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A B S T R A C T

Calculations of thermoelectric transport coefficients including quantum effects are performed on superlattices
using the Buttiker approximation. The results are compared to the Boltzmann transport equation with minibands
present, and to an incoherent transport model. Comparisons are performed in the linear regime for the electrical
conductivity, Seebeck and Lorenz coefficients. We show that at superlattice periods smaller than the typical
electron mean free path, the former model and the calculations including quantum effects are in agreement.
However, for longer superlattices the incoherent model is shown to be more correct.

1. Introduction

The thermoelectric properties are often improved by nano struc-
turing [1] materials. This improvement stems mostly from a reduction
of the thermal conductivity due to a reduced phonon mean free path.
However, such modifications could also have a positive impact on the
transport of charge carriers. Inclusion of nanoscale structures affects
both the electronic structure and the scattering properties of carriers,
and if tailored properly, these effects could increase the thermoelectric
conversion efficiency.

An approach to nanostructuring that is motivated by this, is the
concept of energy filtering [2–6]. In this approach the contributions to
the electrical conductivity at different carrier energies are modified
[7,3]. These contributions are contained in what is usually referred to
as the transport distribution function. For applications of thermoelec-
tricity, it is beneficial that the transport distribution function is asym-
metric and sharply peaked close to the chemical potential. Previously it
has been shown that the ideal shape of the transport distribution
function is a delta function [7,8]. Unfortunately this can never be
achieved, but by utilizing the flexibility of nano structuring it might be
possible to approach this ideal case.

The concept of energy filtering rely on the possibility to tune the
alignment of the charge carrier energy levels between different layers of
materials. A model system where such effects can be studied is for in-
stance periodic heterostructures, also known as superlattices.
Consequentially, an extensive literature has appeared that address how
the thermoelectric effect behaves in superlattices. Some of these suggest

there is a large potential for improving the conversion efficiency by this
approach [9–12,3]. Apart from isolated cases [13,14], experimental
demonstration of such improvement is largely absent. This discrepancy
could have several different sources. In fact, the synthesis and mea-
surement phases are inherently difficult. However, it has also been
suggested that the discrepancies between experiment and theory are
mainly due to the approximations employed in the applied theoretical
models [15].

Thus, there is a need too investigate less approximate models. For
this purpose, several considerations are important. It might be neces-
sary to: (i) include multiple bands past the effective mass approxima-
tion. (ii) include electrostatic interactions due to charge redistribution,
as well as strain effects in the heterostructure. (iii) explicitly consider
both the correct atomistic structure of the superlattice that is targeted,
and also how close the synthesis process actually gets to that ideal case:
Both interface roughness and deviations from the ideal periodic struc-
ture should be accounted for in the model. (iv) use better models for the
carrier scattering. This applies in particular to the constant relaxation
time approximation which is often employed. In order for the model to
have predictive power, scattering models should either be developed
from ab initio, or be based on empirical models that have been rigor-
ously demonstrated to hold in a large number of different hetero-
structures. And finally, (v) consider the validity of the applied transport
formalism.

The latter topic will be the subject of this work. The transport
formalism that is usually applied to bulk thermoelectric materials is the
semiclassical Boltzmann transport equation (BTE) [16–19]. Commonly,
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the BTE is linearized and used within the relaxation time approximation
(RTA), thus making calculations particularly tractable [18]. The BTE is
also applied to heterostructures.

However, it is not clear how the heterostructural properties of a
superlattice should be treated in the BTE. One possibility is to assume a
position dependent charge carrier energy dispersion relation upon
solving the BTE itself. However, according to the uncertainty principle
a position dependent dispersion relation is ill defined at the nanoscale.
Another possibility is to use the band structure of the dominant mate-
rial, and to treat the interfaces and barriers as a scattering mechanism.
This approach has been pursued utilizing tractable, but not necessarily
realistic models of interface scattering [10,20–23]. It is also possible to
use the BTE within individual layers of the heterostructure, and treat
transport of carriers between layers as an instance of thermionic
emission [24,11,25,26]. Finally, in the case of superlattices, the peri-
odicity of the structure allow to apply Bloch’s theorem to the hetero-
structure itself. The effect of heterostructuring is then included in the
band structure [27–31,2,32–34]. Since the energy bands of the bulk
material are split into smaller subbands known as minibands, this
model has been referred to as the miniband transport model [35]. The
miniband transport model also has a limited regime of validity [35].

Recently the thermoelectric effect in superlattices have been studied
by the application of non-equilibrium Green’s functions (NEGF)
[36–44,15,45–52]. The advantage of NEGF, is that it is derived directly
from quantum mechanics and does not rely on a semi-classical model
like the variety of BTE that is usually applied. Information dependent
on position can thus be included in the calculations without violating
the uncertainty principle. Due to its computationally demanding
nature, applications of NEGF to thermoelectric materials usually rely on
the effective mass approximation and simplified scattering models.
NEGF has however been applied beyond these approximations [53–56]
in other fields, but usually only to ordered structures. Recently new
techniques has appeared to tackle also disordered structures, typically
by employing non-equilibrium coherent potential approximation
(NECPA) [57,58].

Studies of the range of validity of the BTE and the NEGF approach
are thus of great interest. For the case of superlattices, Wacker
[35,59–61] have made a significant contribution. In particular Wacker
concludes that the miniband transport model is in agreement with
NEGF when the superlattice wells are strongly coupled in comparison
both to the scattering rate and to the electric field. Furthermore, he
describes two other approximate schemes, valid when the scattering
rate or the electric field is strong, respectively. These approximate
models are justified in three different ways: by heuristic arguments, by
formal derivation from NEGF, and finally by direct comparison of nu-
merical calculations. Thus, Wacker demonstrates quite thoroughly the
existence of three regimes where approximations to the NEGF form-
alism are valid.

However, Wacker’s work was exclusively concerned with electrical
conductivity σ . For thermoelectric applications, the Seebeck coefficient
α [17,18] and the Lorenz coefficient L [62,63] are equally important. In
addition, Wacker was mostly concerned with transport at high fields. In
thermoelectric applications we are mostly concerned with low fields, or
linear transport. A comparison of this kind was made in one recent
work employing NEGF [37]. However, this work was limited to het-
erostructures with a total spatial extent of 6 nm. Since the bulk BTE
expressions only apply in the diffusive regime, the sample should be
considerably thicker in order for the results to be comparable.

The purpose of this study is to extend the work of Wacker to include
also the Seebeck and Lorenz coefficient at low field for superlattices
with different thickness. This work is not about obtaining experimental
accuracy or reproducibility, but to investigate how quantum effects
modify the themoelectric transport coefficient and how these results
differ from the results from the BTE.

In this work we consider the most important quantum effects to
include to be the wave nature of carriers, and the momentum and

coherence loss caused by scattering. Accordingly, we have chosen to use
a ballistic quantum transport simulator, which inherently captures the
wave nature of carriers, and to incorporate the effects of momentum
and coherence loss by the use of Buttiker probes
[64,65,54,49–52,39,36]. The Buttiker probes are a set of virtual
floating contacts attached to the ballistic system. Since these probes are
floating, their only effect on the system is to randomize the momentum
and phase of the carriers similar to a scattering mechanism. This ap-
proach is often referred to as the Buttiker approximation [36]. It is
related to NEGF, but is less general and usually bears a lower compu-
tational cost. The Buttiker probes are described by self energies, in the
same way as scattering processes are in NEGF. However, a key differ-
ence between the two methods is that the Buttiker approximation does
not allow for the explicit definition of lesser self energies [64,66]. In
practice this yields less control of the assignation of new states to car-
riers after scattering [64].

This work is organized as follows: The theoretical aspects are de-
scribed and discussed in Section 2, where our quantum transport ap-
proach is described in Section 2.1. Sections 2.2 and 2.3 describes re-
spectively the miniband transport model, and a second semiclassical
approach that assumes incoherent transport between barriers. In Sec-
tion 3 we show the results of our calculations. There we make two
separate studies where we compare the electrical conductivity, the
Seebeck and the Lorenz coefficient, as calculated by the Buttiker ap-
proximation, the miniband transport model, and by the incoherent
model of Section 2.3. In Section 3.1 we study how the agreement be-
tween the models depend on the scattering rate, while in Section 3.2 we
study how this agreement is affected by the size of the superlattice
period. Finally, in Section 4 we provide final discussion and conclu-
sions.

2. Theory and models

2.1. The Buttiker approximation

We utilize a ballistic quantum transport simulator with Buttiker
probes [64,65]. The employed simulator is Kwant [67,68], which re-
quires the definition of a tight binding model in the transport region,
and a set of attached leads. Kwant efficiently solves the resulting
quantum mechanical scattering problem, using either a wave function
or a Green’s function based approach. On completion, the ballistic
transmission functions between the leads are obtained.

Only two of the leads attached to the transport region represent real
contacts. These are the emitter and collector, between which currents
would be measured in an experiment. The remaining leads are Buttiker
probes, which are included to emulate scattering processes. For reasons
of computational efficiency, the Buttiker probes are only connected to a
subset of the sites in the transport region, and the density of Buttiker
probes are controlled by the parameter dsc. More specifically, the
Buttiker probes are attached at regular intervals between the two real
contacts, with one single probe per dsc unit cells of the materials com-
posing the heterostructure.

The interactions between the leads and the scattering region are
described by retarded self energy functions [64,68]. In this work, the
retarded self energies of the Buttiker probes are defined as = −i τΣ ℏ/2r ,
which result in the relaxation of carrier momentum with a character-
istic relaxation time τ [69,50]. This allows for a particularly simple
comparison to the BTE within the RTA. When >d 1sc , the scattering self
energies are modified to = −d i τΣ · ℏ/2r

sc , to compensate for the lower
density of Buttiker probes. The magnitude of the self energies of the
contacts are not of significance, since our calculations are made in such
a way as to be independent of contact effects. Please consult our pre-
vious work for additional details [69].

The retarded self energy functions describe how carriers are ab-
sorbed by the Buttiker probes [64]. In addition, it is necessary to de-
scribe how carriers are emitted. Within the NEGF formalism, carriers
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that enter the system are described by the lesser self energies <Σ [64].
However, within our ballistic framework, these cannot be explicitly
defined. Instead, we define the re-emission of carriers after absorption
by a Buttiker probe as follows: Carriers are re-emitted from the same
probe at which they were absorbed with the same energy and mo-
mentum orthogonal to the transport direction as before absorption. The
momentum component parallel to the transport direction is rando-
mized. The scattering process thus conserves charge, energy and
transverse momentum. The conservation of energy is by choice, since
we want to model elastic scattering. On the other hand, the conserva-
tion of transverse momentum is only introduced for reasons of com-
putational efficiency.

By extending the expression for transmission [64,69], we use Kwant
together with the scheme described earlier to calculate the effective
transmission between the two real contacts. Since only elastic scattering
is present, we make use of the Landauer transport formalism to connect
the effective transmission function to the relevant transport coeffi-
cients. These are in our case the electrical conductivity σ , the Seebeck
coefficient [17,18] α and the Lorenz coefficient L. The latter is defined
as =κ σLTe [62,63]. Here κe is the electron contribution to the thermal
conductivity. In the linear regime, the magnitude of these coefficients in
the cross plane direction can be expressed as [69–71]

∫=σ E E F Ed Σ( ) ( ),T (1a)

∫= − −α
σeT

E E F E E μ1 d Σ( ) ( )( ),T (1b)

∫= − −L
σe T

E E F E E μ α1 d Σ( ) ( )( ) .T2 2
2 2

(1c)

where EΣ( ) is the transport distribution function, and F E( )T is the
thermal broadening function or Fermi window = −∂ ∂F E f E( ) /T , where
f is the Fermi-function.

2.2. The miniband transport model

Following Wacker’s nomenclature [35], we refer to the application
of the BTE, using the band structure of the superlattice, as the miniband
transport model. The superlattice band structure may be obtained by
schemes of varying approximation, ranging from the introductory
Kronig Penney model [27,28,72] to ab initio approaches such as DFT
[30,34]. In this study we use the band structure resulting from the
solutions of the same tight binding model used in the Kwant simulations
discussed above as input to the BTE. This allows for a direct comparison
of the results, without considering differences in electronic structure
between the models. In addition, the tight binding model allows cal-
culations on superlattices with very large periods with acceptable ac-
curacy.

The validity of the miniband transport model have been extensively
investigated by Wacker [35,59]. He describes two conditions ≫t ℏΓ
and ≫t eFa, both of which must be satisfied for the miniband model to
be valid. Here t is the coupling energy between neighboring wells of the
superlattice, Γ is the scattering rate, F is the applied electric field, and a
is the superlattice period. In this work we study linear transport and the
latter condition is satisfied by definition. The former may be heur-
istically rewritten as follows: within a simple nearest neighbor tight
binding description, the miniband energy dispersion along the growth
direction is given by =E k t ka( ) 2 cos . Thus, the velocity is

= ∂ ∂ ∼v E k ta/ /ℏ /ℏk . Given this, we may rewrite Wacker’s first condi-
tion as

≪a vτ. (2)

Here =τ 1/Γ is the average scattering time, which in the case of our
simple scattering model is equal to the momentum relaxation time. In
our previous work [69], Eq. (2) was also derived by a heuristic argu-
ment involving Heisenberg’s uncertainty relations.

The product vτ will generally be similar to the coherence length

[64] lϕ. As such Eq. (2) is thus equivalent to a condition stated in
previous work [10,2], namely that the superlattice period should be
shorter than lϕ for the miniband model to apply. This condition is in-
tuitive, since the minibands always arise from the solution of some
wave equation. When >a lϕ, the electron behavior is not coherent
within the unit cell, and accordingly no wave equation is applicable.

2.3. The sequential transmission model

In addition to the case ≫t ℏΓ, Wacker also describes an approx-
imate model that applies in the opposite limit ≪t ℏΓ [35,59], here
given by ≫a vτ . This model, which he refers to as the sequential tun-
neling model, is extensive and involves scattering theory beyond
Fermi’s golden rule. The reason why this is necessary, is that the applied
field misaligns the energy levels of the different wells, so that first order
scattering expressions result in zero current due to energy conservation
[35]. However, since we here only study linear transport, we express
the currents in terms of transmission functions at zero bias [64], where
this does not pose a problem.

Thus, we make use of another model employed in previous work
[20], which we will refer to as the sequential transmission model. It is
derived here again for consistency. A central assumption for proceeding
is that transport between different wells in the superlattice is incoherent
[35]. We then use incoherent transmission functions [73] in series,
expressed as

= + −
T T T
1 1 1 1.

1 2 (3)

The transmission through a single superlattice period can be found
from this by substituting the well transmission Tw for T1, and the barrier
transmission Tb for T2. The transmission through N periods can then be
found by applying the addition formula inductively to get

⎜ ⎟− = ⎛
⎝

+ − ⎞
⎠T

N
T T

1 1 1 1 2
w b (4)

⎜ ⎟⎜ ⎟= ⎛
⎝

− ⎞
⎠

+ ⎛
⎝

− ⎞
⎠

N
T

L
a T

1 1 1 1 ,
w b

where L is the total length of the N periods.
In the case where there are no barriers present we obtain by the

same procedure

⎜ ⎟− = ⎛
⎝ ′

− ⎞
⎠T

N
T

1 1 1 1 ,
bulk w (5)

where ′Tw is the transmission function of the well sections. Since these
sections are thicker in absence of barriers, ′ ≠T Tw w. However, if the
well sections are considerably thicker than the barriers, then the change
in thickness will be small and = ′T Tw w is a good approximation. In this
case, we may combine Eqs. (4) and (5) such that

⎜ ⎟− = − + ⎛
⎝

− ⎞
⎠T T

L
a T

1 1 1 1 1 1 .
bulk b (6)

In the literature, we also find the back scattering mean free path λ
defined through the expression − =T L λ1/ 1 / [73,70]. Inserting this, Eq.
(6) becomes

⎜ ⎟= + ⎛
⎝

− ⎞
⎠λ λ a T

1 1 1 1 1 ,
bulk b (7)

which applies in the limit where both ≫a vτ and ≫a b, with b being
the thickness of the barriers. If we also assume ≪b vτ , we can ap-
proximate Tb to be ballistic, which allows for more efficient calcula-
tions.

Within the Landauer transport formalism, the transport distribution
function EΣ( ) is determined by the back scattering mean free path [70]
and Eq. (7) is thus sufficient to determine the thermoelectric transport
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coefficients σ α, and L. One can also use the derived expressions for the
transport in the Landauer approach and the BTE [70,69] to express Eq.
(7) in terms of relaxation times in the RTA. The resulting expression
becomes

⎜ ⎟= + ⎛
⎝

− ⎞
⎠τ τ

v
a T

1 1 2 1 1 ,
bulk b (8)

and must be used in the BTE together with the band structure of the
well material. This expression is an instance of Matthiessen’s rule [66]:
The first term on the right is the relaxation rate of the bulk well ma-
terial, while the last term is the relaxation rate of scattering on barriers.

3. Results

The transport distribution function is calculated from the trans-
mission function [64] by utilizing the Landauer formalism. Please
consult our previous work [69], where this approach is explained in
detail. Additional details can also be found in the literature
[73,64,70,71]. In this work we again utilize CdTe and CdHgTe alloys as
a model system. Their only role of this work is to provide a somewhat
realistic system from which the band structure can be constructed.
Details of the tight-binding model and fitting procedure from first-
principle calculations, as well as the resulting parameters, can be found
in our previous work [69].

3.1. Dependence on the scattering time.

According to the discussion of Section 2.2 we expect agreement
between the Buttiker and the miniband model for large values of τ . At
smaller values this agreement should disappear, and the quantum
transport model should eventually agree with an incoherent model. In
this section, the calculations are performed on a superlattice containing
at total of 16 unit cells, eight of CdTe followed by eight of
Cd Hg Te0.75 0.25 . The resulting spectral function and transport properties
are shown in Fig. 1 for different values of τ , ranging from 1 fs to 0.1 ps.
At larger values of τ , the thickness L of the simulated region must be
larger in order for the transport process to remain incoherent. Ac-
cordingly, L is chosen respectively as 337, 169, 84.5 and 42.3 nm for

=τ 100, 50, 20 and 10 fs, and as 21.1 nm (two superlattice periods) for
=τ 5, 2 and 1 fs. Similarly, at smaller values of τ the coherence length is

shorter, so that dsc must be smaller in order to sample structures at
smaller length scales. Thus, we choose =d 2sc when =τ 100, 50 or 20 fs,
and =d 1sc when =τ 10, 5, 2 or 1 fs.

The operating principles behind these choices are that we always
have ≳L vτ4 , while dsc satisfies both ⩽d 2sc and <d a vτ/4sc . The first
two of these conditions originate from our previous work [69], while
the latter is a heuristic condition based on the desire to have a rea-
sonable sampling of the coherence length. The group velocity v is es-
timated to 〈 〉 = 〈∂ ∂ 〉 ≈kv Eℏ / 0.6 eVÅ, from the band structure of the
Cd Hg Te0.75 0.25 model [69].

Our implementation of the Buttiker approximation calculates the
transport distribution function as an integral over the transverse com-
ponent of k-space. This integration makes use of the midpoint method,
and is performed in cylindrical coordinates. The integration grid has an
evenly distributes sampling of =N 100k points in the radial k-direction,
and a distance of =δ 0.03θ between points in the angular direction in
direct k-space [69]. Calculation of transport coefficients requires in-
tegration over energy, which also utilize the midpoint method on a
regular sampling of =N 200E points between =E 2.0min eV and

=E 4.0max eV. This interval surrounds the band gaps of the involved
materials, as can be seen in our previous work [69].

The routines to perform the BTE calculations required by the
miniband transport model, are explained in detail in a separate work
[74]. In summary a regular cubic integration grid was used, employing
a resolution of =N 51k

xy points in the kx and ky directions, and =N 13k
z

points in the kz direction, which is the transport direction and the cross
plane direction of the super lattice. These choices were again based on
convergence studies performed in our previous work [69]. The tight
binding model was used to generate the band structure on this grid
followed by a step of numerical differences to extract the velocities.
Finally, a trapezoidal integration scheme was performed. The relaxa-
tion time was fixated at 1 fs to be compatible with the model used for
the Buttiker model.

In Fig. 1a, we present the results of E τΣ( )/ for different values of τ .
Since evaluating EΣ( ) using the BTE is demanding, we show only results
of the Buttiker approximation and the sequential transmission model.
However, in our previous work we demonstrated that our im-
plementation of the Buttiker approximation is in agreement with the
miniband transport model for short period superlattices and large va-
lues of τ , in agreement with Section 2.2. We thus expect the miniband
transport result to largely agree with results from the Buttiker ap-
proximation at =τ 100 fs. Since the BTE expression for EΣ( ) is pro-
portional to τ [18,17], the miniband results with smaller values of τ
would also be identical to this curve. The calculated results from the
miniband model contains numerical noise, which originates from a too
course integration grid. As we approach a very low temperature which
is required to produce EΣ( ) an extremely dense integration grid is
needed. In the calculation of transport coefficients, this noise is smeared
by the finite temperature, and is thus not of particular significance. In
order not to confuse readers we thus opted not to show these results in
Fig. 1a.

The sequential transmission model does not agree with the Buttiker
approximation, even for small values of τ . However, such agreement is
not to be expected here. In addition to the requirement ≪ ≫vτ a a b,
also need to be satisfied. This is not the case, since = =b a/2 5.3 nm.
The sequential transmission model is by design more suited for large
superlattice periods than small values of τ . Small values of τ may in-
stead require a more sophisticated sequential model, such as the one
described by Wacker [35,59].

Figs. 1b–d compare the electrical conductivity, Seebeck and Lorenz
coefficients calculated using the Buttiker approximation and the mini-
band transport model. The sequential transmission model is not shown,
since its failure is demonstrated already in Fig. 1a. In Fig. 1b the
electrical conductivities are normalized by the magnitude of τ . This
makes the miniband transport results independent of τ in all three
figures, due to the cancellation of a constant relaxation time in the α
and L [18,17]. The miniband transport results are in good agreement
with those of the Buttiker approximation when =τ 100 fs, but when τ is
reduced the agreement gradually disappears. This effect is in agreement
with the discussion concerning Eq. (2).

In all four Figs. 1a-d, we see clear oscillations in the transport
coefficients as a function of the chemical potential μ. This effect ori-
ginates when the chemical potential is varied, and the contributions
from the minibands are picked up. When τ is decreased, the oscillations
are gradually smeared, indicating that the miniband structure dis-
appears. For the smallest values of τ , even variation in transport
properties originating in the bulk band gap is beginning to smooth out.
However, the disappearance of the band gap is probably an artifact of
the crudeness of our scattering model. One can show that a scattering
model of the type described in Section 2.1 will cause a Lorenzian
broadening of eigenstates [64], which given sufficiently small values of
τ will smooth out any structures in the transport properties. However,
in the more realistic case of a non-constant relaxation time, the
broadening of eigenstates can have a more complicated shape [64],
allowing for the band gap to be maintained.

3.2. Dependence on the superlattice period

The question of dependence on the superlattice period is experi-
mentally relevant to a larger extent than that of the previous section,
since the scattering time tends to fall in the range =τ 10–1000 fs, while
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the superlattice period can be tailored during synthesis.
In Figs. 2 and 3, results are shown for several different superlattices,

having periods ranging from 11 to 340 nm. All of the supercells are
composed of a single barrier layer composed of eight unit cells of CdTe,
and a single well layer composed of Cd0.75Hg0.25Te. The results from
the Buttiker approximation were obtained at =τ 100 fs, with =d 2sc ,

and using the same integration grid as in the previous section. The BTE
calculations also use the same integration grid as in the previous sec-
tion.

Fig. 2 shows the transport distribution function, which is compared
to that of pure CdTe and Cd0.75Hg0.25Te. Only results from the Buttiker
approximation and the sequential transmission model are shown.
Comparison to the miniband transport model is left for Fig. 3 where we
show respectively the conductivities, Seebeck coefficients and Lorenz
coefficients of the mentioned superlattices, calculated at 300 and 700 K.
Fig. 3 includes results from the Buttiker approximation, the sequential
transmission model, and the miniband transport model.

At short superlattice periods, the Buttiker approximation is in rea-
sonable agreement with the miniband transport model, while for large
superlattice periods it agrees more closely with the sequential trans-
mission model. Consequently, the expectation that Eq. (7) is valid for
large periods is confirmed, also for the Seebeck and Lorenz coefficient.
The transition between the two regimes is better illustrated in Fig. 4,
which shows the calculated transport coefficients as a function of the
superlattice period a at the three values of =μ 2.6, 3.0 and 3.35 eV.
These chemical potentials are also illustrated by vertical lines in Fig. 3.

In all results where significant difference can be seen between the
models, the Buttiker approximation changes from agreeing with the
miniband model to the sequential transmission model at around

=a 100 nm. As discussed above, the average group velocity of
Cd0.75Hg0.25Te in the conduction band is approximately 0.6 eVÅ. Since

=τ 100 fs, 〈 〉 ≈v τ 90 nm. The transition at ∼a 100 nm is thus confirmed
to be close to the relaxation length vτ , which gives confidence that the
mean free path is a reasonable estimate of the transition point between
the two regimes. In fact, within the accuracy to which this can be

Fig. 1. Transport coefficients for electrons in an 8-8 CdTe-Hg0.25Cd0.75Te superlattice as function of the chemical potential μ. The solid and dashed lines are
calculated by the Buttiker approximation, the circles by the miniband transport model, and the dotted lines and crosses by the sequential transmission model. For the
solid and doted lines, the black, green, turquoise and blue results are from calculations with τ =100, 50, 20 and 10 fs, respectively. For the dashed lines and the
crosses, the black, green and turquoise lines are from calculations with τ =5, 2 and 1 fs, respectively. Furthermore, in panel (b–d) results in black, green, turquoise
and blue are calculated at 300 K, while the purple, red, orange and gray lines are calculated at 700 K. Among the solid and dashed lines, the purple, red, orange and
gray lines respectively have τ =100, 50, 20 and 10 fs. Among the dashed lines and crosses the purple, red and orange lines have τ =5, 2 and 1 fs respectively. The
miniband results are shown as blue and red dots at 300 K and 700 K, respectively. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 2. Transport distribution function in multiple superlattices. Results shown
in green, turquoise, blue, purple red and orange are calculated respectively with
superlattice periods of 16, 32, 64, 128, 256 and 512 unit cells of the composing
materials. Among these, solid lines represent the Buttiker approximation, while
crosses represent the sequential transmission model. The brown and black da-
shed lines are respectively the transport distribution function of bulk CdTe and
Cd0.75Hg0.25Te. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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judged, the transition seems to happen exactly at =a vτ . However, this
is likely to be an artifact of our simplified scattering model, where the
momentum relaxation time is by construction equal to the coherence
time [69]. In general we should expect the transition to happen near the
phase relaxation length, of which the momentum relaxation length vτ is
usually only a rough estimate [64].

We would also like to emphasize that the transition region in Fig. 4
appears to be quite small. If this fact generalizes, then the respective
conditions ≫vτ a and ≪vτ a of the miniband transport and sequential
transmission regimes, can be modified to ≳vτ a and ≲vτ a. The ther-
moelectric effect in superlattices can thus possibly always be studied
using semiclassical approaches, and that the only role of quantum
transport is to determine the transition point between the coherent and
incoherent regimes. In order to confirm this, further studies are needed,
which include different material systems and more realistic scattering
mechanisms.

4. Summary and conclusion

The purpose of this work was to provide demonstrations of validity
regimes of semiclassical treatment of electron transport in superlattices,
extend earlier work [35,59–61] to also include thermoelectric transport
coefficients, and to perform an exclusive treatment of the linear regime.
Our approach utilized the Buttiker approximation, and performed ex-
plicit comparisons between the resulting transport coefficients and two
different semiclassical models described in Sections 2.2 and 2.3.

We showed that the miniband transport model is better fit to re-
produce the results of the Buttiker approximation for large values of the
scattering time τ . We also compared the results of the Buttiker ap-
proximation to the sequential transmission model, and in the case of the
structure with a short period discussed in Section 3.1, we found a poor
match for all values of τ . However, as we showed, this is expected. In
Section 3.2, we showed that the miniband transport model and the

Fig. 3. Transport coefficients in multiple superlattices as function of the chemical potential μ of electrons. Results shown in green, turquoise, blue, purple red and
orange are calculated respectively with superlattice periods of 16, 32, 64, 128, 256 and 512 unit cells of the composing materials. Solid lines represent the Buttiker
approximation, crosses represent the sequential transmission model, while circles represent the miniband transport model. The three vertical lines represent values of
μ at which the dependence on period is examined more closely in Fig. 4. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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Buttiker approximation are in good agreement for superlattice periods
shorter than ∼ 100 nm, while the sequential transmission model and
Buttiker approximation are in agreement for periods larger than
∼ 100 nm. To summarize, our results are in excellent agreement with
the expectations discussed in Sections 2.2 and 2.3, and with those stated
in earlier works for the case of conductivity [35,59–61]. We can con-
clude that these observations should also hold for the Seebeck and
Lorenz coefficient.

It has been argued that superlattices with high thermoelectric effi-
ciency should have a short period to inhibit phonon transport [2].
Consequently they should then fall into the miniband regime which
would simplify future interpretation and calculations significantly.
However, a good thermoelectric material also requires a high electrical
conductivity, which suggests that the superlattice period should be
large, so as not to inhibit the motion of carriers. Increased focus on the
electrical properties is also becoming increasingly important due to the

fact that several bulk materials already possess a very low thermal
conductivity below 1W/mK. Secondly, there could be other ways of
reducing phonon transport than having a short period. For instance, one
could let the superlattice period itself have a complex structure. Ac-
cordingly, we conclude that the question of coherent versus incoherent
transport models may in fact be important to the design of thermo-
electric heterostructures, and that some special cases may even require
a full quantum transport approach, such as the Buttiker approximation
or NEGF.
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Fig. 4. Transport coefficients as function of the superlattice period a. Results shown in black, green and blue are calculated respectively with a chemical potential of
=μ 2.6 eV, =μ 3.0 eV and =μ 3.36 eV. The different line styles represents different models. The solid lines represent the Buttiker approximation, the dashed lines the

miniband transport model, while the dotted lines represent the sequential transmission model. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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