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Abstract. This paper deals with limit cycles in one degree of freedom systems. The van der Pol 
equation is an example of an equation describing systems with clear limit cycles in the phase 
space (displacement-velocity 2 dimensional plane). In this paper, it is shown that a system with 
nonlinear loading, representing the drag load acting on structures in an oscillatory flow (the drag 
term of the Morison equation), will in fact exhibit limit cycles at resonance and at higher order 
resonances. These limit cycles are stable, and model self-excited oscillations. As the damping in 
the systems is linear and constant, the drag loading will to some degree work as negative 
damping. The consequences of the existence of these limit cycles are that systems starting at 
lesser amplitudes in the phase plane will exhibit increased amplitudes until the limit cycle is 
obtained. 

1. Introduction 
The phase plane is a plane where the system’s position and velocity are plotted for an increasing time, 
t. The phase plane method, which evolves around finding limit cycles, is adapted from Struble and 
Martin [1]. We will investigate the phase plane motions of solutions of nonlinear equations considered 
to model physical phenomena of importance in engineering. We are in particular interested in resonance 
phenomena between the natural frequency of the system and the imposed load on the system. 

2. Limit cycles 
A closed trajectory in the phase plane, where closed trajectories spiral either towards or away, is termed 
a limit cycle. The trajectories around the limit cycle are not closed. Limit cycles are either stable, half-
stable or unstable. When the surrounding trajectories all spiral towards the limit cycle, it is said to be 
stable. If all the near trajectories spiral away, it is unstable, and if some spiral towards while other spiral 
away, the limit cycle is half-stable. Half-stable limit cycles are uncommon. The stable limit cycles are 
of importance as they model systems with self-excited vibrations or oscillations. Systems with a stable 
limit cycle will, independent of the starting conditions, settle into a steady trajectory in the phase plane, 
where there is a balance between generation and dissipation of energy. 

Limit cycles only occur in systems with nonlinear terms. A linear system may have a closed 
trajectory, but it is then surrounded by other closed trajectories when we select other initial conditions. 
Nonlinear systems may be described by ordinary differential equations, containing nonlinearity in the 
stiffness, damping or loading terms.  
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For more information about limit cycles and self-excited oscillations, see Hagedorn [2] from page 
117. 

𝑑𝑑2𝑥𝑥
𝑑𝑑𝑡𝑡2

− 𝜇𝜇(1 − 𝑥𝑥2)
𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

+ 𝑥𝑥(𝑡𝑡) = 0 (1) 

The van der Pol equation (1) is an example of a system with nonlinear damping, and is well known 
for exhibiting limit cycles. In the van der Pol Equation, the damping term will, for some time, work as 
negative damping, and pumping energy into the system. The phase plane diagram for the van der Pol 
equation with μ=1 is shown in Figure 1. The starting point, decided by the initial conditions (ICs) of 
each trajectory is marked by a square on the figure, with an arrow indicating the direction of the 
trajectories. All trajectories spiral towards the limit cycle. The van der Pol equation has been used in a 
wide variety of sciences, ranging from electricity, to engineering to medicine [3]. The burst like 
oscillations emerging towards the limit cycles (when starting from low initial values) have been used as 
a model to explain tremors in Parkinson disease. The van der Pol equation is further discussed in 
Bogoliubov and Mitropolsky [4] from page 186 and in Guckerheimer and Holmes [8] from page 67. 

3. Drag loading 
The Morison Equation is used to describe a system with a nonlinear loading term. It is used to describe 
the force on a cylinder in oscillatory flow. The Morison loading consists of a drag force and a mass 
force. 

In this paper, the following equation is considered: 

𝑚𝑚
𝑑𝑑2𝑥𝑥
𝑑𝑑𝑡𝑡2

+ 𝑐𝑐
𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

+ 𝑘𝑘𝑥𝑥(𝑡𝑡) = 𝐹𝐹0 sin(𝜔𝜔𝑡𝑡) |sin(𝜔𝜔𝑡𝑡)| (2) 

Where the loading term represents the drag force from the Morison loading. F0 is a constant, ω is the 
loading frequency, t is the time, and m, c and k represents the systems mass, damping and stiffness, 
respectively. Notice that the forcing term is representing a term proportional to the velocity squared, 
representing turbulent flow past a cylinder (an obstacle in the flow path). In this paper, only one degree 
of freedom systems (as given by (2)) will be investigated. 

It should be noted that F0 is proportional to the absolute value of the water particle velocities in case 
of forces caused by fluid flow. For more discussion about the Morison equation, see Gudmestad [5]. 

 
Figure 1: Phase plane diagram for the unforced van der Pol equation exhibiting a clear limit cycle. 
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3.1. Resonance 
Resonance occurs when the frequency of the loading is equal to the frequency of the system, i.e. when 
ω = ω0. The systems natural frequency ω0 is given as: 

𝜔𝜔0 = �𝑘𝑘
𝑚𝑚

(3) 

During resonance, the energy from the external source is directly fed into the system, which will 
have amplitude growth only limited by the damping of the system. 

3.2. Limit cycles for system with nonlinear loading 
This paper considers equation (2) where examples of solutions are given for linear, constant damping, c 
= 0,5.  

The Morison equation is not typically associated with limit cycles, and the solutions are rarely 
represented in the phase plane. As the drag force consists of a term proportional to the water velocity 
squared, and the damping term, 𝑐𝑐 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
 is connected to the velocity of the structural motion, it is natural to 

investigate if the drag force can in fact work as damping in the system, and more importantly, if it could 
exhibit apparent negative damping. Note that the term sin(𝜔𝜔𝑡𝑡) |sin(𝜔𝜔𝑡𝑡)| can be linearized using Fourier 
series transformation: 

sin(𝜔𝜔𝑡𝑡) |sin(𝜔𝜔𝑡𝑡)| = 𝑐𝑐0 + 𝑐𝑐1 sin(𝜔𝜔𝑡𝑡) + 𝑐𝑐2 cos(2𝜔𝜔𝑡𝑡) + 𝑐𝑐3 sin(3𝜔𝜔𝑡𝑡) + 𝑐𝑐4 cos(4𝜔𝜔𝑡𝑡) +⋯   (4) 

In this paper, the following values are chosen (notice that other values could be chosen as well) to 
illustrate the behaviour at resonance): 

- F0 = 50 
- k = 2 
- m = 2 (giving T0 = 2π s) 
- c = 0,5 
- ω = 1,0 (at resonance) 
- ω = 0,5 (at second order resonance) 
- ω = 0,333 (at third order resonance) 
- ω = 0,75 (out of resonance).  

 
Figure 2: Phase plane diagram for a system 
with nonlinear drag force at resonance, ω=1, 
Four different trajectories (with different 
initial conditions, IC) are shown, which all 
spiral towards the limit cycle marked in red. 

 
Figure 3: Position vs time curve for a system 
subjected to nonlinear drag force at resonance, ω = 
1,0. Four different trajectories are shown, 
overlapping after approximately 35 s. 



4

1234567890

First Conference of Computational Methods in Offshore Technology (COTech2017) IOP Publishing

IOP Conf. Series: Materials Science and Engineering 276 (2017) 012020 doi:10.1088/1757-899X/276/1/012020

Figure 2 shows the phase plane diagram for a system at resonance, i.e. when ω = 1. It exhibits a clear 
limit cycle, marked red in the figure, and all near trajectories spiral towards it. The figure shows four 
different trajectories, marked by starting points and arrows indicating their directions.  

Figure 3 shows the same trajectories in the traditional displacement vs time plot. The trajectories are 
shown for the first 50s. Around t = 30 s, the trajectories are all overlapping, continuing along the same 
path. Notice the growth of the displacement for the system starting at low initial values.  

 

 
Figure 4: Phase plane diagram for a system 
with nonlinear drag force at higher order 
resonance, ω = 0,5. Four different 
trajectories are shown, which all spiral 
towards the limit cycle marked in red. 

 
Figure 5: Position vs time curve for a system 
subjected to nonlinear drag force at higher order 
resonance, ω = 0,5. Note that for this system, the 
trajectories overlap after 25s approximately. 

Figure 4 shows the phase plane diagram for a system with ω = 0,5, i.e. second order resonance. Four 
different trajectories are shown, and for this system, as well, a clear limit cycle emerges. Figure 5 shows 
the position vs time plot for the first 35 s for the system at higher order resonance. This system’s 
trajectories use less time to reach the limit cycle, and are overlapping from approximately t = 25 s. 

3.3. Trajectories experiencing apparent negative damping 
Both Figure 2 and Figure 4 show limit cycles in the phase plane. The figures show four trajectories 
starting at different ICs, all are spiralling towards the limit cycle. Some of the trajectories have ICs 
making them start outside the limit cycle, spiralling inwards towards the limit cycle. However, some 
trajectories start on the inside of the limit cycle, experiencing a growth in amplitudes for both position 
and velocity until they reach the limit cycle. These trajectories are of interest as they experience apparent 
negative damping, “speeding the system up”. 

For clarity of the negative damping effect, Figure 6 shows the phase plane diagram for the system at 
resonance, with trajectories starting at ICs inside the limit cycle. All the trajectories experience a growth 
in amplitudes until reaching the limit cycle. Figure 7 shows the same trajectories in the position vs time 
plane.  
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Figure 6: Phase plane diagram for the system at 
resonance, ω=1,0 with four different trajectories, 
all starting from ICs inside the limit cycle. 

 
Figure 7:  Position curve for the system at 
resonance, ω=1,0 with trajectories starting inside 
the limit cycle 

3.4. Drag loading with current 
The loading term in Equation (2) is representing drag loading for water waves without current. Adding 
a current u0 to the system results in the following equation: 

𝑚𝑚
𝑑𝑑2𝑥𝑥
𝑑𝑑𝑡𝑡2

+ 𝑐𝑐
𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

+ 𝑘𝑘𝑥𝑥(𝑡𝑡) =

𝐹𝐹0(𝑢𝑢0 + 𝑎𝑎 sin(𝜔𝜔𝑡𝑡)) |(𝑢𝑢0 + 𝑎𝑎 sin(𝜔𝜔𝑡𝑡))|  (5)
 

Where u0 and a are constants. In Figure 8 and Figure 9 the values are set to u0  = 0,1 and a = 1,0, 
respectively, i.e. a small value of the current is added. We obtain the same form of the solutions as 
discussed before for the case of no current. 

 
Figure 8: Phase plane diagram for the system at 
resonance, ω = 1,0 with current added from 
Equation (5). 

 
 
Figure 9: Position vs time curve for the system 
at resonance, ω = 1,0, with current from Equation 
(5). 
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3.5. Drag loading on a flexible structure 
For a flexible structure, the drag loading term in sinusoidal waves will, according to [6], take the form: 

𝐹𝐹0(𝑏𝑏
𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

+ 𝑎𝑎 sin(𝜔𝜔𝑡𝑡)) �𝑏𝑏
𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

+ 𝑎𝑎 sin(𝜔𝜔𝑡𝑡)� (6) 

i.e. as the structure moves, the force will be adjusted by the velocity, dx/dt, of the structural motion.  
The velocity of a wave particle is here given as 𝐹𝐹0𝑎𝑎 sin(𝜔𝜔𝑡𝑡)where the wave velocity amplitude is  

𝐹𝐹0𝑎𝑎. The velocity of the structure is given by 𝐹𝐹0𝑏𝑏
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

. When the structure is fixed to the bottom, the 
velocity of the structure is a lot less than the velocity of the wave particles. In order to achieve this, the 
values of a and b in Equation (6) are set to 1,0 and 0,002 respectively. Figure 10 shows the phase plane 
diagram for four different trajectories, which all spiral towards a limit cycle.  

 

 
Figure 10: Phase plane diagram for a system at 
resonance subjected to loading from Equation 
(6). Four different trajectories are shown, all 
spiralling towards the limit cycle. 

 
Figure 11: Position vs time plot for the system at 
resonance subjected to loading from Equation 
(6). Note that all the trajectories overlap at 
approximately t = 50 s. 

 
Figure 11 shows the position vs time plot for the system at resonance with forcing term from Equation 

(6). The trajectories overlap after approximately 50s, reaching the limit cycle. 
Figure 12 shows the limit cycles for different values of b. As b increases, the velocity and position 

amplitudes of the limit cycle increases, as the structure becomes less stiff, resulting in more structural 
movements. When b exceeds approximately 0,029, the phase plane trajectories spiral out from the limit 
cycle.  
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Figure 12: As b increases, the stiffness of the structure decreases, allowing more movement of the 

structure. This results in larger amplitude limit cycles. 

3.6. Comparison of limit cycles for different degrees of resonance 
Figure 13 shows the limit cycles for the system subjected to Equation (6) at resonance (red), at second 
order resonance (blue), at third order resonance (magenta) and out of resonance (black). Figure 14 shows 
the position vs time plot for the same trajectories.  

 

 
Figure 13: Systems with different degree of 
resonance subjected to loading from Equation (6) 
in the phase plane. 

 
Figure 14: Position vs time plot for systems with 
different degrees of resonance, subjected to 
loading from Equation (6). 

Figure 15 shows the phase plane diagram for systems at varying degrees of resonance, with F0 
adjusted to a realistic value of the nonlinear forcing. The position vs time plot for the same systems are 
shown in Figure 16. It should be noted that the adjustment of F0 reflects the estimation of the relative 
loading from waves with the associated periods (at resonance the wave period is 2π and at second order 
resonance the wave period is 6π). 

In this case, we see that the contributions to the displacement from the higher order resonances are 
more pronounced than from the main resonance due to the larger absolute value of the forcing term in 
larger amplitude waves (normally associated with larger wave periods). 
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Figure 15: Phase plane diagram for systems at 
various degrees of resonance and various value of 
F0, subjected to loading from Equation (6). 

 
Figure 16: Position vs time plot for systems of 
varying degrees of resonance and various values 
of F0, subjected to loading from Equation (6). 

4.  Conclusions 
A one degree of freedom system subjected to drag loading and linear, constant damping will have limit 
cycles near and at resonance. As the damping is constant and linear, the drag loading will to some degree 
work as negative damping, making the generation and dissipation of energy in the system balanced.  

Limit cycles are seen in cases both with and without current, as well as for more flexible systems 
subjected to drag load on a flexible structure. For higher order resonances, β = 1/2 and β = 1/3, similar 
behaviour is observed, thereby energy from waves with higher periods, for example 15 seconds and 10 
seconds, respectively, are fed into a system with natural period of 5 seconds. In storm situations, the 
energy spectrum has high values for higher periodic waves and considerable displacements and 
velocities can be expected. The drag load from the Morison equation is used to describe oscillatory flow 
past an obstacle. Typically, the oscillatory flow is representing sea waves, and the obstacles fixed 
offshore structures in the sea.  

It is suggested that this application may not be the only use for this type of loading model. The heart 
pumps blood at a certain frequency, so the oscillatory flow could be the blood flowing and the obstacle 
could be a blood clot. Using the drag load from the Morison equation in this regard would describe the 
flow in blood veins past obstacles as for example blood clots. The research question suggested is 
therefore if certain frequencies of the heartbeat would cause resonance in the blood system and the 
possible movements of the clots in case of changing heart rhythm and more forced blood circulation 
during physical efforts, a situation most undesirable for the patient.  
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