enclosed are the radiocarbon dating results for nine samples recently sent to us. They each provided plenty of carbon for accurate measurements and all the analyses proceeded normally. The report sheet contains the dating result, method used, material type, applied pretreatment and two-sigma calendar calibration result (where applicable) for each sample.

This report has been both mailed and sent electronically, along with a separate publication quality calendar calibration page. This is useful for incorporating directly into your reports. It is also digitally available in Windows metafile (.mf) format upon request. Calibrations are calculated using the newest (1998) calibration database. References are quoted on the bottom of each calibration page. Multiple probability ranges may appear in some cases, due to short-term variations in the atmospheric 14C contents at certain time periods. Examining the calibration graphs will help you understand this phenomenon. Calibrations may not be included with all analyses. The upper limit is about 20,000 years, the lower limit is about 250 years and some material types are not suitable for calibration (e.g. water).

We analyzed these samples on a sole priority basis. No students or intern researchers who would necessarily be distracted with other obligations and priorities were used in the analyses. We analyzed them with the combined attention of our entire professional staff.

Information pages are enclosed with the mailed copy of this report. They should answer most of questions you may have. If they do not, or if you have specific questions about the analyses, please do not hesitate to contact us. Someone is always available to answer your questions.

Our invoice is enclosed. Please, forward it to the appropriate officer or send VISA charge authorization. Thank you. As always, if you have any questions or would like to discuss the results, don't hesitate to contact me.

Sincerely,

REPORT OF RADIOCARBON DATING ANALYSES

Mr. Gitte Kjeldsen

Report Date: 12/12/2006
Arkeologisk Museum i Stavanger
Material Received: 11/15/2006

Sample Data

Measured	$13 C / 12 C$
Radiocarbon Age	Ratio

Conventional
Radiocarbon Age(*)

Beta - 223433	$1130+/-60$ BP	-25.1 o/oo	$1130+/-60 \mathrm{BP}$
SAMPLE: 0615-1			
ANALYSIS : Radiometric-Standard delivery			
MATERIAL/PRETREATMENT : (charred material): acid/alkali/acid			

Beta -223434	$1090+/-40 \mathrm{BP}$	$-25.10 / 00$	$1090+/-40 \mathrm{BP}$

SAMPLE: 0615-25
ANALYSIS : AMS-Standard delivery
MATERIAL/PRETREATMENT : (seeds): acid/alkali/acid
2 SIGMA CALIBRATION : Cal AD 880 to 1020 (Cal BP 1070 to 930)

Beta $-223435 \quad 1180+/-40 \mathrm{BP} \quad-23.9$ o/oo $1200+/-40 \mathrm{BP}$
SAMPLE : 0615-33
ANALYSIS : AMS-Standard delivery
MATERIAL/PRETREATMENT : (seeds): acid/alkali/acid
2 SIGMA CALIBRATION : Cal AD 710 to 910 (Cal BP 1240 to 1040) AND Cal AD 920 to 960 (Cal BP 1030 to 1000)

Beta-223436

$$
80+/-40 \mathrm{BP}
$$

-18.9 o/oo
$180+/-40 \mathrm{BP}$
SAMPLE: 0615-62
ANALYSIS : AMS-Standard delivery
MATERIAL/PRETREATMENT : (seeds): acid/alkali/acid
2 SIGMA CALIBRATION : Cal AD 1650 to 1710 (Cal BP 300 to 240) AND Cal AD 1720 to 1880 (Cal BP 230 to 70)
Cal AD 1910 to 1950 (Cal BP 40 to 0)
Beta $-223437 \quad 3670+/-40 \mathrm{BP} \quad-26.5 \% / 00 \quad 3650+/-40 \mathrm{BP}$

SAMPLE: 0615-67
ANALYSIS: AMS-Standard delivery
MATERIAL/PRETREATMENT : (charred material): acid/alkali/acid
2 SIGMA CALIBRATION : Cal BC 2140 to 1910 (Cal BP 4090 to 3860)

Dates are reported as RCYBP (raduicarbon years before present, "present" = 1950A.D.). By International convention, the modern reference standard was 95% of the C14 content of the National Bureau of Standards' Oxalic Acid \& calculated using the Libby C14 half life (5568 years). Quoted errors represent 1 slandard deviation statistics (68% probability) \& are based on combined measurements of the sample, background, and modern reference standards.

Measured C13/C12 ratios were calculated relative to the PDB-1 international standard and the RCYBP ages were normalized to -25 per mil. If the ratio and age are accompanied by an (${ }^{*}$), then the C13/C12 value was estimated, based on values typical of the material type. The quoted results are NOT calibrated to calendar years. Calibration to calendar years should be calculated using the Conventional C14 age.

REPORT OF RADIOCARBON DATING ANALYSES

[^10]Measured C13/C12 ratios were calculated relative to the PDB-1 international standard and the RCYBP ages were normalized to -25 per mil. If the ratio and age are accompanied by an (*), then the C13/C12 value was estimated, based on values typical of the material type. The quoted results are NOT calibrated to calendar years. Calibration to calendar years should be calculated using the Conventional C14 age.

CALIBRATION OF RADIOCARBON AGE TO CALENDAR YEARS

(Variables: C13/C $12=-25.1$ lab. mult=1)
Laboratorynumber: Beta-2 23433
Conventional radiocarbon age:
$1130 \pm 60 \mathrm{BP}$
2 Sigmacalibrated result:
Cal AD 770 to 1020 (CalBP1180 to 930) (95\% probability)

Intercept data
Intercept of radiocarb on age
with calibration curve: Cal AD 900 (Cal BP 1050)
1 Sigma calibrated result: Cal AD 870 to 990 (Cal BP 1080 to 960) (68\% probability)

References:
Databaseused
INTC AL9 8
Cal酸ration Dambase
Edito Hal Comm ent
Stuiver, M., van der Plicht, H., 1998, Radiocarbon 40(3), pxii-xiii
INTCAL98 Radiocarbon Age Caltbration
Stuiver, M., et al., 1998, Radiocarbon 40 (3), pl 041-1083
Mathematics
A Simplified A pproach to Calibrating C14 Dates
Talma, A. S., Vogel, J. C., 1993, Radiocarbon 35 (2), p317-3 22
Beta Analytic Radiocarbon Dating Laboratory

CALIBRATION OF RADIOCARBON AGE TO CALENDAR YEARS

(Variables: C $13 / \mathrm{C} 12=-25.1: 1 \mathrm{ab} . \mathrm{mult}=1$)
Laboratorynumber: Beta-2 23434
Conventional radiocarbon age: $1090 \pm 40 \mathrm{BP}$
2 Sigma calibrated result: Cal AD 880 to 1020 (Cal BP 1070 to 930)
(95\% probability)
Intercept data
Intercept of radiocarb on age
with calibration curve: Cal AD 980 (Cal BP970)
1 Sigma calibrated result: Cal AD 900 to 1000 (Cal BP 1050 to 950)
(68\% probability)

References:
Databaseused
INTC AL9 8
Calbration Dambase
Edion rial Comment
Stulver, M., van der Plicht, H., 1998, Radiocarbon 40(3), pxil-xili
INTCAL98 Radiocarb on Age Calibration
Stuiver, M., et al., 1998, Radiocarbon 40 (3), p1041-1083
Mathematics
A Simpllfied A pproach to Callbrating C14 Daes
Talma, A. S., Vogel, J. C., 1993, Radiocarbon 35 (2), p31 7-3 22

CALIBRATION OF RADIOCARBON AGE TO CALENDAR YEARS

(Variables: C13/C12=-23.9:lab. mult=1)
Laboratory number: Beta-2 23435

Conventional radiocarbon age: 1200 ± 40 BP

2 Sigma calibrated results: Cal AD 710 to 910 (Cal BP 1240 to 1040) and (95\% probability) Cal AD 920 to 960 (Cal BP 1030 to 1000) Intercept data

Intercepts of radiocarbon age
with calibration curve: Cal AD 810 (Cal BP 1140) and
Cal AD 840 (Cal BP 1110) and
Cal AD 860 (Cal BP 1100)
1 Sigma calibrated result: Cal AD 780 to 890 (Cal BP 1170 to 1060) (68\% probability)

Talma, A. S., Vogel, J. C., 1993, Radiocarbon 35 (2), p317-322

CALIBRATION OF RADIOCARBON AGE TO CALENDAR YEARS

(Variables: C13/C $12=-18.9$:lab. mult=1)
Laboratorynumber: Beta-2 23436
Conventional radiocarbonage: $180 \pm 40 \mathrm{BP}$

2 Sigma calibrated results:	Cal AD 1650 to 1710 (Cal BP 300 to 240) and
$(95 \%$ probability)	Cal AD 1720 to 1880 (Cal BP 230 to 70) and
	Cal AD 1910 to 1950 (Cal BP 40 to 0)

Intercept data

Intercepts of radiocarbon age with calibration curve:

Cal AD 1670 (CalBP 280) and
Cal AD 1770 (CalBP180) and Cal AD 1800 (Cal BP 150) and Cal AD 1940 (CalBP 10) and Cal AD 1950 (Cal BP 0)

1 Sigma calibrated results:
(68\% probability)

Cal AD 1660 to 1680 (Cal BP 290 to 260) and Cal AD 1730 to 1810 (Cal BP 220 to 140) and Cal AD 1930 to 1950 (Cal BP 20 to 0)

Beta Analytic Radiocarbon Dating Laboratory
4985 S.W. 74th Court, Miam i Florida 33155•Tel: 10 5)667-5167•Fax: (305)663-0964•E-Mail: beta@radiocarbon.com

CALIBRATION OF RADIOCARBON AGE TO CALENDAR YEARS

(Variables: C $13 / \mathrm{C} 12=-26.5$:lab. mult $=1$)
Laboratory number: Beta-2 23437

Conventional radiocarbonage: 3650 ± 40 BP

2 Sigma calibrated result: C al BC 2140 to 1910 (Cal BP 4090 to 3860) (95\% probability) Intercept data

Intercept of radiocarb on age with calibration curve: Cal BC 2020 (CalBP 3970)

1 Sigma calibrated results: Cal BC 2120 to 2100 (Cal BP 4060 to 4050) and (68% probability) Cal BC 2040 to 1950 (Cal BP 3990 to 3900)

References:
Databaseused
INTCAL98
Calbration Dambase
Editurial Comment
Stuiver, M, van der Plicht, H., 1998, Radiocarbon 40(3), pxii-xiil
INTCAL9 8 Radiocarbon Age Calbration
Stuiver, M., et al., 1998, Radiocar bon 40 (3), p1041-1083
Mathematics
A Simplified A pproa ch to Callbrating C14 Dases
Talma, A. S., Vogel, J. C., 1993 , Radiocar bon 35 (2), p317-3 22
Beta Analytic Radiocarbon Dating Laboratory
4985 S.W. 74th Court, Miam i Florida 33155•Tel; $\beta 0$ 5)667-5167•Fax: (305)663-0964•E-Mall: beta@radiocarbon.com

CALIBRATION OF RADIOCARBON AGE TO CALENDAR YEARS

(Variables: C $13 /$ C $12=-23$:lab. mult $=1$)

Laboratory number: Beta-2 23438

Conventional radiocarbonage: $2150 \pm 40 \mathrm{BP}$
2 Sigma calibrated results: Cal BC 360 to 280 (Cal BP 2310 to 2230) and (95\% probability) Cal BC 240 to 60 (Cal BP 2190 to 2010)

Intercept data
Intercept of radiocarb on age with calibration curve: Cal BC 190 (Cal BP 2140)

1 Sigma calibrated results: Cal BC 340 to 320 (Cal BP 2290 to 2270) and (68% probability) Cal BC 210 to 160 (Cal BP 2160 to 2100)

References:
Databaseused
INTC AL9 8
Calbration Database
Ediorial Comment
Stuiver, M., van der Plicht, H., 19 98, Radiocar bon 40(3), pxii-xiii
INTCAL98 Radiocarbon Age Calibration
Stuiver, M, et al., 1998, Radiocar bon 40 (3), p1041-1083
Mathematics
A Simplified A pproach to Calibrating C14 Dates
Talma, A. S., Vogel, J. C., 19 93, Radiocarbon 35 (2), p31 7-3 22

Beta Analytic Radiocarbon Dating Laboratory

4985 S.W. 74th Court, Miam i Florida 33155•Tel: $\beta 0$ 5)667-5167•Fax: (305)663-0964•E-Matl: beta@radiocarbon.com

CALIBRATION OF RADIOCARBON AGE TO CALENDAR YEARS

(Variables: C13/C $12=-25$:lab. mult=1)
Laboratory number: Beta-2 23439

Conventional radiocarbon age: $1020 \pm 40 \mathrm{BP}$

2 Sigma calibrated result: Cal AD 970 to 1040 (Cal BP 980 to 910) (95\% probability) Intercept data

Intercept of radiocarbon age with calibration curve:

Cal AD 1010 (Cal BP 940)
1 Sigma calibrated result: Cal AD 990 to 1030 (Cal BP 960 to 920) (68\% probability)

Beta Analytic Radiocarbon Dating Laboratory

CALIBRATION OF RADIOCARBON AGE TO CALENDAR YEARS

(Variables: C13/C12=-25;lab. mult=1)
Laboratory number: Beta-2 23440
Conventional radiocarbon age: 1310 ± 40 BP
2 Sigma calibrated result:
Cal AD 650 to 780 (Cal BP 1300 to 1170) (95\% probability)

Intercept data
Intercept of radiocarb on age
with calibration curve: Cal AD 690 (Cal BP 1260)
1 Sigma calibrated results: Cal AD 670 to 720 (Cal BP 1280 to 1230) and (68\% probability) Cal AD 740 to 760 (Cal BP 1210 to 1190)

References:
Databaseused
INTCAL9 8
Calbration Database
Editorial Comm ent
Stuiver, M., van der Plichs, H., 1998, Radiocarbon 40(3), pxii-xili
INTCAL98 Radiocarbon Age Calibration
Stuiver, M., et al., 1998, Radiocarbon 40(3), p1041-1083
Mathematics
A Simplified Approach to Callbrating Cl4 Dates
Talma, A. S., Vogel, J. C., 1993, Radiocar bon 35 (2), p317-3 22

Beta Analytic Radiocarbon Dating Laboratory

4985 S.W. 74th Court, Miam i Flortda 33155 - Tel: ß05)667-5167•Fax: (305)663-0964•E-Mail: beta@radiocarbon.com

CALIBRATION OF RADIOCARBON AGE TO CALENDAR YEARS

(Variables: C $13 / \mathrm{C} 12=-23.3: \mathrm{lab} . \mathrm{mult}=1$)
Laboratorynumber: Beta-2 23441
Conventional radiocarbon age: $1920 \pm 50 \mathrm{BP}$
2 Sigma calibrated result: Cal BC 30 to Cal AD 220 (Cal BP 1980 to 1730)
(95\% probability)
Intercept data
Intercept of radiocarb on age
with calibration curve: Cal AD 80 (Cal BP 1870)
1 Sigma calibrated result: Cal AD 40 to 130 (Cal BP 1900 to 1820)
(68% probability)

References:
Databaseused
INTCAL9 8
Calioration Database
EditorialComment
Stuiver, M., van der Plicht, H., 1998, Radiocarbon 40(3), pxil-xili
INTCAL98 Ra diocarb on Age Calibration
Stuiver, M., et al., 1998, Radiocarbon 40 (3), pl041-1083
Mathematics
A Simplifled A pproach to Ca librating C14Daks
Talma, A. S., Vogel, J. C., 1993, Radiocarbon 35 (2), p317-3 22

Consistent Accuracy Delivered On Time.

Beta Analytic Inc.

ARKEOLOGISK MUSEUM I STAVANGER

February 28, 2007

$$
\frac{\text { Jor. } \quad 99 / 7619-42}{\text { Ark. } 433 \text { Eehav AJN }}
$$

Mr. Gite Kjeldsen
Arkeologisk Museum i Stavanger
Boks 478 Sentrum
Stavanger, N-4002 Norway
RE: Radiocarbon Dating Results For Samples 06/15-4, 06/15-29, 06/15-148, 06/15-194, 06/15-217, 06/15-228

Dear Mr. Kjeldsen:
Enclosed are the radiocarbon dating results for six samples recently sent to us. They each provided plenty of carbon for accurate measurements and all the analyses proceeded normally. As usual, the method of analysis is listed on the report with the results and calibration data is provided where applicable.

As always, no students or intern researchers who would necessarily be distracted with other obligations and priorities were used in the analyses. We analyzed them with the combined attention of our entire professional staff.

If you have specific questions about the analyses, please contact us. We are always available to answer your questions.

Our invoice is enclosed. Please, forward it to the appropriate officer or send VISA charge authorization. Thank you. As always, if you have any questions or would like to discuss the results, don't hesitate to contact me.

REPORT OF RADIOCARBON DATING ANALYSES

Mr. Gitte Kjeldsen

Report Date: 2/28/2007
Arkeologisk Museum i Stavanger
Material Received: 1/24/2007

Sample Data	Measured Radiocarbon Age	$13 \mathrm{C} / 12 \mathrm{C}$ Ratio	Conventional Radiocarbon Age(*)

Beta - 226496
$980+/-40 \mathrm{BP}$
-24.3 \%/oo
$990+/-40 \mathrm{BP}$
SAMPLE: 06/15-4
ANALYSIS: AMS-Standard delivery
MATERIAL/PRETREATMENT : (charred material): acid/alkali/acid
2 SIGMA CALIBRATION : Cal AD 980 to 1160 (Cal BP 960 to 800)

Beta - 226497
$1140+/-40 \mathrm{BP}$
-23.4 o/oo
$1170+/-40 \mathrm{BP}$
SAMPLE: 06/15-29
ANALYSIS : AMS-Standard delivery
MATERIAL/PRETREATMENT : (charred material): acid/alkali/acid
2 SIGMA CALIBRATION : Cal AD 770 to 980 (Cal BP 1180 to 970)

Beta -226498	$2140+/-40 \mathrm{BP}$	-25.2%	$2140+1-40 \mathrm{BP}$

SAMPLE: 06/15-148
ANALYSIS: AMS-Standard delivery
MATERIAL/PRETREATMENT : (charred material): acid/alkali/acid
2 SIGMA CALIBRATION : Cal BC 360 to 290 (Cal BP 2300 to 2240) AND Cal BC 240 to 50 (Cal BP 2180 to 2000)

Beta -226499	$1290+/-40 \mathrm{BP}$	-25.4%	1280
+/-40 BP			

SAMPLE: 06/15-194
ANALYSIS: AMS-Standard delivery
MATERIAL/PRETREATMENT : (charred material): acid/alkali/acid
2 SIGMA CALIBRATION : Cal AD 660 to 810 (Cal BP 1290 to 1140)
Beta -226500
SAMPLE: $06 / 15-217$
ANALYSIS : AMS-Standard delivery
MATERIAL/PRETREATMENT : (charred material): acid/alkali/acid
2 SIGMA CALIBRATION : Cal AD 670 to 880 (Cal BP 1280 to 1070)

Dates are reported as RCYBP (raduicarbon years before present, "present" = 1950A.D.). By international convention, the modern reference standard was 95% of the C14 content of the National Bureau of Standards' Oxalic Acid \& calculated using the Libby C14 half life (5568 years). Quoted errors represent 1 standard deviation statistics (68% probability) \& are based on combined measurements of the sample, background, and modern reference standards.

Measured C13/C12 ratios were calculated relative to the PDB-1 international standard and the RCYBP ages were normalized to -25 per mil. If the ratio and age are accompanied by an ($*$), then the C13/C12 value was estimated, based on values typical of the material type. The quoted results are NOT calibrated to calendar years. Calibration to calendar years should be calculated using the Conventional C14 age.

REPORT OF RADIOCARBON DATING ANALYSES

Mr. Gitte Kjeldsen

Report Date: 2/28/2007

Sample Data

Measured	13C/12C
Radiocarbon Age	Ratio

Conventional
Radiocarbon Age(*)

Beta - 226501
$390+/-40 \mathrm{BP}$
-24.2 o/oo
$400+/-40 B P$
SAMPLE: 06/15-228
ANALYSIS: AMS-Standard delivery
MATERIAL/PRETREATMENT : (charred material): acid/alkali/acid
2 SIGMA CALIBRATION : Cal AD 1430 to 1530 (Cal BP 520 to 420) AND Cal AD 1560 to 1630 (Cal BP 390 to 320)

Dates are reported as RCYBP (raduicarbon years before present, "present" = 1950A.D.). By International convention, the modern reference standard was 95% of the C14 content of the National Bureau of Standards' Oxalic Acid \& calculated using the Libby C14 half life (5568 years). Quoted errors represent 1 standard deviation statistics (68% probability) \& are based on combined measurements of the sample, background, and modern reference standards.

Measured C13/C12 ratios were calculated relative to the PDB-1 international standard and the RCYBP ages were normalized to -25 per mil. If the ratio and age are accompanied by an (${ }^{*}$), then the C13/C12 value was estimated, based on values typical of the material type. The quoted results are NOT calibrated to calendar years. Calibration to calendar years should be calculated using the Conventional C14 age.

CALIBRATION OF RADIOCARBON AGE TO CALENDAR YEARS

(Variables: C13/C $12=-24.3$:lab. mult=1)
Laboratory number: Beta-2 26496
Conventional radiocarbon age: $990 \pm 40 \mathrm{BP}$
2 Sigma calibrated result: Cal AD 980 to 1160 (Cal BP 960 to 800) (95\% probability) Intercept data
Intercept of radiocarb on age
with calibration curve: Cal AD 1030 (Cal BP 920)
1 Sigma calibrated result: Cal AD 1010 to 1040 (Cal BP 940 to 910) (68\% probability)

Beta Analytic Radiocarbon Dating Laboratory
4985 S.W. 74th Court, Miam i Florida 33155•Tel: 305)667-5167•Fax: (305)663-0964•E-Mail: beta@radlocarbon.com

CALIBRATION OF RADIOCARBON AGE TO CALENDAR YEARS

(Variables: C $13 / \mathrm{C} 12=-23.4$:lab. mult=1)
Laboratory number: Beta-2 26497
Conventional radiocarbon age: $1170 \pm 40 \mathrm{BP}$
2 Sigma calibrated result: Cal AD 770 to 980 (Cal BP 1180 to 970)
(95\% probability)
Intercept data
Intercept of radiocarbon age
with calibration curve: Cal AD 880 (Cal BP 1070)
1 Sigma calibrated result: Cal AD 780 to 900 (Cal BP 1160 to 1050)
(68\% probability)

References:
Databaseused
INTC ALO 4
Calbibration Database
INTCALO4 Radiocarbon A ge Calibration
IntC al04: Calibration Issue of Radiocarbon (Volume $46, \mathrm{nr} 3,2004$).
Mathematics
A Simplified Approach to Calibrating C14 Dates
Talma, A. S., Vo gel. J. C., 1993, Radiocarbon 35 (2), p317-322

CALIBRATION OF RADIOCARBON AGE TO CALENDAR YEARS

(Variables: C $13 / \mathrm{C} 12=-25.2$:lab. mult $=1$)

Laboratorynumber: Beta-2 26498

Conventional radiocarbon age:

2140 ± 40 BP
2 Sigmacalibrated results:
Cal BC 360 to 290 (Cal BP 2300 to 2240) and
(95\% probability)
Cal BC 240 to 50 (Cal BP 2180 to 2000)
Intercept data
Intercept of radiocarb on age
with calibration curve:
1 Sigma calibrated results: (68\% probability)

Cal BC 180 (Cal BP 2130)
Cal BC 340 to 330 (Cal BP 2290 to 2280) and
Cal BC 200 to 150 (Cal BP 2150 to 2100) and
Cal BC 140 to 110 (Cal BP 2090 to 2060)

References:

Datab aseused INTCALO 4
Calibration Database
INTCAL0 4 Radiocarbon A ge Calibration
IntC al04 : Calibration Issue of Radiocarbon (Volume $46, n r 3,2004$).
Mathematics
A Simplified A pproach to Callbrating C14 Daks
Talma, A. S., Vogel, J. C., 1993, Radiocar bon 35 (2), p317-322

Beta Analytic Radiocarbon Dating Laboratory

4985 S.W. 741h Court, Miam i Florida 33155 • Tel: 305)667-5167•Fax: (305)663-0964•E-Mail: beta@radiocarbon.com

CALIBRATION OF RADIOCARBON AGE TO CALENDAR YEARS

(Variables: C13/C $12=-25.4$ lab. mult=1)
Laboratorynumber: Beta-2 26499
Conventional radiocarbon age: $1280 \pm 40 \mathrm{BP}$
2 Sigma calibrated result: Cal AD 660 to 810 (Cal BP 1290 to 1140)
(95\% probability)
Intercept data
Intercept of radio carb on age with calibration curve: Cal AD 690 (Cal BP 1260)

1 Sigma calibrated result: Cal AD 670 to 770 (Cal BP 1280 to 1180)
(68\% probability)

References:
Databaseused
INTC ALO 4
Calbration Datobase
INTCALO4 Radiocarbon A ge Calibra rion
IntCal04: Calibration Issue of Radiocarbon (Volume 46, nr 3, 2004).
Mathematics
A Simplified A pproach to Calibrating C14 Dates
Talma, A. S., Vogel, J. C., 1993, Radiocarbon 35 (2), p317-3 22
Beta Analytic Radiocarbon Dating Laboratory
4985 S.W. 74th Court, Miam i; Florida 33155•Tel: 305)667-5167•Fax: (305)663-0964•E-Mail: beta@radiocarbon.com

CALIBRATION OF RADIOCARBON AGE TO CALENDAR YEARS

(Variables: C $13 / \mathrm{C} 12=-25.8$:lab. mult=1)
Laboratory number: Beta-2 26500
Conventional radiocarbon age: $1250 \pm 40 \mathrm{BP}$
2 Sigma calibrated result: Cal AD 670 to 880 (CaI BP 1280 to 1070) (95\% probability) Intercept data

Intercept of radiocarb on age
with calibration curve: Cal AD 770 (Cal BP 1180)
1 Sigma calibrated result: Cal AD 690 to 780 (Cal BP 1260 to 1160) (68\% probability)

References:
Databaseused
JNTC ALO 4
Ca lib ration Database
INTCALO4 Radiocarb on A ge Calibration
IntC al04: Calibration Issue of Radiocarbon (Volume 46, nr 3, 2004).
Mathematics
A Simplified A pproach to Calibrating C14 Dates
Ta lma, A. S., Vogel, J. C., 19 93, Radiocarbon 35 (2), p31 7-3 22

CALIBRATION OF RADIOCARBON AGE TO CALENDAR YEARS

(Variables: C13/C 12=-24.2:lab. mult=1)
Laboratorynumber: Beta-2 26501
Conventional radiocarbon age: $\mathbf{4 0 0 \pm 4 0 B P}$

2 Sigma calibrated results: (95\% probability)

Cal AD 1430 to 1530 (Cal BP 520 to 420) and Cal AD 1560 to 1630 (C al BP 390 to 320) Intercept data

Intercept of radiocarb on age with calibration curve: Cal AD 1460 (Cal BP 490)

1 Sigmacalibrated result: Cal AD 1440 to 1490 (Cal BP 510 to 460) (68\% probability)

References:
Databaseused
INTC ALO 4
Calibration Dambase
INTCALO4 Radiocarbon Age Calibration
IntC al04: Calibration Issue of Radiocarbon (Volume 46, nr 3, 200 4).
Mathematics
A Simplified Approach to Calibrating C14 Dates
Talma, A. S., Vogel, J. C., 1993. Radiocarbon 35 (2), p317-322
1.

Consistent Accuracy
Delivered On Time.
Beta Analytic Inc.

ARKEOLOGISN MOGEUM
I STAVANGEF

Mr. Christopher Patrick

December 21, 2007
Mr. Gitte Kjeldsen
0315 Ha
$\frac{99 / 7619-52}{433}$

Arkeologisk Museum i Stavanger
Boks 478 Sentrum
Stavanger, N-4002 Norway
RE: Radiocarbon Dating Results For Samples 0615-272, 0615-287, 0615-307, 0615-329, 0615-359, 0615-363

Dear Mr. Kjeldsen:
Enclosed are the radiocarbon dating results for six samples recently sent to us. They each provided plenty of carbon for accurate measurements and all the analyses proceeded normally. As usual, the method of analysis is listed on the report with the results and calibration data is provided where applicable.

As always, no students or intern researchers who would necessarily be distracted with other obligations and priorities were used in the analyses. We analyzed them with the combined attention of our entire professional staff.

If you have specific questions about the analyses, please contact us. We are always available to answer your questions.

Our invoice is enclosed. Please, forward it to the appropriate officer or send VISA charge authorization. Tharik you. As always, if you have any questions or would like to discuss the results, don't hesitate to contact me.

REPORT OF RADIOCARBON DATING ANALYSES

Mr. Gitte Kjeldsen

Report Date: 12/21/2007
Arkeologisk Museum i Stavanger
Material Received: 11/26/2007

Sample Data	Measured Radiocarbon Age	$\begin{gathered} \text { 13C/12C } \\ \text { Ratio } \end{gathered}$	Conventional Radiocarbon Age(*)
Beta - 237778	$2220+1-40$ BP	-22.5 o/oo	$2260+/-40 \mathrm{BP}$
2 SIGMA CALIBRATION :	Cal BC 400 to 340 (Cal BP 2350 to 2290) AND Cal BC 330 to 200 (Cal BP 2280 to 2150)		
Beta - 237779	$2400+1-40 \mathrm{BP}$	-24.1 \%oo	$2410+/-40$ BP
SAMPLE: 0615-287			
ANALYSIS : AMS-Standard delivery			
MATERIAL/PRETREATMENT : (charred material): acid/alkali/acid			
2 SIGMA CALIBRATION :	Cal BC 750 to 690 (Cal BP 2700 Cal BC 590 to 400 (Cal BP 25	AND Cal BC	BP 2610 to 2590)

Beta -237782	$2140+/-40 \mathrm{BP}$	$-23.0 \% / 00$	$2170+/-40 \mathrm{BP}$

SAMPLE : 0615-359
ANALYSIS : AMS-Standard delivery
MATERIAL/PRETREATMENT : (charred material): acid/alkali/acid 2 SIGMA CALIBRATION : Cal BC 370 to 100 (Cal BP 2320 to 2050)

[^11]Measured C13/C12 ratios were calculated relative to the PDB-1 international standard and the RCYBP ages were normalized to -25 per mil. If the ratio and age are accompanied by an (*), then the C13/C12 value was estimated, based on values typical of the material type. The quoted results are NOT calibrated to calendar years. Calibration to calendar years should be calculated using the Conventional C14 age.

BETA ANALYTIC INC.
DR. M.A. TAMERS and MR. D.G. HOOD

REPORT OF RADIOCARBON DATING ANALYSES

Mr. Gitte Kjeldsen
Report Date: 12/21/2007

Sample Data	Measured Radiocarbon Age	$\begin{gathered} \text { 13C/12C } \\ \text { Ratio } \end{gathered}$	Conventional Radiocarbon Age(*)
Beta - 237783	2060 +/-40 BP	-22.2 \% $/ 00$	$2110+1-40 \mathrm{BP}$
SAMPLE: 0615-363 ANALYSIS : AMS-Standard delivery			
MATERIAL/PRETREATMENT : (charred material): acid/alkali/acid			
2 SIGMA CALIBRATION : Cal BC 340 to 320 (Cal BP 2290 to 2270) AND Cal BC 210 to 40 (Cal BP 2160 to 1990)			

Dates are reported as RCYBP (raduicarbon years before present, "present" = 1950A.D.). By International convention, the modern reference standard was 95% of the C14 content of the National Bureau of Standards' Oxalic Acid \& calculated using the Libby C14 half life (5568 years). Quoted errors represent 1 standard deviation statistics (68% probability) \& are based on combined measurements of the sample, background, and modern reference standards.

Measured C13/C12 ratios were calculated relative to the PDB-1 international standard and the RCYBP ages were normalized to -25 per mil. If the ratio and age are accompanied by an (${ }^{*}$), then the C13/C12 value was estimated, based on values typical of the material type. The quoted results are NOT calibrated to calendar years. Calibration to calendar years should be calculated using the Conventional C14 age.

CALIBRATION OFRADIOCARBON AGE TO CALENDAR YEARS

(Variables: C13/C12=-22.5:lab. mult=1)
Laboratory number: Beta-237778
Conventional radiocarbon age: $\quad 2260 \pm 40 \mathrm{BP}$
2 Sigma calibrated results: Cal BC 400 to 340 (Cal BP 2350 to 2290) and (95\% probability) Cal BC 330 to 200 (Cal BP 2280 to 2150) Intercept data

Intercept of radiocarbon age
with calibration curve: Cal BC 370 (Cal BP 2320)
1 Sigma calibrated results: Cal BC 390 to 360 (Cal BP 2340 to 2300) and
(68% probabil ity) Cal BC 290 to 240 (Cal BP 2240 to 2180)

References:
Data base used
INTCA LO 4
Calibration Database
INTCAL04 Radiocarbon Age Calibration
IntCal0 4: Calibration Is sue of Radiocarbon (Volume 46, nr 3, 2004).
Mathematics
A Simplifled Approach to Cali brating C14 Dates
Talma, A. S., Vo gel, J. C., 1993, Radiocarb on 35(2), p317-322
Beta Analytic Radiocarbon Dating Laboratory

CALIBRATION OFRADIOCARBON AGE TO CALENDAR YEARS

(Variables: C13/C12=-24.1:lab. mult=1)
Laboratory number: Beta-237779
Conventional radiocarbon age: $2410 \pm 40 \mathrm{BP}$

2 Sigma calibrated results: Cal BC 750 to 690 (Cal BP 2700 to 2640) and
 (95\% probability) Cal BC 660 to 640 (Cal BP 2610 to 2590) and Cal BC 590 to 400 (Cal BP 2540 to 2340)

Intercept data
Intercept of radiocarbon age
with calibration curve: Cal BC 410 (Cal BP 2360)
1 Sigma calibrated result: Cal BC 530 to 400 (Cal BP 2480 to 2350)
(68\% probability)

References:
Database used

CALIBRATION OFRADIOCARBON AGE TO CALENDAR YEARS

(Variables: C13/C12=-24.2:lab. mult=1)
Laboratory number: Beta-237780
Conventional radiocarbon age: $1280 \pm 40 \mathrm{BP}$
2 Sigma calibrated result: Cal AD 660 to 810 (Cal BP 1290 to 1140)
(95\% probability)
Intercept data
Intercept of radiocarbon age
with calibration curve: Cal AD 690 (Cal BP 1260)
1 Sigma calibrated result: Cal AD 670 to 770 (Cal BP 1280 to 1180)
(68\% probability)

References:
Database used
INTCALO 4
Callb ratlon Database
INTCAL 04 Radiocarb on Age Calibration
IntCal0 4: Calibration Issue of Radio carbon (Volume 46, nr 3, 200 4).
Mathematics
A Simplified Approach to Calibrating C14 Dates
Talma, A. S., Vogel, J. C., 1993, Radiocarbon 35(2), p317-322

Beta Analytic Radiocarbon Dating Laboratory

4985 S.W. 74th Court.Miami, Florida 33155•Tel: (305)667-5167•Fax: (305)663-0964•E-Mail: beta@radiocarbon.com

Laboratorynumber: Beta-237781

Conventional radiocarbon age: $1240 \pm 40 \mathrm{BP}$

2 Sigma calibrated result: Cal AD 670 to 890 (Cal BP 1280 to 1060) (95\% probability) Intercept data
Intercept of radiocarbon age with calibration curve: Cal AD 770 (Cal BP 1180)

1 Sigma calibrated result: Cal AD 690 to 810 (Cal BP 1260 to 1140) (68\% probability)

References:
Database used
INTCALO 4
Calibration Database
INTCAL04 Radlocarb on Age Callbratlon
IntCal04: Calibration Is sue of Radio carbon (Volume $46, n r 3,2004$).
Mathematics
A Simplified Approach to Calibrating C14D ates
Talma, A.S., Vogel, J. C., 1993, Radiocarbon 35(2), p317-322

Beta Analytic Radiocarbon Dating Laboratory

4985 S.W. 74th Court, Miami, Florida 33155•Tel: (305)667-5167•Fax:(305)663-0964•E-Mail: beta@radiocarbon.com

CALIBRATION OFRADIOCARBON AGE TO CALENDAR YEARS

(Variables: C13/C12=-23:lab. mult=1)
Laboratory number: Beta-237782
Conventional radiocarbon age: $\quad 2170 \pm 40 \mathrm{BP}$
2 Sigma calibrated result: Cal BC 370 to 100 (Cal BP 2320 to 2050)
(95\% probability)
Intercept data
Intercept of radiocarbon age with calibration curve:

Cal BC 200 (Cal BP 2150)
1 Sigma calibrated results: Cal BC 350 to 290 (Cal BP 2300 to 2240) and (68% probability) Cal BC 220 to 170 (Cal BP 2170 to 2120)

References:
Database used
INTCALO 4
Callbration Database
INTCAL04 Radiocarb on Age Callbration
IntCal0 4: Calibration /s sue of Radio carbon (Volume 46, nr 3, 2004).
Mathem afics
A Simplified Approach to Calibrating C14Dates
Talma, A. S., Vogel, J. C., 1993, Radiocarb on 35(2), p317-322

CALIBRATION OF RADIOCARBON AGE TO CALENDAR YEARS

(Variables: C13/C12=-22.2:lab. mult=1)
Laboratory number: Beta-237783
Conventional radiocarbon age:
2 Sigma calibrated results: (95\% probability)
2110 ± 40 BP
Cal BC 340 to 320 (Cal BP 2290 to 2270) and Cal BC 210 to 40 (Cal BP 2160 to 1990) Intercept data
Intercept of radiocarbon age with calibration curve:
1 Sigma calibrated result: Cal BC 190 to 60 (Cal BP 2140 to 2010) (68\% probability)

References:
Database used
INTCA LO 4
Ca llb ration D atabas e
INTCAL04 Radiocarbon Age Calibration
IntCal0 4: Calibration Is sue of Radiocarbon (Volume 46, nr 3, 2004).
Mathematics
A Simplified Approach to Calibrating C14 Dates
Talma, A. S., Vogel, J. C., 1993, Radiocarb on 35(2), p317-322

Beta Analytic Radiocarbon Dating Laboratory

4985 S.W. 74th Court. Miami, Florida 33155•Tel: (305)667-5167•Fax: (305)663-0964•E-Mall: beta@radiocarbon.com

Consistent Accuracy
Delivered On Time.

ARKEOLOGISK MUScA I STAVANGER

January 29, 2008
Mr. Gitte Kjeldsen
Arkeologisk Museum i Stavanger
Bows 478 Sentrum
Stavanger, N-4002 Norway
RE: Radiocarbon Dating Results For Samples 0615-356, 0615-376, 0615-294, 0615-295, 0615-296, 0615-300, 0615-306, 0615-375, 0615-384, 0615-385

Dear Mr. Kjeldsen:
Enclosed are the radiocarbon dating results for ten samples recently sent to us. They each provided plenty of carbon for accurate measurements and all the analyses proceeded normally. As usual, the method of analysis is listed on the report with the results and calibration data is provided where applicable.

As always, no students or intern researchers who would necessarily be distracted with other obligations and priorities were used in the analyses. We analyzed them with the combined attention of our entire professional staff.

If you have specific questions about the analyses, please contact us. We are always available to answer your questions.

Our invoice is enclosed. Please, forward it to the appropriate officer or send VISA charge authorization. Thank you. As always, if you have any questions or would like to discuss the results, don't hesitate to contact me.

Sincerely,

REPORT OF RADIOCARBON DATING ANALYSES

Mr. Gitte Kjeldsen

Report Date: 1/29/2008
Arkeologisk Museum i Stavanger
Material Received: 1/2/2008

Sample Data
Measured
Radiocarbon Age
$13 C / 12 C$
Ratio

Conventional Radiocarbon Age(*)
Beta - $239266 \quad 3480+/-40 \mathrm{BP} \quad-27.1 \% \% 03450+/-40 \mathrm{BP}$

SAMPLE: 0615-356
ANALYSIS : AMS-Standard delivery
MATERIAL/PRETREATMENT : (charred material): acid/alkali/acid
2 SIGMA CALIBRATION : Cal BC 1880 to 1670 (Cal BP 3830 to 3620)

Beta -239267	$2290+/-40 \mathrm{BP}$	-26.0 o/00	$2270+/-40 \mathrm{BP}$

SAMPLE : 0615-376
ANALYSIS: AMS-Standard delivery
MATERIAL/PRETREATMENT : (charred material): acid/alkali/acid
2 SIGMA CALIBRATION : Cal BC 400 to 340 (Cal BP 2350 to 2290) AND Cal BC 320 to 210 (Cal BP 2270 to 2160)

Beta $-239268 \quad 2200+/-70 \mathrm{BP} \quad-25.7 \mathrm{o} / \mathrm{oo} \quad 2190+/-70 \mathrm{BP}$
SAMPLE : 0615-294
ANALYSIS : Radiometric-Standard delivery
MATERIAL/PRETREATMENT : (charred material): acid/alkali/acid
2 SIGMA CALIBRATION : Cal BC 400 to 50 (Cal BP 2340 to 2000)

Beta - 239269
$2030+/-60 \mathrm{BP}$
$-25.90 / 00$
$2020+/-60$ BP
SAMPLE : 0615-295
ANALYSIS : Radiometric-Standard delivery
MATERIAL/PRETREATMENT : (charred material): acid/alkali/acid
2 SIGMA CALIBRATION : Cal BC 180 to Cal AD 90 (Cal BP 2130 to 1860)
$\begin{array}{llll}\text { Beta }-239270 & 3350+/-40 \mathrm{BP} & -26.6 \% & 3320+1-40 \mathrm{BP}\end{array}$
SAMPLE: 0615-296
ANALYSIS: AMS-Standard delivery
MATERIAL/PRETREATMENT : (charred material): acid/alkali/acid
2 SIGMA CALIBRATION : Cal BC 1690 to 1500 (Cal BP 3640 to 3450)

Dates are reported as RCYBP (raduicarbon years before present, "present" = 1950A.D.). By International convention, the modern reference standard was 95% of the C14 content of the National Bureau of Standards' Oxalic Acid \& calculated using the Libby C14 half life (5568 years). Quoted errors represent 1 standard deviation statistics (68% probability) \& are based on combined measurements of the sample, background, and modern reference standards.

Measured C13/C12 ratios were calculated relative to the PDB-1 international standard and the RCYBP ages were normalized to -25 per mil. If the ratio and age are accompanied by an (*), then the C13/C12 value was estimated, based on values typical of the material type. The quoted results are NOT calibrated to calendar years. Calibration to calendar years should be calculated using the Conventional C14 age.

REPORT OF RADIOCARBON DATING ANALYSES

Mr. Gitte Kjeldsen

Report Date: 1/29/2008

Sample Data	Measured Radiocarbon Age	$13 C / 12 C$ Ratio	Conventional Radiocarbon Age(*)
Beta - 239271	$2280+/-60 \mathrm{BP}$	-26.5 \%oo	$2260+/-60 \mathrm{BP}$
SAMPLE: 0615-300 ANALYSIS : Radiometric-Standard delivery			
MATERIAL/PRETREATMENT : (charred material): acid/alkali/acid			
2 SIGMA CALIBRATION : Cal BC 410 to 180 (Cal BP 2360 to 2130)			

Beta - 239272
$1300+/-40 \mathrm{BP}$
-26.6 o/oo
$1270+/-40 \mathrm{BP}$
SAMPLE: 0615-306
ANALYSIS : AMS-Standard delivery
MATERIAL/PRETREATMENT : (charred material): acid/alkali/acid
2 SIGMA CALIBRATION : Cal AD 660 to 870 (Cal BP 1290 to 1080)

Beta-239273
$1170+/-40 \mathrm{BP} \quad-25.9 \mathrm{o} / 00$
$1160+/-40 \mathrm{BP}$
SAMPLE : 0615-375
ANALYSIS : AMS-Standard delivery
MATERIAL/PRETREATMENT : (charred material): acid/alkali/acid
2 SIGMA CALIBRATION : Cal AD 770 to 980 (Cal BP 1180 to 970)

Beta-239274
$1240+/-60 \mathrm{BP}$
$-24.10 / 00$
$1250+1-60 \mathrm{BP}$
SAMPLE: 0615-384
ANALYSIS : Radiometric-Standard delivery (with extended counting)
MATERIAL/PRETREATMENT : (charred material): acid/alkali/acid
2 SIGMA CALIBRATION : Cal AD 660 to 900 (Cal BP 1290 to 1050)

Beta - 239275
$1300+/-50 \mathrm{BP}$
-23.8 o/00
$1320+/-50 \mathrm{BP}$
SAMPLE: 0615-385
ANALYSIS : Radiometric-Standard delivery
MATERIAL/PRETREATMENT : (charred material): acid/alkali/acid
2 SIGMA CALIBRATION : Cal AD 640 to 780 (Cal BP 1310 to 1170)

Dates are reported as RCYBP (raduicarbon years before present, "present" = 1950A.D.). By International convention, the modern reference standard was 95% of the C14 content of the National Bureau of Standards' Oxalic Acid \& calculated using the Libby C14 half life (5568 years). Quoted errors represent 1 standard deviation statistics (68% probability) \& are based on combined measurements of the sample, background, and modern reference standards.

Measured C13/C12 ratios were calculated relative to the PDB-1 international standard and the RCYBP ages were normalized to -25 per mil. If the ratio and age are accompanied by an (*), then the C13/C12 value was estimated, based on values typical of the material type. The quoted results are NOT calibrated to calendar years. Calibration to calendar years should be calculated using the Conventional C14 age.

CALIBRATION OFRADIOCARBON AGE TO CALENDAR YEARS

(Variables: C13/C12=-27.1:lab. mult=1)
Laboratory number: Beta-239266
Convention al radiocarbon age: $\quad 3450 \pm 40 \mathrm{BP}$
2 Sigma calibrated result: Cal BC 1880 to 1670 (Cal BP 3830 to 3620) (95\% probability)

Intercept data
Intercept of radiocarbon age
with calibration curve: Cal BC 1750 (Cal BP 3700)
1 Sigma calibrated results: (68\% probability)

Cal BC 1870 to 1850 (Cal BP 3820 to 3800) and Cal BC 1780 to 1730 (Cal BP 3730 to 3680) and Cal BC 1720 to 1690 (Cal BP 3660 to 3640)

References:
Database used
INTCA LO 4
Ca libration Database
INTCAL04 Ra diocarbon Age Calibration
In ICal0 4: Calibration Is sue of Radiocarbon (Volume 46, nr 3, 2004).
Math em atics
A Simpllfied Approach to Calibrating C14 Dates
Talma, A. S., Vogel, J. C., 1993, R adiocarb on 35(2), p317-322

Beta Analytic Radiocarbon Dating Laboratory

4985 S.W. 74th Court, Miami, Florida 33155•Tel: (305)667-5167•Fax: (305)663-0964•E-Mail: beta@radiocarbon.com

CALIBRATION OF RADIOCARBON AGE TO CALENDAR YEARS

(Variables: C13/C12=-26:lab. mult=1)

Laboratory number: Beta-239267

Conventional radiocarbon age: $2270 \pm 40 \mathrm{BP}$

2 Sigma calibrated results: Cal BC 400 to 340 (CaI BP 2350 to 2290) and
 (95\% probability) Cal BC 320 to 210 (Cal BP 2270 to 2160)

Intercept data
Intercept of radiocarbon age
with calibration curve: Cal BC 380 (Cal BP 2330)
1 Sigma calibrated results: Cal BC 390 to 360 (Cal BP 2340 to 2310) and
(68\% probability) Cal BC 280 to 260 (Cal BP 2230 to 2200)

References:
Database used
INTCA LO 4
Calibration Database
INTCAL04 Radiocarb on Age Callbration
IntCal0 4: Calibration Is sue of Radio carbon (Volume 46.nr3, 2004).
Mathematics
A Simplified Approach to Calibrating C14 Dates
Talma, A.S., Vogel, J. C., 1993, Radiocarbon 35(2), p317-322

Beta Analytic Radiocarbon Dating Laboratory

CALIBRATION OF RADIOCARBON AGETO CALENDAR YEARS

(Variables: C13/C12=-25.7:lab. mult=1)
Laboratory number: Beta-239268
Conventional radiocarbon age: $2190 \pm 70 \mathrm{BP}$
2 Sigma calibrated result: Cal BC 400 to 50 (Cal BP 2340 to 2000) (95\% probability) Intercept data

Intercepts of radiocarbon age with calibration curve:

Cal BC 340 (Cal BP 2290) and
Cal BC 320 (Cal BP 2270) and
Cal BC 210 (Cal BP 2160)
1 Sigma calibrated result: Cal BC 370 to 170 (Cal BP 2320 to 2120)
(68\% probability)

References:
Database used
INTCALO 4
Ca libration Database
INTCAL04 Ra diocarb on Age Calibration
In ICal0 4: Calibration Is sue of Radio carbon (Volume 46, nr 3, 2004).
Mathematics
A Simplified Approach to Callbrating C14 Dates
Talma, A.S., Vogel, J. C., 1993, Radiocarb on 35(2), p317-322

Beta Analytic Radiocarbon Dating Laboratory

4985 S.W. 74th Court, Miami, Florida 33/55•Tel: (305)667-5167•Fax: (305)663-0964•E-Mail: beta@radiocarbon.com

CALIBRATION OF RADIOCARBON AGE TO CALENDAR YEARS

(Variables: C13/C12=-25.9:lab. mult=1)
Laboratory number: Beta-239269

Conventional radiocarbon age: $2020 \pm 60 \mathrm{BP}$

2 Sigma calibrated result: Cal BC 180 to Cal AD 90 (Cal BP 2130 to 1860)
(95\% probability)
Intercept data
Intercept of radiocarbon age
with calibration curve: Cal BC 30 (Cal BP 1980)
1 Sigma calibrated result: Cal BC 90 to Cal AD 50 (Cal BP 2040 to 1900)
(68\% probability)

References:
Data base used
INTCALO 4
Calibration Data base
INTCAL04 Radiocarb on Age Calibration
IntCal0 4: Calibration Issue of Radiocarbon (Volume 46, nr 3. 2004).
Mathem atics
A Simplified Approach to Calibrating C14Dates
Talma, A.S., Vogel, J. C., 1993, Radiocarbon 35(2), p317-322

CALIBRATION OFRADIOCARBON AGE TO CALENDAR YEARS

(Variables: C13/C12=-26.6:lab. mult=1)
Laboratory number: Beta-239270

```
Conventional radiocarbon age: \(\quad 3320 \pm 40 \mathrm{BP}\)
2 Sigma calibrated result: Cal BC 1690 to 1500 (Cal BP 3640 to 3450 ) (95\% probability) Intercept data
Intercept of radiocarbon age
with calibration curve: Cal BC 1610 (Cal BP 3560)
1 Sigma calibrated result: Cal BC 1650 to 1530 (Cal BP 3600 to 3480) (68\% probability)
```


References:

Database used
INTCA LO 4
Calibration Database
INTCAL04 Radiocarbon Age Callbration
In tCal0 4: Calibration Is sue of Radiocarbon (Volume 46, nr 3, 200 4),
Mathematics
A Simplified Approach to Calibrating C14 Dates
Talma, A. S., Vogel, J. C., 1993, Radiocarb on 35(2), p317-322

CALIBRATION OF RADIOCARBON AGE TO CALENDAR YEARS

(Variables: C13/C12=-26.5:lab. mult=1)
Laboratory number: Beta-239271

Conventional radiocarbon age: $2260 \pm 60 \mathrm{BP}$

2 Sigma calibrated result: Cal BC 410 to 180 (CaI BP 2360 to 2130)
(95\% probability)
Intercept data
Intercept of radiocarbon age
with calibration curve: Cal BC 370 (Cal BP 2320)
1 Sigma calibrated results: Cal BC 390 to 350 (Cal BP 2340 to 2300) and (68% probability) Cal BC 300 to 210 (Cal BP 2260 to 2160)

References:
Database used
INTCA L0 4
Calibration D atabase
INTCAL04 Radiocarb on Age Calibration
In tCalO 4: Calibration Is sue of Radiocarbon (Volume 46, nr 3, 2004).
Mathematics
A Simplified Approach to Call brating C14Dates
Talma, A. S., Vogel, J. C., 1993, Radiocarbon 35(2), p317-322

CALIBRATION OF RADIOCARBON AGE TO CALENDAR YEARS

(Variables: C13/C12 $=-26.6$:lab. mult $=1$)
Laboratory number: Beta-239272
Convention al radiocarbon age: $\quad 1270 \pm 40 \mathrm{BP}$
2 Sigma calibrated result: Cal AD 660 to 870 (Cal BP 1290 to 1080)
(95\% probability)
Intercept data
Intercepts of radiocarbon age
with calibration curve: Cal AD 710 (Cal BP 1240) and
Cal AD 750 (Cal BP 1200) and
Cal AD 760 (Cal BP 1190)
1 Sigma calibrated result: Cal AD 680 to 780 (Cal BP 1270 to 1170)
(68\% probability)

References:
Database used
INTCALO 4
Calibration Data base
INTCAL04 Radiocarbon Age Calibration
In tCal0 4: Calibration Is sue of Radio carbon (Volume 46, nr 3, 200 4).
Mathematics
A Simplified Approach to Calibra ting C14 Dates
Talma, A.S., Vogel, J. C., 1993, Radiocarb on 35(2), p317-322

Beta Analytic Radiocarbon Dating Laboratory

4985 S.W. 74 th Court, Miami, Florida 33155•Tel: (305)667-5167•Fax: (305)663-0964•E-Mail:beta@radiocarbon.com

CALIBRATION OFRADIOCARBON AGETO CALENDAR YEARS

(Variables: C13/C12=-25.9:lab. mult=1)
Laboratory number: Beta-239273

Conventional radiocarbon age: $1160 \pm 40 \mathrm{BP}$

2 Sigma calibrated result: Cal AD 770 to 980 (Cal BP 1180 to 970)
$\begin{gathered}\text { (} 95 \% \text { probability) }\end{gathered}$
Intercept data
Intercept of radiocarbon age with calibration curve: Cal AD 890 (Cal BP 1060)
1 Sigma calibrated results: Cal AD 810 to 900 (Cal BP 1140 to 1050) and (68% probability) Cal AD 920 to 950 (Cal BP 1030 to 1000)

CALIBRATION OF RADIOCARBON AGE TO CALENDAR YEARS

(Variables: C13/C12=-24.1:lab. mult=1)
Laboratory number: Beta-239274
Conventional radiocarbon age: $1250 \pm 60 \mathrm{BP}$
2 Sigma calibrated result: Cal AD 660 to 900 (Cal BP 1290 to 1050)
(95\% probability)
Intercept data
Intercept of radiocarbon age
with calibration curve: Cal AD 770 (Cal BP 1180)
1 Sigma calibrated result: Cal AD 680 to 870 (Cal BP 1270 to 1080) (68\% probability)

References:
Database used
INTCA LO 4
Calibration Database
INTCAL04 Radiocarb on Age Calibration
IntCal0 4: Calibration Is sue of Radiocarbon (Volume 46, nr 3, 2004).
Mathematics
A Simplified Approach to Callbrating C14Dates
Talma, A. S., Vogel, J. C., 1993, Radiocarb on 35(2), p317-322

Beta Analytic Radiocarbon Dating Laboratory

4985 S.W. 74 th Cowt, Miami, Florida 3315s•Tel: (305)667-5167•Fax: (305)663-0964•E-Mail:beta@radiocarbon.com

CALIBRATION OFRADIOCARBON AGE TO CALENDAR YEARS

(Variables: C13/C12=-23.8:lab. mult=1)
Laboratory number: Beta-239275
Conventional radiocarbon age: $1320 \pm 50 \mathrm{BP}$
2 Sigma calibrated result: Cal AD 640 to 780 (Cal BP 1310 to 1170)
(95\% probability)
Intercept data
Intercept of radiocarbon age
with calibration curve: Cal AD 670 (Cal BP 1280)
1 Sigma calibrated results: Cal AD 660 to 710 (Cal BP 1290 to 1240) and (68% probability) Cal AD 750 to 760 (Cal BP 1200 to 1190)

References:
Data base used
INTCALO 4
Callbration Database
INTCAL04 Radiocarbon Age Calibration
IntCal0 4: Calibration Is sue of Ra dio carbon (Volume 46, nr 3, 2004).
Mathematics
A Simplified Approach to Calibrating C14D ates
Talma, A. S., Vogel, J. C., 1993, Radiocarb on 35(2), p317-322

Beta Analytic Inc.
4985 SW 74 Court
Miami, Florida 33155 USA
Tel: 3056675167
Fax: 3056630964
beta@radiocarbon.com
www.radiocarbon.com

ARKEOLOGISK MUSEUM
I STAVANGER

April 17, 2008
Mr. Gite Kjeldsen
Arkeologisk Museum i Stavanger
Boks 478 Sentrum
Stavanger, N-4002
Norway
RE: Radiocarbon Dating Results For Samples 06-15-268, 06-15-257, 06-15-283, 06-15-365, 06-15-378
Dear Mr. Kjeldsen:
Enclosed are the radiocarbon dating results for five samples recently sent to us. They each provided plenty of carbon for accurate measurements and all the analyses proceeded normally. As usual, the method of analysis is listed on the report with the results and calibration data is provided where applicable.

As always, no students or intern researchers who would necessarily be distracted with other obligations and priorities were used in the analyses. We analyzed them with the combined attention of our entire professional staff.

If you have specific questions about the analyses, please contact us. We are always available to answer your questions.

Our invoice is enclosed. Please, forward it to the appropriate officer or send VISA charge authorization. Thank you. As always, if you have any questions or would like to discuss the results, don't hesitate to contact me.

REPORT OF RADIOCARBON DATING ANALYSES

Mr. Gitte Kjeldsen
Arkeologisk Museum i Stavanger

Report Date: 4/17/2008
Material Received: 3/13/2008

Sample Data
Measured
Radiocarbon Age
$1100+1-40 \mathrm{BP}$
-26.3 \% oo
$1080+/-40 \mathrm{BP}$

Beta -242467	$1100+/-40 \mathrm{BP}$	$-26.30 \% 0$	$1080+/-40 \mathrm{BP}$

SAMPLE : 06-15-268
ANALYSIS : AMS-Standard delivery
MATERIAL/PRETREATMENT : (charred material): acid/alkali/acid
2 SIGMA CALIBRATION : Cal AD 890 to 1020 (Cal BP 1060 to 930)

Beta - 242468

$1240+/-40 \mathrm{BP}$
-24.2 o/oo
$1250+/-40 \mathrm{BP}$
SAMPLE: 06-15-257
ANALYSIS: AMS-Standard delivery
MATERIAL/PRETREATMENT : (charred material): acid/alkali/acid
2 SIGMA CALIBRATION : Cal AD 670 to 880 (Cal BP 1280 to 1070)

Beta-242469

$$
2360+/-40 \mathrm{BP}
$$

-24.7 o/00
$2360+/-40 \mathrm{BP}$
SAMPLE: 06-15-283
ANALYSIS: AMS-Standard delivery
MATERIAL/PRETREATMENT : (charred material): acid/alkali/acid
2 SIGMA CALIBRATION : Cal BC 520 to 380 (Cal BP 2470 to 2330)

Beta - 242470
$2020+1-40$ BP
-12.4 o/00
$2230+/-40 \mathrm{BP}$
SAMPLE : 06-15-365
ANALYSIS : AMS-Standard delivery
MATERIAL/PRETREATMENT : (charred material): acid/alkali/acid
2 SIGMA CALIBRATION : Cal BC 390 to 190 (Cal BP 2340 to 2140)

Beta - 242471
$2500+/-40 \mathrm{BP}$
-26.1 o/00
$2480+/-40 \mathrm{BP}$
SAMPLE: 06-15-378
ANALYSIS: AMS-Standard delivery
MATERIAL/PRETREATMENT : (charred material): acid/alkali/acid
2 SIGMA CALIBRATION : Cal BC 780 to 410 (Cal BP 2730 to 2360)

[^12]Measured C13/C12 ratios were calculated relative to the PDB-1 international standard and the RCYBP ages were normalized to -25 per mil. If the ratio and age are accompanied by an (${ }^{*}$), then the C13/C12 value was estimated, based on values typical of the material type. The quoted results are NOT calibrated to calendar years. Calibration to calendar years should be calculated using the Conventional C14 age.

CALIBRATION OF RADIOCARBON AGE TO CALENDAR YEARS

(Variables: C13/C12=-26.3:lab. mult=1)

Laboratory number: Beta-242467
Conventional radiocarbon age: 1080 ± 40 BP
2 Sigma calibrated result: Cal AD 890 to 1020 (Cal BP 1060 to 930)
(95\% probability)
Intercept data

$$
\begin{aligned}
& \text { Intercept of radiocarbon age } \\
& \text { with calibration curve: } \text { Cal AD } 980 \text { (Cal BP 970) } \\
& 1 \text { Sigma calibrated results: } \text { Cal AD } 900 \text { to } 920 \text { (Cal BP } 1050 \text { to 1030) and } \\
&(68 \% \text { probability) }\text { Cal AD } 950 \text { to } 1010 \text { (Cal BP } 1000 \text { to } 940)
\end{aligned}
$$

Beta Analytic Radiocarbon Dating Laboratory

CALIBRATION OF RADIOCARBON AGE TO CALENDAR YEARS

(V ariables: C13/C12=-24.2:lab. mult=1)
Laboratory number: Beta-242468
Conventional radiocarbon age: $\quad 1250 \pm 40 \mathrm{BP}$
2 Sigma calibrated result: Cal AD 670 to 880 (Cal BP 1280 to 1070) (95\% probability)
Intercept data
Intercept of radiocarbon age
with calibration curve:
1 Sigma calibrated result: Cal AD 690 to 780 (Cal BP 1260 to 1160) (68\% probability)

References:
Database used
INTCAL04
Calibration Database
INTCAL04 Radio carbon Age Calibration
IntCal04: Calibration Issue of Radiocarbon (Volume 46, nr 3. 2004).
Mathematics
A Simplified Approach to Calibrating C14 Dates
Talma, A. S., Vogel, J. C., 1993, Radiocarbon 35(2), p317-322
Beta Analytic Radiocarbon Dating Laboratory
4985 S.W. 74/h Court, Miami, Florida 33155 •Tel: 305)667-5167•Fax : (305)663-0964•E-Mail: beta@radiocarbon.com

CALIBRATION OF RADIOCARBON AGE TO CALENDAR YEARS

(Variables: C13/C12=-24.7:lab. mult=1)

| Laboratory number: | Beta-242469 |
| :---: | :--- | :--- |
| Conventional radiocarbon age: | $\mathbf{2 3 6 0 \pm 4 0 ~ B P}$ |
| 2 Sigma calibrated result: | CalBC 520 to $\mathbf{3 8 0}$ (Cal BP 2470 to 2330) |
| (95\% probability) | |
| | Intercept data |

Intercept of radiocarbon age with calibration curve:

1 Sigma calibrated result: Cal BC 410 to 390 (CalBP 2360 to 2340) (68\% probability)

References:
Database used
INTCALOA
Calibration Database
IN TCAL 04 Radio carbon Age Calibration
IntCal04: Calibration Issue of Radiocarbon (Volume 46, nr 3, 2004).
Mathematics
A Simplified Approach to Calibrating C14 Dates
Talma, A. S., Vogel, J. C., 1993, Radiocarbon 3 5(2), p317-322

CALIBRATION OF RADIOCARBON AGE TO CALENDAR YEARS

(Variables: C13/C12=-12.4:lab. mult=1)
Laboratory number: Beta-242470
Conventional radiocarbon age: $2230 \pm 40 \mathrm{BP}$
2 Sigma calibrated result: CalBC 390 to 190 (CalBP 2340 to 2140)
(95\% probability)
Intercept data
Intercepts of radiocarbon age
with calibration curve: Cal BC 360 (Cal BP 2310) and Cal BC 280 (Cal BP 2230) and Cal BC 260 (Cal BP 2200)

1 Sigma calibrated results: Cal BC 380 to 340 (Cal BP 2330 to 2290) and (68% probability) Cal BC 320 to 210 (Cal BP 2270 to 2160)

References:
Database used
INTCAL04
Calibration Database
INTCAL04 Radiocarbon Age Calibration
IntCal04: Calibration Issue of Radiocarbon (Volume 46, nr 3, 2004).
Mathematics
A Simplified Approach to Calibrating C14 Dates
Talma, A.S., Vogel, J. C., 1993 , Radiocarbon 35(2), p317-322
Beta Analytic Radiocarbon Dating Laboratory
4985 S.W. 74 ih Court, Miami, Florida 33155 •Tei: 305)667-5167•Fax : (305)663-0964 • E-Mail: beta@radiocarbon.com

CALIBRATION OF RADIOCARBON AGE TO CALENDAR YEARS

(Variables: C13/C12=-26.1:lab. mult $=1$)

Laboratory number:
Conventional radiocarbon age:
2 Sigma calibrated result:
(95\% probability) Intercept data
Intercepts of radiocarbon age with calibration curve:

Cal BC 740 (Cal BP 2690) and
Cal BC 690 (Cal BP 2640) and
Cal BC 660 (Cal BP 2610) and
Cal BC 640 (Cal BP 2590) and
Cal BC 550 (Cal BP 2500)
Cal BC 760 to 520 (CalBP 2710 to 2470)
Sigma calibrated result:
Beta-242471
2480 ± 40 B P
CalBC 780 to 410 (CalBP 2730 to 2360)
with calibration curve: (68\% probability)

$$
5
$$

References:
Database used
INTCALO4
Calibration Database
INTCAL04 Radiocarbon Age Calibration
IntCal04: Calibration Issue of Radiocarbon (Volume 46, nr 3, 2004).
Mathematics
A Simplified Approach to Calibrating C14 Dates
Talma, A. S., Vogel, J. C., 1993, Radiocarbon 35(2), p317-322

Beta Analytic Radiocarbon Dating Laboratory

Hus og mulige graver i Felt 1

Fixpunkter:
2006

		N	E
	6543367.50	309695.20	H
1	6543340.34	309704.94	64.78
2	6543272.55	309742.20	60.23
3	6543194.97	309804.24	47.97
4	6543270.52	309808.18	55.82
5			
	6543403.37	309772.82	61.68
6	6543350.11	309860.34	57.65
7	6543300.16	309869.63	54.24
8	6543437.22	309855.76	59.01
9	6543489.05	309799.97	56.47
10			
	6543532.56	309876.48	54.28
11	6543474.11	309930.18	56.34
12	6543435.92	309742.57	60.78
13	6543436.33	309619.73	60.41
14	6543343.33	309624.45	66.15
PP5476			

2007

	N	E	H
HP 1	6543441.18	309852.27	58.66
HP 2	6543469.20	309921.61	56.58
HP 3	6543519.07	309906.40	54.51
HP 4	6543293.10	309483.73	70.23
HP 5	6543267.93	309439.12	71.35
HP 6	6543290.91	309412.19	70.00
HP 7	6543342.23	309707.17	64.48
HP 8	6543272.54	309742.20	60.19
HP 9	6543201.47	309805.38	47.55
HP 10	6543279.12	309803.24	56.89
HP 11	6543427.07	$309954.0 ?$	55.79
HP 12	6543450.78	$3098 ? ? ? ? ?$	57.88
HP 13	6543489.05	$3098 ? ? ? ? ?$	56.45

Tastarustå Gnr 28

Stavanger
Ars nre 2006/g
2AG51411 + TILKNYTTEDE ANLEGE
Plan, Overflaten med posijon av
profiler, T $32 a+328$. Hus 16 , Feit It
TEGNing ni 30. Malestakik 1:10
06/08/07
$\left\{\begin{array}{l}\triangle \\ \Delta\end{array}\right.$ Skein: Forskjellige lag.
图 Trekull

$\square \begin{aligned} & \text { Anlegg som opprinatig oppmäts } \\ & \text { med btul stajumen }\end{aligned}$
 < til venstre).

$6 / 900 z$ an sily
TEGNINGER $32 A+B$
2AG51411 ole Lunf Grodf $2 A D 52245$
2AG51411 ort Lue
Hus 16 , FEet IIb $\pm 007 / 80 / 90$
$01: 1 \quad 2 \times 0.5374 \mathrm{~W}$

PROFIL Y-Y, 2AG51411 OG RENNE
$\begin{array}{r}9 \\ \hline 18\end{array}$

$z \times$

(1) Groett: guibern masse
(2) Trekull masse
(3) Undergurum

(1) Undergituan
(2) Fyll ar $2 A 54313$. Mrik brun humus med sand ag trekull
Merkee :m fyll ar 2AS4301, trolig pe gruan ar
stre grad ar texkull inablandet.
(3) Fyll ar 2A54301. Grai brun humus med sand og litt terekull.

- Dobire stoipeinull, 2 AS 3581 er litet dypere. Forkoldet melliom
stalpesullene ikke kiart.
(1) Undegguan
(3) Fyll ar stolpeiwilene, Morik besen humushodidig masse. Store skenningsteiner.

 Θ

(1) Mark brin humus med litt sand og treksill

$$
\begin{aligned}
& \text { I } \\
& \text { I } \\
& = \\
& 0
\end{aligned}
$$

(2) Lysere enn (1) med sand og grus.
Ost

$$
\text { Tastarusti GnR } 28
$$

$$
\begin{aligned}
& S_{\text {tavanger }} \\
& \text { Ars no. } 200^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Aks no. 2006/s } \\
& \text { FELT II Hus } 7
\end{aligned}
$$

Targareende Stocperuce

$$
\text { MALLEStokk }: 10
$$

- Uregulas i plan. En mulig skaningstrin
fiecret ti: nord siden.

(2) Benn humus , biandet litt sandig underyon.
Innhoider store menoder blä leice, noe ced-
-bent leise, litt gra leice samt trekul!

Detektivarbeid på Tastarustå

Hva er det som skjuler seg under matjorda pá Tastarustá? - De mest spennende ting er de som er vanskeligst à se, men vi vet det jo Ikke fir vi har gravd dem ut, er det kryptiske svaret vif fär av arkeolog Niall Armstrong.

Arkeologisk museum har pa oppdrag av Stavanger kommune satt it gang utgravninger pả Tastarustá. Forbtpasserende ser en gravemaskin som ganske forsiktig fjerner matjorda og samler den i store hauger, et par mennesker loransje kjeledresser som skraper velk enda mer matjord, og kanske en ung mann som ettertenksomt spaserer rundt på omrảde og av og til tegner noen streker pal et ark.
Hva giar đe? Utgravningsledet Otte Kjeldsen har annet d bestille og ber \sin nestkommanderende svare pà văre sporsmăl.

- Matjorda er den delen av jorda som har vært pleyd opp tidligere, forklarer Niall. Markoverflaten har i forhistorisk tid vert omtrent đet samme som nấ, det vil si'at det Wiar 价ke bygget seg opp lag på lag med markoverflate. Særlig der det er ployd har det heller erodert litt bort. Det du see er typisk arkeologisk undersøkelse i strok utenfor tettbebyggelsen. Man graver seg ned til undergrunnen som er grus, stein, leíre eller grunnfjell for å fa fram alt det som folk tidligere har gravd ned.

Når gravemaskinen har gjort grovarbeidet, rydder arkeolog. studenter den lose sanden unna med . såkalte "krafser" og identifiserer det fagfolk killer "strukturer", for eksempel ildsteder, graver, geiler, veggrofter, stolpehull, koke groper, rydningsrøyser eller andre rbyser. Rnlegmann ner ikke mer enn noen steiner og kanskje

Arkeologstudentene Slgrun Wolstad og Christlan Roll Valen foretar digitale Innmällnger, Iforgrunnen arkeolog Dorthe Nistad:

Finrensing av ot forhistorisk Ildsted.
jord og sand i forskjellige sjatteringer av brupt, grått og svart mens did, vordende fagfolkene setter spikier med
merkelapper og identifikasjonsnummer i den ene flekken etter den andre. Det betyr iforste omgang bare at omrâdene ser interessante ut or mil undersakes næermere. Niall forteller at det kan være ganske vanskelig i jordsmonnet pa Tastarustå:

- Arkeologiske strukturer kan godt ligne pa jordmassene ellers. Jo eldre de blir jo mer utydelige har de biltt.
Det hender at man gior funn allerede ved avdekking. Niall neviner en god del smábiter av keramikkskảr og enkelte avslag avsteinredskap:
-VI har positivt identifisert at det
var jernalderbosetting her. Jeg den er temmelig lik en ville ikke være overrasket hvis vi murerskje. fant bronsealderbosetting ogsả. I denne fasen skal det ogsad tas Det er godta bo her: Du har en god, fiuktbar, sørvendt slette med god drenering, du har god utsikt som er en trygghersfaktor, og de likte a bo i narheten av beitene for dyra der de hadde ploying ved siden av .
Neste trinn er a fal laget kart ay alle disse mulige strukturene. Til dette brukes en "totalstasjon"

De svartskravert feltene viser omtrentlig omràdene som skal graves ut.
eller teodolitt, et inn- jordbrukshistoriske sammen målingsredskap som måler inn henger. lengde, bredde og dybde i êt rutesystem og mater verdiene direkte inn i en datamaskin. En ay Nialls jobber er at tolke or vurdere hva som henger sammen, for eksempel a sette stolpehull og ildsteder sammen til et stolpehus. Mảlet er en strategi for hvor arkeologene skal grave videre. Fra nả av er det mye hảndarbeid. Redskapene tilpasses oppgavene, men den berommelige teskjeen er nok en myte. Man bruker graveskje, og

Arkeologiske utgravninger er detektivarbeid og et gedigent puslespill. Ifelge Neil har det kommet fram en del mer enn det man trodde var her etter registreringsarbeidene for noen âr siden. To sesonger er avsatt til utgravninger pả Tastarustá. Om vinteren er det pà grunn ay dârlige lysforhold ikke mulig á fortsette arbeidet utendors, selv om det ikke er is i bakken. Arkeologene er under tidspress. Men de skal ta seg tid til en ăpen dag torsdag 15. juni, kl.17-18.30.

EInn Damrica! !mbet
inmas Aif Iarem inton

TASTADIETE, $n m$ tet. hat bodd folk pá Tastarustá siden steinalderen, fär ví kanskje al
det tramtidice brackefeltet for over 3000 ar siden Det Vil 81 pronsealaeren og jernadueren yhese ananyoriay anmeungan
ambirtian mad darnatiforgar aen pa uиanалиия
Mar graving nacta \&

hefis glensthnaer buta uusidk

-VI har funnet omtrent det 4 forventet. Foreldpig er det

Stavanger (Amis). Utgravningene pa Tasta rusta starter haug 1 mu ! ur

mod an :-an anan nacta snmmar ar ampanot rarmal

Fir tidien nlanlegres den
tekniske opparbeldelsen

20107

Dyucisinus ve

hage of 800 bollger som wll g plass for omking sunu men
 uag suvucua A aive tuang abua

 nínoper siar Anlagesen Dess

 -Arattohall named ax vilution Aelor'aviden itfentliae struk turen alleređe pâ plass.
fihntromekeestemblacet.no

Manan Yan maveretuen

 VIKINCPRRLE: Gitte Hiddisen holder fram en aperte» Jra
skal materialet som er Iunnet 1 ar analyseres us bulkes, nuen

 unn.

Progantort inom
uthuovincernmratiat. Thast:
rusta. som er navnet bâde pá
 най

varman
\square

E

- - n
 $\square \mathrm{L}$

matin

 nemben
落名

 minn Ex-
 Fing y
 Eand

 ETM

 mannann

 confintin. Niall Armstrona oraver fram restene av et ildsted som har vaert inne i et hus jrajernalderen.

SA Sannsynligvis har det bodd folk på Tastarustå siden bronsealderen. Kanskje finner sak 0.5/200 arkeologene enda eldre spor senere. Forelopig finnes sikre spor fra rundt 450 e. Kr.

99/7319

Kom og se bakover
 i fortiden

Finn Romicke I wikt Ion ingemundsen f foto
glassperle fra fikinctiden. Og hvem vet? Kanskfe kan det senere komme til 4 duk ke opp spor fra helt tubake til steinalderen? Arke oioge ne ville ikke hatt noe mot d finne graver heller. Det or Itcke utenkelig at det kan dukbe opp graver for ternel deren.

Fornoyd med funsene - VI er fornoyd med det v har funnet, sier prosjekt leder Gitte Kjeldsen 3a Ar keologisk muselum. Feltie der er Niall Amistrone
Pa forhând hadde rle reg net med a linne spor ette bebyggelse, dyrking av jor da og enkelte Ejensiander Og det har de altså alered gort. Finner de mer, ne hav ner de enda lengre tilibare 1 ticl, blir det a regne for on ekstra bonus

KORT MDTE: Prosieklleder Gitte Kjeldsen, ootaniker

Databaserte systemer er for Iengst 1 bruk innen mo derne arkeolog!-Páfeltet pa Tastarusta pigyer arkeolo gene ut et nyere svensk databasert system som er laget av arkeologer, for arkeologer.
Nytt dataprogran
Et geografisk informasjonssystem er kombinert med Innmalimgstata og en database systemet spare arkeolatene for mye etter arbeid med A renteche In formasion om omist lor gir dem en anayse fuks oner og anlecning it a komblnere mange hjelpe funksjoner pÁpc,
Som vanlig I nyere arkeo logi, samarbeider arkeologene med folk fra andre fag felt, Botaniker El-Christin

[^13]finner hun fro og korn og kan se hya slags jordbruks som har var drevet 10 muadel Détte er godt materiale for O14-datering, den beste kilden til sikker tidsbe. stemmelse.

800 nye boliger

Reguleringsplanem for dette omadet, legger opp th 800 ny bolger fordeit pas $s 5$ boligfeit p a Tastarusta, 50 m er omradet mellom Randabergyelen, Grer deveien Tastarustå og Ruste velen
140 av boligene skal etter pla nen legres. L selve bydelssen teret 105 smatis oce rekehus legces 4 tre selvbyiselelt 50 m forstegangsetablerere kan sok pa Resten ay boligene forestá lage reckehus oz favblokker p maksimalt fire etasjer Nesten en tredel ay hele omradet bli lagt ut som friareal. Kommune ser for seg en ctappevis ut

MÅLEPUNKTER: Arkeolog Dorthe Nistad forgrunnenog arkeologistuden Christtan Roll Valen deltar futgravningene pa Tastarusta. Hun underspleer en grop dekket av flate heller Han undersoker et ildsted. De gule pinnene ex malepunkter t (system av inijer som e punkts beliogenhet oestemmes : forhold tit)

utte obber

SA 14.06 .06
000

UGHTER: Sigruin Wdlistad fant ild
slagningsstein brukt for 1500 âr siden. (Foto: Jon Ingemundsen)

Tastarustå

 for KristusUTGRAVNINGER: De arkeologiske utgravingene pả Tastarustả har påvist fün fra 450 är etter Kristus, men, det kan dukke opp spor av bosetting tilbake tit bronsealderen, 8800 ar før Kristus.
2. DEL side 60

Imponerande litteraturplan

VRINGSERIDOM:- TIià mista pusten

 av Detmeiner KJell Olaf Jensen iNorske Pen om stavanger kommurie sin nye litteraturplan) 2 DEL side 55

[^0]: ${ }^{1}$ Brev fra Stavanger kommune til AmS (02.03.06)

[^1]:

[^2]: IIm
 Hum 114n

 587 Arsesis,

 miadois wintaionay

[^3]: \square

[^4]:

[^5]:

 IMIM

 原

 高

[^6]:

[^7]: 登

[^8]: Dates are reported as RCYBP (raduicarbon years before present, "present" = 1950A.D.). By International convention, the modern reference standard was 95% of the C14 content of the National Bureau of Standards' Oxalic Acid \& calculated using the Libby C14 half life (5568 years). Quoted errors represent 1 standard deviation statistics (68% probability) \& are based on combined measurements of the sample, background, and modern reference standards.

[^9]:

[^10]: Dates are reported as RCYBP (raduicarbon years before present, "present" = 1950A.D.). By International convention, the modern reference standard was 95% of the C14 content of the National Bureau of Standards' Oxalic Acid \& calculated using the Libby C14 half life (5568 years). Quoted errors represent 1 standard deviation statistics (68% probability) \& are based on combined measurements of the sample, background, and modern reference standards.

[^11]: Dates are reported as RCYBP (raduicarbon years before present, "present" = 1950A.D.). By International convention, the modern reference standard was 95% of the C14 content of the National Bureau of Standards' Oxalic Acid \& calculated using the Libby C14 half life (5568 years). Quoted errors represent 1 standard deviation statistics (68% probability) \& are based on combined measurements of the sample, background, and modern reference standards.

[^12]: Dates are reported as RCYBP (raduicarbon years before present, "present" = 1950A.D.). By International convention, the modern reference standard was 95% of the C14 content of the National Bureau of Standards' Oxalic Acid \& calculated using the Libby C14 half life (5568 years). Quoted errors represent 1 standard deviation statistics (68% probability) \& are based on combined measurements of the sample, background, and modern reference standards.

[^13]: Solvedt har tatt prover fa

