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Abstract

Flow of interstitial fluid (IF) has proven to have a significant effect on the migration
of cancer cells through tissue due to the tumor cells ability to sense flow by secreting
chemokines that convect in the flow direction (autologous chemotaxis). It has become
increasingly popular to model this (and other) phenomena using multiphase models
based on e.g. Darcy’s law, the Brinkman equation or more general mixture theory
approaches.

Recent experimental work suggests that fibroblast cells present in vivo might influ-
ence the ability of cancer cells to invade the surrounding tissue. The objective of this
thesis is to expand a two-fluid model used to investigate autologous chemotaxis of cancer
cells to a three-phase model where also the effect of the fibroblasts can be accounted for.

First, relevant experimental results will be analyzed, followed by a general model
formulation using mass and momentum balance based on mixture theory. The approach
is inspired by that of modeling hydrocarbon flow in underground reservoirs. Finally, we
will implement a numerical solution for a simplified 1-D version of the model and compare
the simulated output to experimental results to elucidate some of the mechanism(s)
behind fibroblast-enhanced tumor cell invasion. Special focus we will be on investigating
the fibroblasts ability to remodel the ECM and also viscous coupling between cells and
fibroblasts.
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4.1 Influence of Icf on ĥ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Initial solution of case with infinite viscous coupling. . . . . . . . . . . . . 57
4.3 The effect of viscous coupling on phase and total mobilities . . . . . . . . 58
4.4 The effect of viscous coupling on initial phase velocities . . . . . . . . . . 59
4.5 Final solution of case with infinite viscous coupling. T=5.8 days. . . . . . 60
4.6 Cell volume fraction with and without fluid-fluid interactions . . . . . . . 61
4.7 Final solution of case with infinite viscous coupling. T=11.6 days. . . . . 61
4.8 Initial solution of case with infinite viscous coupling and increased fibrob-

last mobility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.9 Final solution of case with infinite viscous coupling and increased fibrob-

last mobility. T=5.8 days. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.10 Cell fractional flow curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.11 Final solution of case with fibroblasts cultured upstream. T=5.8 days. . . 65
4.12 Comparison of final cell volume fraction in two-phase case and case with

fibroblasts cultured upstream. T=5.8 days. . . . . . . . . . . . . . . . . . 66
4.13 Plot of k̂c against the fibroblast volume fraction αf . . . . . . . . . . . . . 67
4.14 Final solution of case with ECM remodeling. T=5.8 days. A=0.7, B=50. 68



List of Tables

3.1 Parameters for case without fibroblasts . . . . . . . . . . . . . . . . . . . . 39
3.2 Fibroblast- and TGF-specific parameters . . . . . . . . . . . . . . . . . . . 44
3.3 Parameters describing TGF-dependent chemotaxis of fibroblasts. . . . . . 48
3.4 Dimensionless parameters for base case. . . . . . . . . . . . . . . . . . . . 49

4.1 Viscous coupling-specific parameters . . . . . . . . . . . . . . . . . . . . . 55

B.1 Reference parameters for non-dimensionalization. . . . . . . . . . . . . . . 81

xiii



xiv LIST OF TABLES



Nomenclature

Abbreviations

BL = Buckley-Leverett
ECM = extracellular matrix

Fb = fibroblast
IF = interstitial fluid

MG = Matrigel
MMP = matrix metalloproteinase
ODE = ordinary differential equation

TC = tumor cell
TGF = transforming growth factor

Roman

A = parameter in k̂c, -

B = parameter in k̂c, -
bi = net body force per unit mass, m/s2

C = concentration of chemokine, kg/m3 or -
CM = maximum concentration of chemokine, kg/m3 or -
C∗ = reference concentration of chemokine, kg/m3

DC = diffusion coefficient of chemokine, m2/s or -
DG = diffusion coefficient of protease, m2/s or -
DH = diffusion coefficient of TGF, m2/s or -
D∗ = reference diffusion coefficient, m2/s
fij = momentum transfer from phase j into phase i, Pa/m

f̂c = fractional flow of cell phase, -

f̂f = fractional flow of fibroblast phase, -

f̂w = fractional flow of IF phase, -
G = concentration of protease, kg/m3 or -

GM = maximum concentration of protease, kg/m3 or -
G∗ = reference concentration of protease, kg/m3

H = concentration of TGF, kg/m3 or -

xv



xvi LIST OF TABLES

HM = maximum concentration of TGF, kg/m3 or -
H∗ = reference concentration of TGF, kg/m3

Ic = static parameter of the cell-ECM interaction, Pas/m2 or -
If = static parameter of the fibroblast-ECM interaction, Pas/m2 or -
Iw = static parameter of the IF-ECM interaction, Pas/m2 or -
Icf = static parameter of the cell-fibroblast interaction, Pas/m2 or -
I = identity matrix, -
K = absolute permeability of tissue, m2

kcf = volume conversion rate from fibroblast to cell, 1/s
kcw = volume conversion rate from IF to cell, 1/s
kfc = volume conversion rate from cell to fibroblast, 1/s
kfw = volume conversion rate from IF to fibroblast, 1/s
krl = relative permeability of phase l, -
kwc = volume conversion rate from cell to IF, 1/s
kwf = volume conversion rate from fibroblast to IF, 1/s

k̂c = dynamic parameter of the cell-ECM interaction, -

k̂f = dynamic parameter of the fibroblast-ECM interaction, -

k̂w = dynamic parameter of the IF-ECM interaction, -
k = absolute permeability tensor, m2

L = length of domain, m or -
L∗ = reference length, m
mi = momentum transfer to phase i, from all other phases, Pa/m
nw = Corey water saturation exponent, -
Pl = pressure of phase l, Pa or -
P ∗ = reference pressure, Pa
Ql = source term of phase l, 1/s
Qv = production of IF from the vascular system, 1/s
Ql = adsorption of IF to the lymphatic system, 1/s
Rc = relation between cell-ECM and cell-fibroblast force, -
Rf = relation between fibroblast-ECM and cell-fibroblast force, -
Rw = relation between IF-ECM and cell-fibroblast force, -
rc = parameter describing cell-ECM interaction, -
rf = parameter describing fibroblast-ECM interaction, -
ri = mass transfer to phase i, from all other phases, Pas/m2

rw = parameter describing IF-ECM interaction, -
rcf = parameter describing viscous coupling between cells and fibroblasts, -
rfc = parameter describing viscous coupling between cells and fibroblasts, -
Sc = cell source term, 1/s or -
Sf = fibroblast source term, 1/s or -
So = oil saturation, -
Sw = water saturation, -
T = time of simulation, s or -
T ∗ = reference time, s



LIST OF TABLES xvii

t = time, s or d or -
t = stress tensor of phase i, Pa
Ul = Darcy velocity of phase l, m/s or -
UT = total velocity, m/s or -
ul = interstitial velocity of phase l, m/s or -
u∗ = reference velocity, m/s
x = distance, m or -
x̄c = cell volume center, m or -

Greek

αc = cell volume fraction, -
αf = fibroblast volume fraction, -
αw = IF volume fraction, -
γ = parameter in ∆P -function, Pa or -
∆ = forward-difference or gradient operator

∆Pcw = cell-IF capillary pressure, Pa or -
∆Pfw = fibroblast-IF capillary pressure, Pa or -

δ = central-difference operator or parameter in ∆P -function, -

ζ̂c = interaction coefficient between the cell phase and the ECM, Pas/m2 or -

ζ̂f = interaction coefficient between the fibroblast phase and the ECM, Pas/m2 or -

ζ̂w = interaction coefficient between the IF phase and the ECM, Pas/m2 or -

ζ̂cf = viscous coupling between the cell and fibroblast phase, Pas/m2 or -
ΛC = potential function for chemotaxis of cells toward chemokine, Pa or -

ΛC0 = parameter characterizing ΛC , Pa or -
ΛC1 = parameter characterizing ΛC , Pa or -
ΛH = potential function for chemotaxis of fibroblasts toward TGF, Pa or -

ΛH0 = parameter characterizing ΛH , Pa or -
ΛH1 = parameter characterizing ΛH , Pa or -
λ11 = proliferation of tumor cells, 1/s or -
λ12 = decay of tumor cells, 1/s or -
λ13 = decay of tumor cells, 1/s or -
λ21 = degradation of ECM, m3/kgs or -
λ22 = reconstruction of ECM, 1/s or -
λ23 = release of ECM, 1/s or -
λ24 = release of ECM, 1/s or -
λ31 = decay of protease, 1/s or -
λ32 = cell production of protease, kg/m3s or -
λ33 = logistic term constant (protease), kg/m3s or -
λ41 = proteolytically freed chemokine, m3/kgs or -
λ42 = logistic term constant (chemokine), m3/kgs or -
λ43 = logistic term constant (chemokine), m3/kgs or -



xviii LIST OF TABLES

λ44 = cell consumption of chemokine, kg/m3s or -
λ51 = decay of TGF, 1/s or -
λ52 = production of TGF, kg/m3s or -
λ53 = logistic term constant (TGF), kg/m3s or -
λl = Darcy-based mobility of phase l, m2/(Pas)

λ̂l = general mobility of phase l, m2/(Pas)
µl = viscosity of phase l, Pa·s
νC = exponent in logistic function of chemokine, -
νG = exponent in logistic function of protease, -
νH = exponent in logistic function of TGF, -
ξ1 = parameter characterizing ΛC (dependence on C), m3/kg or -
ξ2 = parameter characterizing ΛH (dependence on H), m3/kg or -
ρ = density of ECM, kg/m3 or -
ρl = density of phase l, kg/m3

ρM = maximum density of ECM, kg/m3 or -
ρ∗ = reference density of ECM, kg/m3

φ = porosity, -

Subscripts

0 = initial
C = chemokine
c = cell phase
f = fibroblast phase
H = TGF
i, j = dummy variables
l = phase index

M = maximal
T = total
w = interstitial fluid (IF) phase

Superscripts

x, y, z = coordinate directions
∗ = reference parameter



Chapter 1

Introduction

It has been experimentally demonstrated that interstitial fluid (IF) flow (in the order of 1
µm/s) through the tissue may alter the tumor microenvironment and lead to a significant
increase in the migration of cancer cells (Shieh, Rozansky, Hinz, & Swartz, 2011; Shieh &
Swartz, 2011; Shields et al., 2007; Swartz & Fleury, 2007). An illustration of the tumor
microenvironment is given in Figure 1.1. The IF flow apply stresses directly to the
tumor cells by push and drag, but it also creates extracellular gradients of chemokines
downstream, thus accelerating tumor progression in the direction of flow by means of
chemotaxis (the ability of cells to move in a direction corresponding to a gradient of
increasing or decreasing concentration of a particular substance).

More recently, it has been experimentally demonstrated that fibroblast cells (or just
fibroblasts) also affects the progression of cancer cells (or just cells), making the tumor
more aggressive (Shieh et al., 2011). Fibroblasts are one of the key components of the
tumor microenvironment (the cellular environment in which the tumor exists), accom-
panied by e.g. immune cells, surrounding blood vessels, signaling molecules, IF and the
extracellular matrix (ECM; consisting e.g. of collagen proteins which are fibers making
up the skeleton of the tumor microenvironment). Fibroblasts are connective tissue cells
that maintain the matrix enveloping most epithelial tissues (thin tissue covering all body
surfaces, such as the outer surfaces of organs and blood vessels), and they are important
e.g. in the process of wound healing. In cancer, fibroblasts synthesize and secrete the
ECM molecules which make up the tumor stroma. They create an environment which is
considerably different than healthy tissue, with higher concentrations of type I collagen,
the main structural protein in the extracellular space. The possible interplay between
the cancer cells and fibroblasts will be important in understanding the progression of
tumors.

1.1 Objectives of this Thesis

Cancer cell migration driven by autologous chemotaxis was experimentally demonstrated
by Shields et al. (2007). Later, autologous chemotaxis of cancer cells was investigated by
Waldeland and Evje (2018) using a multiphase (cell and IF) model similar to those used

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Tumor microenvironment: Leaky blood vessels inside the tumor and lym-
phatic vessels placed in the tissue acts as sources and sinks of interstitial fluid, creating
a flow field across the tumor microenvironment. The tumor cells are able to sense the
direction of flow by secreting chemokines into the flow field, and migrating downstream
by means of autologous chemotaxis. The fibroblasts respond to the IF flow in a TGF-β1-
dependent manner (also an example autologous chemotaxis). (Shieh & Swartz, 2011).

in the modeling of the simultaneous flow of water and oil in underground hydrocarbon
reservoirs. The objective of this thesis is to expand upon the model given in that paper
in order to study the simultaneous flow of cells, fibroblasts and IF. The model will then
be solved numerically in a 1-D setting, and finally simulations will be compared with
the experimental results by Shieh et al. (2011), summarized in Section 1.2.

1.2 Review of Paper by Shieh et. al., 2011

This section provides a review/summary of the most important results in the paper
investigating the effects of fibroblasts on tumor cell invasion (Shieh et al., 2011). The
authors of this paper did in vitro (outside body) experiments where they measured tumor
cell invasion in an invasion assay consisting of tumor cells and/or fibroblasts cultured
together with an ECM consisting of type I collagen and Matrigel (rich in chemokines).
The experimental setup was exposed to an external pressure gradient resulting in inter-
stitial flow of 0.5 µm/s. The following subsections sums up key results that could be
useful when carrying out the simulation study.
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1.2.1 Interstitial Flow Stimulates Fibroblast and Concomitant Tumor
Cell Invasion

The main result of the experimental study was the increased tumor cell invasion in
response to fibroblasts and flow being present. The results are summarized in Figure
1.2, and the main findings extracted from the article are given below.

1. IF flow stimulated tumor cell invasion, Figure 1.2A, but this effect was dependent
on Matrigel. This is related to the chemotaxis of cells toward positive gradients
in chemokine (which is bound to Matrigel), referred to as autologous chemotaxis
by Shields et al. (2007). The tumor cells secrete protease, which react with the
ECM to release surface-bound chemokines. The chemokine concentration is then
skewed in the direction of IF flow, causing extracellular gradients, and inducing
the chemotactic response of the tumor cells (in the direction of flow).

2. Cocultured fibroblasts increased tumor cell invasion under flow conditions, Figure
1.2B (left). In the absence of flow, or in the case when fibroblasts were cultured
upstream, the effect was abolished. A similar effect was observed for the invasion of
fibroblasts; IF flow stimulated fibroblast invasion, and even more so in the presence
of tumor cells, Figure 1.2B (right). This suggests that the interaction between cells
and fibroblasts go both ways.

3. Flow-enhanced fibroblast invasion was independent of chemokine (bound to Ma-
trigel), Figure 1.2C (right), contrary to tumor cells. As a consequence, tumor cells
continued to invade in the presence of fibroblasts and flow, even when Matrigel
was absent, Figure 1.2C (left). Thus we can conclude that the mechanism be-
hind the fibroblast-enhanced tumor cell invasion is independent of cell autologous
chemotaxis, since it does not depend on the presence of Matrigel.

4. Tumor cell invasion was independent of fibroblast density under static conditions;
however, in the presence of flow it increased fast at first but was insensitive at
higher concentrations, Figure 1.2D.

These results make it very clear that fibroblasts have a significant impact on the ag-
gressiveness of tumors, and explaining why is the main motivation for this thesis. Note
that from these results it seems that the invasion of tumor cells correlates well with the
migration of fibroblasts.

1.2.2 Flow- and Fibroblast-Enhanced Tumor Cell Invasion Depends on
TGF

From the previous subsection it is clear that flow-enhanced fibroblast migration is due to
some factor other than chemokine. To further investigate what kind of chemical signal
the fibroblasts might respond to, the effect of TGF was explored, see results in Figure
1.3. Note that TGF is short for transforming growth factor (sometimes also tumor
growth factor). There are two main types of transforming growth factors, TGFα and
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Figure 1.2: Fibroblasts enhance tumor cell invasion in the presence of inter-
stitial flow (Shieh et al., 2011). Fb=fibroblast, MG=Matrigel, TC=tumor cell,
+/−=present/absent.

TGFβ. The only type that we are going to consider is TGF-β1, which will sometimes
be referred to as just TGF.

TGF are secreted by the fibroblasts themselves, but in latent form. It seems to be
activated by e.g. shear stresses resulting from flow (Shieh et al., 2011; Shieh & Swartz,
2011). The main findings are listed below:

1. Blocking of TGF-β1 reduced tumor cell invasion when both flow and fibroblasts
where present, otherwise it did not have any effect, Figure 1.3A (left). It also
reduced the fibroblast invasion in the presence of flow, Figure 1.3A (right). Since
tumor cells cultured alone did not respond to blocking of TGF, but fibroblasts
alone, and tumor cells cocultured with fibroblasts did, it suggests that only the
fibroblasts are directly affected. Tumor cells are indirectly influenced due to in-
creased migration of fibroblasts.

2. The total amount of TGF-β1 increased in the presence of fibroblasts, Figure 1.3B.
Increased activation was observed in the presence of flow, Figure 1.3C.
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3. Invasion was only affected by TGF-β1 gradients. When exposed to uniform con-
centrations, the effect was negligible, Figure 1.3D. It is believed that the fibroblasts
secrete TGF, which will then be transported in the direction of IF flow, causing
localized gradients of the chemical agent to form and result in chemotaxis. There-
fore, this is a type of autologous chemotaxis similar to that experienced by the
cancer cells.

This suggest that fibroblasts chemotact toward TGF, and from previous results we know
that they are unaffected by chemokine. The opposite is true for tumor cells; they follow
chemokine concentrations, while being unaffected by TGF. It will be necessary to include
equations in our model that can account for the transport and production/consumption
of both chemokine and TGF.

Figure 1.3: TGF-β1 is necessary for flow-enhanced tumor cell invasion only
when fibroblasts are present (Shieh et al., 2011). TC=tumor cell, Fb=fibroblast,
+/−=present/absent.
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1.2.3 Fibroblast- and Flow-Enhanced Tumor Cell Invasion Depends on
MMPs

Figure 1.4 shows that interstitial flow increased the amount of MMP-1, which in turn
degrades the collagen in the matrix, and thus enhances the cell motility by reducing the
resistance against flow through the tissue. Consequently, this may be considered as an
increase of the absolute permeability of the porous medium.

We will not make any attempts to model this phenomenon individually, but rather as
a combined effect together with the ECM remodeling which are discussed in Subsections
1.2.4-1.2.5.

Figure 1.4: MMP activity is necessary for flow- and fibroblast-enhanced tumor cell mi-
gration (Shieh et al., 2011). Fibroblasts (red) and degraded collagen (green). TC=tumor
cell, Fb=fibroblast, +/−=present/absent. Scale bar, 25 µm.

1.2.4 Rho-Dependent Fibroblast Contractility Drives Flow-Enhanced
Tumor Cell Invasion

It is well-known that fibroblasts possess the ability to alter their surroundings by con-
tracting the collagen fibers of the ECM (Kim, Lakshman, & Petroll, 2006). In order
to determine if this is a necessary mechanism for flow- and fibroblast-enhanced tumor
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cell invasion, Shieh et al. (2011) conducted experiments with different types of inhibitors
affecting fibroblast contraction. Results are summarized in Figure 1.5.

1. When treating the fibroblasts with C3 transferase and blebbistatin (reagents in-
hibiting fibroblast contraction pathways), the morphology of the fibroblasts changed
significantly, and collagen matrix contraction was reduced, Figure 1.5A.

2. Fibroblasts treated with C3 transferase and blebbistatin showed reduced tumor
cell invasion, even if the migration of fibroblasts actually increased, Figure 1.5B
and C. This proves that fibroblast migration alone is not sufficient to enhance
tumor cell invasion.

Figure 1.5: Flow- and fibroblast-enhanced tumor cell migration depends on Rho-
mediated fibroblast contractility (Shieh et al., 2011). F-actin (green) and collagen matrix
(red). TC=tumor cell, Fb=fibroblast, +/−=present/absent. Scale bar, 30 µm.

1.2.5 Fibroblasts Mediate ECM Reorganization

Figure 1.6 shows how the fibroblasts (red) locally contract the matrix (white) and in-
teract with tumor cells (green). The tumor cells extend towards the fibroblasts in the
direction of the contracted collagen fibers, and also align with the fibroblasts.
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Figure 1.6: Fibroblasts locally contract the matrix and interact with tumor cells (Shieh
et al., 2011). Tumor cells (TC; green), fibroblasts (Fb; red) and collagen matrix (white).
Scale bar, 25 µm.

1.2.6 Proposed Mechanism

The proposed mechanism by Shieh et al. (2011) is summarized in Figure 1.7. This model
can be explained through the following four steps:

1. Fibroblasts secrete latent TGF-β1 and contract the collagen fibers of the ECM.

2. When exposed to interstitial flow, the migration of fibroblasts increase significantly
due to enhanced activation and availability of TGF-β1.

3. Flowing fibroblasts remodel the ECM.

4. Tumor cells migrate in the direction of flow due to autologous chemotaxis, and
take advantage of the primed matrix to enhance their invasion.

Note that this model explains flow- and fibroblast-enhanced tumor cell invasion by focus-
ing on the indirect interaction between the fibroblasts and cells, as a result of remodeling
of the ECM. It does not say anything about the possible role played by the fluid-fluid
interaction (also called viscous coupling) between the cells and fibroblasts, although it
seems natural to think that this force should be present, as it plays a more or less signifi-
cant role in the simultaneous flow of oil and water through rocks (Qiao, Andersen, Evje,
& Standnes, 2018). This is also the mechanism suggested by Labernadie et al. (2017).
If the strength of the viscous coupling is large enough, it could cause a direct drag force
effect on the tumor cells from the fibroblasts.

Above is mentioned two different hypotheses that we want to test when doing the
simulations, that is



1.2. REVIEW OF PAPER BY SHIEH ET. AL., 2011 9

1. indirect interaction due to ECM remodeling, and

2. direct interaction due to viscous coupling between cells and fibroblasts.

In the following chapter we will formulate the mathematical model relevant for exploring
the two proposed models.

Figure 1.7: Proposed mechanism for flow- and fibroblast-enhanced tumor cell migration
(Shieh et al., 2011).
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Chapter 2

Mathematical Model

In this chapter, we develop the mathematical model describing the simultaneous flow of
cell, fibroblast and interstitial fluid (IF), each represented by a phase. The approach is
inspired by multiphase models used for flow of oil, water and gas in porous and permeable
reservoir rocks. The tissue represent the “bulk” of the porous media, whereas the ECM is
the solid/non-porous part (comparable to the solid rock matrix) and the porous portion
is assumed to be completely saturated by the three phases cell, fibroblast, and IF. We
do not differentiate between different types of tumor cells, such as alive or dead cells.

The model will be applied in a so-called “experimental setting”, in which there is an
externally imposed pressure gradient, causing IF flow across the domain, see Figure 2.1.
This is different from a “tumor setting”, in which there is no external pressure gradient,
and flow of IF is generated by the vascular and lymphatic system, as shown in Figure
1.1.

Figure 2.1: Tumor microenvironment (experimental setting). Figure modified from
Shieh and Swartz (2011).

For each of the three phases, we formulate one mass and one momentum balance,
summing to a total of six equations (we might treat the ECM as a fourth phase, but
assuming it’s stationary, we get the trivial momentum balance). In addition, we have
three equations describing the evolution of the chemical agents; cell-secreted protease
(G), surface-released chemokine (C), and fibroblast-secreted transforming growth factor

11
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(H). The chemical components are subject to advection and diffusion, in addition to
source terms representing production, decay and consumption. Finally, we have one
equation representing dissolution of the extracellular matrix (ρ), as protease reacts with
the ECM to release surface-bound chemokine (Fleury, Boardman, & Swartz, 2006).

2.1 Mass Balance Equations

The general continuity equation of phase i, assuming incompressibility, constant density,
and constant porosity, is (Lemon, King, Byrne, Jensen, & Shakesheff, 2006)

ρi

[
∂αi
∂t

+∇ · (αiui)
]

=
∑
j

kijρjαj − ρiαi
∑
j

kji +Qiρi, (2.1)

where αi,ui, ρi, Qi is the volume fraction, interstitial velocity vector, density and mass
transport across the boundary of the domain of phase i. kij is the volume conversion
rate of material from phase j to phase i, which is a function of the volume fractions. The
first term on the left-hand side represent the accumulation of phase i in an infinitesimal
control volume and the second term describe flow of the particular phase across the
boundaries of this volume element (positive when there is a net outflow of mass). The
first term on the right-hand side is the mass conversion rate of material from phase j to
phase i, summed over all phases j, and can be used to describe e.g. the production of cells
or fibroblasts from IF. The second-to-last term is similar, but specifies the conversion
rate from phase i to phase j, again summed over all phases j. Finally, the last term is a
source term controlling mass transport of phase i to or from the outside of the domain
(positive for net inflow).

Applying equation (2.1) to the cell, fibroblast and IF phases, we get

ρc

[
∂αc
∂t

+∇ · (αcuc)
]

=
∑
j=f,w

kcjρjαj − ρcαc
∑
j=f,w

kjc +Qcρc

ρf

[
∂αf
∂t

+∇ · (αfuf )

]
=
∑
j=c,w

kfjρjαj − ρfαf
∑
j=c,w

kjf +Qfρf

ρw

[
∂αw
∂t

+∇ · (αwuw)

]
=
∑
j=c,f

kwjρjαj − ρwαw
∑
j=c,f

kjw +Qwρw,

(2.2)

or, if we assume that cells and fibroblasts do not exchange mass, and that there are no
supply/withdrawal of either of these phases across the outer boundaries of the domain,
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we get

ρc

[
∂αc
∂t

+∇ · (αcuc)
]

= kcwρwαw − kwcρcαc

ρf

[
∂αf
∂t

+∇ · (αfuf )

]
= kfwρwαw − kwfρfαf

ρw

[
∂αw
∂t

+∇ · (αwuw)

]
= −(kcwρwαw − kwcρcαc)− (kfwρwαw − kwfρfαf ) +Qwρw.

(2.3)

Since IF basically is water, and tumor cells and fibroblasts are themselves mainly water
(Lemon et al., 2006), it’s fair to assume all densities to be equal, thus arriving at

∂αc
∂t

+∇ · (αcuc) = Sc, Sc = kcwαw − kwcαc
∂αf
∂t

+∇ · (αfuf ) = Sf , Sf = kfwαw − kwfαf
∂αw
∂t

+∇ · (αwuw) = −Sc − Sf + (Qv −Ql).

(2.4)

Here, αc, αf and αw are the volume fractions of the cell, fibroblast and IF phase, re-
spectively, and uc,uf and uw the corresponding (interstitial) velocity vectors, in 3-D
having components ul = (uxl , u

y
l , u

z
l ), (l = c, f, w). We have assumed that the porosity

is constant in time and uniform is space, and that αl is measured as a fraction of the
volume available for fluids, i.e. the pore volume. It is also assumed that

αc + αf + αw = 1,

implying that there is no void space. The volume conversion terms Sc and Sf represent
the (net) production of cells and fibroblasts; since cells profilerate and grow by absorbing
water, it’s as expected that similar terms, but opposite in sign, show up in the mass
balance of IF. Qv and Ql are production and absorption of IF through the vascular and
lymphatic system, respectively, but this is not relevant for the experimental setting.

2.2 Momentum Balance Equations

Fluid flow through tissue can be regarded as a type of porous media flow, similar to the
flow of oil and water through a rock. For flow through porous rocks the multi-phase
extension of Darcy’s law (Muskat, Wyckoff, Botset, & Meres, 1937) is used, written as
(neglecting gravity forces)

ul = −kkrl
µl
∇Pl,

where ul, krl, µl, Pl are the superficial velocity vector, relative permeability, viscosity and
pressure of phase l, respectively, and k is the (absolute) permeability tensor. Using this
equation we allow for different phase pressures due to capillary forces (Leverett, 1940).
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The permeability tensor can be written as a diagonal matrix for coordinate systems
oriented in the principal directions of permeability; for an anisotropic rock taking the
form

k =

kx 0 0
0 ky 0
0 0 kz

 .
One disadvantage of the Darcy equation is that all information about the fluid-fluid

and fluid-rock interactions are grouped into the relative permeability, thus making it im-
possible to investigate the effects of e.g. co- and counter-current flow. To overcome these
restrictions, we will consider an approach based on the theory of mixtures (Allen III,
Behie, & Trangenstein, 1988; Evje, 2017; Lemon et al., 2006; Qiao et al., 2018), in
which we split the momentum balance equations into several terms, each accounting for
different fluid-fluid and fluid-ECM interactions.

The basic idea of mixture theory is to model the system as a collection of overlapping
continua, each representing a phase. The following general form of momentum balance
then applies (Allen III, 1985; Allen III et al., 1988; Hilfer, 1998)

φαiρi
Diui
Dt
−∇ · (αiti)− φαiρibi = mi − uiri, (2.5)

where ui, αi, ρi are the interstitial velocity vector, saturation and density of phase i, and
φ is the porosity of the porous medium, given as volume of fluids per unit volume of
mixture (fluids and solid). Di/Dt = ∂/∂t + ui · ∇ is the material derivative operator,
ti is the stress tensor of phase i, whereas bi expresses the net body force per unit mass
acting on the body. mi and ri accounts for momentum and mass transfer, respectively,
from all other phases into phase i.

We are going to make some simplifying assumptions to the expression in (2.5); first
we assume that inertial effects can be ignored, i.e. setting

Diui
Dt

= 0. (2.6)

For typical porous media flows this is a good approximation since the velocities are
small (Bear, 1988), an exception of course being the flow of gases, which have a lower
viscosity and flows with higher rates, causing large Reynolds numbers and turbulence. In
that case the Forchheimer equation, having an extra second-order term representing the
kinetic energy of fluid, can be used (Teng & Zhao, 2000; Jambhekar, 2011). Throughout
this thesis we will only be working with liquid-like phases and low flow velocities (in the
order of 1µm/s), justifying the assumption of negligible inertial effects (Jain, Martin, &
Stylianopoulos, 2014).

Second, we assume momentum transfer via shear stresses to be negligible, such that
the stress tensor becomes diagonal

ti = −PiI = −

Pi 0 0
0 Pi 0
0 0 Pi

 ,
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with I being the identity matrix, and Pi the (isotropic) pressure of phase i. This is
consistent with e.g. C. J. Breward, Byrne, and Lewis (2003); Byrne and Owen (2004);
Evje (2017); Waldeland and Evje (2018). It follows that

−∇ · (αiti) = ∇(αiPi). (2.7)

Third, the only relevant body force is the gravitational acceleration. However, in
order to arrive at the simplest possible model, we are going to neglect this effect by
setting

bi = 0. (2.8)

Fourth, we are going to neglect mass transfer between the different phases, i.e.

ri = 0. (2.9)

It could be relevant to include this effect in order to model proliferation (cell growth
and division) and apoptosis (cell death) of tumor cells and fibroblasts, but again, we are
going to neglect this to avoid a too complex model formulation.

Fifth, the transfer of momentum into phase i from the other phases can be expressed
as

mi = Pi∇αi +
∑
j 6=i

fij , (2.10)

where the first term is an interfacial force resulting from an averaging process (C. J. Bre-
ward et al., 2003; Byrne & Owen, 2004; Evje, 2017; Qiao et al., 2018), and fij is the
drag force exerted by the jth phase on the ith phase, and should be summed over all
phases j 6= i, including the solid phase (the ECM).

Finally, using the assumptions given in (2.6) through (2.10) to simplify (2.5), we
arrive at the equation

∇(αiPi) = Pi∇αi +
∑
j 6=i

fij , (2.11)

or, by expanding the gradient on the LHS using the product rule

αi∇Pi =
∑
j 6=i

fij . (2.12)

It now remains to specify the form of the drag force terms. Assuming creeping flow
(Stokes flow), we can write (Evje, 2017; Waldeland & Evje, 2018)

fij = ζ̂ij(uj − ui) = −fji, (2.13)

consistent with Newtons third law of motion, which states that for every action, there
is an equal and opposite reaction. We assume ζ̂ij to be proportional to the viscosity of
the fluid(s).

Now, using equation (2.13), we can write equation (2.12) for the IF phase as

αw∇Pw = −ζ̂wuw − ζ̂cw(uw − uc)− ζ̂fw(uw − uf ). (2.14)
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Here, the right-hand side is separated into three terms: ζ̂wuw, representing the resistance
against flow felt by the water phase from the solid material of the porous medium,
ζ̂cw(uw − uc) and ζ̂fw(uw − uf ), representing the drag force exerted by the cells and
fibroblasts on the water phase. The remaining momentum equations can be written as

αc∇(Pw + ∆Pcw + ΛC) = −ζ̂cuc + ζ̂cw(uw − uc) + ζ̂cf (uf − uc) (2.15)

for the cell phase, and

αf∇(Pw + ∆Pfw + ΛH) = −ζ̂fuf − ζ̂cf (uf − uc) + ζ̂fw(uw − uf ) (2.16)

for the fibroblast phase. ∆Pcw and ∆Pfw are functions quantifying the elevated pres-
sures seen in the cell and fibroblast phase, respectively, compared to water (IF). This is
comparable to the capillary pressure functions used in the simulation of flow of water,
oil and gas in hydrocarbon reservoirs (Allen III et al., 1988; Ertekin, Abou-Kassem, &
King, 2001; Zolotukhin & Ursin, 2000). These terms give rise to diffusion-like behavior.
The potential functions ΛC and ΛH have been added to the equations in (2.15) and
(2.16) to represent the additional phase pressures due to chemotaxis (Byrne & Owen,
2004; Evje, 2017; Waldeland & Evje, 2018). The cells chemotact toward chemokine (C),
whereas fibroblasts migrate toward increasing concentrations of TGF (H), consistent
with Section 1.2.

Remark 2.1. Note that e.g. growth factors, inhibitors and nutrients might have an
indirect effect on cell motion as well, by stimulating tumor growth. This can be modeled
through the terms Sc and Sf . When cells duplicate, the tumor has to expand outwards
in order to make room for more cells (Ambrosi & Preziosi, 2002).

Remark 2.2. We have assumed that all phases are incompressible; however, previous
works have demonstrated that solid stress may cause tighter packing of the cells and
affect tumor growth (Helmlinger, Netti, Lichtenbeld, Melder, & Jain, 1997). A model
accounting for such mechanical effects has been formulated by e.g. Ambrosi and Preziosi
(2009).

Constitutive relations will be given in a subsequent section, and the effects of ΛC
and ΛH (chemotaxis), ∆Pcw and ∆Pfw (diffusion) as well as the viscous couplings and
fluid-ECM interactions on the solution will become more clear later on when we will
consider a simplified 1-D model.

2.3 Chemical Agents

We assume that protease is secreted by the cells, as described by Shields et al. (2007).
As mentioned in Subsection 1.2.2, pt. 2, increased concentration and activation of TGF
was observed in the presence of fibroblasts. The simplest model consistent with these
observations is based on the assumption that TGF is secreted directly by the fibroblasts.
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Remark 2.3. Note that it might be more realistic to assume TGF to be produced in
a manner similar to the production of chemokine (described below), in which case the
fibroblasts would secrete their own type of protease, releasing surface-bound growth factors
from the ECM. Also, we know that shear stresses are involved in the process of activating
TGF (Ahamed et al., 2008; Wipff, Rifkin, Meister, & Hinz, 2007), so that could play a
role as well.

Finally, we are going to assume that protease, G, and TGF, H, moves in the wa-
ter phase by advection and diffusion according to the following equations (Ambrosi &
Preziosi, 2002; Waldeland & Evje, 2018)

Gt +∇ · (uwG) = ∇ · (DG∇G)− λ31G+ αc

(
λ32 − λ33

(
G

GM

)vG)
Ht +∇ · (uwH) = ∇ · (DH∇H)− λ51H + αf

(
λ52 − λ53

(
H

HM

)vH)
.

(2.17)

The second term on the right-hand side describes decay of the chemical component,
whereas the last term is the growth term. Note that the production terms are depen-
dent on the volume fractions of cell and fibroblast. GM and HM are included to put
restrictions on the production of protease and TGF, respectively, and can thus be used
to set the upper limits of the dissolved components in the aqueous phase.

The evolution of chemokine is described by (Waldeland & Evje, 2018)

Ct+∇·(uwC) = ∇·(DC∇C)+Gρ

(
λ41 − λ42

(
C

CM

)2

− λ43

(
C

CM

)vC)
−λ44αc. (2.18)

Again, CM is a parameter that controls the maximal levels of chemokine. Note that
production of chemokine is dependent on the concentration of both protease and ECM,
consistent with Shields et al. (2007) and Fleury et al. (2006), which argue that chemokine
initially is bound to the ECM, but will be released into the water phase upon reaction
with cell-secreted protease. This gives rise to much larger transcellular gradients com-
pared to when chemokines are secreted directly by the cells (Fleury et al., 2006). The
ECM component is described by

ρt = −λ21Gρ+ ρ

(
λ22 − λ23αc − λ24

ρ

ρM

)
. (2.19)

When protease reacts with the ECM to release chemokines into the water phase, some
of the ECM dissolves, as described by the first term on the right-hand side. ρM here
serves the same purpose as GM , HM and CM in the previous equations. We will use a
simplified version of (2.19) when we solve the model in a 1-D setting in Chapter 3.

Remark 2.4. Note that λ11, λ12 and λ13 has already been reserved for the description
of Sc (Waldeland & Evje, 2018).
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2.4 The Three-Phase Model

Now the final, three-dimensional, three-phase cell-fibroblast-IF model takes the following
form

αct +∇ · (αcuc) = Sc

αft +∇ · (αfuf ) = Sf

αwt +∇ · (αwuw) = −Sc − Sf + (Qv −Ql)
αc∇(Pw + ∆Pcw + ΛC) = −ζ̂cuc + ζ̂cf (uf − uc)

αf∇(Pw + ΛH) = −ζ̂fuf − ζ̂cf (uf − uc)

αw∇Pw = −ζ̂wuw

ρt = −λ21Gρ+ ρ

(
λ22 − λ23αc − λ24

ρ

ρM

)
Gt +∇ · (uwG) = ∇ · (DG∇G)− λ31G+ αc

(
λ32 − λ33

(
G

GM

)vG)
Ct +∇ · (uwC) = ∇ · (DC∇C) +Gρ

(
λ41 − λ42

(
C

CM

)2

− λ43

(
C

CM

)vC)
− λ44αc

Ht +∇ · (uwH) = ∇ · (DH∇H)− λ51H + αf

(
λ52 − λ53

(
H

HM

)vH)
, (2.20)

where we have assumed ζ̂cw = ζ̂fw = ∆Pfw = 0. The motivation for ignoring
the viscous couplings are related to the fact that in two-phase flow of either cell or
fibroblast together with IF, flow-enhanced migration practically vanish when removing
the effect of chemotaxis, see Figure 1.2A and 1.3A (right). This suggests that the effect
of mechanical coupling with IF is negligible (at least compared to chemotaxis). Also,
we assume that fibroblasts do not possess the ability to repel/attract each other (a
distinctive characteristic of cells), and therefore ∆Pfw = 0. The cell capillary pressure
function is determined from the fluid saturations, i.e. ∆Pcw = ∆Pcw(αc, αf ). We also
assume that ΛC = ΛC(C) and ΛH = ΛH(H). This is slightly different from e.g. Evje
(2017) where ΛC = ΛC(C, ρ), thus also including the effect of haptotaxis (a mechanism
similar to chemotaxis but where the cells follow concentration gradients of surface-bound
substances).

Remark 2.5. Note that the potential functions only enter the equations in (2.20) as
gradients, and the purpose of these functions might become clearer if we rewrite them
using the chain rule for differentiation. For example for chemokine, we can rewrite
the gradient as: ∇ΛC(C) = Λ′C(C) · ∇C. We see that the strength of the chemotaxis
effect depends on the gradient of the chemokine concentration (in a product, such that
the chemotactic response vanish when the gradient is zero), but also on the function
Λ′C(C). By tuning the parameters of ΛC(C) we can control for which concentrations the
chemotactic response should be stronger/weaker (for a given gradient). A special case
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would be ΛC(C) = A for some constant A, in which case chemotaxis would depend on
the concentration gradient only. The form of the potential functions will be specified in
greater detail later on when we will solve a simplified 1-D version of the model.

Remark 2.6. It should be noted that the model (2.20) is given in dimensional form;
however, using the dimensionless variables and parameters given in Appendix B, the
equations will look exactly the same in dimensionless form. In the following, we are
going to refer to this dimensionless version of the model; see Appendix B for further
details.

Summing up, the model (2.20) consists of ten equations: one mass and momentum
balance for each of the three phases, i.e. a total of six equations, in addition to four
transport-reaction equations describing the evolution of the chemical components and
the ECM.

2.5 Rewritten Form of the Model

When solving the equations for flow of oil and water in an oil reservoir we use the mass
balance equations in addition to explicit expressions for the phase velocities, represented
by the Darcy law (Allen III et al., 1988). In this case, we have implicit expressions
for the velocities, represented by the momentum balance equations (2.20)4,5,6. We now
want to replace these equations with explicit expressions for the phase velocities (see
Appendix A for further details).

2.5.1 Explicit Expressions for Phase Velocities

Rewriting the momentum balance equations (2.20)4,5,6 as

αc∇ΛC + αc∇(∆Pcw) + αc∇Pw = −(ζ̂c + ζ̂cf )uc + ζ̂cfuf

αf∇ΛH + αf∇Pw = ζ̂cfuc − (ζ̂f + ζ̂cf )uf

αw∇Pw = −ζ̂wuw,

(2.21)

and solving the 3-by-3 linear system for the interstitial fluid velocities gives

uc =−
αf ζ̂cf + αc(ζ̂cf + ζ̂f )

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )
∇Pw

−
αc(ζ̂cf + ζ̂f )

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )
∇(∆Pcw + ΛC)

−
αf ζ̂cf

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )
∇ΛH

(2.22)
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for the cell phase,

uf =−
αcζ̂cf + αf (ζ̂c + ζ̂cf )

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )
∇Pw

−
αcζ̂cf

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )
∇(∆Pcw + ΛC)

−
αf (ζ̂c + ζ̂cf )

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )
∇ΛH

(2.23)

for the fibroblast phase, and

uw = −αw
ζ̂w
∇Pw (2.24)

for the IF phase. The corresponding Darcy/superficial velocities then follows directly
from the definitions

Uc := αcuc =− λ̂c∇Pw

−

(
λ̂c −

αcαf ζ̂cf

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )

)
∇(∆Pcw + ΛC)

−
αcαf ζ̂cf

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )
∇ΛH

Uf := αfuf =− λ̂f∇Pw (2.25)

−
αcαf ζ̂cf

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )
∇(∆Pcw + ΛC)

−

(
λ̂f −

αcαf ζ̂cf

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )

)
∇ΛH

Uw := αwuw =− λ̂w∇Pw,

where we have introduced the generalized mobility functions

λ̂c =
αc[αc(ζ̂cf + ζ̂f ) + αf ζ̂cf ]

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )

λ̂f =
αf [αcζ̂cf + αf (ζ̂c + ζ̂cf )]

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )

λ̂w =
α2
w

ζ̂w

λ̂T =
(αc + αf )2ζ̂cf + α2

c ζ̂f + α2
f ζ̂c + α2

w

ζ̂w
(ζ̂cζ̂cf + ζ̂cζ̂f + ζ̂cf ζ̂f )

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )
,

(2.26)
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allowing us to rewrite the coefficients in (2.22) and (2.23):

α2
c(ζ̂cf + ζ̂f )

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )
=
αcαf ζ̂cf + α2

c(ζ̂cf + ζ̂f )− αcαf ζ̂cf
ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )

= λ̂c −
αcαf ζ̂cf

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )

α2
f (ζ̂c + ζ̂cf )

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )
=
αcαf ζ̂cf + α2

f (ζ̂c + ζ̂cf )− αcαf ζ̂cf
ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )

= λ̂f −
αcαf ζ̂cf

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )
.

(2.27)

Remark 2.7. Note that the Darcy velocities defined in (2.25) differs from the usual
Darcy velocities used in the oil and gas industry in that they are defined as volumetric
rate divided by porous area, instead of total area (which also includes the solid part of
the cross-section). We also neglect any tortuosity of the pores, and assume flow along
straight-line paths through the porous material. In addition, we do not take consideration
of residual saturations.

We now have explicit expressions for each of the phase velocities, given by (2.25),
in addition to the mass balance equations given by (2.20)1,2,3. This is also the starting
point in the solution of the Buckley-Leverett (BL) equation describing two-phase flow
of oil and water, where the explicit velocities are given by the Darcy equations (Buckley
& Leverett, 1941). The next step in the solution of the BL equation is to sum the mass
balance equations and derive an expression for the total velocity, using the constraint
Sw + So = 1, Sw and So being the saturations of water and oil, respectively. Following
a similar approach, we sum the three mass balance equations (2.20)1,2,3 to get

∇ ·UT = ∇ · (Uc + Uf + Uw) = Qv −Ql, (2.28)

where we have made use of the relation αc+αf +αw = 1. This simplifies to the relation
∂UT /∂x = 0 used in BL when we have one-dimensional flow and no source terms. The
next step is then to relate the total flux (total Darcy velocity) to the pressure gradient
of the water/IF phase, by making use of the explicit expressions for the individual phase
velocities. By summation of the equations in (2.25), we have that

UT = Uc + Uf + Uw = −λ̂T∇Pw − λ̂c∇(∆Pcw + ΛC)− λ̂f∇ΛH , (2.29)

which is similar to UT = −λT∂Pw/∂x in the BL case where chemotaxis and capillary
pressure are not considered. By applying the divergence operator (∇·) on (2.29) and
using (2.28), we get

− (Qv −Ql)−∇ · (λ̂c∇(∆Pcw + ΛC))−∇ · (λ̂f∇ΛH) = ∇ · (λ̂T∇Pw), (2.30)

which is a more general version of the equation ∂/∂x(λT∂Pw/∂x) = 0 used in the context
of BL. This is an elliptic equation for Pw; knowing the pressure, we can calculate UT

from (2.29).
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2.5.2 Elimination of IF Pressure Gradient

Following the procedure for solving the BL problem, the next step is now to eliminate
the IF pressure gradient. We can solve for the pressure gradient using equation (2.29)

∇Pw = −UT

λ̂T
− λ̂c

λ̂T
∇(∆Pcw + ΛC)−

λ̂f

λ̂T
∇ΛH . (2.31)

Substituting this expression into (2.25) we derive the following expressions for the su-
perficial fluid velocities

Uc = f̂cUT − (ĥ1 + ĥ2)∇(∆Pcw + ΛC) + ĥ2∇ΛH

Uf = f̂fUT + ĥ2∇(∆Pcw + ΛC)− (ĥ2 + ĥ3)∇ΛH

Uw = f̂wUT + ĥ1∇(∆Pcw + ΛC) + ĥ3∇ΛH ,

(2.32)

where the fractional flow functions describing co-current flow are defined by

f̂c(αc, αf ) :=
λ̂c

λ̂T
=

αc[αf ζ̂cf + αc(ζ̂cf + ζ̂f )]

(αc + αf )2ζ̂cf + α2
c ζ̂f + α2

f ζ̂c + α2
w

ζ̂w
(ζ̂cζ̂cf + ζ̂cζ̂f + ζ̂cf ζ̂f )

f̂f (αc, αf ) :=
λ̂f

λ̂T
=

αf [αcζ̂cf + αf (ζ̂cf + ζ̂c)]

(αc + αf )2ζ̂cf + α2
c ζ̂f + α2

f ζ̂c + α2
w

ζ̂w
(ζ̂cζ̂cf + ζ̂cζ̂f + ζ̂cf ζ̂f )

f̂w(αc, αf ) :=
λ̂w

λ̂T
=

α2
w

ζ̂w
(ζ̂cζ̂cf + ζ̂cζ̂f + ζ̂cf ζ̂f )

(αc + αf )2ζ̂cf + α2
c ζ̂f + α2

f ζ̂c + α2
w

ζ̂w
(ζ̂cζ̂cf + ζ̂cζ̂f + ζ̂cf ζ̂f )

,

(2.33)

and the h-functions describing counter-current flow are given by

ĥ1(αc, αf ) : =
λ̂cλ̂w

λ̂T

=
αc

α2
w

ζ̂w
[αc(ζ̂f + ζ̂cf ) + αf ζ̂cf ]

(αc + αf )2ζ̂cf + α2
c ζ̂f + α2

f ζ̂c + α2
w

ζ̂w
(ζ̂cζ̂cf + ζ̂cζ̂f + ζ̂cf ζ̂f )

ĥ2(αc, αf ) : =
λ̂cλ̂f

λ̂T
−

αcαf ζ̂cf

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )

=
αcαf (αcαf − α2

w

ζ̂w
ζ̂cf )

(αc + αf )2ζ̂cf + α2
c ζ̂f + α2

f ζ̂c + α2
w

ζ̂w
(ζ̂cζ̂cf + ζ̂cζ̂f + ζ̂cf ζ̂f )

ĥ3(αc, αf ) : =
λ̂f λ̂w

λ̂T

=
αf

α2
w

ζ̂w
[αcζ̂cf + αf (ζ̂c + ζ̂cf )]

(αc + αf )2ζ̂cf + α2
c ζ̂f + α2

f ζ̂c + α2
w

ζ̂w
(ζ̂cζ̂cf + ζ̂cζ̂f + ζ̂cf ζ̂f )

.

(2.34)
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Figure 2.2 illustrates graphically how the different phases are connected via the ĥ-
functions.

ĥ3

ĥ1ĥ2

IF

TC

Fb

Figure 2.2: Graphical representation of how the different phases are coupled to
each other via the counter-current flow coefficients. TC=tumor cell, Fb=fibroblast,
IF=interstitial fluid.

Let us compare the equations in (2.32) to the oil-reservoir analogs. The equation for
IF takes the following form in 1-D

Uw = f̂wUT + ĥ1(∆Pcw)x + ĥ1ΛCx + ĥ3ΛHx. (2.35)

For two-phase flow of oil and water, including the effects of capillary pressure and gravity,
we get the following water velocity using Darcy’s law

Uw = fwUT + fwλo∆ρg + fwλoPcx, (2.36)

or slightly different if we use the generalized mixture theory approach (Qiao et al., 2018)

Uw = f̂wUT +W∆ρg +WPcx, (2.37)

where also the viscous coupling between the two fluid phases has been taken into consid-
eration. It should be clear from the last two equations, (2.36) and (2.37), that we get one
term per transportation mechanism, in this case co-current flow, counter-current grav-
ity and counter-current capillary pressure. Comparing these two equations with (2.35),
we see that they are very similar, except that terms representing gravity are removed,
whereas two extra (counter-current) terms, representing chemotaxis toward chemokine
and TGF, have been added.

The expression for W in (2.37) is

W = f̂wλ̂o −
αoαwζ̂owφe

ζ̂oζ̂w + ζ̂ow(ζ̂o + ζ̂w)
, (2.38)

which is similar to the coefficient fwλo in (2.36), except for the extra term accounting for
viscous coupling between the oil and water phase. The coefficients ĥ1 and ĥ3 in (2.35)
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describes how IF interacts with the cells and fibroblasts, see Figure 2.2. Since we have
not included the effect of fluid-fluid interactions on the water phase (against either cells
or fibroblasts), we should expect these two coefficients to be free for “viscous coupling
effects”, and therefore similar to the coefficient fwλo in (2.36). Indeed,

ĥ1(αc, αf ) =
λ̂cλ̂w

λ̂T
= f̂wλ̂c, ĥ3(αc, αf ) =

λ̂f λ̂w

λ̂T
= f̂wλ̂f ,

similar to the counter-current coefficient in the equation for flow of oil and water when
there is no viscous coupling between the phases. The factor ĥ2, however, represent
the counter-current coupling between cells and fibroblasts, where also the fluid-fluid
interaction between the two phases have been taken into account. We should therefore
expect this factor to be similar to W given in (2.38). Indeed,

ĥ2(αc, αf ) =
λ̂cλ̂f

λ̂T
−

αcαf ζ̂cf

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )
= f̂f λ̂c −

αcαf ζ̂cf

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )
,

consistent with the expression in (2.38), except that the porosity was written explicitly
in that case.

The expressions for the interstitial fluid velocities follows directly from (2.32)

uc =
f̂c
αc

UT −
ĥ1 + ĥ2

αc
∇(∆Pcw + ΛC) +

ĥ2

αc
∇ΛH

uf =
f̂f
αf

UT +
ĥ2

αf
∇(∆Pcw + ΛC)− ĥ2 + ĥ3

αf
∇ΛH

uw =
f̂w
αw

UT +
ĥ1

αw
∇(∆Pcw + ΛC) +

ĥ3

αw
∇ΛH .

(2.39)

Note that each of the phase velocities consists of four different terms, representing con-
tributions to the overall velocity of the phase from different mechanisms. Taking water,
equation (2.39)3 as an example, we have:

1. fluid-generated stress, f̂w
αw

UT ,

2. diffusion, ĥ1
αw
∇(∆Pcw),

3. chemotaxis of cells toward concentration gradients in chemokine, ĥ1
αw
∇ΛC ,

4. chemotaxis of fibroblasts toward concentration gradients in TGF, ĥ3
αw
∇ΛH .

The fluid-generated stress depending on UT , represent a co-current transport effect, in
which all of the phases flow in the same direction. This force is caused by the applied
pressure gradient across the domain, causing a flow of IF, which in turn pushes the cells
and fibroblasts in the same direction. If we do not have any source terms of IF, note
that UT will be divergence-free (∇ ·UT = 0), and therefore constant in a 1-D setting.
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The fluid-generated stress on the phase is thus dependent only on the fractional flow
function of that particular phase, being a function of the volume fractions.

The three remaining forces, dependent on ĥ1, ĥ2 and ĥ3 represents counter-current
flow. In the event that there is no viscous coupling between any of the three phases, the
expressions in (2.34) simplify to

ĥ1(αc, αf ) =
λ̂cλ̂w

λ̂T

ĥ2(αc, αf ) =
λ̂cλ̂f

λ̂T

ĥ3(αc, αf ) =
λ̂f λ̂w

λ̂T
.

(2.40)

Note that these are all positive functions (since the mobilities are positive). We will
also assume that Λ′C(C) and Λ′H(H) are negative, such that a positive gradient in for
example TGF (H) will cause ∇ΛH(H) = Λ′H(H) ·∇H to be negative. Looking at (2.39)2

we see that the velocity of the fibroblasts will get a positive contribution driving the
fibroblasts in the direction of increasing concentration of TGF, consistent with Section
1.2. Looking at (2.39)1,3 it is clear that the cell and IF phases will experience flow in the
oppsite direction. Correspondingly, a positive gradient in chemokine (C), will increase
the cell velocity in the downstream direction, while simultaneously trying to push the
fibroblasts and IF in the upstream direction.

If we include the viscous coupling between cell and fibroblast, that is, setting ζ̂cf > 0,

then (2.40)1,3 remains the same, but ĥ2 now takes the following form:

ĥ2(αc, αf ) =
λ̂cλ̂f

λ̂T
−

αcαf ζ̂cf

ζ̂cζ̂f + ζ̂cζ̂cf + ζ̂f ζ̂cf
.

Remark 2.8. By increasing the strength of the cell-fibroblast interaction, ĥ2 eventu-
ally becomes negative, thus making both cells and fibroblasts move in the direction of
increasing concentration of TGF, forcing IF to move in the opposite direction (due to
the counter-current nature of chemotactic migration). This is very different from the
case without viscous coupling, where ĥ2 = f̂f λ̂c always will be positive. The terms in
(2.39) describing chemotaxis toward chemokine and elevated cell pressure also behaves
similarly, but they are directly affecting the cell phase, and indirectly the fibroblast and
IF phases (contrary to chemotaxis toward TGF directly affecting the fibroblasts).

Remark 2.9. While it might seem that the only effect of including the fluid-fluid in-
teraction lies in the second term of the ĥ2 function, it should be mentioned that also
the mobilities of the cell and fibroblast phases change. This affect the fractional flow
functions as well.

We will later see when specifying the form of the functions f̂c, f̂f , f̂w, ĥ1, ĥ2 and ĥ3

that some terms in (2.39) are negligible, and by keeping only the terms representing the
dominating effects we can further simplify the model.
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2.6 Functional Forms of the Interaction Coefficients

Consistent with Waldeland and Evje (2018), we consider the following choices for the
interaction coefficients

ζ̂c = Ick̂cα
rc
c

ζ̂f = If k̂fα
rf
f

ζ̂w = Iwk̂wα
rw
w

ζ̂cf = Icfα
rcf
c α

rfc
f .

(2.41)

The parameters Ic, If and Iw represent static properties of the tissue, while k̂c, k̂f and k̂w
can account for dynamic properties, related to for example ECM remodeling and fiber
alignment, see Subsections 1.2.4 & 1.2.5. Reduction in the cell-ECM resistance force in
the presence of fibroblasts could be attributed to k̂c. Icf is a constant determining the
order of magnitude of the cell-fibroblast interaction. The definitions in (2.41) emphasize
the fact that the interaction forces should fade out when the phases disappear. In the
case of single-phase flow of IF in one dimension, the momentum balance (2.14) reduces
to

∂Pw
∂x

= −Iwk̂wuw.

Comparing this expression with the corresponding Darcy law

∂Pw
∂x

= −µw
K
φuw,

with K being the absolute permeability of the tissue, we get that

Iwk̂w =
µw
K
φ.

Initially, we are going to set k̂l = 1, (l = c, f, w), implying that

Iw =
µw
K
φ,

i.e. proportional to the viscosity, as previously mentioned.
With the above-mentioned choices for the interaction coefficients, the fractional flow

functions take the following forms

f̂c =
αcαf + α2

c +Rfα
2−rcf
c α

rf−rfc
f

A(αc, αf )

f̂f =
αcαf + α2

f +Rcα
rc−rcf
c α

2−rfc
f

A(αc, αf )

f̂w =
α2−rw
w

Rw

Rcα
rc
c +RcRfα

rc−rcf
c α

rf−rfc
f +Rfα

rf
f

A(αc, αf )
,

(2.42)
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while the expressions in (2.34) can be written

ĥ1 =
α2−rw
w

Iwk̂w

Rfα
2−rcf
c α

rf−rfc
f + α2

c + αcαf

A(αc, αf )

ĥ2 =
1

Iwk̂w

Rwα
2−rcf
c α

2−rfc
f − αcαfα2−rw

w

A(αc, αf )

ĥ3 =
α2−rw
w

Iwk̂w

αcαf +Rcα
rc−rcf
c α

2−rfc
f + α2

f

A(αc, αf )
,

(2.43)

with A given by

A(αc, αf ) =(αc + αf )2 +Rfα
2−rcf
c α

rf−rfc
f +Rcα

rc−rcf
c α

2−rfc
f

+
α2−rw
w

Rw

(
Rcα

rc
c +RcRfα

rc−rcf
c α

rf−rfc
f +Rfα

rf
f

)
,

and the R-coefficients by

Rc =
Ick̂c
Icf

, Rf =
If k̂f
Icf

, Rw =
Iwk̂w
Icf

.

Remark 2.10. The three coefficients Rl, (l = c, f, w), indicate the relative strength of
the different interaction forces, that is, fluid-ECM relative to fluid-fluid forces (i.e. the
cell-fibroblast interaction, which is the only fluid-fluid force we are going to consider).
For example, Rc < 1 means that the cells are sticking more to the fibroblasts than the
stationary ECM.

Using the expressions for the flow functions given in (2.42) and (2.43), the parameters
in Table 3.1, and letting Icf → 0, we get the plots in Figures 2.3-2.8.

2.7 One-Dimensional Version of the Model

The model (2.20) takes the following form in 1-D

αct + (αcuc)x = Sc

αft + (αfuf )x = Sf

ρt = −λ21Gρ+ ρ

(
λ22 − λ23αc − λ24

ρ

ρM

)
Gt + (uwG)x = DGGxx − λ31G+ αc

(
λ32 − λ33

(
G

GM

)vG)
Ct + (uwC)x = DCCxx +Gρ

(
λ41 − λ42

(
C

CM

)2

− λ43

(
C

CM

)vC)
− λ44αc

Ht + (uwH)x = DHHxx − λ51H + αf

(
λ52 − λ53

(
H

HM

)vH)
, (2.44)
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Figure 2.3: Fractional flow of cells as a function of the volume fraction of cells and
fibroblasts (left). Contour plot (right).
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Figure 2.4: Fractional flow of fibroblasts as a function of the volume fraction of cells
and fibroblasts (left). Contour plot (right).

using explicit expressions for the phase velocities. Equations for Pw and UT (assuming
Q = 0 and setting ∆Pcw = ∆P )

−(λ̂c(∆P + ΛC)x)x − (λ̂fΛHx)x = (λ̂TPwx)x

UT = −λ̂TPwx − λ̂c(∆P + ΛC)x − λ̂fΛHx,
(2.45)
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Figure 2.5: Fractional flow of IF as a function of the volume fraction of cells and
fibroblasts (left). Contour plot (right).
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Figure 2.6: ĥ1 as a function of the volume fraction of cells and fibroblasts (left).
Contour plot (right).

with ΛC = ΛC(C),ΛH = ΛH(H) and ∆P = ∆P (αc). Superficial velocities

Uc = f̂cUT − (ĥ1 + ĥ2)(∆P + ΛC)x + ĥ2ΛHx

Uf = f̂fUT + ĥ2(∆P + ΛC)x − (ĥ2 + ĥ3)ΛHx (2.46)

Uw = f̂wUT + ĥ1(∆P + ΛC)x + ĥ3ΛHx,
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Figure 2.7: ĥ2 as a function of the volume fraction of cells and fibroblasts (left).
Contour plot (right).
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Figure 2.8: ĥ3 as a function of the volume fraction of cells and fibroblasts (left).
Contour plot (right).

interstitial velocities

uc =
f̂c
αc
UT −

ĥ1 + ĥ2

αc
(∆P + ΛC)x +

ĥ2

αc
ΛHx

uf =
f̂f
αf
UT +

ĥ2

αf
(∆P + ΛC)x −

ĥ2 + ĥ3

αf
ΛHx (2.47)
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uw =
f̂w
αw

UT +
ĥ1

αw
(∆P + ΛC)x +

ĥ3

αw
ΛHx.

The potential and capillary pressure functions are given by

ΛC(C) = ΛC0 −
ΛC1

1 + exp[−ξ1(C − CM )]

ΛH(H) = ΛH0 −
ΛH1

1 + exp[−ξ2(H −HM )]

∆P (αc) = −γ ln[δ + (1− αc)].

(2.48)

The form of the potential functions are similar to what was done by e.g. Waldeland and
Evje (2018), whereas the function describing the elevated cell pressure due to cell-cell
interactions are motivated by the approach commonly used in petroleum engineering.
When the cells are closely packed (i.e. for large αc) they experience stress and want
to spread in order to reduce it (C. J. W. Breward, Byrne, & Lewis, 2002). For lower
fractions they might want to attract themselves (cell aggregation), but we will only focus
on the spreading effect occuring at higher fractions.

Here it is assumed that the capillary pressure is a function of the saturations only,
justified by the fact that the interfacial geometry varies with saturation (Allen III et
al., 1988; Green & Willhite, 1998; Leverett, 1940). The interfacial geometry, or more
specifically the curvature of the interfaces, is directly related to the capillary pressure by
the Young-Laplace equation (Green & Willhite, 1998; Kirby, 2010; Zolotukhin & Ursin,
2000)

∆P = σ

(
1

R1
+

1

R2

)
,

where σ is the interfacial tension and R1, R2 the principal radii of curvature of the
fluid-fluid interface at the position of capillary pressure determination.

A plot of the potential function for chemokine in (2.48)1 and its derivative are given
in Figure 2.9, using the parameters in Table 3.1. In the upper row ξ1 ranges from 4 to
16 keeping ΛC1 constant at 2.5, while in the lower row we vary ΛC1 between 2-4 using
ξ1 = 8. Note that the magnitude of Λ′C(C) is greatest for C = Cmax = 0.3.

A plot of the capillary pressure function given in (2.48)3 and its derivative are shown
in Figure 2.10, using different values of γ ranging from 0.05 to 0.15 and δ in the range
0.001 to 0.1. Note that the derivative takes low values except for very high cell concen-
trations. This suggests that the cell-cell interactions will be insignificant for the fractions
of cells we’ll be considering (less than 20 %).

Boundary and initial conditions. Boundary conditions

Gx|x=0,1 = 0, Cx|x=0,1 = 0, Hx|x=0,1 = 0, λ̂c|x=0,1 = 0, λ̂f |x=0,1 = 0,

Pw(0, t) = P ∗L, Pw(1, t) = P ∗R,

initial data

αc(x, 0) = αc0(x), αf (x, 0) = αf0(x), ρ(x, 0) = ρ0(x),

G(x, 0) = G0(x), C(x, 0) = C0(x), H(x, 0) = H0(x).
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Figure 2.9: Plot of the chemokine potential function (left) and its derivative (right).
The upper plots illustrate sensitivity with ξ1 keeping ΛC1 = 2.5, and in the two lower
plots we vary ΛC1 keeping ξ1 = 8. Note that the magnitude of Λ′C(C) is greatest for
C = Cmax = 0.3.
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Figure 2.10: Plot of the capillary pressure function (left) and its derivative (right). In
the two upper plots we use different values of γ (with δ = 0.01), and in the lower plots
we use values of δ ranging from 0.001 to 0.1 (keeping γ = 0.1).
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Chapter 3

Numerical Solution

In this chapter we will develop a numerical solution procedure for the one-dimensional
formulation of the three-phase model described in Section 2.7. To this end, we will
employ a fractional-step or operator-splitting method called Strang Splitting (LeVeque,
2002). The idea is to split the equations into subproblems that can be solved indepen-
dently.

The solution procedure has been implemented in a MATLAB script which will be
used to solve the model for various parameters and initial conditions. We will start
with a two-phase problem involving only cell and IF, similar to Figure 8 in the paper by
Waldeland and Evje (2018). We will then gradually introduce the fibroblasts, neglecting
TGF-dependent chemotaxis at first. Finally, we define an appropriate base case which
will be used in the next chapter to test the model hypotheses stated in Subsection 1.2.6.

3.1 Steps in the Numerical Solution

Consider the following splitting of the one-dimensional model given by Equation (2.44)
in Section 2.7 (Evje, 2017)

αct = Sc

αct + (αcuc)x = 0

αft = Sf

αft + (αfuf )x = 0

ρt = −λ21Gρ+ ρ

(
λ22 − λ23αc − λ24

ρ

ρM

)
Gt + (uwG)x = DGGxx − λ31G+ αc

(
λ32 − λ33

(
G

GM

)vG)
Ct + (uwC)x = DCCxx +Gρ

(
λ41 − λ42

(
C

CM

)2

− λ43

(
C

CM

)vC)
− λ44αc

35
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Ht + (uwH)x = DHHxx − λ51H + αf

(
λ52 − λ53

(
H

HM

)vH)
,

where the mass transport equations have been splitted into one part accounting for
reaction/source terms and another accounting for convection/transport. Let Rt be the
solution operator associated with the subsystem

Rt : αct = Sc

αft = Sf (3.1)

ρt = −λ21Gρ+ ρ

(
λ22 − λ23αc − λ24

ρ

ρM

)
,

and Tt to be associated with

Tt : αct + (αcuc)x = 0

αft + (αfuf )x = 0

Gt + (uwG)x = DGGxx − λ31G+ αc

(
λ32 − λ33

(
G

GM

)vG)
(3.2)

Ct + (uwC)x = DCCxx +Gρ

(
λ41 − λ42

(
C

CM

)2

− λ43

(
C

CM

)vC)
− λ44αc

Ht + (uwH)x = DHHxx − λ51H + αf

(
λ52 − λ53

(
H

HM

)vH)
.

The operator Rt accounts for the source term effects and Tt for the transport effects.
Given an approximate solution Sn at time tn, we find a new approximation at time tn+1

from the following sequential three-step procedure

Sn+1 = (R∆t/2T∆tR∆t/2)Sn.

3.1.1 Source Term Operator

The source term operator Rt is a system of ODE’s (ordinary differential equations),
differentiated with respect to time t only. We apply this operator over a time step of
length ∆t/2, discretizing (3.1)1,2 in the following way

∆tαl
0.5∆t

= Snl,j , (l = c, f) (3.3)

and (3.1)3 as

∆tρ

0.5∆t
= −λ21G

n
j ρ

n+1
j + ρnj (λ22 − λ23α

n
c,j − λ24ρ

n
j )

ρn+1
j =

ρnj + 0.5∆tρnj

(
λ22 − λ23α

n
c,j − λ24

ρnj
ρM

)
1 + 0.5∆tλ21Gnj

.
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Assuming λ22 = λ44 and λ23 = 0, we get

ρn+1
j =

ρnj + 0.5∆tλ22ρ
n
j

(
1− ρnj

ρM

)
1 + 0.5∆tλ21Gnj

. (3.4)

3.1.2 Transport Operator

Using the new volume fractions we solve for Pw using the elliptic pressure equation

− (λ̂c(∆P + ΛC)x)x − (λ̂fΛHx)x = (λ̂TPwx)x, (3.5)

and find the total velocity using the explicit equation for UT

UT = −λ̂TPwx − λ̂c(∆P + ΛC)x − λ̂fΛHx. (3.6)

Using the newly calculated volume fractions and total velocity, in addition to the con-
centrations of chemokine and TGF from previous time step, we find the superficial and
interstitial velocities necessary for solving (3.2)

Uc = UT f̂c − (ĥ1 + ĥ2)(∆P + ΛC)x + ĥ2ΛHx

Uf = UT f̂f + ĥ2(∆P + ΛC)x − (ĥ2 + ĥ3)ΛHx

Uw = UT f̂w + ĥ1(∆P + ΛC)x + ĥ3ΛHx

uc = UT
f̂c
αc
− ĥ1 + ĥ2

αc
(∆P + ΛC)x +

ĥ2

αc
ΛHx

uf = UT
f̂f
αf

+
ĥ2

αf
(∆P + ΛC)x −

ĥ2 + ĥ3

αf
ΛHx

uw = UT
f̂w
αw

+
ĥ1

αw
(∆P + ΛC)x +

ĥ3

αw
ΛHx.

(3.7)

Finally, we apply the operator Tt over a time step of length ∆t and spatial interval of
length ∆x. We use the following discretization of Equations (3.5) and (3.6)

δxλ̂T δxPw =− δxλ̂cδx∆P − δxλ̂cδxΛC − δxλ̂fδxΛH

UT = −
λ̂T δxPw + λ̂cδx∆P + λ̂cδxΛC + λ̂fδxΛH

∆x
,

(3.8)

where

δxλ̂T δxPw = Λ̂T,j+1/2(Pw,j+1 − Pw,j)− Λ̂T,j−1/2(Pw,j − Pw,j−1),

and similarly for the other terms. The boundary conditions are specified as

λ̂l,1/2 = λ̂l,N+1/2 = 0, (l = c, f),

Pw,1/2 = P ∗L, Pw,N+1/2 = P ∗R.
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Equation (3.7) takes the following discretized form

Uc = f̂cUT −
ĥ1 + ĥ2

∆x
δx(∆P + ΛC) +

ĥ2

∆x
δxΛH

Uf = f̂fUT +
ĥ2

∆x
δx(∆P + ΛC)− ĥ2 + ĥ3

∆x
δxΛH

Uw = f̂wUT +
ĥ1

∆x
δx(∆P + ΛC) +

ĥ3

∆x
δxΛH

uc =
f̂c
αc
UT −

1

∆x

ĥ1 + ĥ2

αc
δx(∆P + ΛC) +

1

∆x

ĥ2

αc
δxΛH (3.9)

uf =
f̂f
αf
UT +

1

∆x

ĥ2

αf
δx(∆P + ΛC)− 1

∆x

ĥ2 + ĥ3

αf
δxΛH

uw =
f̂w
αw

UT +
1

∆x

ĥ1

αw
δx(∆P + ΛC) +

1

∆x

ĥ3

αw
δxΛH .

The mass balances (3.2)1,2 become

∆tαl = −∆t

∆x
δx(αlul), (l = c, f) (3.10)

with advective terms treated explicitly (at time level tn). For the evolution of the
chemical components we use the discretized forms of (3.2)3,4,5 given as

∆tG+ λδx(uwG) = DGγδ
2
xG−∆tλ31G

n
j + ∆tαc

(
λ32 − λ33

(
Gnj
GM

)νG)
∆tC + λδx(uwC) = DCγδ

2
xC + ∆tGρ

(
λ41 − λ42

(
Cnj
CM

)2

− λ43

(
Cnj
CM

)νC)
−∆tλ44αc

∆tH + λδx(uwH) = DHγδ
2
xH −∆tλ51H

n
j + ∆tαf

(
λ52 − λ53

(
Hn
j

HM

)νH)
,

(3.11)

where the advective and diffusive terms are treated explicitly and implicitly, respectively.
The boundary conditions are specified as

G1 = G2, GN−1 = GN , C1 = C2, CN−1 = CN , H1 = H2, HN−1 = HN ,

i.e. no flux of the chemical components at the left and right boundary.

3.2 Case Without Fibroblasts

In this section we will take a look at the case for flow of tumor cells and interstitial fluid,
without fibroblasts. The parameters are chosen to be the same as in Figure 8 in the
paper by Waldeland and Evje (2018), repeated in Table 3.1.
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Table 3.1: Parameters for case without fibroblasts

Parameter Description Value Unit

General parameters

L length of domain 1 · 10−2 m
T simulation time 5 · 105 s
Patm reference pressure (atmospheric) 1.01325 · 105 Pa

Discretization parameters

N number of grid blocks 2 · 102 -
Ntime number of time steps 2 · 104 -

Material constants
DG diffusion coefficient of protease 8 · 10−12 m2/s
DC diffusion coefficient of chemokine 7 · 10−14 m2/s

Production/decay rates

λ21 degradation of ECM 10 m3/kgs
λ22 reconstruction of ECM 1.25 · 10−3 1/s
λ23 release of ECM 0 1/s
λ24 release of ECM 1.25 · 10−3 1/s
ρM maximum density of ECM 1 kg/m3

λ31 decay of protease 2.5 · 10−3 1/s
λ32 cell production of protease 2 · 10−6 kg/m3s
λ33 logistic term constant (protease) 2 · 10−6 kg/m3s
νG exponent in logistic function of protease 1 -
GM maximum concentration of protease 5 · 10−5 kg/m3

λ41 proteolytically freed chemokine 3.2 · 10−3 m3/kgs
λ42 logistic term constant (chemokine) 1.44 · 10−4 m3/kgs
λ43 logistic term constant (chemokine) 3.2 · 10−3 m3/kgs
λ44 cell consumption of chemokine 1 · 10−9 kg/m3s
νC exponent in logistic function of chemokine 0.2 -
CM maximum concentration of chemokine 3 · 10−5 kg/m3

Interaction parameters

Iw IF-ECM resistance force 2 · 1012 Pas/m2

Ic/Iw ratio between cell- and IF-ECM interaction 103 -
rc parameter controlling cell-ECM interaction 0.6 -
rw parameter controlling IF-ECM interaction 0 -

Potential function, chemokine

ξ1 parameter characterizing ΛC 8 · 104 m3/kg
ΛC0 parameter characterizing ΛC 0 Pa
ΛC1 parameter characterizing ΛC 2.5 · 104 Pa

Capillary pressure function

γ parameter characterizing ∆P 103 Pa
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δ parameter characterizing ∆P 0.01 -

The boundary conditions are given by

Gx|x=0,1 = 0, Cx|x=0,1 = 0, Hx|x=0,1 = 0, λ̂c|x=0,1 = 0, λ̂f |x=0,1 = 0,

Pw(0, t) = Patm + 104 Pa, Pw(1, t) = Patm,

and the initial data

αc0(x) = 0.2e−[25(x−0.5)]2 , αf (x, 0) = 0, ρ0(x) = 1− 0.5αc0(x),

G0(x) = 0, C0(x) = 0, H0(x) = 0.
(3.12)

In this case we have a cell aggregate in the center, exposed to a global pressure
difference of 10 kPa. This causes a total flow of 0.5 µm/s, consistent with Shieh et al.
(2011).

Remark 3.1. While rw = 0 might seem a little odd since it implies ζ̂w being constant
according to (2.41)3, it will actually produce the same result as Darcy’s law using Corey
relative permeabilities with nw = 2, i.e. krw = S2

w (Evje, 2017; Waldeland & Evje, 2018).
The reason is that there is already one αw on the left side of (2.20)6, and another coming
from the relation uw = Uw/αw.

Figure 3.1 shows a plot of the initial solution at time T=0. Note that all of the
subplots are plotted against dimensionless distance, ranging from zero (left end) to one
(right end, corresponding to L=1 cm). A brief explanation of the different subplots are
given in the following, numbered from top left, top right, middle left, and so forth:

1. The first subplot shows the volume fractions of cell and fibroblast. The fibroblast
fraction is set to zero, while there is a concentration of cells at the center. The IF
volume fraction is given by the no-voids constraint: αw0(x) = 1−αc0(x)−αf0(x).

2. This plot shows the (dimensionless) pressure in each phase across the domain. A
value of zero corresponds to atmospheric pressure, which is what we have at the
right end. The gradient is fairly constant in those parts of the domain where only IF
is present, in the center however, the gradient is larger (i.e. more negative), as seen
by the steeper pressure profile here. This is due to the presence of cells, which tend
to decrease the total mobility (because Ic >> Iw), and therefore also increases the
magnitude of the gradient in accordance with UT = −λ̂TPwx− λ̂c(∆P )x (Equation
(2.45)2 with terms involving chemotaxis ignored since there are no chemoattrac-
tants present initially, ref. (3.12)). Note that there is a discrepancy between the
cell and IF pressures due to the cell-cell interactions described by ∆P (αc).

3. The third subplot shows the (dimensionless) velocity of the cells, with values on the
y-axis ranging from zero (stationary) to one (corresponding to 1 µm/s). Naturally,
this velocity drops to zero outside of the domain (0.4, 0.6), since there are no cells
present in this region. The total velocity is also included for reference, and since we
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Figure 3.1: Initial solution of case without fibroblasts (T=0)

have set all the source terms to zero (Sc = Sf = Qv = Ql = 0), the total velocity
will be divergence-free according to Equation (2.28). In the present 1-D setting,
this implies a constant velocity (in space). Note that the cell velocity has been
multiplied by a factor of 100 to include it in the same figure as the total velocity.

4. This plot is exactly identical to plot number three, but showing the velocity of
fibroblasts. Again, the total velocity has been included for reference, and the
fibroblast velocity has been multiplied by a factor of 100.

5. This is a plot of the IF velocity, but otherwise similar to the two previous plots.
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Note that the magnitude of the IF velocity is comparable to the total velocity,
therefore any scaling has not been necessary.

6. Plot showing the concentration of the chemical components; protease (G), chemokine
(C) and TGF (H). The density of the ECM (ρ) is also included. It is assumed
that the ECM has already been reacting with the tumor cells, and therefore the
density is less than unity in the middle of the domain.

Similar plots are show in Figure 3.2 after T = 5 · 105 s, corresponding to approximately
5.8 days. Some comments related to the figure:

1. The cells have migrated to the right, i.e. in the direction of flow. Since we have
neglected proliferation and death of tumor cells by setting Sc = 0, the total amount
of cells are still the same, meaning that the area under the blue curve is preserved.
The average cell migration downstream can be expressed by the “cell volume cen-
ter”, x̄c, calculated using the following equation

x̄c =

∫ 1
0 αcxdx∫ 1
0 αcdx

= 0.56.

2. The main difference seen in this figure compared with the initial solution is a shift
in the pressure profiles from left to right, consistent with the shift of the cell volume
fraction shown in the first subplot.

3. The plot showing the cell velocity has some new features. As before, the cell and
total velocities are included, but also the decomposition of the cell velocity into
its constituent terms according to Equation (2.39), are shown. Flow represents
the momentum transfer to the cell phase due to push and drag from the flow of
IF. The magnitude of this term depends on f̂c/αc, which is a function of the cell
volume fraction only. Consequently, there is a clear connection to the volume frac-
tions in subplot one. Diffusion is the velocity component resulting from cell-cell
interactions, and the label is explained by the diffusional behavior resulting from
these forces. The most significant contributor to the overall cell velocity is the
term labeled chemokine, which describes the cell migration in the direction of in-
creasing concentration of chemokine by chemotaxis. Since this is a counter-current
effect, we see that the IF velocity in subplot five suffers from a negative chemokine
contribution. Finally, TGF denotes chemotaxis of fibroblasts toward increasing
concentration of TGF, or strictly speaking, the (possibly counter-current) effect
this will have on the cell velocity. For this particular case the term is zero, due to
a lack of fibroblasts. See also the discussion on page 24.

4. This figure has all of the same features as subplot three, but given for the fibrob-
lasts. Note that chemokine, in this case, is the indirect, possibly counter-current,
effect representing momentum transfer from cells to fibroblasts as a result of cells
moving in the gradient-direction of chemokine. TGF, however, is a direct effect
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Figure 3.2: Solution of case without fibroblasts at T=5.8 days. The red and black
curves in subplot 5 are overlapping.

in this case. All the velocities appear as zero since we have not yet included the
fibroblasts.

5. In this plot both chemokine and TGF are indirect effects, since IF does not chemo-
tact toward any of these chemicals. We should therefore expect both of them to
be negative (TGF is of course zero in this particular case since we have omitted
fibroblasts from the simulation). Note that flow is the by far most dominating
mechanism, and it’s shown in the figure without any scaling.
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6. Protease is produced by the cells, but the concentration profile is skewed in the
flow direction due to advection. For x > 0.7 the concentration drops to zero as a
result of decay, since there are no cells present to maintain the high concentration
levels. The chemokine concentration is also skewed in the direction of flow, but
levels off at a fairly high concentration for x > 0.65. This happens because there
are no cells present in this area, and therefore no consumption of chemokine either
(the decay rate is very low).

3.3 Case With Fibroblasts

We will now include the fibroblasts in the simulation, using the same parameters as given
in Table 3.1, in addition to the new fibroblast-specific parameters given in Table 3.2. We
are only interested in the influence of the mere presence of fibroblasts, so we remove all
special features they might possess, such as chemotaxis (toward TGF), viscous coupling
to cells, and ECM remodeling.

Table 3.2: Fibroblast- and TGF-specific parameters

Parameter Description Value Unit

Material constants
DH diffusion coefficient of TGF 8 · 10−12 m2/s

Production/decay rates

λ51 decay of TGF 0 1/s
λ52 production of TGF 1.7 · 10−6 kg/m3s
λ53 logistic term constant (TGF) 2 · 10−6 kg/m3s
νH exponent in logistic function of TGF 0.2 -
HM maximum concentration of TGF 5 · 10−5 kg/m3

Interaction parameters

If/Iw parameter controlling fibroblast-ECM interaction 5 · 102 -
rf parameter controlling fibroblast-ECM interaction 0.6 -

The boundary conditions are given by

Gx|x=0,1 = 0, Cx|x=0,1 = 0, Hx|x=0,1 = 0, λ̂c|x=0,1 = 0, λ̂f |x=0,1 = 0,

Pw(0, t) = Patm + 10000 Pa, Pw(1, t) = Patm,

and the initial data

αc0(x) = 0.2e−[25(x−0.5)]2 , αf (x, 0) = 0.1e−3·105·(x−0.5)12 , ρ0(x) = 1− 0.5αc0(x),

G0(x) = 0, C0(x) = 0, H0(x) = 0.

(3.13)

Since fibroblasts are a vital part of the tissue, we assume that it’ll be uniformly dis-
tributed throughout the domain, as shown in the top left plot in Figure 3.3. Explanation



3.3. CASE WITH FIBROBLASTS 45

0 0.2 0.4 0.6 0.8 1
Domain (dimensionless)

0

0.05

0.1

0.15

0.2

0.25

0.3

V
ol

um
e 

F
ra

ct
io

n 
(d

im
en

si
on

le
ss

)

Volume Fraction

initial c0

initial f0

0 0.2 0.4 0.6 0.8 1
Domain (dimensionless)

0

0.2

0.4

0.6

0.8

1

P
re

ss
ur

e 
(d

im
en

si
on

le
ss

)

Pressure

initial Pc0

initial Pf0=Pw0

0 0.2 0.4 0.6 0.8 1
Domain (dimensionless)

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

V
el

oc
ity

 (
di

m
en

si
on

le
ss

)

Cell Velocity

initial cell velocity uc0(x100)

initial total velocity uT0

0 0.2 0.4 0.6 0.8 1
Domain (dimensionless)

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

V
el

oc
ity

 (
di

m
en

si
on

le
ss

)

Fibroblast Velocity

initial fibroblast velocity uf0(x100)

initial total velocity uT0

0 0.2 0.4 0.6 0.8 1
Domain (dimensionless)

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

V
el

oc
ity

 (
di

m
en

si
on

le
ss

)

IF Velocity

initial IF velocity uw0

initial total velocity uT0

0 0.2 0.4 0.6 0.8 1
Domain (dimensionless)

0

0.2

0.4

0.6

0.8

1

C
on

ce
nt

ra
tio

n 
(d

im
en

si
on

le
ss

)

ECM, Protease, Chemokine and TGF

initial ECM 0

initial protease G0

initial chemokine C0

initial TGF H0

Figure 3.3: Solution of case with fibroblasts at T=0. Blocking of TGF.

of results:

1. The first plot shows the initial data consistent with (3.13). The volume fraction of
cells is the same as before, but in addition we have a uniform density of fibroblasts
occupying 10 % of the pore volume.

2. The pressure profile(s) are also the same as before. Note that the pressures in
the fibroblast and IF phases are equal because fibroblast cells do not exert any
interactions among themselves.

3. First note that the total velocity is slightly lower than in the case without fibrob-
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lasts. The reason for this is that IF had to be expelled from the pores of the tissue
in order to give room for the less mobile fibroblasts (the cell fraction is the same
as before). This decreases the (average) total mobility of the porous medium, and
therefore the total fluid velocity suffers (the global pressure gradient is the same).
The cell velocity still correlates with the cell volume fraction, as before.

4. The velocity profile of the fibroblasts also correlates well with the associated volume
fraction, but it seems to be affected by the volume fraction of the cells as well.
This can be explained by looking at the fractional flow function of the fibroblasts
as a function of the cell volume fraction, ref. Figure 3.4. Here we have plotted
f̂f (αc, αf ) as a function of αc at αf = 0.1. We see that the function is monotonically
increasing. The reason for this is that as the cell volume fraction increases, the
IF will gradually be replaced by the less mobile cell phase, thus improving the
fibroblasts’ fraction of the total mobility (i.e. the fractional flow).

5. Only IF is flowing at the left and right ends, and consequently its speed is identical
to the total fluid velocity. As a response to lower volume fractions in the middle
of the domain, the interstitial velocity increases.

6. Consistent with initial data and identical to Figure 3.1 (subplot no. 6).
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Figure 3.4: Fractional flow of cells and fibroblasts as a function of αc when αf = 0.1.

Figure 3.5 include the results of the simulation after 5.8 days. Comments to the different
subplots:

1. The cell fraction does not seem to be significantly affected by the presence of
fibroblasts. The plot in Figure 3.6 (left) also confirms this, with the final cell
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Figure 3.5: Solution of case with fibroblasts at T=5.8 days. Blocking of TGF. The red
and black curves in subplot 4 and 5 are overlapping.

volume fraction being almost the same in the two cases. The cell volume center is
still x̄c = 0.56, just as before. Note that the fibroblast fraction have shifted in the
downstream direction, so the issue is not related to the mobility of the fibroblasts.
This suggests that we have to include some other mechanism(s) such as chemotaxis
against TGF, viscous coupling or ECM remodeling, in order to get the behavior
observed in experiments. This is also consistent with pt. 2 in Subsection 1.2.4. The
fibroblast fraction is however clearly affected by the presence of cells, see Figure 3.6
(right). As noted before, an increasing concentration of cells has a positive effect
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on the velocity of the fibroblasts. We observe accumulation of fibroblasts in regions
of decreasing fibroblast velocity, and depletion in areas of increasing velocity.

2. The pressure profiles has shifted to the right in accordance with the volume frac-
tions.

3. The cells move in the downstream direction, mainly due to chemotaxis.

4. Since f̂f is a function of αc (in addition to αf ), we observe a bump in the velocity
profile according to the volume fraction of cells. This effect would not be observed
in a two-phase simulation where cells are absent, since the (fibroblast) velocity is
then only a function of the fibroblast fraction.

5. Note that the phase velocity of IF experiences a (small) negative contribution from
chemokine.

6. The concentration of protease correlates well with the cell volume fraction. The
concentration of chemokine starts increasing at x=0.4, consistent with the profile
of protease (which is necessary for the production of chemokine). It then increases
until x=0.58, which is the location of the maximum level of protease. Somewhat
unexpectedly, the concentration profile steepens after this, but this is due to in-
creased density of ECM, in addition to reduced velocity of IF. The profile is then
constant, but around x=0.85 it increases, again due to lowered IF velocity, and
stabilizes at a new, elevated level. The TGF profile correlates with the fibrob-
last volume fraction, and also experience an increase at x=0.85 due to reduced IF
velocity.

3.4 Base Case

We are now going to include the TGF-dependent chemotaxis of the fibroblasts. We then
need to specify parameters belonging to the new potential function, ΛH(H), see Table
3.3. We are going to define the data given in Tables 3.1-3.3 as the base case. See also
Table 3.4 for a summary of the data in dimensionless form. The initial data in Figure
3.7 are the same as in Figure 3.3, since initially we do not have any gradients in TGF.

Table 3.3: Parameters describing TGF-dependent chemotaxis of fibroblasts.

Parameter Description Value Unit

Potential function, TGF

ξ2 parameter characterizing ΛH 8 · 104 m3/kg
ΛH0 parameter characterizing ΛH 0 Pa
ΛH1 parameter characterizing ΛH 2.5 · 104 Pa

The results after 5.8 days are shown in Figure 3.8, and the main findings are sum-
marized in the following list:
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Figure 3.6: Left: Comparison of cell volume fraction after T=5.8 days, for cases with
and without fibroblasts. The fibroblasts does not seem to have any impact on the
migration of tumor cells in the absence of special effects such as viscous coupling and/or
ECM remodeling. Right: Comparison of fibroblast volume fraction after T=5.8 days,
for cases with and without cells. The cells do seem to have an impact on the migration
of fibroblasts.

Table 3.4: Dimensionless parameters for base case.

Parameter Value Parameter Value Parameter Value

L 1 T 50 ∆P 1
DG 8 · 10−4 DC 7 · 10−6 DH 8 · 10−4

λ21 10 λ22 12.5 λ23 0
λ24 12.5 ρM 1 λ31 25
λ32 2 · 102 λ33 2 · 102 νG 1
GM 0.5 λ41 32 λ42 1.44
λ43 32 λ44 0.1 νC 0.2
CM 0.3 λ51 0 λ52 1.7 · 102

λ53 2 · 102 νH 0.2 HM 0.5
Iw 2 Ic/Iw 103 If/Iw 5 · 102

rc 0.6 rf 0.6 rw 0
ξ1 8 ΛC0 0 ΛC1 2.5
ξ2 8 ΛH0 0 ΛH1 2.5
γ 0.1 δ 0.01
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Figure 3.7: Initial solution of case with fibroblasts and TGF (base case) at T=0.

1. The cell fraction has still not changed very much compared to the other cases. The
cell volume center is still at x̄c = 0.56, but there is less spreading. A comparison
of the cell volume fraction in each case after T=5.8 days is shown in Figure 3.9.
The fibroblasts are more volatile, with more peaks and valleys in the saturation
profile. The final fibroblast volume fraction for different cases are shown in Figure
3.10. Note that the combined effects of both tumor cells and TGF is equal to the
effect of TGF plus the effect of the tumor cells (magnified).

2. The pressure response at x=0.3 is due to the fibroblast peak forming at the back.
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Figure 3.8: Solution of case with fibroblasts and TGF (base case) at T=5.8 days. The
red and black curves in figure 5 are overlapping.

3. The total cell velocity still remains the same, around 0.001 µm/s.

4. The peak forming on the left side is due to TGF-dependent chemotaxis, see Figure
3.10, subplot 3 and 4. The concentration of TGF explains the peak forming;
H(.,T) is concave at first, meaning that its derivative increases and therefore also
the TGF-dependent velocity-component, thus depleting material (fibroblasts) in
this region. Further downstream the concentration profile becomes concave in
shape and consequently there is accumulation of material. The second valley-peak
pair is also evident in the case where TGF is neglected, see Figure 3.10, subplot
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2, and is due to the presence of cells in this area, as explained before. In this
case this “S” shape have become somewhat magnified. The explanation for this
is that since TGF is produced by the fibroblasts themselves, the concentration
of TGF will be higher in areas where there is a high fraction of fibroblasts, and
lower where fibroblasts are low/lacking. Therefore, also the concentration of the
chemoattractant will have this S-shape, but skewed in the downstream direction
as a result of flow, see 3.10, subplot 4. In the “valley part” of αf (., T ), H(., T ) is
convex, causing further depletion. The concentration of TGF is however concave
to the right of the point where αf (., T ) peaks, causing accumulation.

5. IF is pushed to the left by both chemokine- and TGF-dependent chemotaxis.

6. Results can be explained on the basis of subplot 1 and 5.

Note that Figure 3.10 confirms the experimental observation that not only do fibroblasts
influence the invasion of tumor cells, but the tumor cells also affect the migration of
fibroblasts (under flow conditions), see Figure 1.2B (right).
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Figure 3.9: Comparison of cell volume fraction after T=5.8 days, for cases with and
without fibroblasts and TGF. Fb=fibroblast, TGF=transforming growth factor.
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Figure 3.10: Comparison of fibroblast volume fraction after T=5.8 days, for cases with
and without cells and TGF. TC=tumor cells, TGF=transforming growth factor.
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Chapter 4

Testing Model Hypotheses

4.1 Viscous Coupling Between Cells and Fibroblasts

4.1.1 Strong Interaction

Previously we have worked with cases where Icf = 0, but let us now consider the
other extreme by letting Icf → ∞ (resembling the mechanism proposed by Labernadie
et al. (2017)). The parameters necessary for modeling the fluid-fluid interaction as
given by Equation (2.41)4 are given in Table 4.1, while all the other parameters remain
the same as in the base case, Section 3.4. As mentioned previously, increased viscous

Table 4.1: Viscous coupling-specific parameters

Parameter Description Value Unit

Interaction parameters

Icf/Iw parameter controlling viscous coupling 5 · 102 -
rcf parameter controlling viscous coupling 0.5 -
rfc parameter controlling viscous coupling 0.5 -

coupling manifests itself in the ĥ2-function, which may become negative for large values
of Icf . See Figure 4.1 for a plot of ĥ2 as a function of αc, keeping the fibroblast fraction

constant at αf = 0.2. Note that for Icf = ∞ (green curve), ĥ2 = 0 for αc = 0 and

αc = 0.8. Remember that ĥ2 describes the counter-current interaction between the cells
and fibroblasts, and since there can be no interaction between the two phases when the
cells are missing (αc = 0), it becomes zero. For a cell volume fraction of 0.8; however,
both cells and fibroblasts are present, but IF is missing. Since ĥ2 describes a counter-
current effect, it means that cells and fibroblasts have to flow in different directions
(when IF is present, fibroblasts and cell might flow in the same direction, provided the
IF moves in the opposite direction). Consequently, any value of ĥ2 different from zero
means they flow in opposite directions, but since they are completely locked to each
other; that will be impossible.

55
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Figure 4.1: Plot of ĥ2 as a function of αc for αf = 0.1, using different values of Icf .

The initial data are the same as before, and presented in Figure 4.2 together with the
initial solution of phase pressures and velocities. Brief explanation of the initial results:

1. Initial volume fractions identical to the base case.

2. The initial pressure profiles are also the same as before, when comparing with Fig-
ure 3.7. The IF pressure is calculated from the equation −(λ̂c∆Px)x = (λ̂TPwx)x,
and since αc0 and αf0 are the same as in the base case, then also ∆P (x) will be

the same as before. However, λ̂c and λ̂T have changed since they feel the effect of
Icf . Consequently, the pressure profiles do change, but the resolution of the graphs
prevent us from noticing it. The mobility functions are plotted in Figure 4.3 as a
function of αc when αf = 0.1. Note that at αc = 0.57 both the cell and fibroblast
mobilities are unaffected by Icf . In a situation where flow-generated stress is the
only prevailing flow mechanism, we find from Equation (2.47) that uc = uf . Con-
sequently, there can be no momentum transfer between the two phases no matter
how strong the interaction coefficient is. For lower cell volume fractions (when the
cell phase is the slower fluid), the cells experience an increased mobility given the
opportunity to mechanically couple to and tag along with the fibroblasts. Con-
sequently, the fibroblast mobility is reduced. For higher cell volume fractions the
opposite is true, because the faster flowing fluid is the cell phase.

3. First, comparing subplot 3 and 4, we see that the cell and fibroblast velocities are
the same, since the two phases are coupled together, flowing as a single phase.
Second, the combined velocity is somewhere between the “free” cell and fibroblast
velocities without any coupling, see Figure 4.4. Note that there is an overall
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Figure 4.2: Initial solution of case with infinite viscous coupling.

increase in the cell velocity, and especially at the right and left “foot” where the
velocity was close to zero before.

The final solution after 5.8 days is shown in Figure 4.5. Explanation of results:

1. One of the main differences seen in this plot compared to the base case is the
increased mobility of the lower cell fractions, whereas the net effect of cell migration
is similar to before, with x̄c = 0.55. See also Figure 4.6 for a comparison of the
cell volume fraction for cases with and without mechanical coupling. Left figure
at T=5.8 days, and the right after twice that time. Also here we observe that
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Figure 4.3: Phase and total mobilities plotted as a function of the cell volume fraction
αc, keeping the fibroblast fraction constant at αf = 0.1. The two curves are overlapping
in the lower plots.

the lower volume fractions have progressed further in the downstream direction
in the presence of fluid-fluid interactions. Another thing to note is that there is
some asymmetry in the αc profile in the presence of fluid-fluid interactions after
11.6 days, i.e. the black curve in the right figure. This is because the fibroblasts
coming from behind catches up with the cell aggregate and the cell flux αcuc will
be influenced by TGF. Previously, the velocity component due to TGF was outside
the domain where cells are present, and therefore had no effect on the cell flux (but
it did have an effect on the velocity).

2. The pressure profiles are similar to what we have seen before.

3. Again, notice that the velocity of cells and fibroblasts are equal. Neglecting dif-
fusion, the velocity can be decomposed into three terms; flow, which is fairly
uniform, chemokine, having a maximum located in the center of the domain (zero
elsewhere), and TGF, having its maximum in the left part of the domain (ap-
proximately zero elsewhere). This explains the shape of the total cell velocity;
TGF+flow (left), chemokine+flow (middle) and flow only (right), giving rise to
the three “bumps” seen. Essentially only the middle peak drives the invasion of
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Figure 4.4: Initial velocity of “free” cells and fibroblasts when Icf = 0, and combined
velocity when Icf =∞. Fb=fibroblast, TC=tumor cell.

tumor cells, because here we have αc > 0, thus creating a flux αcuc transporting
tumor cells downstream. What has happened in Figure 4.7 is that the left peak
have catched up with the middle, and therefore it has started to influence the flux
of cells. Consequently, the volume fraction is affected through Equation (2.44)1.

4. See point 3.

5. Notice that the two positive peaks due to chemokine and TGF acting on the
(combined) cell/fibroblast phase, becomes negative because of the counter-current
nature of these forces.

6. The concentration profiles are quite similar to the base case.

4.1.2 Increased Fibroblast Mobility

While fluid-fluid interactions had some effect on the invasion of tumor cells in the previ-
ous case, it does not explain the prominent cell aggressiveness seen in Figure 1.2B (left)
when fibroblasts are present. One possible explanation is related to the mobility of the
fibroblasts being too low. We want to test this possibility by reducing the fibroblast-
ECM interaction described through the term If . Since the velocity of the fibroblasts
will increase, the potential for momentum transfer to the cells should improve.

Using the same parameters as in the previous case, but setting If = 100, we get the
initial data in Figure 4.8. There are no significant differences compared to Subsection
4.1.1, but there are a few comments to be made:
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Figure 4.5: Final solution of case with infinite viscous coupling. T=5.8 days.

1. Same initial fractions as in Figure 4.2.

2. Identical to Figure 4.2.

3. Not surprisingly the velocity of the cell/fibroblast phase has increased quite a lot,
compared with Figure 4.2. Note the reduced velocity in the center where cells are
present. The cells, resisting flow by sticking to the ECM, is acting as an anchor.
The same effect is of course seen for the fibroblast velocity in subplot 4 (since
Icf =∞).

The final solution after 5.8 days are shown in Figure 4.9. Characteristics of the solution:
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Figure 4.6: Cell volume fraction with and without fluid-fluid interactions. T=5.8 days
(left) and T=11.6 days (right).
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Figure 4.7: Final solution of case with infinite viscous coupling. T=11.6 days.
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Figure 4.8: Initial solution of case with infinite viscous coupling and increased fibroblast
mobility.

1. The fibroblast volume fraction is similar to what is seen in Subplot 1 of Figure 4.5,
the main difference being that the fibroblasts have migrated further downstream
due to decreased If , and as a consequence the peak that had previously starting to
form at the back have catched up with the second peak, and they are now starting
to interact and combine. The most important thing to notice is the cell fraction;
αc(., T ) shows an almost uniform movement of cells for all volume fractions, with
x̄c = 0.61, a considerable increase compared to the previous case(s). Pay particular
attention to the lower fractions, which are much more mobile than they normally
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Figure 4.9: Final solution of case with infinite viscous coupling and increased fibroblast
mobility. T=5.8 days.

would be. This can be explained by taking a look at the cell fractional flow curve,
plotted in Figure 4.10. Usually, the flow contribution will be zero when αc = 0,

due to ∂f̂c
∂αc

(0, αf ) being zero. Looking at the red curve (Icf = ∞) in Figure 4.10,
we can clearly see that the slope is greater than zero, and this is driving the small
volume fractions.

2. The pressure profiles clearly illustrate how the cell clusters have advanced in the
downstream direction.
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3. The left and center velocity peaks mentioned in conjunction with Figure 4.5 have
now merged into one, dominated by TGF+chemokine+flow.
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Figure 4.10: Fractional flow of cells with and without viscous coupling, when the
fibroblasts have increased mobility compared to the base case. Notice the non-zero slope
at αc = 0 for Icf =∞.

Summing up, taking a look at the cell fraction in the two-phase case, Figure 3.9 (blue
curve), it’s clear that the left end at x = 0.4 is stationary. Including the fibroblasts
(without TGF-dependent chemotaxis) (red curve), did not have any effect, nor did the
inclusion of TGF (green curve). Including viscous coupling had some effect, although not
that clear after 5.8 days, ref. Figure 4.6 (left). After 11.6 days however, some sharpening
of the cell fraction is seen at the left side, Figure 4.6 (right). This is due to the high
concentration of fibroblasts approaching from the left, which is kind of sweeping up the
cells and carrying them downstream. This becomes very clear in the current case, with
αc(., T ) showing an almost uniform movement of cells for all volume fractions.

Note that even if the cell migration seem to be kind of uniform in the present 1-D case,
that might not apply in a 2-D or 3-D setting. The simulation done here could represent
maybe one cross-section (a two-dimensional “strip”) in a two-dimensional simulation,
such that even if the translation is uniform in each cross-section, the net effect in 2-D
might not be. Further investigations in two and three dimensions could be suggested for
future work.
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Figure 4.11: Final solution of case with fibroblasts cultured upstream. T=5.8 days.

4.2 Fibroblasts Cultured Upstream

Re-running the case described in Section 4.1.1 (infinite viscous coupling), but with dif-
ferent initial conditions given by

αc0(x) = 0.2e−[25(x−0.75)]2 , αf (x, 0) = 0.1e−3·105·(x−0.35)8 ,

produced the results in Figure 4.11. The initial data are chosen such to achieve upstream-
cultured fibroblasts (with respect to the cells). Note that the right “foot” of the fibroblast
aggregate have a hard time moving downstream, due to low volume fractions keeping
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the flow contribution down, and the IF being saturated with TGF (preventing gradients
and chemotaxis). Thus the fibroblasts are not able to reach the downstream-positioned
cells.

Comparing the cell volume fraction in this three-phase case (including TGF-dependent
chemotaxis and viscous coupling) with the corresponding results from the two-phase sim-
ulation in Section 3.2, we see that the difference is none/negligible, Figure 4.12. Thus
we conclude that fibroblasts cultured upstream does not have any effect on the invasion
of tumor cells, in accordance with Figure 1.2B (left). This is also a result of tumor cells
not responding to TGF, and therefore supports this assumption.
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Figure 4.12: Comparison of final cell volume fraction in two-phase case and case with
fibroblasts cultured upstream. T=5.8 days.

4.3 ECM Remodeling

We are now going to test the other hypothesis mentioned in Subsection 1.2.6, namely
that flow- and fibroblast-enhanced tumor cell invasion is a result of indirect interactions
between the two cell types through remodeling of the ECM. The fibroblasts are more
mobile, flowing ahead of the cells and priming the matrix by pulling the collagen fibers
of the ECM, thus increasing the mediums permeability to tumor cells.

We are going to model this dynamic permeability behavior through the term k̂c. The
simplest model would be one that determines k̂c as a function of the fibroblast volume
fraction αf alone, for instance in the following way

k̂c = 1−A
(
1− e−Bαf

)
. (4.1)
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Figure 4.13: Plot of k̂c against the fibroblast volume fraction αf . In the left plot we
use different values of A (with B=10), and in the right plot we use values of B ranging
from 5 to 50 (keeping A=0.5).

We should expect k̂c to be a function of other variables as well, at least the velocity; when
the fibroblasts flow in a certain direction, the collagen fibers of the ECM preferentially
align themselves parallel to the direction of flow, increasing the permeability in that
direction. At the same time we would expect it to decrease in the direction perpendicular
to flow. Still, we are going to make this simplifying assumption (which might not be
that unrealistic given we’re in a 1-D setting).

The motivation for choosing the functional form given in (4.1) is due to Figure 1.2D;
note that k̂c represent resistance to flow, and therefore the conductivity is proportional
to 1/k̂c, now taking the same form as the figure. A plot of (4.1) using different values
of the parameters A and B, are shown in Figure 4.13.

The final solution after 5.8 days are shown in Figure 4.14. The results are summarized
in the following points:

• The cell fraction is less uniform compared to the viscous-coupling-case. Note that
the left “foot” is stagnant, while the larger volume fractions, including the right
foot, have a significant distance covered. The total migration is the largest for all
cases simulated, with x̄c = 0.65. We can conclude that this is an efficient way for
cells to invade the surrounding tissue.

• The pressure profiles clearly demonstrate that there has been significant movement
in the downstream direction.

• First, note that the cell and fibroblast velocities are no longer identical. The
velocity profile actually looks similar to the base case, dropping to zero where cells
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are lacking.



Chapter 5

Conclusion

It has been demonstrated that both viscous coupling and ECM remodeling (or even
a combination of the two) might explain fibroblast-enhanced tumor cell invasion. A
significant difference between the two is that the former has the ability to mobilize the
small volume fractions on the left end of the initial cell aggregate, and causing a more
or less uniform movement cells (at least in a 1-D setting), whereas ECM remodeling
significantly increases the movement of the larger fractions, while the left end of the
initial aggregate remains stagnant.

It is hard to say which one seems more realistic based on the experimental results
given by Shieh et al. (2011), and we may conclude that either (or both) seem reasonable.

5.1 Concluding Remarks

The following list is a summary of the results obtained throughout this thesis:

• Fibroblasts without any special effects such as ECM remodeling and/or viscous
coupling did not affect the tumor cell invasion at all.

• Tumor cells had a significant impact on the migration of fibroblasts, consistent
with experimental results.

• When fibroblasts were given the ability to either remodel the ECM or mechanically
couple to the cells, tumor cell invasion experienced a significant increase (in the
presence of flow). This is consistent with experimental results.

• Viscous coupling tend to increase the velocity of all cell volume fractions, even
the lower ones when αc ≈ 0. It manifests itself in the flow functions mainly by
increasing the derivative of the cell fractional flow function at zero volume fraction,
and by causing a negative ĥ2 coupling between the cells and fibroblasts. The effect
depends on the mobility of the fibroblasts, such that increased fibroblast mobility
also increased the fibroblast-enhanced tumor cell invasion.

• ECM remodeling accelerated mainly the larger cell volume fractions.
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• Fibroblasts cultured upstream does not have an effect on the migration of cancer
cells, even if TGF-dependent chemotaxis, ECM remodeling and/or viscous coupling
are included, consistent with experimental results.

5.2 Suggestions for Future Work

Some suggestions for future work are listed below:

• Perform numerical simulations in 2-D and 3-D, especially to see if the effect of
mechanical coupling retains the uniform behavior shown in the 1-D case.

• Production of TGF could be modeled in a manner similar to the production/release
of chemokine, by letting fibroblasts secrete their own protease that can react with
the ECM to release surface-bound, latent TGF, into the IF.

• Include source terms Sc and Sf to account for proliferation and apoptosis of cancer
cells and fibroblasts.

• Investigate effects of including mechanisms such as haptotaxis or compressibility.
The phases could possibly be modeled as slightly compressible fluids.

• Experiment with alternative models for ECM remodeling. In this thesis only a
simple expression were used, but more sophisticated models involving e.g. the
velocities could have been used. Possibly even more relevant in a 2-D or 3-D
setting.

• Perform numerical investigations on simplified versions of the model, thus reducing
the number of parameters and mechanisms at play, which somewhat clutters the
picture when becoming too many. An example could be two-phase flow of fibrob-
lasts and IF, particularly if there exist experimental data to compare against.
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Appendix A

Explicit Expressions for Phase
Velocities

In this chapter we present more of the details involved in the calculation of the explicit
phase velocities in Section 2.5.

A.1 Interstitial Velocities

In this section we show the calculations leading to the expressions (2.22)-(2.24) in sub-
section 2.5.1. We start out with the rewritten momentum balance equations given by
(2.21)

αc∇ΛC + αc∇(∆Pcw) + αc∇Pw = −(ζ̂c + ζ̂cf )uc + ζ̂cfuf

αf∇ΛH + αf∇Pw = ζ̂cfuc − (ζ̂f + ζ̂cf )uf

αw∇Pw = −ζ̂wuw,

(A.1)

and want to solve for uc,uf and uw. The IF velocity is easily solved for, and using
(A.1)3 we find that

uw = −αw
ζ̂w
∇Pw. (A.2)

It remains to solve the 2-by-2 linear system given by (A.1)1,2 for the unknows uc and
uf . Solving the first equation for the fibroblast velocity, we find that

uf =
αc∇(ΛC + ∆Pcw) + αc∇Pw + (ζ̂c + ζ̂cf )uc

ζ̂cf
, (A.3)

and by inserting this expression into (A.1)2, we get

αf∇ΛH + αf∇Pw = ζ̂cfuc −
ζ̂f + ζ̂cf

ζ̂cf

(
αc∇(ΛC + ∆Pcw) + αc∇Pw + (ζ̂c + ζ̂cf )uc

)
.
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Rearranging the last expression, we find the cell velocity

uc
ζ̂f ζ̂c + ζ̂f ζ̂cf + ζ̂cζ̂cf

ζ̂cf
=−

αc(ζ̂f + ζ̂cf ) + αf ζ̂cf

ζ̂cf
∇Pw

−
αc(ζ̂f + ζ̂cf )

ζ̂cf
∇ (∆Pcw + ΛC)− αf∇ΛH ,

or

uc =−
αf ζ̂cf + αc(ζ̂cf + ζ̂f )

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )
∇Pw

−
αc(ζ̂cf + ζ̂f )

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )
∇ (∆Pcw + ΛC)

−
αf ζ̂cf

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )
∇ΛH ,

(A.4)

which is the expression given in (2.22). Inserting this expression into (A.3), we find the
fibroblast velocity

uf ζ̂cf =αc∇(ΛC + ∆Pcw) + αc∇Pw + (ζ̂c + ζ̂cf )uc

=αc∇(ΛC + ∆Pcw) + αc∇Pw

− (ζ̂c + ζ̂cf )
αf ζ̂cf + αc(ζ̂cf + ζ̂f )

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )
∇Pw

− (ζ̂c + ζ̂cf )
αc(ζ̂cf + ζ̂f )

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )
∇ (∆Pcw + ΛC)

− (ζ̂c + ζ̂cf )
αf ζ̂cf

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )
∇ΛH ,

which can be rearranged into

uf ζ̂cf =−
αcζ̂

2
cf + αf ζ̂cf (ζ̂c + ζ̂cf )

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )
∇Pw

−
αcζ̂

2
cf

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )
∇(∆Pcw + ΛC)

−
αf (ζ̂c + ζ̂cf )ζ̂cf

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )
∇ΛH ,
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or

uf =−
αcζ̂cf + αf (ζ̂c + ζ̂cf )

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )
∇Pw

−
αcζ̂cf

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )
∇(∆Pcw + ΛC)

−
αf (ζ̂c + ζ̂cf )

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )
∇ΛH .

(A.5)

This is the same fibroblast velocity as given by (2.23) in Subsection 2.5.1.

A.2 Superficial Velocities

The superficial velocity are given as the product of the interstitial velocity and the
volume fraction, i.e.

Uc := αcuc =−
αcαf ζ̂cf + α2

c(ζ̂cf + ζ̂f )

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )
∇Pw

−
α2
c(ζ̂cf + ζ̂f )

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )
∇ (∆Pcw + ΛC)

−
αcαf ζ̂cf

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )
∇ΛH ,

Uf := αfuf =−
αcαf ζ̂cf + α2

f (ζ̂c + ζ̂cf )

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )
∇Pw

−
αcαf ζ̂cf

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )
∇(∆Pcw + ΛC)

−
α2
f (ζ̂c + ζ̂cf )

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )
∇ΛH .

Uw := αwuw =− α2
w

ζ̂w
∇Pw,

(A.6)

using the interstitial velocities calculated in the previous section. By defining the coef-
ficients in front of ∇Pw as the phase mobilities, i.e.

λ̂c =
αcαf ζ̂cf + α2

c(ζ̂cf + ζ̂f )

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )

λ̂f =
αcαf ζ̂cf + α2

f (ζ̂c + ζ̂cf )

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )

λ̂w =
α2
w

ζ̂w
,

(A.7)
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we can write

α2
c(ζ̂cf + ζ̂f )

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )
=
αcαf ζ̂cf + α2

c(ζ̂cf + ζ̂f )− αcαf ζ̂cf
ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )

= λ̂c −
αcαf ζ̂cf

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )

α2
f (ζ̂c + ζ̂cf )

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )
=
αcαf ζ̂cf + α2

f (ζ̂c + ζ̂cf )− αcαf ζ̂cf
ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )

= λ̂f −
αcαf ζ̂cf

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )
.

(A.8)

Using (A.7) and (A.8), we can rewrite (A.6) as

Uc =− λ̂c∇Pw

−

(
λ̂c −

αcαf ζ̂cf

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )

)
∇ (∆Pcw + ΛC)

−
αcαf ζ̂cf

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )
∇ΛH

Uf =− λ̂f∇Pw

−
αcαf ζ̂cf

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )
∇(∆Pcw + ΛC)

−

(
λ̂f −

αcαf ζ̂cf

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )

)
∇ΛH

Uw =− λ̂w∇Pw,

(A.9)

which is the expression in (2.25). Next, we want to replace the IF pressure gradient, so
that we can express the phase velocities using the total Darcy velocity instead.

A.3 Elimination of IF Pressure Gradient

The next step is to get rid of the gradient of the IF pressure, by substituting the expres-
sion (2.31)

∇Pw = −UT

λ̂T
− λ̂c

λ̂T
∇(∆Pcw + ΛC)−

λ̂f

λ̂T
∇ΛH ,



A.3. ELIMINATION OF IF PRESSURE GRADIENT 79

into (A.9). Taking the cells as an example, we see that the Darcy velocity can be written
as

Uc =− λ̂c

(
−UT

λ̂T
− λ̂c

λ̂T
∇(∆Pcw + ΛC)−

λ̂f

λ̂T
∇ΛH

)

−

(
λ̂c −

αcαf ζ̂cf

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )

)
∇ (∆Pcw + ΛC)

−
αcαf ζ̂cf

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )
∇ΛH

=
λ̂c

λ̂T
UT +

λ̂2
c

λ̂T
∇(∆Pcw + ΛC) +

λ̂cλ̂f

λ̂T
∇ΛH

−

(
λ̂c −

αcαf ζ̂cf

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )

)
∇ (∆Pcw + ΛC)

−
αcαf ζ̂cf

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )
∇ΛH

=
λ̂c

λ̂T
UT

−

(
λ̂c −

λ̂2
c

λ̂T
−

αcαf ζ̂cf

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )

)
∇ (∆Pcw + ΛC)

+

(
λ̂cλ̂f

λ̂T
−

αcαf ζ̂cf

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )

)
∇ΛH .

(A.10)

We now make use of the following relation

λ̂c −
λ̂2
c

λ̂T
=
λ̂cλ̂T

λ̂T
− λ̂2

c

λ̂T
=
λ̂c(λ̂c + λ̂f + λ̂w)− λ̂2

c

λ̂T
=
λ̂cλ̂f + λ̂cλ̂w

λ̂T
=
λ̂cλ̂f

λ̂T
+
λ̂cλ̂w

λ̂T
,

which allows us to rewrite (A.10) in the following way

Uc =
λ̂c

λ̂T
UT

−

(
λ̂cλ̂f

λ̂T
+
λ̂cλ̂w

λ̂T
−

αcαf ζ̂cf

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )

)
∇ (∆Pcw + ΛC)

+

(
λ̂cλ̂f

λ̂T
−

αcαf ζ̂cf

ζ̂cζ̂f + ζ̂cf (ζ̂c + ζ̂f )

)
∇ΛH

=f̂cUT − (ĥ1 + ĥ2)∇ (∆Pcw + ΛC) + ĥ2∇ΛH .

(A.11)

This relation is the same as (2.32)1, just as we wanted. The expressions for the fibroblast
and IF velocities are derived following a similar procedure.
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Appendix B

Non-Dimensionalization

In this chapter we show how to obtain a dimensionless version of the model (2.20). We
start by introducing the reference parameters given in Table B.1, denoted by an asterisk
(*). The parameters are taken from Waldeland and Evje (2018), and represents the
order-of-magnitude of the different variables, with e.g. L∗ being equal to the length
of the domain which will be used in the subsequent simulations, P ∗ having the same
magnitude as the global pressure difference and u∗ having the same order-of-magnitude
as the total flow velocity.

Table B.1: Reference parameters for non-dimensionalization.

Parameter Description Value Unit

L∗ length 10−2 m
T ∗ time 104 s
P ∗ pressure 104 Pa
u∗ = L∗/T ∗ velocity 10−6 m/s
D∗ = (L∗)2/T ∗ diffusion 10−8 m2/s
ρ∗ ECM density 1 kg/m3

G∗ protease 10−4 kg/m3

C∗ chemokine 10−4 kg/m3

H∗ TGF 10−4 kg/m3

Using these parameters we introduce the dimensionless space and time variables

x̃ =
x

L∗
, x̃ ∈ [0, 1], t̃ =

t

T ∗
, t̃ > 0,

where the tilde emphasizes that it is a dimensionless variable. In addition, we choose
dimensionless variables related to the concentrations of the chemical components, the
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phase pressures and velocities, in the following way

ρ̃ =
ρ

ρ∗
, G̃ =

G

G∗
, C̃ =

C

C∗
, H̃ =

H

H∗
,

D̃G =
DG

D∗
, D̃C =

DC

D∗
, D̃H =

DH

D∗
,

P̃l =
Pl
P ∗

, ũl =
ul
u∗
, (l = c, f, w).

For production, decay and consumption of the chemical agents, we are going to use the
following set of dimensionless expressions

ρ : λ̃21 = λ21T
∗G∗, λ̃22 = λ22T

∗, λ̃23 = λ23T
∗, λ̃24 = λ24T

∗,

G : λ̃31 = λ31T
∗, λ̃32 =

λ32T
∗

G∗
, λ̃33 =

λ33T
∗

G∗
,

C : λ̃41 =
λ41T

∗G∗ρ∗

C∗
, λ̃42 =

λ42T
∗G∗ρ∗

C∗
, λ̃43 =

λ43T
∗G∗ρ∗

C∗
, λ̃44 =

λ44T
∗

C∗
,

H : λ̃51 = λ51T
∗, λ̃52 =

λ52T
∗

H∗
, λ̃53 =

λ53T
∗

H∗
.

The potential and capillary pressure functions are having units of pressure, and therefore
they can be made dimensionless by dividing by the reference pressure, P ∗:

Λ̃C =
ΛC
P ∗

, Λ̃C0 =
ΛC0

P ∗
, Λ̃C1 =

ΛC1

P ∗
, ξ̃1 = ξ1C

∗,

Λ̃C =
ΛC
P ∗

, Λ̃H0 =
ΛH0

P ∗
, Λ̃H1 =

ΛH1

P ∗
, ξ̃2 = ξ2H

∗,

∆P̃cw =
∆Pcw
P ∗

, γ̃ =
γ

P ∗
.

Note that using (2.48)1 the chemokine potential function can now be written (similar
for TGF)

Λ̃C =
ΛC
P ∗

= Λ̃C0 −
Λ̃C1

1 + exp[−ξ1(C − CM )]

= Λ̃C0 −
Λ̃C1

1 + exp[−ξ̃1(C̃ − C̃M )]
.

Interaction coefficients

˜̂
ζc = ζ̂c

D∗

P ∗
,

˜̂
ζf = ζ̂f

D∗

P ∗
,

˜̂
ζw = ζ̂w

D∗

P ∗
,

˜̂
ζcf = ζ̂cf

D∗

P ∗
.

Let’s proceed with the details of rewriting the model (2.20) using the newly defined
(dimensionless) parameters. We demonstrate with one mass and momentum equation,
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and one of the transport-reaction equations. First, for the mass balance of cell, Equation
(2.20)1, we have (introducing the notation ∇x and ∇x̃ to state explicitly which spatial
variable we are referring to)

αct +∇x · (αcuc) = Sc

αct̃
∂t̃

∂t
+∇x · (αcũcu∗) = Sc

1

T ∗
αct̃ +

L∗

T ∗
∇x · (αcũc) = Sc

αct̃ + L∗
∂x̃

∂x
∇x̃ · (αcũc) = ScT

∗

αct̃ + L∗
1

L∗
∇x̃ · (αcũc) = S̃c

αct̃ +∇x̃ · (αcũc) = S̃c,

where we have defined the dimensionless cell source term S̃c = ScT
∗. The momentum

balance of IF, Equation (2.20)6, takes the form

αw∇xPw = −ζ̂wuw

αw
∂x̃

∂x
∇x̃
(
P̃wP

∗
)

= − ˜̂
ζw
P ∗

D∗
ũwu

∗

αw
P ∗

L∗
∇x̃P̃w = − ˜̂

ζw
P ∗T ∗

(L∗)2
ũw

L∗

T ∗

αw∇x̃P̃w = − ˜̂
ζwũw.

For the chemical agents, say TGF, we get from (2.20)10

Ht +∇x · (uwH) =∇x · (DH∇xH)− λ51H + αf

(
λ52 − λ53

(
H

HM

)vH)
(H̃H∗)t̃

∂t̃

∂t
+
∂x̃

∂x
∇x̃ · (ũwu∗H̃H∗) =

∂x̃

∂x
∇x̃ · (D̃HD

∗∂x̃

∂x
∇x̃(H̃H∗))

− λ51H̃H
∗ + αf

(
λ52 − λ53

(
H̃

H̃M

)vH)
H̃t̃

T ∗
+

1

T ∗
∇x̃ · (ũwH̃) =

1

T ∗
∇x̃ · (D̃H∇x̃H̃)

− λ51H̃ + αf

(
λ52

H∗
− λ53

H∗

(
H̃

H̃M

)vH)
H̃t̃ +∇x̃ · (ũwH̃) =∇x̃ · (D̃H∇x̃H̃)

− λ51T
∗H̃ + αf

(
λ52T

∗

H∗
− λ53T

∗

H∗

(
H̃

H̃M

)vH)

H̃t̃ +∇x̃ · (ũwH̃) =∇x̃ · (D̃H∇x̃H̃)− λ̃51H̃ + αf

(
λ̃52 − λ̃53

(
H̃

H̃M

)vH)
.
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Note that the equations have the same form whether we write them using dimensionless
or dimensional variables. Dropping the tilde notation, this means that we can use
Equation (2.20) to represent the dimensionless model as well.
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