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Abstract  
 

Many of the recently published articles that try to resolve challenges related to deep 

uncertainty have based their understanding of deep uncertainty and the various nuances of 

uncertainty on Courtney’s uncertainty taxonomy. This thesis provides some reflections on 

some of the foundational pillars this taxonomy is built upon. In doing so, some major 

challenges and limitations are uncovered. To overcome these challenges and limitations an 

alternative uncertainty taxonomy is introduced. This taxonomy is built upon the same 

template as the one used by Courtney, but it contains a higher level of detail, and an additional 

level of uncertainty. The new level of uncertainty, which covers the transition from moderate 

to deep uncertainty is added to make sure that every nuance of uncertainty, ranging from low 

to deep uncertainty is reflected. Later on, a method that can assess risk under the new level of 

uncertainty is introduced. This method is an adaptation of a regular risk assessment process 

combined with a probability bounds analysis (PBA) and a qualitative judgement of the 

assumptions made in the analysis. The PBA form the quantitative basis of the assessment, 

while the qualitative judgement of the assumptions is used to justify whether the final result of 

the PBA can be trusted or not. By applying this method to a hypothetical case, it proves itself 

to be a good tool for assessing risk in cases where the empirical data is limited. 
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1. Introduction 
 

This chapter has three main purposes. The first one is to introduce the reader to the main 

objectives of the thesis and to makes it clear why it is important to investigate and solve these 

problems. The second one is to make it clear what the scope and limitation of the thesis are. 

The final purpose of this chapter is to inform the reader about how the thesis is organized. 

 

1.1. Background 
 

Global warming, the future of the world’s economy and the current political instability are 

some of the greatest challenges the collective community of the world is currently facing, and 

they are all characterized by deep uncertainty. This is cause for concern because handling a 

situation that is characterized by deep uncertainty is a main foundational issue risk assessment 

and risk management (Aven, 2013). To handle a situation like this it is of outmost importance 

to understand what deep uncertainty really is, and to acknowledge its presence. Numerous 

definitions of deep uncertainty do exist (Bjerga & Aven, 2015, p. 75; Cox, 2012, p. 1607; 

Walker et al., 2017, p. 5). They seem to agree that for a situation to be characterized by deep 

uncertainty the available empirical information must be so limited and the underlying 

phenomena so poorly understood that it is hard or even impossible to identify possible 

outcomes and their probability of occurrence. In 2001 Courtney (2001) introduced an 

uncertainty taxonomy which intended to clarify the different levels of uncertainty, as they 

progress from low to deep uncertainty. This taxonomy has later formed the foundation for the 

understanding of deep uncertainty in several articles that try to resolve challenges related to 

deep uncertainty (Cox, 2012; Walker et al., 2010; Walker et a., 2017). Using this taxonomy as 

a basis for understanding the nuances of the various levels of uncertainty may not be the best 

idea, as Aven (2013) pointed out. He argues that “critical questions can be raised regarding its 

foundations” and later presents an alternative taxonomy (Aven 2013, p.2082). As we shall see 

later on, this alternative taxonomy is not without limitations. The challenges and limitations 

found in these taxonomies are the point of departure for this thesis.  

 

1.2. Objectives 
 

The objectives of this thesis have been to: 

 

- Further develop the deep uncertainty taxonomies introduced by Courtney (2001) 

and Aven (2013). 

- Adapt a method to assess risk under a newly introduced level of uncertainty by 

combining probability bounds analysis with a qualitative judgement of 

assumptions.  
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1.3. Scope and limitations of the thesis 
 

The thesis will focus on highlighting and discussing challenges and limitations that are rooted 

in the uncertainty taxonomies introduced by Courtney (2001) and Aven (2013). The result of 

this work is then used to develop an alternative uncertainty taxonomy with an additional level 

of uncertainty, and a higher level of detail. Finally, a risk assessment method that can assess 

risk under the newly introduced level of uncertainty is adapted to work under the given 

circumstances and its abilities are illustrated trough a stylized example.  

 

1.4. Thesis structure 
 

This thesis consists of six chapters which cover the development of a new uncertainty 

taxonomy and the adaptation of method to assess risk under a newly introduced level of 

uncertainty. The setup of this thesis may differ slightly from the norm, since the discussion is 

not solely presented in the second to last chapter. This was an active choice taken by the 

author to give the text a better flow, and to prevent the reader from having to skip back and 

forth. A short summary of the content of the different chapters can be seen below:  

 

Chapter One: this chapter introduces the reader to the main objectives of the thesis 

and to make it clear why it is important to investigate and solve these problems. It also 

presents the scope and limitations of the thesis, as well as an overview of the structure. 

Chapter Two: this chapter is a literature review that introduces the reader to relevant 

theoretical foundations of risk and deep uncertainty that lay the foundation of this study.  

Chapter Three: this chapter presents and discusses the challenges and limitations that 

are imbedded in the existing uncertainty taxonomies. This is done to express the need for a 

new and alternative taxonomy, which is developed later on in the same chapter. 

Chapter Four: this chapter introduces the reader to a method that can be used to assess 

risk that fall under the previously introduced third level of uncertainty and discusses the 

background of this method. To illustrate how this method can be used it is applied to a 

hypothetical case. 

Chapter Five: This chapter will introduce two separate discussion topics as well as 

suggestions for further work. The aim of the first discussion is to discuss why it is important 

to acknowledge an additional level of uncertainty and to what degree the new alternative 

uncertainty taxonomy eliminates the challenges that are present in the other uncertainty 

taxonomies. The aim of the second discussion is to discuss the previously introduced risk 

assessment method’s applicability as a tool for assessing risk.  

Chapter Six: This chapter will present the conclusions that can be drawn from the 

study that has been done here in this thesis.  
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2. Theoretical foundations 
 

The purpose of this section is to introduce the theoretical foundations that are of importance to 

the research undertaken in thesis. Rather than being an exhaustive literature review, this 

section will give an overview of the modern collective thinking of some of the world’s 

leading experts in the areas of risk, risk assessment, risk management and deep uncertainty 

that are relevant for this thesis. It will also define associated concepts such as probability, 

uncertainty and knowledge. 

 

2.1. Risk 
 

To give an overview of the modern collective thinking of some of the world’s leading experts 

in the field of risk, the author of this thesis has been looking to the glossary on risk and risk 

related terms recently published by the Society for Risk Analysis (SRA), as it was developed 

by a committee of 11 active risk experts from various academic fields (SRA, 2015). Another 

reason for looking to this glossary is the important premises it is based upon. First, it allows 

for, and includes different perspectives, meaning that it includes several definitions of risk. 

Secondly, a clear distinction is made between risk as a concept and the 

measurement/description of risk. Finally, the included definitions must meet some basic 

criteria such as being logical, well-defined, understandable, precise, etc.  

 

2.1.1. The risk concept and risk description 

 

To explore the risk concept as described in the SRA glossary it is essential to first define a 

risk setting. Here we consider some future activity, it could be anything from driving a car to 

buying a house and define risk in relation to the consequences of this activity with respect to 

something that is of value to us humans (e.g. economy, health, etc.) (SRA, 2015). There is 

always at least one consequence that is considered negative or undesired, meaning that risk 

should not be solely be associated with negative outcomes. With this setting in mind, here are 

the overall qualitative definitions of risk as given in the SRA glossary (SRA, 2015, p. 3):   

  

a) Risk is the possibility of an unfortunate occurrence. 

b) Risk is the potential for realization of unwanted, negative consequences of an 

event.  

c) Risk is exposure to a proposition (e.g. the occurrence of a loss) of which one is 

uncertain.  

d) Risk is the consequences of the activity and associated uncertainties.  

e) Risk is uncertainty about and severity of the consequences of an activity with 

respect to something that humans value.  

f) Risk is the occurrences of some specified consequences of the activity and 

associated uncertainties.  

g) Risk is the deviation from a reference value and associated uncertainties. 

 

From these definitions we can see that SRA consider risk to be defined through uncertainty. 

This is in line with the (A, C, U)-perspective of risk presented by Aven (2015), where he says 

that an event, A, will have some consequences, C, and there is uncertainty, U, about what 

these consequences will be (Aven, 2015).   
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As it is understood here, risk is closely related to the concept of uncertainty, which in a risk 

setting can be interpreted in two ways, either as aleatory or epistemic uncertainty (Walker, 

Lempert & Kwakkel, 2017; Walker, Marchau and Swanson, 2010; Aven, 2016; Beer et al., 

2013). Aleatory uncertainty is a type of uncertainty which is seen as irreducible, since it 

cannot be reduce further by acquiring more knowledge. It represents the property of a system 

which is associated with variability or fluctuations, and an example of such a system is the 

rolling of a die.  Epistemic uncertainty is a type of uncertainty that can be reduced by 

acquiring more knowledge, as it results from the analyst not having complete information 

about the system, in other words a lack of knowledge. This type of uncertainty may also be 

denoted as ignorance (Ferson & Ginzburg, 1996). An example of such a system could be the 

long term effects of climate change. It can however be argued that all uncertainties can be 

seen as epistemic on a fundamental level (Winkler, 1996).  E.g. by acquiring knowledge on all 

the physical variables related to the rolling of a die (spin, weight, height, speed, shape, 

hardness, etc.) we can reduce the uncertainty related to the outcome. 

 

Since knowledge plays an important role in defining uncertainty it is important to define the 

meaning of knowledge in this context. The 2015 SRA glossary distinguish between two 

distinct types of knowledge (SRA, 2015, p. 8): “know-how (skill) and know-that of 

propositional knowledge (justified beliefs). Knowledge is gained through for example 

scientific methodology and peer-review, experience and testing.” The know-how part of 

knowledge is a skill that is acquired over time, e.g. driving a car. The know-that part of 

knowledge or justified beliefs is knowledge gained or strengthened over time by seeing 

similar results from similar events, e.g. the force of gravity pulls everything towards the 

ground. Another important aspect of knowledge in a risk context is assumptions. An 

assumption is “something that you consider likely to be true even though no one has told you 

directly or even though you have no proof” according to the Macmillan Dictionary 

(Macmillan Dictionary, 2018). In other words, an assumption is one of your personal beliefs. 

Even though you assume something to be true it may turn out not to be true, and in a risk 

context this can have fatal consequences. Flage and Aven have proposed a set of principles as 

guidelines for assessing the strength your background knowledge in any situation (Flage & 

Aven, 2009): 

 

The background knowledge is considered as strong if all of the following conditions are met: 

• The assumptions made are seen as very reasonable. 

• Large amount of reliable and relevant data/information is available. 

• There is broad agreement among experts. 

• The phenomena involved are well understood; the models used are known to 

give good predictions. 

 

The background knowledge is considered as poor if one or more of the following conditions 

are met:  

• The assumptions made represent strong simplifications. 

• Data/information is non-existent or highly unreliable /irrelevant. 

• There is strong disagreement among experts. 

• The phenomena involved are poorly understood, models are non-existent or 

known/believed to give poor predictions. 

 

For cases in between the background knowledge is considered moderate.   
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If your knowledge or assumptions turn out not to be true, surprises can occur. In a risk context 

the most extreme surprises are known as black swans (Taleb, 2010; Aven, 2014). Aven has 

defined three distinct types of black swans (Aven, 2014): 

 

1. Unknown unknown – unknown to everyone 

2. Unknown known – known to some, but not to the assessor 

3. Events judged not to occur because the probability of occurrence is seen as 

negligible  

 

To manage risk, we have to be able to measure risk, and this is where risk description comes 

in. Risk description; abbreviated as (C’, Q, K) where C’ is the specified consequences, Q is 

the measurement of uncertainty, often measured by using probability, P, and K is the 

knowledge on which C’ and P is based upon (Aven et. al, 2013). Risk can also be described as 

(A’, C’, Q, K), where A’ is the specified initiating event (Aven, 2015). The SRA glossary 

included several other definitions of risk description (SRA, 2015, p. 4):  

 

1. The combination of probability and magnitude/severity of consequences.  

2. The triplet (si, pi, ci), where si is the i-th scenario, pi is the probability of that scenario, 

and ci is the consequence of the i-th scenario, i = 1,2, …N.  

3. Expected consequences (damage, loss), for example computed by:  

I. Expected number of fatalities in a specific period of time or the expected number 

of fatalities per unit of exposure time.  

II. The product of the probability of the hazard occurring and the probability that the 

relevant object is exposed given the hazard, and the expected damage given that 

the hazard occurs and the object is exposed to it (the last term is a vulnerability 

metric).  

III. Expected disutility.  

4. A possibility distribution for the damage (for example a triangular possibility 

distribution). 

  

Due to its importance in risk description it is essential to define the meaning of probability in 

this context. According to the SRA glossary, overall, probability is a measure of uncertainty, 

belief or variation which follows the rules of probability calculus, but various interpretations 

exist (SRA, 2015). There are however only two probability interpretations that are being 

frequently used in a risk context, frequentist probabilities and subjective probabilities (Aven, 

2013 & Aven & Reniers, 2013). Both are described below. Less frequently used probability 

interpretations also exist, see (Aven & Reniers, 2013). 

 

(i) Frequentist probability (Pf), this is a purely objective probability where Pf 

represents the relative fraction of times an event occurs if the situation in 

question were hypothetically “repeated” an infinite number of times. The 

variation in the outcomes of this repetition which bring about the “true” value 

of Pf is usually referred to as aleatory or stochastic uncertainty. The “true” 

underlying frequentist probability Pf can never be known with 100% certainty 

and has to be estimated. 

(ii) Subjective probability (P, SoK), often referred to as knowledge based or 

judgemental probability express the assessor’s degree of belief about an 
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occurring event, based on his or her background knowledge. It can be 

interpreted with reference to a standard event like drawing a specific ball from 

an urn containing a specific number of balls. If the assignor assigns a 

probability of 0,4 to an event A, he or she compares his or her uncertainty 

(degree of belief) of event A occurring to drawing a blue ball from an urn 

containing ten balls, where four of them are blue. Subjective probability can 

also be interpreted with reference to betting.  

 

2.1.2. Risk assessment 

 

This subchapter is based on the ISO 31000 standard (ISO, 2018). 

The ISO 31000 standard defines a risk assessment as the identification, analysis and 

evaluation of risk, see figure 1. The identification, being the initial part of risk assessment, 

aims to find, recognize and describe risk. Through this process one identifies the elements 

which has the potential to give rise to risk, the initiating events and their potential 

consequences. This is accomplished by using historical data, theoretical analysis and/or expert 

opinions. The second step of the risk assessment aims to analyze the risks that are identified, 

which enables the risk analyst to present an informative risk picture. The final step of the risk 

assessment is the risk evaluation. Here the risk analyst will compare the results of the 

concluded risk analysis against given risk criteria. The objective of this step is to determine 

the significance of risk, and whether the risk is acceptable or not. 

 

 
Figure 1: A risk management process (ISO, 2018). 
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2.1.3. Risk management  

 

This subchapter is based on the ISO 31000 standard (ISO, 2018), unless stated otherwise. 

The ISO 31000 standard describes risk management as the coordinated activities to direct and 

control an organization with regards to risk. It has also been defined as all the measures and 

activities that are carried out to manage risk (Aven, 2015). Risk management plays a vital role 

in balancing the pursuit of possibly gainful opportunities, and avoiding the losses, accidents 

and disasters that may follow (Aven, 2015). Figure 1 presents an overview of the risk 

management process, which includes establishing the context, risk assessment, risk treatment, 

risk communication and monitoring and review. Establishment of context is the initial step of 

this iterative process. This step includes describing the internal and external parameters that 

are to be taken into consideration when managing risk. Furthermore, the process includes 

setting the scope and defining the criteria (a reference which the significance of risk is 

evaluated against) for the risk management policy (a statement of the intentions and direction 

of an organization that are related to risk management). The second step is risk assessment, 

see chapter 2.1.2. for a detailed description. The third step consists of risk treatment, in which 

the objective is to mitigate the risk. This could mean refraining from taking certain actions to 

avoid risk, exploring an opportunity in despite of increased risk, eliminating the source of the 

risk entirely or altering the consequences or likelihood (probability of something happening, 

see chapter 2.2. for more info on probability) to one’s advantage. The last part of this process 

includes monitoring and review, which is a phase where the objective is to monitor and 

review the effects of the risk treatment. Monitoring and review is also deeply imbedded in 

every step of the process. 
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2.2. Deep uncertainty 
 

2.2.1. Definitions of deep uncertainty  

 

As stated above, one way of defining uncertainty is as limits or gaps in knowledge about the 

future, past or current events (Walker, Lempert & Kwakkel, 2017; Walker, Marchau and 

Swanson, 2010; Aven, 2016). A notion worthy of remark is that uncertainty will not in all 

cases be reduced by the acquisition of new information; it may also increase. (Walker et al., 

2017). This is demonstrated when additional information reveals understated or previously 

unknown uncertainties on an intricate system. 

 

Knight made the distinction between risk and uncertainty in 1921, and consequently 

introduced one of the modern understandings of uncertainty as the lack of knowledge. 

(Walker et al., 2017). Knight argued that risk could be considered as the calculable and thus 

the controllable aspect of the unknown. Uncertainty constitutes the remaining share, this part 

being incomputable and uncontrollable. A resembling distinction was made in 1989 between 

stochastic and real uncertainty (Quade, 1989). Quade (1989) observed that stochastic 

uncertainty could be described by frequentist and subjective probability models. Real 

uncertainty would on the other hand describe future occurrences, making precise, long-term 

predictions practically impossible, examples being the financial markets and climate changes. 

Real uncertainty is now also commonly referred to as deep uncertainty (Walker et al., 2017). 

 

Deep uncertainties are in Cox’s analysis defined in the following manner (Cox, 2012, p. 

1607): 

 

Well-validated, trustworthy risk models giving the probabilities of future consequences 

of alternative decisions are not available; the relevance of past data for predicting future 

outcomes is in doubt, experts disagree about the probable consequences of alternative 

policies-or, worse, reach an unwarranted consensus that replaces acknowledgement of 

uncertainties and information gaps with groupthink-and policymakers are divided about what 

actions to take to reduce risks and increase benefits.  

 

This bears significant resemblance to the definition of deep uncertainty given by Lempert et 

al. (Walker et al., 2017, p. 5):   

 

The condition in which analysts do not know or the parties to a decision cannot agree 

upon (1) the appropriate models to describe interactions among a system’s variables, (2) the 

probability distributions to represent uncertainty about key parameters in the models, and/or 

(3) how to value the desirability of alternative outcomes.  

 

Experts do seemingly concur that the concept of deep uncertainty is characterized by 

substantial model uncertainty, even up to a point where no model is available, thus making it 

difficult or even impossible to give any predictions as to what the outcome of a given 

situation might be. 
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2.2.2. Categorizations of deep uncertainty 

 

For the purpose of simplifying the identification and categorization of deep uncertainty, 

Courtney (2001) presented a taxonomy that distinguish between two highly extensive levels 

of uncertainty; determinism and total ignorance (Courtney, 2001; Courtney, 2003; Walker et 

al., 2010; Cox, 2012; Aven, 2013). Ranging between them are four separate levels of 

uncertainty "defined with respect to the knowledge assumed about the various aspects of a 

policy problem" (Walker et al., 2010, pp. 918). These aspects are: the future of the world 

(context), the model of the relevant system for said future world (system model), the 

outcomes from the system (system outcomes) and the emphasis which the respective 

stakeholders will put on the outcomes (weights on outcomes) (Walker et al., 2010). The 

taxonomy in its entirety can be seen in table 1, and the levels of uncertainty are explained in 

detail below (Walker et al., 2010):  

 

Determinism: the ideal situation. Here every aspect of a given situation can be 

described with 100% accuracy. In this taxonomy it is used as a limiting characteristic, since 

this level of accuracy is impossible to obtain.  

Level 1 uncertainty: a clear enough future. The characteristic feature of this level of 

uncertainty is the possibility of making accurate models and description of the related 

uncertainty. This is owed to the fact that the range of possible outcomes is narrow and the 

existence of a large amount of relevant data. Although this should not be confused with a 

perception of a perfectly predictable future, this level of uncertainty provides decent 

opportunity to assess the associated risk(s). Perfect measurements and models are impossible 

to make and are the stated reason for the overall uncertainty in this level.   

Level 2 uncertainty: alternate futures. The characteristic features of this level of 

uncertainty is that a limited number of outcomes (but larger than in level 1) can be 

determined, where one of them will occur. It is also possible to adequately describe and model 

the probability of occurrence of each outcome, meaning that they can be ranked and the 

risk(s) involved can be assessed.  

Level 3 uncertainty: a range of futures. This is the first level in the deep uncertainty 

category. The characteristic features of this level of uncertainty is that a limited number of 

outcomes can be determined, but the final outcome may not be among the ones that are 

identified. It is not possible to say anything regarding the probability of occurrence for the 

identified outcomes.  

Level 4 uncertainty: an unknown future. This is the second level of deep uncertainty 

and it provides no opportunity to determine any future outcomes.  This level is characterized 

by knowledge of one’s utter unawareness. Since the early 2000’s, a wide range of global scale 

level 4 uncertainty situations have occurred, e.g. the attack on the U.S. twin towers in 2001, 

the Indian Ocean tsunami in 2004 and the U.S. subprime mortgage crisis in 2007. These 

situations can be referred to as black swans: surprising extreme events relative to one’s own 

knowledge (Aven, 2014). Due to the extensive impact these events have had on society 

worldwide, ignorance as a contributing factor to increased risk have lately received an 

increased focus.  

Total ignorance: One remains unaware of one’s own oblivion. This is a state of utmost 

uncertainty, leaving no possibility of insight into a given situation. 

 

A similar distinction has also been made by Makridakis et al. (2009), where they called the 

first two levels of uncertainty for subway uncertainties and the last two levels of uncertainty 

for coconut uncertainties. Subway uncertainties refers to situations that can be modeled and 
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where one can for all practical purposes say that the probability models that are introduced 

can be seen as an accurate representation of the "true" underlying probability (Makridakis et 

al., 2009). Coconut uncertainties refer to situations where it is impossible to introduce a 

probability model (Makridakis et al., 2009). The latter can also refer to rare and unique events 

that are difficult to imagine. 

 

Table 1: The uncertainty taxonomy introduced by Courtney (Walker et al., 2010). 

D
et

er
m

in
is

m
 

 Level 1 Level 2 Level 3 Level 4 

T
o
ta

l 
ig

n
o

ra
n

ce
 

   Deep Uncertainty 

Context A clear enough 

future 

 

 

 

Alternate futures 

(with probabilities) 

 

 

A multiplicity of 

plausible futures 

 

 

Unknown future 

 

 

System 

model 

A single system 

model 

A single system 

model with a 

probabilistic 

parameterization 

Several system 

models, with 

different structures 

Unknown system 

model; know we 

don’t know 

System 

outcomes 

A point estimate 

and confidence 

interval for each 

outcome 

Several sets of point 

estimates and 

confidence intervals 

for the outcomes, 

with a probability 

attached to each set 

A known range of 

outcomes 

Unknown 

outcomes; know 

we don’t know 

Weights 

on 

outcomes 

A single estimate 

of the weights 

Several sets of 

weights, with a 

probability attached 

to each set 

A known range of 

weights 

Unknown 

weights; know we 

don’t know 

 

In 2013, Aven (2013) provided his reflections on some of the foundational pillars that 

previous work on deep uncertainty is based upon. This includes among others his reflections 

on the meaning of the deep uncertainty concept. Here he argues that the uncertainty taxonomy 

introduced by Courtney (2001), which also forms the basis for Cox’s presentation and 

analysis of deep uncertainty (Cox, 2012), can be challenged.  

 

From the taxonomy above it is clear that if a system is not to be characterized by deep 

uncertainty it must fall within either level 1 or level 2. This means that the underlying “true” 

probability can be estimated or modeled (Aven, 2013). Probability models requires the 

introduction of frequentist type probabilities, which is to say that it must be possible to define 

or imagine a very large (in theory an infinite) population of similar situations to the one being 

considered. If x is a random variable that follows a probability model F, say a binomial 

distribution with parameters n and p, F(x | n, p), it means that there must exist a frequentist 

type of probability that represents the “true” underlying Pf. The probability model F is a 

representation or a best estimate of the “true” underlying Pf, and it can never be 100% 

accurate (Aven, 2013). This framework presumes the following conditions to hold (Aven, 

2013, p. 2084) (see the next page): 
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(i) The existence of frequentist probabilities Pf. 

(ii) The probability model introduced is an accurate representation of the “true” 

underlying frequentist distribution Pf. 

 

Aven argues that Courtney’s taxonomy can be both simplified and made more precise by 

defining two categories or levels of uncertainty, Level A and Level B (Aven, 2013), see table 

2. In Level A the relevant experts have full confidence in conditions (i) and (ii), meaning that 

the structure or model for the underlying Pf is considered known. This however does not mean 

that the “true” underlying Pf is known. Referring to a model as “correct” or “true” must be 

understood as a model that is an accurate representation of the real world. As previously 

mentioned, all models are just simplifications of the real world, meaning that they are 

incorrect or wrong if we are to use a precise language.  

 

Level B includes every situation where conditions (i) and (ii) are not both met, in other words 

these situations are characterized by deep uncertainties (Aven, 2013). This category where we 

cannot justify frequentist probabilities Pf and/or accurate probability models, is large, as there 

are only a few situations where conditions (i) and (ii) are actually met. One could say that 

level A only refers to situations of controlled experiments where the experiments can be 

repeated a large number of times under similar conditions to confirm the hypotheses and the 

constructed probability model (Aven, 2013). In any other situation it will always be hard to 

know whether the data that has been collected is relevant and/or if the models in use can make 

accurate predictions about the future. Consider for instance a car manufacturing plant where 

they are concerned with the number of incidents N of a specific type A. To analyze and 

predict N we can collect data over time and make a Poisson probability model with the 

parameter λ that express the average number of times A occurs per unit of time in the long 

run. Despite the fact that this model is based on accurate historical data, is continuously 

updated as soon as new data has been collected, has been reasonably accurate until now, and 

we have good arguments for justifying its predictions, there is no way we can prove that 

future events will follow its predictions. In brief, we may be very confident that conditions (i) 

and (ii) are true, but this is impossible to prove, and even though we are confident that our 

model gives a good estimate of Pf it may in fact turn out to be wrong. This aspect of 

uncertainty is not reflected in Courtney’s taxonomy, meaning that the knowledge dimension is 

not adequately taken into account (Aven, 2013). 

 

Since Courtney’s taxonomy does not reflect the strength of the background knowledge, which 

in turn leads to a lack in expression of confidence in condition (i) and/or (ii), Aven suggested 

to add the following notations to Level A in his categorization of uncertainty (Aven, 2013, p. 

2085): 

 

(1) Level A’: Confidence in conditions (i) and (ii) (they have been justified), and the 

conditions hold (with reasonable accuracy). 

(2) Level A’’: Confidence in conditions (i) and (ii), but the conditions do not in fact 

hold. 
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Table 2: A simplification of the uncertainty classification taxonomy (Aven, 2013). 
Level A 

• Not deep uncertainties  

Level B 

• Deep uncertainties  

Conditions (i) and (ii) are justified Conditions (i) and (ii) are not justified 

A’ or A’’  

 

When the decisionmaker makes his/her decision it will be impossible for him/her or the risk 

analysts to know for sure whether A’ or A’’ is true. For this reason, the decisionmaker should 

reflect on the possibility and likelihood that even though the risk analysts have strong 

confidence in both condition (i) and (ii) they may not hold. To account for this and to make an 

even more nuanced categorization of Level A, Aven (2013, pp. 2085) suggests to distinguish 

between:  

 

(a) Situations where we have strong evidence (we can for practical purposes 

conclude that A’ applies); 

(b) Other situations-characterized by some dominating explanations and beliefs. 

 

By following these ideas Aven made an alternative classification system, see table 3. This 

new system is based on the strength of knowledge and it includes the occurrence of black 

swans. In the first category where the uncertainties are low, the knowledge is strong, and the 

occurrence of black swans can for all practical purposes be ignored. In the second category 

where the uncertainties are moderate, the knowledge is based on some dominating 

explanations and beliefs, and one must prepare for the possible occurrence of black swans. In 

the final category which represents systems characterized by deep uncertainty the 

knowledgebase is poor. This makes it meaningless to refer to black swans, as there is no 

knowing what can happen. However, the occurrence of new types of events known as 

unknown unknowns may occur in this category as well as in the second (Aven, 2013). 

 

Table 3: An alternative uncertainty classification taxonomy (Aven, 2013). 
Low uncertainties Moderate uncertainties Deep uncertainties 

Strong knowledge Some dominating explanations and beliefs Poor knowledge 

No black swans A black swan may occur No black swans 

 

2.2.3. Methods to assess and manage risk under deep uncertainty 

 

In some cases, there is too little knowledge available to support a probabilistic representation 

of the uncertainties. In these cases, regular probabilistic risk assessments may not be 

satisfactory (Shortridge et al., 2017). Consequently, it might prove challenging to manage risk 

under deep uncertainty. Research has shown that in order to avoid presenting probabilities 

that can easily be considered untrustworthy, leading risk analysts are often hesitant to present 

subjective probabilities in situations where their background knowledge is limited (Chao et 

al., 1999). Assigning probabilities based on limited background knowledge may lead 

decisionmakers to believe there is a higher certainty than what is actually the case, thus giving 

an inaccurate conception of the true range of possible outcomes (Clark & Pulwarty, 2003). In 

an attempt to avoid this situation, some organizations restrict their application of probabilistic 

analysis under deep uncertainty to a limited number of cases (Shortridge et al., 2017). An 

example of this is the IPCCs’ (Intergovernmental Panel on Climate Change) guidance on 

reporting climate impacts which requires high confidence (reliable evidence which are in 

general agreement with each other) before authors can use probabilities to characterize 
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uncertainties (Mastrandrea et al., 2010). Consequently, a series of different methodologies 

have been proposed to provide a broader treatment of non-probabilistic uncertainty, which 

include “frequency of probability” approaches (Kaplan & Garrick, 1981), different numerical 

alternatives to probabilities like imprecise probabilities (Walley, 1991), probability bounds 

analysis (PBA) (Williamson & Downs, 1990 & Ferson & Ginzburg, 1996) and possibility 

theory (Dubois et al., 1988), qualitative measures for describing the weight of evidence on 

which probability assessments are made (Aven, 2008), robustness-based decision support 

frameworks that do not rely on probabilities like Robust Decision Making (RDM) (Lempert et 

al. 2006), Info-Gap Theory (Ben-Haim, 2000), and Resilience Analytics (Karvetski & 

Lambert, 2012 & Hamilton et al., 2016), and adaptive frameworks such as Adaptive Risk 

Management (ARM) (Holling ,1978) and Dynamic Adaptive Policy Pathways (Haasnoot et 

al., 2013). Adaptive Risk Management and Robust Decision Making will later be described in 

detail as these methods are often recommended and more commonly used then the others to 

assess and manage risk in situations characterized deep uncertainty (Lempert et al., 2004; 

Kasperson, 2008; Cox, 2012; Aven 2016; Walker et al, 2010; Kwakkel et al., 2016;  Maier et 

al., 2016). Probability bounds analysis will also be described in detail as this method will be 

suggested as possible way to assess risk under a fifth level of uncertainty which will be 

introduced in chapter 3. The description of the rest of the previously mentioned methods for 

assessing and managing risk under deep uncertainty is beyond the scope of this thesis.  

 

According to Shortridge et al. (2017) most of the currently existing research on the previously 

mentioned methods focus on their development, debate on their practicality and theoretical 

foundations, and applications to specific problems. This would have been a good thing had 

these methods not been developed in relative isolation from each other, which makes the 

relative advantages, limitations, assumptions and practical implications of each method 

compared to the others hard to grasp (Shortridge et al., 2017). Another downside of this is that 

it limits the degree to which scientists and other users can build upon the previous research in 

this field and apply these methods to solve problems where regular probabilistic analysis is 

thought to be insufficient or inappropriate (Shortridge et al., 2017). A set of systematic 

comparisons between the different methods could help in resolving some of these issues. 

Until recently, only a few such comparisons existed, and the ones that did tended to focus on 

numerical alternatives to probability without considering the semi-quantitative, robustness-

based or adaptive methods mentioned above (Dubois & Prade, 1992 & Soundappan et al. 

2004). This lack of direct comparison has fortunately been recognized, and in the last couple 

of years a few papers have been published on this subject. Shortridge et al. (2017) compare 

semi-quantitative uncertainty factors, probability bounds analysis and Robust Decision 

Making as methods to assess risk under deep uncertainty through the use of a stylized climate 

change adaptation problem related to flood risks in a riverfront city. Hall et al. (2012) 

compare Robust Decision Making and Info-Gap theory as methods to assess and manage risk 

and use the evaluation of greenhouse-gas emissions policies as an example. Kwakkel et al. 

(2016) compare Robust Decision Making and Dynamic Adaptive Policy Pathways as methods 

to assess and manage risk under deep uncertainty and illustrate it by using a flooding case in 

the Rhine Delta of the Netherlands. Systematic comparisons such as these help in clarifying 

and highlighting the fundamental differences between the different methods. They also open 

up for the use of more sophisticated examples and different forms of uncertainty as valuable 

tools to further distinguish the methods. 
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Cox (2012) preformed a thorough study on the topic of confronting deep uncertainties in risk 

analysis, reviewing ten tools to “help us to better understand deep uncertainty and make 

decisions even when correct models are unknown” (Cox, 2012, p. 1611). The tools he 

reviewed were: (subjective) expected utility theory; multiple priors, models or scenarios, 

robust control, robust decisions; robust optimization; average models; resampling; adaptive 

boosting; Bayesian model averaging; low regret online detection; reinforced learning; and 

model-free reinforced learning. Cox states that “they provide genuine breakthroughs for 

improving predictions and decisions when the correct model is highly uncertain” (Cox, 2012, 

p. 1607). The ten reviewed tools implement either one of two strategies (Cox, 2012, p. 1611):  

 

finding robust decisions that work acceptably well for many models (those in the 

uncertainty set); and adaptive risk management, or learning what to do by well-designed an 

analyzed trial and error. 

 

After reviewing Cox’s study, Aven concluded that “deep uncertainties call for a managerial 

review and judgement that sees beyond the analytical frameworks studied in risk assessment 

and risk management contexts” (Aven, 2013, p. 2090). This was by no means stated in Cox’s 

own paper (Cox, 2012 & Aven 2013).   

 

Robust decision making 

Robust decision making (RDM) can in many ways be seen as an inversion of a traditional 

optimum expected utility analysis (EU). In an EU analysis the first step is to characterize the 

uncertainties. This is followed by a ranking of the uncertainties, and finally a decision is made 

(Groves & Lempert, 2007). RDM on the other hand  

 

is an iterative process that begins with decision options and then runs the expected 

utility machinery many times in order to identify potential vulnerabilities of these candidate 

strategies, that is, combinations of model formulations and input parameters where the 

strategy performs relatively poorly compared to the alternatives (Groves & Lempert, 2007, p. 

76). 

 

This process has three main goals (Groves & Lempert, 2007). The first one is to identify new 

and/or improved methods and strategies that can perform better than the ones that are 

currently in use. The second one is to describe the pros and cons of the different strategies 

relative to each other. This way we can reach the final goal, which is to identify the strategy 

that is most insensitive to the uncertainties. In other words, we have identified the most robust 

alternative. To identify the most robust alternative, RDM utilize the power of statistical 

cluster-finding algorithms like the patient rule induction method (Groves & Lempert 2007; 

Shortridge et al., 2017). These algorithms identify areas of probability space where the 

various alternatives have a large difference in performance (Groves & Lempert 2007; 

Shortridge et al., 2017).  

 

In contrary to the regular RDM method, Lempert presented an alternative perspective on how 

to manage deep uncertainties (Aven, 2016). Instead of finding the action that is the most 

robust over all, he suggests that we identify which uncertainties matter the most, which matter 

the least, which present opportunities and which present threats, and why (Aven, 2016). 
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A simplified example of how robust decision making can be applied as a tool 

to manage climate change risk will be presented in the following. The given objective is 

preventing the average global temperature from surpassing the temperature measured at the 

start of industrial revolution by more than 2.0 degrees Celsius. If at all obtainable, one needs 

to identify to what extent the current greenhouse gas emissions needs to be reduced to avoid 

surpassing said temperature. A further analysis of how to achieve this reduction is beyond 

the scope of this example.  

  

Initially one would gather numerous models of climate change. Secondly one would use 

similar input data of carbon and other greenhouse gas emissions, followed by an analysis of 

the different model predictions. In this analysis, one would first proceed to identify each 

model’s recommended reduction of emissions, and then continue by drafting a comparison of 

all different recommendations. Ultimately, a team of qualified personnel would assess the 

justifications of the arguments which form the background of each of the different models. 

This renders them capable of giving more weight to the results of the well justified models, 

and less to the others. From these results the team would then be able to identify and 

recommended how much the emissions should be cut by.   

 

Adaptive risk management 

From the previous section on RDM it becomes clear that RDM works best if some data or 

models are available, and it will be hard or even impossible to complete with limited 

empirical data (Cox, 2012). It is in situations like the latter where the empirical data is limited 

we turn to adaptive risk management (ARM). This is no to say that ARM cannot be used in 

situations where relevant models and data are available. This method can be credited to 

Holling, as he developed and introduced it as a method assess and mange environmental risks 

in 1978 (Bjerga & Aven, 2015). This is an iterative and structured process that can be used to 

manage risk characterized by deep uncertainty (Bjerga & Aven, 2015). ARM normally 

consists of the following elements (Bjerga & Aven, 2015, p. 75): 

 

- Management objectives that are regularly revisited and accordingly revised. 

- A model(s) of the system being managed. 

- A range of management choices. 

- Monitoring and evaluation of outcomes. 

- A mechanism(s) for incorporating learning into future decisions. 

- A collaborative structure for stakeholders’ participation and learning. 

 

ARM is a transparent process where the analyst is aware of some or many of the possible 

futures that lay ahead, but it can be hard or even impossible to assign probabilities to the ones 

that are known (Bjerga & Aven, 2015 & Walker et al., 2010). Based on this limited 

knowledge an adaptable management action is implemented, and its effects on the system are 

monitored. New responses may be implemented based on the result from the monitoring. 

Responses like these can either be implemented manually or they can occur automatically. 

How these responses are implemented depends on how the system is set up. Walker et al. 

(2010) presented a description of the two types of adaptive responses together with a 

description of the possible timing these responses can have. For more information, see the 

detailed description on the next page (Walker et al. 2010): 
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1. How the adaptation is implemented: 

- Planned adaptation: this is a manual adaptation/response that is implemented 

because the decisionmakers know that the initial conditions have or are about 

to change. These adaptations are necessary to return the system to, maintain or 

achieve a desired state. 

- Autonomous adaptation: unlike the planned adaptations which are 

implemented manually, these adaptations are implemented automatically by 

the system itself as a response to changing conditions. These adaptations are 

necessary to return the system to, maintain or achieve a desired state. 

2. The timing of the adaptation: 

- Anticipatory adaptation: these types of adaptations are automatic or manual 

responses that are implemented prior to a change in conditions to maintain or 

achieve a desired state. 

- Reactive adaptation: these types of adaptations are automatic or manual 

responses that are implemented after a change in conditions has been 

registered. These adaptations are necessary to return the system to, maintain or 

achieve a desired state. 

 

The same simple case as the one that was used to illustrate how RDM works in practice will 

be used here to illustrate how ARM can be used as tool for managing risk under deep 

uncertainty. The goal that we want to achieve here is exactly the same as last time, namely to 

prevent the average global temperature from rising more than two degrees. Since models and 

data are available the analysis here would be performed in a similar manner as it was in RDM. 

What separates the two is the final step.  Here it is suggested that the emission cuts that were 

found to be required should be reviewed every 5 years. A further reduction in emissions could 

be deemed necessary if the effects of the previous cuts have not had the expected results. By 

doing so we adapt our response to new information. A 5 year timeframe was chosen as 

climate change is a slow process, meaning that some time must go by for us to see the effects 

of the emission cuts. 

 

Probability bounds analysis 

The concept of bounding probability can be traced back to the middle of the 19th century and 

further development of these ideas has seen an increase over the last 40 years (Tucker & 

Ferson, 2003). In probability bound analysis (PBA) probability theory and interval arithmetic 

is combined to produce probability boxes or p-boxes (Tucker & Ferson, 2003). These p-boxes 

are structures that allow for the all-inclusive propagation of both variability (aleatory 

uncertainty as represented by frequentist probabilities) and ignorance (subjective or epistemic 

uncertainty) (Ferson & Ginsburg, 1996; Ferson et al., to appear; & Tucker & Ferson, 2003). 

This type of analysis is particularly useful when the analysts cannot specify one or more of 

the following (Tucker & Ferson, 2003): 

 

1. Precise parameter values for the input distributions or point estimates in the risk 

model (min., max., mode, etc). 

2. Precise probability distributions for some or all of the variables in the risk model. 

3. The dependencies between the variables in the risk model 

4. The exact structure of the risk model. 

 

A p-box consists of a pair of distribution functions that are used to circumscribe an 

imprecisely known distribution function F (Tucker & Ferson, 2003). Say for instance that 
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from previous knowledge it is assumed that a distribution is lognormal, but the precise values 

of the defining parameters µ (mean) and σ (standard deviation) are uncertain. However, it is 

known that the true value of these parameters must lie within the following intervals µ = [µ1, 

µ2] and σ = [σ1, σ2]. Here µ1, µ2, σ1 and σ2 represents the bounds on the mean and the standard 

deviation. To plot the bounds in a p-box one would simply have to compute the cumulative 

distribution function (CDF) enveloping the following four distributions: (µ1, σ1), (µ1, σ2), (µ2, 

σ1) and (µ2, σ2). To illustrate this a numerical example will be used. The distribution is still 

lognormal, and the bounds are: µ = [0.5, 0.6] and σ = [0.05, 0.1]. All that is known at this 

point is that the true distribution is lognormal with µ somewhere in the interval [0.5, 0.6] and 

σ somewhere in the interval [0.05, 0.1]. The p-box is displayed in figure 2. This was just an 

example with one of the commonly used distribution, it is just as easy with others such as 

normal, uniform, exponential, etc. This method has shown great promise as tool to manage 

risk in situations where when one or more of the previously listed elements could not be 

specified (Shortridge et al., 2017 & Flage et al., 2018).  

 

 

 
Figure 2: Illustration of the p-box from the previous example (Tucker & Ferson, 2003). 

 

It has been argued by the EPA (U.S. Environmental Protection Agency) that combining 

frequentist and subjective probabilities to a single probability distribution should be avoided 

(EPA, 2001). This is because a single probability distribution must be interpretable either as 

an expression of aleatory or epistemic uncertainty (Tucker & Ferson, 2003). The p-boxes in 

probability bound analysis model them both, however, this is not a problem here as they are 

both clearly distinguishable in the end results. The aleatory uncertainty is represented by the 

CDF on the right and left side, while the epistemic uncertainty is represented by the space 

between them (Tucker & Ferson, 2003). 

 

The same case that was used to illustrate how the two previous methods can be used to 

manage risk under deep uncertainty will also be used here. First off, all relevant models on 

future temperature development and required cuts in greenhouse gas emissions would be 

gathered and analyzed for data. Then we would use this data to form a p-box which would 
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show the bounds on the required cut in greenhouse gas emissions. This p-box can be seen in 

figure 3. From this figure we can see that even the most optimistic estimates require emission 

cuts between [10%, 42%], and they estimate that there is at least a 50% chance that the 

emissions must be cut by more than 23%. The most pessimistic estimates on the other hand 

require emission cuts between [20%, 52%], and they estimate that there is at least a 50% 

chance that the emissions must be cut by more than 33%.  

 

Say, that based on this we choose to cut the emissions by 35%. We can now go back and put 

this cut level into relevant temperature development models and analyze the data. This data 

can then be used to form a p-box which shows the bounds on temperature changes with a 35% 

cut in emissions. This p-box can be seen in figure 4. From this figure we can see that even in 

the most optimistic estimates the temperature will increase by at least [1.0, 2.5] degrees C and 

they estimate that there is at least a 20% chance that the temperature will increase by more 

than 2.0 degrees C. The most pessimistic estimates assume that the temperature will increase 

by at least [1.5, 3.5] degrees C and they estimate that there is at least a 65% chance that the 

temperature will increase by more than 2,0 degrees C. It is assumed that the “true” underlying 

distribution is somewhere within the bounds of these CDFs. However, it is impossible to say 

anything about which of these estimates is closest to the “true” underlying distribution.  

 

 
Figure 3(left): P-box with the bounds of estimated required cut in greenhouse gas 

emissions to prevent an increase in temperature of more than 2 degrees. 

Figure 4(right): P-box with the bounds of estimated temperature increases with a 35% cut 

in greenhouse gas emissions. 

 

Managerial review and judgement  

The overall goal of a risk assessment is to provide the decisionmaker with a clear and detailed 

risk description (Aven, 2013). The results of the risk assessment will not explicitly tell the 

decisionmaker what to do, as there are often several aspects affecting a decision which are not 

reflected in a risk assessment (Aven, 2013). Before a final decision is made the decisionmaker 

has to take all of these aspects into account (Aven, 2013). These aspects may include but are 

not limited to other benefits related to the situation in question, and political/strategic 

concerns. Another important thing the decisionmaker must take into account before making a 

decision is the SoK behind the assumptions. This must be reviewed together with the results 

of risk analysis to justify whether the results are reliable or not (Aven, 2013). A 

decisionmaker also have to evaluate how relevant the results of the risk assessment are to the 

decision problem at hand (Aven et al., 2007). This process is known as a managerial review 
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and judgement, and its goal is to bridge the gap between the risk assessment and the decision 

(Aven, 2013). The time and effort put into this process can in many cases be reduced by 

implementing measures like risk acceptance criteria (RAC). RAC represents the upper limit of 

risk that is acceptable in a given situation (Aven, 2013). The use of RAC as a means to reduce 

the time and effort put into this process should only be used if uncertainty is low (level 1), 

since the risk is not well reflected by probability numbers alone if the uncertainties involved 

are large (Aven, 2013). In a situation characterized by moderate or deep uncertainties the 

group involved in the managerial review and judgement process have to be able to see 

“beyond the narrow technical criteria when making judgements about the risk being 

acceptable or not” (Aven, 2013, p. 2086), and to pay more attention to the justification of the 

assumptions and the strength behind these assumptions (Aven, 2013).  

 

To illustrate this process, and to link it to the previous methods we will continue with the 

same example, only in this situation we have the results of risk assessment. These results were 

as follows: to prevent the global temperature from increasing more than 2 degrees we have to 

cut the green house gas emissions by 25% within 2035, and by 50% within 2055. The 

decisionmakers will now have to take several aspects of this case into account and weigh 

them up against each other before a just decision can be made. First of all, they have to review 

the results of the assessment in light of the assumption, to assess whether the results of the 

assessment are reliable. Secondly, they have to weigh the pros (lower sea levels, less extreme 

weather, better protection of vulnerable ecosystems, less air pollution in the big cities, etc.) 

against the cons (lower productivity, higher restrictions, reduction in the use of transportations 

devices fueled by hydrocarbons, etc.). A few other aspects they have to take into account are 

the political implications, how it affects the world economy and if can cause zones of conflict 

(war zones). If they decide to go through with the emission cuts they will have to find a way 

to make it fair for everyone, as there are some nations who have contributed way more to the 

greenhouse gas emissions than others. As this is a simplification of a very complicated 

decision it does not include every factor the decisionmakers will have to take into account in 

addition to the risk assessment before a decision is made, but it demonstrate how the process 

is done. 

 

 

 

 

  



20 

 

3.  Development of an extended deep uncertainty categorization 
taxonomy 
 

The purpose of this chapter is to present and discuss the challenges that are present in the 

previously mentioned uncertainty taxonomies, and to develop an alternative taxonomy where 

these challenges are no longer an issue.  

 

3.1. Challenges with the current categorization taxonomies  
 

As pointed out by Aven, there are some clear challenges with the deep uncertainty 

categorization taxonomy Courtney introduced (Aven, 2013). He stated that “several critical 

questions can be raised regarding its foundation” (Aven, 2013, pp. 2082), including the use of 

probabilities and the lack of a specified interpretation of probability, and the lack of a 

knowledge dimension (SoK). To fix this he suggested a new and simplified taxonomy which 

he also argues increase precision. In this modified taxonomy he defines two uncertainty 

categories, Level A and Level B (Aven, 2013). Level A represent every situation where the 

risk analyst believes in the existence of frequentist probabilities Pf that perfectly describes the 

variation in a system, and that the probability model introduced by the risk analyst is an 

accurate representation of the “true” underlying frequentist distribution Pf. Level B represents 

every other situation and they are characterized by deep uncertainty (Aven, 2013). Following 

this path, he argues that Level A only refers to situations of controlled experiments that can be 

repeated a large number of times under similar conditions to test and verify suggested 

hypotheses and probability models (Aven, 2013). According to this definition of deep 

uncertainty every situation where there is a lack of knowledge is characterized by deep 

uncertainty. This is not in line with the definitions of deep uncertainty presented by Lempert 

et al. and Cox (Cox, 2012 & Walker et al., 2017). These authors argue that the concept of 

deep uncertainty is described by a situation of significant model uncertainty even up to the 

point where no model is available at all, rendering it hard or even impossible to say anything 

about the outcome of the given situation. There is clearly a significant gap between a situation 

where you have so much knowledge that it enables you to build a model that can predict 

nearly every outcome of an event with reasonably accurate probabilities and a situation where 

you have so little information that it is impossible to build a probabilistic model or even say 

anything about the outcome of an event. The author of this thesis would therefore argue that 

even though Aven’s modified taxonomy may be simpler, Courtney’s uncertainty taxonomy 

with its four levels of uncertainty is certainly both more precise and more in line with 

previously mentioned definitions of deep uncertainty. However, this does not mean that his 

taxonomy is without flaw. As pointed out by Aven it lacks in the specification of knowledge 

strength for each of the different levels as well as a specification for the interpretation of 

uncertainty.   

 

Later on, in the same paper Aven (2013) presented a second alternative to Courtney’s 

taxonomy, with three levels of uncertainty and the incorporation of the knowledge dimension, 

see table 3. This alternative implies that for a situation to be characterized by deep uncertainty 

the knowledge base of the assessor must be poor. This is more in line with the deep 

uncertainty definitions presented by Lempert et al. and Cox (Cox, 2012 & Walker et al., 

2017). However, what this taxonomy gains in simplicity it lacks in detail as it is not possible 

to score high in both of these areas. It is basically just a light extension of the previous 

taxonomy introduced Aven, with one additional uncertainty level that covers the significant 
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gap in the first taxonomy. This gap is still just as wide, so the author of this thesis would 

argue that this step only clarifies that situations where the background knowledge is moderate 

is no longer in the deep uncertainty category. There is clearly room for a splitting of or a more 

detailed moderate uncertainty level. 

 

A similar argument can be used against Courtney’s categorization taxonomy. The gap 

between level 2 and level 3 is quite wide. A system belonging to level 2 has several outcomes 

and each outcome has a point estimate of its probability. A system belonging to level 3 also 

has several outcomes, but nothing can be said regarding the probabilities. It is not like we go 

from having pin point accurate probabilities for every outcome to having no clue as to what 

the probabilities for each outcome can be. There is a step in between level 2 and 3 where 

imprecise probabilities can be assigned to the outcomes. These imprecise probabilities can be 

assigned in situations where we have limited data, poor measurements and subjective 

information (Beer et al., 2013). To account for the gap in the categorization system the author 

of this thesis suggest that a fifth level of uncertainty is added. This level is to be placed in 

between level 2 and level 3, and it will represent every system where the risk analyst does not 

have enough information to assign point estimates of the probabilities, but he/she still has 

enough information to say something regarding the probabilities. According to Lempert et 

al.’s definition of deep uncertainty (Walker et al., 2017, p. 5):  

 

The condition in which analysts do not know or the parties to a decision cannot agree 

upon (…) the probability distributions to represent uncertainty about key parameters in 

the models 

 

it can be argued that this new uncertainty level can in some situations be seen as a part of the 

deep uncertainty category, while in other situations it will fall under the moderate uncertainty 

category. It comes down to the width of the probability intervals, and if the knowledge of the 

risk analyst is strong enough to justify a distinct probability distribution for the probability 

interval(s). Consequently, this fifth level of uncertainty will fall under both moderate and deep 

uncertainty, see table 4. 

 

To better handle the previously mentioned challenges with the alternative taxonomy presented 

by Aven (2013) as well as the challenges with the original deep uncertainty taxonomy 

presented by Courtney (2001), the author of this thesis proposes a merger between the two 

taxonomies, with the addition of a fifth uncertainty level. Although this is a step away from 

the simpler approach taken by Aven, this new taxonomy will benefit from the incorporation of 

more nuanced representation of the varying degrees of uncertainty, as well as a more detailed 

explanation of each level.  

 

3.2. An extended deep uncertainty categorization taxonomy 
 

It is the opinion of the author that the only advantage of the two alternative classification 

taxonomies introduced by Aven (2013) compared to Courtney’s (2001) original taxonomy is 

the incorporation of the judgement of the strength of knowledge. Yes, Aven’s (2013) 

taxonomy is certainly much simpler, but the downside here is that it almost entirely ignores 

the nuances in the various degrees of uncertainty. For instance, he only recognizes one level 

of deep uncertainty in both of his alternatives, while Courtney has two. By merging Aven’s 

ideas regarding knowledge strength with Courtney’s taxonomy and adding a fifth level of 
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uncertainty, we are left with a more detailed description of the varying degrees of uncertainty. 

A few other aspects like degree of uncertainty, justification of conditions (i) and (ii) (see p. 11 

or 23), the possible occurrence of black swans¸ probability interpretation and a system 

example has been added to increase the level of detail. The fading color from green to red 

indicate an increase in uncertainty. The various levels of the new uncertainty taxonomy are 

described below, and the alternative taxonomy is presented in table 4. 

 

Level 1 uncertainty: a clear enough future. In this first level of uncertainty, which falls 

under the low uncertainty category, there is a narrow range of possible outcomes and the 

uncertainty related to each outcome can be adequately modeled and described by frequentist 

probability models (aleatory uncertainty). These models are backed up by good evidence and 

a strong background knowledge. This does not mean that the future is perfectly predictable in 

every case, but we can for all practical purposes ignore black swans and conclude that 

conditions (i) and (ii) are justified (Level A’, see page 11 or 23) and will hold with reasonable 

accuracy. The reason why we cannot say that the future in this level of uncertainty is perfectly 

predictable in every case is due to the possibility of minor errors in the probability models 

caused by the fact that perfect measurements and models are impossible to make. An example 

of a situation that falls under this level of uncertainty is flying with a commercial jet as a 

passenger. 

Level 2 uncertainty: alternate futures with point estimates. In this second level of 

uncertainty, which falls under the moderate uncertainty category, it is possible to identify a 

limited range of possible outcomes where one of them will occur, except for few instances 

where the outcome is a black swan. The strength of the background knowledge falls 

somewhere between strong and moderate, and the uncertainty related to each outcome can in 

most cases be adequately modeled and described by frequentist probability models (aleatory 

uncertainty). Conditions (i) and (ii) are justified but will in some cases not hold (Level A’ or 

A’’). Two examples of situations that fall under this level of uncertainty are playing on a fair 

slot machine (Level A’) and playing on a rigged slot machine (Level A’’).  

Level 3 uncertainty: alternate futures with imprecise probabilities. In this third level of 

uncertainty, which can fall under either the moderate or the deep uncertainty category, a 

limited range of possible outcomes where one of them will most likely occur can be 

determined. The probability of occurrence related to the outcomes cannot be given as a point 

estimate but rather as probability intervals. These probability intervals are thought to contain 

the true probability of occurrence, but this does not necessarily have to be true. The strength 

of knowledge that forms the foundation for the justification of the bounds on the probability 

intervals fall somewhere between moderate and poor and is based on some dominating 

explanations and belief. This is reflected through the width of the probability intervals: Wider 

intervals suggest that the analyst(s) have a poor understanding of the underlying causes and a 

poor strength of background knowledge. Shorter intervals suggest that the analyst(s) have a 

moderate understanding of the underlying causes, and a moderate strength of background 

knowledge. The risk analysts may believe that there exists a true underlaying frequentist 

distribution Pf (i), but the knowledge strength is too poor to come up with a probability model 

that can accurately describe each outcome, meaning that this group fall under level B’ (see 

page 23 for a description of B’). Black swans are also relevant here since a limited range of 

possible outcomes can be suggested, but none of them are guaranteed to occur. This level can 

be seen as a bridge that fixes the gap between level 2 & 4. Two examples of situations that 

fall under this level of uncertainty are the spreading of a new disease, and the market 

reception of a new product. 

Level 4 uncertainty: a range of futures. In this fourth level of uncertainty, which falls 

under the deep uncertainty category, a limited range of possible outcomes where one of them 
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will most likely occur can be determined. It is impossible to describe the uncertainty related to 

each outcome with probabilities. The risk analyst(s) may believe in the existence of a true 

underlaying frequentist distribution Pf, justifying condition (i), but the knowledge strength is 

too poor to come up with any fitting probability model, meaning that this group too fall under 

level B’. The knowledge strength here is poor, but since it is possible to determine limited 

range of possible outcomes there must exist some dominating explanations and beliefs. Black 

swans can occur in this level, since none of the preidentified outcomes are guaranteed to 

occur. An example of a situation that fall under this level of uncertainty could be unstable 

macroeconomic conditions. 

Level 5 uncertainty: an unknown future. In this fifth and final level of uncertainty, 

which falls under the deep uncertainty category it is impossible to determine any future 

outcomes. All that is known is that we don’t know anything, and this ignorance is recognized. 

There is no confidence in either condition (i) nor (ii), which means that this group fall under 

level B’’. Here it would be pointless to refer to surprising outcomes as black swans, since all 

outcomes will be surprising, and we are aware of that, so they are no longer black swans 

(Aven, 2013). Some examples of situations that fall under this level of uncertainty could be 

the outcome of major technological, economic or social discontinuities. 

 

For convenience, all the notations that are used in table 4 are described below. The ones that 

are written in italic are direct citations from Aven (2013). 

 

(i) The existence of frequentist probabilities Pf. 

(ii) The probability model introduced is an accurate representation of the “true” 

underlying frequentist distribution Pf. 

 

(1) Level A’: Confidence in conditions (i) and (ii) (they have been justified), and 

the conditions hold (with reasonable accuracy). 

(2) Level A’’: Confidence in conditions (i) and (ii), but the conditions do not in 

fact hold. 

(3) Level B’: Some confidence in condition (i) only, but the condition may not 

hold. No confidence in condition (ii). 

(4) Level B’’: No confidence in either condition (i) or (ii). 

 

(a) Situations where we have strong evidence (we can for practical purposes 

conclude that A’ applies) 

(b) Other situations-characterized by some dominating explanations and beliefs. 

(c) Situations where all we know is that we don’t know. 

 

To avoid unnecessary splitting of the alternative uncertainty taxonomy it will not start 

below, but rather on the next page.  
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Table 4: A modified uncertainty classification taxonomy. Compared to Courtney’s taxonomy, 

newly added features are written in italic. The gradual shift in color from green to red 

represents the increase in uncertainty. 
Level Level 1 Level 2 Level 3 Level 4 Level 5 

Type of 

uncertainty 
Low uncertainty Moderate uncertainty Deep uncertainty 

Strength of 

knowledge 

(a) (b) (c) 

Strong Moderate Poor Non existent 

Justification 

of conditions 

(i) and (ii) 

Conditions (i) and (ii) are justified Conditions (i) and (ii) are not justified 

Level A’ Level A’ or A’’ Level B’ Level B’’ 

Black swans? No black swans Black swans may occur No black swans 

Probability 

interpretation Aleatory 
Both aleatory 

and epistemic 
No use of probabilistic models 

Context A clear enough 

future 

 

 

 

Alternate 

futures (with 

probabilities) 

 

 

Alternate futures 

(with imprecise 

probabilities) 

 

 

A multiplicity of 

plausible futures 

 

 

 

Unknown future 

 

 

 

System model A single 

binomial system 

model 

A single system 

model with a 

probabilistic 

parameterization 

Several system 

models, with 

different 

structures 

Several system 

models, with 

different 

structures 

Unknown 

system model; 

know we don’t 

know 

System 

outcomes 

A Point estimate 

and confidence 

interval for each 

outcome 

Several sets of 

point estimates 

and confidence 

intervals for the 

outcomes, with 

a probability 

attached to each 

set 

Several sets of 

point estimates 

and confidence 

intervals for the 

outcomes, with 

imprecise 

probabilities 

attached to each 

set  

A known range 

of outcomes 

Unknown 

outcomes; know 

we don’t know 

Weights on 

outcomes 

A single 

estimate of the 

weights 

Several sets of 

weights, with a 

probability 

attached to each 

set 

Several sets of 

weights, with a 

probability 

attached to 

some of them 

A known range 

of weights 

Unknown 

weights; know 

we don’t know 

System 

example 

Flying with a 

commercial jet 

as a passenger 

Playing on a fair 

slot machine 

(Level A’), or 

on a rigged slot 

machine (Level 

A’’) 

Demand for new 

products or 

services 

Unstable 

macroeconomic 

conditions 

The outcome of 

major 

technological, 

economic or 

social 

discontinuities  
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4. Adaptation of a method to assess risk characterized by level 3 
uncertainty 
 

The purpose of this chapter is to introduce the reader to a method that can be used to assess 

risk that fall under the previously introduced third level of uncertainty, and to illustrate how 

this method can be used by using it to assess risk in a hypothetical case.  

 

4.1. Method adaptation 

 
Probabilistic risk assessment has proven itself to be a great tool for evaluating risk in complex 

engineering systems. However, to obtain realistic result from these prediction models they 

require accurate information and appropriate mathematical modeling and quantification. This 

can be challenging in situations where the underlying knowledge to support probabilistic 

representation of uncertainties is limited. Such limitations may include imprecise 

measurements, sparse data and subjective information. Situations where there are limitations 

in available information has led to an increasing concern among risk analysts that traditional 

probabilistic risk assessment may not be sufficient for probabilistic modeling (Shortridge et 

al., 2017; Beer, et al. 2013). A number of alternative methods have been suggested to manage 

situations of deep uncertainty, see chapter 2.2.3. The main focus of this chapter is not to 

identify and develop a method which is applicable in every deep uncertainty situation, but 

rather to adapt previous thoughts and ideas from risk assessment to a method that can be used 

to assess risk in situations that fall into the third uncertainty level. 

 

A situation that fall into the third uncertainty level is characterized by imprecise probabilities. 

Several recently published books and papers have argued that regular probability theory 

generate to precise results when the background knowledge supporting the probabilities is 

poor (Aven, 2010). To illustrate this, an example similar to the one used by Ferson and 

Ginzburg (1996) is introduced. A parameter σ1 is a number somewhere between 0 and 1, and 

a parameter σ2 is a number somewhere between 1 and 2, and no more information is given. 

What is the value of the sum σ1 + σ2? 

 

One way to solve this is by using interval analysis. Here the total range of values the sum can 

have is identified by finding the smallest and largest possible sum.  (σ1 = 0) + (σ2 = 1) = 1 is 

the smallest value the sum can have, and (σ1 = 1) + (σ2 = 2) = 3 is the largest. No number 

combination will fall outside this interval. Consequently, the answer is that the sum lies 

somewhere between 1 and 3. See a depiction of the interval [1, 3] in figure 5. It is important 

to note that this interval is not the same as a uniform probability distribution, since it is 

impossible to say anything about the probability distribution based on the available 

information. 

 

Another way to try and solve this is by letting σ1 and σ2 be randomly varying numbers and 

sum them together using Monte Carlo simulations under the assumption that the parameters 

are independent. As no information is given regarding the probability distribution within the 

intervals it is easy to assume that every number within each interval is equally likely to 

represent the true value. Following this logic each parameter is set to have a uniform 

distribution within the given bounds and the simulation is run. The result of such simulations 

gives the impression that the extreme values 1 and 3 are much less likely to occur than the 

value 2. See the probability distribution illustrated in figure 6.  
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It is argued by Ferson and Ginzburg (1996) that the probabilistic distributions are incorrect, as 

they assume more information than what was given in the original question. This is clear from 

the probability distribution seen in figure 6. When no information is given regarding the 

probability distributions in parameters σ1 and σ2, the use of random numbers will give a false 

impression of the knowledge strength of the risk analyst. This method implies that the risk 

analyst knows more than he/she actually does, since the simulation gives the impression that 

some values are more likely than others. When no information is given regarding the 

probability distribution of parameters σ1 + σ2 it is wrong to assume that some values are more 

likely than others. Ferson and Ginzburg (1996) writes: 

 

In this sense, they are the result of wishful thinking, rather than a careful analysis of what 

is actually known. This example illustrates what may be a widespread problem with 

applying classical probability theory in risk analyses where the relevant empirical 

information is sorely incomplete (as is usually the case). 

 

 
Figure 5: Illustration of the interval [1, 3] which is guaranteed to contain the sum of σ1 = [0, 

1] and σ2 = [1, 2]. 

 

 
Figure 6: Probability distribution of the sum of the random variables σ1 = uniform(0, 1) and 

σ2 = uniform(1, 2) under the assumption that the parameters are independent. 
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Ferson and Ginzburg (1996) conclude that classical probability theory alone only provides 

methods appropriate for assessing and propagating random variability, and not for assessing 

and propagating epistemic uncertainties and ignorance. They suggest that probability bounds 

analysis should be used to propagate uncertainty in risk analysis in situations where both 

variability and ignorance is present (Ferson & Ginzburg, 1996). In a later article Beer et al. 

(2013) provides an overview on the developments on methods which involve the use of 

imprecise probabilities. From this overview it is clear that there is a pre-existing framework of 

imprecise probabilities that provide a mathematical basis to deal with such situations. This 

includes, but is not limited to: interval analysis, probability bounds analysis, bounds based on 

evidence theory and fuzzy probabilities (Beer et a., 2013; Aven, 2010). Beer et al. (2013) 

suggest probability bounds analysis as the preferred method of choice in situations where:  

 

Parameters of a probabilistic model, the distribution type or, in a non-parametric 

description, the curve of the cumulative distribution function may only be specified within 

some bounds. This imprecision may arise, for example, when conflicting information 

regarding the distribution type is obtained from statistical tests, that is, when the test results 

for different distributions as well as for compound distributions thereof with any mixing ratio 

are similar. These test results do not provide grounds for assigning probabilities to the model 

options. If no additional information is available in such situations, the most suitable 

approach for modeling the cumulative distribution function is as a set of distributions. In the 

simplest form, this implies the use of intervals for the distribution parameters. 

 

From these papers it is clear that probability bounds analysis is the preferred method of choice 

to analyse risk when facing a situation which is characterized by level 3 uncertainties. 

However, a probability bounds analysis alone may not be enough. Every parameter used to 

give a final numerical value in a standard quantitative risk analysis is based on a set of 

assumptions. To present an informative overview of the risk picture it is vital that these 

assumptions are justified, and that the strength of the assumption justification is clearly stated 

(Flage & Aven, 2009). To illustrate this a simple example will be used. An investor has asked 

two different risk analysts to analyze the likelihood, P(A), of him losing money on a given 

investment. The first analyst presents his/her results in the following way: P(A) = 0,3, while 

the second analyst present his/her like this: P(A|K) = 0,5, where K represents the knowledge 

the analysis is based upon. The second analyst has more than 30 years of experience with this 

type analyses and he judge the strength of his relevant background knowledge to be strong. 

The second analysis is clearly more informative as it gives some information on why the 

analyst came up with that exact result, and to what degree the analysis can be seen as credible. 

   

Assumption justification and an assessment of the strength of the assumption justification is 

especially important in a situation characterized by level 3 uncertainty, to justify the setting of 

clear bounds on large uncertainties. This will aid in justifying to what degree the analysis can 

be seen as credible, and if it is of any value as a tool in decision support. It is therefore 

important that the decisionmakers are made aware of what grounds the assumptions are based 

upon and to what extent these grounds can be seen as solid. Consequently, the method used in 

this thesis will combine probabilistic bounds analysis with a justification of the assumptions 

and a validation of the strength of knowledge these assumptions are based upon. This way the 

final risk picture will be as broad, balanced and informative is it possibly can be under the 

given circumstances. A similar approach was taken by Flage et al. (2018) when they 

compared probabilistic bounds analysis with a subjective probability analysis. Along with 



28 

 

their comparison they also presented a set of different ways to produce inputs a general risk 

assessment (Flage et al., 2018): 

 

1. Constraints (e.g. positive lifetime and restoration times, and probabilistic 

inequalities) 

2. Hard data (on e.g. production volumes, lifetimes and restoration times) 

3. Modeling of the system performance (e.g. of the availability of the system) 

4. Bayesian updating 

5. Aggregation (fusion) (combining data from several sources) 

6. Judgements (degrees of belief of unknown quantities) 

    

The risk assessment method suggested in this thesis can be described as a stepwise process 

inspired by the risk assessment methods presented and used by other authors (Aven, 2014; 

Flage et al. 2018; Shortridge et al. 2017; Aven, 2013 & Aven, 2016), combined with the ideas 

of Ferson & Ginzburg (1996) and Flage et al. (2018). 

Step 1: Problem conceptualization. In this step the problem is conceptualized, and the 

initiating event(s) and their causes and consequences are identified. This can be illustrated by 

a simple event tree and/or bow tie diagram. The problem conceptualization is done to get a 

better overview of the problem at hand.  

Step 2: Identification of probabilities. In this step the relevant probabilities related to 

the causes and consequences are identified. The availability of accurate probabilities is limited 

as this is method is used for analysis situations characterized by large to deep uncertainties. If 

a set of probability intervals is identified it is important that the sum of the lowest values is 

below 100% and that the sum of the highest values is above 100% 

Step 3: Setting up the p-boxes. In this step the probability bounds that are to be used to 

make the enveloped cumulative distribution functions are identified, followed by the 

computation of the p-boxes. This is done in accordance with the mathematics described by 

Tucker and Ferson (2003). If the probability bounds that are to be used in the making of the p-

boxes cannot be easily identified, computational methods can be used to make every possible 

CDF and envelop the final result. 

Step 4: Assumption justification. In this step the previously used assumptions must be 

justified, and the justification/strength of knowledge behind the assumptions is assessed. This 

assessment should follow the principles and guidelines presented by Flage & Aven (2009). 

Step 5: Analyzing the result of the p-boxes in light of the assumption justifications. In 

this step the p-boxes are analyzed in light of the assumption justification to see whether or not 

the p-boxes can be used as a tool for decision support, or if the information laying the 

foundation of the p-boxes is too weak.    

 

This method could be extended from method to assess risk under deep uncertainty to a 

method that can be used to manage risk under deep uncertainty by following the idea 

presented by Aven (2013) which is adding a final step, namely managerial review and 

judgement.  
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4.2. Case study 
Here a case is presented to illustrate how probability bounds analysis can be used alongside a 

qualitative assessment of the assumptions to assess the risk in a situation characterized by 

level 3 uncertainties. Even though this example is simple, it is still realistic and interesting 

from a practical decision oriented perspective. 

  

4.2.1. Case description 

A small costal community is in risk of destruction by tsunami, and they wonder if their 

current safety systems should be upgraded, so a risk analysis is required as a tool to aid in the 

decision process. The focus of this analysis will be on the total fraction of deaths and 

survivors, and not on material destruction. This community consists of around 1000 people 

living at the end of a fjord, and they face severe injury or even death caused by a giant wave 

rolling over the settlement. This wave is in turn caused by a large landslide coming from the 

mountains 60 km out in the fjord. Several geologists have previously been consulted 

regarding the timeframe of this incident, and all they can say is that they assume there will be 

landslide sometime in the next 1000 years. They cannot say anything regarding the 

probability distribution of this timeframe.  

 

Due to the composition of the landmasses and its geographic location in the mountains it is 

hard to say exactly how much of these landmasses will fall out and cause the formation of a 

wave. There is strong disagreement among the experts related to the size of the landslide, and 

from a risk assessment perspective this poses a challenge since the volume of the landslide is 

proportional to the height of the resulting wave, and the height of the wave is directly linked 

to the level of destruction it causes. Experts assume that the landslide will cause a wave that is 

between 10 and 30 meters high. For simplicity the wave heights are divided into four different 

sections, where each section represents a five meter interval, see table 5.  These experts have 

also presented several different prediction models for a wave to fall within these intervals. 

The upper and lower probabilities for the occurrence of each of the wave height intervals 

found in these models is presented as probability intervals in table 5. It is important to note 

that nothing can be said about the probability distribution within these probability intervals. 

The only information they give is that the probability of occurrence is assumed to be 

somewhere within these intervals. 

  

Table 5: Overview of probability of occurrence. 

Wave height (m) Notation Min. probability of occurrence Max probability of occurrence 

10 to 14,99 W1 10 % 20 % 

15 to 19,99 W2 15 % 40 % 

20 to 24,99 W3 25 % 60 % 

25 to 30 W4 10 % 50 % 

Sum  60 % 170 % 

 

From an energetic point of view, it is clear that the different wave heights will have different 

impacts on the community. Larger waves will reach further in on the mainland and cause 

more destruction than its smaller counterparts. For simplicity we assume that waves within 

the same height interval have the same reach and cause the same level of destruction. To 

prepare the community for the occurrence of a tsunami, tsunami drills are executed at random 

two times a year, and this has been done each year for the past 70 years. The fraction of 
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survivors for the different wave height intervals is estimated after each drill and can be seen in 

table 6. These survival calculations are based on the location of the residents at the moment 

the wave would have reached land, and the actual inland reach of the different wave heights. 

To get a worst case scenario all residents that have not reached a shelter and are within the 

reach of the wave at the time it strikes are presumed dead. This survival data seems to follow 

four distinct normal distributions with the means, µ, and standard deviations, σ, given in table 

6. The part of the distribution that reach above 100% is added to the fraction of times 100% of 

the population survives, and the part of the distribution that reach below 0% is added to the 

fraction of times 0% of the population survives. This addition to the fraction of times 0% or 

100% of the population survives account for an addition less than 0,15% in both ends, due to 

the three sigma rule (Grafarend, 2006).  

 

Table 6: Fraction of resident who survive at the different wave height intervals. 

Wave height (m) Notation Standard deviation (σ) Mean (µ) 

10 to 14,99 FS1 0,05 0,85 

15 to 19,99 FS2 0,10 0,70 

20 to 24,99 FS3 0,16 0,50 

25 to 30 FS4 0,12 0,35 

 

The state is considering upgrading the safety systems by adding more shelters so that nobody 

that lives in the affected area is more than one kilometer from a shelter. It is estimated that 

this will increase the survival rate to somewhere between 90% and 100% for all wave heights. 

The total cost of this upgrade is estimated to be around 750 million NOK. 

 

4.2.2. A probability bounds analysis approach 

Step 1: Problem conceptualization. The problem and the situation at hand has been laid out in 

detail in the previous sub-chapter and will not done again to avoid unnecessary repetition. 

Instead an event tree will be presented to illustrate the possible chain of events, see figure 7. 

No focus will be given to the identification of possible causes of the landslide, as this is 

beyond the scope of this example. 

 

 
Figure 7: An overview of the situation in the form of an event tree. 

 

 

Landslide

W1, P(W1) = [10%, 20%] FS1 = norm(σ = 0.05, µ = 0,85) 

W2, P(W2) = [15%, 40%] FS2 = norm(σ = 0.10, µ = 0,70) 

W3, P(W3) = [25%, 60%] FS3 = norm(σ = 0.16, µ = 0,50) 

W4, P(W4) = [10%, 50%] FS4 = norm(σ = 0.12, µ = 0,35) 
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Step 2: Identification of probabilities. As with the previous step, most of this step has also 

been done in the previous sub-chapter, and to avoid unnecessary repetition it will not be done 

again. The relevant probabilities will instead be presented as figures. The probability intervals 

that represent the uncertainty regarding the occurrence of waves belonging to the different 

height intervals can be seen in figure 8. These probabilities represent epistemic uncertainty, as 

their imprecision is caused by a lack of knowledge, or ignorance. They are based on the best 

estimate of several experts in the field of geology. 

 

 
Figure 8: Overview of the probability of occurrence of the different outcomes. 

 

The probability distribution of the fraction of survivors at different wave heights can be seen 

in figure 9. These probabilities are based on historical data and are not subjective judgements. 

They represent aleatory uncertainty as they stem from natural variations in the system, and 

they cannot be made more accurate by acquiring more knowledge.    

 

0%

10%

20%

30%

40%

50%

60%

70%

10 to 15 15 to 10 20 to 25 25 to 30

P
R

O
B

A
B

IL
IT

Y
 O

F 
O

C
C

U
R

R
EN

C
E

WAVE HEIGHT (METERS)

Overview of the Probability of Occurence of the 
Different Outcomes

Highest & lowest probability of occurrence



32 

 

 
Figure 9: Probability distribution of survivors at different wave heights. 

 

Step 3: Setting up the p-boxes. From the survival probabilities presented in figure 8 it is clear 

that in a best case scenario (highest fraction of survivors) the probability of the occurrence of 

a wave that is between 10 and 15 meters, P(W1), and one that is between 15 and 20 meters, 

P(W2), should be as high as possible, while the probability of the occurrence of a wave that is 

between 25 and 30 meters, P(W4), should be as low as possible. The probability of the 

occurrence of a wave that is between 20 and 25, P(W3), should take the residual value so that: 

 

P(W1) + P(W2) + P(W3) + P(W4) = 100% 

 

The same logic only reversed can be used to find the probabilities required in a worst case 

scenario (lowest fraction of survivors). In this case P(W4) should be as high as possible, while 

P(W1) and P(W2) should be as low as possible. P(W3) should take the residual value so that 

the equation above is fulfilled. This reasoning leaves the following probability bounds, see 

table 7 for exact values and figure 10 for an illustration of the cumulative probabilities. 

 

Table 7: Probability bounds on the worst and best case scenarios. 

Wave height (m) P in the best case scenario P in the worst case scenario 

10 to 14.99 0.20 0.10 

15 to 19.99 0.40 0.15 

20 to 24.99 0.30 0.25 

25 to 30 0.10 0.50 
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Figure 10: Best & worst case cumulative probabilities for the different wave heights. 

 

By combining the probability values for the best and worst case scenarios, with the 

probability distribution of survivors at different wave heights the following p-box is revealed, 

see figure 11. The exact calculations behind this can be found in appendix A. 

 

 
Figure 11: Bounds on the cumulative probabilities of the fraction of survivors. 
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If we assume that the probability intervals in figure 8 contain the “true” underlying 

probability of occurrence, and that the probability distribution of survivors at different wave 

heights in figure 9 is a correct representation of the “true” underlying probability of surviving 

at different wave heights, the p-box in figure 11 must contain the true cumulative probability 

of the fraction of survivors. However, we are unable to say anything regarding its shape, 

beyond that it must be within the bounds of the p-box.  

 

Step 4: Assumption justification. The relevant assumptions, their justifications and the 

strength of the assumption justifications are presented in table 8 and 9 on the following pages. 

The judgements of these assumptions have followed the principles and guidelines presented 

by Flage & Aven (2009). 

 

Table 8: An overview of the relevant assumptions, their associated justifications and 

judgement of the strength of these justifications. Part 1 of 2. 

Assumption  Assumption justification  Strength of assumption 

justification 

The bounds that are set 

on the probability of 

occurrence for the 

different wave height 

intervals contain the 

true probability of 

occurrence. 

 These bounds represent the upper and 

lower probability of occurrence found 

after going through several models made 

by experts. The experts claim that it is 

difficult to accurately predict the 

probability of occurrence for the 

different wave heights, since it is hard to 

say exactly how much of the in place 

landmasses that will fall out and cause a 

landslide. 

 Poor 

The probability 

distribution of the 

fraction of survivors at 

the different wave 

height intervals is an 

accurate representation 

of the true underlying 

frequentist probability. 

 This is based on 70 years of 

continuously updated statistical data 

along with repeatedly proven models of 

how waves of different sizes behave 

after they hit land. 

 Strong 

There will be a 

landslide sometime in 

the next 1000 years. 

 This is based on a combination of 

historical recordings of similar events, 

estimated annual precipitation and the 

surrounding geology. Essentially it is a 

subjective estimate made by a team of 

experts. 

 Moderate 

All wave heights within 

the same interval will 

cause a similar degree 

of destruction. 

 It is clear that waves on the opposite 

side of each interval will not cause a 

similar degree of destruction. As 

previously mentioned, this assumption is 

only taken to simplify the example. 

 Poor 
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Table 9: An overview of the relevant assumptions, their associated justifications and 

judgement of the strength of these justifications. Part 2 of 2. 

Assumption  Assumption justification  Strength of assumption 

justification 

The maximum height a wave 

can reach in this situation is 

30 meters. 

 This is based on a wave 

formation model of a worst 

case scenario where all of the 

in place landmasses fall out 

unhindered and crash into the 

ocean below. The experts 

believe they have an accurate 

estimate of the total volume 

and mass of the “available” 

landmasses, and the wave 

formation model has 

previously been proven to be 

accurate. 

 Strong  

The cost of upgrading the 

safety systems will not 

surpass 800 million NOK. 

 Several contractors have been 

contacted regarding the job at 

hand, and all have given rice 

estimates that range between 

700 and 800 million NOK, but 

costly unforeseen events can 

always occur, and especially 

relevant in projects of this 

magnitude. 

 Moderate 

The estimated interval of the 

fraction of survivors if that 

the safety systems are 

upgraded contains the true 

fraction of survivors. 

 This is based on the location 

of the new shelters, and how 

quickly it is presumed that the 

people nearby can reach and 

enter them. The locations of 

the new shelters are chosen so 

that all of the residents (100%) 

should be able to reach and 

enter them from the time the 

warning alarm goes off and 

until the tsunami hits land. 

 Strong 

 

Step 5: Analyzing the result of the p-boxes in light of the assumption justifications. As we can 

see from table 8, one of the most important assumptions: “The bounds that are set on the 

probability of occurrence for the different wave height intervals contain the true probability of 

occurrence” is poorly justified. The reason for its importance is that this assumption, along 

with: “The probability distribution of the fraction of survivors at the different wave height 

intervals is an accurate representation of the true underlying frequentist probability” lays the 

foundation for the bounds on the cumulative probabilities of the fraction of survivors, which 

in turn is the final quantitative result of the risk analysis. If the strength of this assumption 

justification truly is poor, the bounds on the cumulative probabilities of the fraction of 

survivors seen in figure 11 cannot be seen as reliable and must be extended to the bounds seen 

in figure 12, here represented by the purple and turquoise lines. Consequently, it is important 

to analyze why the strength of the assumption justification is judged as poor. If we follow the 

principles and guidelines suggested by Flage and Aven (2009) for assessing strength of 
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assumption justifications, the strength of an assumption justification can be considered poor if 

one or more of the following conditions are met:  

 

• The assumptions made represent strong simplifications. 

• Data/information is non-existent or highly unreliable /irrelevant. 

• There is strong disagreement among experts. 

• The phenomena involved are poorly understood, models are non-existent or 

known/believed to give poor predictions. 

 

To find the bounds on the different probabilities of occurrence several expert made prediction 

models were analysed, and the highest and lowest probability of occurrence found for each of 

the wave height intervals were selected as the upper and lower bounds on probability. The 

assumptions that form the background of these models does not represent strong 

simplifications, nor are they seen as very reasonable due to the lack of relevant information. 

The assumptions that form the background of these models represent some simplifications. In 

this case it is not correct to say that data is non-existent or highly unreliable, nor is it correct 

to say that there exist large amounts of reliable and relevant data. There is some reliable data 

from local geological surveys along with data from similar situations. Again, we fall 

somewhere between the two, and a more correct statement would be that some reliable and 

relevant data is available. It is however true that there is strong disagreement among experts, 

and this is clearly expressed through the wide variety of probabilities predicted by the models. 

But this disagreement is in many ways reflected through the bounds of the intervals, which 

incorporate the variety in the probabilities, and this is consequently expressed by the width of 

the best- and worst-case CDF. It would therefore be more correct to say that there is strong 

disagreement among experts, but this disagreement is reflected through the width of the 

probability intervals. The phenomena involved in this case are neither poorly nor well 

understood, but understood to a certain degree, and consequently the existing models give 

various predictions. A more correct final statement would in this case be that the phenomena 

involved are understood to a certain degree, and the existing models give varying predictions 

within a certain range which is believed to contain the true value.  

 

Since one of the conditions proposed by Flage and Aven (2009) is met, namely that there is 

strong disagreement among experts, the strength of the assumption justification is considered 

poor. It has previously been argued that this disagreement is reflected through the width of the 

probability intervals, and that all the other statements fall somewhere between strong and 

poor. From this simple analysis it is clear that even though the strength of the assumption 

justification has to be considered as poor since it meets one of the required conditions, one 

can still assume that the probability intervals contain the “true” underlying probability. 

Consequently, one can assume that the bounds on the cumulative probabilities of the fraction 

of survivors does contain the “true” CDF. 
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Figure 12: Bounds on the cumulative probabilities of the fraction of survivors.  

 

From this point on it is assumed that the bounds on the cumulative probabilities of the fraction 

of survivors, seen in figure 11 does contain the “true” CDF. A quick numerical overview of 

this figure can be seen in table 10. We can see that both the best and worst case probabilities 

are similar for a fraction of survivors >0.9 and <0.2, but there is quite a big gap in between 

these values. For instance, in the best case scenario there is a 74.4 % that more than 50% of 

residents survive the tsunami, while in the worst case scenario there is only a 42% chance of 

having the same number of survivors. Again, it is important to note that it is impossible to say 

anything regarding which of the two scenarios is closest to the “true” value. The only thing 

that is assumed to be true is that the “true” value is found somewhere between the best and 

worst case scenarios. 
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Table 10: Numerical overview of the bounds on survival probabilities.   

Minimum fraction of people 

who survive 

Best case probability Worst case probability 

1.00 0.3 % 0.2 % 

0.95 0.8 % 0.5 % 

0.90 3.9 % 2.0 % 

0.80 23.2 % 11.2 % 

0.70 42.4 % 19.9 % 

0.60 61.2 % 30.0 % 

0.50 74.4 % 42.0 % 

0.40 85.1 % 59.4 % 

0.30 93.3 % 79.6 % 

0.20 98.0 % 93.5 % 

0.10 99.7 % 98.8 % 

0.05 99.9 % 99.5 % 

 

The best and worst case CDF can also be used to calculate a best and worst case estimate of 

the fraction of survivors in the long run. This only a hypothetical number that would be true if 

this situation could be repeated an infinite number of times under similar conditions. In the 

long run, the fraction of survivors is 0.63 in the best case scenario, and 0.49 in the worst case 

scenario. If we were to use these numbers in a cost-effectiveness analysis we would find that 

the implied cost of averting a fatality (ICAF) would lay somewhere between 1.5 million NOK 

and 2.8 million NOK. These numbers are way below the emerging consensus in the academic 

literature, which finds the statistical value of human life to range somewhere between 32 

million NOK and 80 million NOK (Kniesner et al., 2012; & Robinson & Hammitt, 2015). It is 

still important to note that the implied cost of averting a fatality does not sufficiently reflect 

uncertainty. The exact calculations behind this can be found in appendix A. 

 

If more detailed information regarding the probability distribution of the timeframe of the 

landslide, and the estimated population growth was available, it would be easier to give 

definitive recommendation about whether the state should invest in upgrading the safety 

systems or not. This upgrade has some clear advantages, where the main ones are that the 

probability of having at least 90% of the residents survive the tsunami is lifted from [2.0 %, 

3.9 %] to 100%, and the worst and best case long run fraction of survivors are lifted from 0.49 

and 0.63 to 0.90 and 1.0. See figure 13 for a comparison between the current bounds on the 

cumulative probabilities of the fraction of survivors and the bounds of the CDF if the safety 

systems are upgraded.  

 

Combining probability bounds analysis with a qualitative judgement of the strength of the 

assumptions that lay the foundation for the numerical values used in the PBA, does in this 

case result in a detailed and informative risk picture in the event of a landslide. From the 

bounds on the cumulative probabilities of the fraction of survivors, and the expected number 

of survivors in the long run, it is clear that the residents living in the end of the fjord are at 

great risk of dying if there is a landslide. Currently the geologists cannot say anything 

regarding the probability distribution of this timeframe, only that they believe there will be a 

landslide sometime in the next 1000 years. Another factor that should be taken into account 

before the state choses whether to invests in new safety systems or not is how the population 

of this small community is going to change in the coming years. If the population is thought 



39 

 

to grow a lot in the coming years the safety systems may need to be upgraded regardless of 

the timeframe of the landslide situation just to be able to accommodate everyone inside the 

shelters. An upgraded safety system may also have a positive impact on the population 

growth, which in turn can turn can contribute to economic growth in the community. These 

aspects are beyond the grasp of this risk assessment and should be a part of the managerial 

review and judgement, before a final decision is made. 

 

 
Figure 13: Bounds on the cumulative probabilities of the fraction of survivors. 
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5. Discussion 
 

This chapter will introduce two separate discussion topics as well as suggestions for further 

work. The aim of the first discussion is to discuss why it is important to acknowledge an 

additional level of uncertainty and to what degree the new alternative uncertainty taxonomy 

eliminates the challenges that are present in the other uncertainty taxonomies. The aim of the 

second discussion is to discuss the previously introduced risk assessment method’s 

applicability as a tool in risk management.  

 

5.1. The importance of acknowledging the existence of an additional 
uncertainty level and how the introduction of this level solves challenges 
that are present in the other uncertainty taxonomies 

 

As previously mentioned, uncertainty can be interpreted in two ways in a risk setting, either as 

aleatory or as epistemic uncertainty. Aleatory uncertainty represents the natural variation of a 

system and cannot be further reduced by acquiring more knowledge. If a person has the 

required background knowledge on a certain system, this type of uncertainty can be expressed 

by using a probability model that is an accurate representation of the underlying frequentist 

distribution. E.g. if you are to draw one card out of fair and properly shuffled deck of cards 

the probability of drawing hearts will always be 1/13. Epistemic uncertainty on the other hand 

stems from a lack of knowledge and can be expressed as a subjectively assigned probability 

which is based on some background knowledge (See chapter 2.1.1. for an explanation of how 

this probability can be interpreted). E.g. I assign the probability of me beating my best friend 

in chess to be 0.7. This is based on the knowledge I have gathered by knowing him the last 20 

years. Subjective probabilities like this does not have to be expressed as point estimates. If the 

assignor has a moderate or poor understanding of the situation at hand he/she can opt to 

express his/her uncertainty as an imprecise probability, or a probability interval. This means 

that the assignor believes that the “true” probability will lay somewhere within the interval. If 

the assignor has the supporting background knowledge he/she may also attach a probability 

distribution to this interval. In those cases where no probability distribution is attached to 

interval, the assignor only expresses the he/she believes that the true probability lies 

somewhere within the interval, and nothing more. It is important to note that this is not the 

same as a normal distribution, where each value within the interval is equally likely. E.g. I 

assign the probability of me beating a random stranger in chess to be [0.3, 0.7]. This means 

that based on my knowledge and experience as a chess player I believe that the true 

probability of me beating a random stranger in chess lies somewhere within that interval, but I 

cannot say anything regarding the probability distribution of the values within the interval.  

 

The uncertainty taxonomy introduced by Courtney (2001) totaly ignores this aspect of 

uncertainty. Level 1 & level 2 is represented by aleatory uncertainty that can for all practical 

purposes be said to be accurately described by frequents probabilities, while no probabilities 

can be used to describe uncertainty in level 3 and 4. This way of dividing different degrees of 

uncertainty would lead to many situations not fitting in anywhere in this taxonomy.  There is a 

clear gap here that needs to be bridged. Aven (2013) did that to a certain degree with his 

alternative taxonomy, see table 3. Here he divides uncertainty into three distinct levels: low, 

moderate and deep uncertainty. There is no clear distinction between these levels, other than 

how strong one can judge the background knowledge to be, and if black swans can be present. 

The use of imprecise probabilities to express uncertainty could be used in situations that fall 
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under moderate uncertainty where the background knowledge is based on some dominating 

explanations and beliefs. But what this alternative taxonomy gains in its simplicity, it lacks in 

detail and concrete information. A new taxonomy has been suggested in this thesis that 

incorporates the knowledge aspect that Aven (2013) found to be missing in Courtney’s 

taxonomy into the taxonomy template that Courtney (2001) created and adds a fifth level of 

uncertainty that gives room for expressing epistemic uncertainty as imprecise probabilities. 

This way the level of detail that was introduced in Courtney’s (2001) taxonomy is slightly 

increased, and there is made room for situations where the uncertainty can only be expressed 

as imprecise probabilities. Having a taxonomy that captures every nuance of uncertainty can 

aid risk analysts in finding the risk assessment and risk management method(s) that are best 

suited for handling a given situation.  

 

There is however one minor shortcoming with this taxonomy which it also shares with the 

alternative proposed by Aven (2013). Neither of these two taxonomies give a clear and 

distinct separation between moderate and deep uncertainty. In Aven’s taxonomy, moderate 

and deep uncertainties are separated by a judgement of the strength of knowledge. There are 

some dominating explanations and beliefs in the former category, while the background 

knowledge is judged to be poor in the latter. This leaves the exact separation of moderate and 

deep uncertainty open for debate. In the taxonomy proposed in this thesis the separation of 

moderate and deep uncertainty falls somewhere in the third uncertainty level. According to 

the deep uncertainty definition introduced by Walker et al. (2017) it could be argued that once 

imprecise probabilities are used to describe the uncertainties of a situation that situation will 

fall under the deep uncertainty category. By this account almost every situation where 

probabilistic point estimates are used to describe uncertainties would also fall under the deep 

uncertainty category, since point estimates can be seen as short intervals due to the natural 

imprecision of decimal numbers (Aven & Reniers, 2013). E.g. 0.7 = [0.650, 0.749].  

 

Maybe the fact that it is hard to make a clear separation between moderate and deep 

uncertainty suggests that this is a natural grey area, and that the necessity for clear separation 

may not be that high? If, however it is deemed necessary to have a clear distinction between 

the two it could be done by introducing an additional level of uncertainty, namely high 

uncertainty. High uncertainty would cover every situation where imprecise probabilities are 

used to express uncertainties (Level 3), while deep uncertainty would cover every situation 

where it is impossible to use probabilities to express uncertainty (Level 4 & 5). Further work 

is needed to investigate this. 

 

5.2. The newly proposed methods applicability as a tool for assessing risk 
 

The three main objectives of a risk assessment are to identify risks, analyze the identified 

risks, and to evaluate these risks (ISO, 2018). This is done so that a clear and informative risk 

picture can be presented to the decisionmakers, thus aiding them in making a well informed 

decision. Once we enter the realm of level 3 uncertainty where it is no longer possible to use 

point estimates of probability to express uncertainty, and the only viable numerical option is 

to use imprecise probabilities, it is impossible to present a quantitative risk picture without 

using bounds on the probabilities. This means that in a situation like this it is impossible for 

the risk analyst to identify one clear numerical probability for each outcome. What can be 

done however, is to identify the best and worst case scenarios by using probability bounds 

analysis and use this as the quantitative basis for the risk assessment. A probability bounds 

analysis alone is not enough to present a clear and informative risk picture, because it does not 
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involve any justification of the relevant assumptions. If we are to use a quantitate risk analysis 

method as the basis for evaluating risk in a situation where the underlying information is so 

poor that it is impossible to identify point estimates of the probabilities and imprecise 

probabilities are the only available option, it is of outmost importance that the bounds on 

these probabilities can be justified. If there is no form of assessment of the strength of the 

assumptions that lay the supporting foundation of a probability bounds analysis it would be 

very hard to say whether the bounds it presents in its final result truly represents the best and 

worst case scenarios of a given situation or not. The risk assessment method presented in this 

thesis is therefore a combination of a probability bounds analysis and a justification of the 

assumptions. In the latter all the relevant assumptions must be justified and followed up by a 

judgement of the strength of theses justifications. By doing so it becomes clear to the 

decisionmakers whether they can trust the bounds that are presented as the final result of the 

probability bounds analysis or not.  

 

If the assumptions that lay the foundations for the bounds on the probabilities can be justified 

this method has some clear benefits as a tool for assessing risk. First of all, it lets the risk 

analysts make probabilistic risk assessments when the available empirical information 

regarding the input distributions is limited. Second, it can help narrowing down the bounds on 

the cumulative probabilities, as illustrated in the example in chapter 4.2.2., see figure 12. 

Third, it enables the risk analyst to combine both aleatory and epistemic uncertainty in a 

meaning full way. And finally, it allows the risk analyst to present a clear and informative risk 

picture to the decisionmakers by giving a quantitative expression of the risks, and a qualitative 

judgement of the assumptions. This is not to say that this risk assessment method is without 

limitations. The first, and most obvious one is its inability to produce reliable results if the 

assumptions that lay the foundation for the probability bounds cannot be sufficiently justified. 

The second one is that if the probability intervals that are used to identify the p-box are very 

wide, the resulting bounds on the cumulative probabilities will also be very wide, meaning 

that there is big difference in the best and worst case scenario. If this is the case, then using a 

probability bounds analysis will not help very much in narrowing down the bounds on the 

cumulative probability distribution, meaning that we barely gain new insight by doing the 

analysis. Say for example that the probability of occurrence for each of the wave height 

intervals in the previous example could be described by the same probability interval [0.05, 

0.85]. Due to the width of this interval the best and worst case cumulative probabilities would 

be much closer to the purple and turquoise lines (see figure 12), which means that we can just 

barely narrow down the best and worst case scenarios, which in turn means that we just barely 

learn anything new from this analysis at all. The final limitation is how the PBA handles the 

introduction of a timeframe without a probability distribution. This limitation is clearly 

demonstrated in the case study in chapter 4.2.2., where it is impossible to say anything more 

about the timeframe of the incident other than that the experts believe it will occur sometime 

in the next 1000 years. This cannot be included in the PBA itself, which only gives a 

probabilistic overview of the best and worst case scenario if there is a landslide. This means 

that the results of the PBA have to be analyzed in the light of this information.   

 

It is clear that this method has its limitations, but under the right conditions it has proved to be 

a great tool for assessing risk under moderate/deep uncertainty. 

 

5.3. Further work 
As previously mentioned some further work is needed to investigate the necessity of a clear 

separation between moderate and deep uncertainty, or if it is okay that this is a grey area. The 
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combination of the probability bounds analysis and the qualitative assessment of the 

knowledge/justifications should also be tested on a real life case. This may uncover more 

strengths and/or weaknesses than what was found in this thesis. 

6. Conclusion 
 

This thesis highlights and discusses some of the challenges and limitations imbedded in the 

existing deep uncertainty taxonomies and develops an alternative taxonomy with a higher 

level of detail and an additional level of uncertainty to try and combat these challenges. Later 

on, a method that can be used to assess risk in situations that fall under the new uncertainty 

level is introduced and its applicability is illustrated through a stylized example. 

 

The current deep uncertainty taxonomies were found either to be too limited in its reflections 

of the various nuances of uncertainty in the stages between low and deep uncertainty, and to 

be without a judgement of knowledge, or to have a level of detail that was too low to be 

precise and informative. To solve this, a new taxonomy has been introduced which expands 

the template of the former taxonomy to incorporate the knowledge dimension which was 

introduced in the latter and adds a fifth level of uncertainty so that every nuance of 

uncertainty is clearly reflected. This additional level of uncertainty incorporates the alteration 

from moderate to deep uncertainty, and it encompasses every situation where the only means 

of quantitatively expressing the uncertainty is by using imprecise probabilities. Simply put, 

the new taxonomy combines the best features from the former taxonomies with some new 

elements, which in turn gives it a more nuanced reflection of the various levels of uncertainty 

and a higher level of detail. By adopting this taxonomy, risk analysts may get a better 

understanding of the various levels of uncertainty, which could in turn aid them in the process 

selecting the most appropriate method to assess risk at hand in a given situation.  

 

It can be challenging to do a comprehensive probabilistic risk assessment in a situation where 

the only means of quantitatively expressing the uncertainty is by using imprecise 

probabilities. Regular risk assessments methods are not capable of handling such situations 

properly, which is why a probability bounds analysis may be the better choice. Through the 

case study, the PBA was found to be a great tool in identifying and expressing risk 

quantitatively in situations where the probability intervals were not to wide. However, this 

analysis method alone is not capable of describing every aspect of the risk picture, as it lacks 

a qualitative judgement of the SoK. Without this type of judgment there is no way of knowing 

if the probability bounds that lay the foundation for the final results of this analysis can be 

trusted. To resolve this, every relevant assumption that is made during the analysis has to be 

justified and followed up with a judgement of the strength of these justifications, and finally 

the results of the PBA has to be reviewed in the light of these justifications. This combination 

has through the case study proven to be a valuable tool in assessing risk in a situation were the 

only quantitative expression of uncertainty is imprecise probabilities. It enables the risk 

analyst to present a clear and informative risk picture in situations where the empirical 

information is limited. 
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Appendix A 
 

A.1. The calculations behind the bounds on the cumulative probabilities of 
the fraction of survivors 

 

All of the calculations in this chapter follow the mathematics for calculating probability 

bounds as described by Tucker and Ferson (2003). 

 

First, we use the σi and µi from table 6 as inputs for the normal distributions of the fraction of 

survivors at the different wave height intervals. Then we use these normal distributions to 

identify the fraction of times 1%, 2%, 3%, …, 100% of the residents survives for each of the 

different wave height intervals. To better illustrate this a sample of the results can be seen in 

table A1. This table is basically a numerical representation of the graphs seen in figure 9. The 

reason for the “-“ in the fraction of times people survive the smallest wave height is that it is 

assumed that at least 70% of the residents survive if such a wave strikes. 

 

Table A1: A numerical representation of the graphs seen in figure 9 
 Percentage of residents who survive 

 45 % 46 % 47 % 48 % 49 % 50 % 51 % 52 % 53 % 

Wave height (m) The fraction of times the percentage of residents seen above survive the different waves 

10 to 14.99 - - - - - - - - - 

15 to 19.99 0,002 0,002 0,003 0,004 0,004 0,005 0,007 0,008 0,009 

20 to 24.99 0,024 0,024 0,024 0,025 0,025 0,025 0,025 0,025 0,024 

25 to 30 0,023 0,022 0,02 0,018 0,017 0,015 0,014 0,012 0,011 

 

These fractions, which are written in blue are then multiplied by the respective probability 

bounds on the best and worst case scenarios, and their values are summed up find the bounds 

on the cumulative probabilities of the fraction of survivors. See table 7 for the probability 

bounds of the best and worst case scenarios, and table A2 and A3 for a sample of the 

calculated bounds on the cumulative probabilities of the fraction of survivors.  

 

Table A2: Bounds on the best case cumulative probabilities – A partial numerical 

representation of the best case CDF in figure 11. 
 Percentage of residents who survive 

 ≤ 44% 45 % 46 % 47 % 48 % 49 % 50 % 51 % 52 % 53 % 

Wave height (m) The fraction of times the percentage of residents seen above survive the different waves 

10 to 14.99 - - - - - - - - - - 

15 to 19.99 - 0,001 0,001 0,001 0,002 0,002 0,002 0,003 0,003 0,004 

20 to 24.99 - 0,007 0,007 0,007 0,008 0,008 0,008 0,008 0,008 0,007 

25 to 30 - 0,002 0,002 0,002 0,002 0,002 0,002 0,001 0,001 0,001 

 The fraction of times the percentage of residents seen above survive 

Sum - 0,010 0,010 0,010 0,011 0,011 0,011 0,012 0,012 0,012 

Cumulative P 0,189 0,199 0,210 0,220 0,231 0,242 0,253 0,264 0,276 0,288 
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Table A3: Bounds on the worst cumulative probabilities – A partial numerical 

representation of the worst case CDF in figure 11. 
 Percentage of residents who survive 

 ≤ 44% 45 % 46 % 47 % 48 % 49 % 50 % 51 % 52 % 53 % 

Wave height (m) The fraction of times the percentage of residents seen above survive the different waves 

10 to 14.99 - 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 

15 to 19.99 - 0,000 0,000 0,000 0,001 0,001 0,001 0,001 0,001 0,001 

20 to 24.99 - 0,006 0,006 0,006 0,006 0,006 0,006 0,006 0,006 0,006 

25 to 30 - 0,012 0,011 0,010 0,009 0,009 0,008 0,007 0,006 0,006 

 The fraction of times the percentage of residents seen above survive 

Sum - 0,018 0,017 0,016 0,016 0,015 0,015 0,014 0,013 0,013 

Cumulative P 0,483 0,501 0,518 0,535 0,551 0,566 0,581 0,595 0,608 0,621 

 

A.2. The calculations behind the best and worst case estimate of the 
fraction of survivors in the long run 

 

The mathematics in this chapter are based upon the rules of statistics as presented by 

Løvås (2004). 

 

To find the long run estimates of the number of survivors we simply multiply the fraction of 

times the different percentages of residents survive by that percentage and sum up the results, 

see the equation below.  

 

∑ 𝑃(𝑥𝑖)𝑥𝑖

100

𝑖=1

 

𝑥𝑖 

𝑥𝑖 = The fraction of residents who survive (Purple numbers in table A2 and A3) 

𝑃(𝑥𝑖) = The fraction of times 𝑥𝑖 occurs / The probability of having 𝑥𝑖 survivors (Red numbers 

in table A2 and A3) 

 

To find the implied cost of averting a fatality you take the total cost of the operation and 

divide it by the expected number of lives it would save: 

 

In the best case the scenario, the implied cost of averting a fatality would range somewhere 

between:   

 

750 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑁𝑂𝐾

[270,   370] 𝑙𝑖𝑣𝑒𝑠 𝑠𝑎𝑣𝑒𝑑
= [2.0, 2.8] 

 

In the worst case scenario, the implied cost of averting a fatality would range somewhere 

between:   

 

750 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑁𝑂𝐾

[410, 510]
= [1.5, 1.8] 

 


