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Abstract

Molecular dynamics simulations (Dissipative Particle Dynamics - DPD) were

developed and used to quantify wall-normal migration of polymer chains in

microchannel Poseuille flow. Crossflow migration due to viscous interaction

with the walls results in lowered polymer concentration near the channel

walls. A larger fraction of the total flow volume becomes depleted of poly-

mer when the channel width h decreases into the sub-micron range, signifi-

cantly reducing the effective viscosity. The effective viscosity was quantified

in terms of channel width and Weissenberg number Wi, for 5% polymer vol-

ume fraction in water. Algebraic models for the depletion width δ(Wi, h)

and effective viscosity µe(δ/h,Wi) were developed, based on the hydrody-

namic theory of Ma and Graham and our simulation results. The depletion

width model can be applied to longer polymer chains after a re-tuning of
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the polymer persistence length and corresponding potential/thermal energy

ratio.

Keywords: polymer migration, polymer rheology, effective viscosity,

porous media, DPD

1. Introduction

Polymer solutions are used in many applications, from drag reducers in

turbulent pipe flow [1], to viscosity boosters in injected water during oil re-

covery [2, 3, 4]. A transition from capillary fingering to a stable invading

water front can be achieved in an oil reservoir when the viscosity of the in-

jected water is increased by adding polymer [5]. However, many polymer

solutions, including partially hydrolyzed polyacrylamide (HPAM), can ex-

hibit lowered effective viscosity due to lowered polymer concentration near

the mineral surface due to cross-flow migration. This depleted layer has low

viscosity, and acts as a lubricating layer, increasing the volumetric flux of

liquid for the same pressure gradient. Technology developments for DNA re-

search are also concerned with the same type of migration effects in capillary

tubes and narrow channels [6, 7].

In essence, the near-wall depletion layer develops due to hydrodynamic

migration of flow-aligned polymer chains towards the central parts of the flow

channel [8], or due to direct steric interaction between polymer segments and

the confining wall [9]. The reduction of effective viscosity becomes signifi-

cant for narrower channels in the micron range (e.g., sandstone reservoirs),

because the depleted volume becomes a larger fraction of the total fluid vol-

ume. A reduction of the effective viscosity by a factor of at least two is found
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experimentally for HPAM flow in channels with plane walls when the channel

width is reduced from ten to one micron [10].

Migration and depletion is a fundamental mechanism that is likely to oc-

cur also in the complex geometry of reservoir rocks [2, 3, 4], although modifi-

cations (e.g., due to more complex steam lines) will be present. It is therefore

expected that water breakthrough may occur with higher probability than

anticipated, since the effective viscosity is reduced compared to a polymer

solution with homogeneously distributed polymer in the pore structure.

The migration and wall-polymer interaction mechanisms depend on the

ionic strength of the solvent (including salinity variations) when the polymer

contains charged groups. Ions may shield the polymer charges, and therefore

reduce the polymer extension, which again can influence the depletion layer

width. Adsorption of polymer on the mineral may modify the depletion

mechanism, depending on the properties of the adsorbed layer in terms of

hydrodynamic roughness. The adsorbed surface density is also influenced

by the ionic composition of the solvent and the chemical constitution of the

given mineral [11].

We used resolved molecular simulations of the DPD-type (Dissipative Par-

ticle Dynamics) [12]. This approach preserves viscoelastic and shear thinning

rheologies of the polymer solution and the viscous hydrodynamic coupling to

the confining walls, and between different polymers. We used simple chan-

nel geometry for now, although the simulation code that was developed can

handle both complex geometries and adsorption.

Since the mechanisms that contribute to migration are numerous and

complex, it is not surprising that models for polymer migration tend to be
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less general than what is usually needed for application. Confined polymers

between flat walls without flow offer analytic treatments [9, 13, 14], as does

simplified dumbbell models in shear flow [15]. For more realistic cases of

migration with long polymer chains, there are a number of empirical results

from experiments [7, 10], DPD simulations [16, 17, 18, 19, 20] and Brownian

and molecular dynamics simulations [6, 21, 22] that qualitatively describe the

depletion layer behavior within the given parameter range. Ready-to-apply

models for the depletion layer thickness δ as function of the Weissenberg num-

ber Wi, the channel width h, ion contents/salinity, and adsorption properties

are still lacking as far as we are aware. One goal of the current study is to

derive a phenomenological relation δ(Wi, h) based on the simulations results

and knowledge already obtained in the literature.

For low Wi (the Newtonian regime) the polymers are not extended sig-

nificantly by shear, and it is the radius of gyration Rg which is the relevant

polymer size, and Rg/h becomes the controlling parameter for δ. The poly-

mers tend to stay coiled up if the channel width is large enough, and the

polymers interact sterically with the wall, generating a depleted layer if there

is no adsorption [14]. It is then reasonable to assume that a slight stretching

of the polymers for increasing Wi brings them closer to the wall [23, 24]. The

flow-aligned length is increased (R|| > Rg), and the relevant size scale is now

the smaller extension perpendicular to the wall R⊥ < Rg, and the polymers

can get closer to the wall. Indeed, Fedosov and coworkers [19] used DPD

simulations to study polymer migration in a moderately confined regime of

channel widths h = (3 − 8)Rg in Poseuille flow and found a reduction of

the depletion layer thickness δ for increased Wi. Similarly, de Pablo and
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coworkers [23] found that δ diminished with increasing shear rates at low

Wi. However, δ reached a minimum at a Weissenberg number between 10

and 100, before it increased again at higher Wi.

For higher Wi in the shear thinning regime, it has been argued that

hydrodynamic viscous interaction with the wall results in migration away

from the wall, and the polymers may migrate further into the core flow with

increasing shear rates [15]. A simplified dumbbell model for the polymer al-

lows for a rigorous calculation of the depletion layer thickness δ if Stokes flow

interaction with a single wall is assumed. With this basis, δ scales asymp-

totically as Wi2/3 for large Wi [15]. This type of migration increases for

increasing polymer/dumbbell length, and vanishes in very narrow channels

due to a cancellation between the two walls [8]. Molecular dynamics simu-

lations in Couette flow show that the depletion layer grows with increased

Wi as predicted for hydrodynamic migration [22], and the same behavior was

found in Poseuille flow with DPD simulations [20]. With increasing depletion

layer thickness, we expect that the shear thinning effect is amplified, giving

a steeper slope of the effective viscosity curve as function of Wi.

The depletion layer thickness δ increases with channel width h in Cou-

ette flow [22] and in Poseuille flow [19], with an apparent asymptotic be-

havior (with the limit δ ≃ Rg). Near-wall depletion implies a concentration

build-up in the core flow that is larger for narrower channels, implying a self-

regulating effect from gradient diffusion back towards the walls. Polymer dif-

fusion smooths out density gradients, but the diffusivity depends on polymer

elongation [19]. Highly elongated polymers do not diffuse as efficiently per-

pendicular to their stretching direction and the wall-normal diffusive fluxes
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are therefore reduced with increased Weissenberg number. Another impor-

tant effect is that the depletion layer tends to thin for increasing polymer

concentration due to polymer-polymer interaction [9, 20], suggesting that

depletion effects can be more important for dilute solutions (of the type used

for water injection).

2. Polymer DPD simulator with parallel processing

We have developed a 3D DPD (Dissipative Particle Dynamics) simulator

for parallel processing, tailored to polymer flow in arbitrary wall geome-

tries. With DPD, one can identify the polymer migration mechanisms in

any geometry, and evaluate their effect on the effective viscoelastic rheology.

Adsorption and salinity effects can be analyzed by choosing the appropriate

wall-polymer, and polymer-polymer interaction parameters, respectively.

2.1. Basic DPD framework and polymer visco-elasticity

DPD is a Lagrangian method, where the molecular structure is mod-

elled to some level of coarse graining [12, 19, 20]. In a Eulerian continuum

representation, one must solve a transport equation for the hydrodynamic

stress tensor that incorporates the associated history effects of the viscoelas-

tic polymers (e.g., the Oldroyd model). This is not necessary for the more

direct DPD approach since the viscoelastic history effects emerge via the

intra-molecular forces.

A detailed description of DPD can be found in the now extensive literature

[25, 26, 27, 28, 29, 12]. A coarse grained DPD polymer model consists of a

number of linked beads that each represent a limited number of atoms. The

solvent (water) is modelled as single beads that each represent a number of
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water molecules (here, three molecules). The positions of the beads were

integrated over time using the velocity-Verlet method [30, 31, 32], and a

suitable force model FC
ij for the electrostatic/van der Waals forces between

any given pair of beads (i and j). This conservative force is derived from an

interaction potential

U(rij) = aijU(rij) (1)

with a given functional form U . The distance vector rij = ri − rj is defined

by the position vectors ri and rj of particles i and j respectively, and the

length of the distance vector is rij = |rij|. This potential represents a simple

approximation to the coarse grained potential obtained by averaging over the

underlying atomic structure and the associated van der Waals or Lennard-

Jones type potentials. The conservative forces are repulsive in DPD, so that

increasing aij corresponds to increased repulsion. The interaction strengths

aij are given as input.

A harmonic ”spring-force” is added between polymer beads to keep the

chains intact, and this force give rise to fluid elasticity. In our parallelized

implementation of the DPD algorithm, it was numerically convenient to re-

strict the bond interaction to have a fixed, finite range. The bond breaks if

the distance between the beads becomes larger than RB [33],

FH(rij) =

 −C (rij − r0)uij, if rij ≤ RB

0, else,
(2)

where uij = rij/rij is the normalized distance vector, C is the strength of

the interaction and we chose r0 = 1.0 as the equilibrium distance between

two polymer beads (normalized to the characteristic DPD scale rc = 0.64×

10−9 m), and RB = 2.0. A high value of C = 400 was chosen to prevent
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polymer breakup. We confirmed that less than 1% of the bonds were broken

for the longer chains with bead numbers N ≥ 60.

The relative importance of polymer deformation due to viscous hydrody-

namic coupling along the polymer chain versus diffusive motion, is controlled

by the Schmidt number. It is essential to have higher Schmidt numbers

(Sc ≫ 1) to achieve realistic polymer migration effects [17, 20, 34]. We

adjusted the DPD parameters to achieve Sc = 600 (Appendix A).

2.2. Parallel algorithms

We use an MPI-standard library for parallel processing [35, 36]. MPI

applications can be run in parallel both on off-the-shelf workstations and on

distributed computing systems. Different approaches for parallelization of

MD and DPD algorithms have been discussed in the literature [37, 38, 39,

40, 41, 42, 43, 32]. The domain-decomposition method (in which different

processors consider different space domains) is more efficient for large systems

than atomic- and force-decomposition techniques [39]. Therefore, we chose

to parallelize our DPD program using a domain-decomposition method. We

used the parallel linked cell-list approach, which was first introduced for MD

simulations [37] and later generalized to DPD [42]. The parallel linked-cell

list algorithm [37, 42] combines linked cell lists [44] (which give linear scaling

for short-range interactions) with domain-decomposition parallelization. In

the parallel linked-cell list algorithm, the simulation domain is divided into

boxes of equal size, each associated with a different processor. Each processor

domain is divided into smaller boxes that are used for the linked-cell list

algorithm. Following [39, 42], we chose processor configurations with minimal

interface areas to minimize the communication between processors.
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To calculate nonbonded forces between beads in different processor do-

mains, it is necessary to copy particle data of beads that are within the cutoff

radius Rc from a certain processor domain. The copying of nonbonded bead

data across processor domains was implemented using ghost cells [37, 42].

For the processing of intra-bead polymer forces, we used large arrays con-

taining relations between global and local particle indices [41], and an option

for using shorter time steps (Appendix B).

2.3. No-slip wall boundary conditions for general geometries

The walls were modelled using non-moving wall beads [20]. The wall

beads interact with fluid beads through both viscous and conservative forces,

as any DPD bead. It is essential to have no-slip boundary conditions when

measuring the effective viscosity in the simulations. To obtain this, the

fluid beads that come close to the wall are assigned a zero-mean velocity.

The random velocity components were drawn from a Maxwell-Boltzmann

distribution at the kinetic temperature of the system [45, 46]. When a fluid

or polymer bead is closer than a given reflection radius Rw from a wall bead,

the fluid bead is assigned a new velocity outwards from the wall surface

with an arbitrary direction in the half space defined by the normal vector

n to a smooth mathematical surface that encloses the spatial domain of

the wall beads. This approach provides an entirely general treatment for

any wall geometry and topology, and emulates a wall with the given kinetic

temperature, without having to treat moving or vibrating wall beads [45].

The reflection distance Rw is the radial distance from a wall bead where

reflection occurs. The wall beads are placed at random positions in the wall

volume, and to avoid ”holes” where fluid beads can enter, Rw must be larger
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than the average wall bead separation so that the radii from neighboring

beads overlap with high probability. We chose a reflection radius of

Rw = 0.25, (3)

normalized to the DPD length unit rc. The cutoff radius for the conservative

force interactions between fluid and wall beads was set at

Rc(wall) = 1.25, (4)

and this has to be larger than Rw for wall interaction to occur before reflection

happens. The cutoff radius of the forces between the beads in the whole fluid

domain was set to Rc = 1.0.

To obtain a no-slip condition with sufficient accuracy, a wall bead number

density of 4 times the fluid density was implemented [20]. A corresponding

reduction of the wall interaction parameter by a factor of 1/4 was used to

provide constant fluid density also in the near-wall region.

2.4. Tuning the interaction potentials

The interaction parameters aij were tuned to obtain the overall solubility

behavior of HPAM, and the parameter values were comparable in magnitude

to those derived from Flory-Huggins theory [12]. Test runs were carried

out to provide homogeneous polymer solutions without phase separation or

segregation of the polymer strands into a separate phase. Furthermore, the

wall interaction parameters were adjusted to obtain a neutral, non-adsorbing

wall.

The aww parameter is the water - water coupling, and aww = 25 was

chosen to match the compressibility of water [12]. For the polymer to be
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soluble in water, we also had to set app > awp, which provides extended

polymer chains. The effect of polymer on viscosity depends on the polymer-

water interaction parameter, with more response for higher awp. However, if

awp is higher than app the polymer becomes insoluble, and separates out into

polymer clusters. The parameters that we found to be optimal were

aij =


w p s

w 25 50 25

p .. 100 50

s .. .. ..

 , (5)

where w, p, s, stand for water, polymer, and wall (substrate) beads, respec-

tively. Setting awp > 50 gave an enhanced viscous response, but resulted

in reduced solubility of the polymer, even when app > awp. We found the

requirement app > 75 for the polymer to be fully soluble in the water, and

app = 100 was chosen.

Increasing app increases the intra-bead repulsion in the polymer chain and

increases the radius of gyration Rg, and would mimic smaller ionic concentra-

tion (lowered salinity) in the solvent. The viscosity of the polymer solution

increased with increasing app, because the more extended polymer chains

give larger contact area between the polymer and the water. In the current

work, we use a neutral wall (no polymer adsorption and no net repulsion),

by setting aps = awp.

2.5. Polymer concentration and chain length

As a reference case, we used a 1000 ppm (mass fraction) solution of poly-

mer in water, that represents a typical case of HPAM injection. We match
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the total length of polymer chain per volume of water to obtain the correct

surface area between the polymer chains and the water per volume unit, and

hence the stress coupling between the water and the polymers should be of

the correct magnitude. Unfortunately, the domain size in molecular simula-

tions is too small to span the typical polymer chain lengths of HPAM. This

is because larger volumes would increase the number of solvent molecules to

a level (tens of millions) were the computations would be intractable.

We were still able to make DPD models of polymer chains that were long

enough to obtain a polymer relaxation time that gives shear thinning in a

range of shear rates similar to that of HPAM. Shear thinning occurs at a

Weissenberg number near unity and above, Wi = λγ̇ ≥ 1. The extensional

relaxation time λ of synthetic HPAM and organic polymer chains is on the

order of 0.1 s [3], and these polymer solutions are therefore shear thinning

above a strain rate of about γ̇ = 10 s−1.

By assuming non-degraded HPAM molecules of mass mp = 4 × 106 Da,

the polymer length is about Lp = 10 µm [47]. The polymer mass density in

solution is ρp = 1000 ppm = 10−3gm/cm3. We match the length of polymer

per volume,

lv =
ρpLp

mp

, (6)

and this criterion gives a volume fraction of polymer beads in the DPD

simulations of ϕp = 5%, when the equilibrium bead separation is comparable

to the DPD length unit of rc = 0.64× 10−9m.

We tested the effect of polymer chain length on the effective viscosity,

velocity profile, and concentration profile, with the number of beads in the

range N ∈ [10, 120]. Convergent behavior was obtained for chain lengths
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N > 60. Polymers of length up to N = 120 were tested and we found

essentially the same behavior as for N = 60, and a moderate chain length

of 60rcr0 ≃ 4 × 10−2 µm is then our ”default” value used for most of the

simulations. We also show results for N = 20 for comparison.

3. Rheology setup for Poseuille flow

3.1. Effective viscosity measurement

The simulations were set up for Poseuille flow between flat walls, with

varying wall distance h. The boundary conditions were periodic in the span-

wise and flow-aligned directions. The length of the domain size in the flow

direction was 40 and 80 DPD units (of rc = 0.64 × 10−9m) for N = 20 and

N = 60 respectively, to avoid wrap-around effects of the polymer chains due

to the periodic boundary conditions in the flow-aligned direction. The main

limitation on the domain size was the number of water molecules, which

were in the range (0.015− 1.1)× 106 beads, requiring 2-3 days of computa-

tional time on 12 microprocessors for the larger simulations. We used channel

widths in the range h ∈ [4, 154] nm. The largest widths were comparable to

the smaller channel widths used in the experiments of Cuenca and Bodiguel

[10]. An example with h = 38 nm is shown in Figure 1, where the depletion

layer is clearly visible.

A body force G was added to emulate the effect of a uniform pressure

gradient in the flow direction. The effective viscosity is defined by

µe =
h2

12

G

U
, (7)

where U is the average value of the fluid velocity profile (volumetric flux

per cross sectional area) and the channel width is h. The effective viscosity
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defined in this manner reduces to the fluid viscosity for purely Newtonian

fluids, and for polymer Carreau fluids if the shear rate is low enough to

remain in the upper Newtonian regime (Appendix C).

To determine the effective viscosity, the velocity profile u(y) was inte-

grated to obtain the average velocity U . The layer of DPD water beads near

the no-slip wall were essentially non-moving, giving an effectively narrower

channel, and is was necessary to replace the channel width h with (h− ϵ) in

the calculation of the effective viscosity, where ϵ ≃ 0.5 is a fraction of the

bead radius.

The simulations were run to steady state after imposing a Newtonian

velocity profile. Time averaging was then performed over the solvent and

polymer bead velocities. The polymer bead number density was measured

in suitable bins ∆y in the wall normal direction y. The fluid velocity profile

u(y) and polymer concentration profile c(y) could then be estimated. The

depletion layer thickness δ was defined as the distance from the wall where

the polymer concentration c is equal to its half-value defined by

c(δ) =
1

2
⟨c(y)⟩ (8)

where averaging ⟨..⟩ was performed over the full volume of the channel. To

estimate the concentration profiles, we used the polymer bead number den-

sity, not the center of mass density of the polymer chains [19, 20]. The center

of mass density can be misleading close to the wall, giving the appearance of

full depletion where in reality the beads may interact directly with the wall.
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Figure 1: Visualization of the polymer distribution for h = 38 nm, N = 60, and Wi = 1.5.

Left: Font view in the flow aligned direction. Right: Side view where the flow is directed

to the right. A few polymer strands are colored in pink. The depletion layer is visible as

the void near the upper wall. The visualization was generated using the freeware VISIT.

3.2. Weissenberg number constraints

For shear thinning polymer solutions, both the bulk and the effective

viscosities decrease with the Weissenberg number (normalized shear rate).

We will study the variation of the effective viscosity with varying channel

width h, and to separate out this effect one must keep the channel-averaged

Weissenberg number

Wi = ⟨γ̇⟩λ (9)

at a constant value. The average strain rate

⟨γ̇⟩ = 1

h/2

∫ 0

−h/2

∂yu(y)dy =
u(0)

h/2
(10)
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was kept constant by adjusting the velocity u(0) in the center of the channel.

This is again controlled by the body force G (equivalent to the pressure

gradient). A constant wall shear stress

τw = Gh/2, (11)

provided an initial estimate for the driving force G when h was varied.

A number of Wi values were chosen in the range 0.5−10. The relaxation

time λ of the DPD polymers was defined by the exponential relaxation time

from an extended state to a contracted equilibrium state. The end-to-end

distance followed approximately the exponential

∆R ≃ R0(N) exp(−t/λ(N)), (12)

where R0 and λ are functions of chain length N in terms of the number of

beads. Exponential fits to the data produced the needed relaxation times.

4. Simulation results

In this section, we summarize the simulation data in terms of the response

of the effective viscosity and depletion layer thickness δ to varying channel

height h and Weissenberg number Wi.

4.1. Effective viscosity

Figure 2 shows the relative effective viscosity µ∗
e = µ0

e/µw (where µw is

the water viscosity) as function of Wi for two channel widths (13 and 38

nm). For a pure power law fluid or a Carreau fluid in the shear thinning

regime (Appendix C), we expect the scaling µ∗
e ∼ µ∗

0(Wi)n−1 where n is a

constant. Thus, the data reveals an approximate straight line in the shear
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Figure 2: normalized effective viscosity µ∗
e and depletion layer thickness as δ function of

Weissenberg number Wi. Left: narrow channel h =13 nm. Right: wider channel h =38

nm. The viscosity is strongly shear thinning, due to the intrinsic shear thinning rheology

and increasing depletion layer thickness δ with Wi. The depletion layer δ tends to increase

with Wi and channel width h.

thinning regime, where log(µ∗
e) ≃ log(µ∗

0) − (1 − n) log(Wi). We note that

depletion layer effects adds on to the intrinsic shear thinning behavior of the

fluid. The slope of the effective viscosity is then steeper with a depletion

layer. The depletion layer δ tends to increase with Wi (lower panels), as we

will discuss in more detail later. For very high Wi, the viscosity in the core

flow is reduced by shear thinning and the viscosity contrast between water

and the core flow is lowered, and hence the presence of a depletion layer is
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less important.

The effective viscosity from the simulations increases with chain length

N in accordance with known polymer behavior (upper panels). However,

the viscosity increases less for the higher Weissenberg numbers. The reason

for this is that the polymers are stretched out more for higher Wi, and the

viscosity does not vary much with chain length in that case since the total

chain length per volume solvent is the same in the simulations.

From the data, is it clear that the effect of the chain length on the viscosity

is larger than the depletion layer effect: the longer chains give higher viscosity

although the depletion layer grows with longer chains.

4.2. Depletion layer effects on the effective viscosity

The variation of the effective viscosity and depletion layer as function

of channel width h, is shown in Figure 3 for two Weissenberg numbers (1.5

and 4). From Figure 2, the high Wi represents the transition to the lower

Newtonian regime, while the low Wi represents the strongly shear thinning

regime. At high Wi we may expect that the influence from depletion is

smaller since the viscosity contrast between the depleted layer and the core

flow is smaller.

A very important effect on the effective viscosity is that the depletion

layer grows less than a linear function of h such that the depleted volume

fraction δ/h decreases with increasing h (middle panels), and this is the

important parameter that controls the effective viscosity (right hand panels).

For large volume fraction δ/h of the depleted layer, the effective viscosity is

reduced significantly and this effect is stronger for the narrower channels.

Here, the depletion layer thickness becomes a good fraction of the channel
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Figure 3: Depletion layer thickness δ, and normalized effective viscosity µ∗
e as function of

channel width h.

width. A more gradual increase of δ/h occurs for the wider channels, and

the increase of the effective viscosity with h is smaller, due to the relatively

thinner depletion layer. The shear thinning effect is more visible for the

larger h where it is seen that the effective viscosity is lower for the higher

Wi (right hand panels).

Cuenca and Bodiguel [10] found relatively large reductions in effective

viscosity with reduced channel width in the sub-micron range for HPAM

polymer. This is also the behavior we find in the simulations, where δ/h ≃ 0.2

for the narrower channels around 10 nm, and drops to about δ/h ≃ 0.05 for
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widths of 40 nm (Figure 3). This is characteristic for both Weissenberg

numbers.

The depletion layer grows with h for the longer chain N = 60 (Figure 3

left hand panels). The shorter chain shows a different behavior where the

growth stops at smaller h. This is in fact expected as we will discuss later in

the modelling section. The depletion layer thickness δ increases as function

of Weissenberg number as well (Figure 2). The main physical mechanisms

behind the formation of the depletion layer is hydrodynamic migration away

from the walls, and an opposing gradient diffusion back towards the walls

[15]. The drift away from the walls increases with Wi, and is balanced by

back-diffusion when the concentration builds up in the in the core volume of

channel. This is in line with earlier findings where increased concentration

of polymer reduces the depletion layer thickness [22].

Two confinement effects are of importance when the channel width is

reduced. First, the forces that generate migration tends to cancel between

the two walls, reducing the migration effect [15], and the concentration builds

up faster in the channel for increasing migration flux (increasing Wi). This

limits the depletion layer thickness for narrow channels in line with Figure

2 (in the lower panels, even though the data are sparse), and with Figure 3.

These ingredients will be incorporated in the depletion layer model developed

below.
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Figure 4: Concentration profiles as function of Wi for h = 38 nm. The horizontal lines

mark the distance to the wall where direct collisions (steric interaction) with the wall

begin to occur with high probability. The depletion layer thickness is larger, indicating

hydrodynamic rather than steric interaction.

4.3. Concentration profiles

Concentration profiles for h = 38 nm and N = 60 are shown in Figure 4

for a set of Weissenberg numbers. To reduce the noise level, we performed

time averaging over the full dataset after a steady state situation was estab-

lished, and ensemble averaging was performed in some cases over different

simulation runs. Furthermore, the profiles were mirrored and added to reduce

noise further (due to symmetry).

The horizontal lines mark the distance to the wall where direct collisions

with the wall begin to occur with high probability at the interaction distance

Rc(wall) = 1.25 (in DPD units) for the conservative force. It is clear that, at
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least for the higher Weissenberg numbers, that the polymers do not interact

directly by collisions with the wall, so that hydrodynamic migration away

from the wall is the likely migration mechanism. The diffusive flux towards

the walls balances the migration fluxes away from the walls [15].

The profiles show a tendency of a characteristic enhanced concentration

on the shoulders of the concentration profile (also found by other autors [8]).

The polymer elongation is controlled by the local shear rate so that high

shear rates may reduce the diffusivity and cause a pile-up of polymer that

were originally in the core region, into the high shear regions, generating the

”volcano” shape. Long, elongated polymers at high Weissenberg numbers

may also tend to be ”locked in place” by the shear at a certain distance to

the wall due to the strongly reduced diffusivity. For this reason we performed

several runs in some cases with statistically independent initial conditions.

5. Effective viscosity models

A goal of this work was to develop effective viscosity models, including

depletion layer effects. For the narrower channels, the depleted volume frac-

tion is no longer negligible and we need to develop models for larger depletion

layers up to δ/h ∼ 0.1. First, we develop the effective viscosity models, before

we develop a depletion layer thickness model based on the Ma and Graham

dumbbell model, representing a coarse grained polymer.

5.1. Effective viscosity model with depletion

The effective viscosity is a function of Weissenberg number Wi, channel

width h, depletion layer thickness δ, polymer chain length N , and polymer
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concentration c,

µe = µe(Wi, h, δ,N, c). (13)

Salinity (electrolyte contents) and/or polymer solubility will also play a role

through their effects on the polymer extension. The depletion layer thickness

is a function of the channel width h, but also of the variables Wi,N, c,

δ = δ(h,Wi,N, c). (14)

The effective viscosity is reduced by the depletion layer, and one can define

a correction factor fd,

µe(Wi, h, δ,N, c) =
µ0
e(Wi,N, c)

fd(δ/h)
(15)

where µ0
e is the effective viscosity for a homogeneous polymer solution through-

out the flow volume (no depletion layer), and fd is an increasing function of

the depleted volume fraction δ/h [48, 10]. In the following, we develop alge-

braic models for the correction factor fd, accounting for depletion layers that

span a significant fraction of the channel volume.

5.1.1. Newtonian flow

Here we assume Newtonian flow with a step-wise viscosity profile, with

water viscosity in the near-wall depletion layer and a constant higher viscosity

in the core volume of the channel. The Newtonian approximation is valid

for polymer solutions if Wi is near and below unity (Appendix C). For thin

depletion layers where δ/h ≪ 1, it has been shown earlier that the effective

viscosity is approximately [10, 49]

µe =
µ0
e

1 + 6(µb/µw − 1)(δ/h)
, (16)
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where µb is the viscosity in the core flow and µw is the pure water viscosity in

the depleted layer. For narrow depletion layers, the concentration of polymer

is not elevated much in the core, and we can take the core viscosity equal

to the viscosity of the homogeneous polymer solution, µb = µ0
e. The same

form holds for thin layer approximations in pipe flow [48, 50], but with the

numerical factor 6 replaced by 4.

If the depletion layer is a significant fraction of the channel width, we

obtain the Newtonian approximation (Appendix D)

µe =
µ0
e

µ0
e

µb
(1− 2δ/h)3 + 6 µ0

e

µw

δ
h
(1− δ/h)

, (17)

where the core viscosity is elevated due to increased concentration in the

core volume. We assume a step-wise concentration profile (being zero in the

depletion layer), and we use the linear form (Appendix D)

µb = µw(1 + α
C0

1− 2δ
h

), (18)

where the viscosity increases in proportion to the polymer concentration,

appropriate for a dilute solution. Here C0 is the concentration of polymer

for the homogeneous solution without depletion layers, and α is a constant.

For thin depletion layers δ/h ≪ 1, µb → µ0
e, and we recover the thin-layer

model (16).

5.1.2. Power law flow

For higher Weissenberg number, we may expect shear thinning effects

in the core flow, even though the shear rates are diminishing towards the

midpoint of the channel. Algebraic forms are possible if we assume power
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law behavior in the core. The depletion layer is still Newtonian with a lower

water viscosity. For power law fluids, the shear viscosity is

µ = µ00|γ̇|(n−1), (19)

where µ00 depends on polymer concentration, and the index n < 1 for shear

thinning. The effective viscosity for an un-depleted power law fluid with

constant µ00 (homogeneous polymer distribution) is

µ0
e =

kG

U
=

k

B
G1−1/n (20)

where B is a constant (Appendix C) and k = a2/3 is the permeability

coefficient for the channel with a = h/2. The cross sectionally averaged

viscosity in the channel is

⟨µ⟩ = keff
G

U
= µ00⟨γ̇⟩n−1 = µ00(Wi/λ)n−1, (21)

in terms of a modified permeability keff (Appendix C). Thus, the effective

viscosity for the homogeneous polymer solution is also a power law, since

µ0
e = (k/keff )⟨µ⟩ = (k/keff )(µ00/λ

n−1)(Wi)n−1 ≡ µ00
e (Wi)n−1. (22)

For depletion layers that are not restricted to be thin, we obtain the

approximation (Appendix D)

µe =
µ0
e(

µ00

µ0

)m
(1− 2δ/h)m+2 + a∗(τw)

δ
h
(1− δ/h)

, (23)

where a∗ is a decreasing function of the wall shear stress τw = Gh/2 reducing

the correction for higher shear rates,

a∗(τw) =
2µm

00(m+ 2)

µwτm−1
w

, (24)
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and m = 1/n. Increased polymer concentration in the core is accounted for

by adjusting the viscosity coefficient µ0 according to (Appendix D),

µ0 = µw(1 + β
C0

1− 2δ
h

), (25)

and for vanishing depletion layer, µ0 → µ00 by definition.

For Newtonian flow, m = 1, µ0 = µb, µ00 = µ0
e and a∗ = 2(m+2)µb/µw =

6µb/µw, and (23) reduces to the thick-layer Newtonian form (17). For thin

depletion layers, δ/h ≪ 1, (23) reduces to the power law model

µe =
µ0
e

1 + [a∗(τw)− 2(m+ 2)](δ/h)
, (26)

and the thin-layer Newtonian form (16) is recovered with m = 1, and a∗ =

6µb/µw. Thus, all four representations (16,17,26,23) are consistent with each

other.

5.2. Comparison to simulation data

The essential quantity that controls the viscosity reduction in both the

Newtonian and shear thinning cases is the relative depletion width δ/h (the

volume fraction of the depleted layer). We will test all four descriptions

below, and to this end, we take the measured depletion layer thickness as

input to the effective viscosity model.

The different models are compared to the data for the N = 60 chain

in figure 5 where the concentration increase in the core is ignored (setting

µb = µ0
e for the Newtonian model, and µ0 = µ00 for the power law model),

and in figure 6 where the concentration increase is accounted for. For the

Newtonian model, we calibrated µ0
e to the measured viscosity at Wi = 1.5

for the largest channel width (150 nm), assuming a negligible effect from
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Figure 5: Effective viscosity as function of channel height, and ignoring the concentration

increase in the core. Left: Newtonian model. Right: Power law model.

depletion at this width (upper left panel). The same value was used for

Wi = 4 (lower left panel). The measured viscosity for Wi = 4 is lower than

for Wi = 1.5, due to shear thinning.

The Newtonian model (upper left) provides a reasonable fit to the data,

including the effect of reduced viscosity with narrower channels. It is however

evident that the difference between the thin depletion layer approximation

(orange) and the more general model approximation (green) is only marginal,

with the thin layer approximation giving slightly larger viscosity values. The
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Figure 6: Effective viscosity as function of channel height and accounting for the concen-

tration increase in the core for the thick depletion layer model (green). Left: Newtonian

model. Right: Power law model.

Newtonian model overestimates the effective viscosity for the higher Weis-

senberg number (lower left), due to the shear thinning effect in the measured

viscosity values. The models are not valid for values of δ/h above about

0.2 where the model assumptions break down, even for the more general

one. Effective viscosity values below 1.0 are therefore an indication where

the models break down.

For the power law model, µ0
e = µ00

e (Wi)n−1. The index n was estimated
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by taking the ratio R of the measured viscosities at (150 nm) atWi = 1.5 and

Wi = 4.0 with R = (1.5/4.0)n−1, again assuming negligible depletion layer

effect at this width. We found n ≃ 0.9, and µ0 could then be determined from

either of the measured viscosity values. Furthermore, we could set µ00 = µ0

at this width.

The power law models have a more gradual increase of the effective vis-

cosity than the simulation data show, and does not offer a better fit to the

data than the Newtonian model. The reason for the more gradual increase

is an overall lower sensitivity to the variation in δ/h. The average shear in

the core flow is lower than the average shear corresponding to the average

Weissenberg number. It is therefore likely that the shear thinning effect in

the core flow is not that important. Furthermore, for very low shear rates

near the midpoint of the channel, the power law grossly overestimates the

viscosity where it should reach the upper Newtionian Carreau-value. We

therefore conclude that the Newtonian model offers a robust alternative to

the power law model, even though the Newtonian model does not account

for the intrinsic shear thinning in the fluid.

A ”hybrid” alternative model would be to use the Newtonian form of the

correction factor (denominator in the models) to obtain a good fit to the

variation with channel width, with a power law or Carreau model for the

uncorrected effective viscosity µ0
e.

For significant depletion layer thickness relative to the channel width,

the concentration increase in the core flow increases the core viscosity value.

Figure 6 shows the resulting viscosity profiles (green), when we assume a

linear increase of viscosity with the concentration, according to the formu-
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lation above. The thin layer approximations do not incorporate this effect

by definition. The Newtonian model (17) responds with lowered µ0
e/µb in

the denominator, increasing the effective viscosity. Similarly, the power law

model responds via lowered µ00/µ0 in the denominator, again increasing the

effective viscosity. However, this concentration effect is only marginal for

dilute solutions.

6. Depletion layer model

A model for the depletion layer thickness δ(h,Wi,N, c) is needed as in-

put to the effective viscosity model to obtain a complete effective viscosity

model. We developed a depletion layer thickness model based on the mi-

gration model of Ma and Graham [15] for dumbbells. The dumbbell model

allows for a rigorous calculation of drift fluxes due to viscous hydrodynamic

interaction with the wall and gradient diffusion, and serves as a ”minimal”

physical model for the concentration profile over the channel cross section.

The dumbbell represents the highest level of coarse graining of the polymer

molecule, and the model parameters must be interpreted as coarse graining

parameters when representing long polymer chains.

6.1. Ma and Graham channel flow model

The cross-channel mass flux of non-interacting dumbbells perpendicular

to a flat wall is, to leading order,

j = Vd(y)n−D∂yn, (27)

where Vd is the local drift velocity due to viscous hydrodynamic interaction

between the dumbbell and the solid wall, n is the number density, and D is
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the diffusivity due to Brownian motion,

D =
kT

12πηa
, (28)

where a is the effective hydrodynamic radius of the dumbbell, and η is the

solvent viscosity.

In Poseuille channel flow between two flat walls separated by a distance

h, one can superpose the two single wall interactions as an approximation

for the net drift velocity,

Vd(y) =
K(y)

y2
− K(h− y)

(h− y)2
, (29)

where the variation with 1/y2 is due to viscous interaction with the wall. The

drift velocity is necessarily an antisymmetric function around the midpoint of

the channel, directed away from both walls and into the core of the channel,

and K(y) = K(h− y) is symmetric,

K(y) =
3

64πηn
(N1(y)−N2(y)), (30)

in terms of the normal stress difference N1 − N2 of the dumbbells. For the

finite extensible FENE-P dumbbell one obtains [51],

N1 −N2

nkT
=

τ pxx
nkT

= 18S2. (31)

where for all Weissenberg numbers [52],

S(y) =
1

3

√
2(3 + b)

3
sinh

[
1

3
asinh

(
Ŵ i(y) b

108

(
54

3 + b

)3/2
)]

, (32)

where Ŵ i(y) = λγ̇(y) is the local Weissenberg number. In plane parallel

flow, N1 = τ pxx in terms of the polymer normal stress in the flow direction,

and N2 = 0.
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6.2. Coarse graining interpretation

The dumbbell extension parameter b is the ratio between potential and

thermal energy,

b = HR2
0/kT, (33)

in terms of the FENE-P Hooke spring force parameter H, and the the max-

imum spring extension R0. In our context of coarse grained polymer chains,

we may adopt an average value for the potential energy between two coarse

grained DPD units. We expect this to be on the order of unity based on the

principle of equipartition; the average potential energy in the Hookean po-

tential between the DPD beads must be comparable to kT , since the spring

force interaction between two beads represents one degree of freedom. We

obtained reasonable correspondence to the simulation data with b = 1.5.

The local depletion length scale is

Ld(y) =
K(y)

D
=

9

16

N1 −N2

nkT
a =

162

16
S2(Ŵ i(y), b)a. (34)

In the original dumbbell model, a is the effective hydrodynamic radius of

the dumbbell, where crossflow diffusion is reduced with increasing a. In our

case, we interpret this parameter as a correlation length or persistence length

over which the polymer chain remains approximately as a linear unit that

can be represented by the dumbbell or a pair of beads in the DPD model.

The polymer chain resembles that of a biased random walk due to thermal

fluctuation and shear forces, and the random walk step length corresponds

to the correlation length along the chain. We expect that the persistence

length varies with the strain rate or Weissenberg number. The parameter b

can be interpreted as the potential/thermal energy ratio over one persistence

length.
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6.3. Depletion layer model

In steady state there is no net mass flux of polymer normal to the wall

(j = 0), and the solution to (27) for the polymer number density profile

across the channel is

n(y) = n(h/2)exp

[∫ y

L/2

Ld(z)

(
1

z2
− 1

(h− z)2

)
dz

]
. (35)

It is convenient to define the depletion layer thickness where the concentra-

tion profile is lowered to a certain value. We used the half-value in the data

analysis, in which case∫ h−δ∗

h/2

Ld(z)

(
1

z2
− 1

(h− z)2

)
dz = ln(1/2) ≃ −0.7, (36)

where δ∗ is the depth of the depletion layer predicted by the model, and the

local depletion length is defined by (34). The integral is evaluated numeri-

cally (trapez integration) up to δ∗ where the equation balances. As a first

order approximation that does not require detailed knowledge of the velocity

profile, we take the local Weissenberg number to vary linearly through the

channel (as in Newtonian flow),

Ŵ i(z) = 2Wi(
2

h
z − 1), (37)

where Wi is the average Weissenberg number. This is now used in (34).

Thus, the depletion layer model can be formulated as

δ∗ = δ∗(h,Wi, a, b). (38)

Asymptotes to (36) are derived in Appendix E. For high Wi ≫ 1 we

obtain to first order in δ∗/h the simple explicit formula

δ∗ =
Ld

1 + 4Ld/h
. (39)
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with a characteristic depletion length scale Ld that represents the typical

value across the entire depletion layer. By using the asymptotic form of S

[53], we find

Ld =
9

16 ln(2)
21/3a(bWi)2/3. (40)

This high Weissenberg number approximation worked well also for Wi = 4,

as we shall see. For very small Wi ≪ 1 we obtain a similar useful form to

first order

δ∗ =
Ld

1 + 4qLd/h
, (41)

and with the lower asymptotic form of S [53],

Ld =
18

16 ln(2)

(
b

b+ 3

)2

4aWi2 (42)

q = 5/2− ln(4) ≃ 1.11. (43)

This approximation is valid only for near Newtonian flow where Wi ≪ 1

everywhere in the channel.

6.4. Comparison to simulation data

The asymptotic value of δ∗(h,Wi) for large h is controlled by the polymer

correlation length a. A good fit to the simulation data was obtained with

a = 5 for Wi = 1.5, and a = 1.8 for Wi = 4, and the a parameter is expected

to vary with Wi as discussed above. The energy ratio b was fixed at 1.5 for

all cases.

The integral model (36) for δ∗ gives a fair representation of our simulation

data for δ (Figures 7 and 8 for the N = 60 polymer chain). This simplified

dumbbell model description provides a qualitatively correct variation of the

depletion layer thickness with channel width, consistent with the behavior
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Figure 7: Depletion layer thickness model (full line) as function of channel height for

Wi = 1.5 plotted together with the simulation results (squares) for the N = 60 polymer

chain.

reported elsewhere in the literature (see the introduction). Thus one can

explain the simulation data in terms of hydrodynamic drift away from the

wall, and gradient diffusion back towards the wall.

For large channel width, only viscous interaction with the nearby wall

is effective, and δ∗ → Ld(Wi) which increases with Wi. That this limiting

value increases with Weissenberg number is also seen by comparing Figures

7 and 8. Confinement effects due to interaction from both walls become

significant when h → Ld, and the depletion layer is reduced to values below

the single wall prediction Ld. In the regime h ≪ Ld (small channel width

or high Weissenberg number), δ∗ ≃ h/4 with this model. However, the two

depletion layers span most of the channel in this case and the accuracy is
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Figure 8: Depletion layer thickness model (full line) as function of channel height for

Wi = 4.0 plotted together with the simulation results for the N = 60 polymer chain. The

dotted line is the high Weissenberg number approximation.

then dependent on the validity of linear superposition of the drift velocities

generated by the two walls, which is assumed in the Ma and Graham model.

Increased diffusivity and back diffusion towards the walls corresponds to

lowered Ld in general, and smaller depletion layer thickness, regardless of

channel width. Increased shear or Weissenberg number increases the deple-

tion layer thickness through the viscous wall interaction. For high Weis-

senberg number, the model predicts δ∗ ≃ h/4 as above. The high Weis-

senberg number limit (39) is plotted in figure 8 (dotted line) together with the

simulation results and the general model (36). This form gives a significant

overprediction, although the variation with channel width is qualitatively

correct.
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For very small Weissenberg number δ∗ ≃ Ld by (41) and the model pre-

dicts δ∗ → 0 for vanishing shear. However, in this limit, direct steric interac-

tion with the wall becomes important and one may need a generalized model

of the type

δ∗ =
Ld

1 + 4qLd/h
+ δSteric, (44)

and models for sterically generated depletion layers without flow, δSteric, can

be found in the literature [13].

7. Discussion

Cuenca and Bodiguel [10] used HPAM200K (2×105 g/mol) and HPAM8M

(8× 106 g/mol) solutions and measured the effective viscosity in microchan-

nels. The shorter polymer chains had Newtonian behavior, while the longer

chains (8M) had shear thinning behavior. These authors concluded that the

slip length b = (µb/µw)δ decreased with confinement, in agreement with our

results. By imposing a constant wall shear stress the estimated slip length

showed a stronger increase with channel width for the 8M polymer. This is

consistent with our model if longer chains correspond to larger coarse grained

segment length a, which gives a higher asymptotic δ for wider channels.

Our simulations showed a significant reduction of viscosity only for chan-

nel widths below about 50 nm, whereas Cuenca and Bodiguel [10] found

significant reductions also for larger channel widths in the micron to sub-

micron range. The most likely reason for this that HPAM polymers are

longer relative to the DPD model we used. Since there is consistency between

DPD and hydrodynamics [12], qualitatively correct hydrodynamic behavior

is then expected in terms of effective viscosity and polymer migration for
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the given polymer model. Hence, the simulations generated a valid dataset

over which the viscosity models and depletion layer model could be devel-

oped. Applications to real HPAM polymers is then possible by re-tuning the

model parameters a and b, and using the effective viscosity models as they

are formulated.

The literature establishes that steric repulsion (direct wall interaction) at

the wall seems to be an important depletion mechanism for low or vanishing

Wi. As the shear rate increases, the polymer size in the wall normal direc-

tion decreases and δ can be smaller with increasing shear rates. We did not

observe this effect possibly due to the fact that we did not implement suf-

ficiently small Wi. For very narrow channels, the hydrodynamic migration

(derived from Stokesian dynamics) cancels to a large degree [15, 8], and the

near wall steric repulsion may be more important for a wider range in Wi.

The diffusive flux smooths out the concentration gradients in general,

but the diffusivity is anistotropic and depends on the degree of polymer

stretching via the Weissenberg number. The model we derived does not

incorporate this anisotropy. In the simulations, we observed a tendency to

”freeze in” the polymer chains in the solvent as they stretched out, due to

lowered diffusivity perpendicular to the flow direction. Ensemble averaging

over several simulation runs had to be conducted in some cases, to obtain

good statistics of the concentration profiles and less dependency of the initial

condition (the positioning of the polymer in the domain initially).

A characteristic feature at high enough Wi in Poiseuille flow, is the emer-

gence of two concentration peaks around the channel centerline [8]. As the

polymer chains tend to stretch out, they concentrate at an intermediate posi-
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tion between the wall and the centerline. Some authors [19] have attributed

this to hydrodynamic Segre-Silberberg forces generated by the shear gra-

dients, and the wall-polymer hydrodynamic interaction. Higher order cor-

rections to the effective viscosity are expected as a consequence of these

concentration variations throughout the channel. The viscous shear stress is

in general a linear function over the cross section,

τxy = µ(C, y)∂yux = |∂xp|y (45)

y ∈ [−h/2, h/2], where the viscosity increases with polymer concentration

C. Locally low/high viscosity corresponds to high/low velocity gradient, for

a given stress value, and the velocity profile changes. These effects were

not accounted for the effective viscosity models, as we assumed a step-wise

concentration profile. If such effects were to the included, we would not be

able to construct a simple algebraic model.

For porous media we expect additional effects in the apparent viscos-

ity from a more complex geometry. Extensional ”thickening” is an impor-

tant visco-elastic effect that can occur in the bottle-neck geometry of pore

throats where polymer stretching in the flow direction and subsequent com-

pression/relaxation of the polymer chains constitutes extra dissipation and

flow resistance [54]. However, Berea sandstone cores with HPAM solutions

show an increased effective viscosity only at estimated shear rates of about

100 s−1 and higher [3]. Thus, we expect that extensional thickening can

happen near well bores, but not often further into the reservoir.
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8. Conclusion

Algebraic effective viscosity models and a depletion layer model were

developed based on simulations and existing hydrodynamic theory. Appli-

cation of the models to real polymers is possible by retuning the depletion

layer coarse graining parameters a (persistence length) and b (energy ratio

over the persistence length). The effective viscosity models can be used as

formulated. For low Weissenberg number, we recommend using the Newto-

nian version of the effective viscosity model. For higher average Weissenberg

number, we recommend using the Newtonian form of the correction factor

fd, if the Weissenberg number in the core volume is less than unity.

The effective viscosity is lowered for narrower channels because the de-

pleted volume fraction δ/h increases. Experimental evidence show that this

reduction is significant for narrower channels in the micron to sub-micron

range [10], characteristic of porous reservoir media (sandstone or chalk).

The depletion layer thickness δ is reduced with smaller channel width

h, even though the volume fraction δ/h increases. The main reason for the

reduction of δ with smaller h is that the hydrodynamic forces that drive

migration away from the walls tend to cancel[15]. The simulation results

confirmed this behavior. With the development of depletion layers, the in-

creased concentration in the core regions of the channel leads to increased

gradient diffusion flux back towards the walls. This limits the growth of the

depletion layer thickness with increasing Wi, for moderate h. When the wall

separation h is sufficiently large, such that the confinement effect vanishes,

the depletion layer thickness is completely determined by the Weissenberg

number (shear rate). For very low Weissenberg numbers (lower than we
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used), the migration vanishes and the polymers are closer to the wall. Steric

interactions may then be important such that the depletion layer thickness

can be reduced with higher shear rates due to polymer stretching.
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Appendix A. Achieving high Schmidt numbers

The Schmidt number is the ratio between the diffusivity D of a particle

(Brownian diffusion) and the kinematic viscosity ν; Sc = ν/D. It is relatively

straightforward in DPD to increase Sc to several hundred (it is of the order

of 1000 in common fluids) by adjusting the dissipative and stochastic force

models through the standard DPD weights [18]

wD = w2
R = (1− r/Rd)

q, (A.1)
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by lowering the power law exponent q below the standard value of 2, and

increasing the dissipative/stochastic force cutoff radius Rd, with Rd > Rc.

Increasing γ increases the Schmidt number further. We chose the values

q = 1/2, Rd = 1.2 and γ = 27. This gives a Schmidt number of Sc = 600

[18], without a prohibitive increase of computational time (about a factor

4 longer). Sc > 500 gives reasonable agreement with measured polymer

concentration profiles [17].

Appendix B. Processing of intra-bead polymer forces

In the domain-decomposition algorithms of Plimpton [39], the data of

particles residing within one interaction cutoff length from a processor do-

main P is copied to calculate forces between beads in domain P and beads

in neighboring processor domains. In a similar way, to evaluate bond forces

across processor domains, we have copied data of all bonded beads located

within one bond-force cutoff length, RB, from the processor domain in which

the bond force is evaluated. For example, to calculate bond forces in proces-

sor domain P , we copy data from neighboring processor domains Q,R, S, . . .

to domain P , so that data of all bonded beads that are within the distance

RB from the domain P is included. We have required that all sides of the

processor domains are larger than the bond-force cutoff.

Polymer degradation/breakup can be modelled by using a lower value of

the spring constant C. In that case, it is convenient to evolve the polymer dy-

namics separately with smaller time steps for better prediction of the number

of broken bonds. Such sub-cycling of the polymers is an option that we have

implemented, but we did not use it for the current work. To enable use of dif-
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ferent time step lengths for interbead and bond forces, respectively, we have

implemented a parallelized version of the rRESPA algorithm of Plimpton et

al. [41].

Appendix C. Shear thinning and power law rheologies

The Carreau model governs a smooth shear thinning transition between

the zero shear viscosity µb and the lower, solvent viscosity µ∞ at high shear

rate,

µ = µ∞ +
(µb − µ∞)

[1 + (λγ̇)x]
1−n
x

= µ∞ +
(µb − µ∞)

[1 + (Ŵ i)x]
1−n
x

, (C.1)

where the local shear rate is γ̇. Here, 1 − n > 0, and the fit x = 2 is

usually made. In the shear thinning regime Ŵ i ≫ 1, a power law behavior

is recovered for

µ− µ∞ =
(µb − µ∞)

(Ŵ i)1−n
. (C.2)

The exponent n varies with concentration and molecular mass [3],

n = n0 + bX, (C.3)

and 1−n is in the range 0.1 to 0.6 for X = [µ0]c in the range 0 to 20 (in terms

of the intrinsic viscosity [µ0] and the concentration by mass, c, of polymer),

and the relaxation time λ is in the range 0 to 4 s. For strict power law fluids,

µ = µ0|γ̇|(n−1), (C.4)

and the average velocity in a channel without slip is

U = B(h,m, µ0)G
m =

(h/2)m+1

m+ 2

(
G

µ0

)m

=
(h/2)m+1

m+ 2

(
2τw
hµ0

)m

, (C.5)

43



where B is a constant, and the effective viscosity becomes

µ0
e =

kG

U
=

k

B
G1−1/n. (C.6)

The average power law viscosity over the channel volume is

⟨µ⟩ = keff
G

U
= µ0⟨γ̇⟩n−1, (C.7)

with an effective permeability

keff =
a2

(2 + 1/n)(1 + 1/n)n−1
. (C.8)

and the average shear rate over the channel is

⟨γ̇⟩ = 1

a

∫ 0

−a

∂yu(y)dy =
u(0)

a
=

(G/µ0)
m

m+ 1
am. (C.9)

Appendix D. Effective viscosity with depletion layers

With relatively thin depleted layers of thickness δ/h ≪ 1 near both walls,

the velocity profile will appear shifted to higher values. The shape of the

profile will also be affected, but this can be considered as a higher order effect.

One can define a slip velocity Vs at the transition between the depleted layer

and the bulk velocity profile (the fluid velocity at the wall is always zero).

For depletion layers that are not thin, with δ/h in the range 0.1-0.2 for

very narrow channels below 50 nm, the flow rate in the depletion layer is

significant, and it has to be added to the flux of the core flow. Furthermore,

the boundary shear stress in the transition between the core flow and the

depletion layer is smaller than the wall shear stress.

We now assume that the velocity profile is linear in the depletion layers,

and that the boundary conditions for the core flow velocity profile is the slip
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velocity and the shear stress at the core flow boundary. The average velocity

over the channel is now

U =
1

h
[Vsδ + (U∗ + Vs)h

∗] (D.1)

where U∗ + Vs is the average velocity of the core flow, and h∗ = h(1− 2δ/h)

is the width of the core flow. We note that the linear approximation is a first

order approximation for the velocity profile in the depletion layer, valid for

sufficiently small δ/h.

Appendix D.1. Newtonian fluids

For Newtonian flow in the core,

U∗ =
h∗τ ∗

6µb

(D.2)

where the boundary shear stress is

τ ∗ = τw(1− 2δ/h). (D.3)

This gives a mean velocity of

U = Vs(1− δ/h) +
hτw
6µb

(1− 2δ/h)3. (D.4)

The effective viscosity with a Newtonian core is then

µe =
µ0
e

(1− δ/h)Vs/U0 + µ0
e

µb
(1− 2δ/h)3

, (D.5)

where

U0 =
hτw
6µ0

e

(D.6)

is the average velocity without a depletion layer, and the bulk viscosity of the

uniform polymer solution is equal to the effective viscosity without depletion,
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µ0
e. With a linear velocity profile in the depletion layer, Vs = γ̇wδ = τwδ/µw,

and

Vs/U
0 = 6

µ0
e

µw

δ

h
, (D.7)

giving

µe =
µ0
e

µ0
e

µb
(1− 2δ/h)3 + 6 µ0

e

µw

δ
h
(1− δ/h)

. (D.8)

This reduces to the thin depletion layer approximation in the limit δ/h ≪ 1.

For vanishing polymer concentration, the viscosity contrast vanishes, and

µb = µ0
e = µw, and the correction goes to zero. A Taylor expansion of the

denominator to first order in δ/h gives

(1− 2δ/h)3 + 6
δ

h
(1− δ/h) → 1− 6δ/h+ 6δ/h (D.9)

which is consistent with vanishing correction to the effective viscosity, pro-

vided that δ/h is sufficiently small, according to the model definition.

When the depletion layer is thick, we must also correct for the effect of

increasing polymer concentration in the core. We take

µb = µw(1 + α
C0

1− 2δ
h

) (D.10)

where the variation with δ accounts for a step function in concentration,

being zero in the depletion layer, and α is a constant that can be estimated

from the data, and C0 is the polymer concentration for a uniform distribution

of polymer in the channel.

Appendix D.2. Power law fluids

For power law shear thinning in the core,

U∗ =
h∗τ ∗w

m

2(m+ 2)µm
0

(D.11)
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and µ0 is a function of polymer concentration. As before, the boundary shear

stress is

τ ∗ = τw(1− 2δ/h). (D.12)

This gives a mean velocity of

U = Vs(1− δ/h) +
hτmw

2(m+ 2)µm
0

(1− 2δ/h)m+2. (D.13)

The effective viscosity with a power law core is then

µe =
µ0
e

(1− δ/h)Vs/U0 +
(

µ00

µ0

)m
(1− 2δ/h)m+2

, (D.14)

where

U0 =
hτmw

2(m+ 2)µm
00

(D.15)

is the average velocity without a depletion layer and µ00 is the lower value

without depletion where the polymers are distributed uniformly throughout

the full cross section of the channel, and µ0
e = µ00(Wi)n−1 is effective viscosity

without depletion, which is also a power law when the core rheology spans

the whole channel. The wall shear stress is τw = Gh/2. With a linear velocity

profile in the depletion layer, Vs = γ̇wδ = τwδ/µw, we get

Vs

U0
=

2µm
00(m+ 2)

µwτm−1
w

δ

h
≡ a∗(τw)

δ

h
. (D.16)

giving

µe =
µ0
e(

µ00

µ0

)m
(1− 2δ/h)m+2 + a∗(τw)

δ
h
(1− δ/h)

. (D.17)

Again, this limits to the thin depletion layer approximation for δ/h ≪ 1. In

the zero viscosity contrast limit, corresponding to small polymer concentra-

tion, m → 1 and µ0 = µ00 = µw, and we recover the Newtonian form with

the same limiting behavior of zero correction to the effective viscosity.
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The effect of increasing polymer concentration in the core for increasing

depletion layer thickness is reflected in the power law viscosity coefficient,

µ0 = µw(1 + β
C0

1− 2δ
h

) (D.18)

where the variation with δ accounts for a step function in concentration,

being zero in the depletion layer, and β is a constant that can be estimated

from the data, and C0 is the polymer concentration for a uniform distribution

of polymer in the channel. For δ = 0, µ0 = µ00.

Appendix E. Depletion layer model limits

Appendix E.1. High Weissenberg number

For large Weissenberg number the normal polymer stresses can be ap-

proximated by [53],
N1 −N2

nkT
≃ 21/3(bŴ i)2/3. (E.1)

In this case, Ŵ i
2/3

(z) varies relatively slowly compared to 1/z2 so that we

may use a characteristic depletion length scale Ld that represents the typical

value across the entire depletion layer,

Ld =
9

16
21/3a(bWi)2/3 (E.2)

in terms of the average Weissenberg number Wi in the channel, and

Ld

∫ h−δ∗

h/2

(
1

z2
− 1

(h− z)2

)
dz =

Ld

δ∗

[
4δ∗

h
− δ∗/h

1− δ∗/h
− 1

]
= ln(1/2).

(E.3)

Then, to first order in δ∗/h,

δ∗ =
Ld

1 + 4Ld/h
. (E.4)

where we now incorporate the factor ln(1/2) in Ld.
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Appendix E.2. Low Weissenberg number

For small Weissenberg number, one obtains the asymptote [53]

N1 −N2

nkT
≃ 2

(
b

b+ 3

)2

Ŵ i
2
. (E.5)

The characteristic depletion length can then be written

Ld(z) =
18

16

(
b

b+ 3

)2

Ŵ i
2
a. (E.6)

We take the Weissenberg number to vary linearly through the channel, as an

approximation,

Ŵ i(z) = 2Wi(
2

h
z − 1), (E.7)

so that the characteristic depletion length is

Ld(z) =
18

16

(
b

b+ 3

)2

4aWi2(
2

h
z − 1)2 ≡ Ld(

2

h
z − 1)2 (E.8)

where Ld = A(a, b)Wi2. We put E.8 into (36) and integrate, obtaining

Ld

[
4

h
ln

(
4
δ∗

h
(1− δ∗

h
)

)
+

1

h− δ∗
+

1

δ∗
− 4

h

]
= ln(1/2), (E.9)

and the factor ln(1/2) is adsorbed in Ld hereafter. By expanding the loga-

rithmic term for the range 0 < δ∗/h < 1/2,

ln

(
δ∗

h

)
+ ln

(
1− δ∗

h

)
≃
(
δ∗

h

)
−
(
δ∗

h

)2

− 3

2
, (E.10)

one obtains to second order

0 = a(δ∗)2 + bδ∗ + Ld (E.11)

a =
1

h
+ 4(q + 1)Ld/h

2 (E.12)

b =
4Ld(p− 1)

h
− 1 (E.13)

p = ln 4− 3/2 ≃ −0.11 (E.14)

q = 1− p ≃ 1.11. (E.15)
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To first order (setting a = 0),

δ∗ =
Ld

1 + 4(1− p)Ld/h
. (E.16)

If we omit the log-term that arises from the linear variation of Ld (set p = 0

and q = 1), we recover the high Weissenberg number form.
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