
1

FACULTY OF SCIENCE AND TECHNOLOGY

MASTER'S THESIS

Study programme/specialisation:
DATMAS
Computer Science

Spring semester, 2018

Open

Author: Ronny Wathne

…………………..
(signature of author)

Programme coordinator:

Supervisor(s):

Reggie Davidrajuh

Title of master's thesis: GUI for petri net coverability tree

Credits: 30

Keywords: Petri Net, Coverability, MATLAB,
GUI,

Number of pages: 62

+ supplemental material/other: one zip file

containing 10 script files

Stavanger, 13/06/2018

date/year

Title page for Master's Thesis Faculty of

Science and Technology

https://stavanger.instructure.com/courses/439

2

GUI For Petri Net Coverability Tree

By Ronny Wathne

Abstract

Petri nets are a long time established modeling concept for modelling and simulation of discrete-event

systems. This thesis concerns the development of tools to perform analysis of Petri nets that contains

places that are unbounded. The tools are coded in MATLAB, and produces graphical representations of

reachability/coverability trees, as well as providing an interactable interface to make changes to how the

generation is done.

Table of contents
1. Introduction ..4

1.1 Motivation ..4

2. Literature Review ..5
2.1 reachability...5

2.1 coverability ...6

2.2 HCI ..7

3. Design ...8
3.1 Overview ..8

3.2 GUI design ..8

3.3 Algorithm design ...12

Coverability ...12
Coverability_extra ...12

reachabilityWithDepthLimit12

reachabilityWithValueLimit13

Coverability vs reachability13

Extra transition parameters14

4. The algorithm ..15

4.1 The input ...15

4.2 The GUI control choices16

4.3 algorithm code ..17
basic coverability ...17

Coverability_extra ...19

reachabilityWithDepthLimit19

reachabilityWithValueLimit20

4.4 draw figure code ...20

5. Testing ..22

3

6. Discussion and Future work23

7. References ..25

A. Appendix ..26

A.1 Installation guide26

A.2 User manual ...26
states ..29

hide/show duplicates29

search ..30

continue ..31

A.3 Complete code ..32

4

1 Introduction

This thesis is made to accompany the MATLAB file petNetCoverTreeGUI.m, and its dependencies. It will

detail the problems this program was made to solve, the features and design of the program, and the

design of the algorithm. It is a tool made for analyzing unbounded petri nets using

reachability/coverability trees.

1.1 Motivation

The motivation for the creation of petNetCoverTreeGUI.m are as follows:

• Make an algorithm to construct coverability/reachability trees, based on petri nets that can have

an infinite number of states.

• Display these trees in a graphical User interface that allows us to manipulate the displayed tree

in some ways that lets the user shift our focus to certain areas.

• Make GUI tools to manipulate the creation of the tree by including, or excluding certain

transitions, or choosing different algorithms.

Existing MATLAB programs that already do some of these things, have limited scalability, and no GUI

controls. This program was made to provide more features, better control, and scalability, compared to

alternatives in the MATLAB programming language.

The program will make use of Human Computer Interaction(HCI) theory. Designing a Program with

elements of HCI theory involves making an interface That allows for a back and forth loop of feedback

and interaction between the user and the provided interfaces.

This program also adds an extension to the petri net algorithm that allows us to add one or more

additional values to the transitions in the petri net. The additional values, and HCI elements will be

further elaborated on in the Design section.

5

2 Literature Review

2.1 reachability
The reachability tree of a petri net is a graphical representation of all the possible place markings(states)

that the petri net can reach, and the transitions that are used to reach these markings. By analyzing this

tree, we can determine certain properties of the petri net we made the tree from.

The difference between reachability trees and coverability trees are that coverability trees have some

additional rules in its algorithm when making new states. Using the algorithm for constructing a

reachability tree based on a petri net, will in some cases provide an identical result to what we would

get if we were to use the coverability algorithm. Figure 1 shows an example of a petri net that would

produce the same tree from using either algorithm.

Figure 1: .a shows the Petri net .b shows the reachability/coverability tree with
duplicate state
 .c shows tree with duplicate state redirected.

6

2.2 coverability
The goal of the coverability algorithm, is to allow us to make a tree of a petri net where some of the

places are unbounded, meaning that the value of one or more of the places int the markings can

increase into infinity. We can not make a reachability tree of such a petri net, but we can make a

coverability tree.

The coverability algorithm is made to detect when places are unbounded. A place that is unbounded can

in theory eventually contain an infinite number of tokens. To avoid infinite running times, there are a

few options available to us.

The coverability algorithm deals with unbound places by assigning them the Omega property, to signify

that this place will grow infinitely. Any additions or removals of tokens in this place after it is given this

property, will be ignored.

This has the downside of losing some information about the Petri Net that we want to analyze in some

cases. This report includes four algorithms based on the reachability and coverability algorithms. Each of

these algorithms can provide us with different degrees of detail of Petri Nets.

Figure 2: .a petri net .b: coverability tree

7

2.3 HCI
Human-Computer Interaction(HCI) theory are concepts of designing an interface that provides

functionality to the end user. It is the idea that interfaces provided by the program, contain some

interactable elements that allows the user of the program to make an evaluation of the information the

interface provides. The user should be able to affect some change based on this evaluation, by using the

provided interface, and then re-evaluate the results.

The goal is to keep an active feedback loop of interaction between the user and the program, where the

flow of interaction is not broken by the need to re-adjust parameters by manually programming them.

If we for example wanted to see how the removal of a transition affected a Petri Net, we would need to

manually write changes to the code and re-run the program, unless the program provided us with tools

that make these changes through interface options.

Likewise, if we are presented with a figure Where the text is too small to read, we should have access to

interface elements that allows us to zoom and pan, until we reach a view that provides us with the

information that we may have wanted.

8

3 Design

3.1 Overview

The step by step running of the program goes as follows:

1. Provide proper inputs to petNetCoverTreeGUI

2. A GUI window will open, allowing the user to make some choices about how we want the

program to handle the inputs.

3. Click the “make states” button, that will generate a list of states, provide feedback about the

method used, and how many states were made.

4. Click the “draw” button. This will open a MATLAB figure window, that contains the generated

tree.

Figure 3: program flowchart from MATLAB command line, to the presentation of a tree

3.2 GUI design

The main GUI is made using MATLABs “uifigure” “container”. This GUI provides us with two basic

choices to make.

The first choice is the type of algorithm that will be used to generate the states of the figure. Some of

the choices will require some additional parameter in a corresponding value box to the right of the

choices.

The other choice is a toggleable option to ignore certain transitions in the state generation. This option

works for all algorithms. The field that becomes active when this option is toggled needs the index

numbers of the transitions that should be ignored, otherwise the generation will fail.

9

When the states have been generated, the GUI provides feedback for how many states were made in

the currently selected algorithm.

The “draw” button will be disabled until there exists a list of states with more than 0 states in it. When it

is pressed, a new MATLAB “figure” “container” window will be opened, where the

coverability/reachability tree will be drawn. Every time the “draw button” button is pressed, a new

figure will be made based on the currently active configuration in the GUI. This can be used to make side

by side comparisons of trees generated by different methods and parameters, purely by using the GUI.

The MATLAB figure comes with some default basic functionality that allows us to zoom and pan, letting

us navigate some of the more expansive trees. However, zooming in a MATLAB does resize text objects.

This needed to be coded manually in the tree drawing part of the code.

States in the figure are colored according to three properties. Green denotes a unique marking, yellow

denotes a marking that already exists, and red denotes a deadlock marking

Figure 4: GUI made with MATLAB uiFigure

10

The top bar in figure 5 contains the functions that comes with all MATLAB figures. The zoom, pan, and

select modes, can be toggled here. The window itself can be resized and moved as needed, like most

GUI windows. Closing a figure window will not stop the program from running, and it is possible to have

multiple figures open at a time by either using the draw button on the GUI, or the continue button on

the figure.

The bottom row of buttons is made specifically for coverability/reachability tree analysis.

The “hide duplicates” button will remove all states that have a duplicate marking, making all states in

the figure unique. All transitions pointing to duplicate markings are also redirected.

Figure 5: Output tree based on the Petri Net in figure 2

11

The search button prompts the user for a marking. The marking must be the same length as the

markings in the tree. In cases where the marking is represented by the omega symbol, the program uses

the letter ‘W’ as input. All states that match the search query will be highlighted in the figure window.

All states in the figure can be highlighted by clicking them (any MATLAB functionality such as zoom, or

pan, must be de-selected first).

Highlighting a state and pressing the search button will enter the marking of the highlighted state into

the search dialogue window as a default search.

Pressing the continue button, will make a new figure with a tree that has its home marking based on a

state selection in the previous tree, and the algorithm that was used to construct it.

Figure 6: show/hide duplicates buttons

12

3.3 Algorithm design

petNetCoverTreeGUI.m provides four algorithms that are all designed to handle unbounded petri nets.

Coverability

This is the basic coverability algorithm.

For every transition into a new state, it keeps track of the markings of all previous states before it. The

values of these markings are compared to the values of the marking of the new state. If the algorithm

finds a previous state where all the new marking values are either greater or equal, it will then compare

each value in both the old and new markings. If a value in the new marking is strictly greater, this value

will be replaced with the omega symbol in the new marking. This is to denote that the value of that

place can grow into infinity.

Coverability_extra

One of the problems with the coverability algorithm, is that the abstraction can hide the behavior of the

petri net. The program provides a version of the coverability algorithm that can in some cases show

more information than the basic algorithm. This algorithm only has an effect if there are transitions that

remove more than one tokens from any place. If not, it will have the same result as the basic

coverability.

reachabilityWithDepthLimit

In the cases where we want the complete list of states that the reachability algorithm provides, while

working with petri nets with infinite states, we define a terminating property that limits the size of the

generated tree. The algorithm “reachabilityWithDepthLimit”, as the name implies, generate states until

Figure 7: Left figure shows standard coverability. Right figure shows Coverability_extra of the same Petri Net

13

it reaches a maximum “depth” in the tree. This algorithm requires one numeric input parameter that

denotes the desired maximum depth.

reachabilityWithValueLimit

Another state generation algorithm that the program provides, is the “reachabilityWithValueLimit”

algorithm. It takes one numerical input parameter and continues to generate states as long as none of

the values in the states, exceed this parameter value.

Coverability vs reachability

The coverability algorithms gives us a representation of all states of the petri net, at the expense of

details about the flow of the petri net.

Figure 8: four different results from four different algorithms analyzing the same petri net. The bottom left shows a tree with a depth
limit. The bottom right shows a tree with a value limit.

14

The reachability algorithms that use terminating properties, provides us with all the states in the petri

net, within some given range of values.

Choosing different algorithms, making states, and pressing draw, produces figures of the input petri net

that can be compared side by side.

When using the Coverability algorithms, it may be useful to make a note of the transitions that gives a

marking the omega property, and then use a figure with one of the coverability algorithms to obtain

greater detail of that area of the tree.

Extra transition parameters

The program includes a petri net extension, where we can add one or more costs to the firing of a

transition. This can be used to for example model a system where a transition has a cost of some sort.

There may be a cost in time and/or the cost of one or more other resources. Every state in the tree will

have an array of values next to it that denotes all the extra values that are affected by the transitions

used to reach that state.

This is an optional input, that will only be displayed in the reachability algorithm trees. This is because, if

one of the values in the state marking is ever given the omega value, all the extra values are essentially

infinite.

Figure 9: states with two extra values in a zoomed in tree

15

4 The algorithm

4.1 The input

The program is started as a method on the MATLAB command line, or in a script file. It takes six input

variables.

The first input is an array of numbers to represent the starting, or “Home” marking. Each number

represents the value in each place in the petri-net.

Two other inputs are two matrices where the number of columns corresponds with the length of the

Home marking, and where the number of rows corresponds with the number of transitions in the petri-

net. The number of columns in the transition matrices must match the length of the home marking.

The fourth input is an array of names for each transition. The number of rows in the transition matrices

must match the length of this array.

The two last inputs can be empty lists. These are used to provide extra values to each state based on the

transitions that was used to reach it, but they are not needed to generate the trees themselves. The fifth

input is an array of initial extra values for the home marking. The sixth input is a matrix that must have

as many rows as the transition matrices, and as many columns as the length of the array of initial extra

values.

Sample input values from MATLAB command line:

homeMarking=[1 0 0 0];

subMat=[-1 0 0 0;

 0 -1 -1 0;

 0 -1 0 0];

addMat=[0 1 1 0;

 0 0 1 1;

 1 0 0 0];

extraInitialValues=[]

extraTransitionValues=[]

transistionNames={'t 1' ; 't 2' ; 't 3'}

petNetCoverTreeGUI(homeMarking,subMat,addMat,extraTransitionValues,…

extraInitialValues,transistionNames)

This is the input for the Petri Net shown in figure two(page four).

If we for example wished to give the transitions a cost, possibly a cost of time, and a cost of resources,

the definitions for extraTransitionValues, and transistionNames, would look more like this:

extraInitialValues=[0 0]

extraTransitionValues=[1 3;

 2 5;

 3 4;]

16

When the algorithm is run, it will make a MATLAB struct based on the home marking. It will use the

home marking to calculate all transitions that are active from this marking. It will then continue to make

structs of the new markings until no more transitions are possible. It will then return the produced array

of structs.

4.2 The GUI control choices

These inputs are passed to the petNetCoverTreeGUI method. We will then be presented with a GUI

interface, where we can make several choices.

First, there is a radio button selection to indicate what algorithm we want to use.

Second, we have a checkbox option of turning off transitions before we generate the states. This can be

used with all the algorithms.

Changing the radio button selection will update a variable with the name of the currently selected

button. When the “make states” button is pressed, the button handler will use a switch statement based

on this variable.

The methods used, and their inputs will be dependent on the algorithm choice, but the result the that is

returned will in all cases be a list of states, and the longest string of characters in those states markings.

The “draw” button will remain deactivated until here exists a list of states with a length greater than

zero.

It is possible to make a figure of one set of settings, then draw a new set of states based on other

settings, then do side by side comparisons of these two figures.

Figure 10: GUI control choices

17

4.3 algorithm code

When we make states, we make a list of MATLAB structs that contain the following information

• The parent marking

• The last transition made to reach this state(index number, not name)

• The unique ID of this state

• The unique ID of the parent state

• The Depth in the tree of this state

• The marking of this state

• The type of this state(normal ,duplicate or deadlock)

• The extra values of this state

• The history of all transitions made to reach this state

Additionally, the states made by the coverability algorithms will contain a list of all previous

markings.

This section details the four algorithms that the program lets the user choose between.

basic coverability

The following pseudocode shows how the program uses this algorithm to create the elements for a

coverability tree

makeStatesCover(home, addTMatrix, subTMatrix)

 result= empty array

 queue= empty array

 parentStruct = Make struct based on home marking

 add parentStruct to the result array

 AT = findActiveTransitions(home , subTMatrix)

 For all elements i in AT

newMarking = calTransWithCoverCheck

(parentStruct.previousMarkings, home, subTMatrix(i) ,

addTMatrix(i))

 childStruct = Make struct based on tmpMarking

 add childStruct to the queue array

 while queue is not empty

 parentStruct = Make struct based on queue(1).marking

 remove queue(1)

 add parentStruct to the result array

AT = findActiveTransitions(parentStruct.marking ,

subTMatrix)

 For all elements i in AT

newMarking = calTransWithCoverCheck

(parentStruct.previousMarkings, parentStruct.marking,

subTMatrix(i), addTMatrix(i))

 childStruct = Make struct based on tmpMarking

 add childStruct to the queue array

18

Return result

This will make a list of MATLAB structs that contains all the states that the input petri net can inhabit

according to a coverability tree.

makeStatesCover makes use of two methods: calTransWithCoverCheck and findActiveTransitions.

The calTransWithCoverCheck method takes four inputs:

• A list of all the markings that reached between the home marking the current point

• The marking of the immediate parent state

• Two arrays of values obtained from the addition and subtraction matrices, based on the active

transition AT(i)

For the basic coverability algorithm, the calTransWithCoverCheck method produces a marking based on

the coverability algorithm.

calTransWithCoverCheck (allPrevMark , parentMark , addVal, subVal)

 newMarking = parentMark + addVal + subVal

 for all elements i in allPrevMark

 if all elements in i >= all elements newMarking

 for j=0; j<length(i);j++

 if newMarking(j) > i(j)

 newMarking(j) = inf

Return newMarking

Not shown in the pseudocode here, are conversions between int values and char values. The method

returns an array of strings where the inf value is represented by the value ‘W’, to represent an omega

symbol.

The findActiveTransitions method returns a list of index numbers where the resulting marking have no

values with a lower value than zero. It needs the marking to evaluate, and the matrix containing all

values that are subtracted in each transition.

findActiveTransitions(marking , subTMatrix)

AT =[];

for elements i in subTMatrix

tmp=(marking + subTransMatrix(i,1:end))

if all elements in tmp >=0

 add i to AT

Return AT

If all values in a marking are zero or non-negative, it means that the transition being evaluated is active,

and the index is added to the “AT” variable.

19

Coverability_extra

This algorithm was made to remove some of the abstraction in the basic coverability algorithm by

adding an additional condition for a value being given the omega property. At the beginning, the

algorithm will examine the matrix with subtraction values, and produce a list of the greatest absolute

value that are removed from each place.

For example: if a place has two transitions that remove markings from it, and these two transitions

remove different numbers of values from that place, then the highest of these values will be used in the

list.

The additional condition for giving a place the omega property, is that the new value, also needs to be

greater or equal to the value in this list that corresponds to the given place.

calTransWithCoverCheck_extra (allPrevMark , parentMark , addVal,

subVal, maxsub)

 newMarking = parentMark + addVal + subVal

 for all elements i in allPrevMark

 if all elements in i >= all elements newMarking

 for j=0; j<length(i);j++

if (newMarking(j) > i(j))&(newMarking(j) >=

maxsub(j))

 newMarking(j) = inf

Return newMarking

Because the code of coverability and coverability_extra is nearly identical, the program uses the same

code for both algorithms, and differentiates by use of a switch statement.

Reachability_with_depth_limit

The reachability algorithms function largely the same with two main differences.

The method for calculating new markings is simpler, each state does not need to maintain a list of all its

reachable markings.

In the queue loop, when we remove states from the queue, we need to decide if we should continue

adding states.

The following is pseudocode for makeStatesWithDepthLim.m

makeStatesDepthLim(home, addTMatrix, subTMatrix, limit)

 result= empty array

 queue= empty array

 parentStruct = Make struct based on home marking

 add parentStruct to the result array

 AT = findActiveTransitions(home , subTMatrix)

 For all elements i in AT

newMarking = calTrans

(home, subTMatrix(i) , addTMatrix(i))

20

 childStruct = Make struct based on tmpMarking

 add childStruct to the queue array

 while queue is not empty

 parentStruct = Make struct based on queue(1).marking

 remove queue(1)

 add parentStruct to the result array

 if parentStruct.Depth +1 > limit

 continue

AT = findActiveTransitions(parentStruct.marking ,

subTMatrix)

 For all elements i in AT

newMarking = calTrans (parentStruct.marking,

subTMatrix(i), addTMatrix(i))

 childStruct = Make struct based on tmpMarking

 add childStruct to the queue array

Return result

All states made has a “Depth” property, allowing the algorithm to skip the step of making child states if

their depth will reach a greater value that the input variable “limit”.

Reachability_with_value_limit

makeStatesValLim.m works in a similar manner, but with one difference. In the depth limit algorithm,

we will either make all or none of the child states. In the value limit algorithm, we need to do the check

to either accept or reject the new state after we have calculated its marking.

4.4 draw figure code

The Method that draws the tree in a MATLAB figure, drawGraphReachLimContinue.m, is called by the

“draw” button in the first GUI, or by the “continue” button present in all figures made by the method.

It takes 9 variables:

• A list of MATLAB structs

• A matrix of transition subtraction values

• A matrix of transition addition values

• A number representing a limit set by the algorithm used

• The name for what type of algorithm to use, as a string

• A numeric list of all transitions to ignore, if any

• A list of extra transition values

• A number representing the maximum space used by a state

• A list of strings to represent the transition names

When the “continue” button in the figure is pressed, it will make a new list of structs based on the

settings the previous figure was made with. This requires that the setting be passed to the drawing

method.

21

We find out how much horizontal each state needs in the figure based on the state with the largest

number of nonzero marking places. An example of this is shown in figure 5(page 7), where a tree is

made based on a petri net with four places, but we only need space to display two places.

The maximum depth of the tree, and how many states there are on each level are obtained from the

input states.

Every depth level of the tree is then given a space between each transition based on how much larger

the maximum is. This is to prevent long distances between states.

We calculate a total length on a depth level based on how many states there are on that level, the space

for that level, and the total length of a state.

We then iterate over all the states and give each struct a set of coordinates based on the depth of the

state.

The Figure is horizontally centered on the zero coordinate. Vertically it starts at zero and continues into

the negative.

When the figure is drawn, the states are given mouse button click handlers to allow us to select them.

The MATLAB rectangles and text are added to their respective structs. This allows us to modify them

based on the ID number of the state it represents.

22

5 Testing

Using MATLAB figures to draw large trees eventually reach a performance limitation. Testing showed

that that navigation such as zooming and panning actions become very slow and unresponsive when the

number of objects in the figure becomes high enough.

On the system the program was developed on, responsiveness was becoming unreasonably slow when

navigating a tree consisting of about 800 states. Moving the window is not affected, but resizing is.

Every new figure is opened as a new window in the upper right corner of the screen. They need to be

moved around to make side by side comparisons.

Resizing the figure window, changes the size of the state rectangles, while not changing the size of the

text. This can cause marking text to reach out of its state rectangle if the window is too small. The

negative effects of this seems minimal, since you would need to minimize the window to the point that

the rest of the figure becomes very hard to see for this to happen.

It is apparent that the MATLAB figure features was not made to be used as a graphical canvas in this

manner. We may need to look for other

23

6 Discussion and Future work

Drawing limits

As mentioned in the testing section, we hit performance issues for very large trees. This can be

alleviated to some extent by making drawing algorithms that does not draw the duplicate states at all.

As it is now, even when they are hidden, states are still part of the figure, and need to be updated during

navigation, affecting performance.

If the parameters for coverability algorithms are too large, the program may lock up. There is no time-

out functionality.

Figures can sometimes have a lot of long transition arrows, if there is a big variance in how many states

there are at each depth level. This can make it difficult to follow a specific transition path.

Algorithm limits

The algorithm does not detect if the new marking is the same as the old marking. There needs to be

added a better way to display loops in the tree.

Make a new state type to denote a loop. Add new code for how to draw transitions to and from this

state.

Future work

In reachability trees that stop producing states when it reaches some threshold, it may be useful to mark

the states where some, or all, of its possible transitions ae outside the threshold. This could be done by

defining it as a new state type.

There should be some tools for expanding functionality to the extra transition variables that are given to

each state. Possibly a way to choose the path through the tree based on the highest or lowest cost of a

selected variable.

States with duplicate markings should keep track of the ID of all the states that they are duplicates of.

This would be useful to compare the extra values of the other states.

Make a function for the figure that allows us to highlight the path from the currently selected state, to

the home marking.

Have every “normal” state keep a list of all paths it took to reach that state, by adding the paths from

states with duplicate markings. This would make highlighting a path easier

In the settings GUI, add controls that allow the user to change the home marking, and maybe a way to

change the parameters of the transitions. HCI theory, involves allowing the user to make changes to

program parameters by using the GUI, rather than redefine input parameters in the command line.

There could be an added option of not providing any command line input parameters for the Petri Net

at all, and allow parameters, like the number of places, and the number of transitions, to be set in the

GUI. There should also be a list of all current transition in the GUI that is updated with each added or

removed parameter.

24

It may be better to make the graphical elements of the transitions, part of the state struct list. This will

allow us to edit transition arrows, by knowing the ID of the state they point to.

Instead of just hiding duplicate states, it may be better to make a new figure based on a new struct list

that only contain normal and deadlock states. This could make figures easier to analyze

Output something for about every hundred states made when the “make states” button is pressed, to

provide loading feedback.

When the States have been made, output more information about it to the GUI, such as how many

deadlock states, or duplicate states. Maybe, how many times each transition is used.

Make a function that somehow marks all states that contain a marking where one or more values have

the omega property.

There are some coding inefficiencies in the program that can be improved.

There is no error handling for out of bound, or wrong inputs.

Problems

The text in MATLAB figures does not resize when the inbuilt zoom functions are used. The the program

code that generates the figure has a method that resizes the text manually every time those functions

are used.

Attempting to use the figure MATLAB options to save a figure as an image makes MATLAB automatically

resize the text of the markings and transitions to near unreadability. To get exactly what is shown on

screen, the user needs to make use of a screenshot tool.

The MATLAB “quiver” arrows used, automatically resizes the arrow head based on the length of the

arrow. To have the same arrow head size, on all arrows, they all need to be resized again after creation.

Redirecting transitions with the “hide transitions” button can cause text box overlap and hide

information.

Due to how the MATLAB figure handles graphical elements and text, we need to use the “equals”

property of the figure, otherwise MATLAB will automatically resize the rectangles, so the text no longer

fit.

25

7. References

Cassandras, C. G., & Lafortune, S. (2009). Introduction to discrete event systems. Berlin: Springer Science

& Business Media.

Davidrajuh, R. (2013). Extended reachability graph of petri net for cost estimation. In 8th EUROSIM

Congress on Modelling and Simulation, Cardiff, Wales, September 10-12, 2013, pp. 378-382.

Davidrajuh, R. (2017) Modeling descrete event systems with GPenSIM An Introduction, Springer Briefs in

applied sciences and technology

I. Scott MacKenzie (2013). Human-computer interaction : an empirical research perspective , Waltham

Mass. , Morgan Kaufmann

GPenSIM general purpose Petri Net simulator http://www.davidrajuh.net/gpensim/

Jensen, K. (1996). Coloured petri nets : Basic concepts, analysis methods and practical use : Vol. 1 (2nd

ed., Vol. Vol. 1). Berlin: Springer.

Vilar, P. (2010). Designing the User Interface: Strategies for Effective Human‐Computer Interaction (5th

edition. Journal of the American Society for Information Science and Technology, 61(5), 1073-1074.

 Aniqa Sikandar Butt (2015) Graphical State – Space Diagram Two Problems Simulation

(bachelor theisis) Retrieved from University of Stavanger

Diaz, M. (2009). Petri nets : Fundamental models, verification and applications (Vol. V.81, ISTE). London

:: ISTE ; John Wiley and Sons.

Murata, T. (1989). Petri nets: Properties, analysis and applications. Proceedings of the IEEE, 77(4), 541-

580.

Shouguang Wang, Mengchu Zhou, Zhiwu Li, & Chengying Wang. (2013). A New Modified Reachability

Tree Approach and Its Applications to Unbounded Petri Nets. Systems, Man, and Cybernetics: Systems,

IEEE Transactions on, 43(4), 932-940.

http://www.davidrajuh.net/gpensim/

26

A. Appendix

A1. Installation Guide

To use this program, you need to have a recent version of MATLAB installed.

This program consists a few MATLAB script files, probably gathered in a zip archive. To use it, unzip the

files to whatever location you prefer for organizing your MATLAB script files. Either select this place as

the current folder in MATLAB, or set a path to the folder with these files.

A2. User Manual

The program is run by the petNetCoverTreeGUI method from the MATLAB command line.

This method requires six inputs in a specific order:

1.A one dimensional matrix to represent the home marking.

2.A matrix containing negative or zero values, to represent tokens removed by all transitions.

3.A matrix containing positive or zero values, to represent tokens added by all transitions.

4. A one dimensional matrix to represent the extra values.(can be empty)

5. A matrix containing values to be added to the extra parameters in each transition. (can be empty)

6. A cell array containing all the names for the transitions.

The length of input 1 must be the same as the length of the rows in input 2 and 3.

The number of names in input 6 must be the same as the number of rows in input 2 and 3.

Inputs 4 and 5 can be empty. If there are elements in input 4, there must be a matrix in input 5 where

the length of the rows are the same as the length of input 4, and the number of rows are the same as

input 2 and 3.

Sample input values from MATLAB command line:

homeMarking=[1 0 0 0];

subMat=[-1 0 0 0;

 0 -1 -1 0;

 0 -1 0 0];

addMat=[0 1 1 0;

 0 0 1 1;

 1 0 0 0];

extraInitialValues=[0 0]

extraTransitionValues=[1 3;

 2 5;

 3 4;]

transistionNames={'t 1' ; 't 2' ; 't 3'}

petNetCoverTreeGUI(homeMarking,subMat,addMat,extraTransitionValues,…

extraInitialValues,transistionNames)

27

By running petNetCoverTreeGUI with the required inputs, you will be presented with this GUI.

You can choose four algorithms for generating states based on the input Petri Net, two of which take an

extra parameter value that can be edited when the relevant algorithm is selected. The already present

value is a default value.

If the “exclude transitions” box is checked, you will be able to edit the contents of the “excludeList” box.

This box denotes the index numbers of the transitions to be excluded. The values in this box need to be

numeric, with a space separating each number.

The results from pressing the “make states” button depends on all the above settings. There will be some

information about the generated states in the gray box below. If a set of states is successfully generated.

The draw button will be activated. If the “make states” button is pressed again, the current set of states

will be overwritten.

Pressing the “draw” button will open a figure in a new window. Pressing it multiple times will continue

opening new windows, displaying the tree of the current result from the “make states” button.

Choosing new settings and pressing “make states” will have no effect on figures that are already open.

Figure 11: GUI control choices

28

Zoom and pan functions are found in the top toolbar.

Figure 12: Figure window opened from pressing draw

29

States

The example I figure 13 has five places. Only places that have tokens in them are displayed in the states.

The size of the states is set by the largest marking size in the tree. Figure 5(page 7) shows a tree from a

Petri Net that has four places, but the tree only needs space for two.

Hide/show duplicates

Figure 13: state marking

Figure 14: Show/hide example

30

Duplicate markings are colored yellow and can be hidden. Red markings denote Petri Net deadlocks. The

buttons are in the bottom row. The default is to show duplicates

Search

All states in the tree can be selected, by clicking on them with the mouse pointer. If a function is active in

the top toolbar, it needs to be de-selected first.

Clicking the search button will automatically fill the search dialogue window with a search query based on

the currently selected state. It is possible to do a different search by filling in values for each state. Here

the omega property is represented by the letter W.

Figure 15: search example. Used to find the normal state from a duplicate state.

31

Continue

The continue button makes a new figure based on the currently selected state and opens it in a new

window. The new tree will be generated using the same algorithm and settings that the original tree was

generated with. If the tree was generated with an algorithm that made use of a maximum value, then this

value will be incremented, based on the values of the selected state.

Figure 16: continue example. figure 2 3 and 4 are made from selecting states in figure 1 and using the continue function

32

A3: Complete Code

function petNetCoverTreeGUI(homeMarking,subtractTransitions,addTransitions,...

 extraTransitionValues ,extraInitialValues,transistionNames)

% takes six inputs, Opens a GUI for making graphical coverability/reachability trees

in matlab figures

% input 1 is a list of numbers representing the number of tokens in each

% marking, in the first state. the index number of the value will be

% considered the place name.

% input 2 is a matrix where each row represents the tokens removed from

% each place by a trasition. Contains only negative values or 0

% input 3 is a matrix where each row represents the tokens added to

% each place by a trasition. Contains only positive values or 0

% input 4 is a matrix, containing the extra costs for each transition.

% input 5 is a list of numbers with the extra values of the first state.

% input 6 is an array of strigs that need to have as many elements as there

% are rows in input 2 and 3. It is the names for each transition.

% makes use of drawGraphReachLimContinue.m, makeStatesCover.m, makeStatesDepthLim.m

and makeStatesPlaceValLim.m

extran=extraTransitionValues; %debugging

initval=extraInitialValues; %debugging

fig = uifigure;

fig.Position =[20 350 560 420];

generationChoice='coverability'; %default algorithm choice. value changes from the

radio buttons

States=[]; % states are generated by the make states button

% button group for radio buttons

bg = uibuttongroup(fig,...

 'Title','MakeStatesAlgorithms',...

 'Position', [50 270 223 129],...

 'SelectionChangedFcn',@(bg,event) bselection(bg,event));

% Create four radio buttons in the button group. The names are passed to

% the generationChoice to be used in later switch statements

r1 = uiradiobutton(bg,'Text','coverability','Position',[10 83 170 15]);

r2 = uiradiobutton(bg,'Text','coverability_extra','Position',[10 60 170 15]);

r3 = uiradiobutton(bg,'Text','reachabilityWithDepthLimit','Position',[10 38 170 15]);

r4 = uiradiobutton(bg,'Text','reachabilityWithValueLimit','Position',[10 15 170 15]);

%'Position' = [x, y , lenght , height] x and y are distances from bottom right corner

% lenght, height goes up from base point. x and lenght are horizontal

% distances, y and height are vertical distances based off bottom right corner

chr = 'choose state generation method';

chr = [chr newline 'number of states: 0'];

statesInformation = uilabel(fig,'Position',[50 50 250 55],...

33

 'Text',chr,...

 'BackgroundColor', [0.7 0.7 0.7]);

% fields for limit parameters

DepthLimit = uieditfield(fig,'numeric',...

 'Position',[300 300 50 22] , 'Enable','off');

DepthLimitlbl = uilabel(fig,'Position',[355 295 150 22]...

 ,'Text','maxDepthLevel');

DepthLimit.Value = 2;

ValueLimit = uieditfield(fig,'numeric',...

 'Position',[300 270 50 22], 'Enable','off');

ValueLimitlbl = uilabel(fig,'Position',[355 265 100 22]...

 ,'Text','maxValue');

ValueLimit.Value = 2;

% field for excluding transitions

ExcludeList = uieditfield(fig,...

 'Position',[50 215 100 22] , 'Enable','off');

ExcludeListbl = uilabel(fig,'Position',[160 210 100 22]...

 ,'Text','excludeList');

ExcludeList.Value = '1 2 3 4 5';

ExcludeListCbx = uicheckbox(fig , 'Position', [50 235 150 22] ,'Text','exclude

transitions'...

 ,'ValueChangedFcn',@(btn,event) excludeToggle(btn,event));

makeStatesBtn = uibutton(fig,'push',...

 'Position',[50 150 100 20],...

 'Text', 'Make States',...

 'ButtonPushedFcn', @(btn,event) makeStatesButton(btn,event));

drawBtn = uibutton(fig,'push',...

 'Position',[320 50 100 20],...

 'Text', 'draw',...

 'Enable','off',...

 'ButtonPushedFcn', @(btn,event) drawStatesButton(btn,event));

excleList=[]

maxSpaceUsed=10;

typeChoice=''

%------------------------- functions ---------------------

 function makeStatesButton(btn,event)

 % method for making states based on the chosen options

 excleList=[];

 switch generationChoice

 case 'coverability'

 disp('coverability')

 if ExcludeListCbx.Value == 1

 disp('checkbox')

34

 excleList=str2num(ExcludeList.Value);

 end

 coverType='normal'

 States=[];

 [makeRes1,makeRes2]

=makeStatesCover(homeMarking,subtractTransitions,addTransitions,excleList,coverType);

 States=makeRes1;

 maxSpaceUsed=makeRes2;

 case 'coverability_extra'

 disp('coverability_extra')

 if ExcludeListCbx.Value == 1

 disp('checkbox')

 excleList=str2num(ExcludeList.Value);

 end

 coverType='extra'

 [makeRes1,makeRes2]

=makeStatesCover(homeMarking,subtractTransitions,...

 addTransitions,excleList,coverType);

 States=makeRes1;

 maxSpaceUsed=makeRes2;

 case 'reachabilityWithDepthLimit'

 disp('reachabilityWithDepthLimit')

 States=[];

 if ExcludeListCbx.Value == 1

 disp('checkbox')

 excleList=str2num(ExcludeList.Value);

 end

 depLim=DepthLimit.Value;

 initialHistory=[];

 [makeRes1,makeRes2]=makeStatesDepthLim(homeMarking ,

subtractTransitions, addTransitions, depLim,...

 excleList,extran,initval,initialHistory);

 States=makeRes1;

 maxSpaceUsed=makeRes2;

 case 'reachabilityWithValueLimit'

 disp('reachabilityWithValueLimit')

 States=[]

 if ExcludeListCbx.Value == 1

 disp('checkbox')

 excleList=str2num(ExcludeList.Value);

 end

 disp(ValueLimit.Value)

35

 valLim=ValueLimit.Value;

 initialHistory=[];

 [makeRes1,makeRes2] =makeStatesPlaceValLim(homeMarking ,

subtractTransitions, addTransitions,...

valLim,excleList,extraTransitionValues,extraInitialValues,initialHistory);

 States=makeRes1;

 maxSpaceUsed=makeRes2;

 otherwise

 disp('error')

 end

 part = num2str(length(States));

 part = strcat('length:', part);

 part = [generationChoice newline part];

 if length(States) > 800

 part = [part newline 'warning: navigating figure can be slow'];

 end

 statesInformation.Text=part;

 if length(States)>0

 set(drawBtn,'Enable','on');

 end

 end

 function bselection(bg,event)

 % method for radio buttons, sets generationChoice value to be used elsewhere

 % activates relevant field, deactivate others.

 generationChoice=event.NewValue.Text;

 switch event.NewValue.Text

 case 'reachabilityWithDepthLimit'

 set(DepthLimit ,'Enable','on');

 case 'reachabilityWithValueLimit'

 set(ValueLimit,'Enable','on');

 end

 switch event.OldValue.Text

 case 'reachabilityWithDepthLimit'

 set(DepthLimit ,'Enable','off');

 case 'reachabilityWithValueLimit'

 set(ValueLimit,'Enable','off');

 end

 end

 function excludeToggle(bg,event)

 % method attached to toggle box. activated and deactivates field

 if event.Value == 1

 set(ExcludeList,'Enable','on');

 elseif event.Value == 0

 set(ExcludeList,'Enable','off');

 end

36

 end

 function drawStatesButton(btn,event)

 limitNumber=1;

 % only used in 'reachabilityWithDepthLimit' and 'reachabilityWithValueLimit'

 switch generationChoice % the only difference is between

'reachabilityWithDepthLimit' and 'reachabilityWithValueLimit'

 case 'coverability'

 drawGraphReachLimContinue(States ,subtractTransitions, addTransitions

,...

 limitNumber,generationChoice,excleList,[]

,maxSpaceUsed,transistionNames)

 case 'coverability_extra'

 drawGraphReachLimContinue(States ,subtractTransitions, addTransitions

,...

 limitNumber,generationChoice,excleList,[]

,maxSpaceUsed,transistionNames)

 case 'reachabilityWithDepthLimit'

 limitNumber=DepthLimit.Value;

 drawGraphReachLimContinue(States ,subtractTransitions, addTransitions

,...

limitNumber,generationChoice,excleList,extraTransitionValues,maxSpaceUsed,transistionN

ames)

 case 'reachabilityWithValueLimit'

 limitNumber=ValueLimit.Value;

 drawGraphReachLimContinue(States ,subtractTransitions, addTransitions

,...

limitNumber,generationChoice,excleList,extraTransitionValues,maxSpaceUsed,transistionN

ames)

 end

 end

end

37

function [Result1 , Result2] = makeStatesCover(homeMarking , subtractTransitions,...

 addTransitions,excludeList,coverType)

% takes five inputs, produces two outputs. Result1 should be the struct list. Result2

should be a numerical value to represent how much space the largest state needs

% input 1 is a list of numbers representing the number of tokens in each

% marking, in the first state. the index number of the value will be

% considered the place name.

% input 2 is a matrix where each row represents the tokens removed from

% each place by a trasition. Contains only negative values or 0

% input 3 is a matrix where each row represents the tokens added to

% each place by a trasition. Contains only positive values or 0

% input 4 is a list of index numbers for transitions to ignore when making

% new states. used in continueFromSelectedMarking

% input 5 is a string for a switch statement to select the type of coverability

algorithm to use (coverability or coverability_extra)

% makes use of calTransWithCoverCheck.m, DecideType.m,

% findActiveTransitions.m and calculateTransition.m

tmp2=size(subtractTransitions);

transitionMaxSub=[];

for i=1:tmp2(2)

 transitionMaxSub=[transitionMaxSub (max(abs(subtractTransitions(:, i))) +1

)];

end

homeMarkingStringArray=[];

for i = 1:length(homeMarking)

 if homeMarking(i) < inf

 homeMarkingStringArray=[homeMarkingStringArray string(homeMarking(i))];

 else

 homeMarkingStringArray=[homeMarkingStringArray string('W')];

 end

end

States = []; % empty struct array fill with sis elements during run

maxSpaceUsed=0;

%first state

home.parent_marking = NaN;

home.transToThis=NaN;

home.parent_ID = NaN;

home.ID = 1; % should be the same as array index of the struct

home.depth = 1; % use for graphic coordinates

home.marking = homeMarkingStringArray;

home.type = 'N';

home.listOfPrevMarks = [];

home.extraValues=[];

States = [States home]; % add to array

id=1;

activeTransitions = findActiveTransitions(homeMarkingStringArray,

subtractTransitions,excludeList);

38

maxSpaceUsed = maxStateSpaceUsed(homeMarkingStringArray, maxSpaceUsed);

queueStructs = [];

for i = 1:length(activeTransitions)

 id = id+1;

 % make child and put into quene

 newSisElement.parent_marking = homeMarkingStringArray;

 newSisElement.parent_ID = 1;

 newSisElement.ID = id;

 newSisElement.transToThis = activeTransitions(i);

 newSisElement.depth = home.depth + 1 ;

 % calculate new marking

 newSisElement.listOfPrevMarks =[homeMarking];

 newSisElement.marking= calTransWithCoverCheck(homeMarking,

newSisElement.parent_marking , ...

 subtractTransitions(activeTransitions(i),1:end) ,

addTransitions(activeTransitions(i),1:end),...

 coverType,transitionMaxSub);

 newSisElement.type = DecideType(newSisElement.marking ,States,queueStructs);

 newSisElement.extraValues=[];

 queueStructs=[queueStructs newSisElement];

end

while length(queueStructs) >0

 %fromQ is the SIS element popped from the queue toQ are new element

 %being made before put into the queue

 fromQ= queueStructs(1); % take element from index 1

 queueStructs(1)= []; % remove element from index 1

 maxSpaceUsed = maxStateSpaceUsed(fromQ.marking, maxSpaceUsed);

 activeTransitions = findActiveTransitions(fromQ.marking,

subtractTransitions,excludeList);

 if length(activeTransitions) ==0

 fromQ.type = 'E' ;% type E is a deadlock condition

 elseif fromQ.type =='D' % instead of putting duplicates in the queue place in the

main list instead

 States = [States fromQ];

 continue

 end

 States = [States fromQ];

 for i = 1:length(activeTransitions)

 match = false;

39

 id = id+1;

 toQ.parent_marking= fromQ.marking;

 toQ.parent_ID = fromQ.ID ;

 toQ.ID = id;

 toQ.transToThis = activeTransitions(i);

 toQ.depth = States(fromQ.ID).depth + 1 ;

 toQ.extraValues=[];

 intMarking=[];

 sizeinput =size(fromQ.marking);

 for j=1:sizeinput(2)

 if char(fromQ.marking(j)) == 'W'

 intMarking = [intMarking inf];

 else

 intMarking = [intMarking str2num(char(fromQ.marking(j)))];

 end

 end

 tmp2=[fromQ.listOfPrevMarks ; intMarking];

 toQ.listOfPrevMarks = tmp2;

 toQ.marking= calTransWithCoverCheck(toQ.listOfPrevMarks, toQ.parent_marking ,

...

 subtractTransitions(activeTransitions(i),1:end) , ...

 addTransitions(activeTransitions(i),1:end),coverType,transitionMaxSub);

 % check to see if duplicate exists, and add marks

 for j = 1:length(States)

 tmp = toQ.marking == States(j).marking;

 if all(tmp(:) > 0)

 match = true;

 tmp=[States(j).listOfPrevMarks ; toQ.listOfPrevMarks];

 tmp2=unique(tmp, 'rows');

 States(j).listOfPrevMarks=tmp2;

 end

 end

 for j = 1:length(queueStructs)

 tmp = toQ.marking == queueStructs(j).marking;

 if all(tmp(:) > 0)

 match = true;

 tmp=[queueStructs(j).listOfPrevMarks ; toQ.listOfPrevMarks];

 tmp2=unique(tmp, 'rows');

 %queueStructs(j).listOfPrevMarks=[queueStructs(j).listOfPrevMarks ;

toQ.listOfPrevMarks];

 queueStructs(j).listOfPrevMarks=tmp2;

 end

 end

 if match

40

 toQ.type ='D' ;% duplicate

 else

 toQ.type ='N' ;% normal

 end

 queueStructs=[queueStructs toQ];

 end

end

Result1=States;

Result2=maxSpaceUsed;

End

function [Result1 , Result2] = makeStatesDepthLim(homeMarking ,

subtractTransitions,...

 addTransitions, depthLimit,...

 excludeList,extraTransitionValues,extraInitialValues,initialHistory)

% takes eight inputs, produces two outputs. Result1 should be the struct list. Result2

should be a numerical value to represent how much space the largest state needs

% input 1 is a list of numbers representing the number of tokens in each

% marking, in the first state. the index number of the value will be

% considered the place name.

% input 2 is a matrix where each row represents the tokens removed from

% each place by a trasition. Contains only negative values or 0

% input 3 is a matrix where each row represents the tokens added to

% each place by a trasition. Contains only positive values or 0

% input 4 is a number. It is the maximum value used by this algorithm

% input 5 is a list of index numbers for transitions to ignore when making

% new states. used in continueFromSelectedMarking

% input 6 is a matrix, containing the extra costs for each transition.

% input 7 is a list of numbers with the extra values of the first state.

% input 8 is the transition history of the first state.

% this will have elements if this tree is the continuation of an already made tree.

% makes use of calculateTransition.m, DecideType.m,

% findActiveTransitions.m and calculateTransition.m

homeMarkingStringArray=[];

for i = 1:length(homeMarking)

 homeMarkingStringArray=[homeMarkingStringArray string(homeMarking(i))];

end

States = []; % empty struct array fill with sis elements during run

maxSpaceUsed=0;

%first state

home.parent_marking = NaN;

home.transToThis=NaN;

41

home.parent_ID = NaN;

home.ID = 1; % should be the same as array index of the struct

home.depth = 1; % use for graphic coordinates

home.marking = homeMarkingStringArray;

home.type = 'N';

if length(extraInitialValues)>0

 home.extraValues=extraInitialValues;

end

home.history=initialHistory;

maxSpaceUsed = maxStateSpaceUsed(homeMarkingStringArray, maxSpaceUsed);

States = [States home]; % add to array

id=1;

activeTransitions = findActiveTransitions(homeMarkingStringArray,

subtractTransitions,excludeList);

queueStructs = []; % use for BFS search

for i = 1:length(activeTransitions)

 id = id+1;

 % make child and put into quene

 newSisElement.parent_marking = homeMarkingStringArray;

 newSisElement.parent_ID = 1;

 newSisElement.ID = id;

 newSisElement.transToThis = activeTransitions(i);

 newSisElement.depth = States(newSisElement.parent_ID).depth + 1 ;

 % calculate new marking

 newSisElement.marking= calculateTransition(newSisElement.parent_marking ,

subtractTransitions(activeTransitions(i),1:end) ,

addTransitions(activeTransitions(i),1:end));

 newSisElement.type = DecideType(newSisElement.marking ,States,queueStructs);

 if length(extraInitialValues)>0

newSisElement.extraValues=home.extraValues+extraTransitionValues(activeTransitions(i)

, :);

 end

 newSisElement.history=[initialHistory activeTransitions(i)];

 queueStructs=[queueStructs newSisElement];

end

while length(queueStructs) >0

 %fromQ is the SIS element popped from the queue toQ are new element

 %being made before put into the queue

 fromQ= queueStructs(1); % take element from index 1

 queueStructs(1)= []; % remove element from index 1

 maxSpaceUsed = maxStateSpaceUsed(fromQ.marking, maxSpaceUsed);

42

 activeTransitions = findActiveTransitions(fromQ.marking,

subtractTransitions,excludeList);

 if length(activeTransitions) ==0

 fromQ.type = 'E' ;% type E is a deadlock condition

 elseif fromQ.type =='D' % instead of putting duplicates in the queue place in the

main list instead

 States = [States fromQ];

 continue

 end

 if (fromQ.depth + 1) > depthLimit

 States = [States fromQ];

 continue

 end

 States = [States fromQ];

 for i = 1:length(activeTransitions) % make states to put into queue

 match = false;

 id = id+1;

 toQ.parent_marking= fromQ.marking;

 toQ.parent_ID = fromQ.ID ;

 toQ.ID = id;

 toQ.transToThis = activeTransitions(i);

 toQ.depth = States(fromQ.ID).depth + 1 ;

 toQ.marking= calculateTransition(toQ.parent_marking ,

subtractTransitions(activeTransitions(i),1:end) ,

addTransitions(activeTransitions(i),1:end));

 if length(extraInitialValues)>0

toQ.extraValues=fromQ.extraValues+extraTransitionValues(activeTransitions(i) , :);

 end

 toQ.history=[fromQ.history activeTransitions(i)]; % a history of all

transitions up to this point

 % check to see if duplicate exists

 for j = 1:length(States)

 tmp = toQ.marking == States(j).marking;

 if all(tmp(:) > 0)

 match = true;

 break

 end

 end

 for j = 1:length(queueStructs)

 tmp = toQ.marking == queueStructs(j).marking;

 if all(tmp(:) > 0)

 match = true;

 break

43

 end

 end

 if match

 toQ.type ='D' ;% duplicate

 else

 toQ.type ='N' ;% normal

 end

 queueStructs=[queueStructs toQ];

 end

end

Result1=States;

Result2=maxSpaceUsed;

end

function [Result1 , Result2] = makeStatesPlaceValLim(homeMarking ,

subtractTransitions, addTransitions,...

 valueLimit,excludeList,extraTransitionValues,extraInitialValues,initialHistory)

% takes eight inputs, produces two outputs. Result1 should be the struct list. Result2

should be a numerical value to represent how much space the largest state needs

% input 1 is a list of numbers representing the number of tokens in each

% marking, in the first state. the index number of the value will be

% considered the place name.

% input 2 is a matrix where each row represents the tokens removed from

% each place by a trasition. Contains only negative values or 0

% input 3 is a matrix where each row represents the tokens added to

% each place by a trasition. Contains only positive values or 0

% input 4 is a number. It is the maximum value used by this algorithm

% input 5 is a list of index numbers for transitions to ignore when making

% new states. used in continueFromSelectedMarking

% input 6 is a matrix, containing the extra costs for each transition.

% input 7 is a list of numbers with the extra values of the first state.

% input 8 is the transition history of the first state.

% this will have elements if this tree is the continuation of an already made tree.

% makes use of calculateTransition.m, DecideType.m,

% findActiveTransitions.m and calculateTransition.m

homeMarkingStringArray=[];

for i = 1:length(homeMarking)

 homeMarkingStringArray=[homeMarkingStringArray string(homeMarking(i))];

end

States = []; % empty struct array fill with sis elements during run

maxSpaceUsed=0;

%first state

home.parent_marking = NaN;

44

home.transToThis=NaN;

home.parent_ID = NaN;

home.ID = 1; % should be the same as array index of the struct

home.depth = 1; % use for graphic coordinates

home.marking = homeMarkingStringArray;

home.type = 'N';

maxSpaceUsed = maxStateSpaceUsed(homeMarkingStringArray, maxSpaceUsed);

if length(extraInitialValues)>0

 home.extraValues=extraInitialValues;

end

home.history=initialHistory;

States = [States home]; % add to array

id=1;

activeTransitions = findActiveTransitions(homeMarkingStringArray,

subtractTransitions,excludeList);

queueStructs = [];

for i = 1:length(activeTransitions)

 id = id+1;

 % make child and put into quene

 newSisElement.parent_marking = homeMarkingStringArray;

 newSisElement.parent_ID = 1;

 newSisElement.ID = id;

 newSisElement.transToThis = activeTransitions(i);

 newSisElement.depth = States(newSisElement.parent_ID).depth + 1 ;

 % calculate new marking

 newSisElement.marking= calculateTransition(newSisElement.parent_marking ,

subtractTransitions(activeTransitions(i),1:end) ,

addTransitions(activeTransitions(i),1:end));

 newSisElement.type = DecideType(newSisElement.marking ,States,queueStructs) ;

 if length(extraInitialValues)>0

newSisElement.extraValues=home.extraValues+extraTransitionValues(activeTransitions(i)

, :);

 end

 newSisElement.history=[initialHistory activeTransitions(i)];

 queueStructs=[queueStructs newSisElement];

end

while length(queueStructs) >0

 %fromQ is the SIS element popped from the queue toQ are new element

 %being made before put into the queue

 fromQ= queueStructs(1); % take element from index 1

 queueStructs(1)= []; % remove element from index 1

 maxSpaceUsed = maxStateSpaceUsed(fromQ.marking, maxSpaceUsed);

45

 activeTransitions = findActiveTransitions(fromQ.marking,

subtractTransitions,excludeList);

 if length(activeTransitions) ==0

 fromQ.type = 'E' ;% type E is a deadlock condition

 elseif fromQ.type =='D' % instead of putting duplicates in the queue place in the

main list instead

 States = [States fromQ];

 continue

 end

 if fromQ.type =='D' % instead of putting duplicates in the queue place in the main

list instead

 States = [States fromQ];

 continue

 end

 States = [States fromQ];

 for i = 1:length(activeTransitions) % make states to put into queue

 interrupt=false;

 match = false;

 id = id+1;

 toQ.parent_marking= fromQ.marking;

 toQ.parent_ID = fromQ.ID ;

 toQ.ID = id;

 toQ.transToThis = activeTransitions(i);

 toQ.depth = States(fromQ.ID).depth + 1 ;

 toQ.marking= calculateTransition(toQ.parent_marking ,

subtractTransitions(activeTransitions(i),1:end) ,

addTransitions(activeTransitions(i),1:end));

 if length(extraInitialValues)>0

toQ.extraValues=fromQ.extraValues+extraTransitionValues(activeTransitions(i) , :);

 end

 toQ.history=[fromQ.history activeTransitions(i)]; % a history of all

transitions up to this point

 % if one of the values in the marking exceeds the limit, this

 % state will not be put into the queue

 for j = 1:length(toQ.marking)

 tmp=char(toQ.marking(j));

 if valueLimit< str2num(tmp)

 interrupt=true;

 end

 end

 if interrupt==true

 interrupt=false;

46

 id = id-1;

 continue

 end

 % check to see if duplicate exists

 for j = 1:length(States)

 tmp = toQ.marking == States(j).marking;

 if all(tmp(:) > 0)

 match = true;

 break

 end

 end

 for j = 1:length(queueStructs)

 tmp = toQ.marking == queueStructs(j).marking;

 if all(tmp(:) > 0)

 match = true;

 break

 end

 end

 if match

 toQ.type ='D' ;% duplicate

 else

 toQ.type ='N' ;% normal

 end

 queueStructs=[queueStructs toQ];

 end

end

Result1=States;

Result2=maxSpaceUsed;

end

function Result =maxStateSpaceUsed(marking, peviousMax)

% calculate the space that is needed to display a marking as a numerical value, and

compares it with a previous maximum value

markinglenght=0;

spaceUsed=0;

elementCount=0;

for ii =1:length(marking)

 z= str2num(char(marking(ii)));

 zz=char(marking(ii));

 if zz=='W'

 elementCount=elementCount+1;

 if elementCount== 1

 spaceUsed=spaceUsed+3;

 elseif elementCount> 1

 spaceUsed=spaceUsed+6;

47

 end

 markinglenght = markinglenght+2;

 end

 if z >0

 elementCount=elementCount+1;

 if elementCount== 1

 spaceUsed=spaceUsed+3;

 elseif elementCount> 1

 spaceUsed=spaceUsed+6;

 end

 markinglenght = markinglenght+ length(char(marking(ii)));

 end

end

tmp= markinglenght + spaceUsed;

if peviousMax>tmp

 Result=peviousMax;

else

 Result=tmp;

end

end

function Result = findActiveTransitions(marking,subTransMatrix,excludeList)

% takes an array of strings as the marking.

% uses a marking and a matrix of the subtraction values of all

% transitions, and returns the index values of all possible transitions

% from the given marking

intMarking=[];

sizeinput =size(marking);

for i=1:sizeinput(2)

 if char(marking(i)) == 'W'

 intMarking = [intMarking inf];

 else

 intMarking = [intMarking str2num(char(marking(i)))];

 end

end

transitions=[];

for i=1:size(subTransMatrix)

 x=(intMarking + subTransMatrix(i,1:end));

 y = x >= 0 ;

 y= all(y(:) > 0);

 if length(excludeList)>0

48

 if ismember(i, excludeList(:))

 continue

 end

 end

 if y > 0

 transitions = [transitions i];

 end

end

Result = transitions ;

end

function Result = DecideType(marking ,States,queueStructs)

%returns the type as a char: N or D (normal , duplicate)

%takes a marking and a list of the currently queued structs

type ='N';

match = false;

for j = 1:length(States)

 tmp = marking == States(j).marking;

 if all(tmp(:) > 0)

 match = true;

 break

 end

end

for j = 1:length(queueStructs)

 tmp = marking == queueStructs(j).marking;

 if all(tmp(:) > 0)

 match = true;

 break

 end

end

if match

 type ='D' ;% duplicate

else

 type ='N' ;% normal

end

Result=type;

end

function Result = calTransWithCoverCheck(listOfPrevMarks,

parent_marking,subTransVal,addTransVal,coverType,transitionMaxSub)

% takes an array of strings as the marking

% takes matrices of the subtraction and addition values of all transitions

% returns an array of strings as the new marking

49

intMarking=zeros(size(parent_marking));

sizeinput =size(parent_marking);

for i=1:sizeinput(2)

 if char(parent_marking(i)) == 'W'

 intMarking(i)= inf;

 else

 intMarking(i) = str2num(char(parent_marking(i)));

 end

end

intNewMarking=intMarking+subTransVal+addTransVal;

%adds inf(omega) if applicable

prevMarksDim = size(listOfPrevMarks);

for i = 1: prevMarksDim(1)

 intPrevMark=listOfPrevMarks(i,:);

 tmp= intNewMarking>=intPrevMark;

 if all(tmp(:) >0)

 for j=1:length(intPrevMark)

 if strcmp(coverType,'extra')

 if (intNewMarking(j) > intPrevMark(j)) &

(intNewMarking(j)>=transitionMaxSub(j)) % new ad

 intNewMarking(j)= inf;

 end

 else

 if (intNewMarking(j) > intPrevMark(j))

 intNewMarking(j)= inf;

 end

 end

 end

 end

end

newMarkingStrings=[];

for i=1:sizeinput(2)

 if intNewMarking(i) == inf

 newMarkingStrings=[newMarkingStrings string('W')];

 else

 newMarkingStrings=[newMarkingStrings string(num2str(intNewMarking(i)))];

50

 end

end

Result=newMarkingStrings;

end

function Result = calculateTransition(marking,subTransVal,addTransVal)

% Takes three inputs, produces one output, calculats new marking from previous marking

and the transition marices

% takes an array of strings as the marking

% takes matrices of the subtraction and addition values of all transitions

% returns an array of strings as the new marking

intMarking=zeros(size(marking));

sizeinput =size(marking);

for i=1:sizeinput(2)

 if char(marking(i)) == 'W'

 intMarking(i)= inf;

 else

 intMarking(i) = str2num(char(marking(i)));

 end

end

newMarking=intMarking+subTransVal+addTransVal;

newMarkingStrings=[];

for i=1:sizeinput(2)

 if newMarking(i) == inf

 newMarkingStrings=[newMarkingStrings string('W')];

 else

 newMarkingStrings=[newMarkingStrings string(num2str(newMarking(i)))];

 end

end

Result=newMarkingStrings;

end

51

function drawGraphReachLimContinue(States ,subtractTransitions, addTransitions,

limitNumber,...

 limitType,excleList,TransExtraValues,maxSpaceUsed,transistionNames)

% Takes nine inputs, makes a figure

% this method is called from petNetCoverTreeGUI.m and itself.

% The inputs need to be in a specific order

% input 1 is a list of structs that are made by makeStatesCover.m or

% makeStatesDepthLim.m or makeStatesPlaceValLim.m

% input 2 is a matrix where each row represents the tokens removed from

% each place by a trasition. Contains only negative values or 0

% input 3 is a matrix where each row represents the tokens added to

% each place by a trasition. Contains only positive values or 0

% input 4 is used to make new states by the continueFromSelectedMarking

% internal method. it is a number.

% input 5 is used to make new states by the continueFromSelectedMarking

% internal method. it is a string to a switch statement.

% input 6 is a list of index numbers for transitions to ignore when making

% new states. used in continueFromSelectedMarking

% input 7 is a matrix, containing the extra costs for each transition.

% input 8 is a result from makeStatesCover.m or makeStatesDepthLim.m or

makeStatesPlaceValLim.m

% it is used to decide the size of the state rectangles

% input 9 is an array of strigs that need to have as many elements as there

% are rows in input 2 and 3. It is the names fo each transition.

% makes use of makeStatesCover.m, makeStatesDepthLim.m and makeStatesPlaceValLim.m

tnames=transistionNames;

% stae measurements

len= 5+ maxSpaceUsed*12 +5; % the lenght of a state rectangle

heig = 50; % % vertical height of the boxes

VertSpace=150; % vertical space between levels of states

horizSpace=20; % horizontal space bettween states

transitionArrow_headsize_ajuster=500;

adjustment= 8000; % used for ajusting the relative size of text in states

transNameMaxSize=0; % get the biggest transition name

for i =1:length(transistionNames)

 tmp=string(transistionNames(i));

 if length(char(tmp))>transNameMaxSize

 transNameMaxSize=length(char(tmp));

 end

end

tmp= size(TransExtraValues);

numberOfExtraValuesPerState=tmp(2);

52

singleExtraLen=50; % the lenght of one extra state rectangle

totExtraLen = numberOfExtraValuesPerState*singleExtraLen;

numberOfLevels=0; % find the max depth of the tree

for i = 1 :length(States)

 if States(i).depth > numberOfLevels

 numberOfLevels=States(i).depth;

 end

end

numberOfStatesAtEachLevel= zeros(1,numberOfLevels); % get number of states at each

level

for i = 1 :length(States)

numberOfStatesAtEachLevel(States(i).depth)=numberOfStatesAtEachLevel(States(i).depth)+

1;

end

[valOfMaxLev , indexOfMaxLev] =max(numberOfStatesAtEachLevel);

% horisontally the graph is centered on the zero coordinate

maxLen= valOfMaxLev*(len+horizSpace+totExtraLen);

spaceOfLevel= zeros(1,numberOfLevels);

for i = 1 :length(spaceOfLevel)

 if numberOfStatesAtEachLevel(i) == valOfMaxLev

 spaceOfLevel(i)=horizSpace ;

 else

 adj=((numberOfStatesAtEachLevel(i)-1)*(len+horizSpace+totExtraLen))/100 ;

 spaceOfLevel(i)=horizSpace + (maxLen/(adj)) ;

 end

end

horisontalCoordinate= zeros(1,numberOfLevels);

for i = 1 :length(horisontalCoordinate)

 if numberOfStatesAtEachLevel(i) >1

 totalLengthOfDepthLevel= (numberOfStatesAtEachLevel(i) -

1)*(len+spaceOfLevel(i)+totExtraLen);

 horisontalCoordinate(i)= 0 - (totalLengthOfDepthLevel/2);

 end

end

f =figure;

movegui(f,'northeast');

axes('Units', 'normalized', 'Position', [0 0 1 1])

% get axes size for text zoom function

axis([(min(horisontalCoordinate)-len) , (abs(min(horisontalCoordinate))+len) , (-

(numberOfLevels*300)-heig) , (-300+heig)]);

53

ax = axis;

%each state is given coordinates

for i = 1 :length(States) % adds central coordinates to eache state

 if numberOfStatesAtEachLevel(States(i).depth) ==1

 States(i).coordinates=[0 -States(i).depth*(heig+ VertSpace)] ; % if there is

only one state at his level, the horizontal coordinate will be 0

 elseif numberOfStatesAtEachLevel(States(i).depth) >1

 States(i).coordinates=[horisontalCoordinate(States(i).depth) -

States(i).depth*(heig+ VertSpace)] ;

 horisontalCoordinate(States(i).depth)= horisontalCoordinate(States(i).depth)

+(len+ spaceOfLevel(States(i).depth)+totExtraLen);

 end

end

hold on;

for i = 1 :length(States) % draw rectangles

 switch States(i).type % choose colour based on type

 case 'N'

 colour= [0.5 1 0.5];

 case 'D'

 colour= [1 1 0];

 case 'E'

 colour= [1 0.5 0.5];

 otherwise

 disp('error')

 end

 rek=rectangle('Position',[States(i).coordinates(1)-(len/2) ,

States(i).coordinates(2)-(heig/2)...

 , len , heig],'FaceColor',colour , 'ButtonDownFcn' ,@markStateMarking);

 rek.UserData = States(i).ID;

 States(i).drawStateRectangle=rek;

 States(i).exValRecktangles=[];

 States(i).exValTxt=[];

 tmp3= size(TransExtraValues);

 for j= 1:tmp3(2)

 tmpRek=rectangle('Position',[States(i).coordinates(1)+(len/2)+(j-

1)*singleExtraLen , States(i).coordinates(2)-(heig/2)...

 , singleExtraLen , heig],'FaceColor','none' , 'ButtonDownFcn'

,@markStateMarking);

 tmpRek.UserData = States(i).ID;

 States(i).exValRecktangles=[States(i).exValRecktangles tmpRek];

 tmptxt=text(States(i).coordinates(1)-(len/2)+(j-1)*singleExtraLen + len+5 ,

States(i).coordinates(2) ,...

54

 char(string(States(i).extraValues(j))) , 'ButtonDownFcn'

,@markStateMarking);

 tmptxt.FontSize= ((adjustment/1.1)/(ax(4)-ax(3)));

 tmptxt.UserData=States(i).ID;

 States(i).exValTxt=[States(i).exValTxt tmptxt];

 end

 txtChar='';

 elementCount=0;

 for j = 1:length(States(i).marking)

 tmp= str2num (char(States(i).marking(j)));

 if char(States(i).marking(j)) == 'W'

 elementCount=elementCount+1;

 if elementCount ==1

 txtChar= strcat(txtChar , '\omega' , 'p_' , num2str(j)) ;

 elseif elementCount >1

 tmp2=strcat({' + '} , {'\omega'}, {'p_' }, {num2str(j)}) ;

 txtChar=strcat(txtChar ,tmp2);

 end

 elseif tmp>0

 elementCount=elementCount+1;

 if elementCount ==1

 txtChar= strcat(txtChar , char(States(i).marking(j)) , 'p_' ,

num2str(j)) ;

 elseif elementCount >1

 tmp2=strcat({' + '} , { char(States(i).marking(j)) }, {'p_' },

{num2str(j)}) ;

 txtChar=strcat(txtChar ,tmp2);

 end

 end

 end

 txt=text(States(i).coordinates(1)-(len/2)+5 , States(i).coordinates(2) ,...

 char(txtChar) , 'ButtonDownFcn' ,@markStateMarking);

 txt.FontSize= ((adjustment/1.1)/(ax(4)-ax(3)));

 txt.UserData=States(i).ID;

 States(i).drawStateText=txt;

end

% drawing transition elements

% the vertical level of the textboxes for duplicate transitions are a little

% different than the other transition textboxes. This is to detect

% overlapping boxes when showing redirected transitions.

transGroup1=[];% arrows that point to normal states, these are always visible

55

transGroup2=[];% arrows that point to duplicate states, these are visible to begin

with

transGroup3=[];% redirected arrows that point to normal states, these are made hidden

to begin with

% all groups contain a list of structs that contain, a quiver arrow, a

% rectangle and text

for i = 1 :length(States) % draw transition arrows

 if ~isnan(States(i).parent_ID); % only draw is the state has a parent state

 p1 = States(States(i).parent_ID).coordinates; % starting point

 p1(2) = p1(2)-heig/2;

 p2 = States(i).coordinates; %ending point

 p2(2) = p2(2)+heig/2;

 dp = p2-p1; % difference

 arrw=quiver(p1(1),p1(2),dp(1),dp(2),0,'color',[0 0 1]);

 % quiver arrows have different sizes depending on the lenght of the arrow

 % divide the quiver property MaxHeadSize by the length of the arrow, then the

heads will be the same size.

 x=[p1(1) p2(1)];

 y=[p1(2) p2(2)];

 d = diff([x(:) y(:)]);

 total_length = sum(sqrt(sum(d.*d,2)));

 arrw.MaxHeadSize =

(arrw.MaxHeadSize/total_length)*transitionArrow_headsize_ajuster;

 tRekLen=transNameMaxSize*12; % the lenght of a transition rectangle

 rek=rectangle('Position',[p1(1)+(dp(1)/1.4)-tRekLen/2 , p1(2)+(dp(2)/1.4)-15

...

 , tRekLen , 32],...

 'FaceColor','w');

 transText = char(transistionNames(States(i).transToThis));

 drawnTxt=text(p1(1)+(dp(1)/1.4)-tRekLen/2+3 , p1(2)+(dp(2)/1.4)+15-15 ...

 ,transText , 'Color', 'k');

 % choose what group to put them in

 switch States(i).type

 case 'N'

 arrw.Color = [0 0.3 0];

 drawnTxt.Color = [0 0.3 0];

 trans.arrow= arrw;

 trans.rektangle= rek;

 trans.text= drawnTxt;

 transGroup1=[transGroup1 trans];

 case 'E'

 arrw.Color = [0.3 0 0];

 drawnTxt.Color = [0.3 0 0];

 trans.arrow= arrw;

 trans.rektangle= rek;

 trans.text= drawnTxt;

 transGroup1=[transGroup1 trans];

56

 case 'D' % for every duplicate, make two arrows,

 arrw.Color = [0.5 0.5 0];

 drawnTxt.Color = [0.5 0.5 0];

 trans.arrow= arrw;

 trans.rektangle= rek;

 trans.text= drawnTxt;

 transGroup2=[transGroup2 trans];

 p1 = States(States(i).parent_ID).coordinates; % p1 will be the same

regardless

 p1(2) = p1(2)-heig/2;

 colour=[0.5 0.5 0];

 for j = 1 :length(States)

 tmp = States(i).marking == States(j).marking;

 if (all(tmp(:) > 0)) && (States(j).type == 'N' | States(j).type

== 'E')

 p2 = States(j).coordinates;

 p2(2) = p2(2)+heig/2;

 break

 end

 end

 dp = p2-p1;

 arrw=quiver(p1(1),p1(2),dp(1),dp(2),0,'color',colour); % draws the

arrow

 x=[p1(1) p2(1)];

 y=[p1(2) p2(2)];

 d = diff([x(:) y(:)]);

 total_length = sum(sqrt(sum(d.*d,2)));

 arrw.MaxHeadSize =

(arrw.MaxHeadSize/total_length)*transitionArrow_headsize_ajuster;

 rek=rectangle('Position',[p1(1)+(dp(1)/1.8)-tRekLen/2 ,

p1(2)+(dp(2)/1.8)-15 ...

 , tRekLen , 32],...

 'FaceColor','w');

 transText = char(transistionNames(States(i).transToThis));

 drawnTxt=text(p1(1)+(dp(1)/1.8)-tRekLen/2+3 , p1(2)+(dp(2)/1.8)+15-15

,...

 transText , 'Color',[0.5 0.5 0]);

 arrw.Visible='off';

 rek.Visible='off';

 drawnTxt.Visible='off';

 trans.arrow= arrw;

 trans.rektangle= rek;

 trans.text= drawnTxt;

 transGroup3=[transGroup3 trans];

57

 otherwise

 disp('error')

 end

 end

end

% buttons for the bottom row

hideDupButton = uicontrol('Style', 'pushbutton', 'String', 'hide duplicates',...

 'Position', [10 10 120 30],...

 'FontSize', 11,...

 'Callback', @hideDuplicateButton);

showDupButton = uicontrol('Style', 'pushbutton', 'String', 'show duplicates',...

 'Position', [130 10 120 30],...

 'FontSize', 11,...

 'Callback', @showDuplicateButton);

searchButton = uicontrol('Style', 'pushbutton', 'String', 'search',...

 'Position', [250 10 80 30],...

 'FontSize', 11,...

 'Callback', @searchForMarking);

continueButton = uicontrol('Style', 'pushbutton', 'String', 'continue',...

 'Position', [330 10 80 30],...

 'FontSize', 11,...

 'Callback', @continueFromSelectedMarking);

axis equal

h = zoom; % get handle to zoom utility

set(h,'ActionPostCallback',@zoomCallBack);

set(h,'Enable','on');

ax = axis;

for ii =1:length(States)

 set(States(ii).drawStateText,'FontSize',adjustment/(ax(4)-ax(3)));

 for jj= 1: length(States(ii).exValRecktangles)

 set(States(ii).exValTxt(jj),'FontSize',adjustment/(ax(4)-ax(3)));

 end

end

for ii =1:length(transGroup1)

 set(transGroup1(ii).text ,'FontSize',adjustment/(ax(4)-ax(3)));

end

for ii =1:length(transGroup2)

 set(transGroup2(ii).text ,'FontSize',adjustment/(ax(4)-ax(3)));

end

for ii =1:length(transGroup3)

58

 set(transGroup3(ii).text ,'FontSize',adjustment/(ax(4)-ax(3)));

end

%--------------------functions-----------

% everytime you zoom , this function is executed

 function zoomCallBack(~, evd)

 ax = axis(evd.Axes); % get axis size

 for ii =1:length(States)

 set(States(ii).drawStateText,'FontSize',adjustment/(ax(4)-ax(3)));

 for jj= 1: length(States(ii).exValRecktangles)

 set(States(ii).exValTxt(jj),'FontSize',adjustment/(ax(4)-ax(3)));

 end

 end

 for ii =1:length(transGroup1)

 set(transGroup1(ii).text ,'FontSize',adjustment/(ax(4)-ax(3)));

 end

 for ii =1:length(transGroup2)

 set(transGroup2(ii).text ,'FontSize',adjustment/(ax(4)-ax(3)));

 end

 for ii =1:length(transGroup3)

 set(transGroup3(ii).text ,'FontSize',adjustment/(ax(4)-ax(3)));

 end

 end

 function hideDuplicateButton(btn,event) % use to hide group 2 and show group 3

 for ii = 1 :length(transGroup2)

 % arrows that point to duplicate states, these are visible to begin with

 transGroup2(ii).arrow.Visible='off';

 transGroup2(ii).rektangle.Visible='off';

 transGroup2(ii).text.Visible='off';

 end

 for ii = 1 :length(transGroup3)

 % redirected arrows that point to duplicate states, these are made hidden

to begin with

 transGroup3(ii).arrow.Visible='on';

 transGroup3(ii).rektangle.Visible='on';

 transGroup3(ii).text.Visible='on';

 end

 for ii = 1 :length(States)

 if States(ii).type == 'D'

59

 States(ii).drawStateText.Visible='off';

 States(ii).drawStateRectangle.Visible='off';

 for jj= 1: length(States(ii).exValRecktangles)

 States(ii).exValRecktangles(jj).Visible='off';

 States(ii).exValTxt(jj).Visible='off';

 end

 end

 end

 end

 function showDuplicateButton(btn,event) % use to hide group 3 and show group 2

 for ii = 1 :length(transGroup3)

 % arrows that point to duplicate states, these are visible to begin with

 transGroup3(ii).arrow.Visible='off';

 transGroup3(ii).rektangle.Visible='off';

 transGroup3(ii).text.Visible='off';

 end

 for ii = 1 :length(transGroup2)

 % redirected arrows that point to duplicate states, these are made hidden

to begin with

 transGroup2(ii).arrow.Visible='on';

 transGroup2(ii).rektangle.Visible='on';

 transGroup2(ii).text.Visible='on';

 end

 for ii = 1 :length(States)

 if States(ii).type == 'D'

 States(ii).drawStateText.Visible='on';

 States(ii).drawStateRectangle.Visible='on';

 for jj= 1: length(States(ii).exValRecktangles)

 States(ii).exValRecktangles(jj).Visible='on';

 States(ii).exValTxt(jj).Visible='on';

 end

 end

 end

 end

markingOfClickedRectangle=[0]; % variables for selecting states on mouseclick

lastClickedState=States(1)

idOfPrevRectanglesClicked=[];

 function markStateMarking(src,event) % changes the outline of state rectangles

when clicked

 States(src.UserData).drawStateRectangle.LineWidth = 2;

 for ii = 1:length(idOfPrevRectanglesClicked) % set old markings to default

value

 States(idOfPrevRectanglesClicked(ii)).drawStateRectangle.LineWidth = 0.5;

60

 end

 disp(idOfPrevRectanglesClicked)

 idOfPrevRectanglesClicked=src.UserData;

 lastClickedState=States(src.UserData);

 markingOfClickedRectangle=States(src.UserData).marking;

 end

 function searchForMarking(src,event)

 % changes the outline of state rectangles based on full search

 defaultInput=markingOfClickedRectangle(1);

 for ii = 2: length(markingOfClickedRectangle)

 defaultInput=strcat(defaultInput,{' '},markingOfClickedRectangle(ii));

 end

 dialougeAnswer = inputdlg({'input marking to search for'},'search input',[1

40],{char(defaultInput)});

 for ii = 1:length(idOfPrevRectanglesClicked) % set old markings to default

value

 States(idOfPrevRectanglesClicked(ii)).drawStateRectangle.LineWidth = 0.5;

 end

 searchFor = strsplit(char(dialougeAnswer))

 for ii = 1:length(States)

 tmp = searchFor == States(ii).marking;

 if all(tmp(:) > 0)

 States(ii).drawStateRectangle.LineWidth = 2;

 idOfPrevRectanglesClicked=[idOfPrevRectanglesClicked ii];

 markingOfClickedRectangle=States(ii).marking;

 end

 end

 end

 function continueFromSelectedMarking(src,event)

 % method for continuing tree generation from the selected state

 if length(markingOfClickedRectangle)>1

 % convert to int array of values

 intMarking=zeros(size(markingOfClickedRectangle));

 sizeinput =size(markingOfClickedRectangle);

 for i=1:sizeinput(2)

 if char(markingOfClickedRectangle(i)) == 'W'

 intMarking(i)= inf;

 else

 intMarking(i) = str2num(char(markingOfClickedRectangle(i)));

 end

 end

61

 switch limitType

 case 'coverability'

 coverType='normal'

 [States2,maxSpaceUsed2]=

makeStatesCover(intMarking,subtractTransitions,addTransitions,...

 excleList,coverType);

 drawGraphReachLimContinue(States2 ,subtractTransitions,

addTransitions, limitNumber,limitType,...

 excleList,TransExtraValues,maxSpaceUsed2, tnames)

 case 'coverability_extra'

 coverType='extra'

 [States2,maxSpaceUsed2]

=makeStatesCover(intMarking,subtractTransitions,addTransitions,....

 excleList,coverType);

 drawGraphReachLimContinue(States2 ,subtractTransitions,

addTransitions,...

limitNumber,limitType,excleList,TransExtraValues,maxSpaceUsed2,tnames)

 case 'reachabilityWithDepthLimit'

 if isfield(lastClickedState ,'extraValues')

 extra_initial2=lastClickedState.extraValues;

 else

 extra_initial2=[];

 end

 %the new home marking will be denoted as depth 1, no need to

change the limit

 [States2,maxSpaceUsed2]= makeStatesDepthLim(intMarking ,

subtractTransitions, addTransitions, limitNumber,excleList ,...

 TransExtraValues,extra_initial2 ,lastClickedState.history)

 drawGraphReachLimContinue(States2 ,subtractTransitions,

addTransitions, limitNumber,...

 limitType,excleList,TransExtraValues,maxSpaceUsed2,tnames)

 case 'reachabilityWithValueLimit'

 if isfield(lastClickedState ,'extraValues')

 extra_initial2=lastClickedState.extraValues;

 else

 extra_initial2=[];

 end

 % add the imit to the highest value in the new home marking

 newLimitNumber=limitNumber+ max(intMarking);

62

 [States2,maxSpaceUsed2]=makeStatesPlaceValLim(intMarking ,

subtractTransitions, addTransitions,...

 newLimitNumber, excleList , TransExtraValues,extra_initial2

,lastClickedState.history);

 drawGraphReachLimContinue(States2 ,subtractTransitions,

addTransitions,...

limitNumber,limitType,excleList,TransExtraValues,maxSpaceUsed2,tnames)

 end

 end

 end

end

Published with MATLAB® R2016b

http://www.mathworks.com/products/matlab/

