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Abstract 
The spread of antibiotic resistant genes is of great public health concern. Wastewater 

treatment plants have been identified as a possible reservoir for these genes. This review 

gives an overview on the spread of antibiotic resistant genes in wastewater, based on 

existing data on occurrence of antibiotic as well as mechanisms involved in transfer and 

spread of resistant genes in wastewater systems. Dispersal of antibiotic resistant genes are 

facilitated by bacteriophages and mobile genetic elements, such as integrons, plasmids and 

transposons found in bacteria. Bacteriophage have been found to be extremely important in 

the  spread of resistance genes in wastewater environment. This is due to their abundance in 

wastewater as well as their ability to transfer and acquire bacteria genes. Studies has shown 

that antibiotics are present in varying concentrations in distinct wastewater domains such as 

WWTPs. According to existing data, bacteria in wastewater exhibit resistance phenotype, 

using resistance mechanisms such as target by-pass, modification of target site, decreased 

permeability, efflux pumps amongst others. Studies has also shown that plasmids, 

bacteriophages, integrons and transposons involved in transfer of antibiotic resistant genes, 

as well as genes encoding other functions are prevalent in wastewater. In vitro studies 

performed on mobile genetic elements isolated from wastewater showed that mobile 

elements transmit resistance. The resistant genes are transferred via processes such as 

conjugation, transduction and transformation. To sum up, antibiotics are present in 

wastewater domains, and act as selective pressure for the development of resistance in 

some bacteria. Association of plasmids, integrons, transposons and bacteriophages with 

bacteria disperses resistant genes in wastewater. Due to the ability of genetic elements to 

acquire and transfer resistant genes among bacterial population. 
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 1. INTRODUCTION 
Antibiotics are chemical substances produced by microorganisms, mainly soil bacteria that 

impede or kill other organisms (Cano & Colomé, 1988). The wide use of antibiotics in human 

medicine, veterinary and animal husbandry on a global scale, has led to the development of 

antibiotic resistance in certain bacteria (Gullberg et al., 2011; Kim, Jensen, Aga, & Weber, 

2007) as well as the detection of antibiotics in water, sediment, animal and plant (Xu et al., 

2015; T. Zhang, 2016; Zhou et al., 2013).  

Antibiotic resistance is a natural occurrence which arises when infection caused by bacteria 

cannot be treated with appropriate dosage of an antibiotic (Friedman, Temkin, & Carmeli, 

2016; Jose L. Martinez, 2014). According to World Health Organization (2017), the 

emergence of antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARBs) is a 

global problem as it threatens public health. Bacteria acquire resistance phenotype by 

mutation, horizontal gene transfer (HGT) and by possessing inborn antibiotic resistance. 

Mutation involves the alteration of DNA sequence in a bacterial cell which results in genetic 

variation, whereas HGT has to do with movement of genetic information between living 

things (Burmeister, 2015). HGT is achieved via three main mechanism this includes 

transduction, transformation and conjugation (Munita & Arias, 2016). Mobile genetic 

elements (MGE) such as plasmids, integrons, and transposons play key roles in the transfer 

of ARGs in the environment (Kristiansson et al., 2011). In addition, recent studies have 

shown that bacteriophages also contribute significantly in horizontal spread of resistant 

genes (Balcazar, 2014; Muniesa, Imamovic, & Jofre, 2011; Rizzo et al., 2013). 

Most of the antibiotics administered to both humans and animals are either partly or not 

metabolized, so that they end up as by-product in sewage (Hirsch, Ternes, Haberer, & Kratz, 

1999). Wastewater treatment plants (WWTPs) receives wastewater from various sources 

such as housing units, hospitals, schools and industries (T. Zhang, 2016), resulting in WWTPs 

containing varying contaminants such as bacteria, metals, antibiotics, chemicals, antiseptics 

etc which can create a selective pressure favouring the development of ARGs and ARBs 

(Karkman, Do, Walsh, & Virta, 2018). Consequently, WWTPs has been identified as a prime 

source of pollutants such as antibiotics, heavy metals, ARGs and ARBs in to domains (T. 

Zhang, 2016), Unfortunately the traditional treatment process employed in WWTPs are 
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unable to completely remove antibiotics as well as resistant determinants present (Batt, 

Bruce, & Aga, 2006).    

studies have been carried out on the occurrence of antibiotics, ARGs and ARBs in 

wastewater (Chen & Zhang, 2013; T. Zhang, 2016; T. Zhang & Li, 2011). Providing adequate 

knowledge on the issue but more information is needed on the fate and rate of spreading of 

these pollutants into the environment. 

This review summarizes the spread of antibiotic resistant genes in wastewater from previous 

studies with emphasis on the mechanisms and modes of dissemination . 

2. Wastewater and its Classification 
The term wastewater is used for water originating from domestic or industrial activities that 

cannot be discharged in to the environment, due to the risk they pose to environment, 

public health etc (Madigan et al., 2006). Wastewater may consist of pollutants such as 

detergents, bacteria, nitrate, organic matter, chemical and metal with their organic fraction 

consisting mainly of carbon, hydrogen, oxygen and sometimes nitrogen (Tchobanoglous, 

Burton, Stensel, Metcalf, & Eddy, 2003). The concentration of the organic fraction of any 

wastewater determines the strength of that wastewater (Mara, 2004). Wastewater is 

classified into domestic and industrial wastewater based on its source. Wastewater is 

conveyed via sewers into WWTPS where they are treated using the appropriate treatment 

technique. The treated wastewater is called effluent (Madigan et al., 2006) and can be 

reused for certain activities such as agriculture, tourism etc. (Maryam & Büyükgüngör, 2017). 

2.1 Domestic Wastewater 
Domestic wastewater is wastewater generated from household, hospital and institutions 

consisting mainly of black water i.e. faecal water from toilets and grey water which includes 

water from bath tubs, washers and kitchen sinks (Mara, 2004). Domestic water use varies in 

the quantity of usage with flushing of toilets accounting for the highest water usage as 

shown in Table 1. Fresh domestic wastewater may be converted to septic wastewater when 

it loses its dissolved oxygen content (Davis & Masten, 2009), the fresh wastewater is grey in 

colour and has no odour whereas the septic wastewater has a black colour with an offensive 

odour (Davis & Masten, 2009).  
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Table 1. Percentage of Domestic Water Use 

Domestic Water use  Percentage use 
     

Flushing of toilets           40 
Laundry           15 
Bathing           30 
Kitchen            10 

Other use             5 

Note. Sourced from Davis, M. L., & Masten, S. J. (2009). Principles of environmental 
engineering and science (2nd ed. ed.). Boston: McGraw-Hill. 

Domestic wastewater is complex in nature due to the various types of pollutants it contains 

such as bacteria, viruses, pesticides, chemicals, detergents etc. Its content is unsafe as it 

contains a high level of disease causing organisms for example Escherichia coli (Mara, 2004). 

The quantity of organic matter in this type of wastewater is a key parameter for the effective 

treatment of domestic wastewater as it determines the degree of biological treatment 

employed in the treatment process (Maier, Pepper, & Gerba, 2009). Test such as 

biochemical oxygen demand (BOD) are carried out to determine the organic matter content 

of the wastewater (Mara, 2004).  

Hospital as well as the consumption of antibiotics at home are one of the major sources of 

antibiotics in domestic wastewater (Dincer & Yigittekin, 2017). The combining of hospital 

wastewater with domestic wastewater without chemical or biological pre-treatment has 

resulted in the inadequate removal of medicine from wastewater after conventional 

treatment (Dincer & Yigittekin, 2017). Thus promoting the spread of resistance in the 

environment if discharged into surface and ground water (Dincer & Yigittekin, 2017). 

2.2 Industrial Wastewater 
Industrial wastewater as the name implies is generated from industrial activities. The type of 

pollutants present in industrial wastewater are diverse since different industries produce 

varying pollutants based on their operations (Davis & Masten, 2009). The constituents of the 

wastewater are classified as conventional, non-conventional and emerging pollutants 

(Tchobanoglous et al., 2003) as shown in Table2. 

 Industrial wastewater of high toxicity produced by individual industries undergo on-site pre-

treatment before they are released in to the WWTPs (Tchobanoglous et al., 2003), this  
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is carried out to avoid damaging the sewer system conveying wastewater to the WWTPs and 

also from obstructing the treatment process in WWTPs (Tchobanoglous et al., 2003) .  

Table 2. Classification of Some Constituents Found in Wastewater 

Note. BOD= Biochemical oxygen demand, COD= Chemical oxygen demand, TSS= Total 
suspended solids, VOC= Volatile organic compound, TDS= Total dissolved solid, Sourced from 
Tchobanoglous, G., Burton, F. L., Stensel, H. D., Metcalf, & Eddy. (2003). Wastewater 
engineering: treatment and reuse (4th ed. revised by George Tchobanoglous, Franklin L. 
Burton, H. David Stensel. ed.). Boston: McGraw-Hill. 

 

3. Antibiotics and Their Occurrence in WWTPS 

Antibiotics are chemical substances used in the treatment and prevention of bacterial 

infection in both humans and animals (Gao et al., 2012; Kümmerer, 2009). Almost all the 

antibiotics available today are naturally derived from soil inhabiting bacteria such as the 

actinomycetes (Tortora, Funke, & Case, 2004), which uses the produced antibiotic to 

compete with other microorganism (Sosa et al., 2010).  

Antibiotics can be classified in to numerous classes based on chemical structure this 

includes, β-lactams, glycopeptides, polymixins, macrolides, oxazolidinones, quinolones, 

sulphonamides, streptogramins, tetracyclines etc (Díaz-Cruz & Barceló, 2005) with 

antibiotics belonging to the same class having similar characteristics in terms of activity. The 

potency of the various classes of antibiotics depends mainly on their pharmacokinetic and 

pharmacodynamic properties (Yılmaz & Özcengiz, 2017). 

  Antibiotics are termed either as broad spectrum or narrow spectrum based on the range of 

bacteria they affect (Cano & Colomé, 1988). They are called broad spectrum when they 

affect a wide group of bacteria and narrow spectrum when they affect limited bacteria, for 

example only gram- positive bacteria (Tortora et al., 2004). Antibiotics can be bactericidal 

Conventional Nonconventional Emerging 

BOD Metals Antibiotics 

COD Surfactants Steroid hormones 

TSS VOC Home product 

Bacteria TDS  
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in that they carry out their mode of action by killing bacteria, this includes antibiotics such as 

penicillin, fluoroquinolones etc. whereas bacteriostatic antibiotics such as tetracycline, 

macrolides, sulphonamides etc. work by preventing bacteria from multiplying. 

 Antibiotic has been seen to attack bacteria cell via five modes of action namely, by 

inhibition of cell wall synthesis, inhibition of protein synthesis, inhibitors of nucleic acid 

synthesis, inhibition of metabolic pathway and disruption of bacterial membrane structure 

(Tenover, 2006).  

 The utilization of antibiotic in present day medicine began with the discovery of artificial 

antibiotics obtained from dyes (Bosch & Rosich, 2008). The first natural antibiotic called 

penicillin was discovered in 1928 by Alexandra Fleming, and naturally formed antibiotics 

from plants were first utilized in medical science during Paul Ehrlich`s study in 1908 (Dincer & 

Yigittekin, 2017) all these discoveries contributed significantly to the transformation of the 

present day medical science. 

3.1 Occurrence of Antibiotics in WWTPs 
Antibiotics have been discharged in to WWTPS for decades from sources such as households, 

hospitals and industries i.e. pharmaceutical industry (T. Zhang, 2016), as a result many 

classes of antibiotics have been globally discovered in different WWTPs (T. Zhang, 2016). 

Nine classes of antibiotics such as macrolides, quinolones, β-lactams, sulphonamides, 

tetracycline lincosamides, reductase inhibitor (trimethoprim), glycopeptide and amphenicol 

have been detected in the influents and effluents of different WWTPs around the world 

(Tran, Reinhard, & Gin, 2018). The occurrence of fluoroquinolones, macrolides, 

sulphonamides, and trimethoprim in WWTPs was global (Tran et al., 2018), whereas 

tetracycline, β-lactams, gylcopeptide and amphenicol were more prevalent in WWTPs of 

developing countries such as China, Thailand etc (Minh et al., 2009; Tran et al., 2018). This 

may be due to the absence of restriction on the purchase and extensive use of antibiotics in 

these countries compared to developed countries such as Sweden, Canada etc where 

restrictions are placed on the purchase and use of antibiotics in certain activities.  

According to Zhang (2016) and Tran et al. (2018), the concentration of antibiotics in WWTPs 

depends on certain factors such as the consumption pattern of antibiotics, population 
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density and size, type of sewer system, weather variations and the efficiency of the 

treatment plant. 

Table 3. Occurrence of some antibiotics in WWTPs 

Antibiotic 
 

Location Influent 
Concentration 
(ng/l) 

Effluent 
Concentration 
 (ng/l) 

Penicillin G Australia <2 <2 

Sulfamethoxazole USA 1090 210 
Sulfamethoxazole China 5450-7910 <100 
Sulfamethoxazole Korea 450 <30 
Sulfamethoxazole Mexico 390 0.31 
Sulfamethoxazole Sweden <80-674 <80-304 
N4-sulfamethoxazole Switzerland 850-1600 <20-180 
Trimethoprim Mexico 0.59 180 
Trimethoprim USA 0.14-1.10 <50-550 
Trimethoprim UK 213-300 218-322 
Trimethoprim Sweden 80 40 
Trimethoprim China 120-320 120-230 
Tetracycline USA 200 <30 
Tetracycline China 96-1300 180-620 
Ciprofloxacin USA <50-310 <50-60 
Ciprofloxacin Sweden 90-300 <6-60 
Ciprofloxacin Australia 90 130 
Ciprofloxacin China 80 27 
Erythromycin USA <50-1200 <50-300 
Erythromycin Taiwan 226-1537 361-811 
Erythromycin China 470-810 520-850 
Erythromycin UK 71-141 145-290 
Erythromycin Switzerland 60-190 60-110 

Note. Sourced from Le-Minh, N., et al., Fate of antibiotics during municipal water recycling 
treatment processes. Water Research, 2010. 44(15): p. 4295-4323. 

 

3.2 Occurrence of Frequently Detected Antibiotics in WWTPs 

 

3.2.1 Quinolones (Fluoroquinolones) 

                

Figure 1: Structure of Quinolone, Reprinted from Van Doorslaer, X., et al., Fluoroquinolone 
antibiotics: An emerging class of environmental micropollutants. Science of The Total 
Environment, 2014. 500-501: p. 250-269. 
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Quinolones and fluoroquinolone belong to a class of antibiotics obtained from nalidixic acid, 

and are administered in the treatment of bacterial infections (Jia, Wan, Xiao, & Hu, 2011). 

The general structure of Quinolones is shown in figure 1. Nalidixic acid was the first 

quinolone used and it was seen to have antibacterial effect on some organism (Andersson & 

MacGowan, 2003). Fluoroquinolones are a class of quinolones that possess a fluorine ring, 

examples of such includes ciprofloxacin, norfloxacin etc (Figure 2). 

           

Figure 2. Structure of Norfloxacin and Ciprofloxacin Antibiotic, Reprinted from Tegze, A., et 
al., Degradation of fluoroquinolone antibiotics during ionizing radiation treatment and 
assessment of antibacterial activity, toxicity, and biodegradability of the products. Radiation 
Physics and Chemistry, 2018. 147: p. 101-105. 

According to Kolpin et al. (2002) and Jia et al. (2011) the presence of quinolone has been 

detected in water bodies, and its presence in WWTPs corresponds with the global wide use 

of quinolones (T. Zhang, 2016). Quinolones such as pipemidic acid, nalidixic acid belonging to 

the first generation and moxifloxacin, gatifloxacin belonging to the fourth generation 

antibiotics have been identified in WWTPs (T. Zhang & Li, 2011). High concentrations of 

quinolones have been recorded in some countries for example, in Hong Kong and China 460 

ng/l and 370 ng/l of norfloxacin was detected in the influent of WWTPs respectively (T. 

Zhang & Li, 2011). Significant amounts of quinolones are removed from WWTPs by 

adsorption to sludge as they are not easily biodegraded (Le-Minh, Khan, Drewes, & Stuetz, 

2010; Lindberg et al., 2006). 

3.2.2 β-lactams 

β-lactams are the most widely used antibiotics in human medicine, they are also used in 

animal husbandry to promote growth (Cha, Yang, & Carlson, 2006). This class of antibiotics 

possess a beta-lactam ring in their structure and the mode of action is by inhibition of cell 

wall synthesis (Madigan et al., 2006). They consist of two sub classes namely penicillin and 

cephalosporin, with a ring system merged to a β-lactam ring as the main distinguishing 

feature (Cha et al., 2006) as seen in Figure 3 and 4.  
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Figure 2. Structure of the Penicillin Antibiotic, Reprinted from Cha, J., S. Yang, and K. Carlson, 
Trace determination of β-lactam antibiotics in surface water and urban wastewater using 
liquid chromatography combined with electrospray tandem mass spectrometry. Journal of 
Chromatography A, 2006. 1115(1-2): p. 46-57.  

 Amoxicillin, cefaclor and cephalexin according to studies have been identified as the most 

predominant type of β-lactams in WWTPs (Watkinson, Murby, & Costanzo, 2007; T. Zhang & 

Li, 2011). Due to the global frequent use of β-lactams their concentrations have been seen to 

be more in influents and less or completely absent in effluents (Le-Minh et al., 2010). The 

low concentration of β-lactams in effluents is due to the ring system being unstable, so that 

it undergoes either chemical or enzyme hydrolysis during treatment (Kümmerer, 2009; Le-

Minh et al., 2010; Watkinson et al., 2007). For example a WWTP in China recorded 153 

μg/l in the influent and 1.68 μg/l in the effluent (Le-Minh et al., 2010; D. Li et al., 2008).  

A significant quantity of β-lactams is removed by biodegradation in WWTPs (Zhang, 2016), 

this was the case of cephalexin which was seen to reduce from 2000 ng/l to 78 ng/l in a 

WWTPs in Australia (Costanzo, Murby, & Bates, 2005; Le-Minh et al., 2010). 

 

                     

Figure 4. Cephalosporin Antibiotic Structure, Reprinted from Cha, J., S. Yang, and K. Carlson, 
Trace determination of β-lactam antibiotics in surface water and urban wastewater using 
liquid chromatography combined with electrospray tandem mass spectrometry. Journal of 
Chromatography A, 2006. 1115(1-2): p. 46-57. 
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3.2.3 Macrolides 

Macrolide is one of the major classes of antibiotics used in modern medicine. They are made 

up of a large lactone ring as shown in Figure 5, which is interchanged with sugars and groups 

such as hydroxyl, alkyl and ketone to the nucleus (Göbel, Thomsen, McArdell, Joss, & Giger, 

2005a; T. Zhang & Li, 2011). The mechanism of action for this class of antibiotics is the 

inhibition of protein synthesis in bacteria (Madigan et al., 2006). Macrolides are discharged 

from the body mainly in their original form and released in to the sewer system (Hirsch et 

al., 1999; Le-Minh et al., 2010). The discharge of macrolides from the body in their original 

form increases the concentration of macrolide in the receiving WWTP, thus countries with a 

high consumption rate will have a high concentration of this antibiotic in the WWTP and vice 

versa (Le-Minh et al., 2010).  

Erythromycin is one of the most used macrolides in hospitals (Kirst, 2002; Le-Minh et al., 

2010), it is unstable under acidic conditions and converted to a metabolite called 

Erythromycin-H2O (Le-Minh et al., 2010). At a Ph range of 6.5 to 8.0 both erythromycin and 

its metabolite can exist (Le-Minh et al., 2010). Based on studies Erythromycin-H2O is said to 

occur more than Erythromycin in WWTPs (T. Zhang & Li, 2011).  

The metabolite along with six other macrolides have been detected in WWTPs globally (T. 

Zhang & Li, 2011) with 10025 ng/l of Erythromycin-H2O detected in influent (Kasprzyk-

Hordern, Dinsdale, & Guwy, 2009; T. Zhang & Li, 2011) and 4330 ng/l in the effluent (Minh et 

al., 2009; T. Zhang & Li, 2011). Some of the macrolides detected in low frequency in WWTPs 

include, roxithromycin, clarithromycin, azithromycin, tylosin and oleandomycin (T. Zhang & 

Li, 2011). 

Biodegradation and adsorption can be used for the removal of some quantities of macrolides 

from WWTPs, but these methods are still not efficient in their total removal (Göbel, 

McArdell, Joss, Siegrist, & Giger, 2007; Le-Minh et al., 2010). 
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Figure 5. Structure of Erythromycin Antibiotic, Reprinted from Madigan, M.T., et al., Brock 
Biology of Microorganisms, Global Edition: UEL. 2006: Pearson Education M.U.A. 

 

3.2.4 Sulfonamides 

 Sulfonamides are antibiotics that possess the sulfonamide functional group and they belong 

to the broad-spectrum antibiotics (Madigan et al., 2006). In a bacteria cell sulphonamide 

inhibits folic acid synthesis which eventually inhibits the synthesis of nucleic acid (Le-Minh et 

al., 2010). Sulfonamides are not entirely metabolized when ingested and are excreted either 

in the original form or as a metabolite in to the sewer system (Göbel et al., 2005a; Le-Minh 

et al., 2010). The most excreted metabolites include, N4acetylsulfamethoxazole and other 

N4-acetylated sulphonamides which according to Göbel et al. (2005a) and Le-Minh et al. 

(2010) can be converted back to their parent compounds during treatment in WWTPs. 

Sulfamethoxazole has been identified as the most frequently detected sulphonamide in 

WWTPs globally (Brown, Kulis, Thomson, Chapman, & Mawhinney, 2006; Le-Minh et al., 

2010; T. Zhang & Li, 2011), with a concentration of 5597 ng/l in influent and 6000 ng/l in 

effluent (Batt et al., 2006; Peng, Tan, Tang, Yu, & Wang, 2008; T. Zhang & Li, 2011). Other 

sulphonamides detected frequently in WWTPs includes sulfadiazine, sulfapyridine, 

sulfamethazine etc (T. Zhang & Li, 2011). 

The removal of sulfonamides from WWTPs is achieved to a certain level by adsorption and 

biodegradation, with adsorption accounting for most of the removed sulphonamides (Le-

Minh et al., 2010). 

  



11 
 

 

     

Figure 6. Structure of Sulfamethoxazole, Reprinted from Peng, X., et al., A preliminary study 
on the occurrence and behaviour of sulfonamides, ofloxacin and chloramphenicol 
antimicrobials in wastewaters of two sewage treatment plants in Guangzhou, China. Science 
of The Total Environment, 2006. 371(1): p. 314-322. 

 

3.2.5 Tetracyclines 

Tetracyclines are bacteriostatic antibiotics that inhibit both gram-positive and gram-negative 

bacteria and are the second widely used antibiotics in human medicine (Madigan et al., 

2006). They possess the naphthacene ring system and inhibit protein synthesis in a bacteria 

cell by interfering with the 30S ribosome function (Madigan et al., 2006). 

The extensive use of tetracycline in the treatment of bacterial infections in humans, 

veterinary medicine as well as in animal production in some countries (Madigan et al., 2006), 

has resulted in the frequent detection of tetracycline in wastewater (Kim et al., 2007; Le-

Minh et al., 2010). For instance, in the USA tetracycline was detected in concentration 

ranging between 0.1 and 0.6 μg/l in the influent of a WWTP (Kim, Eichhorn, Jensen, Weber, 

& Aga, 2005; Kim et al., 2007; Le-Minh et al., 2010). 

                        

Figure 7. Tetracycline Structure, Reprinted from Halling-Sørensen, B., G. Sengeløv, and J. 
Tjørnelund, Toxicity of Tetracyclines and Tetracycline Degradation Products to 
Environmentally Relevant Bacteria, Including Selected Tetracycline-Resistant Bacteria. 
Archives of Environmental Contamination and Toxicology, 2002. 42(3): p. 263-271 
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4. Antibiotic Resistance and its Origin 
According to WHO (2015) bacteria is said to be antibiotic resistance when therapeutic levels 

of antibiotic used to treat the infection it produces becomes ineffective. This is due to the 

bacteria undergoing certain changes which could either be natural or acquired. Antibiotic 

resistance is a natural process that has been in existence for a long time (Friedman et al., 

2016), it can be traced as far back to the origin of antibiotics (Friedman et al., 2016; Shlaes et 

al., 1997) as most antibiotics are produced naturally by environmental bacteria such as soil 

bacteria (Jose L. Martinez, 2014). Antibiotic producing microorganisms developed a resistant 

mechanism to prevent the produced antibiotic from harming them (P. Courvalin, 2016), this 

mechanism of resistance was not a cause of concern back then as it had little or no effect on 

both humans and animals. As time progressed the use of antibiotics increased leading to a 

growing concern of antibiotic resistance. This concern was remedied by the development of 

new classes of antibiotics to counter the resistance mechanism (Jose L. Martinez, 2014). 

Presently due to the extensive and random use of antibiotics in medicine and animal 

husbandry (Kim et al., 2007; Rodríguez-Rojas, Rodríguez-Beltrán, Couce, & Blázquez, 2013). 

Antibiotic resistance has become a global threat to public health (World Health Organization, 

2014), as an increasing number of pathogenic bacteria possesses the resistance mechanisms 

thus making the treatment of their infections difficult. 

Microorganisms can become resistant to antibiotic either naturally or by acquisition of the 

resistant trait or gene (Munita & Arias, 2016). Natural antibiotic resistance can be illustrated 

using antibiotic producing microorganism such as soil bacteria. This type of bacteria need to 

protect themselves from the harmful substances they produce, and as such naturally 

develop resistance mechanism to enable them with stand the effect of the antibiotic they 

produce (Cox & Wright, 2013; Munita & Arias, 2016). 

Gram negative bacteria possess outer membrane that shields them from harmful substances 

(P. Courvalin, 2016; Cox & Wright, 2013). For example, the outer membrane of gram-

negative bacteria prevents the flow of β-lactam molecules to the intracellular region upon 

exposure (Madigan et al., 2006). Thus, allowing the bacteria to survive the harmful attack 

and become naturally resistant to β-lactam. There are a few environmental bacteria such as 

mycoplasma species that lack cell wall, these types of bacteria are more likely to survive an 

attack by  
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antibiotic such as penicillin which works by impeding cell wall (Madigan et al., 2006). 

Consequently, making this class of bacteria naturally resistant to the antibiotic applied. 

Microorganism are said to have acquired antibiotic resistance when they undergo a genetic 

change that results in the mutant gene carrying antibiotic resistance (Madigan et al., 2006). 

The resistance gene is either picked up from the environment, or by transfer from one 

bacterium to another of the same specie or distinct species (Madigan et al., 2006). Antibiotic 

resistance is spread through the environment by three main agents this includes genes, 

bacteria and mobile genetic elements such as plasmids and transposons (P. Courvalin, 2016). 

The main source of antibiotic resistance genes has been attributed to environmental 

bacteria which are the key producers of antibiotics (Jose L. Martinez, 2014).  

Mutation and HGT are the main processes that has led to the emergence of antibiotic 

resistance (Madigan et al., 2006; Munita & Arias, 2016; T. Zhang, 2016). Mutation is the 

alteration of genetic material which can result to different types of antibiotic resistance such 

as resistance that modifies antibiotic target site (MacGowan & Macnaughton, 2017; Jose L. 

Martinez, 2014). HGT involves the transfer of resistance genes originating mainly from 

environmental bacteria (P. Courvalin, 2016; Jose L. Martinez, 2014). In HGT genes are 

transferred from one bacterium called the donor to another known as the recipient 

(Madigan et al., 2006). This process is triggered of by very low concentration of antibiotic in 

the bacteria cell environment (Jose L. Martinez, 2014). Mobile genetic elements such as 

plasmids, transposons and integrons are essential for horizontal transfer of resistance genes 

from one organism to another (Munita & Arias, 2016). 

4.1 Mechanism of Antibiotic Resistance 
 Over the years with the wide use of antibiotics, bacteria especially pathogenic ones have 

developed mechanisms to enable them with stand antibiotic attacks (MacGowan & 

Macnaughton, 2017). From a biochemical approach, bacteria have adopted several 

mechanisms in surviving antibiotic attack. This includes modification of the antibiotic, 

decreased membrane penetration and efflux, modification of target site and target by pass 

(Holmes et al., 2016; Munita & Arias, 2016). Bacteria can use any one of the mechanism in 

Figure 8 to survive antibiotic attack, while some bacteria are specialized and are able to 

employ two or more mechanisms in surviving a specific antibiotic attack (Deutscher & 

Friedman, 2010; Munita & Arias, 2016). 
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Figure 8. Bacterial Mechanism of Resistance to Different Classes of Antibiotics, Reprinted 

from Yılmaz, Ç., & Özcengiz, G. (2017). Antibiotics: Pharmacokinetics, toxicity, resistance, 

and multidrug efflux pumps. Biochemical Pharmacology, 133, 43-62. 

doi:https://doi.org/10.1016/j.bcp.2016.10.005 

 

 

 

 

 

 

  

https://doi.org/10.1016/j.bcp.2016.10.005


15 
 

Table 4. Resistance Mechanism of Some Frequently Used Antibiotics 

Antibiotic Class 
 

Type of Resistance Resistance Mechanism Example 

    

Macrolides Altered target Methylation of 
ribosome active site 

erm-encoded methylases in 
staphylococcus aureus 

 Efflux pumps Mef type pump Streptococcus pneumoniae 

    

    

β-lactams Altered penicillin 
binding protein 

PBP2a Mec A in staphylococcus aureus 

 Enzymatic 
degradation 

Penicillinase Gram-negative bacteria 

    

Quinolones Altered target site Mutation resulting to 
reduced binding to 
target site 

Mutations in gyr A in gram-
negative bacteria and in 
staphylococcus aureus 

 Efflux  Membrane 
transporters 

Mutations in gyr A and par C in 
Streptococcus pneumoniae  

    

Tetracycline Efflux Membrane 
transporters 

tet genes encoding efflux 
proteins in gram-positive and 
gram-negative bacteria 

    

 Altered target Production of 
proteins that bind to 
the ribosome and 
alter the target site 

 

tet (M) and tet (O) in gram-
positive and gram-negative 
bacteria 

Aminoglycoside  Decreased 

uptake 

Changes in outer 

membrane 

 

Pseudomonas aeruginosa 

 Enzymatic 

modification 

Aminoglycoside 

modifying enzymes 

Gram-negative bacteria 

Note. Sourced from Kapoor, G., Saigal, S., & Elongavan, A. (2017). Action and resistance 
mechanisms of antibiotics: A guide for clinicians. Journal of Anaesthesiology, Clinical 
Pharmacology, 33(3), 300-305. doi:10.4103/joacp.JOACP_349_15 
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4.1.1 Modification of Antibiotic 

Resistance due to the modification of antibiotics involves the production of an enzyme by 

the bacteria under attack (Deutscher & Friedman, 2010). The produced enzyme can modify 

the antibiotics either by chemical alteration or by the destruction of the antibiotic molecule 

(Deutscher & Friedman, 2010; Munita & Arias, 2016). In the case of chemical alteration, 

resistance is attained when the enzyme catalyses reactions such as acetylation, 

phosphorylation and adenylation (Dzidic, Suskovic, & Kos, 2008; Munita & Arias, 2016), 

which decreases the binding of the antibiotic molecule to the target site. The antibiotic type 

typically affected by this mechanism are antibiotics that function by inhibition of protein 

synthesis (Munita & Arias, 2016). For instance, in aminoglycoside antibiotic resistance the 

enzyme transferases catalyses either acetylation, phosphorylation or adenylation reaction, 

resulting in the altered aminoglycoside antibiotic affected in the way it binds to target site 

(Dzidic et al., 2008). Enzymatic modification has accounted for most of the global 

aminoglycoside antibiotic resistance recorded with the enzymes housed mainly by plasmids 

and transposons (Munita & Arias, 2016). 

 Some enzymes are capable of catalysing more than one reactions and these enzymes are 

said to be bifunctional (Munita & Arias, 2016). Most gram-positive bacteria exhibit the 

bifunctional ability in attaining resistance, an example is the Enterococcus sp which has 

developed resistance to gentamicin antibiotic using its bifunctional ability (Munita & Arias, 

2016).  

β-lactam is a typical example of modification of antibiotic by enzymatic destruction of the 

antibiotic as seen in Table 4. Here the β-lactam antibiotic losses its potency as β-lactamases 

destroys the amide bond of the β-lactam ring present in the structure of β-lactam 

antibiotics. For instance, Staphylococcus aureus produces β-lactamases enzyme which 

hydrolysis the β-lactam ring present in β-lactam antibiotics (Deutscher & Friedman, 2010; 

MacGowan & Macnaughton, 2017; Munita & Arias, 2016), resulting in the resistance of 

Staphylococcus aureus to β-lactam. 
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4.1.2 Decreased Membrane Penetration and Efflux 

In this mechanism there is a change in permeability of porins which transports materials to 

the cell region mainly by diffusion (Munita & Arias, 2016), this change in porin occurs 

without altering the porin structure (Jose L. Martinez, 2014). Changes in porins such as 

damage to the porin structure, porin size and copy number of porin decreases permeability 

of porins, (Dzidic et al., 2008; Kapoor, Saigal, & Elongavan, 2017; Kumar & Schweizer, 2005), 

thus reducing intracellular penetration of antibiotics such as quinolones, b-lactams and other 

hydrophilic compounds (Munita & Arias, 2016). Porins are classified in to several groups 

based on their function this includes, general porins, outer membrane porins and specific 

porins (Fernández & Hancock, 2012). General porins are the most important with respect to 

extrusion of antibiotic, as they are responsible for the specification of porin size to 

hydrophilic substances (Fernández & Hancock, 2012). 

Since most antibiotics exert their effect within a cell, bacteria able to reduce the amount of 

antibiotic entering the cell may develop resistance. This resistance is usually of low level 

concentration to such antibiotic (Deutscher & Friedman, 2010; Munita & Arias, 2016). For 

example, the presence of outer membrane in gram-negative bacteria has led to decreased 

quinolone antibiotic penetration in some gram-negative bacteria, due to a change in 

membrane permeability (Munita & Arias, 2016).  Most of the acquired resistance in 

Pseudomonas aeruginosa to antibiotics is a result of decreased membrane permeability 

(Kapoor et al., 2017). 

According to MA Webber and Piddock (2003), Dzidic et al. (2008) and Jose L. Martinez (2014) 

another mechanism of resistance is the extrusion of antibiotics from within a cell to the 

environment, by protein membranes called efflux pump. Efflux pumps are present in most 

bacteria and can affect virtually all classes of antibiotics (Dzidic et al., 2008; Munita & Arias, 

2016; MA Webber & Piddock, 2003). Antibiotics mostly affected by this mechanism are 

those exerting intracellular effects for example tetracycline, fluoroquinolone etc (Dzidic et 

al., 2008). The genes coding for efflux pump proteins can be found in chromosomes or 

plasmids of bacterial cell (Sun, Deng, & Yan, 2014). 

Efflux pumps are grouped in to five families which include the major facilitator super family 

(MFS), multidrug and toxic compound extrusion (MATE) family, the resistance-nodulation-

cell division (RND) family, the small multidrug resistance (SMR) family and the adenosine  
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triphosphate (ATP)- binding cassette (ABC) super family (Dzidic et al., 2008; Munita & Arias, 

2016; MA Webber & Piddock, 2003). The various groups of efflux pumps vary in their 

mechanism of operation, structure, energy source and type of antibiotic they act on (Dzidic 

et al., 2008; Munita & Arias, 2016; Sun et al., 2014). Efflux pumps are also categorized in to 

single- component system or multi-component system owing to the number of transporter 

each efflux pump possesses (Sun et al., 2014). Most efflux pumps found in gram-positive 

bacteria belong to the single component system whereas most efflux pumps in gram-

negative bacteria belong to the multi-component system (Fernández & Hancock, 2012). 

Pumps can act either on a specific antibiotic (drug specific) or on a wide range of antibiotic 

(multiple drug specific), with multiple drug efflux pump enhancing multiple drug resistance 

in certain bacteria (Dzidic et al., 2008; MA Webber & Piddock, 2003). The expression of the 

distinct types of efflux pumps are controlled by local and global regulators which are 

normally located adjacent to the genes encoding efflux protein (Sun et al., 2014). 

The tetracycline efflux pump is one of the first efflux system studied and provides a good 

insight on the efflux mechanism (Munita & Arias, 2016). In this case, tetracycline is 

transported out of the cytoplasmic membrane of a bacteria such as Escherichia coli, via the 

tetracycline efflux pump in to the environment. Consequently, resulting in E. coli surviving 

exposure to tetracycline (Munita & Arias, 2016). 

 

Figure 9. Schematic Illustration Showing the Five Families of Efflux Pumps in Bacteria with 
Example of Each, Reprinted from Kumar, A., & Schweizer, H. P. (2005). Bacterial resistance to 
antibiotics: Active efflux and reduced uptake. Advanced Drug Delivery Reviews, 57(10), 1486-
1513. doi:https://doi.org/10.1016/j.addr.2005.04.004 

https://doi.org/10.1016/j.addr.2005.04.004
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4.1.3 Modification of Target Site 

Modification of target site involves tactics such as protection of the antibiotic target site and  

alteration of the antibiotic target site by bacteria (Munita & Arias, 2016) so that they 

become resistance to antibiotic. In the protection of target site, a resistance protein 

produced by the bacteria cell either displaces the antibiotic molecule, alters binding site, or 

may bind to the antibiotic target site (W. Li et al., 2013; Munita & Arias, 2016). Therefore, 

preventing the antibiotic from exerting its effect so that resistance to such antibiotic is 

exhibited. 

 In the tetracycline resistance by Campylobacter jejuni, tetracycline resistance protein Tet (O)  

binds to target ribosome so that tetracycline molecule is unable to bind (W. Li et al., 2013; 

Munita & Arias, 2016). The displacement of the tetracycline molecule by Tet (O) protein 

prevents tetracycline from exerting its effect, so that protein synthesis is not affected and 

Campylobacter jejuni is able to survive tetracycline attack (Munita & Arias, 2016). Another 

example of this mechanism is the quinolone resistance protein QnrA found in some bacteria 

cell (Munita & Arias, 2016). This protein protects the bacterial DNA from the harmful effect 

of quinolone antibiotic which targets the DNA gyrase and topoisomerase iv enzyme (Jose L. 

Martinez, 2014). 

Modification of target site in a bacteria cell can arise from alteration such as RNA 

polymerase alteration (Lahiri et al., 2016). An example is the rifampicin antibiotic resistance 

in Mycobacterium tuberculosis, which occurs due to mutation of the RNA polymerase (Lahiri 

et al., 2016). The mutation occurs at the β subunit of the RNA polymerase which is the 

rifampicin target site in a bacteria cell and this target site is encoded by the rpoB genes 

(Lahiri et al., 2016). Resistance arising from the above mutation enables Mycobacterium 

tuberculosis to survive rifampicin attack with the altered target site still able to perform its 

function of transcription (Munita & Arias, 2016). A high level of rifampicin resistance has 

been recorded in Mycobacterium tuberculosis due to single step point mutation which 

substitutes some amino acid in the rpoB genes (Munita & Arias, 2016). 

 Alteration in penicillin- binding protein (PBP)  accounts for most of the antibiotic resistance 

in gram-positive bacteria (Kapoor et al., 2017)with resistance arising from reduced affinity of 

the antibiotic molecule (Dzidic et al., 2008). An example is the methicillin resistance in 

Staphylococcus aureus, which arises due to acquisition of a new gene (mecA) in the 
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chromosome of Staphylococcus aureus (Kapoor et al., 2017; Munita & Arias, 2016). The new 

mecA gene acquired produces a new penicillin- binding protein called PBP2a which is highly 

resistant to most β-lactam antibiotic effect. Consequently, reducing affinity with b-lactam   

and as such continues to perform its function (Dzidic et al., 2008; Kapoor et al., 2017). 

4.1.4 Target Bypass 

Bypass of target site is another tactic which involves the production of many target sites by 

bacteria to overcome antibiotic effect (Munita & Arias, 2016). An example is the resistance 

to trimethoprim-sulfamethoxazole antibiotics in E. coli, which occurs due to the over 

production of DHPS and DHRF target enzymes by mutation in genes (Eliopoulos & Huovinen, 

2001; Munita & Arias, 2016). The presence of many target molecules overcomes the 

trimethoprim-sulfamethoxazole molecule rendering it ineffective at inhibiting folate 

synthesis (Munita & Arias, 2016). 

5. Genetic Mechanism of Antibiotic Resistance 
Mutation and horizontal gene transfer (HGT) are two major genetic processes that have led 

to the emergence of antibiotic resistance. Mutation of genes encoding target site, access 

and protection pathways can confer resistance phenotype to a bacterium (Ishizawa, Ying, 

Tsuru, & Yomo, 2015; J. L. Martinez & Baquero, 2000). Although the rate at which mutation 

occurs in bacteria is low, the rapid generation time exhibited by bacteria enhances the 

spread of antibiotic resistance. Horizontal gene transfer (HGT) is the movement of genes 

among microorganisms belonging to either same or distinct species (Huang et al., 2017). This 

mechanism is carried out by bacteria through three major processes such as conjugation, 

transduction and transformation (Cano & Colomé, 1988). 

5.1 Mutation 
Mutation is the alteration of heritable genetic information (DNA) of an organism (Cano & 

Colomé, 1988; Madigan et al., 2006). This process can arise due to error in DNA replication 

(Deutscher & Friedman, 2010; Ishizawa et al., 2015)as well as from exposure to mutagens. 

DNA replication error can ensue from failure in base selection, proof reading and mismatch 

repair (MMR) system which affects accuracy of DNA replication (J. L. Martinez & Baquero, 

2000; Woodford & Ellington, 2007). Mutation can also occur due to oxidative and alkylation 

processes (Woodford & Ellington, 2007) and from wrongly repaired DNA of a bacteria cell 

(Dzidic et al., 2008). The process of mutation takes place mostly in actively dividing cell 



21 
 

(Dzidic et al., 2008; J. L. Martinez & Baquero, 2000) whereas certain mutation such as 

adaptive mutation can occur in non-dividing cells (J. L. Martinez & Baquero, 2000).  

The bacteria emerging from mutation is called a mutant and is usually affected by the 

process either positively or negatively. Mutations that affect the cell positively give the 

mutant a selective advantage enabling mutant bacteria to thrive in adverse environment 

(Woodford & Ellington, 2007). Also accumulation of mutation in a bacterial population  

brings about variety which enhances their adaptation to environment (Woodford & 

Ellington, 2007). The occurrence of some mutation affect mutant bacteria adversely by 

diminishing fitness, although this can be rectified by secondary site mutations (Schulz zur 

Wiesch, Engelstädter, & Bonhoeffer, 2010). 

Antibiotic resistance emerging from mutation is due to mutation in genes encoding 

antibiotic target, access and protection pathways in a bacterial cell (J. L. Martinez & Baquero, 

2000), which increases minimum inhibitory concentration (MIC) of the antibiotic (Ishizawa et 

al., 2015). When a bacterial population is exposed to a certain antibiotic, a part of that 

population is susceptible to that antibiotic. However, some bacteria are able to undergo 

mutation which enables them survive exposure to the given antibiotic (Munita & Arias, 

2016). The resulting mutant is said to have a resistance phenotype so that it has a selective 

advantage and can reproduce to increase the population. Consequently, resulting in new 

population that exhibits resistance to the specific antibiotic (Munita & Arias, 2016). 

 The MMR system in a bacteria cell is responsible for identifying DNA mispairing and 

activation of DNA repair cascade to fix errors (Woodford & Ellington, 2007), since faults in 

repair systems of bacteria makes such cell prone to mutation (Ishizawa et al., 2015; 

Woodford & Ellington, 2007).  Furthermore, the absence of MMR system  increases the 

occurrence of mutation as well as recombination frequency of that bacterium (Rodríguez-

Rojas et al., 2013). Such a bacterium is said to be hypermutable and exhibits a mutator 

phenotype, which varies in strength from one bacterium to another (Dzidic et al., 2008; 

Woodford & Ellington, 2007). Mutator phenotype genes such as mut S, mut H and mut U has 

been identified in some microorganism such as E. coli and S. enterica. Mutators gradually 

gather useful mutation (Ishizawa et al., 2015) and show increased mutation rate of 

approximately 
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10,000 times (J. L. Martinez & Baquero, 2000). This mutation rate varies for individual 

mutators as it is a function of their distinct mutator alleles (Ishizawa et al., 2015). Mutators 

are also capable of possessing varieties of alleles which enables them to defy antibiotic 

attack (J. L. Martinez & Baquero, 2000).  

Since mutation is a genetic change that leads to antibiotic resistance, most organism have 

developed resistance to certain antibiotics by mutation of the genes encoding resistance 

(Deutscher & Friedman, 2010; Jose L. Martinez, 2014). Several genes in a bacteria cell may 

be required for bacteria to develop resistance to an antibiotic owing to the presence of 

many antibiotic target site or protection pathway in such bacteria (Dzidic et al., 2008).  

Various forms of mutation have been seen to convey different levels of resistance in several 

organisms for instance; Mycobacterium tuberculosis is resistant to most antibiotic therapy 

especially mono antibiotic therapy is due to chromosomal mutations (Deutscher & 

Friedman, 2010; Dzidic et al., 2008; Woodford & Ellington, 2007). This form of mutation 

confers resistance to M. tuberculosis either by altering target site or by excess production of 

target sites in the cell (Dzidic et al., 2008). Bacteria that acquire resistance by chromosomal 

mutation tend to have a regular resistance pattern which makes it possible to identify 

appropriate drugs for effective treatment of their infections, therefor this form of mutation 

of great importance in medical science (Dzidic et al., 2008). A point mutation in the 

nucleotide of bacteria cell is another form of mutation that leads to antibiotic resistance in 

bacteria such as E. coli by modifying the function of the gene encoding resistance 

(Chattopadhyay & Sokurenko, 2013; Dzidic et al., 2008).  

Adaptive mutation results to resistance in bacteria due to alteration in genes which are 

triggered by stressors present in the bacteria environment (Fernández & Hancock, 2012). 

This type of mutation can occur in a slowly or non-dividing cell unlike most mutations that 

occur only in actively dividing cell (Dzidic et al., 2008). Bacteria thrive in their host or 

ecological niche by adjusting to changes in the environment and still being able to perform 

their basic function (Munita & Arias, 2016). Stressors such as exposure to non-lethal dose of 

antibiotic, pH change etc. can trigger mutation in a bacteria cell resulting in resistance 

(Fernández & Hancock, 2012), such resistance is temporal since it can be reversed when the 

stressor causing it is removed from the bacteria environment (Fernández & Hancock, 2012).  
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According to J. L. Martinez and Baquero (2000), frequency of mutation in a bacterial 

population is the measure of all mutant bacteria present. The frequency of mutation leading 

to antibiotic resistance differ from one bacterium to the other, since different mechanism 

are employed by bacteria in obtaining resistance to antibiotic (Normark & Normark, 2002).  

An example of bacteria species exhibiting the same resistance to β-lactam antibiotic at 

different frequency is seen in Enterobacter cloacae, which produces β-lactamase enzyme at 

a high frequency. Nevertheless, in E. coli chromosomal mutation producing β-lactamase 

enzyme occurs at a low frequency (Normark & Normark, 2002). Also, frequency of mutation 

leading to the inactivation of a resistance gene in a bacteria cell is higher than mutation 

which conveys resistance by alteration of gene (Normark & Normark, 2002). 

Several factors affect the mutation rate of bacteria either by increasing or decreasing it. 

Mutability is the likelihood of mutation to produce a resistance phenotype and this affects 

mutation rate in terms of number of genes and gene structure (J. L. Martinez & Baquero, 

2000). Gene structure affects mutability in that the number of sub units prone to mutation 

in genes encoding resistance varies from gene to gene. Therefore, mutation leading to 

antibiotic resistance corresponds to the number of those subunits available in the gene 

structure (J. L. Martinez & Baquero, 2000). Consequently, genes containing more mutation 

prone subunits have a higher mutation rate and vice versa (J. L. Martinez & Baquero, 2000). 

For example, E. coli quinolone resistance occurs due to changes in about seven subunits of 

gyrA gene, whereas in the parC gene change occurs in only three subunits. As a result, gyrA 

has a higher mutation rate than parC (J. L. Martinez & Baquero, 2000; M. Webber & Piddock, 

2001).  

Number of genes encoding for resistance in the bacterial cell influences mutability value 

since mutation in one or different genes can result to resistance phenotype in a bacterium (J. 

L. Martinez & Baquero, 2000). Therefore, mutability for resistance owing to mutation in only 

one gene in a bacterium is low whereas a high mutability is obtained for resistance 

phenotype due to mutation in several gene (J. L. Martinez & Baquero, 2000). Thus, affecting 

mutation rate as increase in mutability increases mutation rate and vice versa.  

Location of genes in the chromosome of some bacteria belonging to the Enterobacteriaceae 

family is seen to affect mutation rate, as genes located far from replication origin has a 

mutation rate about two times that of genes near the origin of replication (J. L. Martinez & 
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Baquero, 2000). Other factors affecting mutation rate includes bacteria stress, antibiotic 

concentration in selective window, presence of transposable element in a bacteria and large 

variety of resistance genes (J. L. Martinez & Baquero, 2000). Reversal of mutator allele and 

acquisition of suppressor mutation affect mutation rate adversely by reducing it (Dzidic et 

al., 2008).  

5.2 Horizontal Gene Transfer 
Horizontal gene transfer is the movement of genetic information between organisms of 

different species (Huang et al., 2017). This process is important in the spread of antibiotic 

resistance determinants between bacteria (Barlow, 2009) and plays a huge role in the 

evolution of prokaryotes. Due to most prokaryotes acquiring genes through this process 

(Boto, 2010). HGT occurs in some eukaryotes especially single celled eukaryotes (Boto, 2010; 

Huang et al., 2017) but recent studies by Huang et al. (2017) and Pace, Gilbert, Clark, and 

Feschotte (2008) shows that HGT can as well occur in multicellular eukaryotes such as 

humans. Three major mechanisms of HGT are transformation, transduction, and conjugation 

(Madigan et al., 2006). 

5.2.1 Conjugation 

Conjugation is one of the process of horizontal gene transfer involving the transfer of DNA 

from one bacterium cell to another, in which both cells are in contact (Arber, 2014; Madigan 

et al., 2006) see Figure 10. The bacterium giving away DNA is called the donor while the 

bacterium receiving the DNA is the recipient (Arber, 2014). This transfer is usually plasmid 

mediated and such plasmids are known as conjugative plasmids (Madigan et al., 2006). The 

conjugative plasmids are capable of transferring copies of themselves as well as copies of 

other plasmids in to new cells (Bennett, 2008), with the transfer methods differing from one 

plasmid to another (Madigan et al., 2006). 
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Figure 10. Simplified Representation of Conjugation Process, Reprinted from Blokesch, M. 
(2015). Protocols for Visualizing Horizontal Gene Transfer in Gram-Negative Bacteria 
Through Natural Competence. In Hydrocarbon and Lipid Microbiology Protocols (pp. 189-
204): Springer. 

Conjugative plasmid in gram- positive bacteria are smaller than those found in gram-

negative bacteria. This difference in size makes their contact mechanism differ (Bennett, 

2008) as well as different conjugative system in both gram-positive and gram-negative 

bacteria (Heuer & Smalla, 2007). Some plasmids are not self-transmissible but can be 

mobilized and transferred to a new bacterium cell, in the process of conjugation by the 

conjugative apparatus (Madigan et al., 2006; Thomas & Nielsen, 2005).  

Two main steps achieve conjugation firstly, the formation of mating pair which links the 

donor and recipient cell together and secondly the transfer of single strand plasmid DNA to 

the recipient cell (Andrup, 1998). Fertility factor (F- plasmid) present in donor cells (Arber, 

2014), consist of about forty genes present in the transfer region (Zatyka & Thomas, 1998). 

These genes  function mostly in the formation of mating pair (Madigan et al., 2006). Some of 

the genes in the transfer region are used by the donor to produce external appendage called 

sex pili, which establishes contact with the receptor of the recipient cell (Bennett, 2008; 

Madigan et al., 2006). This brings the donor and recipient cell in contact, so that  a pore 

which allows the movement of plasmid DNA as well as some encoded proteins of the donor 

to the recipient cell is created (Thomas & Nielsen, 2005). The transfer region may vary 

slightly from one plasmid to another consequently resulting to difference in pili structure 

(Madigan et al., 2006). Gram-negative conjugative plasmids have two types of pili which 

varies in function and size (Andrup, 1998).  Long and flexible pili found in F- plasmid, IncD 
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plasmid and IncJ plasmid function efficiently in liquid medium whereas short and fixed pili 

present in IncN and IncP plasmid effectively transfer on solid surfaces (Andrup, 1998). 

The second step process of conjugation commences as Tra I enzyme (Madigan et al., 2006) 

nicks of a single strand plasmid DNA from donor, and transfers to a recipient cell where a 

harmonious DNA strand is formed (Madigan et al., 2006; Zatyka & Thomas, 1998). As DNA 

strand is transferred to recipient cell, rolling circle replication occurs in donor cell replacing 

the transferred DNA. Thus at the end of the conjugation process both the donor and 

recipient have complete plasmid (Cano & Colomé, 1988; Madigan et al., 2006). 

In transfer involving F- plasmids, the donor cell (F+) transfers to a recipient cell (F-), which 

lacks the F- plasmid. At the end of the transfer process both the donor and recipient cell 

contains the F- plasmid (Cano & Colomé, 1988; Madigan et al., 2006). Recipient cells that 

acquire F- plasmid become potential donors, since some bacteria cell can lose their F- 

plasmid during cell division (Cano & Colomé, 1988). 

The process of conjugation is also used to transfer a part of the chromosome genes 

(Madigan et al., 2006). This is achieved by transposable elements such as insertion sequence 

(IS), which are present in both the F-plasmid and chromosome of certain bacteria such as E. 

coli (Madigan et al., 2006). Homologous recombination between similar insertion sequence 

in the F-plasmid and chromosome results to integration of  F-plasmid in to the chromosome 

(Madigan et al., 2006). Consequently, leading to the transfer of a part of the chromosome 

genes (Madigan et al., 2006). 

According to del Campo et al. (2012), frequency of conjugation is the proportion of the 

number of transconjugants to the number of either the donor or recipient. This frequency  

increase greatly by remixing mating populations (del Campo et al., 2012). In addition, 

antibiotic can affect conjugation frequency for example, the conjugational transfer of 

pUCP24T plasmid from E. coli to Pseudomonas aeruginosa. This transfer showed significant 

increase in conjugation frequency, as E. coli was treated with sub- minimal inhibitory 

concentration of either ciprofloxacin or levofloxacin (Shun-Mei et al., 2018). 

The mechanism of conjugation is also utilized by pathogenic bacteria in the spreading of 

resistant genes (Patrice Courvalin, 1994). For instance, tetracycline resistant gene carried in 

the F- plasmid of Neisseria gonorrhoeae can be transferred to another bacterium cell via 
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conjugation (Cano & Colomé, 1988). Therefore, conjugation is an important mode of 

horizontal gene transfer which enhances the spread of antibiotic resistance among 

pathogenic bacteria in nature (del Campo et al., 2012). 

In conclusion, the process of conjugation is used by bacteria in both acquiring and 

exchanging genes and requires contact between the two cells involved. 

5.2.2 Transformation 

Transformation is the uptake of free DNA by bacteria and the integration of the obtained 

DNA in to their chromosomes (Cano & Colomé, 1988) see Figure 1. This process is an 

important mechanism by which bacteria obtain genetic information from different species 

(Thomas & Nielsen, 2005). Bacteria capable of performing this process are said to be 

naturally competent (Heuer & Smalla, 2007; Thomas & Nielsen, 2005). Thus, natural 

competence is a physiological state which allows efficient uptake of DNA and is genetically 

managed (Heuer & Smalla, 2007). Over eighty species of both gram-positive and gram-

negative bacteria are naturally competent (Blokesch, 2016), this includes several human 

pathogenic bacteria such as Campylobacter, Streptococcus and Pseudomonas (Thomas & 

Nielsen, 2005). Non-competent or poorly transformable bacteria such as E. coli can be 

artificially induced in to competency, by treatment with calcium chloride solution or by 

undergoing the process of electroporation (Blokesch, 2016; Madigan et al., 2006).  

Competency is attained in most bacteria in their exponential growth phase (Cano & Colomé, 

1988). Nevertheless, not all bacteria of the same species are able to display competency 

(Blokesch, 2016). Several factors such as starvation, DNA damage, antibiotic stress and 

intracellular growth triggers the onset of competency in bacteria (Blokesch, 2016). For 

example, competency in Streptococcus pneumoniae is instigated by damaged DNA and the 

presence of antibiotics (Blokesch, 2016). Quorum sensing is an occurrence where by cells in 

a bacteria population, send signals to each other by releasing pheromone when high cell 

density is reached (Synder & Champness, 2003). This phenomenon is used by some bacteria 

such as Vibrio cholerae to attain competency (Blokesch, 2016).  

Free DNA necessary for transformation can be made available in the environment by 

bacteria releasing DNA in to the environment, lysing of bacteria as well as from the 

decomposition of dead organisms (Thomas & Nielsen, 2005). DNA from decaying organisms 
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becomes exposed and available for uptake after the process of cell lysis (Thomas & Nielsen, 

2005).  

In the process of transformation, free DNA is taken up by a bacterium and bound to the 

outer cell layer. Translocation to the cytoplasm occurs and then obtained DNA is integrated 

in to the chromosome by homologous recombination (Heuer & Smalla, 2007; Madigan et al., 

2006; Synder & Champness, 2003). Several genes are involved in the process of 

transformation and perform different functions, this includes production of DNA uptake 

machinery, protection of the newly acquired DNA amongst others (Blokesch, 2016). Most 

bacteria can take up DNA of any type and integrate it into their chromosomes. Nevertheless, 

some are discrete in DNA uptake such as Haemophilus influenzae owing to their fixed DNA 

sequence (Synder & Champness, 2003). 

 

 

                           

Figure 11. Transformation Mechanism, Reprinted from Saunders, N. J., Hood, D. W., & 
Moxon, E. R. (1999). Bacterial evolution:: Bacteria play pass the gene. Current Biology, 9(5), 
R180-R183. doi:https://doi.org/10.1016/S0960-9822(99)80108-0 

The persistence of free DNA in the environment for a relatively long time, ascertains bacteria 

transformation frequency as well as bacterial exposure time (Thomas & Nielsen, 2005). This 

Frequency varies among bacteria of the same species and consequently different efficiencies 

in the integration of DNA that is taken into chromosomes (Heuer & Smalla, 2007). 

To sum up, the process of transformation is essential in bacteria existence as it enables 

bacteria to acquire and exchange genes. Thus, contributing to their evolution, enhances 

adaptation as well as brings about diversity to the bacterial population. 

5.2.3 Transduction 

Transduction is another horizontal gene transfer mechanism in which bacterial DNA from a 

host infected bacterium cell, is transferred to another bacterium by bacteriophage (Heuer & 

Smalla, 2007). Bacteriophages are profuse in nature and can infect a wide range of bacteria 

https://doi.org/10.1016/S0960-9822(99)80108-0
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in the environment (Lupo, Coyne, & Berendonk, 2012). The presence of DNA packaging 

mechanism in a bacteriophage, enables the phage to package DNA belonging to its host 

bacterium during reproduction (Madigan et al., 2006; Synder & Champness, 2003). Phages 

carrying such features are said to be transducing (Cano & Colomé, 1988; Synder & 

Champness, 2003) as they can carry out the process of transduction. Host DNA can 

mistakenly be packaged in to viral DNA by the bacteriophage packaging enzyme during viral 

reproduction, with this error in packaging occurring mostly during lytic infection (Madigan et 

al., 2006). 

Transducing bacteriophages can be virulent or temperate based on their reproductive cycle 

(Madigan et al., 2006). They are classified as either specialized or generalized phages (Cano 

& Colome,’1988). Generalized transducing phages reproduce inside their host bacteria 

evolving to viral progeny (Cano & Colome,’1988) . This breaks the cytoplasm of the host 

bacteria so that as the phages continue to reproduce, fragments of the host bacteria can be 

mistakenly packaged in to some new phages (Cano & Colome,’ 1988). Nevertheless, 

specialized phages integrate in to their host chromosome to reproduce and may pick up a 

portion of their host DNA as they exit the chromosome (Cano & Colome,’ 1988). Therefore, 

generalized transduction involves the transfer of genes from any area of the host 

chromosome to the recipient bacteria (Madigan et al., 2006; Cano & Colome,’ 1988). 

However, in specialized transduction only a few bacteria genes close to the incorporation 

site of the prophage can be transferred to another bacterium (Synder & Champness, 2003; 

Cano & Colome,’ 1988) . Furthermore, frequency of specific transduction is  more efficient 

and higher than that of generalized transduction (Madigan et al., 2006). 

The mechanism of transduction has several benefits such as the absence of cell coupling, 

persistence of transducing phages in the environment and the protection of transported 

DNA by phages (Heuer & Smalla, 2007). Also, laboratory test has showed the process of 

transduction plays a vital role in the exchange of genetic materials among microorganism 

(Lupo, Coyne & Berendonk, 2012). 
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Figure 12. Generalized transduction, Reprinted from Salmond, G. P., & Fineran, P. C. (2015). 
A century of the phage: past, present and future. Nature Reviews Microbiology, 13(12), 777.  

 

 

     

 

Figure 13. Specialized Transduction, Reprinted from Salmond, G. P., & Fineran, P. C. (2015). A 
century of the phage: past, present and future. Nature Reviews Microbiology, 13(12), 777.  

  6.  Mode of Spreading of Antibiotic Resistance in Wastewater 

6.1 Antibiotic Resistant Genes (ARGs) 
 The development of antibiotic resistant genes in present day environment can be linked to 

the wide use of antibiotic (Bouki et al., 2013  This has adversely affected both human and 

animal, as treatment of infections are made difficult owing to the development of antibiotic 

resistance in bacteria (Manaia et al., 2018; Bouki et al., 2013). This phenomenon of antibiotic 

resistance in bacteria is controlled genetically by ARGs (X.-X. Zhang, Zhang, & Fang, 2009). 

ARGs are usually produced by molecular mechanisms such as efflux pump, target bypass, 

modification of target site etc (X.-X. Zhang et al., 2009). 

 ARGs has been identified in most WWTPs based on several studies (Chen & Zhang, 2013; 

Manaia, 2014; Novo, André, Viana, Nunes, & Manaia, 2013; Rizzo et al., 2013), with 

community, hospital and relevant industry being the major sources of ARGs in to wastewater 
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treatment plants (Karkman et al., 2018). Municipal wastewater treatment plants (MWTPs) 

usually receives wastewater from distinct sources such as hospitals, industry, homes etc 

(Karkman et al., 2018; Manaia, 2014), with the different wastewater containing varying 

pollutants such as antibiotic, heavy metals, bacteria from different environment (Karkman et 

al., 2018). During the treatment process in WWTPs antibiotic residues present are in 

continuous contact with bacteria, this leads to the development of resistant gene in some 

bacteria present (Bouki et al., 2013; X.-X Zhang et al., 2009). The presence of high bacteria 

cell density owing to nutrient availability and the selective pressure exerted by antibiotic 

residues or metals (Rizzo et al., 2013; Manaia, 2014; X.-X Zhang et al., 2009), creates a 

conducive state which enhances horizontal transfer of ARGs from one bacterium to another 

(Bouki et al., 2013; X.-X Zhang et al., 2009). Thus, making municipal wastewater treatment 

plants potential hot spot for the transfer of ARGs (Rizzo et al., 2013).      

Polymerase chain reaction (PCR) and metagenomics are the frequently used techniques 

employed in analysing ARGs in wastewater (Karkman et al., 2018). Metagenomics has an 

advantage over PCR in that, it does not require previous knowledge on the sequence of the 

ARG to be studied whereas such knowledge is needed for PCR (Karkman et al., 2018). These 

methods have been used to identify ARGs present in wastewater. Although the actual 

transfer process of ARGs in wastewater is still not ascertained, due to lack of appropriate 

technique (Rizzo et al., 2013). The study of the spread of resistance genes in wastewater 

with PCR method is demanding. This is due to the presence of complex pollutants as well as 

humic substances, detergents etc. that can interfere with detection of certain bacterial 

species and genes (Rizzo et al., 2013). 

 Resistant genes such as tetracycline resistant genes, methicillin resistant genes, 

sulphonamide resistant genes etc have been identified in many WWTPs. Tetracycline (tet) 

resistant genes is seen to be the most occurring of these genes in wastewater with high rates 

in most countries (X.-X Zhang et al., 2009). See Table 5 for more ARGs found in WWTPs.  

Selective pressure has been seen to be a key factor in the spreading of ARGs in aquatic 

environment, because  an increase in this pressure enhances the acquisition of genes by 

bacteria (X.-X Zhang et al., 2009). Furthermore, the acquisition of genes by bacteria may 

improve fitness, such that spreading of genes becomes fast( X.-X Zhang et al., 2009). Several 

ARGs occur on mobile genetic elements such as plasmids, integrons and transposons (J. Li, 
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Cheng, Xu, Strong, & Chen, 2015). These genes located on mobile genetic elements are said 

to be more prone to spreading since they can easily be acquired horizontally by another 

bacterium when mobilized (Karkman et al., 2018). Also, some mobile genetic elements 

present in WWTPs can facilitate recombination and transfer of new antibiotic resistant genes 

at high cell density (X.-X Zhang et al., 2009). 
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Table 5. Antibiotic Resistant Genes Identified in MWTPs 

Class of Antibiotic 
 

Type of Mechanism    Example of gene 
 

 

B- lactams 
 
 

 

Target protection 
 

Drug modification 
 

Drug modification 

 

mecA 
 

ampC 
 

IMP 
   
   

Macrolides Target protection  
 
Drug efflux 

ermB 
 
mel 

   

 
Quinolones 

 
Target protection 
 
Target protection 
 
Target protection 

 
qnrA3 

 
qnrS 
 
qnrB1 

   

 
Glycopeptides 

 
Target modification 

 
vanA 

   

 
Aminoglycosides 

 
Drug modification 

 
aphA 

   
 Drug modification aadB 
 
 
Tetracyclines 

 
 
Drug efflux 
 
Target protection 
 
Drug modification 

 
 

tetA, tetB, tetD 
 

tetM, tetS 
 

tetX 

   
   

Sulfonamides Target modification  sul1, sul2, sul3 
   

Trimethoprim Drug modification dfrA1, dfrA12 

 

Note. Sourced from Rizzo, L., Manaia, C., Merlin, C., Schwartz, T., Dagot, C., Ploy, M. C., . . . 
Fatta-Kassinos, D. (2013). Urban wastewater treatment plants as hotspots for antibiotic 
resistant bacteria and genes spread into the environment: A review. Science of The Total 
Environment, 447, 345-360. doi:https://doi.org/10.1016/j.scitotenv.2013.01.032 

https://doi.org/10.1016/j.scitotenv.2013.01.032
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6.2 Antibiotic Resistant Bacteria (ARBs) 
Bacteria from different environment are present in WWTPs due to the distinct sources of 

wastewater in WWTPs (Karkman et al., 2018; X.-X Zhang et al., 2009). The presence of 

antibiotic residues and metals in WWTPs exerts selective pressure, such that some bacteria 

can acquire resistant genes horizontally. Therefore, leading to the development of antibiotic 

resistant bacteria (Novo et al., 2013; Bouki et al., 2013). Thus, ARBs have been identified in 

both raw and treated wastewater samples on a large scale (Bouki et al., 2013), using either 

culture or molecular based methods. 

Culture based methods used to analyse antibiotic resistance in WWTPs involves isolation of 

the bacteria to be studied on a media, and assessing the bacteria growth in response to 

certain antibiotic concentrations (McLain, Cytryn, Durso, & Young, 2016). However, 

molecular based method utilizes DNA or other molecular parts of a bacterial cell (Luby, 

Ibekwe, Zilles, & Pruden, 2016). This method is used  for bacteria that play a part in 

antibiotic resistance but cannot be cultured or that multiply very slowly (Rizzo et al., 2013). 

Bacteria belonging to the phyla of proteobacteria, Actinobacteria, Firmicutes and 

Bacteroidetes are usually found in wastewater, and are not easy to be cultivated in labs 

(Novo et al., 2013). Thus, molecular based methods can be used in the study of antibiotic 

resistance in these bacteria. 

Coliforms and enterococci bacteria are commonly used as indicators for faecal 

contamination (Turolla, Cattaneo, Marazzi, Mezzanotte, & Antonelli, 2018). Consequently, 

studies on antibiotic resistance in wastewater bacteria commonly utilizes these indicators 

(Manaia, 2014), with results of such studies normally indicating history of antibiotic resistant 

acquisition in the indicators (Manaia, 2014). For instance, studies by Rizzo et al. (2013) and 

Łuczkiewicz, Jankowska, Fudala-Książek, and Olańczuk-Neyman (2010) confirmed a high rate 

of antibiotic resistance within the range of, 20-40% in enterococci for tetracycline, 

erythromycin and quinolone antibiotics. In addition, to a low resistance rate of 1- 7% for 

sulphonamides and aminopenicillins. Also, in E. coli which is a coliform bacteria high 

antibiotic resistance rate in the range of 10- 40% was obtained for aminopenicillins, 

sulphonamides and tetracyclines, with a low rate for quinolones (Łuczkiewicz et al., 2010; 

Rizzo et al., 2013). 
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 Antibiotic resistant bacteria of medical importance such as staphylococci methicillin-

resistant bacteria (Volkmann, Schwartz, Bischoff, Kirchen, & Obst, 2004) and Pseudomonas 

aeruginosa possessing multi-resistant (Rizzo et al., 2013), are usually found in hospital 

wastewater (Volkman et al., 2004; Rizzo et., 2013). Consequently, hospital is said to be a 

major source of medically relevant ARBs into WWTPs (Rizzo et al., 2013). 

Conventional treatment in WWTPs are unable to completely remove ARBs (Novo et al., 

2013; Manaia, 2014; Rizzo et al., 2013), as concentration of some ARBs are seen to either 

increase remarkably, decrease or remain unchanged in the effluent (Manaia, 2014). 

Moreover, treatment process in most WWTPs are incapable of reducing the rate of antibiotic 

resistance, since increase in antibiotic resistance of enterococci as well as in E. coli have 

been observed in effluent of most WWTPs globally (Rizzo et al., 2013). 

6.3 Bacteriophage 
Bacteriophage are viruses that infect bacteria (Muniesa, Colomer-Lluch, & Jofre, 2013). They 

are the most abundant life form on the biosphere, as they are found in virtually all 

environment in significantly large numbers (Muniesa et al., 2013). Bacteriophage normally 

consist of nuclei acid molecule, genome and a protein coat called capsid (Muniesa et al., 

2013). They may also possess external structures such as tails and spikes which enhances 

persistence of bacteriophage in the environment (Muniesa et al., 2013).  

Two types of bacteriophage exist that is virulent and temperate bacteriophage. This 

distinction is made solely to their different life cycle (Muniesa et al., 2013) see Fig 14. 

Virulent phages infect their host cell, multiply inside and release new phage particles 

(Balcazar, 2014), this reproduction pattern is termed lytic cycle and is particular to virulent 

phages (Muniesa et al., 2013). Temperate bacteriophage reproduces following the lysogenic 

cycle. In this reproduction pattern, the genome of the infecting phage stays in the host 

bacteria cell and replicates either independently or alongside with host cell after integration 

into the chromosome of the host bacteria (Muniesa et al., 2013). 
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Figure 14. Illustration of the lytic and lysogenic cycle in phages, Reprinted from Sharma, S., 
Chatterjee, S., Datta, S., Prasad, R., Dubey, D., Prasad, R. K., & Vairale, M. G. (2017). 
Bacteriophages and its applications: an overview. Folia microbiologica, 62(1), 17-55. 

Some bacteriophage can be host specific or infect only a narrow range of susceptible 

bacteria whereas some phages exhibit a wide host range (Muniesa et al., 2013). Phages of 

the Phikmvlikevirus genus and Twortlikevirus genus infect only bacteria belonging to the 

Pseudomonas genus and staphylococcus genus respectively (Subirats, Sànchez-Melsió, 

Borrego, Balcázar, & Simonet, 2016). Bacteriophages exhibiting broad host range includes 

phages of the lambdalikevirus genus, which can interact with proteobacteria as well as 

firmicutes (Subirats et al., 2016). 

Phages integrated into host cell and replicating are termed prophage (Muniesa et al., 2013). 

A prophage can be naturally or artificially induced to reproduce following the lytic cycle. The 

presence of ultraviolent light, specific antibiotics such as quinolone are capable of artificially 

inducing a prophage to reproduce with the lytic cycle (Muniesa et al., 2013). Nevertheless, in 

situations where host bacteria goes in to starvation existing prophage can be naturally 

induced to reproduce following the lytic cycle (Muniesa et al., 2013). 

The ability of phages to mistakenly package host bacterial DNA during replication makes it 

possible for phages to carry out transduction (Synder & Champness, 2003). Bacterial genes 
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such as psb encoding for photosynthesis, pho encoding for phosphate acquisition, stx 

encoding shiga toxin etc are found in phages (Muniesa et al., 2013). Although these genes 

are not utilized by the phages , they can be transferred via transduction to distinct host 

bacteria (Muniesa et al., 2013). Consequently, conveying new functions to host cell 

(Lekunberri, Subirats, Borrego, & Balcázar, 2017). 

Bacteriophage are abundant in wastewater and account for a bacteriophage fraction of 

about 105 to 108 plaque forming units of raw wastewater (Lood, Ertürk, & Mattiasson, 2017). 

The high concentration of bacteriophage, favourable gene transfer conditions, presence of 

resistant bacteria as well as resistant genes in wastewater environment enhances 

transduction of resistance genes in WWTPs (Lood et al., 2017).  

Studies has revealed that bacteriophage acts as a pool of resistant genes (Lood et al., 2017; 

Muniesa et al., 2013). For example, the study done by Colomer-Lluch, Jofre, and Muniesa 

(2011) on samples from a WWTP and the receiving river revealed significant concentration 

of bacteriophage in both environment. Resistant genes such as blaTEM and blaCTX-M was 

identified in the phage DNA from both environment using the PCR method. Further analysis 

to determine if the resistant genes identified would convey resistance to host bacteria was 

abortive. This may have been due to unconducive environment as well as inability to find an 

ideal host (Colomer-Lluch et al., 2011). Nevertheless, the identified resistant genes were 

transduced in to a recipient E. coli which showed resistance to ampicillin (Colomer-Lluch et 

al., 2011). 

Also, another study by Balcazar (2014) on the analysis of phage DNA obtained from distinct 

hospital wastewater as well as from effluent of a municipal WWTP was performed. Resistant 

genes such as blaTEM, blaCTX-M, blaSHV, qnrA, qnrS and qnrB were identified. In addition, 

16SrDNA genes similar to those found in Acinetobacter and Arcobacter were identified in 

DNA of phages obtained from wastewater (Muniesa et al., 2011). 

Phages such as Stx bacteriophage, Somatic coli phages and phages infecting bacteroides are 

amongst the phages usually found in raw wastewater (Muniesa et al., 2011). In the work 

carried out by Subirats et al. (2016) phages belonging to the order Caudovirales were 

detected in hospital wastewater. The phage DNA fraction contained high proportions of 

ARGs than those found in the bacterial DNA fraction. The ARGs encoded genes for both RND 
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and ABC efflux pump, resistance to b-lactam as well as resistance to quinolones (Subirats et 

al., 2016). 

The persistence of phage DNA in the environment even under extreme conditions, owing to 

the protein capsid surrounding its DNA has been studied. Calero-Cáceres and Muniesa 

(2016) discovered that ARGs such as blaTEM, blaCTX-M and sul1 were present, in both phage 

DNA and bacteria DNA from the raw municipal wastewater. The ARGs were subjected to 

different temperature and Ph. ARGs present in the phage DNA was seen to persist more 

under the harsh conditions (Calero-Cáceres & Muniesa, 2016).  

High transduction rate has been observed in-situ for certain phages normally found in 

wastewater, this includes E. coli phage. The study performed by Kenzaka, Tani, Sakotani, 

Yamaguchi, and Nasu (2007) observed high transduction rate for phages P1, T4 and E. coli 

phage. This phages exhibited high transduction rate when transducing bla gene to recipient 

E. coli bacteria. Transduction frequency of E. coli phage was within < 4x10-9 to 4x10-8 per 

PFU, whereas that of phage P1 and T4 was in the range of 3x10-8 – 2x10-6  per PFU and 1x10-8 

- 4x10-8 per PFU respectively (Kenzaka et al., 2007). 

All in all bacteriophage can be said to play essential role in the spread of resistant genes 

among bacteria in wastewater environment. The ability of phages to carry bacterial genes 

and the persistence of these genes in the environment, makes transduction a viable process 

in the transfer of genes between bacteria of different species and biomes. Lastly, the 

presence of antibiotics, ultraviolent rays etc in WWTPs capable of inducing phages. In 

addition to the presence of phages with high in-situ transduction frequency in wastewater, 

could imply that transduction occurs in wastewater at a relatively high rate. 

6.4 Integrons 
Integrons are genetic elements in bacteria capable of capturing and expressing genes lodged 

in gene cassettes (Stalder, Barraud, Casellas, Dagot, & Ploy, 2012). Integrons are found 

mostly in gram-negative bacteria (Stalder et al., 2012) such as gamma- proteobacteria 

(Moura, Pereira, Henriques, & Correia, 2012). However, gene cassettes are well distributed 

in gram-negative alpha- proteobacteria and are also found in Firmicutes and Archaea (Moura 

et al., 2012). Gene cassette can exist in both linear and circular shape (Stalder et al., 2012). 
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They are linear when integrated in integrons and circular when existing in their free non-

replicating state (Stalder et al., 2012).  

Integrons consist of three vital elements this includes promoter, intI gene encoding the 

enzyme integrase and an integration site attI (Moura et al., 2012; Stalder et al., 2012) all of 

which are essential for their integration with gene cassettes. Gene cassette able to integrate 

with an integron usually lacks a promoter but carries an attC site which can identify the 

integrase enzyme (Madigan et al., 2006). Integrons can obtain and express genes residing in 

gene cassette mainly due to their ability to integrate with gene cassette through the process 

of recombination (Madigan et al., 2006). Recombination process occurs between the attC 

site of the gene cassette and the attI site of the integron, resulting to the insertion of the 

gene cassette at the attI site (Stalder et al., 2012). The genes present in the gene cassette 

are then expressed by a promoter in the integron (Madigan et al., 2006; Moura et al., 2012). 

Integrons are of two types that is chromosomal integron and mobile integron (Stalder et al., 

2012). Chromosomal integron are found on chromosomes of bacteria mostly from the 

terrestrial or marine environment such as Vibrio cholerae (Stalder et al., 2012) and usually 

carry many gene cassettes ranging in hundreds (Madigan et al., 2006; Stalder et al., 2012). As 

a result, they are termed super integrons with the function of most of their genes being 

unknown (Madigan et al., 2006; Stalder et al., 2012). 

 Mobile integrons are widely distributed in gram-negative bacteria and are seldomly found in 

gram-positive bacteria (Stalder et al., 2012). Mobile integrons carry few gene cassettes 

which normally encodes resistance to antibiotics (Madigan et al., 2006; Stalder et al., 2012), 

so that they are sometimes referred to as resistant integrons (Stalder et al., 2012). Gene 

cassettes encoding resistance found in mobile integrons includes catB conferring resistance 

to chloramphenicol, aacA4 encoding resistance to gentamicin and tobramycin, arr3 

conferring resistance to rifampicin, blaOXA-2 and blaGES-7, encoding resistance to b-lactams and 

aadA conferring resistance to streptomycin and spectinomycin etc (Moura et al., 2012). 

Furthermore, aadA is said to be the most prevalent of these resistant gene cassettes in 

isolated bacteria (Moura et al., 2012). 

Mobile integrons are classified in to five classes based on the amino acid sequence of the 

integrase enzyme. This includes class 1, class 2, class 3, class 4 and class 5 mobile integrons 
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(Stalder et al., 2012). Class 1 mobile integrons are more abundant in the environment 

followed by the class 2 and class 3 integrons whereas class 4 and class 5 integrons are rarely 

detected in the environment (Stalder et al., 2012). The class 1 mobile integrons are present 

in high concentrations in polluted water. Thus, they are found in WWTPs in concentrations 

ranging within 1010 -1012 copies per litre in effluents (Stalder et al., 2012). Integrons are 

present in virtually all stages of treatment in WWTPs (Stalder et al., 2012). Significant 

concentrations of about 40% integrons belonging to class 1 integrons have been found in 

activated sludge (Stalder et al., 2012). However, class 2 and class 3 integrons have been 

identified in WWTPs in concentrations much lower than that of class 1 integrons (Stalder et 

al., 2012). 

Integrons of medical interest belonging mostly to the class 1 integrons have been widely 

studied (Stalder et al., 2012). These studies were mainly concerned in the role of integrons in 

multiple resistance to antibiotic as well as their relationship with genetic elements such as 

transposons and plasmids (Moura et al., 2012). Integrons are studied in recent times in 

wastewater environment, rivers among others to investigate their ecology, diversity etc 

(Moura et al., 2012). 

Distinct studies done on integrons in wastewater environment has detected the abundance 

of mostly class 1 integrons in wastewater. These integrons are seen to exhibiting resistance 

to antibiotics most of which are multiple resistance, for instance the work done by Moura et 

al. (2012) on isolates of bacteria belonging to Enterobacteriaceae and Aeromonas species. 

Samples obtained from municipal WWTPs revealed the presence of both class 1 and class 2 

integrons most of which were chromosomally located. Class 1 integrons was of a higher 

concentration with most of the identified integrons belonging to the Aeromonas species 

(Moura et al., 2012). Antibiotic resistant phenotype was exhibited by a significant number of 

class 1 integrons of which about 80% were multiple resistance. Resistance to antibiotics such 

as quinolones, erythromycin, ampicillin and cephalothin were exhibited by the integrons 

(Moura et al., 2012). Also, the transfer of class 1 integron from both Enterobacteriaceae and 

Aeromonas to recipient E. coli was performed, yielding a Conjugation frequency of 10-5 and 

10-6 for Aeromonas and Enterobacteriaceae respectively (Moura et al., 2012).  

Furthermore, the study carried out by Kristiansson et al. (2011) on upstream and 

downstream samples of a WWTP, receiving production water from over 90 drug 
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manufacturing industries displayed the presence of abundant resistant genes. 

Concentrations of the resistant genes were higher in downstream compared to upstream. 

Most of the resistant genes encoded resistance to antibiotics such as sulphonamides, 

aminoglycoside and fluoroquinolones (Kristiansson et al., 2011). Mobile genetic elements 

such as class 1 integrons, plasmids and transposons were equally detected in higher 

concentrations downstream. Carrying resistance genes such as sul2, strA, strB in all the 

identified plasmids (Kristiansson et al., 2011). 

Also, the study performed by Ma et al. (2013) discovered class 1 integron as the most 

abundant mobile integron in wastewater with some of the integrons encoding multiple 

antibiotic resistance. 

 Molecular analysis carried out on gene cassettes of integrons isolated from wastewater, as 

well as on genes lodged in the gene cassette revealed the presence of ARGs (Stalder et al., 

2012). Genes encoding resistance to distinct antibiotics such as aminoglycoside, 

erythromycin, trimethoprim, quinolones, b- lactams, chloramphenicol and rifampicin were 

carried in the gene cassettes (Stalder et al., 2012). Analysis of the gene cassette revealed 

diverse gene cassettes present in wastewater encoding both unknown function and 

metabolic function (Stalder et al., 2012). 

Gene cassettes were identified in the work done by Moura et al. (2012) of which some were 

novel, found in the class 1 integrons. The gene cassettes identified belonged mainly to the 

aadA cassette which encodes resistance to streptomycin and spectinomycin. Several novel 

gene cassettes have also been discovered in studies (Tennstedt, Szczepanowski, Braun, 

Pühler, & Schlüter, 2003). 

Integrons are unable to transfer themselves so that their association with other mobile 

genetic elements such as transposons and plasmids in wastewater, enhances their horizontal 

transfer in the environment (Ma et al., 2013; Moura, Henriques, Ribeiro, & Correia, 2007). 

The study performed by Moura et al. (2007) and Tennstedt et al. (2003) revealed the 

presence of integrons carrying resistant genes on plasmids isolated from bacteria of WWTP. 

Most of the integrons identified belonged to class 1 and a few class 2 integrons were 

identified in Moura et al. (2007). Some of the plasmids harbouring integrons carried resistant 

genes and belonged to the conjugative broad host range plasmids (Tennstedt et al., 2003). 
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Integrons have also been detected on transposons in gram-negative bacteria (Liebert, Hall, & 

Summers, 1999). The transposon Tn21 is seen to carry integron in bacteria belonging mainly 

to Enterobacteriaceae species, such that Tn21 transposons are responsible for multiple 

resistance in this species (Liebert et al., 1999). 

To sum up, integrons are well distributed and abundant in wastewater environment. Most of 

which are seen to exhibit multiple antibiotic resistance phenotype. Their presence in effluent 

has shown that the conventional treatment techniques employed are unable to adequately 

remove both bacteria carrying integrons as well as antibiotic resistant determinants. Thus, 

the association of integrons on genetic elements such as plasmids and transposons is of 

great concern in wastewater, as such association can intensify the spread of resistant 

integrons in the environment. 

6.5 Plasmid 
Plasmids are small circular DNA molecules present in a bacteria cell, capable of replicating 

autonomously (Bennett, 2008; Cano & Colomé, 1988). Replication in plasmid is rapid owing 

to the small DNA size they possess (Madigan et al., 2006). The size of plasmids varies ranging 

from a few base pairs to over kilos of base pairs (Lodish et al., 2000). Plasmids can carry 

genes within the range of 2- 3  to hundreds of genes (Bennett, 2008; Madigan et al., 2006).  

The genes carried by plasmids are not necessarily relevant for the basic functioning of a 

bacterial cell (Bennett, 2008) but can be of benefit to host cell in terms of adaptation etc 

(Lodish et al., 2000). Functions of genes carried in plasmids includes, genes encoding 

resistance to antibiotics, genes conferring resistance to heavy metals such as cadmium and 

mercury, metabolic function, genes encoding for conjugation etc (Bennett, 2008; Cano & 

Colomé, 1988; Madigan et al., 2006). Plasmids carrying genes encoding resistance to 

antibiotics are termed resistant plasmids (R- plasmids), most of which are self-transmissible 

conjugative plasmids (Bennett, 2008). Therefore, plasmids have been extensively studied in 

terms of conferring resistance (Brown-Jaque et al., 2018) and have been seen to confer 

antibiotic resistance to bacteria through the process of conjugation following their discovery 

in the 1950s (Madigan et al., 2006). 
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Different types of plasmids can be present in a bacterium cell with their numbers varying. 

The numbers of plasmid present in a given bacterium cell is referred to as its copy number 

and this number is usually regulated by genes carried in the plasmid (Madigan et al., 2006). 

Plasmids can either transfer themselves from one bacteria to the other or be mobilized and 

transferred by other self -transmissible plasmids (Bennett, 2008). The transfer of non-

transmissible plasmids is achieved through the process of conjugation by self – transmissible 

plasmids such as conjugative plasmids (Bennett, 2008). Conjugative plasmids are further 

categorized in to broad host range and narrow host range, depending on the number of 

bacteria species they can transfer to (Bennett, 2008).  

Plasmids are classified into Incompatibility groups based on their mechanism of replication 

and partitioning (Popowska & Krawczyk-Balska, 2013). Plasmid incompatibility group ranges 

from IncA to IncZ with IncP, IncW, IncN and IncQ groups seen to convey antibiotic resistance, 

as well as exhibit broad host range (Popowska & Krawczyk-Balska, 2013). Plasmids belonging 

to the same incompatibility group are genetically similar in that they replicate or partition via 

a similar mechanism (Popowska & Krawczyk-Balska, 2013). Thus, plasmids of the same 

incompatibility group cannot exist in the same bacteria, as one of such plasmid is lost from 

the cell in the course of cell replication (Madigan et al., 2006).  

The presence of plasmids on bacteria population in different environment and the ability of 

conjugative resistance plasmids to exhibit broad host range, has resulted to plasmid being 

studied in wastewater environment as vectors of antibiotic resistant determinants.  

Conjugative resistance plasmids belonging mostly to the IncP group were identified in the 

work done by Dröge, Pühler, and Selbitschka (2000), on plasmids from bacteria isolated from 

a municipal WWTP. Transfer of the distinct identified plasmids was carried out from 

Pseudomonas to E. coli, E. coli to Pseudomonas and Pseudomonas to Sinorhizobium meliloti. 

Conjugative frequencies within the ranges of < 3.3 x 10-9 to 8.0 x 10-2, 1.2 x 10-8 to 8.6 x 10-1 

and 1.2 x10-1 to <8.3 x108 were obtained respectively, with most of the IncP plasmids 

exhibiting very high frequencies within 10-1 – 10-2 per recipient cell (Dröge et al., 2000). 

Furthermore, virtually all the IncP plasmids conferred multiple resistance on host bacteria 

when tested using antibiotics at minimal inhibitory concentration (Dröge et al., 2000). 
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The study performed by Schlüter, Krause, Szczepanowski, Goesmann, and Pühler (2008), 

discovered plasmids encoding antibiotic resistance and virulence traits by sequencing 

plasmids from bacteria of WWTPs. Resistant plasmids identified encoded resistance mostly 

for b-lactam antibiotic. Mobility of the identified plasmids was determined, as most of them 

were mobilizable plasmids possessing genes capable of mostly relaxosome and DNA- 

processing for transfer function (Schlüter et al., 2008). Nevertheless, a few conjugative 

plasmids belonging to IncF and IncX compatibility group were discovered. Also the presence 

of transposable elements such as insertion sequence and transposons was discovered on 

some plasmids, with some transposons conveying resistance to both antibiotics and metals 

(Schlüter et al., 2008).    

Furthermore, in the study done by Stefan and Soud (2017), Plasmids belonging to the 

incompatibility group IncP, IncF, IncW and IncQ were discovered in samples from influent 

and effluent of a WWTP. Conjugative transfer was performed from a donor E. coli cell 

carrying exogenous IncP plasmid, to recipient bacteria cells isolated from the WWTP. Most 

of the recipient bacteria belonged mostly to Proteobacteria, Firmicutes, Bacteroidetes. 

Higher conjugation frequency was recorded in the bacteria cells isolated from influent and 

high diversity of transconjugants was seen in the effluent as well as high recipient diversity 

(Stefan & Soud, 2017). Thus, indicating that the process of conjugation occurs more in the 

influent of WWTP, which may be due to the presence of high cell density (Stefan & Soud, 

2017). 

Lastly, with the presence of high diversity of transconjugants in effluent (Stefan & Soud, 

2017), it can be inferred that the process of conjugation is likely to occur in the receiving 

environments such as rivers, streams etc at a relatively high rate than expected.  

6.6 Transposon 
Transposons are small DNA segments capable of integrating into chromosome of bacteria 

(Cano & Colomé, 1988). They belong to the group of transposable elements of which 

insertion sequence (IS) is a member (Bennett, 2008; Madigan et al., 2006). This group of 

transposable elements that is transposon and IS exhibit certain similarities, in that they both 

possess inverted repeats at their ends as well as the transposase enzyme which enables the 

process of transposition (Madigan et al., 2006). Transposons differ from IS in that they are 

larger and carry several genes encoding both the transposase protein and antibiotic 
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resistance (Madigan et al., 2006). Consequently, resulting in transposons being able to 

convey resistance phenotype to its host bacteria (Bennett, 2008). On the contrary, insertion 

sequence only carry the gene encoding the transposase and as such do not confer antibiotic 

resistance to their host cell (Madigan et al., 2006). 

Insertion sequence as well as transposons can be found in the plasmids and chromosomes of 

bacteria (Cano & Colomé, 1988). Transposons are capable of integrating themselves at 

different locations on the chromosome of a bacteria so that they are referred to as jumping 

genes (Cano & Colomé, 1988). Transposons carrying resistance genes are termed Resistance 

transposons (Bennett, 2008), they exist in distinct forms and differ in their process of 

transposition as well as in structure (Bennett, 2008). Examples of resistance transposons 

include Tn5 encoding resistance to aminoglycosides, Tn3 encoding resistance to b-lactam, 

Tn10 conferring resistance to tetracycline and T21 encoding resistance to streptomycin, 

spectinomycin and sulphonamides etc (Bennett, 2008). 

The presence of transposase protein and repeat ends in transposable elements are of great 

importance in the process of transposition (Madigan et al., 2006). Transposition is the 

movement of genetic material from one location to another, it is a site specific 

recombination process requiring the presence of inverted ends (Madigan et al., 2006). 

Transposition occur in two ways that is conservative transposition and replicative 

transposition based on the mechanism involved (Madigan et al., 2006). In conservative 

transposition, transposons are removed and inserted in to new sites. Although in replicative 

transposition copies of transposons are inserted into new sites (Madigan et al., 2006). 

Conjugative transposons are able to transfer themselves from one bacteria to another (Iyer 

et al., 2013), so that they are able to transfer resistance when they carry the genes. 

Resistance conferred by transposons is said to have a positive effect on bacteria cell fitness, 

as such bacteria is likely to withstand selective pressure (Iyer et al., 2013). 

Studies has discovered the presence of transposons conveying resistance in wastewater 

environment (Schlüter et al., 2008; Szczepanowski et al., 2004). Furthermore, the presence 

of E. coli in wastewater which is known to harbour significant number of resistant 

transposons such as Tn3, Tn7, Tn9, Tn10 among others (Iyer et al., 2013). In addition to 
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association of integrons with transposons, indicates that transposons play roles in the 

dissemination of resistant determinants in wastewater. 
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 Conclusion  
Studies has confirmed that antibiotics are present in wastewater environment, owing to the 

indiscriminate and extensive use of antibiotics. Antibiotics such as quinolones, macrolides, 

sulfonamides, tetracycline, erythromycin etc occur recurrently in WWTPs globally. 

Wastewater habitats such as WWTPs contain antibiotics in different degrees. Concentrations 

were seen to be high in developing countries compared to those obtained in developed 

countries. This may have been because of the unregulated use of antibiotics in developing 

regions. It has also been seen that wastewater harbours resistant determinants such as ARGs 

and ARBs, as conditions favouring their development that is high cell density and selective 

pressure are prevalent. Furthermore, resistance phenotype exhibited by bacteria is either 

acquired or inherent. Despite the type of resistance present in a bacterium, several 

mechanisms which is either molecular or genetically based is employed by bacteria to 

exhibit resistance. Resistance arising from the distinct mechanism are mostly due to 

alteration of target site, reduced affinity of antibiotic molecule to target site as well as 

extrusion of the antibiotic. Bacterial community in wastewater carry mobile elements such 

as bacteriophages, plasmids, integrons and transposons, which can acquire and transfer 

both resistant and non- resistant genes among bacteria. Resistance genes such as blaTEM, 

blaCTX-M, strA, strB, qnrA are carried by mobile element. Plasmids belonging mostly to IncP, 

class 1 integrons, and E, coli phages are significantly present in wastewater, with most of 

them exhibiting broad host-range as well as being conjugative. They are also known to carry 

multiple resistance particularly class 1 integrons because of the gene cassettes they possess. 

However, there is still no data on the actual pattern through which resistance genes are 

spread in wastewater systems as well as their rates of spreading. Knowledge on both 

patterns and rates of ARGs spreading will be of importance in reducing their presence in the 

environment. Also, the fate of ARGs in wastewater and in receiving domains of wastewater 

such as river is not known. Furthermore, we cannot attribute the distinct antibiotic 

resistance exhibited by wastewater bacteria to a specific source. That is if the resistance is 

due to antibiotic in waste water or it was acquired from other environments such as 

hospital. Studies performed in vitro with isolated resistant mobile elements from 

wastewater, showed that resistance genes are transferred. What we do not know is if the 

transfer of resistance genes in wastewater increases the resistome of the domain. Thus, 
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mobile genetic elements are carriers of resistance genes and their presence in wastewater 

spreads resistance in the domain. 

  Future Perspectives 
Study on environments receiving wastewater such as river, to know if they pose a threat to 

the biota and fauna present. If they do, what kind of threat. This will provide data on the 

kind of risks ARGs can pose when released to the environment. 

Study using either models, biosensors, or gene construct to determine if these genes are 

spread. Knowledge in this area will contribute to know the rates at which genes spread 
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