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Abstract

Background

Trauma is a leading global cause of death, and predicting the burden of trauma admissions

is vital for good planning of trauma care. Seasonality in trauma admissions has been found

in several studies. Seasonal fluctuations in daylight hours, temperature and weather affect

social and cultural practices but also individual neuroendocrine rhythms that may ultimately

modify behaviour and potentially predispose to trauma. The aim of the present study was to

explore to what extent the observed seasonality in daily trauma admissions could be

explained by changes in daylight and weather variables throughout the year.

Methods

Retrospective registry study on trauma admissions in the 10-year period 2001–2010 at Oslo

University Hospital, Ullevål, Norway, where the amount of daylight varies from less than 6

hours to almost 19 hours per day throughout the year. Daily number of admissions was ana-

lysed by fitting non-linear Poisson time series regression models, simultaneously adjusting

for several layers of temporal patterns, including a non-linear long-term trend and both sea-

sonal and weekly cyclic effects. Five daylight and weather variables were explored, includ-

ing hours of daylight and amount of precipitation. Models were compared using Akaike’s

Information Criterion (AIC).

Results

A regression model including daylight and weather variables significantly outperformed a tradi-

tional seasonality model in terms of AIC. A cyclic week effect was significant in all models.

Conclusion

Daylight and weather variables are better predictors of seasonality in daily trauma admis-

sions than mere information on day-of-year.
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Introduction

Trauma accounts for more deaths and disabilities worldwide than malaria, tuberculosis and

HIV/AIDS combined [1]. Predicting the burden of trauma admissions over time could con-

tribute to better planning of trauma care and thus be of considerable benefit. Predictable varia-

tions in the number of trauma admissions occur throughout the week, with an increase on

weekends due to leisure activities [2]. Seasonal effects with a higher number of trauma admis-

sions in spring and summer have also regularly been observed [3, 4].

While seasonality is an observable and significant predictor of trauma admissions it is not

an effect in its own right, but rather the collective term we attach to the cyclic changes of vari-

ous daylight and weather variables throughout the year. Seasonal fluctuations in daylight

hours, temperature and weather affect social and cultural practices such as choice of transpor-

tation mode (e.g., car versus bike or motorcycle), sports and leisure, and overall activity level

[5]. Moreover, individual neuroendocrine rhythms are affected by the amount of daylight

(photoperiodism). This may ultimately modify behaviour and potentially predispose to

trauma.

In healthy Danish males, a three-week bright-light intervention during winter season

enhanced the functional MRI neural response to risk-taking in a card gambling game [6]. A

nationwide US material of Emergency Department admissions for suicide attempts and self-

harm showed a pronounced peak from March to May [7], similar to the pattern of non-volun-

tary psychiatric admissions in Italy [8]. For bipolar disorder a close association exists between

increase in daylight hours and both the onset of disease and subsequent hospital admissions

[9, 10]. In animals, absolute hours of daylight, but also the change in daylight hours from the

previous day, affect behaviour via the retinal–hypothalamic–pineal axis [11]. Breeding-related

and migratory behaviour is particularly affected. In a Koala wildlife facility, trauma admissions

of young males predominated during spring and summer, typical mechanisms being car acci-

dents and dog attacks during roaming and falls from trees during fights with other males [12].

A similar over-representation of young males is found in the Norwegian trauma population

[13].

The association between weather and trauma has been studied previously [2, 4, 14–16]. To

explore whether the observed seasonality in daily trauma admissions could be explained by

daylight and weather variables, we applied an Additive Fourier Poisson time series regression

model recently suggested for the analysis of seasonality in aggregated monthly suicide data

[17]. The model simultaneously adjusts for both cyclic and non-cyclic short term and long

term temporal phenomena, without the need for categorization. Covariates can easily be

added to the model, and are used for standard modelling of the effect of various daylight and

weather variables.

The aim of this study was to explore if various daylight and weather variables could explain

the observed seasonality in trauma admissions, and to compare various statistical models.

Materials and methods

Data material

In this retrospective observational study we obtained anonymised data from the Oslo Univer-

sity Hospital (OUH) Trauma Registry on daily number of trauma admissions in the 10-year

period from 01.01.2001 through 31.12.2010. Patients were allocated to a given date if they

arrived between 06:00 local time that day and 05:59 the next day. OUH Ullevål is a major

trauma referral hospital covering a geographical area with 2.8 million inhabitants in the South-

Eastern part of Norway. Detailed information on the inclusion criteria for the OUH Trauma
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Registry can be found elsewhere [18]. Only aggregated data were used in the analyses. The

study was approved and the need for written informed consent waived by the OUH Privacy

Ombudsman for Research (29.09.2011, subject number 2011/16939), on behalf of the Norwe-

gian Data Protection Authority and the Regional Committee for Medical Research Ethics.

The focus of the study was natural phenomena, leaving out local cultural phenomena such

as religious holidays and independence day celebrations. The following five daylight and

weather variables were included in the regression models: 1) Daylight hours, defined as the

number of hours the Sun is above the horizon in Oslo, as calculated by The United States

Naval Observatory Astronomical Applications Department [19]. 2) Difference in number of

daylight hours from previous day, as a measure of the daylight gradient. 3) Hours of actual

sunshine, 4) Mean temperature, and 5) mm precipitation, as collected from The Norwegian

Meteorological Institute [20]. Amount of precipitation was both zero inflated and heavily

skewed, and was therefore categorized into four categories in the analyses; 0, (0, 5], (5, 10] and

(10,!) mm precipitation/day.

Precipitation data was measured in the morning at 07:00 local time, reflecting the amount

of precipitation over the previous 24 hours. For the statistical analysis, precipitation measure-

ments were therefore shifted one day backwards to match the actual day of the precipitation. A

total of 1506 (41.2%) of precipitation observations were missing. However, comparing the pre-

cipitation data with those from two nearby weather stations revealed that missing tended to

imply no precipitation. Missing values for precipitation was thus imputed with the value zero.

Hours of actual sunshine was missing for 173 (4.74%) of the observations. In addition, for 13

days (0.4%), hours of actual sunshine was reported as higher than the number of daylight hours.

For these 13 days, hours of actual sunshine was substituted with missing, resulting in a total of

186 days (5.1%) with missing values for hours of actual sunshine. Mean temperature also had

one missing value. This amount of missing data is generally low enough for complete case anal-

ysis to be stable, but since objective model comparison criteria need identically sized datasets in

order to be comparable, we performed single imputation for hours of actual sunshine and mean

temperature using multivariate imputation by chained equations (MICE) [21, 22].

Statistical methods

To the time series of daily number of trauma admissions we fitted several Poisson time series

regression models. Poisson regression is part of the Generalized Linear Model (GLM) frame-

work, alongside traditional linear regression and logistic regression, when the data under

study are counts. Poisson regression has the natural logarithm as the link function, and for

clinical interpretation regression results must thus be back transformed, resulting in a multi-

plicative model.

To model the possibly non-linear long-term temporal trend in the daily counts we applied

the Generalized Additive Models (GAM) framework [23]. GAM is a natural extension of GLM

to allow for non-linear associations. Rather than fit linear terms of time t we fit a smooth func-

tion s(t), for example using splines. The optimal spline can be found using the Generalized

Cross Validation criterion (GCV). Potential cyclic components in the data were modelled

using Fourier series [24]. The Fourier series expansion theorem states that any repeating signal

with time period T can be fitted using a linear combination of sufficiently many sine and

cosine functions.

The resulting statistical model has a count variable as outcome and allows for the simulta-

neous estimation of both a possible non-linear long-term trend and several layers of cyclic pat-

terns, such as yearly and weekly effects, as well as standard covariates. The various models for

seasonality in trauma admissions are described below.
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Poisson time series regression with Fourier series. Modelling both the yearly and weekly

cyclic patterns in the data using Fourier series results in the model
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with nt the number of trauma admissions at time t, Ty = 365 and Tw = 7.

Daylight and weather based model. In order to explore whether seasonality can be

explained by meteorological variables alone, we replaced the Fourier series terms, that is, the

trigonometric functions, in model (1) representing the yearly cyclic effect with various daylight

and weather variables, resulting in the model
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with wi
t , i = 1. . .5, the five variables described previously, at time t. In order to establish the

association between each of the predictors and the outcome, B-splines were fitted to estimate

the functions fiðwi
tÞ. These were then replaced with linear or piecewise linear functions where

applicable, based on visual inspection of the GAM plot and Akaike’s Information Criterion

(AIC) model comparison statistics [25]. In piecewise linear regression the independent vari-

ables are partitioned into subintervals of the observed range, with boundaries between inter-

vals separated by breakpoints, and individual straight lines fitted on each subinterval.

Combined temporal and daylight and weather based model. Acknowledging that nei-

ther Fourier series nor meteorological variables might be sufficient to capture all detail in the

seasonality component of trauma admissions, we included both in a combined model. This

model allowed for a long-term non-linear increase, five daylight and weather covariates, a

component of yearly cyclic effects unexplained by the suggested weather covariates, and a

week pattern, resulting in the following model;
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B-splines were used for estimating the functions fiðwi
tÞ, but were replaced with linear or piece-

wise linear functions where applicable.

Model comparison. To compare the different statistical models, both for choosing the

number of trigonometric terms to include in the Fourier series in individual models (1)-(3),

and for ordering of the various models, we used AIC [25]. AIC can be viewed as a weighting

between parsimony and model fit to the data and is an objective measure of the “goodness” of

a model; the lower the AIC, the better the model. Note that it is not the absolute value of AIC

which is important, but the relative values between models, and in particular the AIC differ-

ences Δi = AICi-AICmin [26]. The model estimated to be best has Δi� Δmin�0. Models with

Δi>10 relative to the best model have essentially no support in the data, while models with

0�Δi�2 have substantial support [26].
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Results

During the 10-year observation period there were 10,726 trauma admissions. There were

strong indications of a long-term non-linear increase in the daily number of trauma admis-

sions (Fig 1). Fitting a GAM for the long-term temporal trend while ignoring the yearly varia-

tions and the weekly cyclic pattern resulted in the model superimposed in Fig 1 (AIC

14,763.5).

Temporally explained seasonality

We fitted both yearly and weekly cyclic effects by Fourier series (model 1), using Ky = 12 and

Kw = 7 trigonometric functions for their respective patterns. The model with a long-term

increase only (Fig 1) was outperformed by a model with an additional yearly cyclic pattern

(Fig 2A; AIC 14,532.0), which was further significantly improved by adding a weekly cyclic

pattern (Fig 2B; AIC 14,307.5). Thus, there was strong evidence of both a yearly cyclic effect

and a weekly cyclic effect in the number of trauma admissions. Estimated changes in admis-

sion numbers throughout the year showed a high in May and a low in November (Fig 3).

Fig 1. Daily number of trauma admissions. Daily number of trauma admissions at OUH Ullevål 2001–2010. Long-term trend from Generalized Additive Model

superimposed. A day is defined as the 24-h time interval starting at 06:00 local time on a given date.

https://doi.org/10.1371/journal.pone.0192568.g001
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Daylight and weather explained seasonality

The values of the five predictors varied strongly throughout the year (Fig 4).

The Spearman correlation between the five predictors ranged from <0.01 (between day-

light hours and difference in daylight hours and mm precipitation) to 0.81 (between daylight

hours and daily mean temperature), with a median of the absolute values of 0.11 (Table 1).

We replaced the Fourier modelling of the observed yearly cyclic effect with daylight and

weather variables. Fitting a GAM allowing for non-linearity in the association between each of the

five variables and the outcome demonstrated a strong indication of non-linearity in the association

between day-to-day daylight difference and number of daily trauma admissions (S1 Fig). The asso-

ciation could be well approximated by a piecewise linear model with two breakpoints. Searching

through all possible piecewise linear models for breakpoints in [-0.1, 0] and [0, 0.1] hours, respec-

tively, resulted in a well-defined global minimum for the breakpoints -0.067 hours and 0.031

hours. Fitting this piecewise linear model, and still allowing for a smooth fit of time as shown in

Fig 1, resulted in a daylight and weather explained model that significantly outperformed its Fou-

rier counterpart (Fig 2C; AIC 14,435.4). Adding a weekly component modelled by trigonometric

Fig 2. Model fits to daily number of trauma admissions. Daily number of trauma admissions at OUH Ullevål 2001–2010 (grey) with fit from various statistical models

superimposed (black). Seasonal models using Fourier series (left column) or daily daylight and weather variables (right column), without an additional week effect (top

row) or with an additional week effect added (bottom row).

https://doi.org/10.1371/journal.pone.0192568.g002
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functions further improved on this (Fig 2D; AIC 14,221.9). That is, a daylight and weather model

performed significantly better than a purely temporal model of seasonality.

Combined seasonality model

The Fourier based seasonality models (Fig 2A and 2B) and the daylight and weather covariate-

based models (Fig 2C and 2D) have somewhat different visual appearances. While the meteo-

rological model performed better than the purely temporal model, some of the seasonal varia-

tion might not be fully explained by the five included covariates alone. To explore this, we

fitted a combined model with daylight and weather variables as well as a Fourier series for

potential unexplained surplus seasonality. A cyclic week component was also included. This

combined model (Fig 5; AIC 14,222.2) had an AIC comparable to that of the purely meteoro-

logical model with the week component (Fig 2D), but also included a low amplitude sine func-

tion with period 2pt
Ty

, that is, one single period.

Weekly pattern

The weekly cyclic component estimated across all weeks in the 10-year observation period for each

of the three different modelling approaches is shown in Fig 6. Estimated weekly variations were

Fig 3. Seasonal component. Estimated seasonal component by trigonometric functions for daily trauma admission across the 10 years 2001–

2010.

https://doi.org/10.1371/journal.pone.0192568.g003
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very similar for the various seasonality models, indicating that the week effect is an independent

temporal pattern in the data, unaffected by choice of modelling approach for the seasonal effect.

Importance of daylight and weather variables

Coefficient estimates for the optimal model based on the measurement data are shown in

Table 2. Crude 95% CIs are calculated as ±1.96�SE. As Poisson regression has the logarithm as

Fig 4. Predictor values. Observed values of daylight and weather variables during the 10 year period 2001–2010.

https://doi.org/10.1371/journal.pone.0192568.g004
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the link function we also present the backtransformed results of the corresponding multiplica-

tive model with incidence rate ratios. Each exponentiated coefficient is the multiplicative term

to use for calculating the estimated number when a given covariate increases by 1 unit. In the

case of categorical variables, the exponentiated coefficient is the multiplicative term relative to

the base level for that variable. The exp(Intercept) is the baseline rate, and all other estimates

are relative to it. The intercept corresponds to a day with zero degrees, zero sunlight and zero

precipitation.

Table 1. Correlation between predictors.

Daylight [hours] Difference in daylight [hours] Sun [hours] Mean temperature [˚C] Precipitation [mm]

Daylight [hours] 1 <0.01 0.51 0.81 0.04

Difference in daylight [hours] 1 0.02 -0.39 -0.13

Sun [hours] 1 0.46 -0.19

Mean temperature [˚C] 1 0.11

Precipitation [mm] 1

https://doi.org/10.1371/journal.pone.0192568.t001

Fig 5. Combined model fitted to daily number of trauma admissions. Daily number of trauma admissions at OUH Ullevål 2001–2010. Combined Fourier and

daylight and weather model with cyclic weekly pattern.

https://doi.org/10.1371/journal.pone.0192568.g005
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While the daylight and weather variable model outperformed the Fourier models, the

included predictors are measured on very different scales. Refitting the final model using stan-

dardized continuous predictors allows for the comparison of the relative importance of the

various predictors (Table 2). Using standardized data the intercept represents a day with mean

value for all covariates included in the model. Hours of sunshine had a stronger effect on the

increase in number of admissions than the mean temperature. The strongest effect however

was that of difference in daylight hours. The effect of difference in daylight on daily trauma

admissions was non-significant below the lower breakpoint (-0.067 hours� 4 minutes less

daylight than the day before), but was associated with a strong increase in the number of

trauma admissions between this lower breakpoint and the upper breakpoint (0.031 hours�

1.9 minutes more daylight than the day before). Above this upper breakpoint the effect of dif-

ference in daylight tailed off.

Discussion

The steady but non-linear increase in trauma admissions at Oslo University Hospital (OUH)

during the 10-year observation period has been described previously [18], and the observed

Fig 6. Weekly pattern. Estimated weekly pattern in daily trauma admission across all 572 weeks in the 10 year sample 2001–2010 for the three models

displayed in Figs 2B, 2D and 5.

https://doi.org/10.1371/journal.pone.0192568.g006
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significant seasonal cyclic pattern of trauma admissions is in agreement with known variations

[4]. Seasonality has often been explored using aggregated monthly data. However, with an

underlying steady increase in number of trauma admissions estimating seasonal effects by

pooling months from different years together might overestimate the natural variation for

individual months, and also underestimate the precision of the seasonality component. Our

methodological approach allows for more detail and continuous adjustment both between and

within months.

Studies exploring seasonal effects tend to treat months and years as separate units in time

[3, 7, 8, 27]. The observed long-term non-linear increase in daily number of trauma admis-

sions in this study underpins that using months as the unit of analysis cannot automatically be

recommended, as this will effectively imply turning continuous time into a categorical vari-

able, potentially masking clinically valuable information. Categorising continuous predictors

in multiple regression models has been thoroughly examined and repeatedly argued against in

the statistical literature [28–31]. The modelling approach applied here avoided this while still

adjusting for the long-term non-linear changes.

Table 2. Poisson regression results.

Measurement data Standardized data

Logarithmic scale /

additive model

Back transformed /

multiplicative model�
Logarithmic scale / additive model Back transformed /

multiplicative model�

Coefficients

Estimate (95%

CI)

p-value Incidence rate ratios Estimate

(95% CI)

CoefficientsEstimate (95%

CI)

p-value Incidence rate ratios Estimate

(95% CI)

(Intercept) 0.376 (0.136,

0.615)

0.002 1.456 (1.145, 1.850) 1.066 (1.038, 1.094) <0.001 2.904 (2.823, 2.987)

Daylight duration [hours] 0.014 (0.003,

0.025)

0.013 1.014 (1.003, 1.026) 0.061 (0.013, 0.110) 0.013 1.063 (1.013, 1.116)

Difference in daylight

duration [hours] ††

Effect below lower breakpoint -2.734 (-6.209,

0.739)

0.123 0.065 (0.002, 2.094) -0.207 (-0.470, 0.056) 0.123 0.813 (0.625, 1.058)

Added effect b/w breakpoints 5.907 (2.487,

9.327)

<0.001 367.6 (12.0, 1124) 0.404 (0.170, 0.639) <0.001 1.499 (1.186, 1.894)

Added effect above upper
breakpoint

-2.164 (-4.181,

-0.147)

0.035 0.115 (0.015, 0.863) -0.057 (-0.110, -0.004) 0.035 0.945 (0.896, 0.996)

Sunshine [hours] 0.015 (0.010,

0.021)

<0.001 1.016 (1.010, 1.021) 0.072 (0.047, 0.098) <0.001 1.075 (1.048, 1.103)

Mean temperature [˚C] 0.008 (0.002,

0.014)

0.005 1.008 (1.002, 1.014) 0.067 (0.020, 0.114) 0.005 1.070 (1.020, 1.121)

Precipitation† [mm]

(0–5] -0.069 (-0.117,

0.021)

0.005 0.933 (0.889, 0.980) -0.069 (-0.117, 0.021) 0.005 0.933 (0.889, 0.979)

(5–10] -0.093 (-0.171,

0.015)

0.020 0.911 (0.843, 0.985) -0.093 (-0.171, 0.015) 0.020 0.911 (0.843, 0.985)

(10,!) -0.056 (-0.140,

-0.028)

0.193 0.946 (0.869, 1.029) -0.056 (-0.140, 0.028) 0.193 0.946 (0.869, 1.029)

Results from a multiple Poisson time series regression model with number of daily trauma admissions as outcome and various daylight and weather variables as

predictors.

�As Poisson regression has the logarithm as the link function these are backtransformed results (exponentiated coefficients) of a multiplicative model with incidence

rate ratios.

†Reference category 0, i.e. no precipitation.

†† Breakpoints at -0.067 and 0.03.

https://doi.org/10.1371/journal.pone.0192568.t002
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While seasonal decomposition of time series models is well known in the literature, tradi-

tional time series modelling tends to focus on forecasting capabilities rather than model build-

ing, covariate exploration and hypothesis testing. The latter aspects are often the focus in

health research. An alternative to traditional time series analysis of temporal data is Poisson

time series regression. A comparison of time series analysis and Poisson regression for de-

tecting a shift in change in rates of child injuries after an intervention in New York deemed

Poisson regression an attractive alternative to time series analysis [32]. Time series Poisson

regression analysis has been used to analyse the association between dengue fever and weather

in China [33], and its use in environmental epidemiology has been explored [34].

Analysing seasonality through Poisson regression by including a few select sine and cosine

functions has been suggested previously [24], and this approach has been applied for analysing

seasonality in road traffic injuries [35]. The idea has recently been extended to fit optimal Fou-

rier series to model seasonality in suicide [17]. This Additive Fourier Poisson time series

regression model adjusts for both non-cyclic and cyclic temporal phenomena, e.g. a non-linear

long-term increase and seasonality, without the need for data aggregation or categorisation of

time into culturally common units.

Fitting several statistical models our study demonstrated that multiple daylight and weather

covariates taken together predicted seasonality in trauma admissions better than a purely tem-

poral model of yearly variations, when adjusting for both a long-term non-linear increase in

admissions and the well-known short-term weekly cyclic effect.

The strongest of the weather predictors was the change in daylight hours from the previous

day, i.e. the daylight gradient. In the field of reproduction hormone variations throughout the

year has been studied thoroughly. Data from studies on Siberian hamsters indicate that the

photoperiodic time measurement system responds not only to the length of the day, but also

to the direction of change in day length [36, 37]. Naturally increasing day lengths is more

reproductively stimulatory than abrupt transfer to static long day lengths [38]. Intermediate

photoperiods are reproductively inhibitory if preceded by longer photoperiods, but do not

inhibit reproductive physiology if preceded by equivalent or shorter day lengths [11]. Human

functional MRI data has demonstrated that the neuronal response to risk-taking behaviour

could be enhanced by bright-light therapy; however the stimulus used was constant through-

out the intervention [6]. We have not found human studies using cyclic light stimuli.

Our study demonstrates that human behaviour is also affected by daylight and weather vari-

ables, and that this can explain observed seasonal effects in trauma admissions. Future research

should explore not only same-day factors, but also lagged associations. Notably, Norway is

located far north in Europe, with large seasonal effects in the weather. Temperatures typically

vary from -20˚C in winter to 20˚C in summer, accompanied by heavy rainfall in spring and

autumn. Variations in daylight hours are also large. In Northern Norway the range goes all the

way from total darkness during winter to never-ending daylight in summer. In the capital

Oslo the range is from 5:53 hours of daylight in winter through 18:51 hours during summer

[19]. With such strong seasonal variations countries like Norway might be particularly well

suited for studies of seasonal effects in humans.

Conclusion

Seasonality in trauma admissions is a well-known phenomenon, probably caused by a multi-

tude of sociocultural and neuroendocrine factors. Our analyses indicate that this effect can be

directly ascribed to various daily measures of daylight and weather. Long- and short-term

weather forecasts could be a valuable resource of information for health care planners. Further,

while day-to-day daylight and weather changes might be a resource demanding addition to
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planning, length of day, and whether it increases or decreases, is very predictable, and easy to

use for long-term planning.

Supporting information

S1 Fig. Spline fits. Estimated splines from full GAM model for all four continuous meteoro-

logical variables. Dashed lines are 95% confidence intervals.

(TIF)
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