U

Universitetet
i Stavanger

FACULTY OF SCIENCE AND TECHNOLOGY

MASTER'S THESIS

Study programme/specialization:
Spring semester, 2018
Information Technology -
Automation and Signal Processing Open/Genfidential

Author: Eivind Hovland W W

(signature of author)

Instructor: Professor Kjersti Engan

Supervisor(s): Professor Kjersti Engan & Professor Kathinka Daehli Kurz

Title of Master's Thesis:
Feature extraction for exploring infarcted regions in perfusion CT images of the brain

Norwegian title:
Egenskapsuttrekning for utforsking av infarkt-omrader i perfusjon CT-bilder av hjernen

Credits: 30

Subject headings:

Pages: 66
Ischemic Stroke, Image Registration, Local + attachments/other: 23 + embedded file
Binary Pattern, Gray Level Co-occurrence

Matrix, Wavelets, Chi-squared, Correlation
analysis Stavanger, 15" of June 2018

University of
Stavanger

Feature extraction for exploring infarcted

regions 1n perfusion CT images of the brain

MASTER’S THESIS
Eivind Hovland
June 2018

Under the supervision of Professor Kjersti Engan
and Professor Kathinka Dahli Kurz

Faculty of Technology and Science
Department of Electrical Engineering and Computer Science

University of Stavanger

Abstract

In Norway, over 15 000 people suffer from acute cerebral stroke annually, it is the leading cause
of adult long-term severe disability and a significant reason for admission to nursing homes. In
Norway it is a prominent cause of death among adults, being the third leading cause of death.
On a worldwide basis, 6.7 million deaths were due to stroke in 2012, most of them in low- and
medium-income countries.

At Stavanger University Hospital (SUS), patients are routinely investigated using perfusion
computed tomography (PCT) in the acute setting. The images acquired are used to calculate
parametric color-coded maps describing the blood perfusion in the brain. These maps are inter-
preted, and thereby aid in deciding whether a patient need immediate thrombolytic treatment.
This interpretation is critical in tailoring treatment to each patient, and thus saving lives and
reducing the possibility of severe disability. The parametric maps are distant with regards to
a certain diagnostic accuracy, and further refinement of the techniques and methods in use are
desired. More accurate evaluation of PCT can lead to better guidance of whom to treat with
thrombolytic- and interventional therapy, with the goal of better treatment for the patients.

The primary objective of this thesis is to arrange and process the available data material.
Additionally, exploration of multiple features that describe a healthy hemisphere of the brain
compared to a hemisphere with impaired perfusion is conducted.

Results show that textural features extracted by Local Binary Pattern (LBP) and wavelets
can demonstrate a definite difference in the chi-squared distance measured in a healthy hemi-
sphere compared to a hemisphere with impaired perfusion. Over different time-series, the dis-
tinctiveness of the features varied, by comparing them to the Time-Density Curves (TDC) for
the actual patient, the better features seemed to be extracted from more complex wavelets like
Daubechies-4 and Coiflet-4.

Textural features extracted from the Gray Level Co-occurrence Matrices (GLCM) proved
challenging to interpret, but by combining them with textural features extracted by Coiflet-

wavelets, they were able to distinguish the two hemispheres for each patient.

Preface

This thesis concludes two fantastic years in the city of Stavanger, and at the University of
Stavanger.

I would like to thank Professor Kjersti Engan for her invaluable aid, advice and feedback
given through the period.

Furthermore, 1 would like to thank Professor Kathinka Dahli Kurz for assisting me with
medical insight and valuable input concerning the thesis and data material.

Finally, my family and friends, and my partner Martine, deserves my deepest gratitude for

supporting me through this period.

Stavanger, 15th of June 2018
Eivind Hovland

il

Table of Contents

1 Introduction

1.1 Image Processing in Medical Applications
1.2 Thesisobjective e e
1.3 Thesisoutline L

2 Medical Background

2.1 Ischemic Stroke e
2.1.1 InfarctCore
2.1.2 Penumbra

2.2 Computed Tomography
2.2.1 Paramtetric Maps

23 DataMaterial

3 Technical Background

3.1 TImage Registration

3.2 Histogram Equalization 0o

3.3 Seeded Region Growingo

34 Local Binary Pattern
34.1 Working Principle
342 RotationInvariant. L Lo
343 UniformPatterns Lo
3.4.4 Multiresolution Local Binary Pattern

3.5 Wavelets L oL

3.6 Gray Level Co-occurrence Matrix

3.7 Similarity measures e e
3.77.1 Chi-Squared distance
3.7.2 Correlation analysis Lo

4 Method
4.1 Image Registration

(NS R NS R S

N 9 O O L i

10

13
13
14
15
16
17
17
18
19
20
21
23
23
23

25
25

il

4.2 Pre-processing o i it e e e e e e
4.2.1 Image Normalization
4.2.2 Histogram Equalizing
43 Masking
43.1 Skull stripping e
4.4 Feature Extraction e
44.1 Localbinary pattern
442 Wavelet
4.43 Model histogram
444 Gray Level Co-occurrence Matrix
4.4.5 Correlation analysis
4.5 Implementation L
4.5.1 Image registration
4.5.2 Pre-processingand Masking L.
4.5.3 Feature Extraction
4.5.4 Performance measures
4.6 Proposedsystem
5 Experiments and Results
5.1 Masking e e
5.2 EXperiments e e e e
5.2.1 Experiment 1: Local Binary Pattern
5.2.2 Experiment2: Wavelets
5.2.3 Experiment 3: Gray Level Co-occurrence Matrix
5.2.4 Experiment 4: Feature selection
5.2.5 Experiment 5: Correlation analysis
6 Discussion
6.1 Dataset
6.2 Masking L e
6.3 Feature Extraction
6.4 Correlationanalysis e
7 Conclusion and Future Work
7.1 Future Work
Bibliography
Appendices

37
37
37
38
40
41
43
45

47
47
47
48
50

51
51

53

57

v

Data material

MATLAB code

Features extended: GLCM

Manually Labeled Penumbra and Infarct Core
Additional results

Time-density curve

58

59

60

63

64

76

Abbreviations

CBF
CBV
CT
CBF
DICOM
DWT
GLCM
HU
LBP
MTT
PCT
ROI
SUS
TDC
TTP

Cerebral Blood Flow

Cerebral Blood Volume
Computed Tomography

Cerebral Blood Flow

Digital Imaging and Communications in Medicine
Discrete Wavelet Decomposition
Gray Level Co-occurrence Matrix
Hounsfield Unites

Local Binary Pattern

Mean Transit Time

Perfusion Computed Tomography
Region Of Interest

Stavanger University Hospital
Time Density Curve

Time To Peak

vi

1 Introduction

In Norway, over 15 000 people suffer from acute cerebral stroke annually, it is the leading cause
of adult long-term severe disability and a significant reason for admission to nursing homes. In
Norway it is a prominent cause of death among adults, being the third leading cause of death
[1]. On a worldwide basis, 6.7 million deaths were due to stroke in 2012, most of them in low-
and medium-income countries [2]. The disease is quite common and has a tremendous negative
impact on the quality of life for the patients, and in the acute phase, there is registered mortality
of up to 25% [3]. Besides, the costs of healthcare, are colossal for the society [1].

At Stavanger University Hospital (SUS), patients are routinely investigated using perfusion
computed tomography (PCT) in the acute setting. The images acquired are used to calculate
parametric color-coded maps describing the blood perfusion in the brain. These maps are inter-
preted, and thereby aid in deciding whether a patient need immediate thrombolytic treatment.
This interpretation is critical in tailoring treatment to each patient, and thus saving lives and
reducing the possibility of severe disability. The parametric maps are distant with regards to
a certain diagnostic accuracy, and further refinement of the techniques and methods in use are
desired [4]. More accurate evaluation of PCT can lead to better guidance of whom to treat with
thrombolytic- and interventional therapy, with the goal of better treatment for the patients.

Today, PCT provides a good diagnostic accuracy by identifying acute ischemic lesions, but
it also has limitations. The limitations appear especially with lesions at pons level and the basal
ganglia area. Quantitative analysis has proved to be more efficient [5].

This thesis will focus on feature extraction on PCT images. Local texture analysis will be
performed using a data material that consists of 11 patients diagnosed with ischemic stroke. The
texture analysis will be conducted using Local Binary Pattern (LBP), Gray-Level Co-occurrence
matrix (GLCM) and use of wavelets. The different variations of textural analysis are applied to

PCT images that have 4-dimensions (3-D + time).

Chapter 1. Introduction

1.1 Image Processing in Medical Applications

Image retrieval within biomedical imaging systems are dependent on digital image processing.
Within the field of medicine, image processing techniques have been used both for assisting in
diagnosing as well as for research. Image processing applied within the medical field includes

morphological image processing, feature extraction and image segmentation [6].

1.2 Thesis objective

The primary objective of this thesis is to arrange and process the available data material. Addi-
tionally, exploration of multiple features that describe a healthy hemisphere of the brain com-

pared to a hemisphere with impaired perfusion is conducted.

1.3 Thesis outline

Chapter 2 - Medical Background:
This chapter presents background theory necessary for the understanding of the thesis. Ischemic

stroke, penumbra and the data material are some of the topics outlined.

Chapter 3 - Technical Background:
An overview of relevant theory used throughout the thesis is presented. Among other things are
LBP, GLCM and wavelets explained.

Chapter 4 - Method:
An overview of the developed system and its approach is described in detail.

Chapter 5 - Experiments and Results:
Experiments conducted, and results achieved are presented.

Chapter 6 - Discussion:
The chapter presents discussions of data material, concepts and results obtained throughout the

thesis.

Chapter 7 - Conclusion and Future Work:
The conclusion of the work conducted is presented. Besides, suggested recommendations for

future work are included.

1.3 Thesis outline

Appendix A - Data material:
A time-series of PCT images for patient 1 is presented. The presentation is meant as a helping

hand in understanding the structure of the 4-D data material.

Appendix B - MATLAB Code:
A list of devised and developed functions are presented. All code described are found in the
embedded file, matlab.7z.

Appendix C - Features extended: GLCM:
From the GLCMs there are extracted a total of 22 features. This thesis focuses on 3 of those 22

features, nevertheless all 22 features are plotted in Appendix C, for patient 1.

Appendix D - Manually Labeled Penumbra and Infarct Core:
The data material included PCT images with freehand-drawing estimating the size of the infarct
core and penumbra. Table D.1 shows the summarized value of infarct core and penumbra for all

patients, measured in cm?. The mean value per slice in the volume is also allocated in table D.1.

Appendix E - Additional results:
Chapter 5 mainly presents results from experiments with data material from one patient. In this

appendix, results for all patients can be studied closer.

Appendix F - Time-Density Curves:
Time-Density curves, as explained in , for all patients, excluding patient 5 can be studied in this

appendix.

Chapter 1. Introduction

2 Medical Background

This chapter presents background information within the field of medicine. Ischemic stroke,

the acquisition of PCT images and the data material are among topics presented.

2.1 Ischemic Stroke

An ischemic cerebral stroke is a result of a transient or permanent reduction in the cerebral
blood flood (CBF) to an area of a major brain artery. The reduction in blood flow is caused by
an occlusion in the cerebral artery, mainly by an embolus or a local thrombosis [7].

An embolus is a blood clot that breaks free from one part of the circulation system to lodge
in another artery, for example, one of the brain arteries. On the other hand, thrombosis is a
condition where the blood clot develops in a blood vessel or artery and as a result, reduces the
blood flow through this specific vessel or artery. The clot develops as blood changes from a
liquid to a solid state, and this produces a mass of coagulated blood [8]. Occlusion of an artery,
either in the neck or the brain will deprive parts of the brain of its nutrients, glucose and oxygen
[9].

Brain tissue deprived of glucose and oxygen because of compromised blood supply is ex-
pected to sustain transient or permanent damage. Brief loss of blood supply can cause cellular
changes. Continued loss of blood supply leads directly to death and degeneration of the de-
prived cells [10]. Figure 2.1, illustrates an ischemic stroke. An occluded artery deprives parts

of the brain of its nutrients, seen as the gray area.

Chapter 2. Medical Background

Courtesy of the National Institute of Neurological Disorders and Stroko

Figure 2.1: A visualization of an ischemic stroke in the brain [11]. The gray area is brain tissue deprived
of its nutrients, the tissue is in danger of becoming irreversibly damaged. Reprinted: National Institute
of Neurological Disorders and Stroke, under creative commons(CC), CC-BY-NC 2.0 License.

2.1.1 Infarct Core

The infarct core is the part of an ischemic stroke that is already irreversibly damaged. The
tissue is not salvageable through reperfusion. In PCT, the infarct core is defined as the area of
the brain with increased Time-To-Peak (TTP), markedly decreased CBF and decreased cerebral
blood volume (CBV) [12].

2.1.2 Penumbra

The penumbra or ischemic penumbra is the part of an acute ischemic stroke that is at risk of
progressing to infarction if blood flow is not restored promptly. This part of a stroke is still
salvageable. It is usually surrounding the infarct core. The penumbra can be salvaged if it is
reperfused fast. When treating a patient with an acute ischemic stroke, the primary objective
is to prevent the penumbra from proceeding into an infarct core. By using PCT, the penumbra
can be estimated by reviewing parametric maps. The penumbra is described as the area with
prolonged T-max, Mean-Transit Time (MTT) or TTP, together with a normal or increased CBV.

Unlike the infarct core, the penumbra will only have a moderately decreased CBF [13].

6

2.2 Computed Tomography

2.2 Computed Tomography

Conventional x-rays present three-dimensional objects projected as a two-dimensional image
and is a major limitation of conventional radiography. On the other hand, CT overcomes this
problem by scanning thin sections of the body with a narrow x-ray beam. The x-ray beam will
rotate around the body in a helical shape. The image quality of CT images is typically evaluated

using the following criteria:

e Spatial resolution - a description of the ability the system has to define small object dis-

tinctly.

e Low-contrast resolution - ability to differentiate objects with similar densities in the im-

age.

e Temporal resolution - describes the speed that the data can be acquired.

Interpretation of CT requires knowledge of anatomy, especially understanding the location
of organs relative to other as each CT slice represents a specific plane in the patient’s body. The
thickness of the acquired slices is defined as the Z-axis.

This report focuses on a set of PCT images of the brain. PCT uses a contrast agent to
enhance contrast in the tissue. The contrast agent is used in a bolus technique. A CT scan
follows a rapid injection of contrast material, images are acquired for the whole volume of the
brain through subsequent time intervals. The interval between the injection is initiated and the
start time point of the scanning is critical and very important for the result [14]. All patients
referred to in this thesis were given 40 ml iodine-containing contrast agent (Omnipaque 350
mg/ml) and 40 ml isotonic saline in a cubital vein with a flow rate of 6 ml/s, the scan delay was

four seconds.

2.2.1 Paramtetric Maps

Modern CT scanners have multiple detectors. These can image a substantial volume of tissue
both rapidly and repeatedly. The passage of a contrast agent on a series of scans on a specific
plane is recorded over time, via a time versus contrast concentration curve [15]. This curve is
referred to as a time-density curve (TDC). Using mathematical function of deconvolution on
the TDC, various measures of perfusion can be calculated for each image pixel. The measures
calculated includes a variety of color-coded parametric maps, these maps are meant to help
visualize an acute stroke [16]. A TDC graph can be studied closer in figure 2.2. The z-axis on
the graph denotes the time elapsed, in seconds, after the start of a bolus injection. The y-axis

displays the relative enhancement level measured in Hounsfield Units (HU) [14].

Chapter 2. Medical Background

HU

maximum slope of the curve
HU

maximum slope of the curve
o

area under the normalized curve (CBV)]
b— TTP
T \

measured enhancement time to
time to

/ T start
Co,50 00, e- ;L n/
T start] hax. enhancement 2.0 © ¢o0o00 @ \

0 5 0 5 » » » M . Time to peak (TTP)
Cerebral blood flow (CBF)
B Cerebral blood volume (CBV)

area under the normalized curve (CBV)

measured enhancement

A/ /4

OOQOOOOO

%00

Time [s]

(a) A time density curve
(b) A denoted time density curve.

Figure 2.2: A denoted time density curve.

The TDCs are generated from images acquired in quick succession. The images are pro-
cured at a faster rate in the start, and a decreasing frequency throughout the examination. Exam-
ples of typical parametric maps that are generated through deconvolution can be seen in figure

2.3. In addition to these maps, MTT maps are also commonly used. The parametric

Cerebral blood flow

CBE, as seen in figure 2.3a, is defined as the volume of blood that passes through a given amount
of brain tissue per time. It is most commonly measured in milliliters of blood per minute per
100g of brain tissue (ml/100g/min) [17].

Cerebral blood volume

CBV is defined as the volume of blood in a given amount of brain tissue. It is measured as
milliliters of blood per 100g of brain tissue (m!/100g) [18]. CBV can be calculated by assessing
the area under the actual time-density-curve, as seen in figure 2.2b.

Time-to-peak

TTP is defined as seen in figure 2.2, it is a measure of the time until the TDC reaches its local

maximum. The perfusion map produced by TTP is seen in figure 2.3c.

T-max

T-max, together with TTP, is a measure of contrast arrival time to the tissue. T-max reflects
the time it takes for a contrast agent to reach and traverse areas of the brain, as opposed to the
amount of contrast that is measured in a specific point [15]. A parametric color-coded map

showing T-max can be studied in figure 2.3d.

2.2 Computed Tomography

(a) Cerebral blood flow (b) Cerebral blood volume

(¢) Time-to-peak (d) T-max

Figure 2.3: Four different parametric maps frequently used for describing blood perfusion in the brain.
The parametric color-coded maps are generated from the TDCs through deconvolution.

Chapter 2. Medical Background

2.3 Data Material

The data material consists of PCT images of 11 patients obtained at SUS. The images are
4-dimensional (3-D + time). For each patient, there are PCT images as well as parametric
colour coded maps which describe the blood perfusion in the brain. Information and comments

regarding the patients can be seen in table 2.1.

Table 2.1: Overview of information for the 11 patients included in the data material. The table includes
information about age, sex, which hemisphere that is perfusion impaired, and if there are any additional

comments.
. Hemisphere
Patient nr. | Age Sex Comments
affected
1 64 Male Right
Old infarct -
2 56 Female Left) n a'rc
right side
Old infarct -
3 67 Female Right i
right side
. Old infarct -
4 69 Male Right)]
right side
5 65 Male Right
6 77 Female Left Bolus not optimal
7 87 Female Left
8 70 Male Right
9 63 Female Left
10 67 Female Left
11 83 Male Right

Each patient’s PCT examination consists of approximately 30 series, which extend over
time, normally 40-50 seconds. For each of these time-series, images are acquired from a volume
comprising the central parts of the brain, typically 13 slices. This is visualized in figure 2.4,
where t; is the first time-series, tio the tenth time-series, t,, represents the final time-series. By

inspecting the figure closely a difference in the contrast seen in the brain from t; to t;y can be

regarded, this is a result of the contrast enhancement agent given to the patient.

10

2.3 Data Material

Volume + e 00

1 >
Time
t t1o ty

Figure 2.4: Visualizing the structure of the 4-D PCT image-series. The volume consists of 13, 15 or 16
images and are repeated for each time-series, typically there are 30 time-series. Consequently, resulting
in an image-series consisting of 390, 450 or 480 images.

The data material is in the Digital Imaging and Communications in Medicine(DICOM)
standard. The DICOM format contains a header with information about the image as well as
patient information [19]. However, it is important to state that the images were anonymized for
this study. The images have a resolution of 512 by 512 pixels and the pixels have a bit depth
of 16 bits per pixel. The PCT examinations that are the foundation of this thesis consists of
390, 450 or 480 images. That results in respectively 30 time-series of 13, 15 or 16 images per
volume-series. A whole volume-series, for patient 1, consisting of 13 slices, can be studied in

Appendix A.

11

Chapter 2. Medical Background

12

3 Technical Background

This chapter presents background information that forms the basis for the research conducted in
the thesis. Image normalization, histogram equalization, seeded region growing, Local Binary
pattern, wavelets and Gray-level Co-occurrence matrix are presented, in addition, similarity

measures used throughout the thesis are described.

3.1 Image Registration

Image registration is a fundamental task useful in multiple applications. It is used to coordinate
two or more images where the images may have been acquired at different time or viewing
points [20]. The data material for this thesis consists of image series where the patient may
have moved during an examination.

Kim et al, proposed a robust similarity measure for intramodality image registration in 2004
[21]. Image registration has a goal of finding a geometric transformation, denoted 7', that will
align two images sl(f) and 32(5), where ¢ denotes the spatial coordinates. Image registration
based on intensity utilizes a similarity measure based on the image intensity values to achieve its
goal. If the transformation, 7', is parameterized using #', the case of image registration becomes

a parameter estimation problem:
0= argrenax(l)(sl(Tg(-)), s2(+)) (3.1)

In equation 3.1, ®(sy, s2) is a measure of the similarity between the images s; and s,. Regis-

tration is in practice performed using a finite samples X; and Y}, as seen:

X; = s1(Ty(:))

- (3.2)
Y;':SQ(ti), Zzl,,N

In equation 3.2, #; denotes the sample locations while s,(T}(£;)) is a spatially transformed, and
interpolated, version of sl(f). X; depends on 6, all quantities computes using X; are functions
of 6.

le.g., three translation and three rotation parameters for rigid transformation

13

Chapter 3. Technical Background

0 = argmax®(X (0),Y) (3.3)
0

where X = (Xi,...,Xy)and Y = (Y,...,Yy). A variety of similarity measures, ®, have
been proposed for image registration, among these are statistical quantities including correlation

coefficient, as described in [21].

3.2 Histogram Equalization

Histogram equalization is a well-known method used in contrast enhancement and standardiza-
tion of images. Due to its effectiveness, it is widely used in everything from medical image

processing to radar image processing [22].

Given an image X, composed of L gray levels, the individual luminance levels is described
by (Xo, X1, ..., X — 1) where X (i, j) reflects the gray-scale value at the spatial location (i, j).
For the image, a probability density function, p, (k) is defined as:

nk
pe(k)=—, 0<k<L-1 (3.4)
n

In equation 3.4, n is representing the total number of pixels in the original image, X. n*
represents the number of pixels of value k. The number of levels, L, are described as the bit-

depth. Based on 3.4, a cumulative density function is defined as:

k
ca(x) =) p(j), 0<k<L-1 (3.5)

j=o

Histogram equalization maps the input image into its entire dynamic range, (xo, x7_1), by uti-
lizing the cumulative density function as a transform function. A transform function, f(x) is
defined as:

f(z) = Xo + (Xz-1 — Xo)ca () (3.6)

The histogram equalized output image, Y, is expressed as
Y = f(X) (3.7)

= {f(X(©7)IVX (7 j) € X} (3.8)

14

3.3 Seeded Region Growing

3.3 Seeded Region Growing

In 1994, Rolf Adams and Leanne Bischof presented a method of segmentation which utilizes
images where regions in the image are characterized by connected pixels of similar value [23].
The first step of the method is to select a set of seed points. From this seed point, the region
grows to adjacent pixels depending on a criterion. This criterion can, for example, be pixel
intensity or grayscale texture.

Figure 3.1, illustrates how a seeded region growing with a single initial seed positioned in
point (3, 3), and a threshold of 1 in a 525 image grow. An 8-connected neighborhood is used to

examine adjacent pixels of the seed point.

65631 6|ls]e]3]1 6|ls]e]3]1 6ls5]e]s3]1

al7]1o0]7]s 4l 71o0]7]s 4l 710]7]s al7)o0]7]s

716 13) 1] 4 7163 1]4 716| 3 F 4 7163 1] 4

o] s Z 2| 4 olel2]2|s4 olef|2]2 I 4 ole)2]2 I 4

3|le]e]1]1 3leles]1]1 3|le6]e6 TT‘ 3|le6]e6 TT‘
Seed pixel Iteration 1 Iteration 2 Iteration 3

Figure 3.1: A 5x5 grayscale image with an initial seed point of (3,3). From the seed point a seeded
region grows until all pixels in the region have been allocated with respect to a threshold. This example
is conducted using a threshold of 1.

Equation 3.9, is used to determine whether or not the pixel is classified into the seed point.
In equation 3.9, the absolute value of the initial seed is subtracted by the adjacent pixels, and
compared to a threshold, T'. The process is iterative, and it is repeated until there is no change

in two successive iterative stages.

|g(seed) — g(pixel)| < T, T =1 (3.9)

Figure 3.2 shows an algorithm scheme of the seeded region growing. The algorithm operates
by assigning the pixel coordinate of the initial seed as the starting point of the segmentation
procedure, from where the region is expanded, producing a region of interest (ROI) by checking
adjacent pixels in the PCT image. The growing criteria, referred to as GC in figure 3.2 is the
absolute threshold to be included in the ROI.

15

Chapter 3. Technical Background

Select inital
seed

l<

Choose a
neighboring pixel

Pixel value falls
within GC?

Yes

Add pixel to ROI

No ’

A

—

Yes

Any neighboring

pixels remain?

No

Selected pixels
compose ROI

Figure 3.2: Flow-chart of the seeded region growing algorithm.

3.4 Local Binary Pattern

In 1996, Ojala et al. introduced a robust way of describing pure LBP in a texture[24]. The
algorithm uses a 3x3 neighbourhood. For each pixel in the image, a binary label is computed by
comparing the center pixel with each of its neighbours, as seen in figure 3.3. The neighborhood
is first thresholded by the value of the center pixel before it is multiplied by the weights of the

corresponding pixels. Finally, the values of the eight pixels are summed. Hence the number

169 is obtained for this specific texture unit.

i 4 3 1 0 0 1 2 4 1 0
T] 1 1 0 a8 16 8 0
T 3] 1 0 1 32 54 128 32 128

Figure 3.3: A 3x3 neighbourhood thresholded by the middle pixel value.

The original LBP operator has limitations. The 323 neighbourhood does not capture larger

16

3.4 Local Binary Pattern

structures in the texture. Ojala et al. therefore extended the operator, so that it could facilitate

rotation invariant and uniform pattern analysis at multiple scales [25].

3.4.1 Working Principle

Given a random image pixel the circular neighbourhood can be described with a radius, 7, and
a fixed number of samples along the circle, as seen in figure 3.4, in this case, there are eight
samples in the neighbourhood. If the coordinates of the center pixel, g. are (0,0) then the
coordinates of g, are given by (—Rsin(#E), R cos(2E)). Furthermore, if the neighbours do
not fall exactly in the center of a pixel, their value is estimated using interpolation.

Figure 3.4: g. is a center pixel surrounded by 8 neighbours. The neighbours are denoted gy, in this
example , ranges from 1 to 8.

Each of the labels g, are added up to a numeral label through the use of individual weights,
as seen in equation 3.10:
gp = 2P (3.10)

The operator, LBP, is denoted with a number of neighbours, P, and a radius, R which gives the

following definition:

P—1
LBPpr =Y s(gp— gc)2" (3.11)
p=o0
In 3.11, s(x) is defined as:
1, ifz>0
s(x) = (3.12)
0, ifz <0

3.4.2 Rotation Invariant

The original LBP operator can be extended by applying rotation invariance [25]. A rotation

invariant LBP is preferable as texture rotation tend to be arbitrary.

17

Chapter 3. Technical Background

0202101030010

| (31) (6) (124) (248) (241) (227) (199) (143) |

v
€2y

Figure 3.5: Illustration of the rotation invariance extension. The minimum possible descriptor is used.

In figure 3.5 black circles are representing ones while white circles are represented as zeroes.
The white circles in the middle are considered the center pixel. By applying weights as seen in
figure 3.4, eight numeral labels are obtained. The rotation invariant extension uses the minimum

possible description through equation 3.13:
LBPp, = min{ROR(LBPpg,i) | i=0,1,...,P—1} (3.13)

In 3.13, ROR(x, 1) is a function which performs a circular bit-wise right shift on the P-bit
number x4 times. In figure 3.5, the minimum value found is 31,9 or 000111115, this is assigned

as the new label for the center pixel.

3.4.3 Uniform Patterns

Another extension of the LBP operator is the use of uniform patters [25]. The uniform measure

is denoted U, the measure corresponds to the number of spatial transitions in the pattern.

S s(gp — g), ifU(LBPpg) <2

LBP[= (3.14)
P+1, otherwise
where
U(LBPpgr) = |5(gp—1 — gc) — 5(g0 — gc)|
+PZI 15(g — ge) — 5(gp-1 — 90| (3.15)
p=1

The superscript "“? indicates that the operator in use is invariant to rotations and that it

supports uniform pattern, which implies that U < 2. Simplified, the uniformity U(LBPpR)

18

3.4 Local Binary Pattern

describes the number of transition between zero and one in the LBP. For example, the following
pattern contains two transitions 110001115 and 001111000, while 01001001, includes five

transitions and is therefore not considered uniform.

3.4.4 Multiresolution Local Binary Pattern

In [25], a multi-resolution LBP was constructed where it was possible to adjust the radius,
R, and the number of neighbours, N. Mienpdi and Pietikdinen stated that this method has
shortcomings seen from a signal processing view [26]. LBP operators with a large R, may
not result in an adequate representation of two-dimensional images as aliasing effects become
an obvious problem. To solve this problem, they introduced an exponentially growing multi-
resolution LBP combined with a Gaussian low-pass filter. By applying a low-pass Gaussian
filter, the pixel intensity will be collected from a larger area. This will not only remove aliasing
but also reduce noise.

With a large radius, the distance between samples becomes large, thereby making the LBP
code unreliable. The low-pass filter makes it possible to collect the intensity information for

each sample from a larger area, indicated by the solid circles in figure 3.6

Figure 3.6: The effective areas of filtered pixel samples in an eight-bit multi-resolution LBP operator
[26].

Reprinted by permission from Springer Nature: Image Analysis 13th Scandinavian Conference, [26] (Multi-
scale Binary Patterns for Texture Analysis, Mdenpad and Pietikdinen),(2003)

19

Chapter 3. Technical Background

The outer radius of this "effective area" with respect to the center of the neighbourhood is

described by:

1 —sin(£

In equation 3.16, NNV is the number of scales, while P, is the number of neighbourhood samples
at a scale n. The use of low-pass filtering is only necessary when the radii is larger than one,
r1 1s therefore set to 1.5. r; is then the shortest distance between the center and the border of a
33 neighborhood.

The radii of the LBP operators are chosen so that the effective areas touch each other while
they at the same time are non-overlapping. The operator radius, R, at a scale n(N < 2) are
defined as:

R, = Tn o1 (3.17)
2
These radii are illustrated by the dotted cirles in figure 3.6.
The effective areas are realized using a Gaussian low-pass filter so that 95% of its mass lies

within the circle.

3.5 Wavelets

Wavelets have in posterity been successfully used in image compression, enhancement, analy-
sis, and classification. It is a mathematical function that can decompose a signal or an image.
The decomposition is executed with a series of averaging and difference coefficients [27]. The
signals can be represented in different frequency bands by using wavelets, each of the bands
will have a resolution matching its scale [28].

The Discrete Wavelet Transform (DWT) of a one-dimensional signal, f[n], can be calculated
by passing it through a high- and a low-pass filter simultaneously. Assume the low-pass filter
has impulse response, g[n]. The DWT can be evaluated by calculating the convolution of the

original signal with the impulse response as:

ylnl = (fxg)ln) = > [k gln — k| (3.18)
k=—o0
In equation 3.18, *, indicates the complex conjugate. The wavelet decomposition can be
executed using different wavelets, for example, Haar, Daubechies, Symlets, and Coiflets.
For DWT of a two-dimensional image, the original image is convolved along x— and y— di-
rections by a low- and high-pass filter. Furthermore, the image is down-sampled by the columns,
indicated by 2 |. The resultant images are the convolved again, this time also with high- and

low-pass filters and downsampled again. This process yields four sub-band images, denoted

20

3.6 Gray Level Co-occurrence Matrix

LL,, LH;, HL; and HH;. LL; contains the approximation coefficient and the maximum infor-
mation of the image, the other sub-band images, in their respective order contains horizontal,
vertical and diagonal information about the image, figure 3.7 shows how a 2-D DWT can be

applied to an image.

Level 1 decompostion

N Columns N/2
LL4N/2
Rows N/2 e | ow-pass filter
| ow-pass filter @

N _/ Columns

N High-pass filter

X ——

Columns

== Low-pass filter
Rows E

High-pass filter @

Columns

T [}
:H £l H

High-pass filter

Figure 3.7: 1-level sub-band decomposition of an NxN image. Suppose an image, X, of size Nz N. Each
row is low- and high-pass filtered before it is down sampled by the. This results in two Nz N /2 images.
Subsequently, the columns are sub-sampled, which gives an output of four images with a resolution
of N/2xN/2. The four obtained images can be sub-sampled again, which will give another four new
sub-images. This process can be continued until a satisfactory sub-band decomposition is achieved [29].

3.6 Gray Level Co-occurrence Matrix

In 1973, Haralic et al. proposed a method for extracting textural features for image classifica-
tion. They referred to it as Gray-Tone Spatial-Dependence Matrices, today it is most commonly
known as Gray Level Co-occurrence matrix(GLCM) [30].

Suppose the image to be analyzed is rectangular with a resolution of N, in the horizontal-
and NN, in the vertical direction. Each of the gray tone appearing in these cells are then
quantized to N, levels. Denote L, = {1,2,...,N,} as the horizontal spatial domain and
L, ={1,2,...,N,} as the vertical spatial domain. G = {1,2,..., N,} is the set of N, quan-
tized gray tones. The image, I can then be represented as a function that assigns a gray tone in

G to each resolution cell or pair of coordinates in L, X L,; 1 : L, x L, — G.

21

Chapter 3. Technical Background

| 2 3 4 5 6 7 8

/\02\\1&01100

1278/A/\z()O()loolo

546A5/ 3 fofofofofojolo
/ q

4] s 1//2 41\Q001101

624%3 500\010010

[Tefts T4l 611\00001

7100\00001

g8 lolol2]1]ololo]o

Figure 3.8: An illustration of how a 5x5 image can be transformed into an 828 GLCM. The same
principle applies for a larger image.

The example in figure 3.8 shows how a 525 image can be transformed into an 88 GLCM.
The matrix in this example is calculated using the horizontal proximity of the pixels with an
offset equal to one. It is possible to explore and test different offsets with various angles. A
horizontal offset is considered 0°, while a vertical offset is denoted 90°. Furthermore, it is
feasible to use an angle of either 45° or 135°. From the GLCM created, textural features can be
extracted. An example of a textural feature extracted is the angular second-moment, which is a

measure of homogeneity in the image, see equation 3.19.

Ng Ny

A=) (P(]:;j))z (3.19)

i=1 j=1

In equation 3.19, P(i, j) is the ith and jth entry in a GLCM. N, is the number of distinct gray

levels in the quantized image while R is a normalizing constant.

22

3.7 Similarity measures

3.7 Similarity measures

This section presents methods used for describing differences between a healthy hemisphere of

the brain compared to a perfusion impaired hemisphere.

3.7.1 Chi-Squared distance

The chi-squared distance, as seen in 3.20, calculates the distance between two histograms where
r = x1,...,2, and y = [y, ..., y,] are both having n bins each. d is the distance measured

between the two histograms.

da.y) = 23 Tl (3.20)

The chi-squared distance is derived from Pearson’s Chi-Squared test which was investigated
by Karl Pearson in 1900 [31].

3.7.2 Correlation analysis

The correlation coefficient is a measure of linear dependence of two random variables. The

Pearson correlation coefficient is defined as [32]:

N

p(A, B) = ﬁ 3 (m) (B" — ”B> (3.21)

- OA OB
=1

where each variable has NV scalar observations. j14 and 04 are the mean and standard de-
viation of A, respectively and up, and op are the mean and standard deviation of B. The

correlation coefficient can alternatively be defined in terms of the covariance of A and B:

cov(A, B)

0AOB

p(A, B) = (3.22)

A correlation coefficient matrix calculated for two random variables results in a pairwise

variable combination results in:

(3.23)

A and B are always directly correlated to themselves, the diagonal entries are therefore

equal to 1, as seen:

23

Chapter 3. Technical Background

1 p(A, B)
p(B,A) 1

(3.24)

In addition to correlation coefficients, the P-value is calculated. The P-value gives the user
an alternative to a "reject" or "do not reject" approach. If the P-value is lesser than the sig-
nificance level, 0.05, the corresponding correlation measured in R is considered significant.
Otherwise, if the P-value is larger than 0.05, the significance of the measurement plummets
[33].

24

4 Method

In this chapter, each module of the designed system is presented. The modules described can
be studied in figure 4.1.
Similiarity

measures
—>

Feature
Extraction

Input Image N Pre-
images Registration ”| Processing

Y
Y

Masking >

Figure 4.1: Simplified overview of the proposed method.

4.1 Image Registration

In the DICOM header, information about instance numbers is accessible. The instance number
is a number that identifies every image, by using these numbers, the images can be sorted in the
order in which they were acquired. For a time-series consisting of 30 series with 15 images per
volume, there will be a total of 450 instance numbers. Once the images are sorted according to
these numbers, they are registered and aligned with the use of normalized correlation coefficient,
as explained and referred to in section 3.1. This process is repeated 11 times, once for each

patient.

4.2 Pre-processing

This section describes the various steps of pre-processing applied to the images. Images used in
the experiments are mainly PCT images, while the perfusion maps are used as a helping hand

in understanding where in the brain there are perfusion limitations.

4.2.1 Image Normalization

The grayscale PCT images are normalized. Image normalization is useful as it expands the
grayscale so that the images share a similar range. The normalization is implemented using

equation 4.1.
. newMax — newMin .
Iy = (I — Min) Var — Min + newMin 4.1)

25

Chapter 4. Method

In 4.1, I represents an image with n-dimensional grayscale levels with intensity values in
the range Min to Max. Iy represents the normalized image, with intensity values in the range

of newM ax to newMin.

4.2.2 Histogram Equalizing

In addition to image normalization, the images are also processed using histogram equaliza-
tion. Histogram equalizing increases the global contrast by a more expedient distribution of the

intensities in the histogram.

4.3 Masking

This section describes methods and techniques used in the Masking block in figure 4.1. A binary

mask is created by a seeded region growing.

4.3.1 Skull stripping

Skull stripping allows for whole-brain segmentation. The segmentation method is applied with
a desire to remove extracerebral tissues! from the images. The tissues can be everything from
skull and eyeballs to skin [34]. Removing the skull and artifacts are important as they may
affect the features extracted, hence the removal may lead to better and more distinct features
[35].

The segmentation in this thesis is mainly done by the use of a seeded region growing. Pre-
viously to the segmentation, the images are rotated with a fixed angle for each patient. The
rotation is done to bring the images into a better horizontal alignment. Afterward, a seeded
region growing is placed with an initial position of [250,250]. The region then expands by
examining neighboring pixels of the initial seed point. A binary mask is constructed from the
concluded seeded region growing. Furthermore, if any holes are enclosed in the binary mask,
they are filled.

Since the images are registered with respect to each other, it is sufficient to create 13, 15 or
16 binary masks? per patient, as masks can be used over whole time-series. Algorithm 1, gives
an overview of the method used for creating masks.

If the seeded region growing does not return a satisfactory binary mask for one, or more
of the slices in a volume-series, another approach is used to generate appropriate masks. For
some patients, it was appropriate to set some of the masks equal as there is so little geometrical

change from one slice to another. If this was not applicable, then algorithm 2 is used.

ITissue outside the brain
’Depending on the total number of images per volume

26

4.3 Masking

Algorithm 1: Preproccessing and skull stripping.

1 for all images do

2 Sort images with respect to instance number
3 Image registration
4 Rotate with appropriate angle for each patient
5 Normalize 16-bit
6 Histogram equalization
7 for the first volume-series also do
8 Normalize 12-bit
9 Histogram equalization
10 Gaussian low-pass filtering, o = 3
1 Seeded region growing, initial seed position [250, 250)]
12 Create binary mask from composed ROI
13 Inspect masks
14 if mask successful then
15 ‘ proceed
16 else
17 ‘ Apply algorithm 2 masks
18 end
19 end
20 Apply successful mask
21 end

By following algorithm 1, it can be interpreted that the first volume-series also are normal-
ized with a lower bit resolution. Moreover, it is filtered by a Gaussian low-pass filter. This
approach is applied as it proved that the seeded region growing was better suited for segment-
ing the brain from the skull. Filtering the image proved to lower the risk of the seeded region
growing leaking. Figure 4.2a displays a PCT image pre-processed for mask design by a seeded
region growing, while the actual masks constructed were applied to figures pre-processed as the

example figure 4.2b show.

27

Chapter 4. Method

(b) A PCT image pre-processed for feature extrac-

(a) A PCT image pre-processed for segmentation. tion

Figure 4.2: Two pre-processed image of patient 1, (a) normalized with a 12-bit depth, (b) normalized
with a 16-bit depth. Image (a) is better suited for skull-stripping.

Algorithm 2: Alternative skull stripping.

1 for image with unsuccessful mask do

2 image > threshold

3 Remove small objects from the binary image
4 Fill image regions and holes
5 end

28

4.4 Feature Extraction

4.4 Feature Extraction

This section describes the Feature Extraction block in figure 4.1. Ahead of feature extraction,
the centroid for each image was calculated. Consequently, for the centroid of the image, the
images were split in two. Splitting one image of the brain resulted in two images, one im-
age contained the perfusion impaired hemisphere, while the other half contained the healthy

hemisphere. This was carried out for all patients.

4.4.1 Local binary pattern

For each of the two hemispheres for each patient, a rotation invariant uniform LBP was com-
puted for every pixel in the image. The images were then masked with the intention of not
having the background affect the resulting histograms. The remaining LBP calculated values
were added into normalized histograms with /”+2 bins, where P are the number of neighbours.
The theory behind the LBP operator is explained in detail in section 3.4. Algorithm 3 presents

an overview of the method applied:

Algorithm 3: Feature extraction of texture information, LBP.

1 Calculate structure containing mapping table for LBP codes

2 for all masked images do

3 Split images vertically by the centroid

4 for all images with healthy hemispheres do

5 if radius > 1.5 then

6 Apply Gaussian low-pass filter

7 Group data into normalized histograms

8 else

9 Group data into normalized histograms

10 end

11 Calculate the mean of the histograms for each volume-series
12 end

13 for all images with perfusion impaired hemispheres do
14 Repeat line 5-11

15 end

16 end

Algorithm 3, refers to a mapping table. The mapping table is dependent on whether or not
a uniform, rotation invariant or a uniform rotation invariant LBP is applied, by these inputs, it
calculates the desired structure. The number of neighbours chosen is also taken into consid-
eration. If radii superior to 1 were chosen, the image was Gaussian low-pass filtered with an

appropriate o, as explained in section 3.4.4.

29

Chapter 4. Method

4.4.2 Wavelet

A superficial overview of the applied wavelet method can be seen in algorithm 4.

Algorithm 4: Feature extraction of texture information, Wavelets.

1 for all masked images do

2 Split images vertically by the centroid

3 Pad images to make them the same size

4 for all images with healthy hemispheres do

5 Apply two-dimensional DWT

6 Absolute value of coefficients

7 Group data into normalized histograms

8 Calculate the mean for each volume-series
9 end

10 for all images with perfusion impaired hemispheres do
1 Repeat line 5-8

12 end

13 end

The data material was padded so that all images had the same size. This resulted in a
consistent number of coefficients calculated for each image using a discrete wavelet transform.
The images of size Nx N were decomposed using different wavelet transforms. The transforms
applied includes the classic Haar-wavelet, Daubechies-4, and Coiflet-4.

Each row was by the respective wavelet filtered and down sampled by the actual filter. This
results in two Nz N /2 images. Subsequently, the columns are sub-sampled, which gives an
output of four images with a resolution of N/22N/2. The four obtained images can be sub-
sampled again, which will provide another four new sub-images. This process can be continued
until a satisfactory sub-band decomposition is achieved [29]. In the experiments conducted a
level three sub-band decomposition was used. The absolute value of the coefficients extracted
by use of 2-D DWT was calculated for each hemisphere, before grouping them into normalized

histograms.

4.4.3 Model histogram

A volume-series produced 26, 30 or 32 histograms dependent on the total slices per volume®.
The histograms were for each hemisphere added together, bin by bin, and divided by the number

of slices per volume. This produces a model histogram for the healthy- and the perfusion

3Two histogram for each time-series, a histogram for the healthy- and a histogram for the perfusion impaired
hemisphere.

30

4.4 Feature Extraction

impaired hemisphere for all patients, resulting in 30 histograms for each prognosis. The process

of calculating a model histogram for a time-series is visualized in figure 4.3.

D Healthy hemisphere

DPerfusion impaired hemisphere

Volume -H_I_I' coe -H.I_I'

'] '] A

L] L »

t4 tn Time-

series

Calculate the model histogam
for the two classes at all time-series.

'] '] A

L] L] »

Y th Time-

series

Figure 4.3: Visualization of how the model histograms were calculated for a healthy- and a perfusion
impaired hemisphere.

Once two model histograms for each time-series was achieved, they were compared by
calculating the chi-squared distance using equation 3.20. The chi-squared distance between the
healthy hemispheres and the perfusion impaired hemispheres was calculated to indicate if there

was possible distinct the two hemispheres over several time-series.

31

Chapter 4. Method

4.4.4 Gray Level Co-occurrence Matrix

A third approach for extracting textural features is through the use of GLCMs. Algorithm 5,

gives an overview of the process used.

Algorithm 5: Feature extraction of texture information, GLCM.

1 for all masked images do

2 Split images vertically by the centroid

3 for all images with healthy hemispheres do

4 Create gray-level co-occurrence matrices

5 Calculate the mean of each volume-series GLCM
6 Extract textural features

7 end

8 for all images with perfusion impaired hemispheres do
9 Repeat line 4-6

10 end

1 Plot and compare features

12 end

From the GLCMs it was calculated a total of 22 features, by plotting the features, they were
evaluated to identify features that correlated with what was learned from experiments using
LBP and wavelets. With that in mind, only a handful of features extracted from the GLCMs are

used throughout this thesis. The features that were extracted and studied closer are:

= Z Z(z’j)p(z’,j) 4.2)

Auto-correlation:

Sum of Squares: Variance:

fo= Z Z(z‘ — w)?p(i, 5) 4.3)

where 1 is the mean value of p.

Cluster Prominence:

fs = Z Z(z‘ = e — 1) pli, 5) (4.4)

32

4.5 Implementation

In equations 4.2, 4.3 and 4.4 p(i, j) is the (4, 7)th entry in a normalized GLCM [36]. The

mean for the rows and columns of the matrix, u, and p, are defined as:
o= i-p(ing), =Y j-pj) (4.5)
% 7 % J

The features seen in equation 4.2-4.4, were scaled using feature standardization. Standard-
ization of features is used to remove scale effects caused by the use of features with different

measurement scales. The equation used for standardization is defined as:

x = (4.6)

In equation 4.6, x is the original feature vector, x is the mean of the feature vector while o

is its standard deviation [37].

4.4.5 Correlation analysis

The data material also included manually labeled data with freehand-drawings that estimated
the area of the penumbra and infarct core for each patient, measured in cm?. This extra data was
used to perform a correlation analysis to explore if the chi-squared distances calculated from
the LBP and wavelet textural features correlated with the labeled data received. The area under
the curve for chi-squared plots were estimated using trapezoidal numerical integration. The
chi-squared plots integrated included features extracted using Haar, Daubechies-4 and Coiflet-4
wavelets, additionally, LBPy6 5_5*.

The vectors calculated were correlated against information of total penumbra and infarct
core size as well as the average value per slice for the two values, the labeled data can be
studied in table D.1.

4.5 Implementation

Implementation of the proposed system is realized through MATLAB, except image registration

which was conducted using ImagelJ [38].

4.5.1 Image registration

Image registration of the PCT images is achieved by using a plugin for ImagelJ; Template Match-
ing and Slice Alignment. The plugin includes a function Align_slices in Stack. This function

attempt to find a landmark or the most similar image pattern in every slice. The landmark pat-

4Recall from 3.4.1 the operator, LBP, is denoted with a number of neighbours, P, and a radius, R, LBPp r.

33

Chapter 4. Method

tern will be translated so that it will be in the same position throughout the whole stack. This is

used to fix drift of a time-lapse image in stacks [39].

4.5.2 Pre-processing and Masking

Pre-processing the PCT images was done by composing built-in MATLAB functions. The
seeded region growing algorithm was realized using a function designed for 2D/3D grayscale

images (region growing.m?, version 1.00) [40].

4.5.3 Feature Extraction

Local Binary pattern

The LBP operator and its mapping are calculated using implementation available from the Uni-
versity of Oulu (Ibp.m, version 0.3.3 and getmapping.m, version 2.0) [41].

Wavelet

The calculations and implementation of wavelets in this thesis were done through built-in MAT-
LAB functions.

Gray Level Co-Occurrence Matrix

The GLCMs calculated were done through built-in MATLAB functions. The features extracted
from the GLCMs were found using a function that calculates 22 different features from the
GLCMs (GLCM_features1.m®) [42].

4.5.4 Performance measures

The chi-squared distance calculated between histograms are calculated using an implementation
from Piotr Computer Vision Toolbox (pdist2.m, version 2.0) [43]. The correlation analysis was
conducted using built-in MATLAB functions.

SCopyright (c) 2011, Daniel. All rights reserved.
Copyright (c) 2010, Avinash Uppuluri. All rights reserved.

34

4.6 Proposed system

4.6 Proposed system

The proposed system is designed to arrange, process and calculate multiple features describing
the PCT images. The system input consists of PCT images for a patient over several volumes-
and time-series.

Pay particular attention to how the first volume-series is pre-processed so that it better facili-
tates a seeded region growing. The successful masks were applied to the images before multiple
features were extracted.

The features for a healthy hemisphere of the brain was compared to a perfusion impaired
hemisphere for the actual patient calculated by the chi-squared distance. Lastly, the result was
evaluated through correlation analysis. A detailed overview of the proposed system can be

studied closer in figure 4.4.

35

Chapter 4. Method

weJbo1sIy [8poN AI 19]9ABAN AJ

ulajed

salnseaw
T AeIwis AI—I.l weJboisly [9po AI Areuig (2001 Alll—l Bupisep Al;

uonenjeny

NDTD wou) XlJew 89u8Ind00
sainjes} 10e41Xg A -00 |aAe| Aeln) A

uoloel}xa ainjead

co_uou:xoo._sumo"__ 1 | = = = = = m m e
QS
I Buimo.b uonezijenba uonezijewiou I
| uoibai papasas A welboisiH A abew| |
ubisap v_mms__ 1 | 1
I | ubBisep ysepw
Buissaooid-aig uonezienbs obew|

uolezijewlou
A| AI uoneusibai abew AI
N weiboisiH abew| N Hes! _ induj

Buissasoid-aid

A detailed overview of the proposed system. Vital parts in the proposed system includes

pre-processing, mask design and feature extraction.

36

Figure 4.4

S Experiments and Results

This chapter presents different experiments conducted and results achieved by the use of the

proposed method. All results are summarized and discussed in Chapter 6.

5.1 Masking

For verification of the generated masks, they were displayed and inspected. If one or more of
the masks did not present a satisfactory result, an alternative approach was chosen, as described
in section 4.3.1. Figure 5.1 displays a PCT image for patient 3 successfully masked by using a

binary mask created from the composed ROI of the seeded region growing.

(a) Before masking. (b) After masking.

Figure 5.1: (a) shows a PCT image for patient 3 before masking. (b) displays the resulting image after
a binary mask created from the composed ROI of the seeded region growing is applied to the image.

5.2 Experiments

Evaluation of the proposed systems performance was done by calculating the chi-squared dis-
tance between features representing a healthy hemisphere compared to a hemisphere with im-
paired perfusion. Furthermore, the result was compared with software generated TDCs for the
actual patients. Features calculated from the GLCMs were compared to the chi-Squared plots
generated from LBP and wavelet features, the results were also combined, in a feature selection-

like experiment. In addition, a correlation analysis was conducted where results achieved were

37

Chapter 5. Experiments and Results

correlated with data of the penumbra and infarct core, labelled in cm?.

5.2.1 Experiment 1: Local Binary Pattern

This experiment was conducted to investigate if a texture feature was able to extract differences
in a healthy brain hemisphere with respect to a hemisphere with impaired perfusion. The chi-
squared distance was calculated for the features describing the hemispheres. LBP with different

parameters were calculated. The different parameters used are visible in table 5.1.

Table 5.1: Local Binary Pattern parameters used for textural feature extraction.

Radius | Neighbours
1 8
2 8,16
3 8,16
4 8, 16
5 8, 16

The chi-squared distance for the two hemispheres was calculated for LBP histogram with
different radii and neighbours. Figure 5.2, shows the chi-squared distance plotted for patient 1.

For this experiment, a radius of 1 and 8 neighbours was used.

%10

Chi-squared

Time-series

Figure 5.2: Chi-squared distance calculated between a healthy- and a perfusion impaired hemisphere. A
LBP pattern with 8 neighbours and a radius of 1 was used in this experiment.

Figure 5.3 shows the chi-squared distance plotted for patient 1. This figure contains four
graphs. The legend of the plot denotes that four different radii were used, 8 neighbours were

used in the calculation.

38

5.2 Experiments

%107

[y

o
©
T

VXV
mw o . n

a b wN

o
[ee)
T

o ©
o ~

Chi-squared
o
(4]

0.4
0.3
0.2
0.1
O Il Il Il Il Il
5 10 15 20 25 30
Time-series

Figure 5.3: Chi-squared distance calculated between a healthy- and a perfusion impaired hemisphere. A
LBP pattern with 8 neighbours and a radius ranging from 2-5 was used in this experiment.

Lastly, the LBP descriptor was calculated having 16 neighbours and radii ranging from 2-5.
The resulting graphs can be studied in 5.4.

%107

1.6

14

X0V
mwom nn

a b wnN
1

12

[N

Chi-squared
o
[o2)

0.6
0.4
0.2
0 Il Il Il Il Il
5 10 15 20 25 30
Time-series

Figure 5.4: Chi-squared distance calculated between a healthy- and a perfusion impaired hemisphere for
patient 1. An LBP pattern with 16 neighbours and a radius ranging from 2-5 was used in this experiment.

39

Chapter 5. Experiments and Results

5.2.2 Experiment 2: Wavelets

This experiment was devised to identify if texture analysis with wavelets was able to confirm
some of the results achieved using LBP. The analysis was based on wavelet decomposition using
different wavelet filters and a decomposition level of 3. The experiment was conducted similarly
as Experiment 1, where the chi-squared distance was calculated for the features describing the

hemispheres.

0.187

0.186

0.185

0.184

Chi-squared
o o
= =
[e0] [e0)
N w

5 10 15 20 25 30
Time-Series

Figure 5.5: Chi-squared distance plotted between healthy and perfusion impaired hemisphere for patient
1. Features are extracted by a Haar wavelet, at a level 3 sub-band decomposition.

0.244

0.242

0.24

o
N
W
©

Chi-squared
o
N
[e2]

0.234

0.232

5 10 15 20 25 30
Time-Series

Figure 5.6: Chi-squared distance plotted between healthy and perfusion impaired hemisphere for patient
1. Features are extracted by a Daubechies-4 wavelet, at a level 3 sub-band decomposition.

40

5.2 Experiments

0.364

0.362

0.36

0.358

Chi-squared
o
w
[
[e2]

0.354

0.352

0.35

0.348 : : :
5 10 15 20 25 30
Time-Series

Figure 5.7: Chi-squared distance plotted between healthy and perfusion impaired hemisphere for patient
1. Features are extracted by a Coiflet-4 wavelet, at a level 3 sub-band decomposition.

5.2.3 Experiment 3: Gray Level Co-occurrence Matrix

Different directions and offsets were calculated and compared. The different directions pro-
vided features that were very much alike. Therefore an offset of [3, 0] is shown throughout this
thesis to make an accessible standard of comparison between the patients. In appendix C, all 22
features extracted from the GLCMs with a [3, 0] offset for patient 1 is shown.

Figure 5.8-5.10 shows textural features extracted from the GLCMs of patient 1. The figures,
in their respective order shows auto-correlation, sum-squared: variance and cluster prominence.
The features are calculated using equation 4.2-4.4, as described in section 4.4.4. Note the legend

in the graphs, this denotes the healthy- and the perfusion impaired hemisphere.

2

Helthy hemisphere
Perfusion impaired hemisphere /

Auto-Correlation

5 10 15 20 25 30
Time-series

Figure 5.8: Auto-correlation feature extracted from patient 1’s GLCM.

41

Chapter 5. Experiments and Results

Helthy hemisphere
Perfusion impaired hemisphere

o [y
o - 3]

Sum of squares: Variance
o

-0.5
-1
-1.5
-2 L L L L L
5 10 15 20 25 30
Time-series

Figure 5.9: Sum of squares: variance feature extracted from patient 1’s GLCM.

Helthy hemisphere
Perfusion impaired hemisphere

Cluster Prominence
o

-0.5
-1
-15
-2 L L L L L
5 10 15 20 25 30
Time-series

Figure 5.10: Cluster prominence feature extracted from patient 1’s GLCM.

42

5.2 Experiments

5.2.4 Experiment 4: Feature selection

By combining features extracted and plotted, an experiment was conducted to examine if there
was possible to decide whether a hemisphere was perfusion impaired or healthy. The experiment
was based on a hypothesis that arose from the result seen in figure 5.8, it stated the following:
At the local maximum point of either the chi-squared graph for LBP 5 or Coiflet-4, the healthy
hemisphere should have a higher auto-correlation measured compared to the perfusion impaired
hemisphere.

Therefore, the local maximum of the chi-squared graphs for LBP; 5 and Coiflet-4 were
registered for each patient, and the time-series at this point stored'. The time-series number for
the local maximums can be studied in table 5.2. The local maximum of the chi-squared graphs

describe the time-series that have the most distinctive feature between the two hemispheres.

Table 5.2: The time-series(x-value) at the local maximum for the chi-squared distance graphs of LBP1¢ 5
and Coiflet-4 for patients 1-11.

Patient nr. 1 2 3 4 5 6 7 8 9 10 11

Coiflet-4

local maximum

17 18 13 20 16 20 21 18 13 24 20

LBPis 5

local maximum

15 23 22 17 13 26 19 15 11 21 26

Figure 5.11 illustrates how the experiment was conducted on patient 3. The leftmost graph
is the chi-squared distance calculated between a healthy- and a perfusion impaired hemisphere
with LBP;2_5. The rightmost graph is the chi-squared distance plotted for Coiflet-4 wavelet

with a decomposition level 3.

Ix-value of the maximum point of the corresponding graphs.

43

Figure 5.11: Illustrating how the most distinctive feature for Coiflet-4 and LBP14 5 was found and used

Chapter 5. Experiments and Results

-3
0346 12 (10
R=2
R=3
0.344 A, -
/ N\ 1 R=4
/ \ A R=5
\ N\
0342 ¢ N\ 1A
\ 0.8 r 1
o \ A |
2 0341 \ /N |
© \ [\‘ |
=] \ 06 f v \
) \ ' / a
= L |
5 0.338 \ ‘.‘
L 04 A |
0.336 [h /N A VAN
s \ V
/ " L b 8
0.334 A 02 \
f \ \ e \ Ny
\ NS SR N
| v Vi - VA o—
0.332 | | | | 0 I | | |
10 13 15 20 25 30 5 10 15 20 22 25 30
Time-Series Time-series
2 - T -
1 Helthy hemisphere
15 /% W\ Perfusion impaired hemisphere |
B \
1F \
N\
W\ i
05r \ /R .
5 (BN
= 0 \ o ey N
8 I\] AN .
Q N\ ; /
Q 05 N
) i Wrong
At X |/ indication
s Correct
oL indication \/
25 i i i I i
5 10 13 15 20 22 25 30
Time-series

to support the hypothesis.

For figure 5.11, the hypothesis indicated a correct decision using features extracted by uti-
lizing the Coiflet-4 wavelet. On the other hand, features extracted using LBP;¢ 5, made an

incorrect assumption with respect to the propound hypothesis.

This experiment was carried out for all patients, by using data from table 5.2 and combining
the with auto-correlation measure extracted from GLCMs. More auto-correlation can be studied
closer in E. Experiments using time-series found for Coiflet-4 wavelet resulted in compliances

with the hypothesis for 11 out 11 patients, while LBP;¢ 5 proved right for 7 out 11 patients with
respect to the hypothesis.

44

5.2 Experiments

5.2.5 Experiment 5: Correlation analysis

The data material received also included manually labeled data with freehand-drawings that
estimated the area of the penumbra and infarct core for each patient, measured in cm?. A
correlation analysis was conducted where the manually (freehand-drawings) labeled data was
correlated with the chi-squared distance results achieved. The tests were conducted to investi-
gate if the size of the penumbra and infarct core correlated with the area under the chi-squared

graphs for extracted features.

The correlation coefficient between the area under the graph for the chi-squared plot of

LBP;s 4 and mean size of penumbra and infarct core gave the following result:

1 0.148 1 0.665
R= pP= (5.1)
0.148 1 0.665 1

Correlation between LBP;s 4 and maximum size of penumbra and infarct core for each

1 0191 1 0575
R= pP= (5.2)
0191 1 0.575 1

patient:

Correlation between the area below the curve of the chi-squared distance of LBP and wavelet
textural features were also calculated. LBP;g2, LBP1g 3 and LBP;g 5 all proved to have the
highest linear dependence with textural features for Haar-wavelet. The features found to have

the highest correlation between each other were LBP;¢ 4 and Daubechies-4, as the result beneath

R:[1 0.627] P:[1 0.0389] 53

show:

0.627 1 0.0389 1

45

Chapter 5. Experiments and Results

46

6 Discussion

6.1 Data set

There were some limitations to the study as a result of shallow data material. PCT data from
only 11 patients were available. Due to the limited sized data material, an approach where
exploring suitable methods of texture analysis were chosen. In addition to an already limited
data set, some of the images were omitted from the experiments due to noise. An example is
the 4-D data from patient 2. Four images were removed from the patient’s volume-series over
all time-series. This narrowed down the data for the actual patient from 450 to 320 images. The
images omitted from the volume-series and its corresponding masks can be studied closer in

figure 6.1.

Figure 6.1: Images omitted from patient 2’s data set due to noise. The images were omitted so that the
noise would not affect the features extracted.

6.2 Masking

A drawback in the method used for skull stripping is that there is a chance of the seeded region
growing will start leaking if the cranium is not perfectly enclosing the brain, leaking will make
the area grow far beyond the region of interest. This issue was attempted resolved by applying

a Gaussian low-pass filter to the images used in the mask design. The filter was applied with

47

Chapter 6. Discussion

the idea that in a smoothed image, there would be a smaller chance of leakage from the region
growing. For most images, this solution was satisfactory, while for others, a better solution

would be preferable.

6.3 Feature Extraction

Experiment 1 & 2

In the implemented system, each image was described by a histogram obtained from LBP de-
scriptor or wavelet coefficients. Histograms for the healthy brain hemispheres were compared
to histograms from the hemisphere suffering from impaired perfusion by calculating the chi-
squared distance. It is likely that the chi-squared distance calculated was influenced by asym-
metry in the brain, but the distance also showed a solid amplification approximately in the
middle of the time-series. By comparing the result to the TDCs that are software calculated at
the hospital, the textural features extracted using wavelets, and especially Coiflet-4 seemed to
have the better resemblance.

A noteworthy observation is that the chi-squared distance for LBP features, or the difference
between a healthy- and perfusion impaired hemisphere, was increased by the use of larger radii,
more neighbours also increased the distance. It is conceivable that a more significant distance
is measured as a radius of 1 will only describe the texture very locally, while larger radii will
benefit from information from a larger area.

For features extracted by the use of wavelets, the more complex wavelets seemed to extract
more distinct features, with better resemblance to the TDCs. The Haar-wavelet extracted lesser
distinct features, and for some patients, this lead to an unclear conclusion. For patient 9, Coiflet-
4 extracted distinct features, while the Haar-wavelet seemed to have an uneven distribution of

the distinction, see figure 6.2.

0.258 0.458

0.257 / — A -
~C S \ 0.456
oV, A 7\

0256 ,— / N
\/ | 0.454

0.255

squared

| 0.452

0.254

Chi-squared

Chi
™~

0.253

0.252 0.448

/A\/ \“‘c‘

\\ /

L L L L L 0.446 L L L L L

5 10 15 20 25 30 5 10 15 20 25 30
Time-Series Time-Series

0.251

(a) Haar-wavelet used for feature-extraction. (b) Coiflet-4 wavelet used for feature-extraction.

Figure 6.2: Distance calculated between the two hemispheres using features extracted respectively by
(a) Haar-wavelet and (b) Coiflet-4 wavelet.

48

6.3 Feature Extraction

Experiment 3 & 4

The textural features extracted from the GLCMs proved hard to interpret. For some of the
patients, the features gave a distinct difference between a healthy- and a perfusion impaired
hemisphere of the brain, an example is the auto-correlation feature extracted for patient 1. On
the other hand, for other patients, the graphs could almost look arbitrary. The promising result
achieved for patient 1, lead to a hypothesis, stated in 5.2.4.

With the hypothesis in mind, an experiment was conducted by using a combination of the
features. The time-series having the most distinguishing feature between a healthy- and an im-
paired hemisphere was located for features extracted from LBP;¢ 5 and Coiflet-4. Furthermore,
these specific time-series were studied in auto-correlation feature extracted from the GLCMs.
The asserted hypothesis was correct for 11 out 11 patients using time-series from Coiflet-4
wavelet, while LBP;¢ 5 proved right in 7 out 11 cases.

There is reason to believe that the Coiflet-4 wavelet outperformed LBP;¢ 5 substantiated in
the correlation analysis. The LBP;4 5, when correlated with the textural features extracted by
wavelets, proved to have the highest correlation with the Haar-wavelet.

DWT using Haar does not utilize overlapping windows, it only reflects changes between
adjacent pixel pairs. The Haar-wavelet uses only two scaling and wavelet function coefficients,
thus calculate pairwise averages and differences. Coiflets have a higher computational over-
head. In addition, it utilizes overlapping windows. Coiflets, with respect to the Haar-wavelet,
have increased capabilities in several image-processing techniques [27].

Another noteworthy pattern in features extracted from the GLCMs is how auto-correlation,
cluster prominence and sum of squares: variance all followed their respective patient’s TDCs.
The TDCs for most plots correlated with regards to which hemisphere that had the highest
amplification measured in HU at different time series.

An example is shown here: By taking a closer look at figure 6.3, the following can be
seen: LHem (left hemisphere) starts with a higher amplification than RHem (right hemisphere).
Afterward, they switch a bit back and forth. At the local maximum, LHem is clearly above
RHem, from there on and out, RHem has a higher amplification than LHem. By comparing this
to figure 5.8, it can seen a clear resemblance. This analysis can be carried out for more patients
by combining information available in appendix E, which includes results for all patients, and

appendix F, which holds TDCs for the patients.

49

Chapter 6. Discussion

. Right Hemisphere
. Left Hemisphere

Time-
Series

Figure 6.3: TDC for patient 1 with modified x-axis, showing time-series instead of seconds.

6.4 Correlation analysis

Correlation between LBP;s 4 and the average size of penumbra per slice for the 11 patients
scored the highest R-value, 0.148. Although the off-diagonal elements in the matrix of P-values
returned a value of 0.665, hence the R-value is classified as non-significant. Moreover, the
correlation between the LBP and wavelet features extracted were calculated. The result showed
that LBP;¢ 3 and Daubechies-4 had the highest linear dependency, calculated to 0.627, the result
is considered significant as the P-value is below 0.05.

The results achieved from the correlation analysis may have been compromised due to a low
number of samples. Technically, one can calculate the correlation coefficient having only two
samples, although, of little use as the coefficient would always return 1. In 1938, F.N David

recommended that the sample size should be equal or superior to 25 samples [44].

50

7 Conclusion and Future Work

This thesis elaborates upon a system that explores multiple methods for extracting textural fea-
tures in PCT images. Images are described by labeled histograms calculated using LBP and
wavelets. GLCMs are also calculated for the PCT images, and textural features are extracted
from these matrices.

Results show that textural features extracted by LBP and wavelets can demonstrate a def-
inite difference in the chi-squared distance measured in a healthy hemisphere compared to a
hemisphere with impaired perfusion. Over different time-series, the distinctiveness of the fea-
tures varied, by comparing them to the TDCs for the actual patient, the better features seemed
to be extracted from more complex wavelets like Daubechies-4 and Coiflet-4.

Textural features extracted from the GLCMs proved challenging to interpret, but by com-
bining them with textural features extracted by Coiflet-wavelets, they were able to distinguish
the two hemispheres for each patient.

There is still a lot of work to conduct before a better diagnostic accuracy can be provided

for the patients, therefore suggestions for future work are presented in the section below.

7.1 Future Work

Future work includes validating results achieved in this thesis on a larger data material. Besides,
a more robust method for skull stripping the PCT images would be preferable. Application of
different wavelets and the exploration of different decomposition levels for extracting features
would also be interesting.

The VAR operator, described in [25] could also be applied, this is likely to show clear
differences due to the difference of contrast in the PCT images. With an enlargement of the
data material, the features explored in this thesis could be used in a classifying task, a task
using labeled tiles of healthy tissue and tissue from the infarct core and penumbra is also a

possibility.

51

Chapter 7. Conclusion and Future Work

52

Bibliography

[1]

[2]

[7]

[8]

[10]

B Indredavik, R Salvesen, H Na&ss, and D Thorsvik. Nasjonal retningslinje for behandling
og rehabilitering ved hjerneslag. Oslo: Helsedirektoratet, page 196, 2010.

Shanthi Mendis. Global status report on noncommunicable diseases 2014. World health

organization, 2014.

Saumya H Mittal, Deepak Goel, et al. Mortality in ischemic stroke score: A predictive

score of mortality for acute ischemic stroke. Brain Circulation, 3(1):29, 2017.

YW Lui, ER Tang, AM Allmendinger, and V Spektor. Evaluation of ct perfusion in the

setting of cerebral ischemia: patterns and pitfalls. American Journal of Neuroradiology,
31(9):1552-1563, 2010.

Maja Ukmar, Ferruccio Degrassi, Roberta Antea Pozzi Mucelli, Francesca Neri,
Fabio Pozzi Mucelli, and Maria Assunta Cova. Perfusion ct in acute stroke: effec-
tiveness of automatically-generated colour maps. The British journal of radiology,
90(1072):20150472, 2017.

Asma Yasrib and Mohd Adam Suhaimi. Image processing in medical applications. 04
2018.

Werner Hacke, Markku Kaste, Cesare Fieschi, Riidiger von Kummer, Antoni Davalos, Di-
eter Meier, Vincent Larrue, Erich Bluhmki, Stephen Davis, Geoffrey Donnan, et al. Ran-
domised double-blind placebo-controlled trial of thrombolytic therapy with intravenous
alteplase in acute ischaemic stroke (ecass i1). The Lancet, 352(9136):1245-1251, 1998.

Concise Medical Dictionary (8 ed.). Oxford University Press, 2010.

Marilyn M. Rymer and Isaac E. Silverman. Chapter I - Stroke Basics. Clinical Publishing,
An Imprint of Atlas Medical Publishing Ltd, Oxford, 2009. Copyright - Copyright Clinical
Publishing, An Imprint of Atlas Medical Publishing Ltd. 2009; Last updated - 2010-07-17.

Neuroscience. Sinauer Associates, Sunderland, Mass, 2nd ed. edition, 2001.

53

[11] National Institutes of Health et al. Stroke: Challenges, progress, and promise. Retrieved
from this source May, 5:2011, 2009.

[12] A.Prof Frank Gaillard et al. Infarct core. https://radiopaedia.org/articles/
infarct—-core. Accessed: 2018-03-10.

[13] A.Prof Frank Gaillard et al. Ischaemic penumbra. https://radiopaedia.org/

articles/ischaemic-penumbra. Accessed: 2018-03-10.

[14] L.E. Romans. Computed Tomography for Technologists: A Comprehensive Text. Number
poeng 1. Wolters Kluwer Health/Lippincott Williams & Wilkins, 2011.

[15] Andrew Bivard, Neil Spratt, Christopher R Levi, and Mark W Parsons. Acute stroke
thrombolysis: time to dispense with the clock and move to tissue-based decision making?
Expert review of cardiovascular therapy, 9(4):451-461, 2011.

[16] Tomasz Hachaj and Marek R Ogiela. Cad system for automatic analysis of ct perfusion
maps. Opto-Electronics Review, 19(1):95-103, 2011.

[17] Dr Dan J Bell and A.Prof Frank Gaillard et al. Cerebral blood flow (cbf). https://
radiopaedia.org/articles/cerebral-blood-flow-cbf. Accessed: 2018-
03-11.

[18] Dr Dan J Bell and A.Prof Frank Gaillard et al. Cerebral blood volume (cbv). https:
//radiopaedia.org/articles/cerebral-blood-volume-cbv. Accessed:

2018-03-11.

[19] Peter Mildenberger, Marco Eichelberg, and Eric Martin. Introduction to the dicom stan-
dard. European Radiology, 12(4):920-927, Apr 2002.

[20] Lisa G Brown. A survey of image registration techniques, 1991.

[21] Jeongtae Kim and Jeffrey A Fessler. Intensity-based image registration using robust cor-
relation coefficients. IEEE transactions on medical imaging, 23(11):1430-1444, 2004.

[22] Yeong-Taeg Kim. Contrast enhancement using brightness preserving bi-histogram equal-

ization. IEEE transactions on Consumer Electronics, 43(1):1-8, 1997.

[23] Rolf Adams and Leanne Bischof. Seeded region growing. IEEE Transactions on pattern
analysis and machine intelligence, 16(6):641-647, 1994.

[24] Timo Ojala, Matti Pietikdinen, and David Harwood. A comparative study of texture mea-
sures with classification based on featured distributions. Pattern recognition, 29(1):51-59,
1996.

54

https://radiopaedia.org/articles/infarct-core
https://radiopaedia.org/articles/infarct-core
https://radiopaedia.org/articles/ischaemic-penumbra
https://radiopaedia.org/articles/ischaemic-penumbra
https://radiopaedia.org/articles/cerebral-blood-flow-cbf
https://radiopaedia.org/articles/cerebral-blood-flow-cbf
https://radiopaedia.org/articles/cerebral-blood-volume-cbv
https://radiopaedia.org/articles/cerebral-blood-volume-cbv

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Timo Ojala, Matti Pietikainen, and Topi Maenpaa. Multiresolution gray-scale and rotation
invariant texture classification with local binary patterns. IEEE Transactions on pattern
analysis and machine intelligence, 24(7):971-987, 2002.

Topi Mienpid and Matti Pietikdinen. Multi-scale binary patterns for texture analysis. In

Scandinavian Conference on Image Analysis, pages 885—-892. Springer, 2003.

Lindsay Semler, Lucia Dettori, and Jacob Furst. Wavelet-based texture classification of
tissues in computed tomography. In Computer-Based Medical Systems, 2005. Proceed-
ings. 18th IEEE Symposium on, pages 265-270. IEEE, 2005.

Agma JM Traina, Cesar AB Castafion, and C Traina. Multiwavemed: a system for medical
image retrieval through wavelets transformations. In Computer-Based Medical Systems,
2003. Proceedings. 16th IEEE Symposium, pages 150—155. IEEE, 2003.

Khalid Sayood. Introduction to data compression, 2006.

Robert M Haralick, Karthikeyan Shanmugam, et al. Textural features for image classifi-

cation. IEEE Transactions on systems, man, and cybernetics, (6):610-621, 1973.

Karl Pearson. X. on the criterion that a given system of deviations from the probable in
the case of a correlated system of variables is such that it can be reasonably supposed to
have arisen from random sampling. The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science, 50(302):157-175, 1900.

Mathworks. Correlation coefficients. https://se.mathworks.com/help/
matlab/ref/corrcoef.html. [Online; accessed 15-April-2018].

Ronald E Walpole, Raymond H Myers, Sharon L Myers, and Keying Ye. Probability and

statistics for engineers and scientists, volume 5. Macmillan New York, 1993.

Florent Ségonne, Anders M Dale, Evelina Busa, Maureen Glessner, David Salat, Horst K
Hahn, and Bruce Fischl. A hybrid approach to the skull stripping problem in mri. Neu-
roimage, 22(3):1060-1075, 2004.

Sudipta Roy, Sanjay Nag, Indra Kanta Maitra, and Samir Kumar Bandyopadhyay. Artefact
removal and skull elimination from mri of brain image. International Journal of Scientific
and Engineering Research, 4(6):163-170, 2013.

L-K Soh and Costas Tsatsoulis. Texture analysis of sar sea ice imagery using gray level
co-occurrence matrices. IEEE Transactions on geoscience and remote sensing, 37(2):780—
795, 1999.

Leif E Peterson. K-nearest neighbor. Scholarpedia, 4(2):1883, 2009.

55

https://se.mathworks.com/help/matlab/ref/corrcoef.html
https://se.mathworks.com/help/matlab/ref/corrcoef.html

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Caroline A Schneider, Wayne S Rasband, and Kevin W Eliceiri. Nih image to imagej: 25
years of image analysis. Nature methods, 9(7):671, 2012.

Qingzong Tseng. Template matching and slice alignment — imagej plug-
ins. https://sites.google.com/site/gingzongtseng/template-
matching-1ij-plugin. Accessed: 2018-02-10.

Daniel. Region Growing (2D/3D grayscale). https://ww2.mathworks.cn/
matlabcentral/fileexchange/32532-region—-growing—-2d-3d-
grayscale—, 2011. [Online; accessed 20-February-2018].

University of Oulu. Local binary pattern, MATLAB implementation. http://
www.cse.oulu.fi/CMV/Downloads/LBPMatlab, 2014. [Online; accessed 2-
February-2018].

Avinash Uppuluri. GLCM_Features4 - Calculates the texture features from
the different GLCMs. https://semathworks.com/matlabcentral/
fileexchange/22354-glcm-features4d-m--vectorized-version-of-
glcm-featuresl-m--with-code-changes—-?focused=5150004&tab=
function, 2010. [Online; accessed 20-February-2018].

Piotr Dollér. Piotr’s Computer Vision Matlab Toolbox (PMT). https://github.com/
pdollar/toolbox.

Douglas G Bonett and Thomas A Wright. Sample size requirements for estimating pear-

son, kendall and spearman correlations. Psychometrika, 65(1):23-28, 2000.

David A Clausi. An analysis of co-occurrence texture statistics as a function of grey level

quantization. Canadian Journal of remote sensing, 28(1):45-62, 2002.

56

https://sites.google.com/site/qingzongtseng/template-matching-ij-plugin
https://sites.google.com/site/qingzongtseng/template-matching-ij-plugin
https://ww2.mathworks.cn/matlabcentral/fileexchange/32532-region-growing--2d-3d-grayscale-
https://ww2.mathworks.cn/matlabcentral/fileexchange/32532-region-growing--2d-3d-grayscale-
https://ww2.mathworks.cn/matlabcentral/fileexchange/32532-region-growing--2d-3d-grayscale-
http://www.cse.oulu.fi/CMV/Downloads/LBPMatlab
http://www.cse.oulu.fi/CMV/Downloads/LBPMatlab
https://se.mathworks.com/matlabcentral/fileexchange/22354-glcm-features4-m--vectorized-version-of-glcm-features1-m--with-code-changes-?focused=5150004&tab=function
https://se.mathworks.com/matlabcentral/fileexchange/22354-glcm-features4-m--vectorized-version-of-glcm-features1-m--with-code-changes-?focused=5150004&tab=function
https://se.mathworks.com/matlabcentral/fileexchange/22354-glcm-features4-m--vectorized-version-of-glcm-features1-m--with-code-changes-?focused=5150004&tab=function
https://se.mathworks.com/matlabcentral/fileexchange/22354-glcm-features4-m--vectorized-version-of-glcm-features1-m--with-code-changes-?focused=5150004&tab=function
https://github.com/pdollar/toolbox
https://github.com/pdollar/toolbox

Appendices

57

A Data material

The 13 images seen below represents the first volume-series captured for patient 1. For a PCT
examination, 30 of these volume-series are acquired over time, making the data material con-

sisting of 4-dimensions.

58

B MATLAB code

The following MATLAB files are embedded in matlab.7z.
calculate_glcm.m

Calculates GLCMs from the input images.
correlation_analysis.m

Computes the results achieved in experiment 5, correlation analysis.
extract_lbp_features.m

LBP descriptor is calculated for several images.
extract_wavelet_features.m

Wavelet features are extracted from the images.
getmapping.m

Computes the mapping required for Ibp.m [41].
GLCM_Featuresl.m

Calculates 22 different features from input GLCM(s) [42].
img norm.m

Image normalization.

Ibp.m

Computes the LBP descriptor [41].

pdist2.m

Calculates the chi-squared distance between histograms [43].
pre_processing_masking.m

Script including all pre-processing steps.
regiongrowing.m

Seeded region growing used to design binary masks [40].

59

60

GLCM

Features extended

C

o 0e oL 0 oe 0e oL 0
—— 886°0 G6'0
\ \// A
i A . N .
A 6860 T / 96°0
NN SR
WAVAVAY VAN
v >
66°0 1670
ouwpi HipAul
0€ 0e ol 0 0€ 0c 0l 0 0e 014 al 0 0¢ 0ec ol 0 0g 0e ol 0
G8°0 650 90 80 8l
™ — — = — —_
P — v N N NS . P
n)\/./ \\\. AN {50 S P N - ! N~ N 6l
= o NANAE //\/\/\/\ ~ —
60 S¥0- A% 80 ' z
o1 opul FUT TN JEeA P jud wns
0g V4 ol 0 o€ 0c 0l 0 oe 074 0l 0 o 0e ol 0 oe e ol 0
0L 9z 20 80
;H \\\\l\l.\sf N 08 ,.,\.\‘) G20 S8°0
06 €0 60
JeA wng qgoud-xep Kurabowoy
0g V4 ol 0 o 0e ol 0 oe e ol 0
80 €0 00L-
NS . \/\} //\y\/\/\ X ~ ~
/P\\\/n\/\/r\./ S8°0 ./\\/,..L\ 0 JGKD\.,\/\ n‘/v / 06
60 : 8L°0 S0 08-
WAnuaBowoy idonuz 1Bsauzg Kuepunssig speys
0e 0e ol 0 oe 0e "] 0 0g /4 al 0 0g 0c [0 0g /4 oL 0
008 60 60 80 ac
ey i o et P e
- \ : - \ / S .
000} S 60 N 60 [L e T
A r\
RN
oozl 60 #6°0 ' o]
19)sn[9 uope|a1i09 Wisenuon jsenuon uolE[aLI0 DY

alaydsiway pasedw) uoisnpad
asaydsiwey AuyeH

61

The features calculated and plotted above, from left to right, when read in a landscape orienta-

tion are:
e Auto-correlation
e Contrast
e Correlation: MATLAB
e Correlation
e Cluster Prominence
e Cluster Shade
e Dissimilarity
e Energy; MATLAB
e Entropy
e Maximum Probability
e Sum of Squares: Variance
e Sum Average
e Sum Variance
e Sum Entropy
e Difference variance
e Difference entropy
e Information measure of correlationl
e Information measure of correlation2
e Inverse difference Normalized (INN)
e Inverse difference moment normalized

The features can be studied closer in their corresponding reference(Haralick, 1973, [30]; Soh,
1999, [36]; Clausi, 2002, [45]).

62

D Manually Labeled Penumbra and In-
farct Core

Table D.1: My caption

. Sum of Penumbra & Mean of Penumbra &
Patient nr.

Infarct core [cm?] Infarct core [cm?]
1 398.7 30.7
2 245.3 22.3
3 177.8 16.2
4 494.5 38.1
5 485.1 37.3
6 242.9 24.3
7 311.1 28.28
8 441.4 36.7
9 376.4 20.1
10 3359 25.8
11 536.1 44.7

63

E Additional results

This appendix includes additional results to the ones seen in chapter 5, graphs of chi-squared

distance plots of LBP;¢ 2_5, wavelet (Coiflet-4) and auto-correlation extracted from the GLCMs
for all 11 patients.

Local Binary Pattern

x10°°
T

|
=

g
>
T

o
oo
a R w N

L

Chi-squared
o o o -
IS > ® - N
T

o
N

)/
5

. . .
10 15 20 25 30
Time-series

Figure E.1: Chi-squared distance calculated between a healthy- and a perfusion impaired hemisphere for
patient 1. A LBP pattern with 16 neighbours and a radius ranging from 2-5 was used in this experiment.

-3
352207

oo
a s wN
L

25

Chi-squared
N

15

\ 7/

\>

0.5

. . . .
5 10 15 20 25 30
Time-series

Figure E.2: Chi-squared distance calculated between a healthy- and a perfusion impaired hemisphere for
patient 2. A LBP pattern with 16 neighbours and a radius ranging from 2-5 was used in this experiment.

64

x10°°

1.2
R=2
R=3
1r R=4
R=5
0.8
°
<
<] |
& 0.6 |
2 |
S \
\
04
| AN
!
0.2
\ //r\f;\\
VN
0 . .
5 10 15 20 25 30

Time-series

Figure E.3: Chi-squared distance calculated between a healthy- and a perfusion impaired hemisphere for
patient 3. A LBP pattern with 16 neighbours and a radius ranging from 2-5 was used in this experiment.

-3
35 210
3l
25¢
o
<4
E]
=T 2
P
2
o
151
1t o
— ***\,J/:/
05 . I | ‘ |
5 10 15 20 P 0
Time-series

Figure E.4: Chi-squared distance calculated between a healthy- and a perfusion impaired hemisphere for
patient 4. A LBP pattern with 16 neighbours and a radius ranging from 2-5 was used in this experiment.

o X 10

18 \

16

0TI D
oo
a s wN

Chi-squared
.

1 I
5 10 15 20 25 30
Time-series

Figure E.5: Chi-squared distance calculated between a healthy- and a perfusion impaired hemisphere for
patient 5. A LBP pattern with 16 neighbours and a radius ranging from 2-5 was used in this experiment.

65

g X 10

Chi-squared
= w (2] ~
T T T
~ | VXD

w
T

N

I I
20 25 30

Time-series

Figure E.6: Chi-squared distance calculated between a healthy- and a perfusion impaired hemisphere for
patient 6. A LBP pattern with 16 neighbours and a radius ranging from 2-5 was used in this experiment.

%10

-
=Y

[
I

Chi-squared
© s IS

o

IS

L T L L L
5 10 15 20 25 30
Time-series

Figure E.7: Chi-squared distance calculated between a healthy- and a perfusion impaired hemisphere for
patient 7. A LBP pattern with 16 neighbours and a radius ranging from 2-5 was used in this experiment.

-3
5 %10
~ R=2
1.8 M 2
/ \ R=4
16 /ﬁ \ A
14 \
B2
E]
o 1
P
P
Cos
|
0.6 |
|
|
0.4 “J /
02f /\ / /
b I\l
.

I . .
5 10 15 20 25 30
Time-series

Figure E.8: Chi-squared distance calculated between a healthy- and a perfusion impaired hemisphere for
patient 8. A LBP pattern with 16 neighbours and a radius ranging from 2-5 was used in this experiment.

66

6 X 10

XD DD

O A wN

Chi-squared
w

.
5 10 15 20 25 30
Time-series

Figure E.9: Chi-squared distance calculated between a healthy- and a perfusion impaired hemisphere for
patient 9. A LBP pattern with 16 neighbours and a radius ranging from 2-5 was used in this experiment.

3 X 10

|
251 / \

T XDD
wononn

a s w N

Chi-squared
.
»

051

2N W :,?;\,?/\”’
o 7 ! . . .
5 10 15 20 25 30

Time-series

Figure E.10: Chi-squared distance calculated between a healthy- and a perfusion impaired hemisphere
for patient 10. A LBP pattern with 16 neighbours and a radius ranging from 2-5 was used in this experi-
ment.

-3
12 x10

Chi-squared
o o
o ©

o
IS

0.2

\""x 10 1‘5 2‘0 2‘5 30
Time-series

Figure E.11: Chi-squared distance calculated between a healthy- and a perfusion impaired hemisphere

for patient 11. A LBP pattern with 16 neighbours and a radius ranging from 2-5 was used in this experi-

ment.

67

Wavelet

The following graphs show Chi-squared distance calculated between a healthy- and a perfusion

impaired hemisphere for patient 1-4 and patient 6-11. A DWT was performed using a Coiflet-4

and a decomposition level three.

0.364

0.362 -

0.36

0.358 -

Chi-squared
o
w
3

0.354 -

0.352 -

035 /7

0.348

I
15

Time-Series

I
20 25

30

Figure E.12: Chi-squared distance calculated between a healthy- and a perfusion impaired hemisphere
for patient 1. A DWT with the use of a Coiflet-4 and a decompositon level 3 was used in this experiment.

0.438

0.436 -

0.434 -

0.432

Chi-squared
o
&

o
»
N
@

0.426 [

0.424

0.422

.
15
Time-Series

I
20

I
25

30

Figure E.13: Chi-squared distance calculated between a healthy- and a perfusion impaired hemisphere
for patient 2. A DWT with the use of a Coiflet-4 and a decompositon level 3 was used in this experiment.

0.346

0.344 -

0.342 -

squared
o
w
B

Chi

0.336 -

0.334 1/

03321

0.338 [

\ A /
\\// \

/NA

L
10

15
Time-Series

20

25

30

Figure E.14: Chi-squared distance calculated between a healthy- and a perfusion impaired hemisphere
for patient 3. A DWT with the use of a Coiflet-4 and a decompositon level 3 was used in this experiment.

68

0.474 T T T T T

0.472 /o

0.47

0.468 -

Chi-squared

I 1 1N

S B S

(<23 (=2 (2]

N B (=2}
-

I

s

>
T

0.458 -

0458 A/ NS : (SN

0450 ‘ ‘ ‘ ‘ LN/
5 10 15 20 25 30
Time-Series

Figure E.15: Chi-squared distance calculated between a healthy- and a perfusion impaired hemisphere
for patient 4. A DWT with the use of a Coiflet-4 and a decompositon level 3 was used in this experiment.

0.375 T T ‘7\ T T
037 /
3 N
g : \
@ \
2
S
0.365 \
/\ \ N\
\ \
[\
\\ / 0\
\»”
0.36 - - - -
5 10 15 20
Time-Series

Figure E.16: Chi-squared distance calculated between a healthy- and a perfusion impaired hemisphere
for patient 5. A DWT with the use of a Coiflet-4 and a decompositon level 3 was used in this experiment.

0.372 T T T T T

0.368 - “‘j‘

0.366 - \

Chi-squared
o
@
(=2
B

0.362 / \

/
0.36 F / \
A —/ \
/\ ——

0.356

AN /
osss| /N o~ A

5

10

15
Time-Series

30

Figure E.17: Chi-squared distance calculated between a healthy- and a perfusion impaired hemisphere
for patient 6. A DWT with the use of a Coiflet-4 and a decompositon level 3 was used in this experiment.

69

0.376

/\
0.374 | / \
/

0.372 1 / \

Chi-squared

0.368 / N

0.366 /

0.364 ,/ /—\/ /,,,,\/\ P

0.362 |/

\
5 10 15 20 25 30
Time-Series

0.36

Figure E.18: Chi-squared distance calculated between a healthy- and a perfusion impaired hemisphere
for patient 7. A DWT with the use of a Coiflet-4 and a decompositon level 3 was used in this experiment.

0.4

0.398 /N
0396 \

0.394 -

Chi-squared
o o
w © w
o<} w ©
8 8 8

0.386 -
/

0.384 |/

0.382

. . . .
5 10 15 20 25 30
Time-Series

Figure E.19: Chi-squared distance calculated between a healthy- and a perfusion impaired hemisphere
for patient 8. A DWT with the use of a Coiflet-4 and a decompositon level 3 was used in this experiment.

0.458
0.456 / \\
0.454 \
=l
4
g
o 0.452 <
P / \
) /
045 A/
~/ \//
\
0.448 - - /
\ /\ \\s"
\ / /
\/ /
0.446 ! ! ! : !
5 10 15 20 25 30
Time-Series

Figure E.20: Chi-squared distance calculated between a healthy- and a perfusion impaired hemisphere
for patient 9. A DWT with the use of a Coiflet-4 and a decompositon level 3 was used in this experiment.

70

0.478 -

0.476 -

0.474

Chi-squared
o
I >
B ~
I R

I
~
I
o

0.466 |
/

0.464

0.462

/
,/’
/
/
/
\
\
/
/
/
/
/
b /
/ N
.
5 10 15 20 25
Time-Series

30

Figure E.21: Chi-squared distance calculated between a healthy- and a perfusion impaired hemisphere
for patient 10. A DWT with the use of a Coiflet-4 and a decompositon level 3 was used in this experiment.

0.388

0.387 -

0.386 -

0.385 -

Chi-squared
o o
©w @
o< @©
(3] S

0.382 -
0381 /

/
0.38

0.379

. . 1
5 10 15
Time-Series

I
20

L
25

30

Figure E.22: Chi-squared distance calculated between a healthy- and a perfusion impaired hemisphere
for patient 11. A DWT with the use of a Coiflet-4 and a decompositon level 3 was used in this experiment.

Gray Level Co-occurrence Matrix

The following graphs shows auto-correlation feature extracted from GLCMs between a healthy-

and a perfusion impaired hemisphere for patient 1-4 and patient 6-11.

2

Helthy hemisphere
Perfusion impaired F I

151

1t

Auto-Correlation

0.5

ok

P

. 1 I
5 10 15
Time-series

I
20

L
25

30

Figure E.23: Auto-correlation extracted from the GLCMs of patient 1 for a healthy- and a perfusion

impaired hemisphere of the brain.

71

Auto-Correlation

Helthy hemisphere
Perfusion impaired F

-1.5

Figure E.24: Auto-correlation extracted from the GLCMs of patient 2 for a healthy- and a perfusion

impaired hemisphere of the brain.

15
Time-series

30

Auto-Correlation

-151

-2.5

Helthy hemisphere
Perfusion impaired hemisphere

Figure E.25: Auto-correlation extracted from the GLCMs of patient 3 for a healthy- and a perfusion

impaired hemisphere of the brain.

15
Time-series

30

Helthy hemisphere
Perfusion impaired F

Auto-Correlation

-151

-2.5

L |

Figure E.26: Auto-correlation extracted from the GLCMSs of patient 4 for a healthy- and a perfusion

impaired hemisphere of the brain.

10

15

Time-series

30

72

0.5

Auto-Correlation

Helthy hemisphere
Perfusion impaired hemisphere

10 15 20 25 30
Time-series

Figure E.27: Auto-correlation extracted from the GLCMSs of patient 5 for a healthy- and a perfusion
impaired hemisphere of the brain.

Helthy hemisphere A
2 Perfusion impaired hemisphere \
\

Auto-Correlation

151 / 1
25 . . i . .
5 10 15 20 25 30
Time-series

Figure E.28: Auto-correlation extracted from the GLCMSs of patient 6 for a healthy- and a perfusion
impaired hemisphere of the brain.

Helthy hemisphere
15 Perfusion impaired F

05k AN

-05 1

Auto-Correlation

-15F \ f’

|/ \
25+ i v

3 . . i . .
5 10 15 20 25 30
Time-series

Figure E.29: Auto-correlation extracted from the GLCMSs of patient 7 for a healthy- and a perfusion
impaired hemisphere of the brain.

73

Helthy hemisphere
Perfusion impaired F

Auto-Correlation

51 | 8
| Vo
N o]
25 . I i . .
5 10 15 20 25 30
Time-series

Figure E.30: Auto-correlation extracted from the GLCMSs of patient 8 for a healthy- and a perfusion
impaired hemisphere of the brain.

1.
5 Helthy hemisphere T T
Perfusion impaired F
1IN0 1
05 q

Auto-Correlation
1<)
(52
T

-151

25 ‘ ‘ LN ‘
5 10 15 20 25 30

Time-series

Figure E.31: Auto-correlation extracted from the GLCMSs of patient 9 for a healthy- and a perfusion
impaired hemisphere of the brain.

Helthy hemisphere
Perfusion impaired hemisphere

Auto-Correlation
o

3 L L L L ! L
5 10 15 20 25 30
Time-series

Figure E.32: Auto-correlation extracted from the GLCMs of patient 10 for a healthy- and a perfusion
impaired hemisphere of the brain.

74

15

0.5

Auto-Correlation

-15r1

25

-05 1

Helthy hemisphere
Perfusion impaired F

i \
N AT YN
s T
‘\\/\\
5 10 15 20 25
Time-series

30

Figure E.33: Auto-correlation extracted from the GLCMs of patient 11 for a healthy- and a perfusion

impaired hemisphere of the brain.

75

F Time-density curve

In this appendix the TDCs for all paitents are available, excluded patient 5. Patient 5 is excluded

as the TDC a low resolution and therefore proved hard to interpret.

. Right Hemisphere
. Left Hemisphere

Figure F.1: TDC for patient 1 with modified x-axis, showing time-series instead of seconds.

Right Hemisphere

Left Hemisphere

Series

Figure F.2: TDC for patient 2 with modified x-axis, showing time-series instead of seconds.

76

. Right Hemisphere
. Left Hemisphere

Time-
SEUES

12-April-201

16:26;80
!— 9
L .
|

. Right Hemisphere
. Left Hemisphere

4

SENES

. Right Hemisphere
. Left Hemisphere

Time-
SENES

Figure E.5: TDC for patient 6 with modified x-axis, showing time-series instead of seconds.

A-July-281
23:55;41

. Right Hemisphere
. Left Hemisphere

Time-
Series

Figure F.6: TDC for patient 7 with modified x-axis, showing time-series instead of seconds.

7

. Right Hemisphere
. Left Hemisphere

SEUES

Figure F.7: TDC for patient 8 with modified x-axis, showing time-series instead of seconds.

. Right Hemisphere
. Left Hemisphere

Time-
SEIES

Figure F.8: TDC for patient 9 with modified x-axis, showing time-series instead of seconds.

27-December-2061
18:22;22

. Right Hemisphere
. Left Hemisphere

Figure F.9: TDC for patient 10 with modified x-axis, showing time-series instead of seconds.

78

11-February-28145

. Right Hemisphere
. Left Hemisphere

SENES

Figure F.10: TDC for patient 11 with modified x-axis, showing time-series instead of seconds.

79

	Introduction
	Image Processing in Medical Applications
	Thesis objective
	Thesis outline

	Medical Background
	Ischemic Stroke
	Infarct Core
	Penumbra

	Computed Tomography
	Paramtetric Maps

	Data Material

	Technical Background
	Image Registration
	Histogram Equalization
	Seeded Region Growing
	Local Binary Pattern
	Working Principle
	Rotation Invariant
	Uniform Patterns
	Multiresolution Local Binary Pattern

	Wavelets
	Gray Level Co-occurrence Matrix
	Similarity measures
	Chi-Squared distance
	Correlation analysis

	Method
	Image Registration
	Pre-processing
	Image Normalization
	Histogram Equalizing

	Masking
	Skull stripping

	Feature Extraction
	Local binary pattern
	Wavelet
	Model histogram
	Gray Level Co-occurrence Matrix
	Correlation analysis

	Implementation
	Image registration
	Pre-processing and Masking
	Feature Extraction
	Performance measures

	Proposed system

	Experiments and Results
	Masking
	Experiments
	Experiment 1: Local Binary Pattern
	Experiment 2: Wavelets
	Experiment 3: Gray Level Co-occurrence Matrix
	Experiment 4: Feature selection
	Experiment 5: Correlation analysis

	Discussion
	Data set
	Masking
	Feature Extraction
	Correlation analysis

	Conclusion and Future Work
	Future Work

	Bibliography
	Appendices
	Data material
	MATLAB code
	Features extended: GLCM
	Manually Labeled Penumbra and Infarct Core
	Additional results
	Time-density curve

calculate_glcm.m

%% CALCULATE GLCMs FROM THE IMAGES OF HEMISPHERES

for i=1:rows

 for j = 1:columns

 GLCM2_frisk{i,j} = graycomatrix(roi_left{i,j},'Offset',[3 0]);

 GLCM2_syk{i,j} = graycomatrix(roi_right{i,j},'Offset',[3 0]);

 end

end

%%

glcm_healthy_temp = cell2mat(GLCM2_frisk);

glcm_imapired_temp = cell2mat(GLCM2_syk);

%%

glcm_healthy_temp = permute(reshape(glcm_healthy_temp, 8, rows, 240), [1 3 2]);

glcm_imapired_temp = permute(reshape(glcm_imapired_temp, 8, rows, 240), [1 3 2]);

glcm_frisk = mean(glcm_healthy_temp,3);

glcm_syk = mean(glcm_imapired_temp,3);

%%

[rows, columnsglcm] = size(glcm_frisk)

for i=1:columnsglcm/8

 stats_healthy(i) = GLCM_Features1(glcm_frisk(:,(i-1)*8+1:i*8),0)

 stats_impaired(i) = GLCM_Features1(glcm_syk(:,(i-1)*8+1:i*8),0)

end

correlation_analysis.m

%% DATA EXTRACTED FROM FREEHAND-DRAWINGS

sammenlagt_strl = [398.70	245.30	177.82	494.49	485.10	242.97 ...	

 311.10	441.40	376.43	335.90	536.10];

snitt_strl = [30.67	22.3	16.17	38.04	37.32	23.3	28.28 ...	

 36.78	20.91	25.84	44.68];

max_single_pen =[43.80	34.10	22.10	54.20	49.70	33.40	45.00	51.70	28.60	35.70	65.40];

%%

D_alle = cell2mat(D_alle);

%%

d_haar = D_alle(1,:);

d_db4 = D_alle(2,:);

d_c4 = D_alle(3,:);

trapz_haar = trapz(1:1:30,d_haar)

trapz_db4 = trapz(1:1:30,d_db4)

trapz_c4 = trapz(1:1:30,d_c4)

%% TRAPEZOID INTEGRALS FOR DIFFERENT WAVELETS, NORMALIZED, ALL PATIENTS

Integral_haar = [5.2794 7.4929 5.7473 7.6919 5.6375 6.4438 5.7825 5.8221 ...

 7.4013 7.4324 5.9777];

Integral_db4 = [6.8122 8.8943 6.9748 9.4305 7.2241 7.5641 7.3949 8.0070 ...

 9.0502 9.4414 7.7084];

Integral_coif4 = [10.2299 12.4122 9.7796 13.3741 10.6051 10.4856 10.6282 8.0070 ...

 13.0680 13.6113 11.0885];

%%

[R_haar_all, p_haar_all] = corrcoef(Integral_haar, sammenlagt_strl);

[R_haar_snitt, p_haar_snitt] = corrcoef(Integral_haar, snitt_strl);

%%

[R_db4_all, p_db4_all] = corrcoef(Integral_db4, sammenlagt_strl);

[R_db4_snitt, p_db4_snitt] = corrcoef(Integral_db4, snitt_strl);

%%

[R_coif4_all, p_coif4_all] = corrcoef(Integral_coif4, max_single_pen)

[R_coif4_snitt, p_coif4_snitt] = corrcoef(Integral_coif4, snitt_strl);

%%

%% TRAPEZOID INTEGRALS FOR DIFFERENT WAVELETS, ALL PATIENTS

Integral_haar = [4.1121e09 5.1381e09 3.9999e09 6.2764e09 4.5604e09 ...

 4.2732e09 4.2762e09 4.0334e09 5.7015e09 5.0462e09 4.1441e09];

Integral_db4 = [4.1548e09 5.2065e09 4.0403e09 6.3968e09 4.6611e09 ...

 4.3286e09 4.3071e09 4.1414e09 5.7032e09 5.0620e09 4.1674e09];

Integral_coif4 = [4.1017e09 5.1466e09 3.9842e09 6.3117e09 4.5634e09 ...

 4.3124e09 4.3090e09 4.0856e09 5.6698e09 5.1466e09 4.1807e09];

[R_haar_all, p_haar_all] = corrcoef(Integral_haar, sammenlagt_strl);

[R_haar_snitt, p_haar_snitt] = corrcoef(Integral_haar, snitt_strl);

[R_db4_all, p_db4_all] = corrcoef(Integral_db4, sammenlagt_strl);

[R_db4_snitt, p_db4_snitt] = corrcoef(Integral_db4, snitt_strl);

[R_coif4_all, p_coif4_all] = corrcoef(Integral_coif4, sammenlagt_strl);

[R_coif4_snitt, p_coif4_snitt] = corrcoef(Integral_coif4, snitt_strl);

%% TRAPEZOID INTEGRALS FOR DIFFERENT LBPs, ALL PATIENTS

LBP_r2 = [6.54E-03	2.85E-02	3.45E-03	3.28E-02	7.08E-03	7.91E-03	1.51E-02	7.38E-03	3.68E-03	7.84E-03	4.87E-03];

LBP_r3 = [7.91E-03	2.92E-02	4.22E-03	3.34E-02	8.51E-03	7.95E-03	1.48E-02	9.86E-03	4.12E-03	1.41E-02	6.15E-03];

LBP_r4 = [1.03E-02	3.14E-02	6.47E-03	3.65E-02	1.08E-02	8.16E-03	1.55E-02	1.28E-02	5.22E-03	1.92E-02	8.30E-03];

LBP_r5 = [1.23E-02	3.47E-02	1.06E-02	3.89E-02	1.29E-02	8.56E-03	1.67E-02	1.42E-02	6.67E-03	2.09E-02	1.16E-02];

%%

sammenlagt_strl = [398.70	245.30	177.82	494.49	485.10	242.97 ...	

 311.10	441.40	376.43	335.90	536.10];

snitt_strl = [30.67	22.3	16.17	38.04	37.32	23.3	28.28 ...	

 36.78	20.91	25.84	44.68];

max_single_pen =[43.80	34.10	22.10	54.20	49.70	33.40	45.00	51.70	28.60	35.70	65.40];

%%

[R_r2, P_r2] = corrcoef(LBP_r2,max_single_pen);

[R_r3, P_r3] = corrcoef(LBP_r3, max_single_pen);

[R_r4, P_r4] = corrcoef(LBP_r4, snitt_strl)

[R_r5, P_r5] = corrcoef(LBP_r5, max_single_pen);

extract_lbp_features.m

close all;

clear all;

temp = load('subImagePA01_450_new.mat'); % Load all pre-processed and skull-stripped images for a patient.

subImage = temp.subImage(:,:);

[rows, columns] = size(subImage)

%% SPLIT THE IMAGE BY THE CENTROID

for i=1:rows

 for j = 1:columns

 I = subImage;

 %figure, imshow(I)

 bw{i,j} = imbinarize(I{i,j}, graythresh(getimage));

 %figure, imshow(bw)

 bw2{i,j} = imfill(bw{i,j},'holes');

 L{i,j} = bwlabel(bw2{i,j});

 s = regionprops(L{i,j}, 'centroid');

 centroids = cat(1, s.Centroid);

 x_verdi{i,j} = round(centroids(1,1));

 y_verdi{i,j} = round(centroids(1,2));

 [m{i,j}, n{i,j}] = size(I{i,j});

 roi_right{i,j} = I{i,j}(1:m{i,j},1:x_verdi{i,j}-0.5);

 roi_left{i,j} = I{i,j}(1:m{i,j},x_verdi{i,j}+0.5:n{i,j});

 end

end

R = [1 2 3 4 5];% radiuses

N = [8 16]; % Number of neighbours

%% CALCULATE SIGMA OF GAUSSIAN LOW-PASS FILTER.

sigma2 = tand(360/(N(2)*2))*R(2);

sigma3 = tand(360/(N(2)*2))*R(3);

sigma4 = tand(360/(N(2)*2))*R(4);

sigma5 = tand(360/(N(2)*2))*R(5);

%% APPLY FILTER TO IMAGES

for i=1:rows

 for j = 1:columns

 filter2_left{i,j} = imgaussfilt(roi_left{i,j}, sigma2);

 filter2_right{i,j} = imgaussfilt(roi_right{i,j}, sigma2);

 filter3_left{i,j} = imgaussfilt(roi_left{i,j}, sigma3);

 filter3_right{i,j} = imgaussfilt(roi_right{i,j}, sigma3);

 filter4_left{i,j} = imgaussfilt(roi_left{i,j}, sigma4);

 filter4_right{i,j} = imgaussfilt(roi_right{i,j}, sigma4);

 filter5_left{i,j} = imgaussfilt(roi_left{i,j}, sigma5);

 filter5_right{i,j} = imgaussfilt(roi_right{i,j}, sigma5);

 end

end

N = 16;

MAPPING=getmapping(N,'riu2');

%% CALCULATE LBP DESCRIPTORS

for i=1:rows

 for j = 1:columns

 LBPHIST_left1{i,j}=lbp(roi_left{i,j},R(1),N,MAPPING,'nh');%,'nh');

 LBPHIST_right1{i,j}=lbp(roi_right{i,j},R(1),N,MAPPING,'nh');

 LBPHIST_left2{i,j}=lbp(filter2_left{i,j},R(2),N,MAPPING,'nh');%,'nh');

 LBPHIST_right2{i,j}=lbp(filter2_right{i,j},R(2),N,MAPPING,'nh');

 LBPHIST_left3{i,j}=lbp(filter3_left{i,j},R(3),N,MAPPING,'nh');%,'nh');

 LBPHIST_right3{i,j}=lbp(filter3_right{i,j},R(3),N,MAPPING,'nh');

 LBPHIST_left4{i,j}=lbp(filter4_left{i,j},R(4),N,MAPPING,'nh');%,'nh');

 LBPHIST_right4{i,j}=lbp(filter4_right{i,j},R(4),N,MAPPING,'nh');

 LBPHIST_left5{i,j}=lbp(filter5_left{i,j},R(5),N,MAPPING,'nh');%,'nh');

 LBPHIST_right5{i,j}=lbp(filter5_right{i,j},R(5),N,MAPPING,'nh');

 end

end

toc

%%

temp_frisk1 = cell2mat(LBPHIST_left1);

temp_syk1 = cell2mat(LBPHIST_right1);

temp_frisk2 = cell2mat(LBPHIST_left2);

temp_syk2 = cell2mat(LBPHIST_right2);

temp_frisk3 = cell2mat(LBPHIST_left3);

temp_syk3 = cell2mat(LBPHIST_right3);

temp_frisk4 = cell2mat(LBPHIST_left4);

temp_syk4 = cell2mat(LBPHIST_right4);

temp_frisk5 = cell2mat(LBPHIST_left5);

temp_syk5 = cell2mat(LBPHIST_right5);

%%

for k = 1:length(temp_frisk1)/(N+2)

 Serie_frisk1(:,:,k) = temp_frisk1(:,1+(k-1)*(N+2):k*(N+2));

 Serie_syk1(:,:,k) = temp_syk1(:,1+(k-1)*(N+2):k*(N+2));

 Serie_frisk2(:,:,k) = temp_frisk2(:,1+(k-1)*(N+2):k*(N+2));

 Serie_syk2(:,:,k) = temp_syk2(:,1+(k-1)*(N+2):k*(N+2));

 Serie_frisk3(:,:,k) = temp_frisk3(:,1+(k-1)*(N+2):k*(N+2));

 Serie_syk3(:,:,k) = temp_syk3(:,1+(k-1)*(N+2):k*(N+2));

 Serie_frisk4(:,:,k) = temp_frisk4(:,1+(k-1)*(N+2):k*(N+2));

 Serie_syk4(:,:,k) = temp_syk4(:,1+(k-1)*(N+2):k*(N+2));

 Serie_frisk5(:,:,k) = temp_frisk5(:,1+(k-1)*(N+2):k*(N+2));

 Serie_syk5(:,:,k) = temp_syk5(:,1+(k-1)*(N+2):k*(N+2));

end

%% MEAN OF SERIES FOR EACH VOLUME-SERIES

Serie_frisk1 = mean(Serie_frisk1);

Serie_syk1 = mean(Serie_syk1);

Serie_frisk2 = mean(Serie_frisk2);

Serie_syk2 = mean(Serie_syk2);

Serie_frisk3 = mean(Serie_frisk3);

Serie_syk3 = mean(Serie_syk3);

Serie_frisk4 = mean(Serie_frisk4);

Serie_syk4 = mean(Serie_syk4);

Serie_frisk5 = mean(Serie_frisk5);

Serie_syk5 = mean(Serie_syk5);

%%

for k = 1:length(temp_frisk1)/(N+2)

 D1(k) = pdist2(Serie_frisk1(:,:,k), Serie_syk1(:,:,k), 'chisq');

 D2(k) = pdist2(Serie_frisk2(:,:,k), Serie_syk2(:,:,k), 'chisq');

 D3(k) = pdist2(Serie_frisk3(:,:,k), Serie_syk3(:,:,k), 'chisq');

 D4(k) = pdist2(Serie_frisk4(:,:,k), Serie_syk4(:,:,k), 'chisq');

 D5(k) = pdist2(Serie_frisk5(:,:,k), Serie_syk5(:,:,k), 'chisq');

end

%% PLOT FEATURES

plot(1:30, D2,1:30, D3,1:30, D4,1:30, D5)

xlim([1 30])

ylabel('Chi-squared')

xlabel('Time-series')

legend('R = 2', 'R = 3','R = 4','R = 5')

grid on; grid minor;

extract_wavelet_features.m

close all;

clear all;

temp = load('subImagePA03_450.mat'); % Load all pre-processed and skull-stripped images for a patient.

subImage = temp.subImage(:,:);

[rows, columns] = size(subImage)

%% SPLIT THE IMAGE BY THE CENTROID

for i=1:rows

 for j = 1:columns

 I = subImage;

 %figure, imshow(I)

 bw{i,j} = imbinarize(I{i,j}, graythresh(getimage));

 %figure, imshow(bw)

 bw2{i,j} = imfill(bw{i,j},'holes');

 L{i,j} = bwlabel(bw2{i,j});

 s = regionprops(L{i,j}, 'centroid');

 centroids = cat(1, s.Centroid);

 x_verdi{i,j} = round(centroids(1,1));

 y_verdi{i,j} = round(centroids(1,2));

 [m{i,j}, n{i,j}] = size(I{i,j});

 roi_right{i,j} = I{i,j}(1:m{i,j},1:x_verdi{i,j}-0.5);

 roi_left{i,j} = I{i,j}(1:m{i,j},x_verdi{i,j}+0.5:n{i,j});

 end

end

%% PAD IMAGES, MAKE THEM THE SAME SIZE.

largest_row_left = max(cellfun('size',roi_left,1)); % rows

largest_column_left = max(cellfun('size',roi_left,2)); % column

largest_row_right = max(cellfun('size',roi_right,1)); % rows

largest_column_right = max(cellfun('size',roi_right,2)); % column

largest_row = max(largest_row_left(1),max(largest_row_right(1)));

largest_column = max(largest_column_left(1),max(largest_column_right(1)));

%% CALCULATE FEATURES FOR DIFFERENT WAVELETS

diff_wavelets = {'haar', 'db4', 'coif4'};

koeff_lr = {};

level = 3;

for h = 1:length(diff_wavelets)

 for i=1:rows

 for j = 1:columns

 roi_left_pd{i, j} = imresize(roi_left{i, j},[max(largest_row(1)), max(largest_column(1))], 'bilinear');

 roi_right_pd{i, j} = imresize(roi_right{i, j},[max(largest_row(1)), max(largest_column(1))], 'bilinear');

 [C_left_db2{i, j},S] = wavedec2(roi_left_pd{i,j},level,diff_wavelets{h});

 C_left_db2{i, j} = abs(C_left_db2{i, j});

 C_left_db2{i, j} = C_left_db2{i, j}/sum(C_left_db2{i, j});

 [C_right_db2{i, j},S] = wavedec2(roi_right_pd{i,j},level,diff_wavelets{h});

 C_right_db2{i, j} = abs(C_right_db2{i, j});

 C_right_db2{i, j} = C_right_db2{i, j}/sum(C_right_db2{i, j});

 koeff_lr{h} = [{C_left_db2}, {C_right_db2}];

 end

 end

end

%%

for i = 1:length(koeff_lr)

 temp_left = cell2mat(koeff_lr{1,i}{1,1});

 [rows_coffl, columns_coffk] = size(temp_left);

 temp_right = cell2mat(koeff_lr{1,i}{1,2});

 [rows_coffr, columns_coffr] = size(temp_right);

%%

 for k = 1: j

 Series_left(:,:,k) = temp_left(:,1+(k-1)*(columns_coffk/j):k*(columns_coffk/j));

 Series_right(:,:,k) = temp_right(:,1+(k-1)*(columns_coffr/j):k*(columns_coffr/j));

 end

%% MEAN OF SERIES FOR EACH VOLUME-SERIES

 Series_left = mean(Series_left);

 Series_right = mean(Series_right);

%% PLOT THE CHI-SQUARED DISTANCE BETWEEN LEFT AND RIGHT HEMISPHERE

 for k = 1:j

 D1(k) = pdist2(Series_left(:,:,k), Series_right(:,:,k), 'chisq');

 D_alle{i, k} = D1(k);

 end

 figure(i)

 plot(1:30, D1)

 xlim([1 30])

 grid on; grid minor;

 ylabel('Chi-squared')

 xlabel('Time-Series')

 temp_left = [];

 temp_right = [];

 Series_right = [];

 Series_left = [];

 columns_coffk = 0;

 columns_coffr = 0;

 %D1 =[];

 k = 1;

end

getmapping.m

%GETMAPPING returns a structure containing a mapping table for LBP codes.

% MAPPING = GETMAPPING(SAMPLES,MAPPINGTYPE) returns a

% structure containing a mapping table for

% LBP codes in a neighbourhood of SAMPLES sampling

% points. Possible values for MAPPINGTYPE are

% 'u2' for uniform LBP

% 'ri' for rotation-invariant LBP

% 'riu2' for uniform rotation-invariant LBP.

%

% Example:

% I=imread('rice.tif');

% MAPPING=getmapping(16,'riu2');

% LBPHIST=lbp(I,2,16,MAPPING,'hist');

% Now LBPHIST contains a rotation-invariant uniform LBP

% histogram in a (16,2) neighbourhood.

%

function mapping = getmapping(samples,mappingtype)

% Version 0.2

% Authors: Marko Heikkil?, Timo Ahonen and Xiaopeng Hong

% Changelog

% 0.1.1 Changed output to be a structure

% Fixed a bug causing out of memory errors when generating rotation

% invariant mappings with high number of sampling points.

% Lauge Sorensen is acknowledged for spotting this problem.

% Modified by Xiaopeng HONG and Guoying ZHAO

% Changelog

% 0.2

% Solved the compatible issue for the bitshift function in Matlab

% 2012 & higher

matlab_ver = ver('MATLAB');

matlab_ver = str2double(matlab_ver.Version);

if matlab_ver < 8

 mapping = getmapping_ver7(samples,mappingtype);

else

 mapping = getmapping_ver8(samples,mappingtype);

end

end

function mapping = getmapping_ver7(samples,mappingtype)

disp('For Matlab version 7.x and lower');

table = 0:2^samples-1;

newMax = 0; %number of patterns in the resulting LBP code

index = 0;

if strcmp(mappingtype,'u2') %Uniform 2

 newMax = samples*(samples-1) + 3;

 for i = 0:2^samples-1

 j = bitset(bitshift(i,1,samples),1,bitget(i,samples)); %rotate left

 numt = sum(bitget(bitxor(i,j),1:samples)); %number of 1->0 and

 %0->1 transitions

 %in binary string

 %x is equal to the

 %number of 1-bits in

 %XOR(x,Rotate left(x))

 if numt <= 2

 table(i+1) = index;

 index = index + 1;

 else

 table(i+1) = newMax - 1;

 end

 end

end

if strcmp(mappingtype,'ri') %Rotation invariant

 tmpMap = zeros(2^samples,1) - 1;

 for i = 0:2^samples-1

 rm = i;

 r = i;

 for j = 1:samples-1

 r = bitset(bitshift(r,1,samples),1,bitget(r,samples)); %rotate

 %left

 if r < rm

 rm = r;

 end

 end

 if tmpMap(rm+1) < 0

 tmpMap(rm+1) = newMax;

 newMax = newMax + 1;

 end

 table(i+1) = tmpMap(rm+1);

 end

end

if strcmp(mappingtype,'riu2') %Uniform & Rotation invariant

 newMax = samples + 2;

 for i = 0:2^samples - 1

 j = bitset(bitshift(i,1,samples),1,bitget(i,samples)); %rotate left

 numt = sum(bitget(bitxor(i,j),1:samples));

 if numt <= 2

 table(i+1) = sum(bitget(i,1:samples));

 else

 table(i+1) = samples+1;

 end

 end

end

mapping.table=table;

mapping.samples=samples;

mapping.num=newMax;

end

function mapping = getmapping_ver8(samples,mappingtype)

disp('For Matlab version 8.0 and higher');

table = 0:2^samples-1;

newMax = 0; %number of patterns in the resulting LBP code

index = 0;

if strcmp(mappingtype,'u2') %Uniform 2

 newMax = samples*(samples-1) + 3;

 for i = 0:2^samples-1

 i_bin = dec2bin(i,samples);

 j_bin = circshift(i_bin',-1)'; %circularly rotate left

 numt = sum(i_bin~=j_bin); %number of 1->0 and

 %0->1 transitions

 %in binary string

 %x is equal to the

 %number of 1-bits in

 %XOR(x,Rotate left(x))

 if numt <= 2

 table(i+1) = index;

 index = index + 1;

 else

 table(i+1) = newMax - 1;

 end

 end

end

if strcmp(mappingtype,'ri') %Rotation invariant

 tmpMap = zeros(2^samples,1) - 1;

 for i = 0:2^samples-1

 rm = i;

 r_bin = dec2bin(i,samples);

 for j = 1:samples-1

 r = bin2dec(circshift(r_bin',-1*j)'); %rotate left

 if r < rm

 rm = r;

 end

 end

 if tmpMap(rm+1) < 0

 tmpMap(rm+1) = newMax;

 newMax = newMax + 1;

 end

 table(i+1) = tmpMap(rm+1);

 end

end

if strcmp(mappingtype,'riu2') %Uniform & Rotation invariant

 newMax = samples + 2;

 for i = 0:2^samples - 1

 i_bin = dec2bin(i,samples);

 j_bin = circshift(i_bin',-1)';

 numt = sum(i_bin~=j_bin);

 if numt <= 2

 table(i+1) = sum(bitget(i,1:samples));

 else

 table(i+1) = samples+1;

 end

 end

end

mapping.table=table;

mapping.samples=samples;

mapping.num=newMax;

end

GLCM_Features1.m

function [out] = GLCM_Features1(glcmin,pairs)

%

% GLCM_Features1 helps to calculate the features from the different GLCMs

% that are input to the function. The GLCMs are stored in a i x j x n

% matrix, where n is the number of GLCMs calculated usually due to the

% different orientation and displacements used in the algorithm. Usually

% the values i and j are equal to 'NumLevels' parameter of the GLCM

% computing function graycomatrix(). Note that matlab quantization values

% belong to the set {1,..., NumLevels} and not from {0,...,(NumLevels-1)}

% as provided in some references

% http://www.mathworks.com/access/helpdesk/help/toolbox/images/graycomatrix

% .html

%

% Although there is a function graycoprops() in Matlab Image Processing

% Toolbox that computes four parameters Contrast, Correlation, Energy,

% and Homogeneity. The paper by Haralick suggests a few more parameters

% that are also computed here. The code is not fully vectorized and hence

% is not an efficient implementation but it is easy to add new features

% based on the GLCM using this code. Takes care of 3 dimensional glcms

% (multiple glcms in a single 3D array)

%

% If you find that the values obtained are different from what you expect

% or if you think there is a different formula that needs to be used

% from the ones used in this code please let me know.

% A few questions which I have are listed in the link

% http://www.mathworks.com/matlabcentral/newsreader/view_thread/239608

%

% I plan to submit a vectorized version of the code later and provide

% updates based on replies to the above link and this initial code.

%

% Features computed

% Autocorrelation: [2] (out.autoc)

% Contrast: matlab/[1,2] (out.contr)

% Correlation: matlab (out.corrm)

% Correlation: [1,2] (out.corrp)

% Cluster Prominence: [2] (out.cprom)

% Cluster Shade: [2] (out.cshad)

% Dissimilarity: [2] (out.dissi)

% Energy: matlab / [1,2] (out.energ)

% Entropy: [2] (out.entro)

% Homogeneity: matlab (out.homom)

% Homogeneity: [2] (out.homop)

% Maximum probability: [2] (out.maxpr)

% Sum of sqaures: Variance [1] (out.sosvh)

% Sum average [1] (out.savgh)

% Sum variance [1] (out.svarh)

% Sum entropy [1] (out.senth)

% Difference variance [1] (out.dvarh)

% Difference entropy [1] (out.denth)

% Information measure of correlation1 [1] (out.inf1h)

% Informaiton measure of correlation2 [1] (out.inf2h)

% Inverse difference (INV) is homom [3] (out.homom)

% Inverse difference normalized (INN) [3] (out.indnc)

% Inverse difference moment normalized [3] (out.idmnc)

%

% The maximal correlation coefficient was not calculated due to

% computational instability

% http://murphylab.web.cmu.edu/publications/boland/boland_node26.html

%

% Formulae from MATLAB site (some look different from

% the paper by Haralick but are equivalent and give same results)

% Example formulae:

% Contrast = sum_i(sum_j((i-j)^2 * p(i,j))) (same in matlab/paper)

% Correlation = sum_i(sum_j((i - u_i)(j - u_j)p(i,j)/(s_i.s_j))) (m)

% Correlation = sum_i(sum_j(((ij)p(i,j) - u_x.u_y) / (s_x.s_y))) (p[2])

% Energy = sum_i(sum_j(p(i,j)^2)) (same in matlab/paper)

% Homogeneity = sum_i(sum_j(p(i,j) / (1 + |i-j|))) (as in matlab)

% Homogeneity = sum_i(sum_j(p(i,j) / (1 + (i-j)^2))) (as in paper)

%

% Where:

% u_i = u_x = sum_i(sum_j(i.p(i,j))) (in paper [2])

% u_j = u_y = sum_i(sum_j(j.p(i,j))) (in paper [2])

% s_i = s_x = sum_i(sum_j((i - u_x)^2.p(i,j))) (in paper [2])

% s_j = s_y = sum_i(sum_j((j - u_y)^2.p(i,j))) (in paper [2])

%

%

% Normalize the glcm:

% Compute the sum of all the values in each glcm in the array and divide

% each element by it sum

%

% Haralick uses 'Symmetric' = true in computing the glcm

% There is no Symmetric flag in the Matlab version I use hence

% I add the diagonally opposite pairs to obtain the Haralick glcm

% Here it is assumed that the diagonally opposite orientations are paired

% one after the other in the matrix

% If the above assumption is true with respect to the input glcm then

% setting the flag 'pairs' to 1 will compute the final glcms that would result

% by setting 'Symmetric' to true. If your glcm is computed using the

% Matlab version with 'Symmetric' flag you can set the flag 'pairs' to 0

%

% References:

% 1. R. M. Haralick, K. Shanmugam, and I. Dinstein, Textural Features of

% Image Classification, IEEE Transactions on Systems, Man and Cybernetics,

% vol. SMC-3, no. 6, Nov. 1973

% 2. L. Soh and C. Tsatsoulis, Texture Analysis of SAR Sea Ice Imagery

% Using Gray Level Co-Occurrence Matrices, IEEE Transactions on Geoscience

% and Remote Sensing, vol. 37, no. 2, March 1999.

% 3. D A. Clausi, An analysis of co-occurrence texture statistics as a

% function of grey level quantization, Can. J. Remote Sensing, vol. 28, no.

% 1, pp. 45-62, 2002

% 4. http://murphylab.web.cmu.edu/publications/boland/boland_node26.html

%

%

% Example:

%

% Usage is similar to graycoprops() but needs extra parameter 'pairs' apart

% from the GLCM as input

% I = imread('circuit.tif');

% GLCM2 = graycomatrix(I,'Offset',[2 0;0 2]);

% stats = GLCM_features1(GLCM2,0)

% The output is a structure containing all the parameters for the different

% GLCMs

%

% [Avinash Uppuluri: avinash_uv@yahoo.com: Last modified: 11/20/08]

% If 'pairs' not entered: set pairs to 0

if ((nargin > 2) || (nargin == 0))

 error('Too many or too few input arguments. Enter GLCM and pairs.');

elseif ((nargin == 2))

 if ((size(glcmin,1) <= 1) || (size(glcmin,2) <= 1))

 error('The GLCM should be a 2-D or 3-D matrix.');

 elseif (size(glcmin,1) ~= size(glcmin,2))

 error('Each GLCM should be square with NumLevels rows and NumLevels cols');

 end

elseif (nargin == 1) % only GLCM is entered

 pairs = 0; % default is numbers and input 1 for percentage

 if ((size(glcmin,1) <= 1) || (size(glcmin,2) <= 1))

 error('The GLCM should be a 2-D or 3-D matrix.');

 elseif (size(glcmin,1) ~= size(glcmin,2))

 error('Each GLCM should be square with NumLevels rows and NumLevels cols');

 end

end

format long e

if (pairs == 1)

 newn = 1;

 for nglcm = 1:2:size(glcmin,3)

 glcm(:,:,newn) = glcmin(:,:,nglcm) + glcmin(:,:,nglcm+1);

 newn = newn + 1;

 end

elseif (pairs == 0)

 glcm = glcmin;

end

size_glcm_1 = size(glcm,1);

size_glcm_2 = size(glcm,2);

size_glcm_3 = size(glcm,3);

% checked

out.autoc = zeros(1,size_glcm_3); % Autocorrelation: [2]

out.contr = zeros(1,size_glcm_3); % Contrast: matlab/[1,2]

out.corrm = zeros(1,size_glcm_3); % Correlation: matlab

out.corrp = zeros(1,size_glcm_3); % Correlation: [1,2]

out.cprom = zeros(1,size_glcm_3); % Cluster Prominence: [2]

out.cshad = zeros(1,size_glcm_3); % Cluster Shade: [2]

out.dissi = zeros(1,size_glcm_3); % Dissimilarity: [2]

out.energ = zeros(1,size_glcm_3); % Energy: matlab / [1,2]

out.entro = zeros(1,size_glcm_3); % Entropy: [2]

out.homom = zeros(1,size_glcm_3); % Homogeneity: matlab

out.homop = zeros(1,size_glcm_3); % Homogeneity: [2]

out.maxpr = zeros(1,size_glcm_3); % Maximum probability: [2]

out.sosvh = zeros(1,size_glcm_3); % Sum of sqaures: Variance [1]

out.savgh = zeros(1,size_glcm_3); % Sum average [1]

out.svarh = zeros(1,size_glcm_3); % Sum variance [1]

out.senth = zeros(1,size_glcm_3); % Sum entropy [1]

out.dvarh = zeros(1,size_glcm_3); % Difference variance [4]

%out.dvarh2 = zeros(1,size_glcm_3); % Difference variance [1]

out.denth = zeros(1,size_glcm_3); % Difference entropy [1]

out.inf1h = zeros(1,size_glcm_3); % Information measure of correlation1 [1]

out.inf2h = zeros(1,size_glcm_3); % Informaiton measure of correlation2 [1]

%out.mxcch = zeros(1,size_glcm_3);% maximal correlation coefficient [1]

%out.invdc = zeros(1,size_glcm_3);% Inverse difference (INV) is homom [3]

out.indnc = zeros(1,size_glcm_3); % Inverse difference normalized (INN) [3]

out.idmnc = zeros(1,size_glcm_3); % Inverse difference moment normalized [3]

% correlation with alternate definition of u and s

%out.corrm2 = zeros(1,size_glcm_3); % Correlation: matlab

%out.corrp2 = zeros(1,size_glcm_3); % Correlation: [1,2]

glcm_sum = zeros(size_glcm_3,1);

glcm_mean = zeros(size_glcm_3,1);

glcm_var = zeros(size_glcm_3,1);

% http://www.fp.ucalgary.ca/mhallbey/glcm_mean.htm confuses the range of

% i and j used in calculating the means and standard deviations.

% As of now I am not sure if the range of i and j should be [1:Ng] or

% [0:Ng-1]. I am working on obtaining the values of mean and std that get

% the values of correlation that are provided by matlab.

u_x = zeros(size_glcm_3,1);

u_y = zeros(size_glcm_3,1);

s_x = zeros(size_glcm_3,1);

s_y = zeros(size_glcm_3,1);

% % alternate values of u and s

% u_x2 = zeros(size_glcm_3,1);

% u_y2 = zeros(size_glcm_3,1);

% s_x2 = zeros(size_glcm_3,1);

% s_y2 = zeros(size_glcm_3,1);

% checked p_x p_y p_xplusy p_xminusy

p_x = zeros(size_glcm_1,size_glcm_3); % Ng x #glcms[1]

p_y = zeros(size_glcm_2,size_glcm_3); % Ng x #glcms[1]

p_xplusy = zeros((size_glcm_1*2 - 1),size_glcm_3); %[1]

p_xminusy = zeros((size_glcm_1),size_glcm_3); %[1]

% checked hxy hxy1 hxy2 hx hy

hxy = zeros(size_glcm_3,1);

hxy1 = zeros(size_glcm_3,1);

hx = zeros(size_glcm_3,1);

hy = zeros(size_glcm_3,1);

hxy2 = zeros(size_glcm_3,1);

%Q = zeros(size(glcm));

for k = 1:size_glcm_3 % number glcms

 glcm_sum(k) = sum(sum(glcm(:,:,k)));

 glcm(:,:,k) = glcm(:,:,k)./glcm_sum(k); % Normalize each glcm

 glcm_mean(k) = mean2(glcm(:,:,k)); % compute mean after norm

 glcm_var(k) = (std2(glcm(:,:,k)))^2;

 for i = 1:size_glcm_1

 for j = 1:size_glcm_2

 out.contr(k) = out.contr(k) + (abs(i - j))^2.*glcm(i,j,k);

 out.dissi(k) = out.dissi(k) + (abs(i - j)*glcm(i,j,k));

 out.energ(k) = out.energ(k) + (glcm(i,j,k).^2);

 out.entro(k) = out.entro(k) - (glcm(i,j,k)*log(glcm(i,j,k) + eps));

 out.homom(k) = out.homom(k) + (glcm(i,j,k)/(1 + abs(i-j)));

 out.homop(k) = out.homop(k) + (glcm(i,j,k)/(1 + (i - j)^2));

 % [1] explains sum of squares variance with a mean value;

 % the exact definition for mean has not been provided in

 % the reference: I use the mean of the entire normalized glcm

 out.sosvh(k) = out.sosvh(k) + glcm(i,j,k)*((i - glcm_mean(k))^2);

 %out.invdc(k) = out.homom(k);

 out.indnc(k) = out.indnc(k) + (glcm(i,j,k)/(1 + (abs(i-j)/size_glcm_1)));

 out.idmnc(k) = out.idmnc(k) + (glcm(i,j,k)/(1 + ((i - j)/size_glcm_1)^2));

 u_x(k) = u_x(k) + (i)*glcm(i,j,k); % changed 10/26/08

 u_y(k) = u_y(k) + (j)*glcm(i,j,k); % changed 10/26/08

 % code requires that Nx = Ny

 % the values of the grey levels range from 1 to (Ng)

 end

 end

 out.maxpr(k) = max(max(glcm(:,:,k)));

end

% glcms have been normalized:

% The contrast has been computed for each glcm in the 3D matrix

% (tested) gives similar results to the matlab function

for k = 1:size_glcm_3

 for i = 1:size_glcm_1

 for j = 1:size_glcm_2

 p_x(i,k) = p_x(i,k) + glcm(i,j,k);

 p_y(i,k) = p_y(i,k) + glcm(j,i,k); % taking i for j and j for i

 if (ismember((i + j),[2:2*size_glcm_1]))

 p_xplusy((i+j)-1,k) = p_xplusy((i+j)-1,k) + glcm(i,j,k);

 end

 if (ismember(abs(i-j),[0:(size_glcm_1-1)]))

 p_xminusy((abs(i-j))+1,k) = p_xminusy((abs(i-j))+1,k) +...

 glcm(i,j,k);

 end

 end

 end

% % consider u_x and u_y and s_x and s_y as means and standard deviations

% % of p_x and p_y

% u_x2(k) = mean(p_x(:,k));

% u_y2(k) = mean(p_y(:,k));

% s_x2(k) = std(p_x(:,k));

% s_y2(k) = std(p_y(:,k));

end

% marginal probabilities are now available [1]

% p_xminusy has +1 in index for matlab (no 0 index)

% computing sum average, sum variance and sum entropy:

for k = 1:(size_glcm_3)

 for i = 1:(2*(size_glcm_1)-1)

 out.savgh(k) = out.savgh(k) + (i+1)*p_xplusy(i,k);

 % the summation for savgh is for i from 2 to 2*Ng hence (i+1)

 out.senth(k) = out.senth(k) - (p_xplusy(i,k)*log(p_xplusy(i,k) + eps));

 end

end

% compute sum variance with the help of sum entropy

for k = 1:(size_glcm_3)

 for i = 1:(2*(size_glcm_1)-1)

 out.svarh(k) = out.svarh(k) + (((i+1) - out.senth(k))^2)*p_xplusy(i,k);

 % the summation for savgh is for i from 2 to 2*Ng hence (i+1)

 end

end

% compute difference variance, difference entropy,

for k = 1:size_glcm_3

% out.dvarh2(k) = var(p_xminusy(:,k));

% but using the formula in

% http://murphylab.web.cmu.edu/publications/boland/boland_node26.html

% we have for dvarh

 for i = 0:(size_glcm_1-1)

 out.denth(k) = out.denth(k) - (p_xminusy(i+1,k)*log(p_xminusy(i+1,k) + eps));

 out.dvarh(k) = out.dvarh(k) + (i^2)*p_xminusy(i+1,k);

 end

end

% compute information measure of correlation(1,2) [1]

for k = 1:size_glcm_3

 hxy(k) = out.entro(k);

 for i = 1:size_glcm_1

 for j = 1:size_glcm_2

 hxy1(k) = hxy1(k) - (glcm(i,j,k)*log(p_x(i,k)*p_y(j,k) + eps));

 hxy2(k) = hxy2(k) - (p_x(i,k)*p_y(j,k)*log(p_x(i,k)*p_y(j,k) + eps));

% for Qind = 1:(size_glcm_1)

% Q(i,j,k) = Q(i,j,k) +...

% (glcm(i,Qind,k)*glcm(j,Qind,k) / (p_x(i,k)*p_y(Qind,k)));

% end

 end

 hx(k) = hx(k) - (p_x(i,k)*log(p_x(i,k) + eps));

 hy(k) = hy(k) - (p_y(i,k)*log(p_y(i,k) + eps));

 end

 out.inf1h(k) = (hxy(k) - hxy1(k)) / (max([hx(k),hy(k)]));

 out.inf2h(k) = (1 - exp(-2*(hxy2(k) - hxy(k))))^0.5;

% eig_Q(k,:) = eig(Q(:,:,k));

% sort_eig(k,:)= sort(eig_Q(k,:),'descend');

% out.mxcch(k) = sort_eig(k,2)^0.5;

% The maximal correlation coefficient was not calculated due to

% computational instability

% http://murphylab.web.cmu.edu/publications/boland/boland_node26.html

end

corm = zeros(size_glcm_3,1);

corp = zeros(size_glcm_3,1);

% using http://www.fp.ucalgary.ca/mhallbey/glcm_variance.htm for s_x s_y

for k = 1:size_glcm_3

 for i = 1:size_glcm_1

 for j = 1:size_glcm_2

 s_x(k) = s_x(k) + (((i) - u_x(k))^2)*glcm(i,j,k);

 s_y(k) = s_y(k) + (((j) - u_y(k))^2)*glcm(i,j,k);

 corp(k) = corp(k) + ((i)*(j)*glcm(i,j,k));

 corm(k) = corm(k) + (((i) - u_x(k))*((j) - u_y(k))*glcm(i,j,k));

 out.cprom(k) = out.cprom(k) + (((i + j - u_x(k) - u_y(k))^4)*...

 glcm(i,j,k));

 out.cshad(k) = out.cshad(k) + (((i + j - u_x(k) - u_y(k))^3)*...

 glcm(i,j,k));

 end

 end

 % using http://www.fp.ucalgary.ca/mhallbey/glcm_variance.htm for s_x

 % s_y : This solves the difference in value of correlation and might be

 % the right value of standard deviations required

 % According to this website there is a typo in [2] which provides

 % values of variance instead of the standard deviation hence a square

 % root is required as done below:

 s_x(k) = s_x(k) ^ 0.5;

 s_y(k) = s_y(k) ^ 0.5;

 out.autoc(k) = corp(k);

 out.corrp(k) = (corp(k) - u_x(k)*u_y(k))/(s_x(k)*s_y(k));

 out.corrm(k) = corm(k) / (s_x(k)*s_y(k));

% % alternate values of u and s

% out.corrp2(k) = (corp(k) - u_x2(k)*u_y2(k))/(s_x2(k)*s_y2(k));

% out.corrm2(k) = corm(k) / (s_x2(k)*s_y2(k));

end

% Here the formula in the paper out.corrp and the formula in matlab

% out.corrm are equivalent as confirmed by the similar results obtained

% % The papers have a slightly different formular for Contrast

% % I have tested here to find this formula in the papers provides the

% % same results as the formula provided by the matlab function for

% % Contrast (Hence this part has been commented)

% out.contrp = zeros(size_glcm_3,1);

% contp = 0;

% Ng = size_glcm_1;

% for k = 1:size_glcm_3

% for n = 0:(Ng-1)

% for i = 1:Ng

% for j = 1:Ng

% if (abs(i-j) == n)

% contp = contp + glcm(i,j,k);

% end

% end

% end

% out.contrp(k) = out.contrp(k) + n^2*contp;

% contp = 0;

% end

%

% end

% GLCM Features (Soh, 1999; Haralick, 1973; Clausi 2002)

% f1. Uniformity / Energy / Angular Second Moment (done)

% f2. Entropy (done)

% f3. Dissimilarity (done)

% f4. Contrast / Inertia (done)

% f5. Inverse difference

% f6. correlation

% f7. Homogeneity / Inverse difference moment

% f8. Autocorrelation

% f9. Cluster Shade

% f10. Cluster Prominence

% f11. Maximum probability

% f12. Sum of Squares

% f13. Sum Average

% f14. Sum Variance

% f15. Sum Entropy

% f16. Difference variance

% f17. Difference entropy

% f18. Information measures of correlation (1)

% f19. Information measures of correlation (2)

% f20. Maximal correlation coefficient

% f21. Inverse difference normalized (INN)

% f22. Inverse difference moment normalized (IDN)

img_norm.m

function [s] = img_norm(image, newmin, newmax)

[r, c] = size(image);

Min =min(image(:));

Max =max(image(:));

for j=1:r

 for k=1:c

 R=image(j,k);

 s(j,k)=(R-Min).*((newmax-newmin)./(Max-Min))+newmin;

 end

end

end

lbp.m

%LBP returns the local binary pattern image or LBP histogram of an image.

% J = LBP(I,R,N,MAPPING,MODE) returns either a local binary pattern

% coded image or the local binary pattern histogram of an intensity

% image I. The LBP codes are computed using N sampling points on a

% circle of radius R and using mapping table defined by MAPPING.

% See the getmapping function for different mappings and use 0 for

% no mapping. Possible values for MODE are

% 'h' or 'hist' to get a histogram of LBP codes

% 'nh' to get a normalized histogram

% Otherwise an LBP code image is returned.

%

% J = LBP(I) returns the original (basic) LBP histogram of image I

%

% J = LBP(I,SP,MAPPING)% computes the LBP codes using n sampling

% points defined in (n * 2) matrix SP. The sampling points should be

% defined around the origin (coordinates (0,0)).

%

% Examples

% --------

% I=imread('rice.png');

% mapping=getmapping(8,'u2');

% H1=LBP(I,1,8,mapping,'h'); %LBP histogram in (8,1) neighborhood

% %using uniform patterns

% subplot(2,1,1),stem(H1);

%

% H2=LBP(I);

% subplot(2,1,2),stem(H2);

%

% SP=[-1 -1; -1 0; -1 1; 0 -1; -0 1; 1 -1; 1 0; 1 1];

% I2=LBP(I,SP,0,'i'); %LBP code image using sampling points in SP

% %and no mapping. Now H2 is equal to histogram

% %of I2.

function result = lbp(varargin) % image,radius,neighbors,mapping,mode)

% Version 0.3.3

% Authors: Marko Heikkil?and Timo Ahonen

% Changelog

% Version 0.3.2: A bug fix to enable using mappings together with a

% predefined spoints array

% Version 0.3.1: Changed MAPPING input to be a struct containing the mapping

% table and the number of bins to make the function run faster with high number

% of sampling points. Lauge Sorensen is acknowledged for spotting this problem.

% Check number of input arguments.

error(nargchk(1,5,nargin));

image=varargin{1};

d_image=double(image);

if nargin==1

 spoints=[-1 -1; -1 0; -1 1; 0 -1; -0 1; 1 -1; 1 0; 1 1];

 neighbors=8;

 mapping=0;

 mode='h';

end

if (nargin == 2) && (length(varargin{2}) == 1)

 error('Input arguments');

end

if (nargin > 2) && (length(varargin{2}) == 1)

 radius=varargin{2};

 neighbors=varargin{3};

 spoints=zeros(neighbors,2);

 % Angle step.

 a = 2*pi/neighbors;

 for i = 1:neighbors

 spoints(i,1) = -radius*sin((i-1)*a);

 spoints(i,2) = radius*cos((i-1)*a);

 end

 if(nargin >= 4)

 mapping=varargin{4};

 if(isstruct(mapping) && mapping.samples ~= neighbors)

 error('Incompatible mapping');

 end

 else

 mapping=0;

 end

 if(nargin >= 5)

 mode=varargin{5};

 else

 mode='h';

 end

end

if (nargin > 1) && (length(varargin{2}) > 1)

 spoints=varargin{2};

 neighbors=size(spoints,1);

 if(nargin >= 3)

 mapping=varargin{3};

 if(isstruct(mapping) && mapping.samples ~= neighbors)

 error('Incompatible mapping');

 end

 else

 mapping=0;

 end

 if(nargin >= 4)

 mode=varargin{4};

 else

 mode='h';

 end

end

% Determine the dimensions of the input image.

[ysize xsize] = size(image);

miny=min(spoints(:,1));

maxy=max(spoints(:,1));

minx=min(spoints(:,2));

maxx=max(spoints(:,2));

% Block size, each LBP code is computed within a block of size bsizey*bsizex

bsizey=ceil(max(maxy,0))-floor(min(miny,0))+1;

bsizex=ceil(max(maxx,0))-floor(min(minx,0))+1;

% Coordinates of origin (0,0) in the block

origy=1-floor(min(miny,0));

origx=1-floor(min(minx,0));

% Minimum allowed size for the input image depends

% on the radius of the used LBP operator.

if(xsize < bsizex || ysize < bsizey)

 error('Too small input image. Should be at least (2*radius+1) x (2*radius+1)');

end

% Calculate dx and dy;

dx = xsize - bsizex;

dy = ysize - bsizey;

% Fill the center pixel matrix C.

C = image(origy:origy+dy,origx:origx+dx);

d_C = double(C);

bins = 2^neighbors;

% Initialize the result matrix with zeros.

result=zeros(dy+1,dx+1);

%Compute the LBP code image

for i = 1:neighbors

 y = spoints(i,1)+origy;

 x = spoints(i,2)+origx;

 % Calculate floors, ceils and rounds for the x and y.

 fy = floor(y); cy = ceil(y); ry = round(y);

 fx = floor(x); cx = ceil(x); rx = round(x);

 % Check if interpolation is needed.

 if (abs(x - rx) < 1e-6) && (abs(y - ry) < 1e-6)

 % Interpolation is not needed, use original datatypes

 N = image(ry:ry+dy,rx:rx+dx);

 D = N >= C;

 else

 % Interpolation needed, use double type images

 ty = y - fy;

 tx = x - fx;

 % Calculate the interpolation weights.

 w1 = roundn((1 - tx) * (1 - ty),-6);

 w2 = roundn(tx * (1 - ty),-6);

 w3 = roundn((1 - tx) * ty,-6) ;

 % w4 = roundn(tx * ty,-6) ;

 w4 = roundn(1 - w1 - w2 - w3, -6);

 % Compute interpolated pixel values

 N = w1*d_image(fy:fy+dy,fx:fx+dx) + w2*d_image(fy:fy+dy,cx:cx+dx) + ...

w3*d_image(cy:cy+dy,fx:fx+dx) + w4*d_image(cy:cy+dy,cx:cx+dx);

 N = roundn(N,-4);

 D = N >= d_C;

 end

 % Update the result matrix.

 v = 2^(i-1);

 result = result + v*D;

end

maske = imbinarize(image);

maske = maske(origy:origy+dy,origx:origx+dx);

result = bsxfun(@times, result, cast(maske, 'like', result));

%Apply mapping if it is defined

if isstruct(mapping)

 bins = mapping.num;

 for i = 1:size(result,1)

 for j = 1:size(result,2)

 result(i,j) = mapping.table(result(i,j)+1);

 end

 end

end

if (strcmp(mode,'h') || strcmp(mode,'hist') || strcmp(mode,'nh'))

 % Return with LBP histogram if mode equals 'hist'.

 result=hist(result(:),0:(bins-1));

 if (strcmp(mode,'nh'))

 result=result/sum(result);

 end

else

 %Otherwise return a matrix of unsigned integers

 if ((bins-1)<=intmax('uint8'))

 result=uint8(result);

 elseif ((bins-1)<=intmax('uint16'))

 result=uint16(result);

 else

 result=uint32(result);

 end

end

end

function x = roundn(x, n)

error(nargchk(2, 2, nargin, 'struct'))

validateattributes(x, {'single', 'double'}, {}, 'ROUNDN', 'X')

validateattributes(n, ...

 {'numeric'}, {'scalar', 'real', 'integer'}, 'ROUNDN', 'N')

if n < 0

 p = 10 ^ -n;

 x = round(p * x) / p;

elseif n > 0

 p = 10 ^ n;

 x = p * round(x / p);

else

 x = round(x);

end

end

pdist2.m

% This function belongs to Piotr Dollar's Toolbox

% http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html

% Please refer to the above web page for definitions and clarifications

%

% Calculates the distance between sets of vectors.

%

% Let X be an m-by-p matrix representing m points in p-dimensional space

% and Y be an n-by-p matrix representing another set of points in the same

% space. This function computes the m-by-n distance matrix D where D(i,j)

% is the distance between X(i,:) and Y(j,:). This function has been

% optimized where possible, with most of the distance computations

% requiring few or no loops.

%

% The metric can be one of the following:

%

% 'euclidean' / 'sqeuclidean':

% Euclidean / SQUARED Euclidean distance. Note that 'sqeuclidean'

% is significantly faster.

%

% 'chisq'

% The chi-squared distance between two vectors is defined as:

% d(x,y) = sum((xi-yi)^2 / (xi+yi)) / 2;

% The chi-squared distance is useful when comparing histograms.

%

% 'cosine'

% Distance is defined as the cosine of the angle between two vectors.

%

% 'emd'

% Earth Mover's Distance (EMD) between positive vectors (histograms).

% Note for 1D, with all histograms having equal weight, there is a simple

% closed form for the calculation of the EMD. The EMD between histograms

% x and y is given by the sum(abs(cdf(x)-cdf(y))), where cdf is the

% cumulative distribution function (computed simply by cumsum).

%

% 'L1'

% The L1 distance between two vectors is defined as: sum(abs(x-y));

%

%

% USAGE

% D = pdist2(X, Y, [metric])

%

% INPUTS

% X - [m x p] matrix of m p-dimensional vectors

% Y - [n x p] matrix of n p-dimensional vectors

% metric - ['sqeuclidean'], 'chisq', 'cosine', 'emd', 'euclidean', 'L1'

%

% OUTPUTS

% D - [m x n] distance matrix

%

% EXAMPLE

% [X,IDX] = demoGenData(100,0,5,4,10,2,0);

% D = pdist2(X, X, 'sqeuclidean');

% distMatrixShow(D, IDX);

%

% See also PDIST, DISTMATRIXSHOW

% Piotr's Image&Video Toolbox Version 2.0

% Copyright (C) 2007 Piotr Dollar. [pdollar-at-caltech.edu]

% Please email me if you find bugs, or have suggestions or questions!

% Licensed under the Lesser GPL [see external/lgpl.txt]

function D = pdist2(X, Y, metric)

if(nargin<3 || isempty(metric)); metric=0; end;

switch metric

 case {0,'sqeuclidean'}

 D = distEucSq(X, Y);

 case 'euclidean'

 D = sqrt(distEucSq(X, Y));

 case 'L1'

 D = distL1(X, Y);

 case 'cosine'

 D = distCosine(X, Y);

 case 'emd'

 D = distEmd(X, Y);

 case 'chisq'

 D = distChiSq(X, Y);

 otherwise

 error(['pdist2 - unknown metric: ' metric]);

end

%%%

function D = distL1(X, Y)

m = size(X,1); n = size(Y,1);

mOnes = ones(1,m); D = zeros(m,n);

for i=1:n

 yi = Y(i,:); yi = yi(mOnes, :);

 D(:,i) = sum(abs(X-yi),2);

end

%%%

function D = distCosine(X, Y)

if(~isa(X,'double') || ~isa(Y,'double'))

 error('Inputs must be of type double'); end;

p=size(X,2);

XX = sqrt(sum(X.*X,2)); X = X ./ XX(:,ones(1,p));

YY = sqrt(sum(Y.*Y,2)); Y = Y ./ YY(:,ones(1,p));

D = 1 - X*Y';

%%%

function D = distEmd(X, Y)

Xcdf = cumsum(X,2);

Ycdf = cumsum(Y,2);

m = size(X,1); n = size(Y,1);

mOnes = ones(1,m); D = zeros(m,n);

for i=1:n

 ycdf = Ycdf(i,:);

 ycdfRep = ycdf(mOnes, :);

 D(:,i) = sum(abs(Xcdf - ycdfRep),2);

end

%%%

function D = distChiSq(X, Y)

%%% supposedly it's possible to implement this without a loop!

m = size(X,1); n = size(Y,1);

mOnes = ones(1,m); D = zeros(m,n);

for i=1:n

 yi = Y(i,:); yiRep = yi(mOnes, :);

 s = yiRep + X; d = yiRep - X;

 D(:,i) = sum(d.^2 ./ (s+eps), 2);

end

D = D/2;

%%%

function D = distEucSq(X, Y)

%if(~isa(X,'double') || ~isa(Y,'double'))

 % error('Inputs must be of type double'); end;

m = size(X,1); n = size(Y,1);

%Yt = Y';

XX = sum(X.*X,2);

YY = sum(Y'.*Y',1);

D = XX(:,ones(1,n)) + YY(ones(1,m),:) - 2*X*Y';

%%%

% function D = distEucSq(X, Y)

%%%% code from Charles Elkan with variables renamed

% m = size(X,1); n = size(Y,1);

% D = sum(X.^2, 2) * ones(1,n) + ones(m,1) * sum(Y.^2, 2)' - 2.*X*Y';

%%% LOOP METHOD - SLOW

% [m p] = size(X);

% [n p] = size(Y);

%

% D = zeros(m,n);

% onesM = ones(m,1);

% for i=1:n

% y = Y(i,:);

% d = X - y(onesM,:);

% D(:,i) = sum(d.*d, 2);

% end

%%% PARALLEL METHOD THAT IS SUPER SLOW (slower then loop)!

% % From "MATLAB array manipulation tips and tricks" by Peter J. Acklam

% Xb = permute(X, [1 3 2]);

% Yb = permute(Y, [3 1 2]);

% D = sum((Xb(:,ones(1,n),:) - Yb(ones(1,m),:,:)).^2, 3);

%%% USELESS FOR EVEN VERY LARGE ARRAYS X=16000x1000!! and Y=100x1000

% call recursively to save memory

% if((m+n)*p > 10^5 && (m>1 || n>1))

% if(m>n)

% X1 = X(1:floor(end/2),:);

% X2 = X((floor(end/2)+1):end,:);

% D1 = distEucSq(X1, Y);

% D2 = distEucSq(X2, Y);

% D = cat(1, D1, D2);

% else

% Y1 = Y(1:floor(end/2),:);

% Y2 = Y((floor(end/2)+1):end,:);

% D1 = distEucSq(X, Y1);

% D2 = distEucSq(X, Y2);

% D = cat(2, D1, D2);

% end

% return;

% end

pre_processing_masking.m

%% INITIALIZE PRE_PROCESSING AND MASKING

clear all, close all;

directory = 'insert directory of aligned PCT images';

files = dir(fullfile(directory, '*.tif'));

for i=1:length(files)

 filePattern = fullfile(directory, '*.tif');

 theFiles = dir(filePattern);

 baseFileName = theFiles(i).name;

 files_tif(:,:,i) = fullfile(directory, baseFileName);

end

%% ROTATE IMAGES WITH AN APPROPRIATE ANGLE FOR THE PATIENTS

%angle = -5; %PA1

%angle = 5; %PA2

%angle = -9 %PA3

%angle = -12; %PA4

%angle = -1; %PA5

%angle = 8; %PA6

%angle = -10; %PA7

%angle = 7; %PA8

%angle = -4; %PA9

%angle = 10; %PA10

%angle = -8; %PA11

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% PRE-PROCESS ALL IMAGES

for i = 1: length(files)

 imageArray{i} = imread(files_tif(:,:,i));

 A{i} = imrotate(imageArray{i},angle,'bilinear','crop');

 normalisert{i} = (img_norm(A{i}, 0, 65535));

 mid{i} = histeq(normalisert{i});

end

 %% SPECIAL TREATMEANT FOR THE FIRST TIME-SERIES

for i = 1:length(files)/30

 temp_normalisert{i} = (img_norm(A{i}, 0, 4090));

 temp_mid{i} = histeq(temp_normalisert{i});

end

for i = 1:length(files)/30

 filt{i} = imgaussfilt(temp_mid{i},3);

 [P, Mask{i}] = regiongrowing(filt{i}, [250,250],'tfmean', 'tfsimiplify','tfFillHoles'); %tFMean is slow, but for some patients, it returns better masks.

end

Mask = Mask(~cellfun('isempty',Mask));

%% RESHAPE THE MASKS AND PRE-PRCOESSED IMAGES

B = repmat(Mask,1, 30) % Repeat mask for all 30 time-series.

B = reshape(B,[length(files)/30,[length(files)/i]])

mid = reshape(mid,[length(files)/30,[length(files)/i]])

%% APPLY MASKS TO PRE-PROCESSED IMAGES.

for i =1:length(files)/30

 for j = 1:30

 Bilde{i,j} = bsxfun(@times, mid{i,j}, cast(B{i,j}, 'like', mid{i,j}));

 end

end

%% CREATE A BOUNDING BOX AROUND THE IMAGE i.e. REMOVE UNNECESSARY BACKGROUND.

[rows, columns] = size(Bilde);

for i=1:rows

 for j = 1:columns

 s=regionprops(B{i,j},'BoundingBox');

 rectangle('Position', s(1).BoundingBox);

 subImage{i,j}=imcrop(Bilde{i,j},s(1).BoundingBox);

 end

end

%% ALTERNATIVE METHOD FOR SKULL-STRIPPING

for i=3:rows

 for j = 1:columns

 binaryImage{i,j} = normalisert{i,j} > %FIND SUITABLE THRESHOLD;

 % Get rid of small specks of noise

 binaryImage{i,j} = bwareaopen(binaryImage{i,j}, 10); % TEST DIFFEERENT PARAMETERS

 binaryImage{i,j}(end,:) = true;

 % Fill the image

 binaryImage{i,j} = imfill(binaryImage{i,j}, 'holes');

 % Erode away X layers of pixels.

 se = strel('disk', X, 0);

 binaryImage{i,j} = imerode(binaryImage{i,j}, se);

 Bilde{i,j} = bsxfun(@times, mid{i,j}, cast(binaryImage{i,j}, 'like', mid{i,j}));

 end

end

regiongrowing.m

function [P, J] = regionGrowinggg(cIM, initPos,tfMean, tfFillHoles, tfSimplify)

% REGIONGROWING Region growing algorithm for 2D/3D grayscale images

%function [P, J] = regionGrowinggg(cIM, initPos, thresVal, maxDist, tfMean, tfFillHoles, tfSimplify)

% Syntax:

% P = regionGrowing();

% P = regionGrowing(cIM);

% P = regionGrowing(cIM, initPos)

% P = regionGrowing(..., thresVal, maxDist, tfMean, tfFillHoles, tfSimpl)

% [P, J] = regionGrowing(...);

%

% Inputs:

% cIM: 2D/3D grayscale matrix {current image}

% initPos: Coordinates for initial seed position {ginput position}

% thresVal: Absolute threshold level to be included {5% of max-min}

% maxDist: Maximum distance to the initial position in [px] {Inf}

% tfMean: Updates the initial value to the region mean (slow) {false}

% tfFillHoles: Fills enclosed holes in the binary mask {true}

% tfSimplify: Reduces the number of vertices {true, if dpsimplify exists}

%

% Outputs:

% P: VxN array (with V number of vertices, N number of dimensions)

% P is the enclosing polygon for all associated pixel/voxel

% J: Binary mask (with the same size as the input image) indicating

% 1 (true) for associated pixel/voxel and 0 (false) for outside

%

% Examples:

% % 2D Example

% load example

% figure, imshow(cIM, [0 1500]), hold all

% poly = regionGrowing(cIM, [], 300); % click somewhere inside the lungs

% plot(poly(:,1), poly(:,2), 'LineWidth', 2)

%

% % 3D Example

% load mri

% poly = regionGrowing(squeeze(D), [66,55,13], 60, Inf, [], true, false);

% plot3(poly(:,1), poly(:,2), poly(:,3), 'x', 'LineWidth', 2)

%

% Requirements:

% TheMathWorks Image Processing Toolbox for bwboundaries() and axes2pix()

% Optional: Line Simplification by Wolfgang Schwanghart to reduce the

% number of polygon vertices (see the MATLAB FileExchange)

%

% Remarks:

% The queue is not preallocated and the region mean computation is slow.

% I haven't implemented a preallocation nor a queue counter yet for the

% sake of clarity, however this would be of course more efficient.

%

% Author:

% Daniel Kellner, 2011, braggpeaks{}googlemail.com

% History: v1.00: 2011/08/14

% error checking on input arguments

if nargin > 7

 error('Wrong number of input arguments!')

end

if ~exist('cIM', 'var')

 himage = findobj('Type', 'image');

 if isempty(himage) || length(himage) > 1

 error('Please define one of the current images!')

 end

 cIM = get(himage, 'CData');

end

if ~exist('initPos', 'var') || isempty(initPos)

 himage = findobj('Type', 'image');

 if isempty(himage)

 himage = imshow(cIM, []);

 end

 % graphical user input for the initial position

 p = ginput(1);

 % get the pixel position concerning to the current axes coordinates

 initPos(1) = round(axes2pix(size(cIM, 2), get(himage, 'XData'), p(2)));

 initPos(2) = round(axes2pix(size(cIM, 1), get(himage, 'YData'), p(1)));

end

if ~exist('thresVal', 'var') || isempty(thresVal)

 thresVal = double((max(cIM(:)) - min(cIM(:)))) * 0.05;

end

if ~exist('maxDist', 'var') || isempty(maxDist)

 maxDist = Inf;

end

if ~exist('tfMean', 'var') || isempty(tfMean)

 tfMean = false;

end

if ~exist('tfFillHoles', 'var')

 tfFillHoles = true;

end

if isequal(ndims(cIM), 2)

 initPos(3) = 1;

elseif isequal(ndims(cIM),1) || ndims(cIM) > 3

 error('There are only 2D images and 3D image sets allowed!')

end

[nRow, nCol, nSli] = size(cIM);

if initPos(1) < 1 || initPos(2) < 1 ||...

 initPos(1) > nRow || initPos(2) > nCol

 error('Initial position out of bounds, please try again!')

end

if thresVal < 0 || maxDist < 0

 error('Threshold and maximum distance values must be positive!')

end

if ~isempty(which('dpsimplify.m'))

 if ~exist('tfSimplify', 'var')

 tfSimplify = true;

 end

 simplifyTolerance = 1;

else

 tfSimplify = false;

end

% initial pixel value

regVal = double(cIM(initPos(1), initPos(2), initPos(3)));

% text output with initial parameters

disp(['RegionGrowing Opening: Initial position (' num2str(initPos(1))...

 '|' num2str(initPos(2)) '|' num2str(initPos(3)) ') with '...

 num2str(regVal) ' as initial pixel value!'])

% preallocate array

J = false(nRow, nCol, nSli);

% add the initial pixel to the queue

queue = [initPos(1), initPos(2), initPos(3)];

%%% START OF REGION GROWING ALGORITHM

while size(queue, 1)

 % the first queue position determines the new values

 xv = queue(1,1);

 yv = queue(1,2);

 zv = queue(1,3);

 % .. and delete the first queue position

 queue(1,:) = [];

 % check the neighbors for the current position

 for i = -1:1

 for j = -1:1

 for k = -1:1

 if xv+i > 0 && xv+i <= nRow &&... % within the x-bounds?

 yv+j > 0 && yv+j <= nCol &&... % within the y-bounds?

 zv+k > 0 && zv+k <= nSli &&... % within the z-bounds?

 any([i, j, k]) &&... % i/j/k of (0/0/0) is redundant!

 ~J(xv+i, yv+j, zv+k) &&... % pixelposition already set?

 sqrt((xv+i-initPos(1))^2 +...

 (yv+j-initPos(2))^2 +...

 (zv+k-initPos(3))^2) < maxDist &&... % within distance?

 cIM(xv+i, yv+j, zv+k) <= (regVal + thresVal) &&...% within range

 cIM(xv+i, yv+j, zv+k) >= (regVal - thresVal) % of the threshold?

 % current pixel is true, if all properties are fullfilled

 J(xv+i, yv+j, zv+k) = true;

 % add the current pixel to the computation queue (recursive)

 queue(end+1,:) = [xv+i, yv+j, zv+k];

 if tfMean

 regVal = mean(mean(cIM(J > 0))); % --> slow!

 end

 end

 end

 end

 end

end

%%% END OF REGION GROWING ALGORITHM

% loop through each slice, fill holes and extract the polygon vertices

P = [];

for cSli = 1:nSli

 if ~any(J(:,:,cSli))

 continue

 end

	% use bwboundaries() to extract the enclosing polygon

 if tfFillHoles

 % fill the holes inside the mask

 J(:,:,cSli) = imfill(J(:,:,cSli), 'holes');

 B = bwboundaries(J(:,:,cSli), 8, 'noholes');

 else

 B = bwboundaries(J(:,:,cSli));

 end

	newVertices = [B{1}(:,2), B{1}(:,1)];

	

 % simplify the polygon via Line Simplification

 if tfSimplify

 newVertices = dpsimplify(newVertices, simplifyTolerance);

 end

 % number of new vertices to be added

 nNew = size(newVertices, 1);

 % append the new vertices to the existing polygon matrix

 if isequal(nSli, 1) % 2D

 P(end+1:end+nNew, :) = newVertices;

 else % 3D

 P(end+1:end+nNew, :) = [newVertices, repmat(cSli, nNew, 1)];

 end

end

% text output with final number of vertices

disp(['RegionGrowing Ending: Found ' num2str(length(find(J)))...

 ' pixels within the threshold range (' num2str(size(P, 1))...

 ' polygon vertices)!'])

