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Abstract 

Thrusters are vital for the functionalities of remotely operated vehicles (ROVs). The 

development of thruster design is a trade-off between cost, thrust force, physical weight and 

size. Furthermore, it is known that problems with thrusters are a common fault in ROVs. As a 

result, this study is performed on different thruster configurations to highlight important aspects 

in the design of thruster systems. This includes the analysis of different marine propellers with 

4 to 6 blades and with a diameter of 300 to 400 𝑚𝑚. A six degree of freedom model is created 

in OpenModelica to investigate vibrations and bearing responses in thruster systems. The 

model consists of a marine propeller, a shaft, and two bearings, and is applicable for simulating 

various steady-state cases. The results of the simulations return displacements in the axial, 

horizontal, and vertical directions, which are further used to investigate vibration amplitudes 

and bearing life. The marine propeller contributions to the OpenModelica model are based on 

propellers from the Wageningen B-screw propeller series and open water tests of this series. 

The hydrodynamic added mass and damping elements are calculated from different sets of 

regression equations depending on the number of blades on the propeller, blade area ratio, and 

pitch ratio. Meanwhile, the mean thrust and torque are obtained from open water test data of 

the relevant propeller. The mean thrust and torque are then further used to calculate the dynamic 

forces and moments from the marine propeller.  

The bearing life of the bearings in the thruster is highly dependent on the axial load acting on 

the bearing, i.e., the thrust force. Moreover, if the propeller is not balanced then high centrifugal 

forces can occur, resulting in severe forces in the radial direction that can be of concern 

regarding the bearing life. Furthermore, the thruster and bearing design should be related to the 

maximum thrust force desired from the thruster. It is possible to use different propellers with 

the same design, to change the RPM-thrust force configuration, or to change the vibratory 

properties of the thruster system. However, the maximum thrust force for which the original 

thruster was designed should not be exceeded. Furthermore, the vibrations in the thruster 

system depend on the bearing configuration, stiffness, unbalance, and the propeller type.   



vi 

 

List of Figures 

Figure 2.1: IKM Merlin UCV work class ROV (IKM Subsea AS, n.d.). 

Figure 2.2: Cross-section of thruster (Courtesy of IKM Technology). 

Figure 2.3: Pitch angle and diameter of propeller. 

Figure 2.4: Thruster driveline (courtesy of IKM Technology). 

Figure 2.5: OpenModelica Connection Editor, formulated from Ashghar and Tariq (2010). 

Figure 3.1: Propeller global coordinate system. 

Figure 3.2: Kt, Kq, and efficiency curves for the B4-70 propeller (Bernitsas et al., 1981, p. 

47). 

Figure 4.1: B4 to B6 propellers. 

Figure 4.2: Non-dimensionalized added mass coefficients. 

Figure 4.3: Non-dimensionalized damping coefficients. 

Figure 4.4: Thrust vs. speed of advance for B4-71 propeller. 

Figure 4.5: Torque vs. speed of advance for B4-71 propeller. 

Figure 4.6: Efficiency vs. speed of advance for B4-71 propeller. 

Figure 5.1: The frequency response of a system (Meirovitch, 1986, p. 53). 

Figure 6.1: 4 DOF vs. 6 DOF. 

Figure 6.2: EM model. 

Figure 6.3: 4 DOF model. 

Figure 6.4: 6 DOF model. 

Figure 7.1: Fresh new oil (left) vs. contaminated oil (right) from the thruster pedestal. 



vii 

 

Figure 7.2: Thruster coordinate system. 

Figure 7.3: Frequency response for the 4DOF thruster model in torsional direction at different 

speeds. 

Figure 7.4: Frequency response for the 4DOF thruster model in axial direction at different 

speeds. 

Figure 7.5: Frequency response for the 4DOF thruster model in horizontal direction at 

different speeds. 

Figure 7.6: Frequency response for the 4DOF thruster model in vertical direction at different 

speeds. 

Figure 7.7: Frequency response for the 4DOF vs. 6DOF thruster models in torsional 

direction. 

Figure 7.8: Frequency response for the 4DOF vs. 6DOF thruster models in axial direction. 

Figure 7.9: Frequency response for the 4DOF vs. 6DOF thruster models in horizontal 

direction. 

Figure 7.10: Frequency response for the 4DOF vs. 6DOF thruster models in vertical 

direction. 

Figure 7.11: Vibration amplitudes for the base case. 

Figure 7.12: Vibration amplitudes for Cases 1-4. 

Figure 7.13: Vibration amplitudes for Cases 1 and 5-7. 

Figure 7.14: Vibration amplitudes for Cases 1, A, and B. 

Figure 7.15: Vibration amplitudes for Cases C-E. 

Figure 7.16: Vibration amplitudes for Cases C.1-E.1. 

Figure 7.17: Vibration amplitudes for Cases 7, A.2, and B.2. 

Figure 7.18: Vibration amplitudes for Cases C.2-E.2. 

  



viii 

 

List of Tables  

Table 2.1: Electric motor. 

Table 3.1: Non-dimensionalization of coefficients, assembled following Parsons and Vorus 

(1981). 

Table 3.2: Models in the Wageningen B-screw series, assembled following van Lammeren et 

al. (1969). 

Table 6.1: EM model inputs and outputs. 

Table 7.1: Marine propeller B4-71 for different speeds. 

Table 7.2: Marine propeller B4-71, shaft and bearings for 4 DOF vs. 6 DOF. 

Table 7.3: Displacement RMS values for Case 1. 

Table 7.4: Inputs for Cases 1-4. 

Table 7.5: Displacement RMS values and bearing life for Cases 1-4. 

Table 7.6: Inputs for Cases 1 and 5-7. 

Table 7.7: Displacement RMS values and bearing life for Cases 1 and 5-7. 

Table 7.8: Rating table. 

Table 7.9: Summary of results for Cases 1-7. 

Table 7.10: Cases A-E. 

Table 7.11: Displacement RMS values and bearing life for Cases 1, A, and B. 

Table 7.12: Displacement RMS values and bearing life for Cases C-E. 

Table 7.13: Displacement RMS values and bearing life for Cases C.1-E.1. 

Table 7.14: New bearing life for Cases C.1-E.1. 



ix 

 

Table 7.15: Displacements RMS values and bearing life for Cases 7 and A.2-E.2. 

 

  



x 

 

Abbreviations 

ATM - Atmospheric 

BAR - Blade area ratio 

DASSL - Differential/algebraic system solver 

DFT - Discrete Fourier transform 

DNV - Det norske veritas 

DOF - Degrees of freedom 

DP - Dynamic positioning 

EM - Equation of motion model 

FFT - Fast Fourier transform 

FRF - Frequency response function 

GL - Germanischer Lloyd 

IMR - Inspection maintenance repair 

ISO - International organization for standardization 

MARIN - Maritime research institute Netherlands 

MIMO - Multiple input, multiple output 

MSW - Meters sea water 

NSMB - Netherlands ship model basin 

OM - OpenModelica 

PSD - Power spectral density 

RMS - Root mean square 

ROV - Remotely operated vehicle 

UCV - Ultra-compact vehicle 

WROV - Work class remotely operated vehicle 

 

  



xi 

 

Nomenclature 

Uppercase 

A - Amplitude 

𝐴𝑒 - Expanded area 

𝐴𝑜 - Disc area 

C - Damping matrix 

𝐶𝑖 - Regression coefficients 

D - Diameter 

𝐹𝑖 - Forces 

G - Shear modulus 

𝐼𝑖 - Moment of inertia 

𝐼𝑝 - Polar mass moment of inertia 

J - Advance coefficient 

𝐽 - Polar moment of inertia 

K - Stiffness matrix 

𝐾𝑄 - Torque coefficient 

𝐾𝑇 - Thrust coefficient 

L - Angular momentum 

M - Mass matrix 

𝑀𝑔𝑦𝑟 - Gyroscopic moment 

P - Propeller pitch 

𝑃ℎ𝑦𝑑 - Hydrostatic pressure 

𝑄𝑖 - Torque 

R - Radius 

𝑅𝑛 - Reynolds number 

T - Kinetic energy 

𝑇𝑖 - Thrust 

𝑇𝑝 - Period 

𝑉𝑎 - Speed of advance 

𝑉𝑒𝑥 - Vessel speed 



xii 

 

W - Watt 

𝑊𝑓 - Wake factor 

 

Lowercase 

a - Acceleration 

c - Damping 

e - Vapor pressure 

𝑒𝑇 - Thrust eccentricity 

𝑓 - Frequency 

𝑓𝑒 - Excitation force 

𝑓𝐻 - Hydrodynamic force 

𝑓𝑆 - External excitation force 

g - Gravitational acceleration 

h - Hours 

𝑗 - Imaginary number 

k - Stiffness 

𝑙 - Length 

m - Mass 

n - Rotational speed 

𝑝𝑎𝑡𝑚 - Atmospheric pressure 

𝑝0 - Static pressure 

𝑞𝑖 - Hydrodynamic moment 

r - Radius local pitch 

t - Time  

v - Velocity  

x - Displacement vector 

z - Number of propeller blades 

𝑧𝑠𝑤 - Water depth 

 



xiii 

 

Greek letters and other symbols 

𝛿𝑖 - Displacement 

𝜂0 - Open water efficiency 

𝜃𝑝 - Pitch angle 

𝜎0 - Cavitation number 

𝜙𝑘 - Phase angle 

ℱ - Fourier transform 

Ω - Whirling speed 

𝜇 - Viscosity of fluid 

𝜌 - Density of fluid 

𝜏 - Average time 

𝜔 - Angular velocity 

Angular frequency 

𝜗 - Shaft slope 

𝜙 - The angle of rotation in the propeller plane 

Shaft alignment angle relative to the flow 

 

 



1 

 

Chapter 1  

Introduction 

Marine propulsion is required for marine vessels and underwater vehicles to ensure 

maneuvering and station-keeping capabilities. The marine propulsion driveline investigated in 

this study originates from an electric thruster used on a work-class remotely operated vehicle 

(WROV). The thruster is of particular concern for any remotely operated vehicle (ROV) 

because the thruster system is the lowest control loop on the ROV system (Aït-Ahmed et al., 

2007). Without proper thrust or with loss of thrust, the ROV cannot perform the intended 

operation, and thus a risk of damage or loss of assets arises (Christ & Wernli, 2014). The 

present study focuses on the development of a multibody simulation model that can be used 

for the design optimization and development of thruster systems. The simulation model 

includes a complete propulsion system, i.e., a motor, a shaft, bearings, and a propeller. From 

the model, it is possible to investigate the interactions between these components for various 

steady-state cases. 

 

1.1. Background and motivation 

The background of the present research topic originates from a case study provided by IKM 

Technology, who stated that their electric thruster sometimes fails in operations. This study 

aims to investigate the reason for the failure and provide corresponding preventive measures.  

This led to further interest in the ROV thruster system and investigation of its components. 

According to Omerdic et al. (2003), thruster problems are one of the most common faults to 

occur on ROVs. After thorough literature research, the impression is that thruster development 

and design are mainly driven by achieving high efficiency from the thruster system, in as small 

and lightweight a package as practically possible. These design criteria are of course important 

in the ROV world, but should not be at the expense of the reliability of the system. The lack of 

detailed analysis of the thruster system might be because the dimensions of this type of thruster 

are smaller in size compared to the thrusters used on larger ships. Consequently, the placement 
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of bearings can be carried out in favor of the design without knowing if this has an impact on 

the overall performance of the thruster system. A comprehensive analysis of the system is 

difficult to perform, and to the author’s knowledge no robust tools are available to aid such an 

analysis.  

A continuous advancement in technology is occurring within the marine and subsea industry. 

For thruster systems this involves the introduction of lighter materials, new designs, and areas 

of use, such as deeper water and harsher climates and operating conditions (Carlton, 2012). An 

interesting consideration for propellers made of lighter materials is that these propellers are 

expected to move the same amount of water and provide the same amount of thrust as previous 

propellers made of conventional materials. This means that the hydrodynamic forces and 

corresponding added mass and damping terms are important to include in the design phases.  

On the Norwegian continental shelf, where many subsea installations are in place, future trends 

predict new developments in subsea and deep waters (Norwegian Petroleum Directorate, u.d.). 

For example, inspection, maintenance, and repair (IMR) operations carried out by ROVs will 

increase as a result of new subsea developments and with the introduction of riser-less light 

well intervention (Keilen, 2005). Most ROVs undergo pre- and post-dive checks (IMCA, 

2014), which is one of the reasons why ROVs can remain operative. However, resident or 

permanently deployed ROVs are now being introduced, where by the vehicle is intended to 

remain subsea for months. This is forcing ROV companies to increase the reliability of their 

ROV systems. Moreover, ROVs are the preferred tool for IMR operations since there is no risk 

of human injury. They can perform a wide range of tasks, and they are not restricted by water 

depth like regular manned diving, which is restricted to 180 meter depth on the Norwegian 

continental shelf (NORSOK U-100, 2015).  

The present study aims to highlight the importance of including the hydrodynamic forces that 

act on the propeller in the design phase of the thruster. Furthermore, the aim is to demonstrate 

how these forces respond to changes in design properties and operating outputs. The marine 

propeller forces will be implemented in a model of a complete thruster system, which can be 

used for design analysis and optimization. This model can be very useful to the designers of 

such systems, in order to improve the reliability and robustness of the final product. The 

analysis of the rotating shaft performed in this study is valid for other shafts of common setup 
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and size and can therefore be used for similar shafts to those addressed in this study. Overall, 

clarifying the critical aspects in the design of thrusters can improve performance and reduce 

the maintenance time and cost associated with thruster systems.  

 

1.2. Previous work 

The Netherlands Ship Model Basin (NSMB) was founded in 1929 and is now known as the 

Maritime Research Institute Netherlands (MARIN). Marine propeller series began to be 

designed systematically at MARIN, and the first results from an open water test of a propeller 

were presented in a publication in 1936 (Kuiper, 1992). Most previous research on marine 

propellers is typical of propellers used on large ships, and of propellers exposed to high loads 

or high speeds (Maritime Research Institute Netherlands, n.d.). Using the research carried out 

at MARIN, it is possible to use an empirical approach to calculate the hydrodynamic 

contributions of a marine propeller. The empirical approach is chosen to calculate propeller 

hydrodynamic contributions in the present study. Since it is considered the most applicable 

method if others use the model presented in this study. An empirical approach is also very 

computationally efficient compared to other numerical methods.  

The empirical approach in this study is based on various propellers from the Wageningen B-

screw series, which is a propeller type that has been thoroughly investigated and documented 

in contemporary studies (Kuiper, 1992). Generally, the series used for the calculation of 

propeller hydrodynamic contributions should preferably be of the same kind as the studied 

series. However, a study by Parsons and Vorus (1981) shows that use of the regression 

coefficients from the Wageningen B-screw series on a propeller without skew and rake results 

in only a 10-20% difference in the added mass and damping values, compared to the use of 

lifting surface or lifting line theory. These deviations are of some importance. However, the 

empirical approach provides a reasonable approximation of the added mass and damping 

values, which can be used for preliminary design purposes.  

The resulting dynamic forces from the propeller are based on a study produced by Veritec 

(1985), based on an investigation performed on 20 ships by theoretical means of the dynamic 
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forces at the blade and at twice the blade rate frequency. This study resulted in a set of equations 

applicable for propellers with 4 to 6 blades. The dynamic forces used in this study are based 

on the mean thrust and mean torque. Which in turn are calculated by use of open water tests on 

the various propellers. These open water tests were taken from Bernitsas et al. (1981) and the 

propellers from these tests are from the Wageningen B-screw series.  

Previous studies on the propulsion and bearing systems have mainly been conducted on large 

propulsion units. Where the bearing arrangement and propulsion components differ from the 

typical arrangement in ROV thrusters. One propulsion system that is similar to ROV thrusters 

is a dynamic positioning system on a small vessel, i.e., with a vessel length of about 25 meters. 

However, limited research is available on propulsion units of this size. Additionally, many of 

the standards covering marine engines and propulsion systems are specific for large propulsion 

units; for example, ISO-484 for ship screw propeller manufacturing tolerances is produced for 

propellers with a diameter of over 0.8 meters (ISO-484, 2015).  

While DNV GL do have some technical requirements for an ROV to fulfill in order to obtain 

a class certificate in DNVGL-RU-UWT, this document does not cover calculations on the 

propulsion system. However, DNV GL does provide simplified guidelines for calculations on 

marine propellers and shafts in marine applications, in DNVGL-CG (DNV GL, 2015). These 

simplified calculations are not suitable for the OpenModelica model. Furthermore, the state of 

the art in marine propulsion design and analysis is Nauticus machinery software. This software 

considers strength, fatigue, and vibrations analyses of marine propulsion systems, and is able 

to analyze the shaft alignment, bearing load, and propeller design (DNV GL, 2014), among 

others. However, from the author’s point of view Nauticus software is more suitable for heavy 

industry and large propulsion units, and is too comprehensive for smaller propulsion units and 

smaller companies.  
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1.3. Scope of work 

One of the main objectives of this study is to develop a six degree of freedom (DOF) model 

that includes a propeller, shaft, and bearings. The model can be used to simulate various steady-

state cases of a thruster. The aim of this model is that it should be able to analyze a system and 

display the loads and possible weak points in the system being investigated. All of the main 

objectives of the study are listed below. 

1. Develop a 6 DOF model of a thruster system in OpenModelica. 

2. Investigate the bearing responses and suggest solutions to reduce vibrations in the 

system in order to extend the lifetime of the bearings.  

3. Investigate the possibility to implement different propellers into the current design and 

identify possible changes that must be made if another propeller is to be used.  

Furthermore, the model shall be validated and compared against previous studies. This includes 

the calculated added mass and damping values, in addition to thrust and torque values. Various 

excitation forces shall be compared against the frequency response of the system. Regarding 

the second objective, the driving parameters for the bearing life shall be investigated. If any 

changes are made to the design the associated pros and cons shall be discussed, and the 

accommodation of any necessary changes shall be addressed. The overall aim of the above 

objectives is to improve the reliability and robustness of thrusters and to reduce the 

maintenance time and cost associated with thruster systems.  

In order to complete the work carried out in this study, some limitations and assumptions arise; 

these are listed below. 

- Contributions from the duct around the propeller are not included in this study.  

The duct is not included, since the effects of the duct vary with; the cross-sectional profile of 

the duct, the thrust, and the vessel speed. Moreover, a detailed analysis of the specific duct and 

its contributions would be required if the duct were to be included.   
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- Propeller hydrodynamic contributions are limited to an empirical approach with data 

from open water propeller tests, using propellers from the Wageningen B-screw series. 

This approach is chosen since it is computationally efficient, and it is believed to be the most 

applicable method if others use the model developed in this study. Moreover, since this method 

is based on open water test results, the results from these calculations should have high 

accuracy.  

- Undisturbed uniform inflow, incompressible flow, and inviscid flow are assumed 

through the marine propeller. 

If this is not assumed then fluid dynamics must be included; however, the scope of the present 

study is not fluid dynamics, but vibrations and bearing loads.  

- The study is limited to investigating propellers with 4 to 6 blades. 

This study is limited to propellers with 4 to 6 blades, since the procedure used to calculate 

dynamic forces is limited to propellers with 4 to 6 blades. Moreover, the regression equation 

coefficients are only found for propellers with 4 to 7 blades.  
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1.4. Structure of report 

The thesis is organized as follows:  

 

- Chapter 2: Introduction to WROVs and the thruster system. An introduction to the 

modeling and simulation software OpenModelica is also provided. 

 

- Chapter 3: Theoretical background on shaft dynamics, marine propeller added mass 

and damping, and marine propeller forces and moments. 

 

- Chapter 4: The estimation of propeller hydrodynamic contributions is explained, and 

the effect of different propeller properties is shown. 

 

- Chapter 5: Theoretical background on signal and vibration analysis. Moreover, theory 

on bearing life from vibration displacements is outlined. 

 

- Chapter 6: Development and validation of the OpenModelica model. 

 

- Chapter 7: Discussion of the various cases investigated, and presentation of results 

from the simulations. 

 

- Chapter 8: Conclusion of the present study and recommendations for further work. 
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Chapter 2  

System description 

This chapter discusses ROVs in general and the thruster system on an IKM ROV along with 

its relevant components. In addition, OpenModelica software is introduced as the modeling 

and simulation environment selected for this study. 

 

 

Figure 2.1: IKM Merlin UCV work class ROV (IKM Subsea AS, n.d.). 

 

2.1. ROV introduction 

The thruster examined in this study is used on the IKM Merlin ultra-compact vehicle (UCV) 

work-class ROV, shown in Figure 2.1. The thrusters used on this ROV use a propeller with 

three blades, while the propellers investigated in this study have 4 to 6 blades. Work-class 
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ROVs are exposed to a high variety of loads both from the environment and the tasks performed 

by ROVs. Tasks related to the oil and gas industry can include pipeline inspections, operation 

of subsea valves, installation of subsea developments and the operation of tools for subsea 

maintenance (Ducan, 2014; Marine Technology Society, n.d.). A common depth rate 

requirement for work-class ROVs is 3000 meters in seawater (msw) (Christ & Wernli, 2014). 

At this depth, the ROV is exposed to severe pressures from its surroundings. The density of 

seawater can range from 1022 to 1030 𝑘𝑔/𝑚3 (Thurman, 1994), and in this study a seawater 

density of 𝜌 = 1025 𝑘𝑔/𝑚3 is used. The following formula can be applied to calculate the 

hydrostatic pressure assuming constant density: 

𝑃ℎ𝑦𝑑 = 𝑝𝑎𝑡𝑚 − 𝜌𝑔𝑧𝑠𝑤 (2.1) 

where 𝑝𝑎𝑡𝑚 is the atmospheric pressure, 𝜌 is the sea water density, 𝑔 is the gravitational 

acceleration and 𝑧𝑠𝑤 is the water depth (Gudmestad, 2015). At 3000 meters depth, the 

hydrostatic pressure is approximately 300 times the atmospheric pressure. However, at depths 

of just a few hundred meters the hydrostatic pressure can be a challenge. To compensate for 

high hydrostatic pressure, most voids within an ROV must be filled with fluid. Alternatively, 

empty canisters must have a wall thickness that can handle the hydrostatic pressure.  

Most ROVs are developed to be almost neutrally buoyant in water (Christ & Wernli, 2014), 

meaning they require propulsion to ascend and descend. The thrusters are the propulsion units 

on an ROV. Accordingly, ROVs are equipped with several thrusters which are oriented in 

different directions, allowing an ROV to maneuver in any DOF. A functional thruster system 

is essential for ROV operation and the failure of one or more thrusters results in an under-

actuated system (Azis et al., 2012). The ROV can be overwhelmed by the environment (Christ 

& Wernli, 2014), or can be rendered incapable of performing its mission and must therefore 

cancel and return to the host for maintenance. A loss of all thrusters totally disables the ROV. 

Consequently, thrusters usually have a high priority in the ROV design and development phase 

(Christ & Wernli, 2014). 
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2.2. Thruster description 

The thruster considered in this study is an electrical thruster. It is composed of the following 

main components: electric motor, motor shaft, thruster pedestal (housing), propeller, 

nozzle/duct, bearings, seals, couplings and propeller shaft (drive shaft). A cross-section of the 

complete thruster assembly is shown in Figure 2.2. 

 

Figure 2.2: Cross-section of thruster (Courtesy of IKM Technology). 

 

The complete thruster assembly is bolted to the ROV frame, so the thrusters cannot rotate. 

However, the thruster driveline can rotate at maximum output in the forward and reverse 

directions. The propeller has a fixed pitch and is built from a mono-block of aluminum. It has 

three blades with no skew and no rake to achieve similar operating conditions in both directions 

of rotation. The pitch angle and the diameter of the propeller are shown in Figure 2.3. 
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Figure 2.3: Pitch angle and diameter of propeller. 

 

The pitch angle of the propeller is given by; 𝜃𝑝 = 𝑡𝑎𝑛−1 (
𝑃

2𝜋𝑟
) and the pitch is then; 𝑃 =

2𝜋𝑟 tan (𝜃𝑝). The symbol 𝑟 denotes the radius where the local pitch is measured. The propeller 

pitch used for calculation (local pitch) is generally taken at 0.7𝑅 − 0.75𝑅 where 𝑅 denotes the 

outermost radius of the propeller (Carlton, 2012). The pitch of the propeller in Figure 2.3 at 

0.7𝑅 is thus; 𝑃 = 2𝜋 × 105 × tan(25.71) = 317.65𝑚𝑚. The pitch ratio of a propeller is 

given by 
𝑃

𝐷
 and the pitch ratio of this propeller is then; 

𝑃

𝐷
= 1.06.  

The blade area ratio (BAR) is given by; 𝐵𝐴𝑅 =
𝐴𝑒

𝐴𝑜
 where 𝐴𝑒 is the expanded area of the 

propeller blades, i.e., when they are flattened out in the rotational plane of the propeller, 𝐴𝑜 is 

the disc area created by the propeller when it is rotating, i.e., simply the area of a circle with 

the outermost diameter of the propeller. The expanded area of one blade is; 𝐴𝑒 = 12511𝑚𝑚2. 

The BAR of this propeller is then; 𝐵𝐴𝑅 =
3×12511

𝜋×1502 = 0.53 (Carlton, 2012).  
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The duct is the blue component surrounding the propeller (item 1) shown in Figure 2.2 and 

here is of the “pull-push” type. This can be seen from the cross-section shape of the duct since 

the internal edges of the duct are nearly equal. Ducted propellers are typically used in 

applications where high thrust at low speed is needed. At zero vessel speed, the duct can 

contribute up to an additional 50% thrust. However, as the vessel speed increases the additional 

contribution from the duct drops (Carlton, 2012). The duct also reduces the number of vortices 

generated by the propeller when it rotates at high speeds. Since the duct surrounds the propeller, 

there is a lower risk of damage to the propeller from foreign objects (Christ & Wernli, 2014). 

In addition to the duct, grating covers can be installed in front of and behind the duct to further 

protect the propeller.  

The electrical motor housing is fluid filled and features a compensator, which is shown to the 

right of the cross-section view in Figure 2.2 (item 5). The compensator enables fluid volume 

expansion and contraction in addition to compensating for hydrostatic pressure. As a result the 

external and internal pressure is equal, which permits a lower wall thickness of the motor 

housing, and provides favorable conditions concerning the seals for the motor housing. The 

electrical motor is a three-phase AC induction motor with a power of 14 kW. It develops torque 

when axial currents interact with the rotor and a radial magnetic field from the stator (Hughes 

& Drury, 2013). The stator windings are rigidly fixed in the motor housing and can be seen in 

Figure 2.2 (item 3). The rotor rotates along with the motor shaft and the connection between 

these two parts is a key coupling. A major advantage of the induction motor compared to other 

electrical motors is the absence of any mechanical contact between the stator and rotor (Hughes 

& Drury, 2013). The only mechanical contact in the motor are the two radial ball bearings 

which support the motor shaft; the motor bearings are shown in Figure 2.4 (item 2 and 3). 

Properties of the motor at maximum operating conditions are listed in Table 2.1. The thrust 

calculated using the inputs from Table 2.1 is 275.1 𝑘𝑔. However, the true thrust found from 

testing with these inputs is 250 𝑘𝑔 in the reverse direction. The true thrust is lower in the 

reverse direction compared to the forwards direction, because in the reverse direction the outlet 

is facing towards the motor. Since the motor is on the outlet side in the reverse direction, it 

disturbs the flow and decreases the thrust efficiency in this direction.  
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Table 2.1: Electric motor. 

Frequency 55 Hz 

Power 14 kW 

Speed 1655 rpm 

Torque 81 Nm 

 

 

Figure 2.4: Thruster driveline (courtesy of IKM Technology). 

 

Between the motor shaft and the drive shaft, a splined coupling transfers torque from the motor 

shaft to the drive shaft. The drive shaft is supported by two tapered roller bearings, as shown 
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in Figure 2.4 (items 6 and 7), which are arranged to handle axial forces in both directions, in 

addition to radial forces.  

 

2.3. OpenModelica 

OpenModelica Connection Editor 1.12.0 is applied as the modeling and simulation 

environment in the present study. From here on OpenModelica Connection Editor will be 

referred to simply as OpenModelica (OM). OM is an open source software based on the 

Modelica language, but is also compatible with C and FORTRAN code. The Modelica 

language is used to model complex cyber-physical systems, which typically include robotics, 

automotive, aircraft, satellites, power plants, and systems biology. Some advantages of 

Modelica are its multi-domain modeling capability, dynamic optimization, visual acausal 

modeling, and typed declarative equation-based textual language (Fritzson, 2016). OM models 

can be both textual and graphical, which makes the modeling environment easy to read, build 

and expand. Moreover, electrics, mechanics, and control systems can be included in one model, 

and connection editing can be carried out through simple connections between model blocks. 

The method of building the OM model is similar to that of real systems are built; for example, 

appropriate standard components like a motor or pump can be found both in catalogs and in 

the standard Modelica library. If a component or function cannot be found in the Modelica 

library, then new self-defined components can be constructed based on standardized interfaces. 

Regarding results, OM enables 3D visualization of the model, numerical plotting, and graphical 

plotting of the results. One drawback of Modelica is that in some areas it lacks information and 

instructions on various blocks and functions. Furthermore, the support function for OM is 

limited as it is an open source software (Ashghar & Tariq, 2010; OpenModelica, 2018).  

The first version of Modelica (1.0) was released in 1997 and was based on a differential 

algebraic equation system with some discrete features. The latest version, Modelica 3.4, came 

in 2017 and is version number 13 of all releases to date (Modelica Association, 2018). The first 

version of OM was released in 2005 and the current version, OM 1.12, in 2017; this is the 

eleventh version of OM (OpenModelica, 2018). A high-level of OM Connection Editor is 

presented in Figure 2.5, whereby CORBA (common object request broker architecture) is a 
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tool that enables collaboration between systems, and OMC (OpenModelica compiler) is an 

advanced Modelica compiler. The OMC translates the Modelica language into C code 

(Ashghar & Tariq, 2010). Figure 2.5 briefly demonstrates the operation of OM Connection 

Editor and how it communicates with other features and languages.  

 

Figure 2.5: OpenModelica Connection Editor, formulated from Ashghar and Tariq (2010). 

 

The differential/algebraic system solver (DASSL) method is chosen to solve the OM model. 

The DASSL integration method is a code for solving differential/algebraic equations and is 

able to solve a differential equation in its original form. However, in backwards differentiation 

the DASSL approximates values based on the behavior of the solution. Meanwhile, DASSL 

solves nonlinear equations by using a modified version of Newton’s method. The code adjusts 

the step sizes and an iteration matrix is formed based on current approximations if the iteration 

does not converge. This makes the DASSL method robust and efficient (Petzold, 1982).   
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Chapter 3  

Theoretical background 

3.1. Introduction 

Mathematical models for the analysis of rotating shafts and marine propellers are provided in 

this chapter. The method is based on Newton’s second law and the equation of motion. These 

equations are then further implemented in the OM model as building blocks, which include the 

hydrodynamics, thrust, and torque from the marine propeller. Rigid bodies represent the 

propeller and shaft. Rigid body motion is chosen because the deformations of the bodies are 

small, since the sizes of the propeller and shaft are relatively small. Moreover, the areas of 

interest are associated with the vibrating amplitudes and forces acting on the bearings. 

 

3.2. Shaft dynamics 

According to (Meirovitch, 1970) rigid body motion is not so much a physical reality, but simply 

a mathematical idealization. However, for this system where the deformations of the body are 

believed to be small compared to the motion of the whole body, the rigid body concept is valid 

and represents a reasonable approximation of the real system. The concept describes the motion 

of the body in 6 DOF; three for rotational motion and three for translational motion. This differs 

from reality, where a body of finite dimensions has an infinite number of DOF since the body 

is composed of an infinite number of particles. However, the relations between force and linear 

momentum, torque, and angular momentum are equally valid for the rigid body principle. As 

a result, the principles of conservation of angular momentum and kinetic energy also apply to 

a rigid body. Moreover, the velocity and acceleration are the same as for particle motion, i.e., 

for any arbitrary point at a distance from the central axis.  
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With the origin at the center of mass, the velocity of any point in a rigid body can be obtained 

by (Meirovitch, 1970): 

𝑣𝑝 = 𝑣0 + 𝜔 × 𝑟 (3.1) 

Moreover, the angular momentum can be obtained from: 

𝐿0 = ∫ 𝑟 × (𝜔 × 𝑟)𝑑𝑚 (3.2) 

The moments and products of inertia can be displayed as a symmetric matrix referred to as the 

inertia matrix, which may be written as (Meirovitch, 1970): 

[𝐼] = [

𝐼𝑥𝑥 −𝐼𝑥𝑦 −𝐼𝑥𝑧

−𝐼𝑦𝑥 𝐼𝑦𝑦 −𝐼𝑦𝑧

−𝐼𝑧𝑥 −𝐼𝑧𝑦 𝐼𝑧𝑧

] (3.3) 

Then the compact matrix form of the angular momentum, inertia tensor, and angular velocity 

is produced by (Meirovitch, 1970): 

{𝐿} = [𝐼]{𝜔} (3.4) 

Newton’s second law is: “The time rate of change of the momentum of a mass 𝑚 is equal to 

the net external force acting upon it” (Gross et al., 2011, p. 37). Here it is assumed that the 

mass is constant; Newton’s second law is then written as: 

𝐹 = 𝑚𝑎 (3.5) 

If the scalar product of Newton’s second law is formed with 𝑑𝑟, substituting 𝑑𝑟 = 𝑣 𝑑𝑡 and 

integrating between two points gives (Gross et al., 2011):  

1

2
𝑚𝑣1

2 −
1

2
𝑚𝑣0

2 = ∫ 𝐹 ∙ 𝑑𝑟
𝑟1

𝑟0

 (3.6) 

𝑇 =
1

2
𝑚𝑣2 (3.7) 
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𝑇 =
1

2
𝑚𝑣2 +

1

2
𝐼𝜔2 (3.8) 

The right-hand side of Equation (3.6) is the work 𝑈 and the scalar quantity is the kinetic energy 

𝑇, as shown in Equation (3.7). Equation (3.8) returns the combined kinetic energy for 

translational and rotational motion; a further description of this equation can be found in 

(Meirovitch, 1970). A well-known approach for describing a mechanical system is the use of 

the equations of motion, which are expressed by Lagrange’s equations in scalar form as 

follows: 

𝑑

𝑑𝑡
(
𝜕𝑇

𝜕𝑞̇
) −

𝜕𝑇

𝜕𝑞
+

𝜕𝐷

𝜕𝑞̇
+

𝜕𝑉

𝜕𝑞
= 𝑄 (3.9) 

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑞𝑗̇
) −

𝜕𝐿

𝜕𝑞𝑗
= 𝑄𝑗 (3.10) 

where 𝐷, 𝑉, and 𝑄 in Equation (3.9) represent the dissipation function, potential energy, and 

the vector of non-conservative forces obtained from the virtual work (Cheli & Diana, 2015), 

respectively. Meanwhile, Equation (3.10) is the more frequently generalized expression of the 

Lagrange equation and is commonly used when considering body deformation (Xing et al., 

2011). By using Lagrange’s equations, the final form of the equation of motion can be written 

as: 

𝑚𝑥̈(𝑡) + 𝑐𝑥̇(𝑡) + 𝑘𝑥(𝑡) = 𝑓(𝑡) (3.11) 

where 𝑚 is the mass, 𝑐 is the damping, 𝑘 is the stiffness and 𝑓 is the excitation force. Time is 

represented by 𝑡 and 𝑥 is the displacement of the mass from equilibrium. Accordingly, Equation 

(3.11) considers excitation forces depending on time. The forces can be constant, sinusoidal, 

random and periodic. For the solution of Equation (3.11), a general solution 𝑓(𝑡) = 0 and a 

particular solution 𝑓(𝑡) ≠ 0 exist (Cheli & Diana, 2015; Krämer, 1993).  
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3.3. The gyroscopic effect, whirling and critical speed 

Batrak (Lateral Vibration Prediction Issues, n.d.) describes whirling vibration as a change in 

position of a rotating body from the rotation axis. In classical mechanics whirling is known as 

precession motion, and can form various circular and elliptical orbits. The result of the shaft 

rotational speed and elliptical whirling speed is polyharmonic motion, caused by excitation 

forces in two planes. According to Batrak (Lateral Vibration Prediction Issues, n.d.) the 

vibration of a rotating propulsion shaft is considered as whirling under any circumstances. 

Vibrations can occur from hydrodynamic forces, unbalance, pulsating lubrication forces in 

bearings, and friction forces in material and couplings. Furthermore, the gyroscopic effect from 

the propeller can influence the whirling vibration. The gyroscopic effect arises from the larger 

mass and polar inertia moments of the propeller, and the gyroscopic moment can be obtained 

by (Batrak, Lateral Vibration Prediction Issues, n.d.): 

𝑀𝑔𝑦𝑟 = 𝐴𝐼𝑑Ω2𝜗 (3.12) 

where 𝐴 = 1 −
𝐼𝑝

𝐼𝑑
𝑆, 𝑆 = 𝑤ℎ𝑖𝑟𝑙𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 =

𝜔

Ω
, Ω = whirling speed and 𝜗 = shaft slope at 

propeller position. However, torsional vibrations are far more dangerous than whirling 

vibrations and are of greater concern for larger ships which use mechanical engines for ship 

propulsion (Batrak, Lateral Vibration Prediction Issues, n.d.; Batrak, Torsional Vibration 

Calculation Issues With Propulsion Systems, n.d.; Vizentin et al., 2017).  

The critical speed of a rotating shaft is the speed where intense vibration occurs. This is reached 

when the shaft speed coincides with the natural frequencies of the shaft and the whirling 

vibration. When the bearings are included, many more critical speeds become possible; but in 

practice only a limited number of critical speeds occur, at the points where resonance curves 

intersect with each other (Veritec, 1985).  
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3.4. Marine propeller dynamics 

The marine propeller interacts with the vessel in several ways, either through coupling between 

the propulsion system and vessel, or alternatively, from pressure pulses generated by the 

propeller which hits the surface of the vessel. According to Carlton (2012) these forces and 

moments are considered to have a steady and a fluctuating component. For a thruster system, 

it is relevant to investigate the bearing forces, which can be categorized as follows (Carlton, 

2012):  

1. Propeller weight and center of gravity. 

2. Dry propeller inertia.  

3. Added mass, inertia, and moments. 

4. Propeller forces and moments. 

5. Out of balance forces and moments. 

The bearing forces form a series of mechanical- and hydrodynamics-based forces and 

moments. The forces are transferred to the bearings, or contribute to changes in the vibratory 

properties of the shaft system. The propeller effective mass and inertia characteristics change 

when the propeller is immersed in water and vibrate as part of a rotating shaft system. For a 

propeller in water a damping term is also present, which has a vibratory behavior that differs 

from the individual vibration of the propeller blades. The vibration characteristics of a marine 

propeller are governed by hydrodynamic loading when operating in a non-uniform wake field, 

in addition to the vibration behavior of the marine propeller itself, which introduces variations 

in the section angle of attack. These two hydrodynamic effects result in variations in the 

hydrodynamic reaction loading. In order to derive these loads the marine propeller is 

considered as a rigid body in a homogeneous steady flow (Carlton, 2012).  
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Figure 3.1: Propeller global coordinate system. 

 

In this study, the propeller vibrates in six rigid body modes with orientations as defined in 

Figure 3.1. According to Carlton (2012) the equation of motion for the marine propeller can be 

written as: 

𝑀𝑥̈ = 𝑓𝑒 + 𝑓𝐻 + 𝑓𝑆 (3.13) 

where 𝑥 is the displacement, 𝑓𝑒 is the excitation, 𝑓𝐻 is the additional hydrodynamic, and 𝑓𝑆 

represents the external excitation forces and moment vectors. The mass and displacement can 

be written in matrix and vector form as follows (Carlton, 2012): 
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𝑀𝑥̈ =

[
 
 
 
 
 
𝑚 0 0
0 𝑚 0
0 0 𝑚

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

𝐼𝑥𝑥 0 0
0 𝐼𝑦𝑦 0

0 0 𝐼𝑧𝑧]
 
 
 
 
 

[
 
 
 
 
 
 
 𝛿𝑥̈

𝛿𝑦̈

𝛿𝑧̈

𝜙𝑥̈

𝜙𝑦̈

𝜙𝑧̈]
 
 
 
 
 
 
 

 (3.14) 

In the mass matrix, 𝑚 is the mass of the propeller, 𝐼𝑥𝑥 is the polar mass moment, and 𝐼𝑦𝑦 = 𝐼𝑧𝑧 

are the diametric mass moments of inertia. The hydrodynamic force vector for the marine 

propeller depends upon the displacements, velocities, and acceleration. The additional 

hydrodynamic force can then be represented by (Carlton, 2012): 

𝑓𝐻 = −(𝑀𝑎)𝑥̈ − 𝐶𝑝𝑥̈ (3.15) 

In classical vibration theory, an additional stiffness matrix 𝐾𝑝 is included in this expression. 

The stiffness matrix depends mainly on the immersion of the propeller. This matrix is excluded 

because the propeller is only considered when it is fully immersed. Rewriting the equation of 

motion by combining Equations (3.13) and (3.15) allows the following equation to be derived 

(Carlton, 2012): 

[𝑀 + 𝑀𝑎]𝑥̈ + 𝐶𝑝𝑥̇ − 𝑓𝑆 = 𝑓𝑒 (3.16) 

Furthermore, the added mass and damping matrices are needed. These matrices are of the same 

form, consisting of a full diagonal and some linear and rotational terms with a set of non-

diagonal coupling terms, as seen in the two following equations (Carlton, 2012): 

𝑀𝑎 =

[
 
 
 
 
 
𝑚11 0 0
0 𝑚22 −𝑚32

0 𝑚32 𝑚22

𝑚41 0 0
0 𝑚52 −𝑚62

0 𝑚62 𝑚52

𝑚41 0 0
0 𝑚52 −𝑚62

0 𝑚62 𝑚52

𝑚44 0 0
0 𝑚55 −𝑚65

0 𝑚65 𝑚55 ]
 
 
 
 
 

 (3.17) 
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𝐶𝑝 =

[
 
 
 
 
 
𝑐11 0 0
0 𝑐22 −𝑐32

0 𝑐32 𝑐22

𝑐41 0 0
0 𝑐52 −𝑐62

0 𝑐62 𝑐52

𝑐41 0 0
0 𝑐52 −𝑐62

0 𝑐62 𝑐52

𝑐44 0 0
0 𝑐55 −𝑐65

0 𝑐65 𝑐55 ]
 
 
 
 
 

 (3.18) 

It can be seen from matrices (3.17) and (3.18) that there are terms that have identical values. 

These matrices represent the simplest form of interaction between orthogonal motions (Carlton, 

2012). The hydrodynamic coefficients 𝑚𝑖 and 𝑐𝑖 can be calculated using the equations derived 

by Schwanecke (1963), which are: 

𝑚11 = 0.2812
𝜋𝜌𝐷3

𝑍
(
𝐴𝑒

𝐴𝑜
)
2

 

𝑚22 = 0.6363
𝜌𝐷3

𝜋𝑍
(
𝑃

𝐷
)
2

(
𝐴𝑒

𝐴𝑜
)
2

 

𝑚44 = 0.0703
𝜌𝐷5

𝜋𝑍
(
𝑃

𝐷
)
2

(
𝐴𝑒

𝐴𝑜
)
2

 

𝑚55 = 0.0123
𝜋𝜌𝐷5

𝑍
(
𝐴𝑒

𝐴𝑜
)
2

 

𝑚41 = −0.1406
𝜌𝐷4

𝑍
(
𝑃

𝐷
)(

𝐴𝑒

𝐴𝑜
)
2

 

𝑚52 = 0.0703
𝜌𝐷4

𝑍
(
𝑃

𝐷
)(

𝐴𝑒

𝐴𝑜
)
2

 

𝑚62 = 0.0408
𝜌𝐷4

𝑍2
(
𝑃

𝐷
)(

𝐴𝑒

𝐴𝑜
)
3

 

𝑚65 = 0.0030
𝜋𝜌𝐷5

𝑍2
(
𝐴𝑒

𝐴𝑜
)
2

 

(3.19) 

 

 

 



24 

 

𝑐11 = 0.0925𝜌𝜔𝐷3 (
𝐴𝑒

𝐴𝑜
) 

𝑐22 = 0.1536
𝜌𝜔𝐷2

𝜋
(
𝑃

𝐷
)
2

(
𝐴𝑒

𝐴𝑜
) 

𝑐44 = 0.0231
𝜌𝜔𝐷5

𝜋
(
𝑃

𝐷
)
2

(
𝐴𝑒

𝐴𝑜
) 

𝑐55 = 0.0053𝜋𝜌𝜔𝐷5 (
𝐴𝑒

𝐴𝑜
) 

𝑐41 = −0.0463𝜌𝜔𝐷4 (
𝑃

𝐷
)(

𝐴𝑒

𝐴𝑜
) 

𝑐52 = 0.0231𝜌𝜔𝐷4 (
𝑃

𝐷
)(

𝐴𝑒

𝐴𝑜
) 

𝑐62 = 0.0981
𝜌𝜔𝐷4

𝑍
(
𝑃

𝐷
)(

𝐴𝑒

𝐴𝑜
)
2

 

𝑐65 = 0.0183
𝜋𝜌𝜔𝐷5

𝑍
(
𝐴𝑒

𝐴𝑜
)
2

 

𝑐35 = 0.1128
𝜌𝜔𝐷4

𝑍
(
𝑃

𝐷
)(

𝐴𝑒

𝐴𝑜
)
2

 

(3.20) 

As seen from the damping coefficients Schwanecke distinguishes between the coefficients 𝑐26 

and 𝑐35, in contrast to other contemporary works. In this study, Equation (3.18) is used to 

calculate the damping coefficients. Schwanecke’s equations relate specifically to fixed-pitch 

propellers. Another approach to find the hydrodynamic coefficients is to use the regression 

equation formulae from Parsons and Vorus (1981). These formulae are based on a lifting line 

formulation and are applicable for propellers with BAR ranging from 0.3 to 1.05 and pitch 

ratios from 0.5 to 1.4. The regression equations have the following form (Carlton, 2012): 

{
𝑚𝑖

𝑐𝑖
} = 𝐶1 + 𝐶2 (

𝐴𝑒

𝐴𝑜
) + 𝐶3 (

𝑃

𝐷
) + 𝐶4 (

𝐴𝑒

𝐴𝑜
)
2

+ 𝐶5 (
𝑃

𝐷
)
2

+ 𝐶6 (
𝐴𝑒

𝐴𝑜
) (

𝑃

𝐷
) (3.21) 

The regression Equations (3.21) result from the work done by Parsons and Vorus (1981), which 

in turn is based on the work of Hylarides and van Gent (1974). Parsons and Vorus investigated 

the correlation by calculating the added mass and damping for a propeller from lifting surface 

and lifting line procedures. The regression equation formulae are based on the Wageningen B-

screw series, and the equations are suitable for preliminary design purposes (Carlton, 2012). 

The regression equation coefficients (𝐶𝑖) are dimensionless values and vary only with the 
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number of blades on the propeller. In a literature search, regression equation coefficients are 

only identified for propellers with 4 to 7 blades; these can be found in Carlton (2012) or Parsons 

and Vorus (1981). Propellers with two or three blades are therefore not included in this study. 

The formulae produced by Parsons and Vorus (1981) are selected to calculate hydrodynamic 

coefficients in this study, because this approach covers the characteristics of the addressed 

propellers.  Moreover, their study demonstrates that this method can be used for propellers 

outside the Wageningen B-screw series. For propellers without skew, the results of this 

approach are within 10-20% of the results for the Wageningen B-screw series. 

The coefficients for Equation (3.21) are based on the following parameters from the 

Wageningen B-screw series; the number of blades, BAR, and pitch ratio. These parameters can 

easily be calculated for any type of marine propeller (Kuiper, 1992). When the regression 

equation results are calculated, they must be multiplied by a corresponding multiplier to obtain 

the final added mass and damping value. The appropriate multipliers for the various 

coefficients are listed in the following table. 

Table 3.1: Non-dimensionalization of coefficients, assembled following Parsons and Vorus 

(1981). 

Type of coefficient Coefficients Multipliers 

Added mass moment of inertia 𝑚44, 𝑚55, 𝑚65 𝜌𝐷5 

Inertia coupling 𝑚41, 𝑚52, 𝑚62 𝜌𝐷4 

Added mass 𝑚11,𝑚22, 𝑚32 𝜌𝐷3 

Rotational damping 𝑐44, 𝑐55, 𝑐65 𝜌𝑛𝐷5 

Velocity coupling 𝑐41, 𝑐52, 𝑐62 𝜌𝑛𝐷4 

Linear damping 𝑐11, 𝑐22, 𝑐32 𝜌𝑛𝐷3 

 

3.5. The Wageningen B-screw series 

The B-series originated following an investigation of G.S. Baker’s A-series propellers 

performed in the NSMB, conducted because the A-series was known to be very efficient. 
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Testing revealed that the A-series was susceptible to cavitation. Subsequently, the B-series was 

developed with wider blade tips compared to the A-series. The development of the B-series 

continued and currently consists of 130 propellers with blade numbers ranging from 2 to 7 

blades, with different pitches and BARs. The B-series has a small skew and a positive rake, 

and was given the name Wageningen after the city in which it was developed.   

The Wageningen B-screw series has since been thoroughly investigated, documented, and 

tested regarding various propeller characteristics. For instance, propeller tests have been 

performed in open water with a uniform flow over the propellers. Typical propeller models 

from the Wageningen B-screw series are presented in Table 3.2 (van Lammeren et al., 1969). 

Table 3.2: Models in the Wageningen B-screw series, assembled following van Lammeren et 

al. (1969). 

Z P/D Ae/Ao 

2  

0.5 

to 

1.40 

0.30              

3  0.35   0.50   0.65   0.80    

4   0.40   0.55   0.70   0.85 1.00  

5    0.45   0.60   0.75    1.05 

6     0.50   0.65   0.80    

7      0.55   0.70   0.85   

 

As shown in Table 3.2, only a few BARs are presented for each number of blades on the 

propeller. However, for other propeller series many other BARs exist for the number of blades 

indicated in Table 3.2. The notation used to describe the different propellers in the Wageningen 

B-screw series has the following form; for example, B4-70-100, which indicates a B-screw 

series propeller with four blades, a BAR of 0.7, and a pitch ratio equal to 1.0 (van Lammeren 

et al., 1969). The same notation is used to describe the characteristics of the propellers 

addressed in this study.  
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3.6. Open water test procedure 

Open water testing is carried out to derive the open water characteristics of marine propellers. 

Testing is preferably carried out on a full-scale model of the propeller. The basin used for open 

water testing should be sufficiently large to avoid blockage, and the propeller should be 

positioned in such a way that pressure build-up does not occur. A dynamometer is used to 

measure thrust and torque, and a current meter is used to measure the speed of advance of the 

propeller. Recording devices should be placed such that they do not influence the propeller in 

any way. Immersion of the propeller is arranged so that air from the surface is not drawn into 

the propeller. The shaft speed should be kept constant throughout the test, and the revolution 

rate should be high to obtain a high Reynolds number, according to recommended guidelines 

(ITTC, 2002; Molland, 2008).  

 

3.7. Marine propeller forces and moments 

The forces and moments produced by the propeller react on the bearings, contributing to a 

significant increase in the bearing forces, and are calculated from open water test data of the 

various propellers. The effective thrust force from a propeller is rarely directed along the shaft 

axis. This is a result of the effects from the wake field and a possible shaft inclination relative 

to the flow. The line of action of the effective thrust is typically raised above the shaft axis as 

a result of slower water velocities in the upper part of the propeller. Furthermore, tangential 

velocity components can also result in deviations of the effective thrust force in the plane of 

symmetry of the axial wake field. This produces variable forces and moments in both the 

vertical and horizontal directions. The distance from where the effective thrust force acts on 

the shaft centerline is termed the thrust eccentricity, and can be expressed by the following 

equation (Carlton, 2012): 

𝑒𝑇
2(𝑡) = 𝑒𝑇𝑦

2 (𝑡) + 𝑒𝑇𝑧
2 (𝑡) (3.22) 
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The equation is time dependent because of the differences in the flow field due to the rotating 

propeller. The resulting forces and moments can be expressed as the sum of a Fourier expansion 

series, containing one constant and one fluctuating component (Carlton, 2012): 

𝐹(𝑡) = 𝐹0 + ∑ 𝐹𝑘cos (𝜔𝑡 + 𝜙𝑘)
𝑛

𝑘=1
 (3.23) 

𝑀(𝑡) = 𝑀0 + ∑ 𝑀𝑘 cos(𝜔𝑡 + 𝜙𝑘)
𝑛

𝑘=1
 (3.24) 

If the shaft inclination angle is high then the effective thrust force is high in the x-direction. 

However, in the absence of a high shaft inclination angle the bearing forces depend on the wake 

field characteristics, vessel speed, propeller RPM, skew, and blade number (Carlton, 2012). 

Nevertheless, the dynamic forces in this study are calculated using the work by Veritec (1985). 

Veritec (1985) performed an investigation of the dynamic forces at the blade and at twice the 

blade rate frequency on 20 different ships. The number of blades on the propellers considered 

in this investigation are between 4-6. The results of Veritec (1985)’s work are presented in 

Equation (3.25)-(3.26) and Appendix A, and indicate that propellers with an odd number of 

blades generally induce smaller thrust fluctuations and larger bending moments than propellers 

with an even number of blades. 

Equations (3.25) and (3.26) only apply to 4 bladed propellers, and the relevant equations for 5- 

and 6-bladed propellers can be found in Appendix A. Since the equations for dynamic forces 

are restricted to propellers with 4 to 6 blades, the propellers investigated in this study are thus 

restricted to those with blade numbers in this range. 

𝐹𝑥(1) = 0.084𝑇0 ± 0.031𝑇0, 𝐹𝑥(2) = 0.022 ± 0.004𝑇0 – Thrust 

𝐹𝑧(1) = 0.008𝑇0 ± 0.004𝑇0, 𝐹𝑧(2) = 0.008𝑇0 ± 0.004𝑇0 – Vertical force 

𝐹𝑦(1) = 0.012𝑇0 ± 0.011𝑇0, 𝐹𝑦(2) = 0.00𝑇0 ± 0.001𝑇0 – Horizontal force 

 

 

 

(3.25) 
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𝑀𝑥(1) = 0.062𝑄0 ± 0.025𝑄0, 𝑀𝑥(2) = 0.016𝑄0 ± 0.010𝑄0 – Torque 

𝑀𝑧(1) = 0.075𝑄0 ± 0.05𝑄0, 𝑀𝑧(2) = 0.019𝑄0 ± 0.013𝑄0 – Vertical torque 

𝑀𝑦(1) = 0.138𝑄0 ± 0.09𝑄0, 𝑀𝑦(2) = 0.040𝑄0 ± 0.036𝑄0 – Horizontal torque 

 

 

 

(3.26) 

As seen from Equations (3.25) and (3.26), the dynamic components are expressed by the mean 

thrust 𝑇0 and the mean torque 𝑄0. The mean thrust and mean torque are both obtained from 

open water propeller characteristics plots produced by Bernitsas et al. (1981). An example of 

a plot is shown in Figure 3.2 for the Wageningen B4-70 propeller. The plots are expressed 

through the torque and thrust coefficients, in terms of the number of blades, BAR and pitch 

ratio, and the advance coefficient. The Reynolds number used in the open water characteristics 

plots of Bernitsas et al. is 2.0 × 106. The non-dimensionalized Reynolds number is: 

𝑅𝑛 =
𝜌𝑛𝐷2

𝜇
=

𝜌𝑉𝐷

𝜇
 (3.27) 
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Figure 3.2: Kt, Kq, and efficiency curves for the B4-70 propeller (Bernitsas et al., 1981, p. 47). 

 

The declining lines in Figure 3.2 are the thrust (solid lines) and torque (dotted lines) coefficient 

curves, while the polynomial curves are the efficiency curves. The optimal point for each pitch 

ratio is found at the top of the efficiency curve. An interesting aspect of the propeller force and 

torque is to analyze how these vary with different propeller characteristics. The non-

dimensional terms taken from Figure 3.2 and the cavitation number used to express general 

open water characteristics are shown in Equation (3.28) (Carlton, 2012). 
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                                      Thrust coefficient; 𝐾𝑇 =
𝑇

𝜌𝑛2𝐷4 

                                      Torque coefficient; 𝐾𝑄 =
𝑄

𝜌𝑛2𝐷5 

                                      Advance coefficient; 𝐽 =
𝑉𝑎

𝑛𝐷
 

                                      Cavitation number; 𝜎 =
𝑠𝑡𝑎𝑡𝑖𝑐 ℎ𝑒𝑎𝑑

𝑑𝑦𝑛𝑎𝑚𝑖𝑐 ℎ𝑒𝑎𝑑
=

𝑝0−𝑒
1

2
𝜌𝑉2

 

(3.28) 

The thrust and torque of marine propellers working sufficiently below the free surface depend 

upon the following parameters: propeller diameter 𝐷, the speed of advance 𝑉𝑎, the rotational 

speed 𝑛, the density of the fluid 𝜌, the viscosity of the fluid 𝜇, and the static pressure of the 

fluid at the propeller station (𝑝0 − 𝑒), where 𝑝0 is the static pressure and 𝑒 is the vapor pressure 

at ambient temperature. For calculation of the cavitation number, 𝑉 is a representative velocity 

and can be expressed as; 𝑉 = 𝑛𝐷. High cavitation effects can have a negative impact on thrust 

and torque performance. Other problems related to cavitation include vibration issues and 

erosion on the propeller blades. Cavitation is usually a greater concern when the propeller is 

subjected to high speeds or high load. The number of blades on the propeller can be a 

convenient parameter to change in order to handle cavitation problems; for example, a greater 

number of blades results in a higher area upon which the load can act. The open water efficiency 

can also be affected by cavitation, since this parameter is expressed in terms of the thrust, 

torque, and advance coefficients as shown in Equation (3.29) (Carlton, 2012; Molland, 2008).  

𝑛𝑜 =
𝐽

2𝜋

𝐾𝑇

𝐾𝑄
 (3.29) 

For calculation of the advance coefficient as presented in Equation (3.28), 𝑉𝑎 is the speed of 

advance, which is equal to the vessel speed 𝑉𝑒𝑥, modified by a wake factor 𝑊𝑓, as shown in the 

following equation (Gerr, 1989; Ong et al., 2007):  

𝑉𝑎 = 𝑉𝑒𝑥𝑊𝑓 (3.30) 
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The required thrust power can be calculated by the simplified expression; 𝑃𝑇 = 𝑇 × 𝑉𝐴. 

Propeller efficiency is typically in the range from 0.35 to 0.75; the highest efficiency is usually 

reached by propellers with the lowest number of blades and declines with increasing number 

of blades (MAN Diesel & Turbo, 2011).  
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Chapter 4  

Estimation of propeller contributions 

4.1. Introduction 

The estimation of propeller contributions as discussed in Chapter 3 are limited to propellers 

with blade numbers ranging from 4 to 6. The differences in geometry for the investigated 

propeller and the Wageningen B-screw series are as follows. First, the B-series has a small 

skew and rake, while the propellers addressed in this study have no skew and rake. According 

to Parsons and Vorus (1981) and Kuiper (1992) a small difference in skew and rake does have 

a small impact on the performance of the propellers. Another difference in geometry is the 

blade tips; the B-series has rounded smooth edges, while the investigated propellers have blade 

tips of finite length, which are common for propellers used with a duct (Kuiper, 1992). The 

investigated propellers are the B4-71, B5-88, and B6-106, with pitch ratios ranging from 0.5 

to 1.4. The propellers are shown in the figure below. 

 

Figure 4.1: B4 to B6 propellers. 

 

The hydrodynamic damping, forces, and moments depend on the rotational rate. Furthermore, 

the hydrodynamic forces and moments depend on the blade rate frequency component, while 

the blade rate frequency depends on the number of blades and the angular velocity. Thus, the 
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calculation method presented in this study is only applicable for the investigation of steady-

state cases. This is because the propeller contributions can only be calculated for one specific 

speed at a time.  

 

4.2. Added mass and damping 

To demonstrate the estimation of the added mass and damping, the non-dimensionalized 

regression results produced using Equation (3.21) for the B4-71 propeller are presented in 

Figures 4.2 and 4.3, for pitch ratios ranging from 0.5 to 1.4. The coefficients listed on the right 

y-axis use this axis, while the remaining coefficients belong to the left y-axis. The final added 

mass and damping values are obtained when the non-dimensionalized results are multiplied 

with the appropriate multiplier from Table 3.1. 

 

Figure 4.2: Non-dimensionalized added mass coefficients.  
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Figure 4.3: Non-dimensionalized damping coefficients. 

 

As shown in Figures 4.2 and 4.3, the damping coefficients are of a higher magnitude than the 

added mass coefficients. This implies that the propeller damping terms are important to include 

in propeller calculations. The magnitude of the different terms also varies; the highest terms 

and therefore the most important to include for the added mass and damping terms are 11, 41, 

22, and 32.  

 

4.3. Propeller forces and moments 

As explained in Section 3.7, marine propeller forces and moments can be calculated with the 

use of open water test data from Bernitsas et al. (1981). These data are not available for all 

BARs, so test data for the BAR that is nearest to the investigated propeller is used. For instance, 

the B4-71 propeller uses B4-70 open water test data to estimate marine propeller forces and 

moments. Accordingly, the thrust, torque, and efficiency can be calculated using Figure 3.2 
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and Equation (3.28) for the B4-71 propeller at different speeds, as shown in the Figures 4.4, 

4.5, and 4.6.  

 

Figure 4.4: Thrust vs. speed of advance for B4-71 propeller. 
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Figure 4.5: Torque vs. speed of advance for B4-71 propeller. 

 

Figure 4.6: Efficiency vs. speed of advance for B4-71 propeller. 
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The accuracy of the results presented in Figures 4.4-4.6 is not optimal since the thrust, torque, 

and advance coefficients are taken directly from the open water test plots. However, if the 

results from Figures 4.4-4.6 are back-calculated to find the coefficients, the results are 

satisfying and applicable for preliminary calculations, which is appropriate for this study. The 

coefficients from the open water test plots are found using a plot digitizer.  

The “efficiency vs. speed of advance” plot illustrates that an optimal rotational speed exists for 

a specific speed of advance. The optimal speed is found at the top of the curves, and the 

effective region for a given rotational speed is situated within (below) the curve.   
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Chapter 5  

Vibration analysis 

5.1. Introduction 

This chapter provides an introduction to vibration analysis and time signals. This includes how 

a continuous time signal is processed for further investigation of the frequencies in the system. 

Moreover, the method of obtaining the frequency response from a Fourier series is also 

explained, in addition to a method to describe the level of a dynamic signal, which can further 

be used for bearing life calculation.  

 

5.2. Signals and time data 

Vibrations can originate from the power source, an unbalanced shaft, and misalignment 

between rotating elements. In addition, vibrations are generated by the marine propeller from 

the displaced water. From the OM simulations, various vibratory motions can be extracted from 

a given time domain and sampling time frequency. This continuous time signal can 

subsequently be used for further investigation of the system frequency, amplitude, and phase.  

According to Boashash (1992) in mechanics the frequency of vibratory motion can be defined 

as the number of oscillations per unit of time, where vibrations are any to-and-fro motion and 

one oscillation is defined as a complete to-and-fro motion. Referring to Newton’s equation of 

motion, Equation (3.11), the harmonic motion of such systems has a displacement, velocity, 

and acceleration which can be expressed by the following equations (Boashash, 1992): 

x = A cos ωt (5.1) 

𝑥̇ = −ωA sin ωt (5.2) 

𝑥̈ = −𝜔2A cos ωt (5.3) 

(−𝜔2𝑚 − 𝜔𝑐 + 𝑘)𝐴 = 𝑓 (5.4) 
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where 𝐴 is the amplitude and 𝜔 is the angular frequency, and Equation (5.4) is the rewritten 

equation of motion and represents the mixture of harmonic vibrations in the system. As 

demonstrated by Equations (5.1-5.3) the harmonic response from the system is composed of a 

sum of sinusoidal signals. Hence, the signals can be expressed by Fourier series which can 

further be used in a discrete Fourier transform (DFT) and computed by fast Fourier transform 

(FFT). The frequency response can then be obtained and used for experimental studies and 

comparisons. The continuous Fourier transform, and the time signal are defined in the 

following equations (Brandt, 2011):  

ℱ[x(t)] = X(f) = ∫ 𝑥(𝑡)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡
∞

−∞

 (5.5) 

ℱ−1[𝑋(𝑓)] = x(t) = ∫ 𝑋(𝑓)𝑒𝑗2𝜋𝑓𝑡𝑑𝑓
∞

−∞

 (5.6) 

where 𝑓 =
𝜔

2𝜋
, 𝑗 is an imaginary number, and Equation (5.6) is the inverse Fourier transform. 

Different signals have different spectra and therefore must be treated according to the type of 

signal, e.g., periodic, random, or transient. According to the mathematical theory of Fourier 

series, a periodic signal 𝑥𝑝(𝑡) can be written as (Brandt, 2011): 

𝑥𝑝(t) =
𝑎0

2
+ ∑ 𝑎𝑘

∞

𝑘=1
𝑐𝑜𝑠 (

2𝜋𝑘

𝑇𝑝
𝑡) + ∑ 𝑏𝑘

∞

𝑘=1
𝑠𝑖𝑛 (

2𝜋𝑘

𝑇𝑝
𝑡) (5.7) 

Periodic signals can, in theory, be a sum of infinite sinusoids as in Equation (5.7), each with 

their own amplitude and phase. The sinusoids of a periodic signal contain only discrete 

frequencies, and these frequencies are integer harmonics of the fundamental frequency 
1

𝑇𝑝
, 

where 𝑇𝑝 is the period of the signal. The coefficients 𝑎𝑘 and 𝑏𝑘 from Equation (5.7) can be 

calculated from the following equations (Brandt, 2011):  

𝑎𝑘 =
2

𝑇𝑝
∫ 𝑥𝑝(𝑡)

𝑡1+𝑇𝑝

𝑡1

𝑐𝑜𝑠 (
2𝜋𝑘

𝑇𝑝
𝑡) 𝑑𝑡, 𝑓𝑜𝑟 𝑘 = 0, 1, 2, … 

(5.8) 

𝑏𝑘 =
2

𝑇𝑝
∫ 𝑥𝑝(𝑡)

𝑡1+𝑇𝑝

𝑡1

𝑠𝑖𝑛 (
2𝜋𝑘

𝑇𝑝
𝑡)𝑑𝑡, 𝑓𝑜𝑟 𝑘 = 1, 2 ,3, … 
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The integration of Equation (5.8) occurs over an arbitrary period of the periodic signal. 

Equation (5.7) can be rewritten as one sinusoid for each frequency with an individual phase 

angle, 𝜙𝑘, for easier physical interpretation (Brandt, 2011): 

𝑥𝑝(t) =
𝑎0

2
+ ∑ 𝑎𝑘

′ 𝑐𝑜𝑠
∞

𝑘=1
(
2𝜋𝑘

𝑇𝑝
𝑡 + 𝜙𝑘) (5.9) 

where 𝑎𝑘
′  and 𝜙𝑘 are defined as: 

𝑎𝑘
′ = √𝑎𝑘

2 + 𝑏𝑘
2 (5.10) 

𝜙𝑘 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑏𝑘

𝑎𝑘
) (5.11) 

According to Brandt (2011) the Fourier series can also be written with complex coefficients 

instead of real coefficients. The following equations provide the complex coefficients: 

𝑐0 =
𝑎0

2
 

(5.12) 

𝑐𝑘 =
1

2
(𝑎𝑘 − 𝑗𝑏𝑘) =

1

𝑇𝑝
∫ 𝑥𝑝(𝑡)

𝑡1+𝑇𝑝

𝑡1

𝑒
−

𝑗2𝜋𝑘
𝑇𝑝

𝑡
𝑑𝑡, 𝑓𝑜𝑟 𝑘 > 0 

Furthermore, the Fourier series can be written as follows: 

𝑥𝑝(t) = ∑ 𝑐𝑘

∞

𝑘=−∞
𝑒

−
𝑗2𝜋𝑘
𝑇𝑝

𝑡
 (5.13) 

The summation of Equation (5.13) occurs over both positive and negative frequencies. It is 

assumed that if the left-hand side of the equation is real, then the right-hand side must also be 

real. Moreover, it is known that the cosine function is an even function and the sine is an odd 

function. The complex coefficients must then comply with the following equations (Brandt, 

2011): 
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𝑅𝑒[𝑐−𝑘] = Re[𝑐𝑘] 

(5.14) 
𝐼𝑚[𝑐−𝑘] = −I[𝑐𝑘] 

∵ 𝑐−𝑘 = 𝑐𝑘
∗ 

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 ≠ 0 

where “*” represents the complex conjugate with one real and one imaginary part. Thus, the 

physical frequency content is split symmetrically and the true amplitudes are the positive 

components. This is similar to the continuous Fourier transform properties from Equation (5.5) 

(Brandt, 2011).  

A measure used to describe the level of a dynamic signal is the root mean square (RMS) value, 

which is simply the square root of the mean square of the signal. The RMS value can be 

calculated from the average time, 𝜏, and the signal, 𝑥(𝑡). Alternatively, for any type of signal 

the RMS value can be calculated from the summed area under the graph from a power spectral 

density (PSD) plot for a specific frequency range, as shown in the following equations (Brandt, 

2011): 

𝑥𝑅𝑀𝑆 = √
1

𝜏
∫ 𝑥2

𝜏

0

(𝑡)𝑑𝑡 
(5.15) 

𝑥𝑅𝑀𝑆 = √𝑎𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑔𝑟𝑎𝑝ℎ 

The impulse response of a system is the dynamic output from the system for a given input as a 

function of time. For a linear system, the impulse response is obtained from the inverse transfer 

function, whereby the transfer function is obtained from a Laplace transform. From the transfer 

function, each output value is calculated from a given input value. Furthermore, the 

convolution result relates the input time signal to the impulse response. The Fourier transform 

can be used to transform the impulse response into the frequency domain to obtain the 

frequency response function (FRF), which is discussed in more detail in the following section 

(Brandt, 2011).  
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5.3. Frequency analysis 

To transform the measured signal into a spectrum the DFT method is used in this study. The 

finite DFT and the time signal (inverse DFT) can be defined with the following equations 

(Brandt, 2011): 

X(𝑘) = ∑ 𝑥(𝑛)𝑒−𝑗2𝜋𝑘𝑛/𝑁
𝑁−1

𝑛=0
, 𝑓𝑜𝑟 𝑘 = 0, 1,… ,𝑁 − 1 (5.16) 

x(𝑛) =
1

𝑁
∑ 𝑋(𝑘)𝑒𝑗2𝜋𝑘𝑛/𝑁

𝑁−1

𝑘=0
, 𝑓𝑜𝑟 𝑛 = 0, 1, … ,𝑁 − 1 (5.17) 

where 𝑥(𝑛) = 𝑥(𝑛∆𝑡) is the sampled signal and 𝑁 is the number of samples. Since the DFT 

does not include the differentiator, 𝑑𝑡, is Equation (5.16) divided by 𝑁 in order to obtain 

physically interpretable results. One major difference between the DFT and the continuous 

Fourier transform from Equation (5.5) is that the DFT is a discrete sum of the samples and the 

other is a continuous integral (Brandt, 2011).  

A direct calculation of Equation (5.16) would result in a number of computations 𝑁2, where 

one computation consists of a complex multiplication and a complex addition. With the use of 

an algorithm (FFT) to calculate the DFT, the computations can be reduced to less than 

2𝑁𝑙𝑜𝑔2𝑁 without using more data storage for a given array (Cooley & Tukey, 1965). 

According to Proakis and Manolakis (2007) the radix-2 FFT algorithm is a commonly used 

algorithm. It splits the sample into even- and odd-numbered samples, and by using the FFT 

algorithm the number of complex multiplications is reduced to 
𝑁

2
𝑙𝑜𝑔2𝑁 while complex 

additions are reduced to 𝑁𝑙𝑜𝑔2𝑁. The speed improvement factor can be used as an example, 

with a value of 204.8 for complex multiplications with a data sample of 𝑁 = 1024. This is 

obtained by using the radix-2 FFT algorithm, compared to calculating the DFT complex 

multiplications. Further explanation of FFT algorithms can be found in Proakis and Manolakis 

(2007).  
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The FRF for complex exponential and sinusoidal signals is a function of the frequency variable 

and the Fourier transform of the unit sample response; the FRF is expressed by the following 

equation (Proakis & Manolakis, 2007): 

H(𝜔𝑒) = ∑ ℎ(𝑘)
∞

𝑘=−∞
𝑒−𝑗𝜔𝑘 (5.18) 

where H(ω) is the FRF and ℎ(𝑘) is the unit impulse. The FRF describes the characteristics of 

the system, i.e., the spectrum, magnitude and phase (Proakis & Manolakis, 2007). The FRF is 

useful when comparing the input frequency and natural frequency vs. the resonant frequency.  

From the equation of motion of a mass-damper-spring system, Equation (3.11), the forced 

response from harmonic excitations can be obtained. The equation of motion concerning both 

real and complex computations is expressed by (Meirovitch, 1986): 

𝑥̈(𝑡) + 2𝜁𝜔𝑛𝑥̇(𝑡) + 𝜔𝑛
2𝑥(𝑡) =

𝑘

𝑚
𝑓(𝑡) = 𝜔𝑛

2𝐴𝑐𝑜𝑠𝜔𝑡 (5.19) 

where 𝜁 is the relative damping factor and 𝜔𝑛 is the natural frequency of un-damped 

oscillations. The natural frequency is then obtained by the following equation: 

𝜔𝑛 = √
𝑘𝑖

𝑚𝑖 + 𝑚𝐴,𝑖
 (5.20) 

The harmonic response for such systems in compact form is expressed by (Meirovitch, 1986): 

𝑥(𝑡) = 𝑋(𝜔𝑒)cos (𝜔𝑒𝑡 − 𝜙𝑘) (5.21) 

where the amplitude and the phase angle are obtained by: 

X(𝜔𝑒) =
𝐴

√(1 − (
𝜔𝑒

𝜔𝑛
)
2
)
2

+ ((2𝜁
𝜔𝑒

𝜔𝑛
)
2
)
2

 

(5.22) 
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𝜙𝑘 = 𝑡𝑎𝑛−1
2𝜁

𝜔𝑒

𝜔𝑛

1 − (
𝜔𝑒

𝜔𝑛
)
2 (5.23) 

where 𝜔𝑒 is the excitation frequency. The above results can also be obtained using complex 

vectors; the solution for the complex solution is as follows (Meirovitch, 1986): 

𝑥̈(𝑡) + 2𝜁𝜔𝑛𝑥̇(𝑡) + 𝜔𝑛
2𝑥(𝑡) = 𝜔𝑛

2𝐴𝑒𝑗𝜔𝑒𝑡 (5.24) 

𝑥(𝑡) = 𝐴|𝐻(𝑗𝜔𝑒)|𝑒
𝑗(𝜔𝑒𝑡−𝜙𝑘) (5.25) 

|𝐻(𝑗𝜔𝑒)| =
1

√(1 − (
𝜔𝑒

𝜔𝑛
)
2
)
2

+ ((2𝜁
𝜔𝑒

𝜔𝑛
)
2
)
2

 

(5.26) 

where |𝐻(𝑗𝜔𝑒)| is the magnitude of the frequency, which is known as the magnification factor, 

and the phase angle is as in Equation (5.23). Significant insight about the behavior of a system 

can be gained by studying how the magnitude of the FRF changes with the excitation 

frequency. Figure 5.1 illustrates how a system responds to different relative damping factors, 

with the FRF on the y-axis and the excitation frequency/natural frequency ratio (the relative 

frequency ratio) on the x-axis. The non-dimensional relative damping factor can be obtained 

from the following equation (Meirovitch, 1986): 

𝜁 =
𝑐

2√𝑚𝑘
 𝑜𝑟 

𝑐

2𝑚𝜔𝑛
 (5.27) 

 



46 

 

 

Figure 5.1: The frequency response of a system (Meirovitch, 1986, p. 53). 

 

As seen from Figure 5.1, the amplitudes decrease and the peaks tend to shift to the left for 

𝜔𝑒/ 𝜔𝑛 = 1 as damping increases. For a relative damping factor of larger than 1/√2 the 

response has no peaks, and for the un-damped case, the peak extends towards infinity. So, for 

the un-damped case when the excitation frequency approaches the natural frequency, resonance 

exists for the harmonic oscillator, and severe vibrations can occur. Differentiating Equation 

(5.26) with respect to 𝜔𝑒 and setting the result equal to zero leads to the following expression, 

which can be used to identify the location where the peaks occur (Meirovitch, 1986): 

𝜔𝑒 = 𝜔𝑛√(1 − 2𝜁2) (5.28) 
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Equation (5.28) indicates that the maximum response occurs at 𝜔𝑒/ 𝜔𝑛 < 1 for damped 

systems, as previously explained with Figure 5.1. Note that the solution of Equation (5.25) is 

not valid at resonant conditions corresponding to 𝜔𝑒 = 𝜔𝑛 (Meirovitch, 1986). However, the 

solution for this case is not included, since damping is included in all of the systems 

investigated in this study.  

 

5.4. Vibration displacement and bearing life 

The bearing life depends on the total bearing force, i.e., the thrust, vertical, and horizontal 

hydrodynamic forces and moments from the propeller (Amini & Steen, 2011). The bearing 

forces are obtained from the vibration displacements and the stiffness of the system, i.e., 𝐹𝑖 =

𝛿𝑖 × 𝑘𝑖. Since the vibration forces fluctuate with time, the RMS values of the displacements 

are used in the bearing life calculations. The fluctuations are due to propeller operation in the 

wake field (Carlton, 2012) and unbalance in the rotating system. The basic equation for 

calculating bearing life with 90% reliability according to ISO-281 (2007) is obtained by the 

following equations in revolutions and hours: 

𝐿10 = (
𝐶

𝑃
)
𝑎

 (5.29) 

𝐿10ℎ =
106

60 × 𝑅𝑃𝑀
𝐿10 (5.30) 

where 𝑃 = 𝑋𝐹𝑟 + 𝑌𝐹𝑎 is the equivalent dynamic bearing load, with 𝐹𝑟 and 𝐹𝑎 as the actual 

radial and axial loads, and 𝑋 and 𝑌 are respectively the radial and axial load factors according 

to the bearing type. 𝐶 is the basic dynamic load for the specific bearing and 𝑎 is the exponent 

of the life equation, according to the bearing type. For tapered roller bearings 𝑎 = 10/3. 

Furthermore, the following apply for tapered roller bearings according to SKF Group (2016): 

- 
𝐹𝑎

𝐹𝑟
≤ 𝑒 → 𝑃 = 𝐹𝑟.  

- 
𝐹𝑎

𝐹𝑟
> 𝑒 → 𝑃 = 0.4𝐹𝑟 + 𝑌𝐹𝑎. 
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where 𝑒 is the calculation factor for the specific bearing. The RMS values of the displacements 

used for bearing life calculations are; in the axial direction, 𝛿𝑥 = 𝑅𝑀𝑆 𝑜𝑓 𝛿𝑥(𝑡), horizontal 

𝛿𝑦 = 𝑅𝑀𝑆 𝑜𝑓 𝛿𝑦(𝑡), and vertical 𝛿𝑧 = 𝑅𝑀𝑆 𝑜𝑓 𝛿𝑧(𝑡). According to Amini and Steen (2011) 

the total radial force acting on the bearing can be calculated from the following equation: 

𝐹𝑟 = √𝐹𝑧
2 + 𝐹𝑦

2 (5.29) 

As seen from Equation (5.29) the radial forces include both the horizontal and the vertical force 

component. Thus, all of the loading components are accounted for.  
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Chapter 6  

OpenModelica modeling 

6.1. Introduction 

This chapter explains the OM model, and the functionality and testing of the model is briefly 

introduced. Discussions of the various components used in the OM model follows, in addition 

to the primary models used for later simulations.  Moreover, the created self-defined blocks are 

presented and explained.  

 

6.2. OM modeling and set-up 

The modeling began by considering only the marine propeller. This was done to limit the model 

and to have full control of the model and the propeller contributions. Once this model was built, 

tested, and verified, it could then be expanded to include a drive shaft and two bearings. The 

propeller is represented by a multibody block from the standard OM library, which acts as a 

rigid body and can be modified with physical dimensions and an inertia tensor. This block is 

then connected to a self-defined directional block, named DOF-block. The DOF-block contains 

revolute and prismatic blocks from the OM library which enable rotational and translational 

motion. The model supports motion up to 6 DOF. However, the model can be constrained to 

only allow motion in selected DOF. Figure 6.1 illustrates the difference between a 4 DOF-

block and a 6 DOF-block, where “frame_a” and “frame_b” are the connection points for the 

DOF-block. The revolute blocks are shown in column 1 and the prismatic blocks in column 2. 

The vectors under the revolute and the prismatic blocks determine which DOF is “open”, i.e., 

𝑛 = {𝑥, 𝑦, 𝑧}. Moreover, a value of “1” in one of these directions indicates that motion is 

allowed in this direction, while “0” means that it is locked in this direction.  
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Figure 6.1: 4 DOF vs. 6 DOF. 

 

Furthermore, a separate model is created which contains the equation of motion, i.e., the added 

mass, damping, stiffness, and dynamic force and torque contributions. This model is further 

referred to as the equation of motion model (EM). The EM contributions are coded into separate 

self-defined blocks according to the theory presented in previous chapters. In addition, a 

relative sensor from the OM library measures translational and rotational motion, i.e., the 

position, velocity, and acceleration of the body to which the sensor is connected. The EM is 

created as a separate model to ease the expansion and streamline the primary models. Since the 

EM model consists of the added mass, damping, stiffness, and the force and torque 

contributions, the EM model can be used to represent both the marine propeller and the bearings 

in the system. However, the inputs to the EM models must be different. When the EM model 

is connected to the marine propeller the added mass, damping, and the force and torque 

matrices are active. In contrast, when the EM model represents a bearing then only the stiffness 

matrix is active. The appearance of the EM model when opened in OM is shown in Figure 6.2. 

The added mass, damping, bearing and force-torque blocks are built from multiple input – 

multiple output (MIMO) blocks, and the inputs and outputs for the various blocks are shown 

in Table 6.1. 
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Figure 6.2: EM model. 

Table 6.1: EM model inputs and outputs. 

Block: Input 1:  Input 2:  Output 1: Output 2: 

Added mass Relative 

acceleration 

Relative angular 

acceleration 

Force Torque 

Damping Relative 

velocity 

Relative angular 

velocity 

Force Torque 

Bearing Relative 

position 

Relative angles Force Torque 

Force-torque Relative 

velocity 

Relative angular 

velocity 

Force Torque 
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The relative sensor, force, torque, and the “force and torque” blocks must have a reference 

connection and a connection to the relevant body. This is done by connecting the blocks 

“frame_a” and “frame_a_out” to a fixed point, and the blocks “frame_b” and “frame_b_out” 

are connected to the relevant body, as shown in Figures 6.3 and 6.4. The coding for the various 

blocks in the EM model is shown in Appendix C. Meanwhile, the inputs for the added mass 

and damping blocks are calculated for the relevant rotational speed and propeller in the 

Appendix “regression equations” (Appendix H), while the inputs for the force-torque block are 

calculated in the Appendix “thrust and torque” (Appendix H). The latter represents the dynamic 

force and moment contribution from the propeller. The inputs for the added mass, damping, 

and force-torque block must be re-calculated when the propeller and/or the rotational speed are 

changed.  

Figures 6.3 and 6.4 are the two primary models used for simulations in this study. The figures 

show the appearance of the models when they are opened in OM. The first model (Figure 6.3) 

only includes 4 DOF and a marine propeller, while the second model (Figure 6.4) uses 6 DOF 

and contains a marine propeller, a drive shaft, and two bearings. 

 

Figure 6.3: 4 DOF model. 
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Figure 6.4: 6 DOF model. 

 

The world block in Figures 6.3 and 6.4 defines the coordinate system and the gravity field. 

Since the force-torque block from the EM model only considers the dynamic forces, the mean 

thrust is represented in the model by the ramp and a force block. The mean thrust in Newtons 

is the input to the ramp block, while the duration vector below the ramp block defines the length 

in seconds until the input (mean thrust) is reached. The fixed blocks are fixed points in the 

model, and the vector below these blocks defines the locations of these points in the coordinate 

system (x, y, z). Meanwhile, for the vectors below the propeller, drive shaft, and fixed rotation 

blocks define the length in meters between points “a” and “b” on these blocks. The fixed 

rotation block is only applicable for the 6 DOF model and serves as a fixed translation and 

rotation block; hence it is used to define the length between the propeller and the first bearing. 

Note that the length of the drive shaft is not the actual length, but the distance between the first 



54 

 

and second bearings. However, the actual weight, inertia, and center of gravity (COG) are used 

as inputs in the drive shaft block.  

The remaining force and sine blocks in Figure 6.4 are only active if an unbalanced propeller is 

being investigated. The centrifugal force resulting from this unbalanced must then be calculated 

in Newtons and is then the amplitude of the sine function. Moreover, the frequency is the 

angular velocity and is applied in the “y” and “-z” directions.  

 

6.3. Testing of OM model 

Testing starts with the 4 DOF model and is carried out by constraining the body to only allow 

for translational and rotational motion in 2 DOF. Each component is then tested separately to 

verify that they are correctly implemented. For example, the added mass parameters 𝑚44 and 

𝑚41 can be tested simultaneously in one simulation. The components are then further verified 

by evaluating the results from the simulation. This is performed for all parameters to verify that 

all outputs from the model are correct. When the 4 DOF model has been fully checked and the 

results are verified, a few cases are run using the full 6 DOF model to check that the results are 

reasonable. The models are further validated in Section 7.2 when the frequency response is 

analyzed. In this section the excitation and natural frequencies are controlled and verified.  
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Chapter 7  

Numerical analysis and results 

7.1. Introduction 

The two bearings in the pedestal, i.e., the two bearings closest to the propeller, are the bearings 

that experience the highest loads. This is because these two bearings support the drive shaft 

both axially and radially. The following study is therefore carried out on the propeller, the drive 

shaft, and the two bearings associated with the drive shaft. This setup is also applicable for 

hydraulic thrusters because they typically require a similar setup for the propeller and drive 

shaft. A significant difference between the electric thruster in Figure 2.2 and a typical hydraulic 

thruster is that the electric motor is replaced by a hydraulic motor (Forum Energy Technologies, 

2018). One challenge regarding the thruster is the lifetime of the bearings. Figure 7.1 shows an 

oil sample from the thruster pedestal after just a few hundred operating hours. As seen in the 

figure, the oil is severely contaminated. This contamination can only result from the two 

bearings associated with the drive shaft, because the pedestal is a closed area containing only 

these two bearings and the drive shaft. 

 

Figure 7.1: Fresh new oil (left) vs. contaminated oil (right) from the thruster pedestal. 
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The bearings associated with the drive shaft are of the tapered roller type (bearing type: 33206 

and 32009X). The bearings are mounted in opposite directions, meaning that they can 

accommodate radial loads and axial loads in both directions. However, only one bearing can 

accommodate axial loads in each direction. With this in mind, when the thruster is operating in 

pushing mode the axial load is carried by the bearing closest to the propeller (bearing 1), and 

in pulling mode the load is carried by the next bearing (bearing 2). The following case studies 

focus on the propeller in pushing mode, hence the bearing located closest to the propeller. A 

reminder of study objectives two and three which apply to this chapter is listed below. 

- The second objective of this study is to investigate the bearing responses and suggest 

solutions to reduce vibrations in the system, in order to extend the lifetime of the 

bearings. This includes studying the bearing and shaft design. 

- The third objective includes studying the possibility to implement different propellers 

to the current design and possible changes that must be made if another propeller is to 

be used.  

Furthermore, the results from the bearing response and bearing life will be rated according to 

the following criteria: 

1. Torsional vibration amplitudes. 

2. Axial vibration amplitudes. 

3. Horizontal vibration amplitudes. 

4. Vertical vibration amplitudes. 

5. Bearing lifetime. 

6. Impact on design. 

7. Benefit vs. performance. 

The vibration amplitude criteria will then be compared to a base case and, likewise, bearing 

life criteria will be compared to the bearing life of the base case. Criteria 6 and 7 demand a 

subjective assessment of the relevant measure. The bearing lifetime criteria can be linked to 

the design lifetime of the ROV, which is typically 20 years. However, the sum of operation 

hours after 20 years is difficult to estimate and differs for each ROV.  
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7.2. Frequency spectrum 

Before studying the bearing response, the OM model is controlled against inputs to the system 

and natural frequencies. This is done by studying the frequency spectrum of the 4 DOF and 6 

DOF models. The frequency spectrum should show peaks at the excitation frequency and the 

natural frequency of the system.  

The sampling frequency for the frequency spectrum analysis is set to ∆𝑡 = 0.0001𝑠 and the 

sampling length is 10𝑠. The Nyquist theorem for sampling rate states that the sample rate 

should be at least twice the highest frequency component of interest (Scheffer & Girdhar, 

2004). The chosen sampling frequency is higher than this statement to ensure that all responses 

are included in the results, and that the accuracy of results is sufficiently high. The results are 

displayed in log-log plots with amplitudes shown in 𝜇𝑚 on the y-axis and frequency in 𝐻𝑧 on 

the x-axis. 

The frequency spectrum of the 4 DOF model is produced for a B4-71 propeller with a pitch 

ratio of 1.0. The frequency spectrum is plotted for a propeller with speed equal to the maximum 

output from the motor (Table 2.1) and then for 80, 60, and 40 percent of this speed, as shown 

in Table 7.1. The OM model of the 4 DOF model is shown in Figure 6.3. Calculations of the 

various inputs for the matrices in the EM block are shown in the “regression equations” and 

“thrust and torque” Appendices. Note that the inputs to OM matrices vary with rotational speed. 

Table 7.1: Marine propeller B4-71 for different speeds. 

No. and 

color 

Frequency 

(𝑓𝑒) 

(Hz) 

Speed  

(RPM) 

Mean 

thrust 

T (N) 

Mean 

torque 

Q (Nm) 

Stiffness 

𝑘11, 𝑘22, 𝑘33 

(N/m) 

Stiffness 

𝑘44  

(Nm/rad) 

1. Gray 110.3 1655 1708 82 1.0 × 108 2.4 × 104 

2. Magenta 88.3 1324 1095 52 1.0 × 108 2.4 × 104 

3. Cyan 66.2 993 618 30 1.0 × 108 2.4 × 104 

4. Black 44.1 662 271 13 1.0 × 108 2.4 × 104 
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The primary differences between the 4 DOF and 6 DOF models, except for the degrees of 

freedom, are that the 6 DOF model includes a shaft and two bearings in addition to the 

propeller. Moreover, for the 4 DOF model only one EM block is used, as both the propeller 

contributions and the stiffness are represented by this one block. In contrast, for the 6 DOF 

model three EM blocks are used; one EM block represents the propeller, with the stiffness 

matrix set to zero, while the other two EM blocks represent the bearings, and only the stiffness 

matrices are active at these blocks. The OM model of the 6 DOF model is shown in Figure 6.4. 

The distances between the components are based on the thruster from Figures 2.2 and 2.4. The 

frequency spectrum of the 6 DOF model is compared to the 4 DOF model with the inputs from 

Table 7.2. 

Table 7.2: Marine propeller B4-71, shaft and bearings for 4 DOF vs. 6 DOF. 

Color Speed  

(RPM) 

Mean 

thrust 

T (N) 

Mean 

torque 

Q (Nm) 

Stiffness 

𝑘11, 𝑘22, 𝑘33   

(N/m) 

Stiffness 

𝑘44  

(Nm/rad) 

Stiffness 

𝑘55, 𝑘66  

(Nm/rad) 

1. Black 1655 1708 82 1.0 × 108 2.4 × 104  

2. Cyan 1655 1708 82 1.0 × 108 2.4 × 104 4.0 × 104 

 

The stiffness values 𝑘11, 𝑘22, 𝑘33, 𝑘55 and 𝑘66 represent the stiffness of the bearings. However, 

these values are only approximate values based on bearing stiffness values from Tong and 

Hong (2014) and Knaapen (1997). This is done since the bearing stiffness can be altered by 

varying the axial and radial preload on the bearings, and because this preload is not known. 

Furthermore, the stiffness value 𝑘44 is based on the torsional stiffness of the drive shaft, which 

is obtained from the following formula: 

𝑘44 =
𝐺 𝐽

𝑙
 

(7.1) 

where G is the shear modulus, 𝐽 = 𝜋
𝑑4

32
 is the polar moment of inertia, and 𝑙 is the length of the 

shaft. The length of the drive shaft 𝑙 = 228𝑚𝑚 and the diameter 𝑑 = 30𝑚𝑚, where the latter 
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is the diameter on the shaft where the propeller is located; this diameter is chosen to represent 

the diameter of the whole shaft. Note that the axial stiffness is only applied at one block, since 

only one bearing is active in each direction. Furthermore, the torsional stiffness is applied in 

one block, because this is applicable for the whole shaft. The inputs to bearing one and bearing 

two for the 6 DOF model are shown in Appendix C, while the frequency spectra of the cases 

according to Tables 7.1 and 7.2 are shown in the Figures 7.3-7.10. The frequency spectra are 

obtained from the vibration displacements, i.e., 𝜙𝑥, 𝛿𝑥, 𝛿𝑦 and 𝛿𝑧.  

 

 

Figure 7.2: Thruster coordinate system. 
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                        4 DOF model – 662 RPM                           4 DOF model – 993 RPM 

                        4 DOF model – 1324 RPM                           4 DOF model – 1655 RPM 

 

Figure 7.3: Frequency response for the 4DOF thruster model in torsional direction at different 

speeds. 

 

 

Figure 7.4: Frequency response for the 4DOF thruster model in axial direction at different 

speeds. 
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Figure 7.5: Frequency response for the 4DOF thruster model in horizontal direction at different 

speeds. 

 

 

Figure 7.6: Frequency response for the 4DOF thruster model in vertical direction at different 

speeds. 
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                        4 DOF model – 1655 RPM                           6 DOF model – 1655 RPM 

 

Figure 7.7: Frequency response for the 4DOF vs. 6DOF thruster models in torsional direction. 

 

 

Figure 7.8: Frequency response for the 4DOF vs. 6DOF thruster models in axial direction. 
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Figure 7.9: Frequency response for the 4DOF vs. 6DOF thruster models in horizontal direction. 

 

 

Figure 7.10: Frequency response for the 4DOF vs. 6DOF thruster models in vertical direction. 
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The small difference in the y- and z-directions indicates that the model vibrates in a non-

circular orbit. Regarding the excitation frequency, this depends on the rotational speed and the 

number of blades on the propeller. As seen from the results from the Figures 7.3-7.10, 

significant peaks occur at the first and second blade rate frequency, which correspond to the 

input frequency; hence the input frequency corresponds to the OM model. At 1655 RPM the 

first and second blade frequencies are 110.3 𝐻𝑧 and 220.6 𝐻𝑧.  

The Figures 7.3 and 7.7 are the torsional vibrations about the rotating axis (x-axis), while the 

Figures 7.4-7.6 and 7.8-7.10 are the translational vibrations, i.e., the vibrations in the axial, 

horizontal, and vertical directions. As seen in the Figures 7.7-7.10 are the peaks (highest 

values) higher for the 6 DOF model in comparison to the 4 DOF model; this is due to the free 

vibration of the propeller and the distances between the propeller and the supports. However, 

the amplitude spectrum in the horizontal and vertical directions is generally lower for the 6 

DOF model. This is because the 6 DOF model has two bearings providing support in the radial 

direction, while only one bearing supports the 4 DOF model. Consequently, the 6 DOF model 

receives twice the support of the 4 DOF model in the radial direction. However, the axial 

stiffness is the same since only one bearing is active in each direction for the 6 DOF model. 

The torsional stiffness is also the same for both models.  

Furthermore, some of the natural frequencies of the system can be calculated and checked 

against the frequency response. First, the natural frequency of the 4 DOF model at 1655 RPM 

is calculated in the axial direction: 

𝑓𝑛,11 =
1

2𝜋
√

𝑘

𝑚+𝑚𝐴
=

1

2𝜋
√

1×108

2.7987+1.45
= 772.1 𝐻𝑧. From the frequency response in the axial 

direction, it is not possible to determine any significant peaks except for the excitation 

frequencies, possibly due to high damping or stiffness values. Furthermore, the natural 

frequencies in the horizontal and vertical directions are approximately the same and can be 

calculated as follows: 

𝑓𝑛,22 ≈ 𝑓𝑛,33 =
1

2𝜋
√

1×108

0.5545+1.45
= 1124.1 𝐻𝑧. This value corresponds with the frequency 

response in the horizontal and vertical directions, as a clear peak just above 103 𝐻𝑧. Overall, 
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the responses from the system versus the inputs are considered to be reasonable, and further 

analysis can continue.  

 

7.3. Bearing response for B4-71 propeller 

Further investigations continue on the B4-71-100 propeller, but with a focus on the 6 DOF 

system and a rotational speed of 1655 RPM. Concerning the first objective, the bearing 

responses at the first bearing closest to the propeller are investigated for various cases to study 

how this influences the vibration amplitudes on the bearing, and hence the life of the bearing. 

The 6 DOF system from Table 7.2 is used as the base case, and other investigations are 

compared to this case. The amplitudes shown in the following figures are the half of the highest 

peak-to-peak values, while the amplitudes for the base case are shown in Figure 7.11, where 

various values at the propeller and the two bearings are shown. 

 

Figure 7.11: Vibration amplitudes for the base case. 
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The torsional and axial vibrations are the same at each point, as seen in Figure 7.11, since there 

is only one shaft in place and the propeller is rigidly connected to the shaft. The vibration 

amplitudes are naturally lower at bearings one and two than at the propeller because the 

bearings are supported, while the propeller is not. Furthermore, bearing life calculations require 

the RMS values of displacements in the axial, horizontal, and vertical directions. Since the 

propeller is operating in pushing mode the axial force acts upon bearing one. The bearing life 

is therefore calculated for this bearing (bearing one), since it experiences the highest load and 

has the shortest lifetime. As a result, only the RMS values at bearing one are needed; these 

values are shown in Table 7.3.  

Table 7.3: Displacement RMS values for Case 1. 

Direction: Axial Horizontal Vertical 

RMS 𝛿𝑖 (𝜇𝑚): 17.14 0.88 1.04 

 

Bearing one is a tapered roller bearing (33206) with the following properties: 

𝐶 = 79.7 𝑘𝑁, 𝑒 = 0.35 𝑎𝑛𝑑 𝑌 = 1.7. 

When 
𝐹𝑎

𝐹𝑟
> 𝑒, then 𝑃 = 0.4𝐹𝑟 + 𝑌𝐹𝑎. 

The bearing life is then calculated as follows: 

𝑅𝑀𝑆 𝛿𝑟 = √0.882 + 1.042 = 1.3624 𝜇𝑚. 

0.4𝐹𝑟 = 1.3624 × 10−6𝑚 × 108𝑁/𝑚 = 136.24𝑁. 

1.7𝐹𝑎 = 17.14 × 10−6𝑚 × 108𝑁/𝑚 = 1714.00𝑁. 

𝐿10ℎ =
106

60×1655𝑅𝑃𝑀
× (

79700𝑁

0.4×136.24+1.7×1714.00
)
10/3

= 58.37 × 104 ℎ. 
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The bearing life for same setup at 993 RPM is as follows:  

𝐿10ℎ =
106

60×993𝑅𝑃𝑀
× (

79700𝑁

0.4×46.39+1.7×619.10
)
10/3

= 29.09 × 106 ℎ. 

The bearing life is calculated at 993 RPM to determine the effect of the rotational rate on the 

bearing life. Typical ROV thrusters are mostly run at half of their maximum output (or lower). 

At this point, the bearing life seems to be satisfactory. However, these calculations apply to a 

perfectly balanced system, which is unlikely. Despite the fact that a perfectly balanced system 

is uncommon, further studies follow on this system to investigate the effects of different 

stiffness values.  

As discussed earlier, the properties of the bearing stiffness can be altered by changing the axial 

and radial preloads. Further information about bearing preloads can be found in Tong and Hong 

(2014) and Knaapen (1997). The consequences of an altered preload on the bearings will 

therefore be investigated. A change in the preload could be an assembly blunder, or it could 

occur following some time in operation. However, the preload on the bearings can also work 

as a tool to adjust the stiffness of the system to the desired value. A higher and lower stiffness 

of the bearings will therefore be investigated in Cases 2 and 3, to establish how this affects the 

system with respect to vibration amplitudes and bearing life. 

The torsional stiffness can also be varied by changing the diameter of the drive shaft. An 

increase in diameter from 30𝑚𝑚 to 40𝑚𝑚 is assumed to be realistic and doable. This will be 

studied further in Case 4 to investigate if this is beneficial for the system. Note that only the 

torsional stiffness is changed in this case, and the mass of the shaft is kept constant. The various 

inputs for Cases 1 to 4 are shown in Table 7.4; for these case studies it is only necessary to 

consider the resulting amplitudes at bearing one, which are presented in Figure 7.12. 
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Table 7.4: Inputs for Cases 1-4. 

Case Speed  

(RPM) 

Mean 

thrust 

T (N) 

Mean 

torque 

Q (Nm) 

Stiffness 

𝑘11, 𝑘22, 𝑘33   

(N/m) 

Stiffness 

𝑘44  

(Nm/rad) 

Stiffness 

𝑘55, 𝑘66  

(Nm/rad) 

1. Base case 1655 1708 82 1.0 × 108 2.4 × 104 4.0 × 104 

2. Higher stiffness 1655 1708 82 2.5 × 108 2.4 × 104 1.0 × 105 

3. Lower stiffness 1655 1708 82 5.0 × 107 2.4 × 104 2.0 × 104 

4. Larger shaft 1655 1708 82 1.0 × 108 7.7 × 104 4.0 × 104 

 

 

Figure 7.12: Vibration amplitudes for Cases 1-4. 
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Table 7.5: Displacement RMS values and bearing life for Cases 1-4. 

Case RMS-axial  

𝜇𝑚 

RMS-horizontal 

𝜇𝑚 

RMS-vertical 

𝜇𝑚 

𝐿10ℎ(ℎ) 

1. Base case 17.14 0.88 1.04 58.37 × 104 

2. Higher stiffness 6.86 0.32 0.37 58.63 × 104 

3. Lower stiffness 34.26 4.93 2.91 54.71 × 104 

4. Larger shaft 17.11 0.88 1.04 58.71 × 104 

 

Since the thrust is high and is the same for Cases 1 to 4, it can be seen in Table 7.5 that the 

bearing life does not significantly fluctuate. This is because the bearing life is mainly driven 

by the axial load, i.e., the propeller thrust.   

The following case studies investigate the effects of changing the distance between the two 

bearings, and of an unbalanced rotor. The speed, mean thrust, and mean torque will be as in 

the base case, in addition to the stiffness values. For the base case, the distance between the 

two bearings on the drive shaft is 55𝑚𝑚. This distance plus half of this distance is the distance 

between the bearings in Case 5. For Case 6 the distance is only half of the distance from the 

base case. Accordingly, for Case 5 the distance between the bearings is 82.5𝑚𝑚 and for Case 

6 it is 27.5𝑚𝑚. 

For the unbalanced rotor, it is assumed that the center of mass for the propeller is located at a 

radial distance 𝑟𝑐 from the center of the propeller. This distance is chosen as 5% of the diameter 

of the propeller, i.e., for a propeller with a diameter equal to 300𝑚𝑚, 𝑟𝑐 = 15𝑚𝑚. The 

centrifugal force from the change in the center of mass is then; 𝐹𝑐 = 𝑚𝑟𝑐𝜔
2 where 𝑚 is the 

mass of the propeller and 𝜔 is the angular velocity, i.e., 𝜔 = 1655𝑅𝑃𝑀 ×
2𝜋

60
= 173.32

𝑟𝑎𝑑

𝑠
.   
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Table 7.6: Inputs for Cases 1 and 5-7. 

Case Bearing distance (mm) Centrifugal force, 𝐹𝑐 (N) 

1. Base case 55 - 

5. Longer bearing distance 82.5 - 

6. Shorter bearing distance 27.5 - 

7. Unbalanced rotor 55 653.3 

 

 

Figure 7.13: Vibration amplitudes for Cases 1 and 5-7. 
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Table 7.7: Displacement RMS values and bearing life for Cases 1 and 5-7. 

Case RMS-axial 

𝜇𝑚 

RMS-horizontal 

𝜇𝑚 

RMS-vertical 

𝜇𝑚 

𝐿10ℎ(ℎ) 

1. Base case 17.14 0.88 1.04 58.37 × 104 

5. Longer bearing 

distance 
17.14 0.66 0.82 59.19 × 104 

6. Shorter bearing 

distance 
17.14 2.88 1.41 53.79 × 104 

7. Unbalanced rotor 17.14 10.75 10.77 32.99 × 104 

 

As seen from the bearing life results in Table 7.7, the bearing life does not considerably differ 

with the distance between bearings. However, an unbalanced propeller can significantly impact 

the bearing life. For the unbalanced propeller case the velocity and acceleration in the vertical 

and horizontal directions increases. Subsequently, this affects the added mass, damping, and 

the dynamic force and torque contributions. A summary of cases studies 1 to 7 follows in Table 

7.9. The various cases are rated according to the criteria established in Table 7.8.  

Table 7.8: Rating table. 

Criteria Rating 

 Bad (-2) Worse (-1) ~Equal base 

case (-) 

Better (+1) Good (+2) 

1. Torsional 

vibration 
> +300.0𝜇𝑚 < +300.0𝜇𝑚 ±50.0𝜇𝑚 < −300.0𝜇𝑚  > −300.0𝜇𝑚 

2. Axial 

vibration 
> +3.0𝜇𝑚 < +3.0𝜇𝑚 ±0.5𝜇𝑚 < −3.0𝜇𝑚  > −3.0𝜇𝑚 

3. Horizontal 

vibration 
> +3.0𝜇𝑚 < +3.0𝜇𝑚 ±0.5𝜇𝑚 < −3.0𝜇𝑚  > −3.0𝜇𝑚 

4. Vertical 

vibration 
> +3.0𝜇𝑚 < +3.0𝜇𝑚 ±0.5𝜇𝑚 < −3.0𝜇𝑚  > −3.0𝜇𝑚 

5. Bearing 

life 
> −50 × 103ℎ < −50 × 103ℎ ±5000ℎ < +50 × 103ℎ  > +50 × 103ℎ 

6. Impact on 

design 
Large impact Small impact No impact - - 

7. Benefit vs. 

performance 
Bad Worse - Better Good 
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Table 7.9: Summary of results for Cases 1-7. 

Case study Criteria Score 

1 2 3 4 5 6 

1. Base case - - - - - - - 

2. Higher stiffness -1 +1 +1 +1 - - +2 

3. Lower stiffness +1 -1 -2 -2 -1 - -5 

4. Larger shaft +2 +1 - - - -1 +2 

5. Longer bearing distance - - - - +1 -1 0 

6. Shorter bearing distance - - -2 -1 -1 -1 -5 

7. Unbalanced rotor - - -2 -2 -2 - -6 

 

As seen from the summary of cases presented in Table 7.9, with a higher bearing stiffness or a 

larger drive shaft the system exhibits beneficial properties with respect to vibrations. However, 

it is not certain that a higher bearing stiffness can be obtained by changing the preload on the 

bearing. The bearing does have limitations on how much preload that can be applied, and the 

bearing might have to be replaced to obtain the desired stiffness values, as in Case 2. Different 

bearings will affect the design, as will a larger shaft diameter. Furthermore, if the achievement 

of a specific bearing stiffness depends on a preload and this preload is somehow lost, the 

consequences can be fatal; thus special care must be taken to prevent this from happening.  

The bearing life for the considered cases varies less than expected. This is mainly due to the 

high thrust load from the propeller, which is the same in all cases. The thrust is an axial force, 

which is significantly greater than the radial forces, and the bearing life is highly dependent on 

the axial force acting on the bearing. However, for the unbalanced propeller the radial forces 

become considerably high. This is the least desirable case of those tested thus far. It is therefore 

strongly recommended to avoid or restrict unbalance in the thruster system as far as possible 

to prevent problems with the thruster.   
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7.4. Bearing response for different propellers 

In this section the second objective is considered; whether it is possible to implement different 

propellers in the configuration, either larger in size or with more blades, as in the base case. If 

this is not possible, then necessary measures are implemented to achieve similar results as in 

the base case. The reason for choosing a larger propeller is usually to obtain a higher thrust or 

a different torque and RPM configuration. However, propellers with a different number of 

blades exhibit different vibratory properties when operating in the wake field. Accordingly, the 

number of blades on the propeller can be varied to alter the vibration properties of the thruster 

system. To have some consistency between the various cases, all of the thrust and torque values 

are taken at the advance ratio of 𝐽 = 0.5, pitch ratio of 
𝑃

𝐷
= 1.0, and speed of 1655 RPM.   

The first two cases studied in this section are propellers with diameter of 300𝑚𝑚 as in the base 

case (Case 1). Case A is a B5-88 propeller and Case B is a B6-106 propeller; these propellers 

are selected to investigate the impact on vibration displacements and bearing life of a different 

number of blades on the propeller. For Cases C, D, and E the diameters of the studied propellers 

are increased to 𝐷 = 400𝑚𝑚; here the investigated propellers are of the types B4-71, B5-88, 

and B6-106 respectively. The various cases studied in this section are presented in Table 7.10.  

Table 7.10: Cases A-E. 

Case and propeller 

type 

Diameter 

(mm) 

Speed  

(RPM) 

Mean thrust 

T (N) 

Mean torque 

Q (Nm) 

A. B5-88 300 1655 1833 89 

B. B6-106 300 1655 1895 93 

C. B4-71 400 1655 5397 344 

D. B5-88 400 1655 5794 374 

E. B6-106 400 1655 5988 392 
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As shown in Table 7.10, the mean thrust and mean torque increase with an increased number 

of blades for the same speed of advance (𝐽 = 0.5) and the same diameter. For diameter 𝐷 =

400𝑚𝑚 the mean thrust and mean torque values increase significantly compared to the smaller 

propeller. These values are most likely too high for the current bearing arrangement. However, 

Cases C, D, and E will be tested in the current system to evaluate their performance. 

Countermeasures can then be selected according to the results. The various stiffness values in 

the Cases A-E are as in the base case (Case 1) in the previous section, while the vibration 

amplitudes for Cases A and B are compared with the base case as shown in Figure 7.14. Finally, 

the vibration amplitudes for Cases C to E are shown in Figure 7.15.  

 

Figure 7.14: Vibration amplitudes for Cases 1, A, and B. 
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Table 7.11: Displacement RMS values and bearing life for Cases 1, A, and B. 

Case RMS-axial 𝜇𝑚 RMS-horizontal 

𝜇𝑚 

RMS-vertical 

𝜇𝑚 

𝐿10ℎ(ℎ) 

1. Base case 17.14 0.88 1.04 58.37 × 104 

A. B5-88 18.34 16.88 11.08 22.99 × 104 

B. B6-106 19.05 0.88 1.02 41.32 × 104 

 

As mentioned in Section 3.7, propellers with an odd number of blades have different 

characteristics concerning thrust fluctuations and bending moments to propellers with an even 

number of blades. This is clearly shown in the results shown in Figures 7.14 and 7.15, where 

5-bladed propellers exhibit amplitudes of smaller magnitude in the torsional and axial 

directions, and amplitudes of higher magnitude in the horizontal and vertical directions, than 

propellers with 4 and 6 blades. This is because of the changes in the dynamic forces, which can 

be directly seen from the dynamic force and moment equations for the various propellers in 

Appendix A. Moreover, the velocity and acceleration of the 5-bladed propeller behaves quite 

differently from that of the 4- and 6-bladed propellers; this affect the added mass, damping, 

and the dynamic forces and moments of the propeller.  

As seen from the results of Cases A and B in Table 7.11, high forces in the horizontal and 

vertical directions for the 5-bladed propeller result in a more than halving of the bearing 

lifetime compared to the 4-bladed propeller. A significant decrease in bearing life also occurs 

for the 6-bladed propeller, but less critically than for the 5-bladed propeller. It should be noted 

that the thrust is higher for Cases A and B, and this force is the main contribution to the change 

in bearing life. However, if the 6-bladed propeller is operated with the same thrust as the 4-

bladed propeller, then its bearing life would be approximately the same as in the base case 

(Case 1). Also note that the torsional vibration amplitudes for Case C in Figure 7.15 are 

multiplied by 
1

200
, and not 

1

100
 as for Cases D and E.  
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Figure 7.15: Vibration amplitudes for Cases C-E. 

 

Table 7.12: Displacement RMS values and bearing life for Cases C-E. 

Case RMS-axial 𝜇𝑚 RMS-horizontal 𝜇𝑚 RMS-vertical 𝜇𝑚 𝐿10ℎ(ℎ) 

C. B4-71 54.90 5.67 5.87 1.14 × 104 

D. B5-88 57.96 12.73 13.56 8.39 × 103 

E. B6-106 59.96 2.54 1.71 9.18 × 103 

 

As expected, the bearing life results of Cases C to E are very low, as seen in Table 7.12. The 

primary reason for this low lifetime is the high thrust resulting from larger propellers, meaning 

that the bearing type or configuration must be changed. Since the propeller diameter is 

increased by 
4

3
, the shaft will also be increased by 

4

3
. The new mean diameter of the shaft will 
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then be Ø40𝑚𝑚, and the new torsional stiffness for this shaft will be as in Case 4 (see Section 

7.3). A new tapered roller bearing corresponding to this diameter is therefore used in the 

following simulations. New simulations of Cases C to E will be performed with the same setup 

as previously, except for the shaft and bearings. The stiffness values 𝑘55 and 𝑘66 will be 

changed to the values used in Case 2 from Section 7.3; it is assumed that these values are more 

appropriate because of the larger bearing. The new simulations of Cases C to E are named C.1, 

D.1, and E.1. The bearing chosen for these simulations has the designation 33208, and has the 

following new property; 𝐶 = 128𝑘𝑁. The vibration amplitudes, displacements, and bearing 

life for Cases C.1-E.1 are presented in Figure 7.16 and Table 7.13.  

 

Figure 7.16: Vibration amplitudes for Cases C.1-E.1. 
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Table 7.13: Displacement RMS values and bearing life for Cases C.1-E.1. 

Case RMS-axial 𝜇𝑚 RMS-horizontal 𝜇𝑚 RMS-vertical 𝜇𝑚 𝐿10ℎ(ℎ) 

C.1. B4-71 54.08 3.48 3.77 6.07 × 104 

D.1. B5-88 57.97 5.04 6.08 4.67 × 104 

E.1. B6-106 60.08 2.25 1.50 4.41 × 104 

 

As seen from the new vibration amplitudes shown in Figure 7.16, the magnitude of the 

amplitudes has decreased. However, the bearing life is still low, which implies that the bearing 

cannot handle the high load it is experiencing. As a consequence, the bearing configuration 

must be altered; this could either involve adding thrust bearings or situating two bearings in 

each direction of the current bearing. The latter option is chosen so that the axial load is 

distributed over two bearings. The new bearing life for this configuration is shown in Table 

7.14.  

Table 7.14: New bearing life for Cases C.1-E.1. 

Case 𝐿10ℎ(ℎ) 

C.1. B4-71 61.23 × 104 

D.1. B5-88 47.06 × 104 

E.1. B6-106 44.42 × 104 

 

The bearing life with two active bearings in each direction yields a bearing life similar to the 

base case, and this setup is therefore considered acceptable. As seen from Figure 7.16 of the 

larger propellers, the vibration amplitudes for the 4-blade propeller are no longer the most 

advantageous. The 4-blade propeller also delivers the lowest thrust. For propellers with 𝐷 =

400𝑚𝑚, the use of a propeller with 5 or 6 blades should therefore be considered. However, 

this decision depends on the required thrust and whether the torsional and axial vibrations or 

the radial vibrations are considered the most important. 
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7.5. Bearing response to unbalanced propeller 

For the case studies in this section an unbalance is applied to the system, i.e., the center of mass 

for the propeller is set off-center in the radial direction. The radial distance to the new center 

of mass for the propellers is chosen to be the same as in Case 7, i.e., 𝑟𝑐 = 15𝑚𝑚. The 

unbalanced propeller is applied to the Cases A, B, and C.1-E.1. The various unbalanced inputs 

for the OM models are shown in Appendix G. The case studies in this section are named A.2-

E.2. Cases 7, A.2, and B.2, where the propellers are of the same diameter, will be compared in 

Figure 7.17, while the Cases C.2-E.2 are presented in Figure 7.18.  

 

Figure 7.17: Vibration amplitudes for Cases 7, A.2, and B.2. 
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Figure 7.18: Vibration amplitudes for Cases C.2-E.2. 

 

Table 7.15: Displacements RMS values and bearing life for Cases 7 and A.2-E.2. 

Case RMS-axial 𝜇𝑚 RMS-horizontal 𝜇𝑚 RMS-vertical 𝜇𝑚 𝐿10ℎ(ℎ) 

7. B4-71 17.14 10.75 10.77 32.99 × 104 

A.2. B5-88 18.34 21.31 16.91 18.27 × 104 

B.2. B6-106 19.05 14.47 14.49 20.59 × 104 

C.2. B4-71 54.08 22.49 22.58 42.75 × 104 

D.2. B5-88 57.97 26.47 26.74 32.55 × 104 

E.2. B6-106 60.08 30.52 30.41 27.60 × 104 
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As seen from the results shown in Figures 7.17, 7.18, and Table 7.15, the radial components 

are considerably increased; this affects the bearing life significantly. An interesting observation 

arising from the unbalanced cases is that unbalance seems to have a greater impact upon 4- and 

6-bladed propellers, which are the propellers with the most beneficial vibratory properties when 

thruster systems are balanced. As seen from Figure 7.18 showing results for the larger 

propellers, the 5-bladed propeller is no longer the propeller with the least desirable 

performance. The increase of radial vibrations from balanced cases to unbalanced cases of the 

400𝑚𝑚 diameter propellers is highest for the 6-bladed propeller, followed the 4-bladed, and 

finally the 5-bladed propeller, as this value is approximately 15 times higher for the B6, 6 times 

higher for the B4, and 5.8 times higher for the B5 propeller, respectively.   

Furthermore, it is clear that even a small unbalance affects the vibrations in the thruster system 

and the bearing life. However, achieving a perfectly balanced system might be unrealistic. 

Balancing issues related to the thruster investigated in this study can result from different 

materials of its various components. For instance, if the propeller is made of aluminum and the 

shaft of stainless steel the key coupling between these two parts can be a source of unbalance. 

Moreover, inaccuracy in production and assembly can lead to unbalance, in addition to changes 

in shape or damage to the propeller after some time in operation. Essentially, unbalance in the 

thruster system should be avoided or constrained as far as possible.  
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Chapter 8  

Conclusions and further work 

8.1. Summary and conclusions 

A 6 DOF model is created in OM that consists of a marine propeller, a shaft, and two bearings. 

The model can be used to study various steady-state cases, whereby the resulting forces and 

vibration properties can be obtained from the simulation. The various inputs to the marine 

propeller in OM are obtained by use of an empirical approach. This approach is used to 

calculate the marine propeller hydrodynamic contributions, i.e., the added mass and damping 

elements. The equations used to calculate the added mass and damping are based on sets of 

regression coefficients, which in turn are based on the Wageningen B-screw series. The marine 

propellers investigated in this study are not from the Wageningen B-screw series. However, 

Parsons and Vorus (1981) demonstrate that this method is applicable for propellers outside the 

Wageningen B-screw series, i.e., for propellers without skew and rake, such as the propellers 

investigated here. Furthermore, the thrust and torque of the marine propellers are obtained from 

open water tests of the relevant propellers from the Wageningen B-screw series. The tests 

chosen to represent the propellers investigated in this study are those with the most similar 

BAR. The characteristics acquired from the open water tests are the thrust and torque 

coefficients and the propeller efficiency versus the advance coefficient. From this the mean 

thrust and mean torque can be obtained, and these values are further used in a set of equations 

produced by Veritec (1985). These equations are used to calculate the dynamic forces and 

moments from the marine propeller. Note that hydrodynamic contributions from the marine 

propeller are simplified calculations and should only be used for preliminary design 

calculations and studies. In this way, the first objective of developing a 6 DOF model in OM 

was achieved. A challenge that arose when developing the OM model was to include the 

propeller added mass, damping, and the dynamic forces and moments in the model. The various 

contributions had to be calculated for the specific rotational speed before the results could be 

entered into the OM model. This also explains why only steady-state cases can be investigated 

with the current model.  
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Concerning the second objective regarding vibrations in the thruster system, vibration 

amplitudes are dependent on the stiffness and bearing location, and above all if unbalance is 

present in the rotating system. A higher stiffness resulting from the bearing configuration and 

bearing pre-load has beneficial effects on the vibration amplitudes in the axial, horizontal, and 

vertical directions. However, the torsional vibrations are higher, which may affect the fatigue 

life of the shaft. Furthermore, a shaft with larger diameter produces favorable vibrational results 

in the axial and torsional directions, so the life of the shaft could be extended by increasing its 

size. As for the bearing location, a larger distance between bearings has beneficial effects on 

horizontal and vertical vibrations, while a shorter distance produces the opposite effect. It 

should be noted that the bearing distance of the base case is considered to be small initially. 

However, the situation that results in the greatest radial vibrations is an unbalanced propeller, 

where the worst case was a 6-bladed propeller with diameter 400𝑚𝑚. The radial vibrations of 

this propeller were increased by about 15 times compared to the balanced case.  

The difference in vibratory characteristics between propellers with varying numbers of blades 

results from the different velocities and accelerations produced, i.e., angular and linear motion. 

As seen from the comparison of the selected added mass and damping terms in Appendix E, 

the added mass and damping results do not vary considerably between propellers with a 

different number of blades and with the same pitch ratio. An exception is the damping term 

c22 for the 6-bladed propeller, which is much higher than for the other two investigated 

propellers. This indicates that the accelerations affecting the added mass vary with the number 

of blades on the propeller, as do the velocities, which affect the damping, and the dynamic 

forces and moments. The B4 and B6 propellers follow the same pattern; however, the 

magnitudes of the motions are higher for the B6 propeller. These propellers have high values 

in the axial direction and small values in the horizontal and vertical directions. Conversely, the 

B5 propeller exhibits small values in the axial direction, and high values in the horizontal and 

vertical directions. Furthermore, the equations used to calculate dynamic forces and moments 

vary with the number of blades on the propeller. This also affects the results of the simulations. 

Accordingly, the dynamic force and moment equations are listed in Appendix A for B4-B6 

propellers.  
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The thruster investigated in this study has two tapered roller bearings which accept the axial 

and radial load from the marine propeller. However, only one bearing takes the axial load at 

any one time, depending on the rotational direction. Consequently, it is sufficient to investigate 

the bearing life of one bearing. The bearing life is highly dependent on the axial load, i.e., the 

thrust from the propeller and this force is usually much higher than the radial force. The bearing 

load is calculated from the RMS values of displacements in the axial, horizontal, and vertical 

directions. From the investigated cases the radial forces are only a concern for the 5-bladed 

propeller, or an unbalanced propeller. In the worst investigated case a small unbalance more 

than halves the bearing life of the balanced case. Unbalance causes large centrifugal forces; 

this is of great concern and should be avoided or constrained as far as possible. Careful 

consideration should also be taken if the bearing depends on a pre-load for normal operation, 

since a loss of bearing pre-load can lead to large and destructive forces on the bearing. 

Furthermore, actions to prolong the bearing life follow the same principles as reducing the 

vibrations in the system, as previously discussed. The thruster and bearing design should be 

related to the maximum thrust force. Regarding the third objective of using different propellers 

in the same design, this can be done. However, the maximum thrust force must not exceed the 

thrust force of the original propeller. Another propeller can be used to change the RPM-thrust 

force configuration or to change the vibratory properties of the thruster system.  

 

8.2. Recommendations for further work 

A significant part of the scope of this study was to develop a functional model in OM. Further 

work on marine propeller hydrodynamic contributions and the implementation of these 

contributions into OM is recommended. Moreover, detailed further investigation of the 

bearings and their natural frequencies is also advised. Additional topics for further work are 

presented below: 

- Examine the possibility to include two and three-bladed propellers. To do this, it might 

be necessary to use a different approach to calculate the marine propeller hydrodynamic 

contributions, i.e., the added mass, damping, thrust, and torque. A possible approach is 

lifting line theory. If a lifting line approach is selected, then it is possible to implement 
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this calculation directly into OM. If the marine propeller hydrodynamic contributions 

are calculated directly in OM, this enables the analysis of transient cases.  

- Conduct a thorough analysis of the bearings in the thruster, with a focus on the bearing 

stiffness and the natural frequencies of the bearing. Investigate whether the natural 

frequencies of the bearings affect the other rotating components in the thruster system. 

- Consider the duct around the propeller and the possibility of including contributions 

from the duct in the OM model.  

- Investigate shaft analysis, torsional vibrations, and shaft fatigue.  
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A. Dynamic forces and moments 

The first and second order dynamics forces for 4 to 6 bladed propellers for preliminary 

estimation purposes according to Carlton (2012) and Veritec (1985) are as follows: 

Four blade propellers: 

𝐹𝑥(1) = 0.084𝑇0 ± 0.031𝑇0, 𝐹𝑥(2) = 0.022𝑇0 ± 0.004𝑇0 – Thrust 

𝐹𝑧(1) = 0.008𝑇0 ± 0.004𝑇0, 𝐹𝑧(2) = 0.008𝑇0 ± 0.004𝑇0 – Vertical force 

𝐹𝑦(1) = 0.012𝑇0 ± 0.011𝑇0, 𝐹𝑦(2) = 0.00𝑇0 ± 0.001𝑇0 – Horizontal force 

 

 

 

(3.25) 

𝑀𝑥(1) = 0.062𝑄0 ± 0.025𝑄0, 𝑀𝑥(2) = 0.016𝑄0 ± 0.010𝑄0 – Torque 

𝑀𝑧(1) = 0.075𝑄0 ± 0.05𝑄0, 𝑀𝑧(2) = 0.019𝑄0 ± 0.013𝑄0 – Vertical torque 

𝑀𝑦(1) = 0.138𝑄0 ± 0.09𝑄0, 𝑀𝑦(2) = 0.040𝑄0 ± 0.036𝑄0 – Horizontal torque 

 

 

 

(3.26) 

Five blade propellers: 

𝐹𝑥(1) = 0.020𝑇0 ± 0.006𝑇0, 𝐹𝑥(2) = 0.017𝑇0 ± 0.003𝑇0 – Thrust 

𝐹𝑧(1) = 0.011𝑇0 ± 0.009𝑇0, 𝐹𝑧(2) = 0.002𝑇0 ± 0.002𝑇0 – Vertical force 

𝐹𝑦(1) = 0.021𝑇0 ± 0.016𝑇0, 𝐹𝑦(2) = 0.006𝑇0 ± 0.003𝑇0 – Horizontal force 

 

 

 

(A.1) 
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𝑀𝑥(1) = 0.0011𝑄0 ± 0.0008𝑄0, 𝑀𝑥(2) = 0.014𝑄0 ± 0.008𝑄0 – Torque 

𝑀𝑧(1) = 0.039𝑄0 ± 0.026𝑄0, 𝑀𝑧(2) = 0.012𝑄0 ± 0.011𝑄0 – Vertical torque 

𝑀𝑦(1) = 0.125𝑄0 ± 0.085𝑄0, 𝑀𝑦(2) = 0.080𝑄0 ± 0.040𝑄0 – Horizontal torque 

 

 

 

(A.2) 

Six blade propellers: 

𝐹𝑥(1) = 0.036𝑇0 ± 0.0024𝑇0, 𝐹𝑥(2) = 0.015𝑇0 ± 0.002𝑇0 – Thrust 

𝐹𝑧(1) = 0.003𝑇0 ± 0.002𝑇0, 𝐹𝑧(2) = 0.001𝑇0 ± 0.001𝑇0 – Vertical force 

𝐹𝑦(1) = 0.009𝑇0 ± 0.004𝑇0, 𝐹𝑦(2) = 0.001𝑇0 ± 0.001𝑇0 – Horizontal force 

 

 

 

(A.3) 

𝑀𝑥(1) = 0.030𝑄0 ± 0.020𝑄0, 𝑀𝑥(2) = 0.010𝑄0 ± 0.002𝑄0 – Torque 

𝑀𝑧(1) = 0.040𝑄0 ± 0.015𝑄0, 𝑀𝑧(2) = 0.007𝑄0 ± 0.002𝑄0 – Vertical torque 

𝑀𝑦(1) = 0.073𝑄0 ± 0.062𝑄0, 𝑀𝑦(2) = 0.015𝑄0 ± 0.002𝑄0 – Horizontal torque 

 

 

 

(A.4) 
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B. Wageningen B-series – Open water diagrams 

Open water diagrams used in this study, from Bernitsas et al. (1981): 

 

 

Figure 3.2: Kt, Kq and efficiency curves for B4-70 propeller (Benitsas et al., 1981, p. 47). 

 



V 

 

 

Figure B.1: Kt, Kq and efficiency curves for B4-70 propeller (Bernitsas et al., 1981, p. 67). 

 

Figure B.2: Kt, Kq and efficiency curves for B4-70 propeller (Bernitsas et al., 1981, p. 86). 
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C. OpenModelica 

The coding for the added mass, damping, bearing (stiffness), and the force-torque blocks are 

shown in the following figures. Moreover, are the inputs for the B4-70 propeller at 1655 

RPM shown. Note that the bearing (stiffness) block is zero at the propeller for the 6 DOF 

model, as shown in Figure C.3. Moreover, an example for inputs to bearing one and bearing 

two is shown in Figure C.5. 

Figure C.1: Added mass block inputs and coding. 
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Figure C.2: Damping block inputs and coding. 

Figure C.3: Bearing (stiffness) block inputs and coding. 
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Figure C.4: Force and torque block inputs and coding. 

Figure C.5: Inputs bearing 1 and bearing 2 – Base case.  
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D. Bearing life 

Bearing life calculations for Section 7.3 bearing response: 

Case 2: 

0.4𝐹𝑟 = 0.4892 × 10−6𝑚 × 2.5 × 108𝑁/𝑚 = 122.30𝑁. 

1.7𝐹𝑎 = 6.86 × 10−6𝑚 × 2.5 × 108𝑁/𝑚 = 1715.00𝑁. 

𝐿10ℎ =
106

60×1655𝑅𝑃𝑀
× (

79700𝑁

0.4×122.30+1.7×1715.00
)
10/3

= 58.63 × 104 ℎ. 

Case 3: 

0.4𝐹𝑟 = 5.7248 × 10−6𝑚 × 5 × 107𝑁/𝑚 = 286.24𝑁. 

1.7𝐹𝑎 = 34.26 × 10−6𝑚 × 5 × 107𝑁/𝑚 = 1713.00𝑁. 

𝐿10ℎ =
106

60×1655𝑅𝑃𝑀
× (

79700𝑁

0.4×286.24+1.7×1713.00
)
10/3

= 54.71 × 104 ℎ. 

Case 4: 

0.4𝐹𝑟 = 1.3624 × 10−6𝑚 × 108𝑁/𝑚 = 136.24𝑁. 

1.7𝐹𝑎 = 17.11 × 10−6𝑚 × 108𝑁/𝑚 = 1711.00𝑁. 

𝐿10ℎ =
106

60×1655𝑅𝑃𝑀
× (

79700𝑁

0.4×136.24+1.7×1711.00
)
10/3

= 58.71 × 104 ℎ. 

Case 5: 

0.4𝐹𝑟 = 1.0526 × 10−6𝑚 × 108𝑁/𝑚 = 105.26𝑁. 
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1.7𝐹𝑎 = 17.14 × 10−6𝑚 × 108𝑁/𝑚 = 1714.00𝑁. 

𝐿10ℎ =
106

60×1655𝑅𝑃𝑀
× (

79700𝑁

0.4×105.26+1.7×1714.00
)
10/3

= 59.19 × 104 ℎ. 

Case 6: 

0.4𝐹𝑟 = 3.2066 × 10−6𝑚 × 108𝑁/𝑚 = 320.66𝑁. 

1.7𝐹𝑎 = 17.14 × 10−6𝑚 × 108𝑁/𝑚 = 1714.00𝑁. 

𝐿10ℎ =
106

60×1655𝑅𝑃𝑀
× (

79700𝑁

0.4×320.66+1.7×1714.00
)
10/3

= 53.79 × 104 ℎ. 

Case 7: 

0.4𝐹𝑟 = 15.2169 × 10−6𝑚 × 108𝑁/𝑚 = 1521.69𝑁. 

1.7𝐹𝑎 = 17.14 × 10−6𝑚 × 108𝑁/𝑚 = 1714.00𝑁. 

𝐿10ℎ =
106

60×1655𝑅𝑃𝑀
× (

79700𝑁

0.4×1521.69+1.7×1714.00
)
10/3

= 32.99 × 104 ℎ. 

Bearing life calculations for section 7.4: 

Case A: 

0.4𝐹𝑟 = 20.1916 × 10−6𝑚 × 108𝑁/𝑚 = 2019.16𝑁. 

1.7𝐹𝑎 = 18.34 × 10−6𝑚 × 108𝑁/𝑚 = 1834.00𝑁. 

𝐿10ℎ =
106

60×1655𝑅𝑃𝑀
× (

79700𝑁

0.4×2019.16+1.7×1834
)
10/3

= 22.99 × 104 ℎ. 

Case B: 
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0.4𝐹𝑟 = 1.3471 × 10−6𝑚 × 108𝑁/𝑚 = 134.71𝑁. 

1.7𝐹𝑎 = 19.05 × 10−6𝑚 × 108𝑁/𝑚 = 1905.00𝑁. 

𝐿10ℎ =
106

60×1655𝑅𝑃𝑀
× (

79700𝑁

0.4×134.71+1.7×1905
)
10/3

= 41.32 × 104 ℎ. 

Case C: 

0.4𝐹𝑟 = 8.1612 × 10−6𝑚 × 108𝑁/𝑚 = 816.12𝑁. 

1.7𝐹𝑎 = 54.90 × 10−6𝑚 × 108𝑁/𝑚 = 5490.00𝑁. 

𝐿10ℎ =
106

60×1655𝑅𝑃𝑀
× (

79700𝑁

0.4×816.12+1.7×5490
)
10/3

= 1.14 × 104 ℎ. 

Case D: 

0.4𝐹𝑟 = 18.5991 × 10−6𝑚 × 108𝑁/𝑚 = 1859.91𝑁. 

1.7𝐹𝑎 = 57.96 × 10−6𝑚 × 108𝑁/𝑚 = 5796.00𝑁. 

𝐿10ℎ =
106

60×1655𝑅𝑃𝑀
× (

79700𝑁

0.4×1859.91+1.7×5796
)
10/3

= 8.39 × 103 ℎ. 

Case E: 

0.4𝐹𝑟 = 3.0620 × 10−6𝑚 × 108𝑁/𝑚 = 306.20𝑁. 

1.7𝐹𝑎 = 59.96 × 10−6𝑚 × 108𝑁/𝑚 = 5996.00𝑁. 

𝐿10ℎ =
106

60×1655𝑅𝑃𝑀
× (

79700𝑁

0.4×306.20+1.7×5996
)
10/3

= 9.18 × 103 ℎ. 

Case C.1: 



XII 

 

0.4𝐹𝑟 = 5.1306 × 10−6𝑚 × 108𝑁/𝑚 = 513.06𝑁. 

1.7𝐹𝑎 = 54.08 × 10−6𝑚 × 108𝑁/𝑚 = 5408.00𝑁. 

𝐿10ℎ =
106

60×1655𝑅𝑃𝑀
× (

128000𝑁

0.4×513.06+1.7×5408
)
10/3

= 6.07 × 104 ℎ. 

Case D.1: 

0.4𝐹𝑟 = 7.8973 × 10−6𝑚 × 108𝑁/𝑚 = 789.73𝑁. 

1.7𝐹𝑎 = 57.97 × 10−6𝑚 × 108𝑁/𝑚 = 5797.00𝑁. 

𝐿10ℎ =
106

60×1655𝑅𝑃𝑀
× (

128000𝑁

0.4×789.73+1.7×5797
)
10/3

= 4.67 × 104 ℎ. 

Case E.1: 

0.4𝐹𝑟 = 3.3750 × 10−6𝑚 × 108𝑁/𝑚 = 337.50𝑁. 

1.7𝐹𝑎 = 60.08 × 10−6𝑚 × 108𝑁/𝑚 = 6008.00𝑁. 

𝐿10ℎ =
106

60×1655𝑅𝑃𝑀
× (

128000𝑁

0.4×337.50+1.7×6008
)
10/3

= 4.41 × 104 ℎ. 

Unbalance Cases A2-E2: 

Case A.2: 

0.4𝐹𝑟 = 27.2041 × 10−6𝑚 × 108𝑁/𝑚 = 2720.41𝑁. 

1.7𝐹𝑎 = 18.34 × 10−6𝑚 × 108𝑁/𝑚 = 1834.00𝑁. 

𝐿10ℎ =
106

60×1655𝑅𝑃𝑀
× (

79700𝑁

0.4×2720.41+1.7×1834
)
10/3

= 18.27 × 104 ℎ. 
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Case B.2: 

0.4𝐹𝑟 = 20.4778 × 10−6𝑚 × 108𝑁/𝑚 = 2047.78𝑁. 

1.7𝐹𝑎 = 19.05 × 10−6𝑚 × 108𝑁/𝑚 = 1905.00𝑁. 

𝐿10ℎ =
106

60×1655𝑅𝑃𝑀
× (

79700𝑁

0.4×2047.78+1.7×1905
)
10/3

= 20.59 × 104 ℎ. 

Case C.2: 

0.4𝐹𝑟 = 31.8694 × 10−6𝑚 × 108𝑁/𝑚 = 3186.94𝑁. 

1.7𝐹𝑎 = 54.08 × 10−6𝑚 × 108𝑁/𝑚 = 5408.00𝑁. 

𝐿10ℎ =
106

60×1655𝑅𝑃𝑀
× (

2×128000𝑁

0.4×3186.94+1.7×5408
)
10/3

= 42.75 × 104 ℎ. 

Case D.2: 

0.4𝐹𝑟 = 37.6256 × 10−6𝑚 × 108𝑁/𝑚 = 3762.56𝑁. 

1.7𝐹𝑎 = 57.97 × 10−6𝑚 × 108𝑁/𝑚 = 5797.00𝑁. 

𝐿10ℎ =
106

60×1655𝑅𝑃𝑀
× (

2×128000𝑁

0.4×3762.56+1.7×5797
)
10/3

= 32.55 × 104 ℎ. 

Case E.2: 

0.4𝐹𝑟 = 43.0841 × 10−6𝑚 × 108𝑁/𝑚 = 4308.41𝑁. 

1.7𝐹𝑎 = 60.08 × 10−6𝑚 × 108𝑁/𝑚 = 6008.00𝑁. 

𝐿10ℎ =
106

60×1655𝑅𝑃𝑀
× (

2×128000𝑁

0.4×4308.41+1.7×6008
)
10/3

= 27.60 × 104 ℎ.  
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E. Comparison of added mass and damping terms 

The following figures show the difference in selected added mass and damping terms for 

Ø300 propellers with 4, 5, and 6 blades at 1655 RPM. 

 

Figure E.1: Added mass, coefficient m41 – 1655 RPM. 

 

Figure E.2: Added mass, coefficient m11 – 1655 RPM. 
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Figure E.3: Added mass, coefficient m22 – 1655 RPM. 

 

 

Figure E.4: Damping, coefficient c41 – 1655 RPM. 
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Figure E.5: Damping, coefficient c11 – 1655 RPM. 

 

 

Figure E.6: Damping, coefficient c32 – 1655 RPM. 
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Figure E.7: Damping, coefficient c22 – 1655 RPM. 

 

As seen from the figures of the added mass values, do the coefficients for the various 

propellers follow the same pattern. The only difference is in the magnitude of the coefficient, 

it increases with increased number of blades.  

The results of the damping values are different, and there are no patterns except for the c32 

coefficient which has similar behavior as the added mass coefficients. Especially for the 

added mass coefficients c41 and c11 it is seen that these values do not increase linearly with 

increased number of blades. This means that some of the damping coefficients have a 

different behavior as an effect of the number of blades on the propeller. However, the 

magnitude of the coefficients between the various propellers does not vary much, except for 

the 6-blade propeller for coefficient c22.  

The following figures show the difference between various speeds of the 4-blade propeller. 

As seen in Figure E.8 are the added mass coefficients not affected by the rotational speed.  
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Figure E.8: Added mass, coefficient m41 – various speeds. 

 

 

Figure E.9: Damping, coefficient c41 – various speeds. 
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Figure E.10: Damping, coefficient c11 – various speeds. 

 

Figure E.11: Damping, coefficient c32 – various speeds. 
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Figure E.12: Damping, coefficient c22 – various speeds. 

 

As seen from the figures with damping coefficients do these follow the same pattern with the 

various speeds. However, the magnitude is higher with higher rotational speed.  
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F. 2D - Drawings 

Drawings of the various propellers, and drive shafts are shown. Note that the expanded area on 

the drawings are only of one blade, i.e., 𝐴𝑒 must be multiplied with the number of blades. 

 

Figure F.1: B4-71 – Ø300. 

 

Figure F.2: B4-71 – Ø400. 
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Figure F.3: B5-88 – Ø300. 

 

Figure F.4: B5-88 – Ø400. 
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Figure F.5: B6-106 – Ø300. 

 

Figure F.6: B6-106 – Ø400. 
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Figure F.7: Drive shaft. 

 

Figure F.8: Drive shaft Ø40. 
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G. Inputs for unbalanced propeller 

Inputs for the various unbalanced cases are shown in the following figures. 

Figure G.1: Cases 7 and A.2. 
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Figure G.2: Cases B.2 and C.2. 

Figure G.3: Cases D.2 and E.2. 
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H. Digital appendices 

The digital appendix includes the following: 

- Regression equations, excel file. 

- Thrust and torque, excel file. 

- Vibration amplitudes, excel file. 

- OpenModelica files. 

- Selection of OpenModelica simulation graphical results, png files. 

- OpenModelica simulation results, excel files. 

- Matlab files. 

 


