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Abstract 

Since 2008, the U.K. natural gas market has witnessed a marked drop in volatility. 

This fall has coincided with specific events in oil and gas sector such as the onset 

of the U.S. “shale gas revolution” and the subsequent rerouting of liquefied natural 

gas (LNG) shipments from the U.S. to other markets such as Asia and Europe. LNG 

cargoes, along with other sources of flexibility such as underground storages and 

interconnector import, can potentially reduce volatility. On the other hand, demand 

shocks can increase volatility. To examine the dynamics relationship between daily 

shocks in U.K. gas demand and supply, and the gas spot price volatility, we use a 

vector autoregressive (VAR) model. While we find evidence that daily deviations 

in aggregated gas demand significantly impacts volatility, we are unable to find 

direct evidence for an impact from shocks in disaggregated demand or supply. In 

fact, one important contribution of the paper is to suggest that flexible sources of 

supply such as LNG, storage and interconnector flows react to shocks in retail 

demand, dampening their potential effects on volatility. 
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INTRODUCTION 

Since 2008, the global natural gas markets have experienced a substantial change 

in market conditions. For instance, the financial crisis of 2008 had a large impact 

on U.S. natural gas prices, resulting in a large fall in gas prices from a high of around 

14 USD/mmbtu1 to below 2 USD/mmbtu. In the subsequent years, U.S. gas 

production experienced a game change with the onset of shale gas production from 

around 2009 (Asche, Oglend and Osmundsen, 2012; Oglend, Lindbäck and 

Osmundsen, 2014). Before the Shale gas revolution, the U.S. was a net importer of 

LNG. Due to increased domestic production from unconventional plays from 2009 

onwards, LNG imports to the U.S. dropped dramatically, resulting in LNG cargoes 

having to find their port of call in other markets, such as Europe and Asia. The U.S. 

shale gas revolution in the US thus impacted European gas markets through a shift 

in the LNG destination. LNG shipments introduce flexibility into global and 

regional gas markets through two ways. First, LNG cargoes can be rerouted 

between regional markets in order to take advantage of preferable price spreads. 

Second, LNG cargoes also possess timing flexibility, and can be rerouted to markets 

experiencing peaking prices. In fact, LNG regasification capacity is often marketed 

as a peak shaving service. Hence, this flexibility provides LNG with the possibility 

to influence volatility. In fact, Alterman (2012) attributes the fall in volatility to 

increased LNG imports. This inherent flexibility combined with increased LNG 

imports to the U.K. since 2008 might be one possible explanatory factor behind the 

decreased volatility in gas spot prices.  

However, the U.K. gas system contains overcapacity, representing sources 

of flexibility. For instance, interconnecting pipelines link the U.K. market to 

Ireland, Belgium and the Netherlands, and the flows through these interconnectors 

can be adjusted or even reversed within a short period of time. In addition, 

underground gas storage facilities are able to switch between injection and 

withdrawal promptly, sometimes within hours. Therefore, several competing 

sources of flexible gas supply have the potential to react to shocks in prices 

(volatility), making the total picture quite complex. In fact, shocks in demand may 

be met by flexible sources, and may not result in increased volatility. We therefore 

find it appropriate to use a vector autoregression to capture the dynamics in the 

system. Since reactions to shocks in the system might take hours or even days, we 

find it appropriate to use lagged variables as explanatory factors. 

To control for the impact of other external factors on gas volatility we also 

include the OVX crude oil volatility index. The literature suggests a hierarchy of 

volatility influence from oil to gas to electricity markets (Efimova and Serletis, 

2014). 

There have been several studies addressing the impact of LNG on energy 

markets, especially on market integration (e.g. Brown and Yucell, 2009; Neumann, 

2012; Oglend, Lindbäck and Osmundsen, 2014; Barnes and Bosworth, 2015). 

Nevertheless, to the best of our knowledge, no study has addressed the impact of 

disaggregated supply or demand on volatility. Relevant studies tend to focus on the 

                                                           
1 mmbtu = million british thermal units 
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impact of aggregate demand and supply shocks on energy or stock market volatility 

(van Goor and Scholtens, 2014; Diakinnakis, Filis and Kizis, 2014).  

We use a data sample for 2007-2014, which includes daily demand, supply 

and price data. We have collected disaggregated supply sources and demand uses. 

The supply sources include production from oil and gas field production, from LNG 

imports, imports through interconnectors, and withdrawals from underground gas 

storages. The uses of demand include demand from the industrial sector, the power 

sector and residential demand, in addition to demand from injection into 

underground gas storages and exports through interconnectors. To reduce the 

dimensions we use net storage withdrawals (daily storage withdrawals less daily 

storage injections) and net interconnector imports (daily interconnector imports 

minus daily interconnector exports). 

Volatility is modelled using an autoregressive moving average generalized 

autoregressive conditional heteroskedasticity (ARMA-GARCH) model. We 

examine the effects of seasonal and trend adjusted demand and supply shocks on 

volatility in an eight-dimensional vector autoregressive (VAR) model.  

Consistent with previous research we find that deviations in aggregate 

demand has a significant impact on the spot price volatility in the U.K. Contrary to 

expectations, we are unable to find robust evidence of the impact of deviations in 

disaggregated demand and supply on gas volatility. In fact, it seems that the 

deviations in some subcomponents are mitigated by opposite deviations in other 

supply/demand elements. This indicates that there is substantial flexibility in the 

U.K. gas system, which acts in a way to reduce the impact of individual shocks to 

the system on volatility. Only when there is a shock to the aggregated demand is 

shocked is volatility significantly affected. Moreover, we find that the long-term 

gas volatility is associated with trends in demand and crude oil volatility. 

We make four contributions to the literature. First we examine the impact 

of deviations in disaggregated demand and supply on volatility. Similar studies 

apply aggregated demand or supply data (see e.g. van Goor and Scholtens, 2014) 

However, sources of supply and demand vary in terms of flexibility and possible 

impact on volatility. Some sources are quite flexible and can respond to situations 

with increased volatility. Secondly, we look at daily data, which might uncover a 

different set of dynamic relationships compared to for instance monthly data. Third, 

we examine the claim that LNG is a major contributor to the reduction in volatility 

in the U.K. since 2010 and do not find direct evidence of a strong link between 

LNG and volatility. Fourth, our research suggests that flexibility in gas system may 

explain why we are not able to find statistically significant relationships between 

disaggregated supply and demand shocks and volatility. 

The remainder of the paper is organized as follows: Chapter 2 review of the 

literature, chapter 3 addresses the UK gas market and the reasons why the gas price 

volatility can be affected by shocks in different supply and demand elements. 

Chapter 4 develops the methodology and chapter 5 presents the data. In chapter 6 

we present and discuss the results and chapter 7 concludes. 
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BACKGROUND AND LITERATURE 

The U.K. natural gas wholesale market 

Unlike oil, which is sold globally, gas markets are regional markets. With the arrival 

of liquefied natural gas (LNG), gas markets have become more interconnected 

(Brown and Yucell, 2009; Neumann, 2012; Oglend, Lindbäck and Osmundsen, 

2014; Barnes and Bosworth, 2015). Nevertheless, complete global gas market 

integration will still be limited by LNG specific constraints such as liquefaction 

capacities (converting gas in gaseous form to liquid form), regasification capacities 

(converting gas in liquid form to gaseous form) and the availability of specialized 

LNG transport vessels and freight rates (Oglend, Osmundsen and Kleppe, 2015).  

The UK natural gas wholesale market is the most liquid of all regional gas 

markets in Europe. Although it is a regional market for the United Kingdom, it is 

also connected to other markets in Europe through interconnectors and short-

distance LNG vessels, making it part of a larger European market. The market place 

in the U.K., the National Balancing Point (NBP), is a pipeline grid, with several 

entry and exit points throughout the grid. Unlike many stock or commodity 

exchanges, the market place is not limited to a specific geographical point, but 

rather a notional market place comprising the entire grid. 

The main supply sources of gas in the U.K. are 1) pipelines directly from 

fields or via processing plants on the U.K. Continental shelf or the Norwegian 

Continental shelf, 2) imports through interconnecting pipelines to Ireland (Moffat), 

the Netherlands (BBL) and Belgium (IUK), 3) LNG imports via LNG regasification 

facilities, and 4) withdrawals from underground storages (both seasonal and fast-

response (so-called fast cycle) storages).The main uses of gas in the U.K. are 1) 

demand from the residential sector (LDZ2 demand), 2) demand from industry 

(excluding power sector), 3) demand from the power sector3, 4) interconnector 

exports and 5) injection of gas into underground storage. 

The different supply and demand elements are characterized by different 

elasticities.4 Residential demand is very much affected by temperature since a 

substantial portion of gas is used for heating. Gas is a minor part of the cost for 

industrial sector. The opposite is the case for the power sector where gas is the 

major input factor. Pipeline imports from fields can be fairly inflexible since the 

flows are governed by geological characteristics and production permits.5  

However, some of the supply and demand elements are more elastic. For 

instance, as a response to increased demand, underground storages can switch from 

injection of gas to withdrawal of gas, interconnectors can switch from export to 

imports and LNG shippers can reroute LNG cargoes to the U.K. Some of these 

assets are able to respond to changing demand quite quickly (such as fast cycle 

storages which are able to switch flow direction in a matter of hours) and 

                                                           
2 LDZ = local distribution zones. 
3 Gas used to generate electricity in gas-fired power plants (e.g. CCGT), representing a substantial 

portion of total gas demand. During the 1990s “the dash for gas” resulted in replacement of coal 

fired power plants with gas fired power plants. 
4 Van Goor and Scholtens (2014) uncover several supply functions for the U.K gas market. 
5 However, some fields are flexible and can respond to changing demand. For instance, the Troll 

and Oseberg oil and gas fields on the Norwegian Continental shelf have flexible production rates. 
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interconnectors. Others flexible assets respond more slowly, such as LNG. Hence, 

these flexible assets contribute to peak shaving. In summary, shocks to different 

sources and uses of gas can have different impact on spot price volatility due to 

differing price elasticities of supply. 

Alterman (2012) attribute the drop in volatility to increased LNG imports 

and a fall in gas demand. Since 2009, supply from LNG to the U.K. has increased 

rapidly (Figure 1). However, as the figure shows, the supply peaked around 2011. 

This increase between 2009 and subsequent decrease from 2011 can be related to 

two defining events for natural gas. The year 2009 is by many commentators 

considered as the start of the “Shale gas revolution” in U.S. (Asche, Oglend and 

Osmundsen, 2012; Oglend, Lindbäck and Osmundsen, 2014). Around the same 

time (~2009), due to technology advancements in the field, the U.S. experienced an 

increase in domestic tight gas (also called shale gas) production. This has put a 

dampening effect on U.S. natural gas prices, effectively making it one of the lowest 

priced gas markets in the world. This structural shift resulted in a reduction in U.S. 

LNG imports. Consequently, the LNG had to be rerouted elsewhere, e.g. Europe 

and the UK. A few years later in 2011, the Fukushima nuclear power plant disaster 

in Japan resulted in a shutdown of nuclear power generation, leading to an increase 

in natural gas demand, met by a growth in LNG imports. Subsequently LNG 

cargoes were diverted towards Asia, resulting in the fall in LNG imports in the U.K. 

from 2011 onwards. At the same time, since 2010, the UK has witnessed a 

substantial drop in gas price volatility. However, LNG importations have fallen 

since 2011, while volatility has remained at historical lows. The relationship 

between LNG and volatility is therefore not straightforward. It seems that the 

patterns in LNG imports can be explained by price differences between regional 

markets (Stern and Rogers, 2014; Rogers, 2015). As a consequence of the shale gas 

revolution around 2008, U.S. gas prices dropped, resulting in rerouting of LNG 

cargoes to the U.K. After the Fukushima incident in early 2011, there was a 

tightening of the global flexible LNG market resulting in a progressive re-direction 

of LNG away from Europe and towards Asia (Rogers, 2015). Moreover, the impact 

of LNG on volatility might also be affected by type of LNG purchase contract.6 

Spot contracts are more likely to be used for peak shaving than long-term contracts, 

and we therefore expect the former to be stronger linked to volatility than the latter 

type of contract. 

 

                                                           
6 We thank an anonymous review for highlighting this issue. 
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Figure 1: Daily LNG imports to the U.K. (in million standard cubic meters, 

mSm3) Source: U.K. National Grid. 

 

Literature 

Since the seminal works of Shiller (1981a, b), a vast body of literature on volatility 

has emerged. Substantial advances have been made on theoretical stochastic 

volatility modelling. Examples include the models of Chen (1996) and Heston 

(1993), local volatility models (Dupire, 1994, 1997; Derman and Kani, 1994, 1998), 

SABR (Hagan et al., 2002) and the (G)ARCH family7 (Engle, 1982; Bollerslev, 

2007) to name a few. Especially the development of conditional volatility models 

has facilitated empirical analyses on the drivers of volatility, both in equity, fixed 

income, and commodity markets. A substantial part of the literature on equity 

volatility has focused on the association between volatility and news arrival, trading 

activity and price changes (Ané and Geman, 2000; Jones, Kaul and Lipton, 1994). 

Similar studies can also be found for energy commodities. Herbert (1995) studies 

the impact of trading volume and maturity on volatility in natural gas markets.  

Another important thread of research addresses the transmission of volatility 

across markets, including both spillover effects between commodity and equity 

markets as well as between different commodity markets (see Soriano and Climent 

(2006) for a review). Several studies have uncovered volatility spillover effects 

between oil and equity markets (Malik and Hammoudeh, 2007; Aloui, Jammazi and 

Dhaklaoui, 2008; Chiou and Lee, 2009; Malik and Ewing, 2009; Zhang and Chen, 

2011; Jammazi, 2012; Liu, Ji and Fan, 2013; Soucek and Todorova 2013; Olson, 

Vivian and Wohar, 2014), and between oil and gas markets (Ewing, Malik and 

Ozfidan, 2002). A recent study shows that there is a bidirectional spillover effect 

between natural gas and crude oil and between natural gas and heating oil markets 

(Karali and Ramirez, 2014). These findings indicate that natural gas volatility is 

affected by and can impact several other commodity and financial markets. 

                                                           
7 Numerous variants of ARCH and GARCH models exist (see Bollerslev (2007) for an extensive 

list). 
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The impact of news arrivals related to inventory announcements on 

volatility has been a popular topic in recent years (Linn and Zhu, 2004; Mu, 2007; 

Gay, simkins and Turac, 2009; Chan, Wang and Yang, 2010; Halova, Kurov and 

Kucher, 2013; Lin and Wesseh jr., 2013; Bjursell, Gentle and Wang, 2015). These 

generally find a substantial increase in volatility around the time of the release of 

natural gas storage reports, especially related to inventory surprises. Bjursell, 

Gentle and Wang (2015) find that large volatility days are often associated with 

substantial jump components, which are in turn associated with inventory 

announcement dates. Similar results are found in other energy markets as well. 

Similar results are also found in oil markets (Wang, Wu and Yang, 2008; Bu, 

2014).8 Furthermore, research also indicates that weather, along with storage news 

impacts natural gas volatility. Chan, Wang and Yang (2010) find that the jump 

portion of volatility is a function of unanticipated low temperatures and inventory 

surprises. Similarly, Mu (2007) finds that extreme weather conditions and low 

inventories affect natural gas volatility. Recently, Lin and Wesseh jr. (2013) find 

that regime shifts in the natural gas market correlate well with major events 

affecting supply and demand. Hence, the literature seems to suggest a link between 

information about the supply (inventories) and demand (e.g. the impact of extreme 

weather), and volatility. These results are consistent with key theories for 

commodity prices such as the Theory of Storage (Working, 1949; Kaldor, 1939; 

Brennan, 1958; and Telser 1958). This theory, which equates the difference 

between forward and spot prices to the cost of carry and a convenience yield, 

predicts a negative relationship between inventory levels and spot price volatility. 

In the spirit of the theory of storage, Geman and Ohana (2009) study the association 

between volatility and inventory levels in oil and gas and markets. While they find 

a negative relation between volatility and inventory levels in the oil market, this 

association only prevails during periods of scarcity defined by inventory levels 

being below historical averages in natural gas markets, especially during the cold 

winter months. Hence, studies on natural gas market volatilities need to take into 

account strong seasonality in the relationship between the demand and supply 

situation, and volatility. 

The limit of the studies described above is that they focus either on the total 

supply and demand picture, or limited to inventories. Pindyck (2004) investigate 

the relationship between inventories, spot and futures gas prices and volatility. A 

recent study by van Goor and Scholtens (2014) find that different supply curve 

assumptions result in different U.K. natural gas volatility characteristics. Moreover, 

Diakannakis, Filis and Kizis (2014) find that aggregate demand and supply shocks 

impacts crude oil volatility. These studies address the relation between aggregate 

demand and supply, and volatility. However, both demand and supply can be 

disaggregated into subcomponents, each with a potentially different impact on 

volatility. Our main contribution is to try to fill this void in the literature. 

Furthermore, disaggregating allows us to also examine the impact of a key supply 

element in recent years, such as LNG. This is important since the literature suggests 

                                                           
8 Wang, Wu and Yang (2008) find that crude oil futures volatility increases preceding OPEC 

announcements and Bu (2014) studies the impact of crude oil inventory on crude oil volatility. 
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that LNG is believed to have furthered market integration globally (Brown and 

Yucell, 2009; Neumann, 2012; Barnes and Bosworth, 2015). However, information 

on how LNG impacts volatility is missing.  

 

METHODOLOGY 

Since volatility is not directly observable, it has to be estimated. The simplest 

approach is to calculate the standard deviation of returns for historical asset prices. 

However, this approach has its limitations as it puts equal weight on all historical 

observations. Hence, weighting schemes are used in order to make sure that recent 

innovations to volatility are weighted more than older observations, resulting in 

better estimation of current volatility than simple averaging. 

A popular model for volatility modelling, which takes into account long run 

volatility, is the Generalized Autoregressive Conditional Heteroskedasticity 

(GARCH) model (Bollerslev, 1986). Let 𝑟𝑡 = 𝜇𝑡 + 𝜎𝑡𝜀𝑡 be the return process of a 

price series, where 𝜀𝑡 is a strong white noise process and 𝜇𝑡 a conditional mean 

process. The GARCH (p,q) model for the conditional variance 𝜎𝑡
2 is given as: 

 

𝑎𝑡 = 𝜎𝑡𝜀𝑡, (1) 

where 

𝜎𝑡
2 = 𝛾𝑉𝐿 + ∑ 𝛼𝑖𝑎𝑡−𝑖

2 + ∑ 𝛽𝑖𝜎𝑡−𝑖
2

𝑞

𝑖=1

𝑝

𝑖=1

. 
(2) 

 

where 𝜎𝑡 is the conditional standard deviation, 𝛼𝑖are coefficients on ARCH terms, 

𝛽𝑖 are coefficients on GARCH terms, VL is the long run volatility with weight γ. 

Similar studies on the relationship between volatility and energy demand and 

supply shocks also use conditional volatility estimates (Diakannakis, Filis and 

Kizis, 2014; van Goor and Scholtens, 2014). Diakannakis, Filis and Kizis (2014) 

repeat their analysis using realized volatility and implied volatility and find similar 

results across the three different volatility measures. We therefore find that using 

conditional volatility appropriate for our study.  

The next step is to model the impact on volatility of demand and supply 

shocks (in the form of deviations from seasonal normal). First, we disaggregate the 

aggregate supply and demand into subcomponents. Supply is divided into 1) 

pipeline gas into UK from the North Sea (from oil and gas fields situated on the UK 

continental shelf and the Norwegian continental shelf (𝑃𝐼𝑃𝐸𝑡), 2) importations 

from Ireland and mainland Europe through interconnectors, 3) LNG imports 

(𝐿𝑁𝐺𝑡) and 4) withdrawal from underground natural gas storages. Demand is 

divided into 1) residential demand (𝐿𝐷𝑍𝑡), 2) demand from industry (not including 

the power sector) (𝐼𝑁𝐷𝑡), 3) demand from gas-fired power plants (𝑃𝑂𝑊𝐸𝑅𝑡), 4) 

exports to Ireland and Mainland Europe through Interconnectors, and 5) injections 

into underground natural gas storages. In order to reduce the number of dimensions 

in the VAR system we create a net storage withdrawal variable (𝑆𝑇𝑂𝑅𝐴𝐺𝐸𝑡) by 

subtracting storage injections from storage withdrawals. Likewise, net 

interconnector imports (𝐼𝑁𝑇𝐸𝑅𝑡) are calculated as interconnector imports less 

exports.  
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To capture shocks in demand or supply, we calculate deviations from 

seasonal normal demand or supply subcomponents. The latter variables are denoted 

using lower case letters, while the upper case variables refer to the unadjusted 

demand and supply subcomponents. It is crucial to adjust for seasonality which is 

an important factor in natural gas markets. We apply a seasonal and trend 

decomposition procedure based on loess, STL (Cleveland et al., 1990) on all 

demand and supply subcomponents. STL is a filtering procedure which allows us 

to decompose the time series’ into seasonal, trend and residual components. The 

resulting variable is then used as our measure of deviation from seasonal normal, 

and subsequently applied in our VAR model. We also apply the STL procedure for 

both gas and oil volatility to remove trends and seasonality. This is appropriate for 

two reasons. First, the data demonstrates a downward trend in both gas and oil 

volatility. Second, gas volatility exhibits seasonality (Suenaga, Smith and Williams, 

2008). For ease of comparing the coefficients we also normalize the adjusted 

demand and supply variables by subtracting the mean and dividing by the standard 

deviations. 

The relationship between volatility and supply and demand deviations are 

empirically estimated using a vector autoregressive model (VAR). The VAR model 

is a time series model that describes the dynamics of the data in terms of linear 

functions of lagged variables. For instance, with two variables, 𝑦𝑡 and 𝑥𝑡, the first 

order VAR model, a VAR(1), models the dynamics of the data as  

 

 [
𝑦𝑡

𝑥𝑡
] = [

𝛼0

𝛼1
] + [

𝛼11 𝛼12

𝛼21 𝛼22
] [

𝑦𝑡−1

𝑥𝑡−1
] + [

𝜀1,𝑡

𝜀2,𝑡
], 

 

where 𝛼0 and 𝛼1 are constant intercept parameters, and 𝛼11, 𝛼12, 𝛼21 and 𝛼22 are 

parameters that determines the effect of the one period lagged data on the current 

data. The last term [𝜀1,𝑡, 𝜀2,𝑡]′ are possibly correlated error terms. The model can be 

extended with more lags and to higher dimensional data. The model is primarily 

used for forecasting or structural data analysis, and because of its simple structure 

has enjoyed great popularity in applied economic analysis. For instance, Sims 

(1980, 1981) pioneered the use of VAR models in the analysis of macroeconomics 

time-series data. The parameters of the model can be estimated using either 

multivariate least squares estimation, or, assuming the probability distribution of 

the error term is known, maximum likelihood estimation. For a detailed description 

of the VAR model see for instance Hamilton (1994) or Lütkepohl (2005).  

We apply the VAR model to estimate the relationship between supply and 

demand deviations and volatility.  There are several benefits to applying this 

methodology. First, we are able to estimate empirically the relationship between the 

supply and demand deviations and volatility in a time-series model. Second, the 

VAR model allows us to capture the dynamics between the explanatory variables. 

For instance, we are able to assess how LNG deviations are affected by other supply 

and demand deviations, as well as volatility.  

We carry out the analysis in two steps. First, we investigate the impact on 

gas volatility of deviations in aggregate demand and crude oil volatility. Second, 

we repeat the first analysis using deviations in disaggregated supply and demand to 
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try to isolate the effect of LNG deviations. In addition, we examine the regression 

parameter stability using split samples and empirical fluctuation processes. 

In the first step, we model the system as a 2-dimensional VAR. Let 𝑣𝑡 be 

the natural logarithm of 𝜎𝑡 and let 𝒙𝒕 = (𝑣𝑡, 𝑑𝑒𝑚𝑎𝑛𝑑𝑡)′ denote the (2 × 1) vector 

of time series variables. We model the relationship between demand deviation and 

volatility a the 2-dimensional VAR(p) model. In addition, we include the lagged 

natural logarithm of crude oil volatility as an exogenous variable. The VAR system 

becomes 

 

𝒙𝒕 = 𝑨𝟎 + ∑ 𝑨𝒊𝒙𝒕−𝒊

𝑝

𝑖=1

+ 𝜃𝑜𝑣𝑥𝑡 + 𝜺𝒕
𝟏 

(3) 

 

where  𝑨𝟎 is a (2 × 1) vector of constants, 𝑨𝒊 are (2 × 2) coefficient matrices and 

𝜺𝒕 is an (2 × 1) unobservable zero mean white noise vector process, serially 

uncorrelated or independent, with time invariant covariance matrix 𝚺, and 𝑝 is the 

number of lags. Crude oil volatility is represented by the natural logarithm of the 

(trend and seasonally adjusted) OVX crude oil volatility index, and is denoted by 

𝑜𝑣𝑥𝑡. 

In the second step, we disaggregate total gas supply and demand into 

subcomponents. The de-trended and de-seasonalized subcomponents are then 

included in the VAR model, where  
𝒚𝒕 = (𝑣𝑡, 𝑙𝑛𝑔𝑡, 𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑡 , 𝑖𝑛𝑡𝑒𝑟𝑡, 𝑝𝑖𝑝𝑒𝑡, 𝑙𝑑𝑧𝑡, 𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑦𝑡 , 𝑝𝑜𝑤𝑒𝑟𝑡)′. The resulting 

system of disaggregated demand and supply deviations and volatility is the 

following 8-dimensional VAR (p) model: 

 

𝒚𝒕 = 𝑩𝟎 + ∑ 𝑩𝒊𝒚𝒕−𝒊

𝑝

𝑖=1

+ 𝜃𝑜𝑣𝑥𝑡 + 𝜺𝒕
𝟐 

(4) 

 

where  𝑩𝟎 is a (8 × 1) vector of constants, 𝑩𝒊 are (8 × 8) coefficient matrices and 

𝜺𝒕
𝟐 is an (8 × 1) unobservable zero mean white noise vector process, serially 

uncorrelated or independent, with time invariant covariance matrix 𝚺, and 𝑝 is the 

number of lags. 

 

 

Hypotheses on the impact of shocks in aggregate demand on volatility 

In line with previous research, we expect deviations in aggregate demand to be 

positively and significantly associated with changes in volatility. 

 

H1: significant and positive coefficient on deviations in daily aggregate demand  

 

Hypotheses on the impact of shocks in elastic supply variables on volatility 

We expect positive deviations in net storage withdrawals, LNG imports and 

interconnector imports to have a negative impact on volatility. These three elements 

are flexible and have the capability for responding quickly to increases in prices. A 
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sudden increase in gas prices are therefore likely to be met by increased LNG 

imports, storage withdrawals and Interconnector imports, which will lead to a 

subsequent decrease in prices. Hence, lagged variables for shocks in LNG, storage 

and Interconnector supplies should therefore lead to a reduction in volatility, and 

therefore a negative relationship between volatility and lagged explanatory 

variables. On alternative form the relevant hypotheses are: 

 

H2: significant and negative coefficient on deviations in daily LNG imports  

 

H3: significant and negative coefficient on deviations in daily net storage 

withdrawals 

 

H4: significant and negative coefficient on deviations in daily net Interconnector 

imports  

 

 

Hypotheses on the impact of shocks in inelastic supply/demand elements on 

gas price volatility 

A priori, we expect a positive effect of inelastic demand shocks on volatility, and a 

negative effect of inelastic supply shocks. Deviations in the gas demand from the 

residential or industry sectors should lead to increased volatility. Positive deviation 

from seasonal normal gas supplies from oil and gas field production should lead to 

decreased volatility. The resulting hypotheses are: 

 

H5: significant and negative coefficient on deviations in daily shocks in pipeline 

imports 

 

H6: significant and positive coefficient on deviations in daily shocks in LDZ demand 

 

H7: significant and positive coefficient on daily deviations in demand from the 

industry sector  

 

The impact of shocks in the power demand is a bit more unclear. In the UK a large 

proportion of the electricity generation capacity is from gas fired power plants 

(effect of the “dash for gas” in the 1990s). Gas fired power plants are typically quite 

flexible (e.g. Combined Cycle Gas Turbines, CCGTs) and can readily respond to 

peaks in the electricity markets. Therefore, there is a strong link between the gas 

markets and power markets in the UK. However the direction of the link is not 

straightforward. In isolation, we would expect that a positive shock in power 

demand will result in increased volatility. However, there might be more complex 

dynamics in place. A positive shock in the demand for gas from the power market 

might be due to a rapid fall in gas prices (i.e. increased volatility). A negative shock 

in the demand for power might be caused by a sudden increase in gas prices which 

(i.e. also increased volatility). If the interaction effects are dominant, then the 

significance of this variable will not be significant. Nevertheless, we expect that the 
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effect that power demand shocks lead gas price volatility dominates. The hypothesis 

therefore becomes 

 

H8: significant and positive coefficient on daily deviations in demand from the 

power sector 

 

DATA 

Data source 

We use daily observations of the Day ahead forward contract from Heren 

(www.heren.com) as a proxy for spot prices. Daily observations of disaggregated 

daily UK natural gas demand and supply at the UK National Balancing Point (NBP) 

system are collected from National Grid. On the demand side the variables include 

i) residential demand which is an aggregate from 12 local distribution zones (LDZ), 

ii) industrial demand (excluding industrial demand from the power sector), iii) 

demand from the power sector, iv) injections into underground natural gas storage 

facilities and v) exports through three interconnectors to Belgium (Interconnector 

UK, IUK), Netherlands (Balgzand to Bacton Line, BBL) and Ireland (Moffat to 

Ireland). The supply components include vi) field production from the UK 

continental shelf (UKCS) and the Norwegian continental shelf (NCS) brought into 

the National Balancing Point at subterminals, vii) liquefied natural gas (LNG) 

imports into terminals with subsequent regasification before entering the NBP (or 

NTS) system, viii) withdrawals from underground natural gas storage facilities and 

ix) imports through three interconnectors to Belgium, Netherlands and Ireland. 

Moreover, to control for impact of exogenous factors we also include oil 

volatility. The literature suggests that crude oil volatility has predictive power for 

natural gas volatility (Pindyck, 2003), and that there exist a hierarchy of volatility 

influence from oil to gas to electricity markets (Efimova and Serletis, 2014). In line 

with Liu, Ji and Fan (2013) we use the OVX index (www.cboe.com) as a proxy for 

crude oil volatility. 

 

Gas price volatility estimation 

To estimate contemporaneous volatility we use a ARMA(1,1) - GARCH(1,1) 

model.  

𝑟𝑡 = 𝜇 + 𝜃1𝑟𝑡−1 + 𝜃2𝑎𝑡−1 + 𝑎𝑡 (5) 

𝑎𝑡 = 𝜎𝑡𝜀𝑡, (6) 

𝜎𝑡
2 = 𝛾𝑉𝐿 + ∑ 𝛼𝑖𝑎𝑡−𝑖

2 + ∑ 𝛽𝑖𝜎𝑡−𝑖
2𝑞

𝑖=1
𝑝
𝑖=1   (7) 

 

where 𝑟𝑡 is natural gas returns, modeled as a autoregressive moving average 

process. The parameters of the resulting model is shown in Table 1. The 

significance of the coefficients and the diagnostics tests indicate a good fit to the 

data and we use an ARMA (1,1) – GARCH (1,1) to estimate the volatility of U.K. 

spot gas prices used in this paper. Figure 2 presents the estimated time series of gas 

http://www.heren.com/
http://www.cboe.com/
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volatility between October 2007 and June 2014. The graph suggests that volatility 

has fallen, due to decreases in both the number and magnitude of “spikes”.9 

 

 

Table 1: Daily spot price volatility is estimated using ARMA(1,1) - GARCH(1,1) 

ARMA-GARCH Coef p-value 

μ <-0.0001 0.8830 

𝜃1 0.8340 <0.0001 

𝜃2 -0.8997 <0.0001 

𝛾𝑉𝐿 <0.0001 <0.0001 

α 0.1867 <0.0001 

β 0.8649 <0.0001 

Diagnostics Statistic p-value 

Jarque-Bera 58045.08 <0.0001 

Shapiro-Wilk 0.8942 <0.0001 

Ljung-Box Q(10) 11.0007 0.3575 

Ljung-Box Q(15) 16.8270 0.3293 

Ljung-Box Q(20) 18.2938 0.5681 

LM Arch test 4.0069 0.9833 

Note: Tests for normality, i.e. null hypotheses of normal distributed residuals: Jarque-Bera and 

Shapiro-Wilk tests. Tests for independence in the residuals (null hypothesis of no autocorrelation):   

Ljung-Box Q tests, where Q denotes the number of lags. Test for ARCH effects in the residuals: LM 

ARCH test.   

 

 

 

Figure 2: UK natural gas spot price volatility estimated using an ARMA(1,1) - 

GARCH(1,1) model and OVX crude oil volatility 2007-2014. 

 

                                                           
9 By a “spike” we mean a short-lived and reversed extreme price movement. 
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Table 2 presents the descriptive statistics for the disaggregated supply and demand 

data, both unadjusted and decomposed into season, trend and a residual. The supply 

side is dominated by pipeline production both from indigenous the UKCS 

production and imports from the NCS. The three flexible supply elements, 

interconnector import, LNG import and storage withdrawals are approximately of 

the same magnitude. On the demand side, the residential sector is by far the largest 

component, followed by demand from electricity producers. Average 

interconnector imports are lower than exports resulting in a net export during 2007-

2014. Likewise, the data suggest a net storage withdrawal over the same time 

period, indicating a fall in working volume10 for gas storage facilities. 

 

Table 2: Descriptive statistics for aggregate demand and disaggregated supplies 

and demand  

 Unadjusted Season Trend Residual 

Variable Mean St.dev. Mean St.dev. Mean St.dev. Mean St.dev 

Volatility         

𝑣𝑡  4.20 0.61 <0.01 0.19 4.19 0.40 <0.01 0.41 

𝑜𝑣𝑥𝑡  3.54 0.36 <0.01 0.05 3.54 0.31 0.01 0.13 

Supplies         

𝑝𝑖𝑝𝑒𝑡  194.60 50.44 2.30 35.84 192.05 30.70 0.32 16.64 

𝑙𝑛𝑔𝑡  33.02 25.86 0.19 6.45 32.83 21.23 -0.01 11.04 

𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑡  4.78 28.96 0.88 21.14 3.83 2.77 0.07 19.80 

𝑖𝑛𝑡𝑒𝑟𝑡  -9.87 26.23 0.94 17.65 -10.94 10.90 0.13 14.68 

Demand         

𝑙𝑑𝑧𝑡  153.90 75.23 4.37 70.99 149.40 12.02 0.43 25.14 

𝑝𝑜𝑤𝑒𝑟𝑡   58.06 15.48 0.05 2.57 57.96 13.18 0.05 6.65 

𝑖𝑛𝑑𝑡  10.96 1.55 0.01 0.39 10.95 0.95 0.01 1.09 

𝑑𝑒𝑚𝑎𝑛𝑑𝑡  265.78 70.09 3.94 61.48 261.38 25.41 0.46 25.25 

Note: All supply and demand variables are volumes measured in million standard cubic meters 

(mSm3). The volatility variables are calculated as the natural logarithms of annualized (seasonal and 

trend adjusted) U.K. gas volatility (𝑣𝑡), and the (seasonal and trend adjusted) Chicago Board of 

Options Exchange (CBOE) OVX crude oil volatility index (𝑜𝑣𝑥𝑡), respectively. 

 

In order to ease the comparison of the coefficients from the regressions, the 

residuals for the variables in Table 3 are normalized to give mean 0 and standard 

deviation 1. All variables are stationary (Table 3). 

 

 

 

 

 

 

 

                                                           
10 The storage capacity of a gas storage facility consists of two volumes, the cushion gas which 

pressurizes the reservoir or cavern, and the working gas volumes which can be withdrawn or injected 

during normal operations. 



14 
 

 

 

 

 

Table 3: Stationarity tests 

 ADF 

𝑣𝑡 
-8.559 

𝑜𝑣𝑥𝑡  
-5.972 

𝑝𝑖𝑝𝑒𝑡 
-7.863 

𝑙𝑛𝑔𝑡 
-8.380 

𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑡 
-12.574 

𝑖𝑛𝑡𝑒𝑟𝑡  
-8.918 

𝑙𝑑𝑧𝑡  
-11.577 

𝑝𝑜𝑤𝑒𝑟𝑡  
-8.588 

𝑖𝑛𝑑𝑡 
-8.805 

𝑑𝑒𝑚𝑎𝑛𝑑𝑡  
-12.744 

Note: The values are the test statistics from the augmented Dickey-Fuller test (Dickey and Fuller, 

1979; Said and Dickey 1984) with maximum 10 lags. The number of lags selected according to 

Akaike Information Criterion (Akaike, 1973). We use ADF tests for both stationarity and trend 

stationarity. The critical statistics for this test are 10% = -1.62, 5% = -1.95 and 1% = -2.58. 

 

5 Results and discussion 

In order to determine the number of lags in our VAR model in Eqs. (3) and (4) we 

use three of the most common information criteria: Akaike information criterion 

(AIC: Akaike, 1973), Schwarz Bayesian information Criterion (SIC: Schwarz, 

1978), Hannan-Quinn (HQ: Hannan and Quinn, 1978) and final prediction error 

(FPE: Akaike, 1979). The number of lags varies between 1 and 2. We therefore 

choose to use one lag and apply a VAR(1) model with OVX volatility as an 

exogenous variables and contemporaneous UK gas price volatilities and 

supply/demand shocks as endogenous variables.11 Results are presented with White 

(White, 1980) corrected standard errors. 

In the first step we examine the empirical model with deviation in aggregate 

demand (Table 4).  In line with prior research we find a significant and positive 

effect of deviation in demand on gas price volatility. However, we do not find 

evidence of a feedback effect from volatility on aggregate demand deviation. 

 

 

 

                                                           
11 The results are similar with a VAR(1) model 
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Table 4: Results from a VAR model using aggregate demand and crude oil 

volatility 
 𝑣𝑡 𝑑𝑒𝑚𝑎𝑛𝑑𝑡  

𝑣𝑡−1  0.9223*** -0.0295 

𝑜𝑣𝑥𝑡−1  -0.0344 0.1055 

𝑑𝑒𝑚𝑎𝑛𝑑𝑡−1  0.0102*** 0.8276*** 

intercept 0.0004 0.0008 

Note: Significance levels denoted by asterisks, *: p<0.10, **: p<0.05, and ***: p<0.01. 

 

Next, we include disaggregated demand deviations in the VAR system. The results 

are presented in Table 5.  

 

Table 5: Results from a VAR model using disaggregate demand and supply, and 

crude oil volatility 

 Volatility Demand Supply 

 𝑣𝑡  𝑙𝑑𝑧𝑡  𝑝𝑜𝑤𝑒𝑟𝑡   𝑖𝑛𝑑𝑡  𝑝𝑖𝑝𝑒𝑡  𝑙𝑛𝑔𝑡  𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑡  𝑖𝑛𝑡𝑒𝑟𝑡  

𝑣𝑡−1  0.9216*** -0.0536 0.0156 0.0025 -0.0256 0.0492 0.0085 -0.0838 

𝑜𝑣𝑥𝑡−1  -0.0247 0.0505 -0.0136 -0.0014 0.5480*** -0.0642 -0.0403 -0.2895*** 

         

𝑙𝑑𝑧𝑡−1  0.0014 0.8716*** 0.1842*** -0.0441 0.3232*** 0.0971** 0.4991*** 0.0673 

𝑝𝑜𝑤𝑒𝑟𝑡−1  0.0072 0.0065 0.8173*** -0.0193 0.0553** 0.0344 0.0975*** 0.0060 

𝑖𝑛𝑑𝑡−1  0.0047 -0.0258* 0.0445*** 0.8993*** 0.0044 -0.0023 0.0401** 0.0175 

         

𝑝𝑖𝑝𝑒𝑡−1  0.0007 -0.0071 -0.0789** 0.0275 0.4611*** -0.0109 -0.1892*** -0.0889*** 

𝑙𝑛𝑔𝑡−1  0.0003 -0.0340 -0.0636** 0.0287 -0.1798*** 0.7690*** -0.1508*** -0.0856*** 

𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑡−1  -0.0022 -0.0441 -0.1433*** 0.0152 -0.1337** -0.1305*** 0.3542*** -0.0047 

𝑖𝑛𝑡𝑒𝑟𝑡−1  0.0013 0.0217 -0.0529* 0.0357* -0.1765*** -0.0386 -0.2008*** 0.7666*** 

         

Intercept 0.0003 0.0009 0.0004 0.0001 -0.0030 0.0014 0.0003 0.0019 

Note: Significance levels denoted by asterisks, *: p<0.10, **: p<0.05, and ***: p<0.01. 

 

Contrary to expectations, we do not find evidence that any of the disaggregate 

demand or supply deviations affect U.K. gas price volatility. We therefore reject 

hypotheses H2 - H8. Moreover, we cannot find evidence of a volatility spillover 

between oil and gas markets.  

An explanation for why the disaggregated demand and supply variables do 

not have a significant impact on gas volatility can be found by examining the 

dynamics between the demand and supply deviations. For instance, positive 

deviations in LDZ demand on time t-1 is positively associated with positive and 

significant deviations in pipeline imports, LNG imports, and storage withdrawals 

at time t. Likewise, positive deviations in power demand at time t-1 is associated 

with positive and significant deviations in storage withdrawals and pipeline imports 

at time t. On the supply side we can observe that oversupply through pipelines at 

time t-1 seems to be compensated by storage injections and interconnector exports 

at time t. To conclude, the U.K. gas system seems quite flexible, such that 

deviations in one or more of the supply or demand elements is compensated by 

opposite deviations in the other elements. Hence, shocks in single demand or supply 

elements are likely to be mitigated by the optimization of flexible assets such as 



16 
 

storage or interconnectors. In fact, theory also suggests a strong link between 

volatility and natural gas storages. Storage capacity can be modelled using option 

theory (Clewlow and Strickland, 2000; Eydeland and Wolnyiec, 2003; Geman, 

2005; Boogert and deJong, 2008, 2011; Bjerksund, Stensland and Vagstad, 2011). 

Moreover, flexibility in natural gas pipelines can also be valued as a storage facility 

(Arvesen et al., 2013). There might also be flexibility related to production from oil 

and gas fields which resembles embedded options. For instance, shale gas reservoirs 

can shut in production for short periods of time, a flexibility which represents a type 

of gas storage (Knutsen, Whitson and Foss, 2014).  

In summary, we can only find evidence of a link between demand/supply 

deviation and gas volatility on an aggregate level. At the disaggregate level, there 

seems to be a complicated dynamic between the gas assets mitigating any effects 

on volatility. 

The observation that gas price volatility has fallen during the period is still 

unexplained. However, there is a strong correlation between the trends for variables 

such as gas volatility, oil volatility, LDZ, power, industrial and aggregate demand 

(Table 6). Hence, the decreased U.K. gas price volatility is associated with a fall in 

demand from the residential, power and industrial sector, as well as a decrease in 

the crude oil price volatility. While the correlations do not provide evidence on the 

causal relationship between the trends, they do suggest that the long term trend in 

volatility is governed by trends in demand and impulses from other commodity and 

financial markets. Our results also suggest that daily deviations in aggregated 

demand affect the volatility in the short-term. 

 

Table 6: Correlations between trends in the variables 
 𝑣𝑡 

𝑜𝑣𝑥𝑡 0.842 

𝑝𝑖𝑝𝑒𝑡 0.917 

𝑙𝑛𝑔𝑡 -0.276 

𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑡 -0.393 

𝑖𝑛𝑡𝑒𝑟𝑡  -0.155 

𝑙𝑑𝑧𝑡  0.691 

𝑝𝑜𝑤𝑒𝑟𝑡  0.879 

𝑖𝑛𝑑𝑡 0.638 

𝑑𝑒𝑚𝑎𝑛𝑑𝑡  0.783 

 

Robustness tests: parameter stability 

Figure 1 suggests contrasting developments in U.K. LNG imports before and after 

the Fukushima incident. During 2009 to 2010, there were increasing LNG imports, 

followed by falling LNG importations after 2010 when Asia became the premium 

priced market as a consequence of nuclear power station shutdown in Japan. A 

possible consequence of the divergent trends in LNG imports before and after the 

Fukushima event are unstable model coefficients, changing from one period to the 

next. To examine the parameter stability, and implicitly also the robustness of the 

methodology we apply, additional tests are performed. First, we create two separate 

data sets, one for 2007 to 2010 and one with data from 2011 to 2014, and re-run the 

VAR estimation on the two data sets (Equations 3 and 4). Table 7-10 show the 

results from the VAR estimation on these two datasets. 
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Second, we carry out an empirical fluctuation test to uncover the existence 

of structural breaks in the data, which may have occurred as a consequence of the 

Fukushima disaster, or due to other circumstances. Specifically, we apply the OLS-

CUSUM12 test (Ploberger and Krämer, 1992). This test estimates an empirical 

process which captures the fluctuation in regression residuals. The CUSUM process 

uses cumulative sums of standardized residuals. Since the limiting processes for the 

said empirical process is known, boundaries associated with certain significance 

levels can be computed. The null hypothesis is that there are no structural breaks in 

the estimated regression model. If the empirical fluctuating process crosses the 

boundaries, the null hypothesis can be rejected and we are able to conclude that 

there are structural breaks in the estimated model. The results from the empirical 

fluctuation test is presented in figures 3 and 4.  

 

Table 7: Results from a VAR model using aggregate demand and crude oil 

volatility 2007-2010 
 𝑣𝑡 𝑑𝑒𝑚𝑎𝑛𝑑𝑡  

𝑣𝑡−1  0.9068*** -0.0803 

𝑜𝑣𝑥𝑡−1  -0.0147 0.2496* 

𝑑𝑒𝑚𝑎𝑛𝑑𝑡−1  0.0018 0.8133*** 

intercept 0.0011 0.0119 

Note: Significance levels denoted by asterisks, *: p<0.10, **: p<0.05, and ***: p<0.01. 

 

 

Table 8: Results from a VAR model using aggregate demand and crude oil 

volatility 2011-2014 
 𝑣𝑡 𝑑𝑒𝑚𝑎𝑛𝑑𝑡  

𝑣𝑡−1  0.9305*** 0.0004 

𝑜𝑣𝑥𝑡−1  -0.0494 -0.0393 

𝑑𝑒𝑚𝑎𝑛𝑑𝑡−1  0.0167*** 0.8371*** 

intercept 0.0011 -0.0085 

Note: Significance levels denoted by asterisks, *: p<0.10, **: p<0.05, and ***: p<0.01. 

 

 

Tables 7 and 8 show that the empirical model coefficients change between the two 

periods. The change only to a small degree for the autocorrelation terms, and more 

for the lagged demand in the volatility equation. The coefficient on the latter 

variable was only significant post 2011 (Table 8), and not in the pre-2011 model 

(Table 7). However, the number of observations are smaller when splitting the 

initial dataset in two, potentially affecting parameter significance.  

 

 

 

 

 

 

 

                                                           
12 OLS-CUSUM: Ordinary least-squares cumulative sum (of residuals). 
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Table 9: Results from a VAR model using disaggregate demand and supply, and 

crude oil volatility 2007-2010 

 Volatility Demand Supply 

 𝑣𝑡  𝑙𝑑𝑧𝑡  𝑝𝑜𝑤𝑒𝑟𝑡   𝑖𝑛𝑑𝑡  𝑝𝑖𝑝𝑒𝑡  𝑙𝑛𝑔𝑡  𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑡  𝑖𝑛𝑡𝑒𝑟𝑡  

𝑣𝑡−1  0.8993*** -0.1001* -0.0477 -0.0080 -0.0757 0.0952* -0.0527 -0.1415*** 

𝑜𝑣𝑥𝑡−1  -0.0359 0.1555 -0.0581 0.1381 0.4857*** -0.0439 0.0729 -0.2587* 

         

𝑙𝑑𝑧𝑡−1  -0.0066 0.8213*** 0.0834* -0.0559 0.0923* 0.0335 0.7041*** 0.0316 

𝑝𝑜𝑤𝑒𝑟𝑡−1  <0.0001 0.0136 0.8548*** 0.0077 0.0098 0.0460* 0.1819*** -0.0052 

𝑖𝑛𝑑𝑡−1  0.0027 -0.0294 0.0223 0.9161*** 0.0055 -0.0109 0.0172 0.0058 

         

𝑝𝑖𝑝𝑒𝑡−1  0.0040 0.0197 -0.0223 0.0163 0.6722*** 0.0016 -0.3672*** -0.0669* 

𝑙𝑛𝑔𝑡−1  0.0029 -0.0178 -0.0237 0.0042 -0.0889* 0.7776*** -0.2229*** -0.0527* 

𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑡−1  0.0028 -0.0130 -0.1099*** 0.0289 0.0498 -0.0821** 0.1962*** 0.0104 

𝑖𝑛𝑡𝑒𝑟𝑡−1  -0.0085 0.0298 -0.0189 0.0174 -0.0577 0.0186 -0.3649*** 0.7768*** 

         

Intercept 0.0017 0.0063 0.0072 -0.0030 0.0074 -0.0194 0.0118 0.0056 

Note: Significance levels denoted by asterisks, *: p<0.10, **: p<0.05, and ***: p<0.01. 

 

Tables 9 and 10 paint the same picture, the autoregression coefficients are in general 

only mildly affected, while the other coefficients change more, but not to a very 

large extent. The general impression is that the coefficients in the VAR model 

fluctuate, but to a limited extent. The overall results seem to be consistent across 

the two time periods. The significance of some of the parameters also change, some 

being significant in the first period and not in the second, and vice versa. However, 

a reduction in the number of observations may be one of the reasons for a change 

in parameter significance. For this reason we have also applied a second type of 

methodology for assessing parameter stability, the OLS-CUSUM approach, on the 

entire dataset. 

 

 

Table 10: Results from a VAR model using disaggregate demand and supply, and 

crude oil volatility 2011-2014 

 Volatility Demand Supply 

 𝑣𝑡  𝑙𝑑𝑧𝑡  𝑝𝑜𝑤𝑒𝑟𝑡   𝑖𝑛𝑑𝑡  𝑝𝑖𝑝𝑒𝑡  𝑙𝑛𝑔𝑡  𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑡  𝑖𝑛𝑡𝑒𝑟𝑡  

𝑣𝑡−1  0.9312*** -0.0216 0.0764 0.0092 0.0445 0.0231 0.0327 -0.0400 

𝑜𝑣𝑥𝑡−1  -0.0202 -0.0695 0.1855 -0.2485* 0.5285** 0.0422 -0.0615 -0.3129* 

         

𝑙𝑑𝑧𝑡−1  0.0160** 0.9231*** 0.2990*** -0.0410 0.5608*** 0.1726** 0.2830*** 0.1194** 

𝑝𝑜𝑤𝑒𝑟𝑡−1  0.0126 0.0062 0.7894*** -0.0342 0.1061*** 0.0351 0.0180 0.0140 

𝑖𝑛𝑑𝑡−1  0.0061 -0.0250 0.0826*** 0.8636*** 0.0094 0.0261 0.0500 0.0323 

         

𝑝𝑖𝑝𝑒𝑡−1  -0.0073 -0.0373 -0.1292** 0.0303 0.2608*** -0.0305 -0.0350 -0.1171*** 

𝑙𝑛𝑔𝑡−1  -0.0024 -0.0447* -0.0976** 0.0492** -0.2617*** 0.7469*** -0.0714* -0.1158*** 

𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑡−1  -0.0134 -0.0816** -0.2013*** 0.0155 -0.3443*** -0.1786*** 0.5272*** -0.0391 

𝑖𝑛𝑡𝑒𝑟𝑡−1  0.0028 0.0094 -0.0956** 0.0578** -0.2873*** -0.0867** -0.0658 0.7377*** 

         
Intercept 0.0001 -0.0051 -0.0095 0.0020 -0.0222 0.0148 -0.0060 0.0030 

Note: Significance levels denoted by asterisks, *: p<0.10, **: p<0.05, and ***: p<0.01. 
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Panel A: Volatility Panel B: Residential (LDZ) 

  
Panel C: Power sector Panel D: Industrial 

  
Note: The black line represents the estimated fluctuation process, while the dashed lines represent 

the 5% significance level boundaries. If the fluctuation process exceeds the critical value boundaries, 

then the null hypothesis of no structural breaks is rejected at the 5% significance level. 

 

Figure 3: Empirical fluctuation tests (OLS-CUSUM) for the volatility and 

demand equations. 

 

The OLS-CUSUM results in Figures 3 and 4 support the general impression from 

the analysis of the split dataset. The coefficients are not stable, and fluctuate over 

time. Especially the empirical fluctuation process for the pipeline and LNG 

equations exhibit substantial variations (Figure 4, panels C and D, respectively). 

Despite time-varying nature of the coefficients are time-varying, it is within certain 

limits. We are unable to reject the null hypothesis of no structural shifts, and we can 

keep the original model as presented in Table 5. 
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Panel A: Storage (net withdrawal) Panel B: Interconnector (net import) 

  
Panel C: Pipelines Panel D: LNG (net import) 

  
Note: The black line represents the estimated fluctuation process, while the dashed lines represent 

the 5% significance level boundaries. If the fluctuation process exceeds the critical value boundaries, 

then the null hypothesis of no structural breaks is rejected at the 5% significance level. 

 

Figure 4: Empirical fluctuation tests (OLS-CUSUM) for the supply equations. 

 

Conclusions 

This study seeks to examine the impact of LNG import deviations on the U.K. 

natural gas spot price volatility. The flexibility in LNG supplies suggests that it 

might have a role in peak-shaving and therefore have an impact on volatility. 

Increased volatility might also attract LNG cargoes and therefore lead to shocks in 

LNG imports. In addition, LNG might compete with other sources of flexibility 

making the dynamics complex. We therefore find it appropriate to apply a VAR 

model to capture the dynamics in the system. 

We find evidence that deviations in demand affect gas volatility on an 

aggregate level. However, we are unable to uncover any relationship between 

deviations in disaggregated demand or supply variables, such as LNG, and 

volatility. Our results suggest that there are complex interactions in the U.K. gas 

system mitigating the effect that a deviation in a single demand or supply variable 

might have on volatility. Only when the total system is shocked is there an effect 
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on volatility. A possible avenue of study is to use high-frequency data to try to 

uncover the effect of disaggregated demand and supply on gas volatility. There is 

likely to be some delay in the response time for the flexible assets, such that the 

intraday volatility might be affected by deviations in for instance residential 

demand. This effect might not be uncovered using daily data, but effects might 

materialize using data with higher granularity. 

Moreover, a possible explanation for the poor relationship between LNG 

deviations and volatility might also be explained by LNG cargoes being sold on 

different types of contracts. Spot contracts are more likely to influence volatility 

than long-term supply contracts. A topic for further study is whether splitting the 

LNG supply by type of contract might better capture a potential LNG-volatility 

relationship. 

Finally, we find that the fall in volatility is associated with decreased 

demand and a drop in crude oil volatility. While we find that the decreased gas 

volatility coincides with decreased crude oil volatility and gas demand, we have not 

examined the causal relationship. This is a topic for further study. 
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