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Abstract 

In this thesis the dynamic between Bitcoin and a selection of various financial assets is analyzed 

to examine whether Bitcoin offers diversification, hedging and safe haven properties for risk 

management benefits in a global market portfolio. A dynamic conditional correlation model is 

used to obtain the co-movement between the assets. Optimizing portfolios by including Bitcoin 

is done to examine what the inclusion does for the portfolio properties. Lastly, Value at risk 

(VaR) is estimated to see whether including Bitcoin in a portfolio can lower the VaR. 

 

The conditional correlation coefficients for Bitcoin against the other assets for all sample 

periods investigated shows correlation coefficients around zero. In addition, the analysis of 

volatility spillovers between the selected markets implies that there is no significant contagion 

between the markets and for these reasons, Bitcoin exhibits effective diversification properties. 

This is also supported by the analysis of MVF and CML. The MVF and CML shows that 

portfolios including Bitcoin make it possible to obtain the same expected return, but for a lower 

risk. The VaR analysis shows that a including a Bitcoin weight between 0.0-5.0% lowers the 

VaR, despite Bitcoin’s high volatility.  

 

Finally, the near zero conditional correlation coefficients between Bitcoin and the other assets 

also imply that Bitcoin does not exhibit hedging properties. Bitcoin is also considered as a weak 

safe haven as it is uncorrelated with the other markets during market turmoil. 
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1. Introduction 

The cryptocurrency market has grown rapidly since Satoshi Nakamoto published a white paper 

about Bitcoin. The white paper was released shortly after the collapse of Lehman Brothers 

which initiated the global financial crisis in 2008. From its inception in 2009  until now, Bitcoin 

has unquestionably been the dominating leader of the cryptocurrency boom by market cap. It 

has been well known that Bitcoin first had found support among tech nerds and people with 

limited trust to governments and banks. The price started at a few cents and has grown 

exponentially in a few years attracting a whole new domain of speculators and investors. 

However, shortly after CME Group Inc launched Bitcoin futures in December 17th, 2017, 

Bitcoin peaked at an all-time high of $US 20 089 intraday with a market capitalization of $US 

326 billion as seen in figure 1. The launch of Bitcoin futures finally allowed the pessimistic 

investors who believed that the price would collapse, to enter the market. The rapid decline of 

the price bottomed at $US 6048 in February 6th and has since that day been in a period of 

consolidation up until June, relative to the rapid growth in the end of December.  

 

 

Figure 1: Bitcoin's 12-month performance (CoinMarketCap, 2018) 
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There is no clear agreement among investors on the long-term price formation of Bitcoin 

beyond the end point shown in figure 1. However, the inception of Bitcoin in the future market 

has opened the door to a new set of investors in the crypto market. A lack of clarity on the 

regulation of cryptocurrencies has been one of many barriers in many countries, but regulators 

and policy makers across the world have been starting to recognize cryptocurrencies as an asset. 

Therefore, the traditional financial institutions and hedge funds specialized in trading 

cryptocurrencies are starting to recognize them as an investment. The literature on Bitcoin’s 

financial properties in a global market portfolio is quite narrow. As a result of this, the 

characteristics of Bitcoin and its implementation in a global portfolio are investigated 

throughout this thesis. Moreover, the literature on generalized autoregressive conditional 

heteroskedasticity, portfolio optimization and value at risk has been adapted to conduct the 

empirical analysis. 
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1.1 Thesis Objectives 

 

The main objective of this thesis is to evaluate Bitcoin as an asset in financial market risk 

context and investigate whether Bitcoin can act as a diversifier, hedge and safe haven in a global 

market portfolio. Thus, this thesis will give an introduction on Bitcoin and financial risk, in 

order to understand Bitcoin’s technology and the mechanisms that are applied to assess 

financial risk. The evaluation will be based upon portfolio theory and financial data which is 

processed through a general autoregressive conditional heteroskedasticity (GARCH) model and 

value at risk estimations.   
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2. Essential Features of Bitcoin 

In October 2008, a person or collective group using the pseudonym Satoshi Nakamoto 

published a white paper that described the idea of Bitcoin. Bitcoin can be described as a 

decentralized digital currency and uses a peer-to-peer (P2P) network in such a way that no 

central authority can issue new money (Nakamoto, 2008). Therefore, decentralization is one of 

the most important characteristics of Bitcoin that differentiates it from conventional currencies 

(e.g. euro and dollar). Transaction management and money issuance are therefore carried out 

solely by the network through nodes. However, even though Bitcoin is decentralized, it stores 

the detail of every single transaction that has ever happened in its ledger. Every Bitcoin is 

associated with a Bitcoin address (public key) and can be sent from one address to another 

(Dwyer, 2014). The public key also contains a private key that allows the owner of the public 

key to access the Bitcoin address. Since Bitcoin is highly stringent in storing all transactions in 

a ledger, anyone can know how much Bitcoins is stored in any address.  

However, before a transaction can be made, the nodes must verify the transaction by checking 

the syntax, structure and the unspent transaction output. If an input to the transaction can not 

be found in the unspent transaction output database, it is invalid. This might occur through 

double-spending1, or because the transaction is trying to allocate Bitcoins that don’t exist. The 

valid transactions are then sent to a “pool” where they are mined (Dwyer, 2014). Once Bitcoins 

are exchanged or transferred, there is a publicly available database otherwise known as 

blockchain, which records every trade of the digital currency. Bitcoin manages the double-

spending problem by maintaining a universal time-stamped transaction ledger (the blockchain) 

to remain secure and function to its full potential, without the need of a trusted authority (e.g. a 

financial institution).  

Unlike conventional currencies (fiat currencies) produced by governments, Bitcoins are 

produced from the mining process and have a limited supply. Bitcoins are created each time a 

new block is discovered by the miner and there will only be slightly less than 21 million 

Bitcoins made. It can be divided down to 8 decimal places (0.00000001 = 1 Satoshi), where 

one Satoshi is the smallest fraction that currently can be sent (Coindesk, 2018). Bitcoin is scarce 

by design, since there are only going to be a finite number of Bitcoins, comparative to gold. 

However, Bitcoin holds no intrinsic value, like most modern fiat currencies. 

                                                 
1 Double-spending is a unique problem to digital currencies where the possibility to create multiple copies of the 
digital tokens to  spend them more than once exists. 
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Fiat currencies that are created by central banks tend to lose their value over time by inflation. 

Bitcoin, however, through its tight and finite money supply is deflationary if the Bitcoin 

economy is growing. This deflationary spiral and the high average volatility make Bitcoin a 

poor medium of exchange, extremely risky as a standard of deferred payment and certainly not 

a stable store of value. This thesis is going to look at Bitcoin as a new asset class, and to what 

degree it can be used in a portfolio as a diversifier or hedge.  

 

2.1 Bitcoin: Mining Technology 

 

Mining is a resource-intensive process of verifying the transactions by adding the next chain to 

the blockchain. Both transaction fees and the miner’s acquisition of newly created coins (block 

reward) provide incentives for miners. The miners solve complex algorithms to create the new 

blocks which are added to the blockchain. These blocks include recent transactions and the new 

Bitcoins that miners are rewarded (Dwyer, 2014). The primary purpose of mining is to build a 

trustworthy commitment to reach a secure and tamper-resistant distributed ledger.  

 

The ideal average mining rate has been established at 10 minutes per block in the Bitcoin 

protocol and is regulated by an algorithm which makes the difficulty of mining harder as more 

miners join. The reward for mining started at 50 Bitcoins per block, but the rate is set to be 

halved each time 210 000 blocks are mined (Bitcoinminig, 2018). This results in halving the 

rewards every four years, with the last block halving being estimated to take place in October 

2140. After this event, it is expected that a higher transaction fee alone will be a necessary and 

sufficient incentive for the miners to continue maintaining the shared ledger.  

 

To begin with, Bitcoin miners solved algorithms with processors on their normal computers.  

Soon miners discovered that graphic cards used for gaming were much better suited. Graphic 

cards are faster, but they use more electricity and generate a lot of heat. The first commercial 

Bitcoin mining products included chips that were reprogrammed for mining Bitcoin. These 

chips were faster but still power hungry. ASIC (Application-specific integrated circuit) was 

then introduced and designed specifically for Bitcoin mining. AISC technology has made 

Bitcoin mining even faster while using less power and is therefore preferred by most miners 

today (Bitcoinmining, 2018).  
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2.2 Bitcoin: Markets & Trading Processes 
 

Bitcoins can be acquired through mining, simply bought through an entity, or be spent person-

to-person regardless of geography. Before any trade can take place, a Bitcoin wallet is needed. 

A wallet is offered by most cryptocurrency exchanges and has an associated address to it. The 

wallet behaves just like a bank account where the goal is to be able to keep the funds safely 

stored, monitor the balance, and to send and receive Bitcoins. There are several types of wallets 

with the security features being the varying variable. Bitcoin hardware wallets are most secure 

and web wallets are least secure. A hot wallet refers to any form of Bitcoin wallet that is 

connected to the internet (Sharma, 2017). These are the most popular wallets and can be 

connected through a web service, installed on the computer or a mobile phone. Market exchange 

sites, betting sites and other Bitcoin services frequently require deposits into their online wallets 

to access their services. The web wallets require the user to fully trust the third party keeping 

your funds safe. However, some Bitcoin exchanges offer cold storage of Bitcoins in exchange 

for a fee. Cold storage is a way of storing the Bitcoins offline to keep them safer against hackers. 

Unlike other conventional exchanges, the digital currency exchanges operate 24 hours a day 

every single day of the week. Bitcoin or cryptocurrency exchanges works the same way as one 

would buy and sell assets through other exchanges. 

Another key cornerstone about Bitcoin is that the usual transaction fee is a lot lower than the 

cost to send money internationally through a bank. The fee will depend upon the bank that is 

being used. Table 1 shows an example of some various banks. 

 

Financial Institution         Incoming 
international wire 

                     Outgoing  
              international wire 

Bank of America (U.S) 16$ 35$*/45$** 
Citibank (U.S) 15$ 35$ 
HSBC (U.S) 15$ 35$ 
Wells Fargo (U.S) 16$ 45$** 
Sparebank 1 SR-Bank (Norway) 13$ 38$*** 

Table 1: A representation of fees from various banks that are added to international wire, collected from the respective  
banks in March 6, 2018.*Sent in foregin currency, **sent in U.S. Dollars, ***The sender covers the costs in Norway and 
abroad.  
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The average transaction fee between May 2013 and March 2018 for Bitcoins that were sent 

between two addresses has been $1.53 US dollars. In December 2017 the price of Bitcoins and 

the average transaction fee surged to a new all-time high. However, the transaction fees and 

Bitcoin prices eventually peaked at about $56.7 and $19,476 $US dollars the same month as 

shown in figure 2. 

 

Figure 2: Average transaction fee and Bitcoin price between May 2013 and March 2018 
 

By studying the relationship between the two variables in figure 2 by correlation analysis, it 

clearly shows that Bitcoin’s average transaction fees have kept pace with the increase in 

Bitcoin’s price. Figure 3 shows a plot of these two variables with a correlation coefficient of 

0.8475 with a p-value less than 0.001. Hence, evidence suggests that there is a significant 

positive relationship between Bitcoin’s average transaction fee and Bitcoin’s price. Therefore, 

a potential problem with full implementation of Bitcoin as a potentially viable currency is that 

the cost of transaction could be more than its worth (e.g. paying $10 in transaction costs for a 

cup of coffee worth $2). 

0

10

20

30

40

50

60

0

2 000

4 000

6 000

8 000

10 000

12 000

14 000

16 000

18 000

20 000

01.05.2013 05.06.2014 10.07.2015 13.08.2016 17.09.2017

A
ve

ra
ge

 T
ra

n
sa

ct
io

n
 F

ee

B
it

co
in

 P
ri

ce

Bitcoin price $US Average Transaction Fee $US



 

8 

 

 

 

 

 
Figure 3: The correlation between the price of Bitcoin and average transaction fee 

 

Since the network on average adds a new block to the ledger every 10 minutes, with one block 

having a maximum limit of 1 megabyte, there will be an upper limit of how many transactions 

the network can handle every 10 minutes. This limit was set by Satoshi to prevent denial-of- 

service2 (DoS) attacks on the ledger.  

If the average size of a Bitcoin transaction is 250 bytes, there can be a maximum of 4000 

transactions for each block that is added. Furthermore, 4000 transactions every 10 minutes gives 

the network a capacity of 6.66 transactions every second. When the demand of transactions 

exceeds the network capacity, the sender of the transactions with the highest included fee can 

expect to get their transaction attached to the block first (Nadeem, 2017).   

Digital currencies could be the beginning of a new way to exchange value without an 

intermediary as it allows for cheaper and faster payments. However, since the inception of 

Bitcoin in 2009 to this day, it is only regarded as an alternative to the conventional currencies 

as it is still necessary to use conventional currencies to buy Bitcoins. Slow transaction times 

and high transaction costs doesn’t make Bitcoin a well-positioned system that can replace the 

conventional payment problems. 

                                                 
2 In a denial-of-service attack, a cyber-attacker attempts to prevent legitimate users of a machine or network 
resource from accessing the information that is intended to its users. This is typically accomplished by “flooding” 
the machine or network to make it so busy that the network cannot fulfill its requests (US-CERT, 2013). The nodes 
in the Bitcoin network is vulnerable to sophisticated DoS attacks, as they can be overloaded such that it cannot 
process Bitcoin transaction. 
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3. Financial Risk 

There is no widely agreed definition of the concept of risk. However, today in general, risk is 

used to describe exposure to the possibility of loss, damage, injury, or other adverse or 

unwelcome circumstances (Aven & Staff, 2015). The uncertainty about future market prices 

investors are facing is the starting point for every financial model.  

The disruptive innovation behind the cryptocurrencies raises both threats and opportunities 

among a variety of stakeholders. Cryptocurrencies are still very much in its infancy even though 

Bitcoin has been available since 2009. Bitcoin is a highly volatile asset class that has delivered 

a rate of return that is quite unusual in a short amount of time. These features create an 

opportunity for making good profits for short-term investors.  Traditional investors, such as 

institutional investors with a buy-and-hold strategy, have been absent when it comes to 

diversifying their portfolios with Bitcoins because of its highly volatile and unregulated nature. 

However, risk management in finance is about designing proper responses to avoid or mitigate 

bad risk to make sound investment decisions. Before investment decisions are made, investors 

position themselves for numerous financial risks that can affect the investment. These financial 

risks may be in the form of interest rate, inflation, social/political/legislative and volatility in 

the financial market, which could affect all financial securities in the same manner. The latter 

will be put on focus in the coming sections as volatility and correlation between assets (financial 

integration) are important components that are needed in evaluating the risk during portfolio 

optimization and hedging.   

3.1 Volatility and Co-movement 

 

Volatility is a fundamental characteristic of financial markets and is widely accepted as a 

measure of risk. It describes the degree of variation in the returns over a given period for a given 

security and can be measured by the standard deviation. High volatility means that the return 

of the underlying asset can change over a larger range of values in either direction over a period 

of time. Low volatility, on the other hand, implies more predictable changes in the returns.  

A sudden increase in stock market volatility can be explained by investor’s interpretation of 

good and bad news. Macroeconomic changes can be one of the influencing variables that cause 

market returns to fluctuate due to the uncertainty among investors about the future returns of 

their investments. Mandelbrot (1963) noted that large changes in price of an asset tend to be 

followed by other large changes, and small changes tend to be followed by small changes (of 
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either sign). The high volatility tends to exhibit persistence for a while before the market returns 

revert back to mean levels after the initial shock. This is called volatility clustering. It is often 

observed in time series of financial securities by the positive serial correlation in the absolute 

value of returns. This phenomenon can therefore be used to model how much the clustering 

will influence the expectation of volatility in many periods in the future (Engle & Patton, 2001). 

Volatility forecasting can be used to manage asset allocation for investors or funds that want to 

stay within a volatility band (e.g. 5%-10%), or in conjunction with returns as a tradeoff. In 

general, it is an essential part of risk management and can also be used in financial activities 

such as derivative pricing, market making (setting a fair bid-ask spread in times of volatility) 

and hedging.  The Autoregressive conditional heteroskedasticity (ARCH) and the generalized 

autoregressive conditional heteroskedasticity (GARCH) are two of the most widely-used 

models to analyze and estimate volatility and will be discussed further in section 5.1.1 and 5.1.2. 

Co-movement in the financial markets can be described as the tendency of which price and 

volatility exhibit a high degree of correlation across stock markets. Chen and Trang (2017) 

shows that common global factors can be a significant source of international stock market 

fluctuations and that strong co-movements across the international stock market exist. 

However, the degree of co-movements also depends on how developed and integrated the 

country is to the global economy. Evidently, the co-movements are stronger between developed 

countries. Moreover, an increasing economic globalization and international capital flow 

therefore increase the risk and impact of financial contagion3 (Dornbusch et al., 2000).  

During periods of financial distress, the presence of contagion effect can be identified by an 

increase in the conditional correlation between indices (Kohn & Pereira, 2017). Both volatility 

spillover and asset return co-movement are therefore important factors for portfolio allocation 

and risk management. Choosing a portfolio by combining assets that are less correlated is a 

widely embraced investment strategy that reduces the risk of volatility spillover. 

 

 

 

                                                 
3 Financial contagion refers to the spread of market disturbances, mostly on the downside, in which local shocks 
are transmitted to other financial sectors or even to another country.    
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3.2 Portfolio Theory 

This section explains the theory behind portfolio optimization and the terms diversification, 

hedging and safe haven. Before introducing Markowitz’s portfolio theory, statistical definitions 

are presented as they are widely used in this section. 

 

3.2.1 Statistical Definitions  

The expectation of a discrete random variable 𝒙 in a sample of 𝒏, is defined as 

 

𝐸(𝑥) = ∑𝑥𝑖𝑝(𝑥𝑖)

𝑛

𝑖=1

 
 

(1) 

Where 𝑥𝑖 are the values in the sample with respective probability for them to occur, 𝑝(𝑥𝑖). The 

expectation indicates the expected value of the variable.  

The variance and standard deviation of a discrete random variable 𝒙 in a sample of 𝒏 

are defined as 

𝜎𝑥
2 =  𝐸[𝑥𝑖 − 𝐸(𝑥)]2 = ∑[𝑥𝑖 − 𝐸(𝑥)]2

𝑛

𝑖=1

𝑝(𝑥𝑖) 
 

(2) 

 

𝜎𝑥 = √𝜎𝑥
2 (3) 

 

Where 𝑥𝑖 are the values in the sample with respective probability for them to occur 𝑝(𝑥𝑖) and 

expected value 𝐸(𝑥). The variance is a measure of spread around the expected value. The 

standard deviation indicates how much the variable on average differs from the expected value. 

The covariance of two variables 𝒙 and 𝒚 in a sample of 𝒏 is defined as 

 

𝜎𝑥𝑦 = 𝐸[(𝑥 − 𝐸(𝑥))(𝑦 − 𝐸(𝑦))] = ∑[𝑥𝑖 − 𝐸(𝑥)][𝑦𝑖 − 𝐸(𝑦)]

𝑛

𝑖=1

𝑝(𝑥𝑖 , 𝑦𝑖) 
 

(4) 

 

Where 𝑥𝑖 and 𝑦𝑖  are the values in the sample with respective probability for them to occur 

𝑝(𝑥𝑖, 𝑦𝑖). 𝐸(𝑥) and 𝐸(𝑦) are expected values of 𝑥 and 𝑦. The covariance is a measure for the 

linear relationship between 𝑥𝑖 and 𝑦𝑖. 
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The expected return of a portfolio 𝒑 with 𝒏 assets is defined as 

𝐸(𝑟𝑝) = ∑𝑤𝑖𝑟𝑖

𝑛

𝑖=0

 
 

(5) 

Where  𝑤𝑖 is weight of asset 𝑖, and  𝑟𝑖 is expected return of asset 𝑖. The expected return is an 

indication for what the portfolio will bring in terms of profit. 

The variance and standard deviation of a portfolio 𝒑 with 𝒏 assets are given as 

 

𝜎𝑝
2 = ∑𝑤𝑖

2𝜎𝑖
2 + ∑∑𝑤𝑖𝑤𝑗𝜎𝑖𝑗 ,   𝑖 ≠ 𝑗

𝑛

𝑗=𝑖

𝑛

𝑖=1

𝑛

𝑖=1

 
 

(6) 

 

𝜎𝑝 = √𝜎𝑝
2 

 

(7) 

where 𝑤𝑖 and 𝑤𝑗 are weights of asset 𝑖 and 𝑗, 𝜎𝑖
2 is the variance of asset 𝑖 and 𝜎𝑖𝑗 is the 

covariance between asset 𝑖 and 𝑗. The standard deviation is an indication for how volatile the 

portfolio is. 

3.2.2 Markowitz Portfolio Optimization 
 

Harry M. Markowitz is regarded as the main creator of the modern portfolio theory is still used 

by people all over the world. In 1952 Markowitz published the article “Portfolio Selection” 

where he separated the selection process into two steps. The first step starts with observations, 

experiences and expectations of future returns of the available assets. The second step is about 

deciding which assets to include in the portfolio based on the expectations. By going through 

these steps, Markowitz came up with a portfolio optimization model that optimizes portfolios 

based on the investor’s utility. The utility is used to express an investor’s preference towards 

risk. Investors may be risk averse, risk lovers or something in between, which makes every 

investor’s optimal portfolio unique.  

The portfolio optimization model creates optimal portfolios based on correlation between 

assets. Markowitz (1952) assumed a one-period model where investors hold the same 

investment through the whole period. The investors base their decisions on expected return and 

variance that maximize their personal utility. Free access to correct information about return 

and risk, along with effective markets that absorb information fast and correct is also assumed. 
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Eventually, investors are considered risk averse, as risk exposure must be compensated for with 

increased expected return. 

The main purpose of the portfolio optimization is to maximize expected return and minimize 

risk. Risk in portfolios is measured as the standard deviation of the logarithmic returns. The 

expected return and standard deviation of assets can be calculated as daily, weekly, monthly, 

yearly or whatever is preferable for the estimation. 

Calculating several portfolios consisting of the same assets and plotting the results in a risk-

return chart will reveal a pattern. Drawing a line around the outer plots will then reveal the 

minimum variance frontier (MVF) as seen in figure 4.  

 
Figure 4: Minimum variance frontier 

 

This line shows the minimum variance that can be reached for each level of expected return 

(Francis & Kim, 2013). This means that for any portfolios plotted inside the MVF, there is an 

alternative portfolio that offers the same return for a lower risk along the line. It is also normal 

to separate the MVF by the red dot, indicating the minimum variance. The part below the red 

dot is inefficient because the portfolios plotted there offer less return, but for the same amount 

of risk. This is illustrated with p1 and p2. Both portfolios have a standard deviation of 6,00%, 

but p2 offers significantly higher return. The part over the red dot is called the efficient frontier 

(Francis & Kim, 2013). Portfolios plotted on this line represents the highest possible returns for 

a given amount of risk. Efficient frontier is often used together with the capital market line 

(CML).  
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The CML is the tangent line drawn from the risk-free rate on the expected return-axis to the 

efficient frontier (Francis & Kim, 2013), as shown in figure 5.  All points along the CML have 

superior risk-return profiles to any portfolio on the efficient frontier. The line’s slope indicates 

how much additional return is gained for taking on more risk. This is often referred to as the 

Sharpe ratio (Sharpe, 1994). The more return is gained per risk unit added, the steeper the line 

is. The point where the CML meets the efficient frontier is called the market portfolio, and this 

point represents the entire market. 

 
Figure 5: Capital market line 

 
Figure 6: Security market line 
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These theories lead further to the capital asset pricing model (CAPM). CAPM is used to 

calculate the return that can be expected from a single asset by comparing it to the market, 

looking at time value and risk (Fama & French, 2004). The CAPM formula is defined as:  

𝐸(𝑟𝑖) = 𝑟𝑓 + (𝐸(𝑟𝑚) − 𝑟𝑓)
𝜎𝑖,𝑚

𝜎𝑚
2

   

(8) 

where: 

𝐸(𝑟𝑖) = expected return for asset 𝑖, 

𝑟𝑓 = risk-free rate, 

𝐸(𝑟𝑚) = expected market return, 

𝜎𝑖,𝑚 = covariance between asset 𝑖 and market 𝑚, 

and 𝜎𝑚
2  = variance of market 𝑚. 

The time value is represented through the risk-free rate (𝑟𝑓), while risk is represented through 

multiplying the asset’s relative volatility (
𝜎𝑖,𝑚

𝜎𝑚
2 ) with the risk premium (𝐸(𝑟𝑚) − 𝑟𝑓). The 

𝜎𝑖,𝑚

𝜎𝑚
2  ratio, often referred to as 𝛽𝑖, explains the relative risk of an asset compared to the risk in 

the market. A 𝛽𝑖 of 2 indicates that the asset 𝑖 is twice as risky as the market. By plotting the 

𝐸(𝑟𝑖) as a function of the 𝛽𝑖, the Security market line (SML) can be plotted as shown in figure 

6. The SML shows how much return is required for a given level of systematic risk (Francis & 

Kim, 2013). Systematic risk is the opposite of unsystematic risk which leads to the next topic; 

diversification. 

3.2.3 Diversification 
 

A fundamental part of Markowitz’s portfolio theory is that the risk of a portfolio can be 

minimized without reducing the expected return if the portfolios consists of several different 

assets. This is the idea of diversification. It is normal to separate portfolio risk into systematic 

risk and unsystematic risk (Francis & Kim, 2013).  

Systematic risk is market risk that exists for all types of assets in terms of economic cycles 

caused by events that cannot be planned for or avoided4. This risk is not diversifiable regardless 

of how many assets the portfolio consists of. The best way to measure systematic risk is by 

calculating the beta. 

                                                 
4 Inflation, market regulations and natural disaster are examples of systematic risk 
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Unsystematic risk is the same as risk inherent in a company or industry investment. This risk is 

related to the company itself and may be diversified by including more unrelated assets in a 

portfolio. Risk inherent in a company may be news on result reports or signed contracts. The 

idea behind diversification is to not put all your eggs in one basket. In the long run, this 

good/bad news will even each other out if the portfolio consists of several uncorrelated assets. 

The effect of diversification is illustrated in the figure below: 

 
Figure 7: Effect of diversification 

 

3.2.4 Hedging and Safe Haven 

 

While diversification is a great way to remove risk from a portfolio, it is impossible to 

completely remove all risk. Hedging is another method used for removing risk in investments. 

There are several ways to hedge an investment. A common hedging strategy is to buy 

derivatives, such as options, futures or forwards (Catlere, 2009). An option gives the holder the 

right to buy or sell an asset at a specific price. However, the holder is not obligated to do so, 

which separates options to futures and forwards. The holder of futures and forwards is legally 

bound to finalize the deal. The main difference between futures and forwards is that futures are 

usually closed out prior to maturity, while forwards are finalized. This is because futures are 

mostly used by speculators trying to make profit on price changes, while forwards are mostly 

used by large distributors of commodities that needs a certain selling price to make profit. By 

giving the holder alternatives if the price of an asset is very volatile, using derivatives is a great 

hedging strategy for both investors and companies. 
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Hedging can also be based on correlation among assets (Catlere, 2009). If two assets are 

negatively correlated, one can be used as a hedge for the other. Gold and USD is an example 

for this. Figure 8 shows the correlation between trade weighted USD and gold. The strength of 

the hedge depends on how strongly negatively correlated the assets are. A correlation 

coefficient of 0 indicates absolutely no hedge, while a correlation coefficient of -1 indicates a 

perfect hedge. It is not normal for investors to hedge 100%, usually only parts of the investment 

is hedged. This is because the overall profit tends to get lower, the more hedge, unless one of 

the assets are heavily undervalued. 

 

 
Figure 8: USD/Gold correlation (Marketrealist, 2014) 

 

A safe haven is similar to a hedge, but what differs the two terms is the timing of negative 

correlation. If an asset should be considered as a safe haven, it needs to at least retain its value 

in times of distress. Baur and McDermontt (2010) define a safe haven as:  

“A strong (weak) safe haven is defined as an asset that is negatively correlated (uncorrelated) 

with another asset or portfolio in certain periods only, e.g. in times of falling stock markets” 
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4. Data 

The data used in this thesis consists of daily prices from March 1st 2013 to March 1st 2018. All 

data are retrieved from EIKON, except Bitcoin prices for the period 01.03.2013 – 16.07.2014. 

These are retrieved from bitcoincharts.com. Bitcoin prices are given as daily closing price or 

price at 11:59 p.m. UTC, in USD. These prices are then transformed into logarithmic returns 

by using the following formula: 

𝑅𝑑 = ln
𝑝𝑟𝑖𝑐𝑒𝑡

𝑝𝑟𝑖𝑐𝑒𝑡−1
 

 

(9) 

where 𝑝𝑟𝑖𝑐𝑒𝑡 is the price on day 𝑡, and 𝑝𝑟𝑖𝑐𝑒𝑡−1 is the price the day before. 

This is done to make financial comparisons and fit statistical models to the data, which will be 

discussed further in the coming sections. The daily data of the respective assets used in this 

thesis have also been modified in order to resolve the problem of weekends and holidays. 

Bitcoin prices, from the days the stock market and the currency exchanges are closed, have 

been removed to facilitate the right conditions for the processing of the data (same amount of 

observations). Prices from the previous day are also filled in where some of the indices lack 

data because of national holidays. 

4.1 Comparison Objects 
 

Since Bitcoin is a complex investment object global assets, currencies and commodities are 

used for comparison. The investment objects used are listed in the table below: 

Cryptocurrency Indices Currencies Commodities 

Bitcoin SP500 Euro Oil 

 DAX Franc Gold 

 KS11 Yen  

 VGLT   
Table 2: Overview of assets 

SP&500, DAX and KS11 were all included because they are considered among the biggest 

indices for their respective regions America, Europe and Asia. They are all highly attractive for 

investors all over the world because of great history of stable returns. In addition to this, the 

Vanguard Long-Term Treasury Bond (VGLT) is also included. This is a long-term treasury 

bond which is considered as a safer investment, but with lower expected return. The idea behind 

this inclusion is to add an asset with significantly lower systematic risk.  
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When it comes to currencies, Euro is naturally included. The Euro is the official currency in 19 

European countries. It is also the second most traded currency after USD, while Yen is the third 

most traded. This is the main reason for the inclusion of those two. The Swiss Franc however, 

is included because it is considered as a safe haven (Yueh, 2015). Being considered as a safe 

haven, while also being a currency, makes it interesting for comparison. 

Lastly, oil and gold are included because they are global commodities with alternative 

characteristics to indices and currencies. By including crude oil (West Texas Intermediate), it 

is also possible to capture movements in prices during the oil price shock in 2014. Gold is also, 

like Franc, considered as a safe haven (Bauer & McDermott, 2016). 

4.2 Stylized Facts 
 

According to Engle & Patton (2001), a good volatility model is characterized by its ability to 

estimate future movements. To do that it needs to capture as many of the commonly held 

stylized facts. Cont (2001), mentions that more than half a century of empirical studies on 

financial time series indicates that a wide range of securities do share some quite non-trivial 

statistical properties. These properties which are observed throughout financial markets are 

called stylized empirical facts, with some of the most common ones mentioned below. 

• Absence of autocorrelation 

Asset returns tend to lack any statistical significant autocorrelation, except for very short 

intraday series (higher frequency of data). The absence of autocorrelation means that the asset 

can be seen as an open system that continuously reacts to available information.  Thereby, 

estimating the future price movement by past data of the asset is ineffective. This is the evidence 

for the efficient market hypothesis (Fama, 1970). Nevertheless, there is a whole discipline 

dedicated to quantitative technical analysis which has been developed in attempts to predict 

future price movements by studying past price movements.   

• Heavy tails (Leptokurtosis) and negative skewness 

The distribution of returns tends to exhibit leptokurtosis (k > 3) which has “fat tails” relative to 

the normal distribution’s tail. However, for less frequent data (e.g. yearly returns) the 

distribution tends to be more mesokurtic (i.e. similar to kurtosis of a Gaussian distribution with 

kurtosis = 3). Skewness is used to describe the asymmetry from normal distribution. Skewness 

of the aggregate stock market returns tends to have negative skewness while firm stocks usually 

have positive skewness.  
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• Gain and loss asymmetry 

One observes that investors are more sensitive to negative than positive information (i.e. the 

market draw-downs are more intense than the positive increase during an economic expansion). 

• Volatility clustering 

High volatility tends to exhibit persistence for a while before the market returns revert to mean 

levels after the initial shock. This means that a volatile period is followed by another volatile 

period as the market digestion may take several periods on big news. Moreover, rejecting the 

null hypothesis of squared returns being white noise is more likely as the autocorrelation is 

positive for volatility clustering (Cont, 2001).  

• Leverage effect 

First noted by Black and Cox (1976), his hypothesis postulates a negative correlation between 

the return of stocks and its volatility. Leverage can to some extend explain this phenomenon. 

Thus, a negative stock return leads to a lower equity value which increases the financial 

leverage to equity ratio of the firm and, in addition, creates higher risk for the investors holding 

the stock. Christie (1982) also supported the conclusion of this work while investigating the 

variance of equity returns and several explanatory variables. This work concluded that leverage 

effect and interest rate are positively correlated with stock returns. 

• Co-movement and volatility 

Looking at financial time series across different markets, e.g. rate of return for different stock 

exchange indices, one can observe big movements in one stock exchange index being matched 

by a movement in another stock exchange index. This advocates the importance of modelling 

the cross-correlations between different markets by a multivariate model (Knight & Satchell, 

2011).  

 

4.3 Descriptive Statistics 

When comparing data, it is often interesting to look at certain key metrics. These key metrics 

are presented in table 3. By looking at the table, it is clear that Bitcoin differs from the other 

assets in every category. A mean and standard deviation around ten times higher than the rest 

indicates a very special kind of asset. The Francs abnormal properties is also notable and will 

be talked about in more detail in subsection 4.4. 
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Asset Mean Std. 
dev. dev 

Skewness Kurtosis Min 1st 
Quantile 

Median 3rd 
Quantile 

Max 

Bitcoin 0,442 5,915 -1,099 21,141 -66,395 -1,360 0,284 2,603 48,478 

SP&500 0,044 0,756 -0,630 3,694 -4,184 -0,278 0,039 0,444 3,829 

DAX 0,035 1,112 -0,369 2,575 -7,067 -0,475 0,058 0,596 4,852 

KS11 0,014 0,698 -0,210 1,809 -3,143 -0,328 0,008 0,394 2,912 

VGLT -0,001 0,707 -0,322 0,994 -4,132 -0,459 0,039 0,463 2,416 

Euro -0,005 0,531 0,141 2,370 -2,400 -0,318 0,004 0,288 3,035 

Franc 0,000 0,718 10,486 248,897 -2,572 -0,321 -0,020 0,290 17,139 

Yen -0,010 0,618 0,302 3,969 -3,428 -0,340 -0,012 0,302 3,751 

Oil -0,030 2,149 0,160 3,211 -10,794 -1,091 0,000 1,040 11,621 

Gold -0,014 0,970 -0,743 8,084 -8,879 -0,508 -0,007 0,491 4,687 

Table 3: Descriptive statistics of assets 

 

To illustrate the variation of the assets, every asset’s returns are graphically presented along 

with a normal distribution for comparison in the figures 9-18. Every asset shows proof of high 

peaks and heavy tails which indicates that they are not normally distributed. This is expected, 

as financial data often have these characteristics. A Jarque-Bera test5 is also performed for 

confirmation, as shown in table 4. 

 

Asset 
Test 

statistic 

P-

value 

Normal 

distributed 

Bitcoin 24508 0.0000 No 

S&P500 826.37 0.0000 No 

DAX 389.21 0.0000 No 

KS11 187.11 0.0000 No 

VGLT 76.037 0.0000 No 

Euro 308.99 0.0000 No 

Franc 3384600 0.0000 No 

Yen 874.65 0.0000 No 

Oil 564.82 0.0000 No 

Gold 3665 0.0000 No 

Table 4: Results from the Jarque Bera test 

                                                 
5 A Jarque-Bera normality test is performed to detect deviation from the null hypothesis of normality 
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Figure 9: Bitcoin 

 

Figure 10: S&P500 

 

Figure 11: DAX 

 

Figure 12: KS11 

 

Figure 13: VGLT 

 

Figure 14: Euro 

 

Figure 15: Franc 

 

Figure 16: Yen 

 

Figure 17: Oil 

 

Figure 18: Gold 
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4.4 Sample period 
 

The sample period in this thesis covers the last five years of trading days. This means that even 

though Bitcoin prices are constantly in change, prices at 00:00 from days that were not trading 

days are removed from the sample. This is necessary to make comparisons. It is also decided 

to cut the beginning of Bitcoins price history and start at 1st of March 2013. This has been  

decided after looking at the graph for Bitcoin trading volume for data back from 2011:  

 
Figure 19: Bitcoin trade volume between 2011 and 2018 

The graph shows that it was little to none trading activity in the first period of the original data 

sample. When fitting statistical models to the data, a period like this may cause inaccurate 

estimation and that is why it is excluded.  

The full period sample from March 2013 to March 2018 is characterized by relatively stable 

growth rates in the financial markets. For the S&P 500, there were only two short periods of 

market distress during the stock sell-off in mid-August 2015 and the sell-off late December 

2015 which are related to crude oil prices dropping below $30 per barrel. Having a period like 

this in the sample makes it possible to capture volatility spillover between the various markets 

if there is a significant increase in the cross-market correlation during the turmoil period. The 

sample frequencies for detection of a significant increase in the dynamical conditional 

correlation during turmoil period stretches on a daily basis from August 18th, 2015 to April 20th, 

2016.  Between these dates, there was one market correction at about 10.22% from the 52-week 

highs followed by a market pulldown at about 12.22%. Thus, this period is defined as the 

turmoil period. The stable period before the market turmoil is defined as March 1st, 2013 to 

August 17th, 2015.  
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An extreme outlier6 is also detected in the Franc’s distribution and statistic properties for the 

sample period. The reason for this is that the Swiss central bank abandoned its three-year-old 

cap at 1.20 francs per euro in January 2015 (Wright, 2015). This resulted in a 25 percent gain 

against the dollar in a single day and can therefore be detected in the descriptive statistics of 

franc where the kurtosis is abnormally high.  

                                                 
6 An outlier is an observation point that deviates significantly from the rest of the observations 
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5. Methodology 

This section of the thesis will present the analysis tools7 and methods applied to obtain the 

empirical results. 

The first subsection in this section is about the volatility models that are an essential part of this 

thesis. The coming subsections explains the process of fitting a volatility model to a dataset, 

and also the math behind the models. A univariate eGARCH model is used for fitting the assets 

that are used in the analysis of volatility spillover. Furthermore, a multivariate DCC-GARCH 

model is used to capture the conditional correlation between the assets in the global portfolio. 

The second subsection is about how the calculation of MVF and CML is done. It is explained 

how the data is turned into different portfolios and plotted for comparisons. The last subsection 

is about VaR and CVaR. This section describes the concept of value of risk and how to perform 

a simplified Monte Carlo simulation. 

5.1 Volatility Models 
 

Before applying a volatility model to a dataset, it is important to check for necessary conditions. 

A unit root test of the log returns is performed to check whether the transformed time series is 

stationary. If a unit root exists in a time series it can be detected by an Augmented Dickey-

Fuller test (ADF-test), where the null hypothesis states that there is a unit root at some level of 

confidence. 

When the time series is stationary, the next step is to find an optimal mean-model. This is done 

automatically by using R’s auto.arima function. The function returns the best fitted ARMA 

model, based on information criterions. These criterions are explained further down, when 

deciding which GARCH model fits the data best. 

Furthermore, a Ljung-Box test is also performed to test the GARCH models for ARCH effects. 

A significant ARCH effect in the time series identifies the autocorrelation in the squared 

residuals from the mean-model, meaning the time series does exhibit conditional 

heteroscedasticity. This implies a time-varying conditional variance (volatility clustering) and 

can therefore be used to build a model to estimate the volatility. The Ljung-Box test is used to 

                                                 
7 Microsoft Excel and R are the software used for applying the statistical calculations. Excel is used for calculation 
regarding MVF and Monte Carlo Simulation, while R is used for the more advanced volatility models. Thereby, 
all programming codes written in R, are attached to appendix section A.  
 



 

26 

 

check the ARMA-model’s squared residuals for autocorrelation. The test uses the following 

formula: 

𝑄 = 𝑛(𝑛 + 2) ∑
𝑝̂𝑘

2

𝑛 − 𝑘

ℎ

𝑘=1

 ~ 𝑋ℎ
2 

 

(10) 

where 𝑝̂𝑘
2 is the squared sample autocorrelation at lag 𝑘, ℎ is the number of lags, and 𝑛 is the 

sample size. 

When deciding which ARCH-type model fits the data best, it is normal to rank the models based 

on information criteria. There are several different information criteria, but the most common 

are AIC (Akaike information criterion) and BIC (Bayesian information criterion). The main 

difference between these information criterions is that BIC penalizes additional parameters 

more than AIC does. While AIC tries to find an unknown high dimensional model, BIC tries to 

find real models. This means that AIC is more likely to overfit a model than BIC, while BIC is 

more likely to underfit. The information criterion with the lowest value indicates the best 

tradeoff between explanatory power and model parsimony. 

5.1.1 ARCH 

The autoregressive conditional heteroscedastic (ARCH) model was introduced by Engle (1982) 

to capture volatility persistence in inflation. The ARCH model analyzes the effects unexplained 

by econometric models that operate under the assumption of uniform variance 

(homoskedasticity) in the error term. In some circumstances (e.g. volatility clustering) the 

variance in financial time series is heteroskedastic, making the homoscedastic model not 

efficient as the estimated standard errors of the coefficients are biased. The ARCH process is 

mean zero, which allows the conditional variance8 of the past error terms to change and leaves 

the unconditional variance constant. ARCH is defined as: 

𝜎𝑡
2 =  𝜔 + ∑𝛼𝑖𝜖𝑡−𝑖

2

𝑞

𝑖=1

         𝑡 𝜖 𝑍     
 

(11) 

 

 

 

 

 

 

                                                 
8 Conditional Variance – The variance in a term is given by the variance(s) of one or more other variables.    
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5.1.2 Univariate GARCH 

 

The ARCH model was generalized by Bollerslev (1986) into generalized ARCH (GARCH). 

The conditional variance in the GARCH (p, q) model is parametrized as a distributed lag of 

past conditional variances (p) and past squared error (q), expressed by:  

𝜎𝑡
2 =  𝜔 + ∑𝛼𝑖𝜖𝑡−𝑖

2

𝑞

𝑖=1

+ ∑𝛽𝑗𝜎𝑡−𝑗
2

𝑝

𝑗=1

,          𝑡 𝜖 𝑍     

 

 

(12) 

Equation (1) in a more compact form: 

𝜎𝑡
2 =  𝜔 +  𝛼(𝐵)𝜖𝑡

2 + 𝛽(𝐵)𝜎𝑡
2,                  𝑡 𝜖 𝑍    (13) 

 

Where B is the standard backshift (lag) operator (𝐵𝑖𝜖𝑡
2 = 𝜖𝑡−𝑖

2  𝑎𝑛𝑑 𝐵𝑖𝜎𝑡
2 = 𝜎𝑡−𝑖

2 ) for any 

integer I, and where α and β are polynomials of degrees q and p (Franq & Zakoian, 2010). 

To measure the historical volatility of the different asset classes in the global market portfolio 

a GARCH(1,1) model is introduced: 

𝑀𝑒𝑎𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛: 𝑟𝑡 = 𝜇 + 𝜖𝑡 

                                      𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛: 𝜎𝑡
2 =  𝜔 + 𝛼1𝜖𝑡−1

2 + 𝛽1𝜎𝑡−1
2  

(14) 

 

(15) 

Where 𝜔 > 0 , 𝛼1 ≥ 0 and 𝛽1 ≥ 0, such that 𝜎𝑡
2 is less likely to obtain negative values. 

𝑟𝑡 = return of asset at time t 

𝜇 = average return  

𝜖𝑡 = residual returns 

𝜖𝑡 is defined as: 

Where 𝑧𝑡 is standardized residual returns (a sequence of N(0,1) i.i.d. random variables) and 

𝜎𝑡, is the volatility. 

For the variance equation, 𝜎(𝑡+1)
2  , is the one-period ahead forecast of the conditional variance 

based on the historical data as a function of: 

𝜔 = Constant term 

𝜖𝑡−1
2  = The information about volatility observed in the previous period (the ARCH term) 

𝜎𝑡−1
2  = Last period forecast variance (the GARCH term) 

      𝜖𝑡 = 𝜎𝑡𝑧𝑡          (16) 
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5.1.3 EGARCH 

The ultimate goal of a GARCH model is to capture the various stylized facts of volatility. 

However, when it comes to the standard ARCH and GARCH models, they are unable to model 

the asymmetric response of volatility to changes in returns (i.e. the leverage effect observed in 

asset returns). The GARCH specification in section 5.1.2 assumes that the sign of the errors 

(rises and falls of the assets) does not give differential impacts since the errors are squared 

(Knight & Satchell, 2011). 

Nelson (1991) introduced an exponential GARCH model (EGARCH) where the logarithm of 

conditional variance ensures the non-negativity and asymmetric relation without the constraints 

imposed in the standard GARCH model.  The exponential GARCH model with weighted errors 

𝑔(𝜀𝑡) is given by: 

ln 𝜎𝑡
2 = 𝜔 + ∑𝛼𝑖𝑔(𝜀𝑡−𝑖) + ∑𝛾𝑗

𝑝

𝑗=1

𝑞

𝑖=1

ln (ℎ𝑡−𝑗) 

 

(17) 

Where the parameters 𝜔, 𝛼𝑖 and 𝛾𝑗 are not restricted to be non-negative, and that: 

𝑔(𝜀𝑡) =  𝜃𝜀𝑡 + 𝛾⌈|𝜀𝑡| − E(|𝜀𝑡|)⌉ (18) 

 

Where both 𝜀𝑡 and and |𝜀𝑡| − E(|𝜀𝑡| is zero-mean i.i.d. random sequences, and 

E(|𝜀𝑡| = √
2

𝜋
   

(19) 

 

for a normal distribution, whereas 

E(|𝜀𝑡| =
2√𝜐 − 2 𝛤(𝜐 + 1)/2)

(𝜐 − 1) 𝛤( 𝛤(
𝜐
2) √𝜋

 
 

(20) 

 

for the student-t distribution. 

 

5.1.4 Multivariate DCC-GARCH 

A univariate GARCH model explains the persistence and volatility shock on itself. On the other 

hand, a multivariate GARCH model focuses on analyzing the volatility spillover of a variable 

on another variable. In order to find contagion between two types of financial markets, one 

needs to compare the cross-market correlation during the period of crisis with a period of 

stability prior to the crisis. However, it is only contagion if the cross-market correlation 

increases significantly during the crisis. Modeling the volatility dynamics and correlation 

between assets is therefore important in order to avoid co-movement and to determinate 

optimum weights of a well-diversified portfolio.    
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The stock market co-movement and volatility spillover effects are two critical factors in 

financial risk management. A potential pitfall when examining the cross-market co-movement 

and spillover effects is that the correlation coefficients are biased and inaccurate due to 

heteroscedasticity (Forbes & Rigobon, 2002). This thesis will therefore focus on a specific 

multi-variate GARCH method capable of modeling conditional variances and the unbiased 

conditional correlation coefficients of several series simultaneously.  

The Dynamic Conditional Correlation (DCC) first introduced by Engle (2002), allows the 

correlation to vary with time rather than requiring them to be constant. The idea behind 

modelling the conditional variances and conditional correlation is that the covariance matrix of 

a vector of returns, 𝐻𝑡, can be decomposed into the conditional standard deviations, 𝐷𝑡, and a 

correlation matrix, 𝑅𝑡. Where both 𝑅𝑡 and 𝐷𝑡 are time-varying in the DCC-GARCH model. 

The estimation of Engle’s DCC-GARCH model (Celik, 2012): 

  

𝐻𝑡 = 𝐷𝑡𝑅𝑡𝐷𝑡 (21) 

 

𝐷𝑡 = 𝑑𝑖𝑎𝑔{√ℎ𝑖,𝑡 } , a diagonal matrix of time varying standard deviations from the univariate 

model described in the GARCH section: 

𝐷𝑡 [
√ℎ1𝑡 ⋯ 0

⋮ ⋱ ⋮

0 ⋯ √ℎ𝑛𝑡

] 

where  

ℎ𝑖𝑡 = 𝜔𝑖 + ∑ 𝛼𝑖𝑞𝜀𝑖,𝑡−𝑞
2

𝑄𝑖

𝑞=1

+ ∑ 𝛽𝑖𝑝ℎ𝑖,𝑡−𝑝
2

𝑃𝑖

𝑝=1

 

 

 

(22) 

 

for any univariate GARCH(p,q) model.  

Moreover, 𝑅𝑡 , the symmetric conditional correlation matrix of the standardized errors 𝜀𝑡: 

𝜀𝑡 = 𝐷𝑡
−1𝑟𝑡  ~ 𝑁(0, 𝑅𝑡) (23) 

 

 

𝑅𝑡 = 

[
 
 
 
 

1 𝑞12,𝑡 𝑞13,𝑡 … 𝑞1𝑛,𝑡

𝑞21,𝑡

𝑞31,𝑡

⋮

1
𝑞32,𝑡

⋮

𝑞23,𝑡

1
 

…
 
⋱

𝑞2𝑛,𝑡

𝑞3𝑛,𝑡

⋮
𝑞𝑛1,𝑡

𝑞𝑛2,𝑡 𝑞𝑛3,𝑡 … 1 ]
 
 
 
 

 

 

 

(24) 
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Two requirements need to be considered when specifying 𝑅𝑡: 

1. 𝐻𝑡, needs to be positive definite as it is a covariance matrix. Therefore 𝑅𝑡 has to be 

positive definite (𝐷𝑡is positive definite since the variance in the univariate GARCH 

models are all positive in the diagonal elements). 

2. All the elements in correlation matrix have to be equal or less than one. 

In order to meet the two requirements, 𝑅𝑡 is decomposed into: 

𝑅𝑡 = 𝑄𝑡
∗−1𝑄𝑡𝑄𝑡

∗−1 (25) 

 

For a DCC(1,1) 

𝑄𝑡 = (1 − 𝛼 − 𝛽)𝑄̅ + 𝛼𝜀𝑡−1𝜀𝑡−1
𝑇 + 𝛽𝑄𝑡−1 (26) 

 

where 𝛼 and 𝛽 are non-negative scalars (𝛼 ≥ 0 , 𝛽 ≥ 0) such that 𝛼 + 𝛽 < 1, and 𝑄0 is 

positive definite to ensure that 𝐻𝑡 is positive definite. 

𝑄̅, is the unconditional covariance of the standardized errors 𝐶𝑜𝑣(𝜀𝑡𝜀𝑡
𝑇).  

Whereas, 𝑄𝑡
∗−1, is the inverted diagonal matrix with the square root of the diagonal elements 

of the matrix 𝑄𝑡: 

𝑄𝑡
∗−1 = [

1/√𝑞11𝑡 ⋯ 0

⋮ ⋱ ⋮

0 ⋯ 1/√𝑞𝑛𝑛𝑡

] 

 

 

 

(27) 

 

This gives us the correlation structure of the general DCC(Q,P)-GARCH model (Engle, 

2002):  

𝑄𝑡 = (1 − ∑𝛼𝑖 − ∑𝛽𝑗)𝑄̅ + ∑𝛼𝑖𝜀𝑡−1𝜀𝑡−1
𝑇 + ∑𝛽𝑗𝑄𝑡−𝑗

𝑄

𝑗=1

𝑃

𝑖=1

𝑄

𝑗=1

𝑃

𝑖=1

 

 

(28) 

 

 

5.1.5 Likelihood Ratio Test 
 

 

To determine the significance of the parameters in the DCC-GARCH model, a likelihood ratio 

test is used. This test compares the goodness of fit of two statistical models, which is based on 

the difference in the log-likelihood functions for an unrestricted and restricted model. The 

unrestricted model generally leads to a higher log-likelihood as it consists of parameters that 

have been excluded in the regression of the restricted model. The idea behind this test is to 

check whether the fall in the log-likelihood is large enough to conclude that the dropped 
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variables in the restricted model are important. This is done by calculating the likelihood ratio 

statistics, which is twice the difference in the log-likelihood (Wooldridge, 2014, page 465): 

LR = 2(Lur − Lr) (29) 

 

Where Lur is the log-likelihood value for the unrestricted model and Lr is the log-likelihood 

value for the restricted model. The distribution that is used for the test is a chi-squared (χ2) 

distribution: 

LR ~ χ2(df = dfur − dfr) (30) 

 

Where the number of degrees of freedom is the number of parameters that have been excluded 

in the regression (i.e. the restricted model). The likelihood ratio statistics can then be used to 

compute a p-value in the chi-squared distribution to determine the significance of the 

parameters in the DCC-GARCH model. This can be verified by rejecting the null hypothesis: 

H0: alpha = beta = 0 (31) 

 

H1: alpha ≠ 0 or beta ≠ 0 (32) 

When the null hypothesis is not rejected, the Constant Conditional Correlation (CCC) model is 

obtained for the sample. For a more detailed description about (CCC), see Bollerslev (1990). 

When it is confirmed that alpha or beta are different from zero, the statistical significance of 

the coefficients in each pair in the DCC model indicates the existence of time-varying dynamic 

correlations. 

 

5.2 Portfolio Optimization 

 

Bitcoins high volatility and price increase makes it interesting to include in a portfolio. 

Comparing MVF and CML for two different groups of portfolios, one with Bitcoin included 

and one without, will give an indication of Bitcoin’s diversification properties. If it is possible 

to obtain the same expected return for a lower risk, it means that some of the unsystematic risk 

has been reduced. 

In order to create portfolios, the returns are used to calculate daily expected return, standard 

deviation and variance for each asset. These are key metrics used in financial estimation. A 

covariance matrix is also constructed for capturing the directional relation between the assets. 

This matrix, together with daily expected returns, is then used to estimate portfolio 

characteristics.  
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The portfolios are sorted in four different categories; indices, currencies, commodities and 

combinations (see appendix B). This is done both for portfolios including Bitcoin, and 

portfolios without Bitcoin. 

Further, Excels Solver function9 is used to calculate portfolio weights. When choosing what 

constraints to set for the Solver, it is important to think of which portfolios define the MVF. By 

targeting lowest possible standard deviation with different constraints on minimum expected 

return, the MVF can be drawn through the points. Other portfolios, such as even weights and 

highest expected return with only 5.0-15.0% weight per asset, are also included for giving a 

better illustration of alternative portfolios. A portfolio with highest Sharpe ratio is included for 

identifying where the CML is a tangent to the MVF. 

When calculating the CML, it is necessary to use a risk-free rate. All calculations are done for 

daily returns, and therefore a daily risk-free rate is derived from yearly USD Libor interest 

rates10. This is done by first taking the mean of the yearly rates from 2013-2017 and then 

transforming it by using the following formula: 

𝑟𝑓,𝑑 = (1 + 𝑟𝑓,𝑦)
1

251 − 1 
(33) 

 

Where: 

𝑟𝑓,𝑑 and 𝑟𝑓,𝑦 is the daily and yearly risk-free rate, and 251 is used for yearly trading days. 

 

All portfolios are plotted in a risk-return chart, using the portfolios expected return and standard 

deviation. The MVF is created by drawing a line through all the outer portfolios in the risk-

return chart. The CML is the tangent line drawn from the point on the return axis equaling the 

risk-free rate and up to where it is a tangent to the MVF. Comparing these charts will reveal 

differences and show effects of including Bitcoin in a portfolio. 

 

 

 

 

 

 

                                                 
9 Solver is a Microsoft Excel add-in program that calculates optimal solutions (minimum or maximum) based on 
constraints.  
10 The Libor interest rate is the world’s most widely-used benchmark for short-term interest rates. Since the 
rate is constantly in change, the average of the last 5 years is used for “risk-free rate” in this thesis (see 
appendix B). 
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5.3 Value at Risk 
 

Value at risk (VaR) is a risk measure that explains potential loss from an investment over a 

given period at a specific confidence level (Angelidis & Degiannakis, 2009). Companies use 

VaR to calculate internally for business risk and regulatory to report financial risk to 

government. A VaR model is based on historical data and tries to capture the probability of 

potential future loss. The model has two main parameters, confidence level and time horizon.  

The confidence level describes the probability of potential future loss. Estimation varies from 

0.1 to 0.001 quantiles, but 0.01 and 0.05 are the most common. Figure 20 illustrates VaR for a 

0.05 quantile. By using this quantile, the VaR model indicates that the potential loss will not be 

exceeded 95 out of 100 times (95.0% confidence level). The time horizon of a VaR model 

should be adjusted to the investment, i.e. liquid portfolios should have a short time horizon, 

while long term investments like funds should have a longer time horizon.  

 

 
Figure 20: Value at Risk (Investsolver, 2016) 

 

VaR can be calculated in several ways, but there are two main approximations, nonparametric 

and parametric. Nonparametric approximation is popular because it is very simple and does not 

need any predictions of the distribution of the data. The idea behind the method is to let the 

actual data represent the outcome (Dowd, 2002). Parametric approximation, on the other hand, 

is a method that tries to capture the data with a fitted distribution. The main advantage with 

parametric approximation is that extra information can be added to the model. This makes it 

possible to construct precise models for estimation that will give more accurate results. 

However, parametric approximation is dependent on the model to fit the actual data which may 

not always be uncomplicated.  
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Historical simulation is the most common nonparametric approximation. The method is about 

collecting historical data from a specific time horizon and sort the data by values. VaR is then 

calculated by looking at the relevant quantiles of the sorted data. This method is relatively easy, 

but relies on the history to repeat itself. The sample period is also a critical factor, because 

important periods that are needed for proper predictions may be omitted. 

Normal linear VaR is the most common parametric approximation. The VaR model is 

calculated by assuming the data is normally distributed. Assuming a normal distribution, the 

only parameters needed are mean and standard deviation. This means that a skewness of zero 

and a kurtosis of three also are assumed. Only requiring two parameters makes the method easy 

to use, but the main problem is estimating with the highest confidence levels. Assuming a 

normal distribution is usually more accurate for central quantiles and more inaccurate for 

extreme values. This makes estimations with confidence level 99% or more, likely to be 

unprecise. 

VaR can also be calculated by running simulations of possible outcomes. This parametric 

approximation requires more work, but has the potential to map underlying risk factors and 

assets more accurately. Monte Carlo Simulation is the most common method when it comes to 

simulation. The method is often used to price derivatives and solve complex risk management 

problems. By simulating possible outcomes repeatedly, a distribution of outcomes can be 

established. This distribution is then used to calculate VaR.   

There is also an additional way to look at VaR. Conditional Value at Risk (CVaR), also known 

as expected shortfall, explains the expected value of the asset loss given that the VaR quantile 

of the distribution has been surpassed (Angelidis & Degiannakis, 2009). While VaR only 

describes the probability of a loss of X or more, CVaR describes what loss is expected when it 

first occurs. This makes CVaR an important value to consider, especially when the tails of the 

distribution are heavy11. CVaR can also be seen as the average loss when VaR is exceeded as 

shown in figure 21. 

 

                                                 
11 Distribution with heavy tails possesses more extreme values than a normal distribution, which means that 
CVaR will increase significantly. 
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Figure 21: Conditional Value at Risk (Investsolver, 2016) 

 

 

In this thesis, VaR and CVaR will be calculated both for portfolios with and without Bitcoin by 

using Monte Carlo Simulation. Calculating VaR for portfolios with various Bitcoin weights is 

one way to capture Bitcoin’s impact on VaR. 

When calculating VaR and CVaR for portfolios through Monte Carlo Simulation, the first step 

is to sort historical data. Sorting data, constructing portfolios and estimating characteristics is 

already done from calculating the minimum variance frontier. This leads straight to the next 

step, drawing random numbers and run simulations.  

In this simulation, an initial investment of 1 000 000$ is assumed. The investment is then 

multiplied by random returns over 100 days. Excels NORM.INV and RAND functions are used 

to randomize the returns multiplied with the investment. These functions used together draw 

random numbers from a normal distribution with given mean and standard deviation. Since 

mean and standard deviation are already calculated for each portfolio, the simulation is 

simplified by assuming that the portfolios returns are normally distributed. In most cases with 

financial data, it is not recommended to assume a normal distribution for every underlying risk 

factor, but in this case, it is done for simplicity. The process is repeated 1000 times and the 

result of the investment on day 100 is then used as to calculate VaR and CVaR. This process is 

illustrated in the figure below: 
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Figure 22: VaR with Monte Carlo simulation 

 

 

All assets in the portfolios used are evenly weighted except for Bitcoin which varies from zero 

to ten percent. The simulation is done for five different portfolios, each having the weight of 

Bitcoin increased by 2.5%. The idea behind this is to see how VaR and CVaR changes, as the 

Bitcoin weight in the portfolio increases. After the results are sorted, VaR is found by 

identifying the values corresponding to the used confidence levels. CVaR is then calculated by 

using the following formula: 

𝐶𝑉𝑎𝑅 =
1

𝑛
∑𝑦𝑛

𝑛

𝑖=1

 
(34) 

 

where 𝑛 is the number of sorted results equivalent to the chosen percentile and 𝑦𝑛 is the value 

for result number 𝑛. All results are given as percentage of initial investment. 
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6. Empirical Results 

 

This section presents the results from the ARCH-type models, DCC-GARCH, portfolio 

optimization and VaR analysis that are mentioned in the methodology section. The results 

presented are of great value, when analyzing Bitcoin’s financial risk properties in a global 

portfolio and as an investment object. DCC-GARCH will show if Bitcoins can be used as a 

diversifier, hedge and safe haven. Furthermore, the portfolio optimization reveals changes in 

risk and return, and VaR will capture the risk by simulation. 

6.1 ARCH-type 
 

Before deciding what ARCH-type model is most optimal for the returns, the optimal order of a 

mean equation for the assets and ARCH-effects were investigated in table 5. 

 

Asset ARMA (p,q) Test statistic P-value ARCH-effects? 

Bitcoin 1,1 449.4 0.00 Yes 

SP500 1,1 404.81 0.00 Yes 

DAX 1,1 228.86 0.00 Yes 

KS11 2,2 95.467 0.00 Yes 

VGLT 1,1 22.142 0.04 Yes 

Euro 1,1 124.93 0.00 Yes 

Franc 1,1 1.3478 0.99 No 

Yen 1,1 72.982 0.00 Yes 

Oil 1,1 570.3 0.00 Yes 

Gold 1,1 71.924 0.00 Yes 
Table 5: ARMA models used and investigation of ARCH-effects 

The results in table 5 show that most of the assets fit to an ARMA (1,1) model, except KS11 

with ARMA (2,2). Therefore, one can apply a GARCH model to the assets. The results also 

show that ARCH-effects are present in all the respective assets, except franc. This could be due 

to the extreme outlier that was found in subsection 4.4. The ARCH-type models will therefore 

not be appropriate in modeling franc. With no ARCH-effects, the regression of franc will have 

little explanatory power. 

The Information criteria was obtained from the analysis of GARCH(1,1) and eGARCH(1,1) 

model for most of the assets. Only, KS11, was tested with a GARCH(2,2) and eGARCH(2,2) 

model. The information in table 6 is used to determine what ARCH-type should be used to 

capture the volatility of the assets (goodness of fit). Thereby, these models are analyzed further 
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in subsection 6.2 to investigate if there are signs of any contagion between the respective 

markets. 

 

Bitcoin 

Distribution Normal Student’s t 

Volatility Model GARCH eGARCH GARCH eGARCH 

AIC -3.3115 -3.3289 -3.6018 -3.6183 

BIC -3.2876 -3.3011 -3.574 -3.5865 

S&P500 

Distribution Normal Student’s t 

Volatility Model GARCH eGARCH GARCH eGARCH 

AIC -7.1599 -7.2224 -7.239 -7.2837 

BIC -7.136 -7.1946 -7.2112 -7.2519 

DAX 

Distribution Normal Student’s t 

Volatility Model GARCH eGARCH GARCH eGARCH 

AIC -6.3185 -6.3553 -6.372 -6.4173 

BIC -6.2947 -6.3275 -6.3442 -6.3855 

KS11 

Distribution Normal Student’s t 

Volatility Model GARCH eGARCH GARCH eGARCH 

AIC -7.1381 -7.1661 -7.185 -7.2104 

BIC -7.1064 -7.1304 -7.1493 -7.1707 

Oil 

Distribution Normal Student’s t 

Volatility Model GARCH eGARCH GARCH eGARCH 

AIC -5.1486 -5.1856 -5.1859 -5.2024 

BIC -5.1288 -5.1618 -5.1621 -5.1746 

Gold 

Distribution Normal Student’s t 

Volatility Model GARCH eGARCH GARCH eGARCH 

AIC -6.5355 -6.5325 -6.6437 -6.6463 

BIC -6.5117 -6.5047 -6.612 -6.6185 

Table 6: Information criteria results from analyzing the ARCH-type models.  
The optimal models are marked with bold numbers. 

The results in table 6 show that the eGARCH models with a student’s t distribution for the 

respective assets analyzed, have the lowest information criteria. This shows that the conditional 

variance with asymmetric response to market shocks (also discussed in stylized facts) gives a 

better fit. The recommended Student’s t distribution is also in line with the stylized fact that the 

distribution of returns tends to exhibit leptokurtosis and skewness. These descriptive data were 

presented in section 4.1.  
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6.2 DCC-GARCH 
 

The analysis with DCC-GARCH offers two results. Firstly, the results from the off-diagonal 

elements (equation 24) that would be the conditional correlation coefficients, are retrieved. A 

DCC-GARCH model for the three sample periods that are presented are used to investigate the 

effectiveness of Bitcoin as a diversifier, hedge and safe haven by these coefficients. Secondly, 

one plot the volatility model of Bitcoin against the correlation for each pair to investigate if 

there are any volatility spillovers between Bitcoin and the financial assets in the global 

portfolio. This analysis is performed to investigate if there is any indication on contagion, which 

can be found if the conditional correlation has a strong positive spike when the volatility is 

increasing sharply. The presence of contagion between Bitcoin and the other assets would imply 

that Bitcoin would not have the qualities of a good diversifier, hedge or safe haven since the 

co-movement during times of stress increases.  

In appendix A.1, the results of the multivariate ARMA(1,1)-DCC-GARCH(1,1) models for the 

different sample periods are reported. The results show that the parameters alpha and beta of 

the DCC models are different from zero. This is also tested with a likelihood ratio test, where 

table 7 below shows that the alpha or beta are different from zero, and that the sample periods 

thereby capture the dynamic conditional correlation of the returns and volatility.  

 

Likelihood Ratio Test for the 3 periods 
analyzed 

 

 LR df P-value DCC? 

Entire Period 2667 20 (0.00) Yes 

Stable Period 795 20 (0.00) Yes 

Market Turmoil 450 20 (0.00) Yes 

Table 7: Likelihood ratio test results 

As shown in the results from DCC-GARCH models in appendix A.1, the alphas and betas for 

all assets are positive and satisfy the inequality alpha + beta < 1, in the full sample. Thus, the 

dynamic correlation is strictly mean reverting around a constant level. The average sum of alpha 

and beta for the same period is 0.986, which also indicates a highly persistent volatility. 

Moreover, the alphas of DAX, FRANC and Oil in the stable period and alphas of VGLT and 

YEN in the turmoil period are not significant. However, the betas are highly significant for 

almost all assets. These results in combination with the asymmetry response of Bitcoin implies 

that Bitcoin as an asset for investment, shares many common characteristics with the other 
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conventional assets in the global portfolio. As seen in the descriptive analysis, the most 

prominent differences between Bitcoin and the other assets are the heavy tail and high volatility. 

Analysis of the conditional correlation coefficients 

 

The conditional correlations of the 10 assets are reported in table 8. The highest correlation 

coefficient mean value (0.547) is between S&P500 and DAX. The currencies also exhibit high 

correlation when paired with each other or gold. However, almost all of the various assets in 

the global portfolio paired with Bitcoin display a very low negative conditional correlation and 

low positive conditional correlation near zero for the whole sample period. Only KS11 and 

FRANC are low but positive values.  

Conditional Correlation Matrix (A): The entire period: 01/03/2013 to 01/03/2018 - 1303 observations 

 Bitcoin S&P500 DAX KS11 VGLT EURO FRANC YEN OIL GOLD 

Bitcoin 1          

S&P500 -0.098 1         

DAX -0.015 0.547 1        

KS11 0.011 0.195 0.258 1       

VGLT -0.021 -0.316 -0.275 -0.059 1      

EURO -0.018 -0.039 -0.212 -0.057 0.158 1     

FRANC 0.005 -0.122 -0.174 -0.037 0.225 0.527 1    

YEN -0.003 -0.385 -0.36 -0.162 0.445 0.434 0.398 1   

OIL -0.023 0.244 0.122 0.096 -0.152 0.079 0.001 -0.035 1  

GOLD -0.003 -0.098 -0.2 -0.066 0.307 0.357 0.335 0.458 0.131 1 

Table 8: Conditional correlation matrix, entire period 

The conditional correlations were also analyzed in a stable period as shown in table 8. The 

period of market turmoil is shown in table 9. The market turmoil period is of particular 

interest for safe haven categorization as this is the period where an investor usually tends to 

switch to assets that are uncorrelated with the markets with turbulence. 
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Conditional Correlation Matrix (B): Stable period: 01/03/2013 to 17/08/2016 - 642 observations 

 Bitcoin S&P500 DAX KS11 VGLT EURO FRANC YEN OIL GOLD 

Bitcoin 1          

S&P500 -0.022 1         

DAX -0.049 0.547 1        

KS11 -0.031 0.122 0.201 1       

VGLT -0.012 -0.339 -0.274 -0.047 1      

EURO -0.012 0.025 -0.188 -0.106 0.168 1     

FRANC 0.02 -0.107 -0.103 -0.052 0.217 0.363 1    

YEN 0.01 -0.385 -0.311 -0.127 0.417 0.391 0.316 1   

OIL -0.083 0.201 0.062 0.049 -0.111 0.122 -0.006 0.042 1  

GOLD -0.023 -0.016 -0.099 -0.019 0.201 0.284 0.267 0.332 0.202 1 

Table 9: Conditional correlation matrix, stable period 

   
Conditional Correlation Matrix (C): Market turmoil: 18/08/2015 to 28/10/2016 - 314 observations 

 Bitcoin S&P500 DAX KS11 VGLT EURO FRANC YEN OIL GOLD 

Bitcoin 1          

S&P500 -0.032 1         

DAX 0.065 0.575 1        

KS11 -0.015 0.348 0.398 1       

VGLT 0.013 -0.303 -0.352 -0.149 1      

EURO -0.049 -0.134 -0.239 -0.016 0.08 1     

FRANC -0.052 -0.155 -0.288 -0.01 0.159 0.835 1    

YEN -0.053 -0.403 -0.479 -0.258 0.437 0.427 0.448 1   

OIL 0.076 0.405 0.323 0.2 -0.341 0.029 -0.018 -0.192 1  

GOLD 0.001 -0.202 -0.369 -0.182 0.411 0.339 0.371 0.508 -0.016 1 

Table 10: Conditional correlation matrix, market turmoil 

The co-movement between gold and the respective currencies in the portfolio increase 

significantly during market turmoil. A stronger co-movement between the indices and between 

the currencies is anticipated as an investor’s liquidity may dry out during market turmoil. In 

order to satisfy their cash balance or margins, they might sell assets globally, which results in 

a higher co-movement between the markets. The cross-border financial interdependence and 

potential herding behavior could also be one of the variables that strengthen this co-movement.  

As the presence of low co-movement between the assets in a global portfolio is regarded as a 

diversification technique in periods of market turmoil, there are no signs of any significantly 

higher co-movement between asset i and Bitcoin as the conditional correlation still fluctuates 

around zero. However, there is notably higher co-movement between SP&500-DAX, SP&500-

KS11, SP&500-OIL, and VGLT-GOLD as seen in table 10.  
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Analysis of volatility spillover 

 

A strong co-movement between assets in different markets during times of high volatility can 

indicate contagion. The volatility of Bitcoin is therefore plotted against the conditional 

correlation pairs asset i and Bitcoin. The graphical analysis of the pairs vs the volatility, leads 

to some interesting observations in the figures on the next pages.   
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Figure 23: S&P500 volatility and Bitcoin-S&P500 correlation 

 
Figure 24: DAX volatility and Bitcoin-DAX correlation 
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Figure 25: KS11 volatility and Bitcoin-KS11 correlation 

 
Figure 26: Oil volatility and Bitcoin-Oil correlation 
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Figure 27: Gold volatility and Bitcoin-Gold correlation 

 

 

 

From the perspective of market linkages, a significant volatility spillover between two markets 

is noticed if there is a strong positive correlation coefficient between the markets after a spike 

in the volatility of the assets. The graphs for the indices oil and gold show that the correlation 

coefficient for Bitcoin and asset i does not look to increase substantially (about 0.1-0.2 at most). 

After the spike, the correlations revert quickly back to its mean. The figures shown above 

suggest that there is no presence of contagion between Bitcoin and the indices, and no contagion 

between Bitcoin and the commodities.   

 

6.2 Portfolio optimization 
 

After converting the price data to log returns, daily expected return and standard deviation is 

calculated and plotted in a risk-return chart shown in figure 28. The chart gives a good 

illustration of how unique Bitcoin is as an investment object. With an expected daily return of 

0.4422% and a standard deviation of 0.0591 it clearly stands out. All other assets have an 

expected return between -0.05% and 0.05% and standard deviation between 0.005 and 0.015, 

except oil, which has a standard deviation of 0.0212. The three indices have highest expected 

return as anticipated, with S&P500 having the highest. All the other assets have a negative 

expected return which makes the portfolio weights dominated by Bitcoin and the indices.  
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Figure 28: Risk-return chart for assets 

 

 

The portfolios are sorted (see Appendix B.1 and B.2) and separated for those including and not 

including Bitcoin. All portfolios are then plotted in a new risk-return chart which also includes 

the MVF and CML shown in figure 29 and 30. Figure 31 shows the same graph as figure 29, 

but the axes are scaled for closer comparison to figure 30. It is clearly that the portfolios 

including Bitcoin offers a much bigger range of investment opportunities. Both charts are made 

with the same axis range for comparison and there is an additional chart for portfolios including 

Bitcoin that are multiplied by ten for better illustration. The global minimum-variance 

portfolios are almost identical, as only 0,30% Bitcoin is included when calculating the 

minimum variance portfolio, using Solver. A more notable difference is the slope of the CML 

and thereby the EF. The slope of the CML is, as mentioned, known as the Sharpe Ratio and 

captures how much additional return is gained for taking on more risk. The CML for the chart 

with portfolios including Bitcoin are significantly steeper, which indicates more rewarding 

investment opportunities. This is expected, as Bitcoin has undergone a great increase of value 

during the sample period. 
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Figure 29: MVF and CML for portfolios not including Bitcoin 

 

 

 

 

Figure 30: MVF and CML for portfolios including Bitcoin 
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Figure 31: Scaled version of MVF and CML for portfolios not including Bitcoin 

 

 

6.3 Value at Risk 
 

The Monte Carlo Simulation in this thesis is conducted for examining how VaR and CVaR 

changes as the portfolios weight of Bitcoin increases from 0-10%. While the Bitcoin weight 

increases, the rest of the portfolio consists of all other assets described, evenly distributed. An 

initial investment of 1 000 000$ and timeframe of 100 days are used in the simulation.  After 

running the simulations, the results are sorted and VaR and CVaR are calculated. All calculated 

VaRs and CVaRs follows the same pattern. They decrease from 0 to 2.5%, but increase 

gradually after that. 

 

Bitcoin Weights 0.0 % 2.5 % 5.0 % 7.5 % 10.0 % 

VaR 5.0% 6.11 % 5.11 % 5.54 % 6.21 % 6.61 % 

CVaR 5.0% 7.67 % 7.01 % 7.39 % 8.29 % 9.18 % 

VaR 1.0% 8.78 % 8.15 % 8.58 % 9.45 % 10.93 % 

CVaR 1.0% 9.88 % 9.29 % 9.92 % 10.99 % 12.99 % 
Table 11: VaR and CVaR results 

 

For the portfolio not including any Bitcoin, there is an estimated 95.0% chance that possible 

loss will not be lower than 6.11%.  If the exceedance occurs, 7.67% is the most likely loss. At 

99.0% confidence level, possible loss will not be lower than 8.78% while a 9.88% loss is 

expected if the limit is exceeded. After 2.5% Bitcoin weight is added to the portfolio, the value 

at risk decreases. VaR 5.0% decreases to 5.11% and CVaR decreases to 7.01%. VaR 1.0% and 

CVaR 1.0% also decreases to 8.15% and 9.29%.  
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This indicates that including Bitcoin in a portfolio is advantageous when considering value at 

risk. However, the remaining results show that VaR and CVaR increase for 5.0% Bitcoin weight 

and above. It is estimated a 95.0% chance that possible loss will not be lower than 5.54% for 

the portfolio with 5.0% Bitcoin weight and if the exceedance occurs, 7.39% percent is the most 

likely loss. At 99.0% confidence level, possible loss will not be lower than 8.58% while a 9.92% 

is expected if the limit is exceeded.  Further, VaR and CVaR for the portfolios with 7.5% and 

10.0% Bitcoin weight continue to increase, which makes sense given how volatile Bitcoin is. 
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7. Conclusion 

By examining the evolution of the time-varying correlation coefficients for Bitcoin against the 

other assets in the global portfolio, the DCC analysis shows correlation coefficients around zero 

for all assets. In addition, the analysis of volatility spillovers between the selected markets 

implies that there is no significant contagion between the markets. No contagion indicates that 

Bitcoin’s price formation is not affected by the other markets studied in this thesis. For these 

reasons, Bitcoin exhibits effective diversification properties. 

The analysis of MVF and CML also implies that Bitcoin can be regarded as a good diversifier, 

as the portfolios including Bitcoin make it possible to obtain the same expected return, but for 

a lower risk. The MVF shows a much wider range of investment opportunities and The CML 

is significantly steeper, which indicates a greater expected return per unit of additional risk. 

Moreover, the VaR and CVaR estimation indicates that including Bitcoin in a global portfolio 

makes the potential loss lower, but only for a certain weight. The potential loss and expected 

shortfall were lower for all significance levels when the portfolio included 2.5% Bitcoin, 

compared to 0.0% and 5.0%. This means that there is a lower limit for the potential loss in a 

global portfolio including Bitcoin, than if no Bitcoins were included. 

It is also important to consider that a normal distribution is assumed for the underlying risk 

factors in the Monte Carlo simulation. When the random returns are drawn based on an assumed 

normal distribution, the extreme values in the end of the heavy tails are omitted. This leads to 

inaccurate estimation. Since the only purpose of this VaR estimation is to give an indication 

whether it is advantageous to include Bitcoin in a portfolio for lowering VaR or not, the 

estimation is included. A suggestion for further research might be to estimate what Bitcoin 

weight is optimal for lowest possible VaR, since this thesis only concludes with a weight 

between 0.0-5.0%. 

 

Bitcoin is still in its infancy as an asset and is therefore still subject to structural changes (e.g. 

regulations and another cryptocurrency with better potential) over time. For this reason, Bitcoin 

is expected to remain highly volatile in the near future. Moreover, the empirical results indicate 

that Bitcoin is a good diversifier for the sample periods analyzed. This does not imply that 

Bitcoin will act as a good diversifier in the future. Investors should actively rebalance the weight 

of Bitcoin in the portfolio to minimize risk. 



 

51 

 

The correlation matrices show no sign of Bitcoin being a good hedge as the correlation 

coefficients obtained are close to zero. Therefore, the global portfolio with its respective assets 

analyzed also suggests that Bitcoin does not exhibit hedging properties. For the market turmoil 

period, the results show that the currencies exhibit higher co-movement with gold and are thus 

more likely to be seen as a safe haven than Bitcoin. By definition, Bitcoin can therefore only 

be seen as a weak safe haven since it is uncorrelated with the other markets in the sample period 

with a falling stock market. 

To summarize, Bitcoin is clearly an asset that can contribute to a balanced portfolio through its 

diversification properties. It does not offer any hedging properties, but can be seen as a weak 

safe haven despite its high volatility. Time will show if Bitcoin will be affected by stricter 

regulations. If this occurs, further research might be interesting for identifying Bitcoin's 

potential as an investment in a more stabilized period.  
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Nomenclature 

 

ADF - Augmented Dickey Fuller 

AIC - Akaike Information Criterion 

ARMA – Autoregressive Moving Average 

ARCH - Autoregressive Conditional Variance 

BIC - Bayessian Information Criterion 

CAPM - Capital Asset Pricing Model 

CCC – Constant Conditional Correlation 

CML - Capital Market Line 

CVaR – Conditional Value at Risk 

DCC – Dynamic Conditional Correlation 

DF – Degrees of Freedom 

EGARCH - Exponential Generalised Autoregressive Conditional Heteroskedastic 

GARCH - Generalised Autoregressive Conditional Heteroskedastic 

LR – Likelihood Ratio 

Std. dev. dev – Standard Deviation 

USD – U.S. dollars 

UTC - Coordinated Universal Time 

VaR - Value at Risk  
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APPENDIX 

 

A - GARCH modeling results 
 

Results of the DCC models for the various sample periods 

 

Estimation results for mean and variance equation ARMA(1,1)-DCC-GARCH(1,1)   

The entire period: 01/03/2013 to 01/03/2018    

 Cst (w) AR(1) MA(1) Cst (Ω) Alpha 1 Beta 1 

Bitcoin 0.00305 0.960899*** -0.94087*** 0.00008* 0.22146*** 0.77754*** 

Std. dev 0.00124 0.08922 0.10880 0.00005 0.03054 0.04320 

S&P500 0.00070*** 0.93063*** -0.97126*** 0.00000 0.22932*** 0.74238*** 

Std. dev 0.00006 0.00931 0.00285 0.00000 0.03775 0.07214 

DAX 0.00073*** -0.59834*** 0.60883*** 0.00000 0.10132*** 0.89768*** 

Std. dev 0.00023 0.22964 0.22566 0.00000 0.02696 0.02475 

KS11 0.00036** 0.29095 -0.27820 0.00000*** 0.07817*** 0.84693*** 

Std. dev 0.00017 0.24972 0.24785 0.00000 0.00644 0.01375 

VGLT 0.00011 0.75596*** -0.78875*** 0.00000* 0.02103*** 0.97166*** 

Std. dev 0.00016 0.26095 0.24638 0.00000 0.00175 0.00236 

EURO -0.00007 0.06587 -0.11099 0.00000 0.03432*** 0.96380*** 

Std. dev 0.00011 0.84315 0.83701 0.00000 0.01105 0.01070 

FRANC -0.00011 0.92426*** -0.94049*** 0.00000* 0.00387** 0.98632*** 

Std. dev 0.00010 0.01573 0.01029 0.00000 0.00151 0.00115 

YEN -0.00015 0.90860*** -0.91629*** 0.00000 0.05006*** 0.94699*** 

Std. dev 0.00012 0.02202 0.01763 0.00000 0.00715 0.00785 

OIL 0.00009 -0.39772 0.36665 0.00000 0.05629* 0.94264*** 

Std. dev 0.00039 0.67431 0.68289 0.00001 0.03082 0.03119 

GOLD -0.00002 -0.17496 0.12898 0.00000 0.02279*** 0.96965*** 

Std. dev 0.00020 0.21881 0.21795 0.00000 0.00362 0.00487 

DCCa1     0.01956***  

Std. dev     0.00480  

DCCb1      0.77630*** 

Std. dev      0.18051 

*, **, and *** indicate rejection of the null hypothesis of   

associated statistical tests at the 10%, 5%, and 1% levels.   

Table 12: DCC results, entire period 
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Estimation results for mean and variance equation: ARMA(1,1)-DCC-GARCH(1,1)   

Stable period: 01/03/2013 to 17/08/2016    

 Cst (w) AR(1) MA(1) Cst (Ω) Alpha 1 Beta 1 

Bitcoin -0.00065 -0.57237*** 0.55634*** 0.00023* 0.31789*** 0.68111*** 

Std. dev 0.00108 0.16778 0.17340 0.00012 0.08774 0.09597 

S&P500 0.00073*** 0.91223*** -0.96875*** 0.00001*** 0.19742*** 0.66044*** 

Std. dev 0.00012 0.01433 0.00476 0.00000 0.02760 0.04359 

DAX 0.00098** -0.98540*** 0.99880*** 0.00000 0.11253 0.87657*** 

Std. dev 0.00039 0.00550 0.00030 0.00001 0.08196 0.08830 

KS11 0.00007 0.28046 -0.23382 0.00000*** 0.03997*** 0.89604*** 

Std. dev 0.00026 0.26672 0.26721 0.00000 0.00410 0.00888 

VGLT 0.00020 0.81593*** -0.83489*** 0.00000 0.03003*** 0.96463*** 

Std. dev 0.00024 0.19870 0.19275 0.00000 0.00461 0.00570 

EURO -0.00020 -0.36307 0.28318* 0.00000 0.04566*** 0.95334*** 

Std. dev 0.00015 0.15539 0.15355 0.00000 0.01636 0.01684 

FRANC -0.00024 0.90519*** -0.91717*** 0.00000 0.00475 0.98317*** 

Std. dev 0.00024 0.31784 0.29759 0.00000 0.03118 0.06600 

YEN -0.00030* -0.16610 0.17180 0.00000 0.05441*** 0.94459*** 

Std. dev 0.00016 0.32618 0.32536 0.00000 0.01520 0.01442 

OIL -0.00038 -0.40355 0.34627 0.00000 0.04671 0.95229* 

Std. dev 0.00047 0.91596 0.93543 0.00001 0.02856 0.02987 

GOLD -0.00028 -0.17742 0.09245 0.00000 0.02571*** 0.97329*** 

Std. dev 0.00029 0.23986 0.23690 0.00000 0.00189 0.00605 

DCCa1     0.02936***  

Std. dev     0.00928  

DCCb1      0.06906 

Std. dev      0.32930 

*, **, and *** indicate rejection of the null hypothesis of   

associated statistical tests at the 10%, 5%, and 1% levels.   

Table 13: DCC results, stable period 
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Estimation results for mean and variance equation: ARMA(1,1)-DCC-GARCH(1,1)   

Market turmoil: 18/08/2015 to 28/10/2016    

 Cst (w) AR(1) MA(1) Cst (Ω) Alpha 1 Beta 1 

Bitcoin 0.00241*** 0.40173 -0.48015 0.00005 0.19104*** 0.80796*** 

Std. dev 0.00078 0.45313 0.44292 0.00003 0.05675 0.05751 

S&P500 0.00038 0.17954 -0.27063 0.00000 0.24940*** 0.74172*** 

Std. dev 0.00033 0.86501 0.83730 0.00001 0.08534 0.08457 

DAX -0.00014* 0.96590*** -1.00000*** 0.00001*** 0.10554*** 0.83784*** 

Std. dev 0.00008 0.00786 0.00067 0.00000 0.02323 0.02939 

KS11 0.00014*** 0.94012*** -1.00000*** 0.00001** 0.10987*** 0.81540*** 

Std. dev 0.00002 0.01667 0.00041 0.00000 0.02656 0.03677 

VGLT 0.00019 0.15762 -0.28150 0.00000 0.00000 0.99899*** 

Std. dev 0.00037 0.22364 0.20314 0.00000 0.00029 0.00019 

EURO -0.00012 0.79248*** -0.85708*** 0.00000 0.00660*** 0.99040*** 

Std. dev 0.00020 0.13783 0.10842 0.00000 0.00193 0.00099 

FRANC -0.00014 0.38589** -0.33641** 0.00000 0.00609*** 0.99195*** 

Std. dev 0.00033 0.17126 0.16066 0.00000 0.00116 0.00087 

YEN 0.00014 0.87194*** -0.90237*** 0.00000 0.06464 0.90619*** 

Std. dev 0.00025 0.14443 0.12793 0.00000 0.06600 0.07282 

OIL 0.00070 0.03946 -0.10367 0.00004 0.12728*** 0.83323*** 

Std. dev 0.00147 0.30418 0.30208 0.00002 0.04476 0.04804 

GOLD -0.00008 -0.14850 0.12166 0.00000** 0.02076*** 0.95172*** 

Std. dev 0.00050 0.71947 0.71495 0.00000 0.00270 0.00765 

DCCa1     0.01257*  

Std. dev     0.00694  

DCCb1      0.83858*** 

Std. dev      0.06261 

*, **, and *** indicate rejection of the null hypothesis of   

associated statistical tests at the 10%, 5%, and 1% levels.   

Table 14: DCC results, market turmoil 

B - Portfolio optimization 
 

List of the Libor rates used (retrieved from http://www.global-rates.com/interest-

rates/libor/american-dollar/usd-libor-interest-rate-12-months.aspx). 

 

 

Year Rate 

2013 0.84 % 

2014 0.58 % 

2015 0.63 % 

2016 1.17 % 

2017 1.69 % 

Average 0.98 % 
Table 15: Libor rates 

http://www.global-rates.com/interest-rates/libor/american-dollar/usd-libor-interest-rate-12-months.aspx
http://www.global-rates.com/interest-rates/libor/american-dollar/usd-libor-interest-rate-12-months.aspx


 

59 

 

 

B.1 Portfolios including Bitcoin 
 

Indices and VGLT 

 

Portfolio 1 – Even weights 

Bitcoin SP&500 DAX KS11 VGLT Euro Franc Yen Oil Gold 

20.00 % 20.00 % 20.00 % 20.00 % 20.00 %           

Expected return 0.1069 % 

Standard deviation 0.012355357 

Portfolio 2 – Minimum standard deviation 

Bitcoin SP&500 DAX KS11 VGLT Euro Franc Yen Oil Gold 

0.38 % 29.90 % 4.26 % 23.64 % 41.83 %           

Expected return 0.0193 % 

Standard deviation 0.003770746 

Portfolio 3 – Minimum standard deviation, expected return minimum 0.1% 

Bitcoin SP&500 DAX KS11 VGLT Euro Franc Yen Oil Gold 

15.03 % 74.07 % 0.84 % 6.78 % 3.27 %           

Expected return 0.1000 % 

Standard deviation 0.010603321 

Portfolio 4 – Minimum standard deviation, expected return minimum 0.2% 

Bitcoin SP&500 DAX KS11 VGLT Euro Franc Yen Oil Gold 

39.24 % 60.76 % 0.00 % 0.00 % 0.00 %           

Expected return 0.2000 % 

Standard deviation 0.023718949 

Portfolio 5 – Minimum standard deviation, expected return minimum 0.3% 

Bitcoin SP&500 DAX KS11 VGLT Euro Franc Yen Oil Gold 

64.33 % 35.67 % 0.00 % 0.00 % 0.00 %           

Expected return 0.3000 % 

Standard deviation 0,038180361 

Portfolio 6 – Minimum standard deviation, expected return minimum 0.4% 

Bitcoin SP&500 DAX KS11 VGLT Euro Franc Yen Oil Gold 

89.42 % 10.58 % 0.00 % 0.00 % 0.00 %           

Expected return 0.4000 % 

Standard deviation 0,052906124 
Table 16: Portfolios including Bitcoin, indices and VGLT 
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Currencies 

 

Portfolio 7 – Even weights 

Bitcoin SP&500 DAX KS11 VGLT Euro Franc Yen Oil Gold 

25.00 %         25.00 % 25.00 % 25.00 %     

Expected return 0,1070 % 

Standard deviation 0,015268099 

Portfolio 8 – Minimum standard deviation 

Bitcoin SP&500 DAX KS11 VGLT Euro Franc Yen Oil Gold 

0.73 %         56.60 % 7.64 % 35.04 %     

Expected return -0,0028 % 

Standard deviation 0,004705367 

Portfolio 9 – Minimum standard deviation, expected return minimum 0.1% 

Bitcoin SP&500 DAX KS11 VGLT Euro Franc Yen Oil Gold 

23.15 %         52.53 % 24.31 % 0.00 %     

Expected return 0,1000% 

Standard deviation 0,014272131 

Portfolio 10 – Minimum standard deviation, expected return minimum 0.2% 

Bitcoin SP&500 DAX KS11 VGLT Euro Franc Yen Oil Gold 

45.47 %         24.02 % 30.50 % 0.00 %     

Expected return 0,2000%  

Standard deviation 0,027114187 

Portfolio 11 – Minimum standard deviation, expected return minimum 0.3% 

Bitcoin SP&500 DAX KS11 VGLT Euro Franc Yen Oil Gold 

67.87 %         32.16 % 0.00 % 0.00 %     

Expected return 0,3000% 

Standard deviation 0,040263747 

Portfolio 12 – Minimum standard deviation, expected return minimum 0.4% 

Bitcoin SP&500 DAX KS11 VGLT Euro Franc Yen Oil Gold 

90.46 %         9.54 % 0.00 % 0.00 %     

Expected return 0,4000% 

Standard deviation 0,053530923 
Table 17: Portfolios including Bitcoin and currencies 
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Commodities 

 

Portfolio 13 – Even weights 

Bitcoin SP&500 DAX KS11 VGLT Euro Franc Yen Oil Gold 

33.33 %               33.33 % 33.33 % 

Expected return 0,1326 % 

Standard deviation 0,021335751 

Portfolio 14 – Minimum standard deviation 

Bitcoin SP&500 DAX KS11 VGLT Euro Franc Yen Oil Gold 

1.99 %               14.33 % 83.67 % 

Expected return -0,0071 % 

Standard deviation 0,009042681 

Portfolio 15 – Minimum standard deviation, expected return minimum 0.1% 

Bitcoin SP&500 DAX KS11 VGLT Euro Franc Yen Oil Gold 

25.20 %               6.56 % 68.25 % 

Expected return 0,1000 % 

Standard deviation 0,016579654 

Portfolio 16 – Minimum standard deviation, expected return minimum 0.2% 

Bitcoin SP&500 DAX KS11 VGLT Euro Franc Yen Oil Gold 

46.89 %               0.00 % 53.11 % 

Expected return 0,2000 % 

Standard deviation 0,028355009 

Portfolio 17 – Minimum standard deviation, expected return minimum 0.3% 

Bitcoin SP&500 DAX KS11 VGLT Euro Franc Yen Oil Gold 

68.82 %               0.00 % 31.18 % 

Expected return 0,3000 % 

Standard deviation 0,04090522 

Portfolio 18 – Minimum standard deviation, expected return minimum 0.4% 

Bitcoin SP&500 DAX KS11 VGLT Euro Franc Yen Oil Gold 

90.75 %               0.00 % 9.25 % 

Expected return 0,4000 % 

Standard deviation 0,053710698 

Table 18: Portfolios including Bitcoin and commodities 
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Combinations 

 

Portfolio 19 – Even weights 

Bitcoin SP&500 DAX KS11 VGLT Euro Franc Yen Oil Gold 

10.00 % 10.00 % 10.00 % 10.00 % 10.00 % 10.00 % 10.00 % 10.00 % 10.00 % 10.00 % 

Expected return 0,0476 % 

Standard deviation 0,006917361 

Portfolio 20 – Minimum standard deviation 

Bitcoin SP&500 DAX KS11 VGLT Euro Franc Yen Oil Gold 

0.30 % 18.62 % 6.72 % 15.17 % 15.31 % 20.50 % 1.99 % 21.39 % 0.00 % 0.00 % 

Expected return 0,0109 %  

Standard deviation 0,002840627 

Portfolio 21 – Minimum standard deviation, expected return minimum 0.1% 

Bitcoin SP&500 DAX KS11 VGLT Euro Franc Yen Oil Gold 

15.02 % 74.29 % 0.75 % 6.63 % 3.31 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 

Expected return 0,1000 % 

Standard deviation 0,010603307 

Portfolio 22 – Maximum expected return, 5.0-15.0% per asset 

Bitcoin SP&500 DAX KS11 VGLT Euro Franc Yen Oil Gold 

15.00 % 15.00 % 15.00 % 15.00 % 5.00 % 5.00 % 15.00 % 5.00 % 5.00 % 5.00 % 

Expected return 0,0774 % 

Standard deviation 0,009463924 

Portfolio 23 – Minimum standard deviation, 5.0-15.0% per asset 

Bitcoin SP&500 DAX KS11 VGLT Euro Franc Yen Oil Gold 

5.00 % 13.92 % 6.08 % 15.00 % 15.00 % 15.00 % 5.00 % 15.00 % 5.00 % 5.00 % 

Expected return 0,0280 % 

Standard deviation 0,004178666 

Portfolio 24 – Maximum expected return, 0.0-25.0% per asset 

Bitcoin SP&500 DAX KS11 VGLT Euro Franc Yen Oil Gold 

25.00 % 25.00 % 25.00 % 25.00 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 

Expected return 0,1338 % 

Standard deviation 0,015477841 

Portfolio 25 – Highest Sharpe ratio 

Bitcoin SP&500 DAX KS11 VGLT Euro Franc Yen Oil Gold 

11.47 % 63.50 % 1.60 % 10.76 % 12.67 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 

Expected return 0,0804 % 

Standard deviation 0,008396657 

Table 19: Portfolios including all assets 
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B.2 Portfolios not including Bitcoin 

 
Indices and VGLT 

 

Portfolio 26 – Even weights 

Bitcoin SP&500 DAX KS11 VGLT Euro Franc Yen Oil Gold 

  25.00 % 25.00 % 25.00 % 25.00 %           

Expected return 0,0231 % 

Standard deviation 0,004655889 

Portfolio 27 – Minimum standard deviation 

Bitcoin SP&500 DAX KS11 VGLT Euro Franc Yen Oil Gold 

  30.12 % 4.23 % 23.59 % 42.06 %           

Expected return 0,0177 % 

Standard deviation 0,003777311 

Portfolio 28 – Minimum standard deviation, expected return minimum 0.02% 

Bitcoin SP&500 DAX KS11 VGLT Euro Franc Yen Oil Gold 

  36.48 % 3.67 % 21.33 % 38.53 %           

Expected return 0,0200 % 

Standard deviation 0,003820791 

Portfolio 29 – Minimum standard deviation, expected return minimum 0.03% 

Bitcoin SP&500 DAX KS11 VGLT Euro Franc Yen Oil Gold 

  64.47 % 1.21 % 11.33 % 22.99 %           

Expected return 0,0300 % 

Standard deviation 0,004917285 

Portfolio 30 – Minimum standard deviation, expected return minimum 0.04% 

Bitcoin SP&500 DAX KS11 VGLT Euro Franc Yen Oil Gold 

  64.47 % 1.21 % 11.33 % 22.99 %           

Expected return 0,0400 % 

Standard deviation 0,006785411 

Table 20: Portfolios including indices and VGLT 

All portfolios calculated for Currencies and Commodities without Bitcoin, had a negative 

expected return and is therefore excluded from the thesis.  
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Combinations 

 

Portfolio 31 – Even weights 

Bitcoin SP&500 DAX KS11 VGLT Euro Franc Yen Oil Gold 
 11.11 % 11.11 % 11.11 % 11.11 % 11.11 % 11.11 % 11.11 % 11.11 % 11.11 % 

Expected return 0,0038 % 

Standard deviation 0,004006609 

Portfolio 32 – Minimum standard deviation 

Bitcoin SP&500 DAX KS11 VGLT Euro Franc Yen Oil Gold 
 18.79 % 6.71 % 15.10 % 15,45 % 20.43 % 2.12 % 21.40 % 0.00 % 0.00 % 

Expected return 0,0096 % 

Standard deviation 0,002846101 

Portfolio 33 – Minimum standard deviation, expected return minimum 0.01% 

Bitcoin SP&500 DAX KS11 VGLT Euro Franc Yen Oil Gold 
 19.70 % 6.59 % 15.05 % 15,55 % 19.67 % 2.34 % 21.11 % 0.00 % 0.00 % 

Expected return 0,0100 % 

Standard deviation 0,002847152 

Portfolio 34 – Maximum expected return, 5.0-15.0% per asset 

Bitcoin SP&500 DAX KS11 VGLT Euro Franc Yen Oil Gold 
 15.00 % 15.00 % 15.00 % 15.00 % 10.00 % 15.00 % 5.00 % 5.00 % 5.00 % 

Expected return 0,0107 % 

Standard deviation 0,003465168 

Portfolio 35 – Minimum standard deviation, 5.0-15.0% per asset 

Bitcoin SP&500 DAX KS11 VGLT Euro Franc Yen Oil Gold 
 15.00 % 7.39 % 15.00 % 15.00 % 15.00 % 7.61 % 15.00 % 5.00 % 5.00 % 

Expected return 0,0068 % 

Standard deviation 0,003128552 

Portfolio 36 – Maximum expected return, 0.0-25.0% per asset 

Bitcoin SP&500 DAX KS11 VGLT Euro Franc Yen Oil Gold 
 25.00 % 25.00 % 25.00 % 0.00 % 0.00 % 25.00 % 0.00 % 0.00 % 0.00 % 

Expected return 0,0233 % 

Standard deviation 0,004892682 

Portfolio 37 – Highest Sharpe ratio 

Bitcoin SP&500 DAX KS11 VGLT Euro Franc Yen Oil Gold 
 74.76 % 0.31 % 7.39 % 16.89 % 0.00 % 0.66 % 0.00 % 0.00 % 0.00 % 

Expected return 0,0336 % 

Standard deviation 0,005520365 

Table 21: Portfolios including all assets except for Bitcoin 
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C - Codes from R 
 

C.1 Fitting a GARCH model & Statistical tests 
 

Install.packages ("tseries") 

install.packages ("TSA") 

install.packages ("rugarch") 

install.packages ("forecast") 

library ("tseries") 

library ("TSA") 

library ("rugarch") 

library ("forecast") 

 

#Augmented Dickey Fuller test 

adf.test(sp_df, alternative = "stationary") 

#Automated ARIMA 

SPX <- auto.arima(sp_df, trace=TRUE) 

#Example, forcing a significant ARMA order on a variable that has 

been given white noise as best fit. 

GLD<- arima(gld_df, order=c(1,0,1)) 

#Ljung-Box test 

Box.test(SPX$residuals^2, lag=12, type="Ljung-Box") 

#Likelihood Ratio Test P-Value 

1-pchisq(2677,20)  

1-pchisq(795,20)  

1-pchisq(450,20)  

#Univariate GARCH(1,1) for each series 

SPXspec <- ugarchspec(variance.model = list(model = "sGARCH", 

garchOrder = c(1,1)), mean.model = list(armaOrder = c(1,1)), 

distribution.model = "std") 

SPXfit <- ugarchfit(spec=SPXspec, data = sp_df) 

#Univariate eGARCH(1,1) for each series 

SPXspec <- ugarchspec(variance.model = list(model = "eGARCH", 

garchOrder = c(1,1)), mean.model = list(armaOrder = c(1,1)), 
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distribution.model = "std") 

SPXfit <- ugarchfit(spec=SPXspec, data = sp_df) 

 

C.2 DCC model 
 

install.packages('rmgarch', dependencies = TRUE) 

library("rmgarch") 

library("zoo") 

#Data converted from excel 

Dat<-

data.frame(Multivariate$Bitcoin,Multivariate$SP500,Multivariate$DAX,

Multivariate$KS11,Multivariate$VGLT,Multivariate$Euro,Multivariate$F

ranc,Multivariate$Yen,Multivariate$Oil,Multivariate$Gold) 

#Returns 

retSP<-diff(log(Multivariate$SP500)) 

retDAX<-diff(log(Multivariate$DAX)) 

#UNRESTRICTED MODEL# 

xspec <- ugarchspec(mean.model = list(armaOrder = c(1, 1)), 

variance.model = list(garchOrder = c(1,1), model = 'sGARCH'), 

distribution.model = 'std') 

#RESTRICTED MODEL# 

xspec1 <- ugarchspec(mean.model = list(armaOrder = c(1, 1)), 

variance.model = list(garchOrder = c(1,1), model = 'sGARCH'), 

distribution.model = 'std',fixed.pars=list(alpha1 = 0, beta1 = 0)) 

#Choosing how many variables to add in the DCC model.10 assets in 

this case. 

uspec <- multispec(replicate(10, xspec)) 

uspecx <- multispec(replicate(10, xspec1)) 

#DCC Order 

spec1 <- dccspec(uspec = uspec, dccOrder = c(1, 1), distribution = 

'mvnorm') 

spec2 <- dccspec(uspec = uspecx, dccOrder = c(1, 1), distribution = 

'mvnorm') 
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#Return vector 

r_t1 <- 

cbind(retBTC,retSP,retDAX,retKS11,retVGLT,retEUR,retCFH,retYEN,retOi

l,retGLD) 

#Unrestricted DCC model 

dcc.fit <- dccfit(spec1, data = r_t1, fit.control=list(scale=TRUE)) 

#Restricted DCC model 

dcc.fit1 <- dccfit(spec2, data = r_t1, fit.control=list(scale=TRUE), 

solver = "nlminb") 

#Result 

print(dcc.fit) 

print(dcc.fit1) 

#Finding the mean correlation between Bitcoin and asset (S&P500 and 

DAX) 

#BTC-SPX Example 

r1 <- rcor(dcc.fit, type="R") 

plot(r1[1,2,], type="l") 

r1.x <- zoo(r1[1,2,], order.by=time(r_t1)) 

dates <- seq(as.Date("01/03/2013", format = "%d/%m/%Y"),by = "days", 

length = length(r1.x)) 

plot(dates,r1.x,type='l', main=paste(colnames(r_t1)[1],"-", 

colnames(r_t1)[2], "Conditional Correlation", sep=" 

"),ylab="Conditional Correlation",  sub=paste("mean:", 

round(mr1z,3),"sd:", round(sr1z,3)), xlab="Date") 

abline(h=mean(r1.x), lty=2, lwd=1, col="red") 

abline(h=(mean(r1.x)+sd(r1.x)), lty=2, lwd=1, col="blue") 

abline(h=(mean(r1.x)-sd(r1.x)), lty=2, lwd=1, col="blue") 

 

mr1z <- mean(window(r1.x, start="2013-03-01")) 

sr1z <- sd(window(r1.x, start="2013-03-01")) 

#BTC-DAX Example 

r1.y <-zoo (r1[1,3,], order.by=time(r_t1)) 

dates <- seq(as.Date("01/03/2013", format = "%d/%m/%Y"),by = "days", 
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length = length(r1.y))plot(dates,r1.y,type='l', 

main=paste(colnames(r_t1)[1],"-", colnames(r_t1)[3], "Conditional 

Correlation", sep=" "), ylab="Conditional Correlation", 

sub=paste("mean:", round(mr2z,3),"sd:", round(sr2z,3)),xlab="Date") 

abline(h=mean(r1.z), lty=2, lwd=1, col="red") 

abline(h=(mean(r1.z)+sd(r1.z)), lty=2, lwd=1, col="blue") 

abline(h=(mean(r1.z)-sd(r1.z)), lty=2, lwd=1, col="blue") 

mr2z <- mean(window(r1.y, start="2013-01-03")) 

sr2z <- sd(window(r1.y, start="2013-01-03")) 

 

C.3 Volatility spillover 
 

#Price from excel 

sp <- Multivariate$SP500 

#Converting to returns 

sp_df <- diff(log(sp)) 

 

#Garch models for the volatility and correlation comparisons for 

spillover effects.  

Example from S&P500 Only 

Gmodelsp <- ugarchspec(variance.model = list(model = "eGARCH", 

garchOrder <- c(1, 1)), mean.model = list(armaOrder = c(1, 1), 

include.mean <- TRUE), distribution.model = "std") 

fitGmodelsp <- ugarchfit(spec = Gmodelsp, data = sp_df) 

sigma4=(sigma(fitGmodelsp)) 

sigmasp <- data.matrix(as.data.frame(sigma4)) 

#FIGURE OF BTC VS S&P500) for spillover effects. 

plot(rcor(dcc.fit)['retBTC','retSP',],ylab="",xlab="Time", type='l', 

xlim=c(-0.1, 1300),ylim=c(-0.2, 0.3)) 

par(new=T) 

plot((sigmasp*10),type='l',ylab="Correlation",col='red',xlab="",xlim

=c(-0.1, 1300),ylim=c(-0.2, 0.3)) 


