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Abstract 2 

Aim: An automatic resuscitation rhythm annotator (ARA) would facilitate and enhance retrospective 3 

analysis of resuscitation data, contributing to a better understanding of the interplay between therapy 4 

and patient response. The objective of this study was to define, implement, and demonstrate an ARA 5 

architecture for complete resuscitation episodes, including chest compression pauses (CC-pauses) 6 

and chest compression intervals (CC-intervals).  7 

Methods: We analyzed 126.5h of ECG and accelerometer-based chest-compression depth data from 8 

281 out-of-hospital cardiac arrest (OHCA) patients. Data were annotated by expert reviewers into 9 

asystole (AS), pulseless electrical activity (PEA), pulse-generating rhythm (PR), ventricular 10 

fibrillation (VF), and ventricular tachycardia (VT). Clinical pulse annotations were based on patient-11 

charts and impedance measurements. An ARA was developed for CC-pauses, and was used in 12 
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 2 

combination with a chest compression artefact removal filter during CC-intervals. The performance 13 

of the ARA was assessed in terms of the unweighted mean of sensitivities (UMS). 14 

Results: The UMS of the ARA were 75.0% during CC-pauses and 52.5% during CC-intervals, 55-15 

points and 32.5-points over a random guess (20% for five categories). Filtering increased the UMS 16 

during CC-intervals by 5.2-points. Sensitivities for AS, PEA, PR, VF, and VT were 66.8%, 55.8%, 17 

86.5%, 82.1% and 83.8% during CC-pauses; and 51.1%, 34.1%, 58.7%, 86.4%, and 32.1% during 18 

CC-intervals.       19 

Conclusions: A general ARA architecture was defined and demonstrated on a comprehensive OHCA 20 

dataset. Results showed that semi-automatic resuscitation rhythm annotation, which may involve 21 

further revision/correction by clinicians for quality assurance, is feasible. The performance (UMS) 22 

dropped significantly during CC-intervals and sensitivity was lowest for PEA.  23 

Keywords: — Cardiac arrest, cardiopulmonary resuscitation, cardiac rhythm classification, automatic resuscitation 24 

rhythm annotator 25 

 26 

1. INTRODUCTION 27 

The annotation of cardiac rhythms in full-length resuscitation episodes would contribute to a 28 

richer retrospective analysis of resuscitation data and to a better understanding of the interplay 29 

between therapy and patient response.
1
 It could help to determine optimal chest compression 30 

strategies, a better understanding of the effects of chest compression pauses and their duration, or to 31 

maximize the likelihood of successful defibrillation attempts.
2-7

 To date, cardiac rhythm classification 32 

and the identification of rhythm transitions with and without chest compression artefacts have been 33 

done manually by expert clinicians. However, manual annotation is cumbersome, time-consuming, 34 

and error-prone, and these factors may have precluded the annotation of rhythms in large databases 35 

of resuscitation episodes. 36 
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An automatic or semi-automatic rhythm annotator would open the possibility of annotating the 37 

currently available large resuscitation datasets.
8-11

 In previous contributions we addressed the design 38 

of (semi)-automatic resuscitation rhythm annotators based on ECG analysis.
12,13

 When designed and 39 

tested on a quality-controlled dataset, the overall performance of our algorithms was 77.7% in the 40 

classification of rhythms into the five typical resuscitation rhythm categories: asystole (AS), pulseless 41 

electrical activity (PEA), pulse-generating rhythm (PR), ventricular fibrillation (VF), and ventricular 42 

tachycardia (VT). In this manuscript, the term resuscitation rhythm category refers to a mixture of 43 

rhythm class and clinical state. There are four ECG rhythm classes VT, VF, AS and organized 44 

(ORG), and two medical states for presence or absence of detectable pulse. The latter results in PR 45 

and PEA annotations for ORG rhythms. Furthermore, identification of pulse using only the ECG is a 46 

complex biomedical signal processing challenge,
12,13

 and this work assesses partially the extent to 47 

which one can use ECG data alone for that purpose.  48 

The proposed algorithms in our previous works were conceived to annotate artefact-free 3-second 49 

isolated ECG segments; consequently, they worked only during chest compression pauses. Short 50 

isolated ECG data segments cannot fully represent the dynamics and transitional state changes 51 

between rhythms occurring in complete resuscitation episodes. More importantly, artefact-free 52 

segments ignore the presence of cardiopulmonary resuscitation (CPR) artefacts, which are present 53 

during 50-80% of the duration of the episodes.
14-16

 In this paper, we introduce an improved 54 

classification algorithm, but above all, we describe the functional architecture of a resuscitation 55 

rhythm category classification system for full episodes, an architecture that addresses intervals with 56 

and without CPR artefacts. Furthermore, we demonstrate and evaluate the accuracy of the system on 57 

a comprehensive dataset of clinically annotated complete resuscitation episodes. This architecture 58 

integrates a body of knowledge developed over the last decade in signal processing applied to 59 
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resuscitation data annotation, in line with the general annotation framework proposed by Eftestøl et 60 

al.
1 

for the comprehensive analysis of resuscitation data.    61 

2. MATERIALS AND METHODS 62 

2.1 Resuscitation episode dataset 63 

The dataset comprises 126.5h of ECG and chest compression depth (CCD) signal derived from 64 

the acceleration recordings as explained by Aase et al.
17

 from 281 patients suffering out-of-hospital 65 

cardiac arrest (OHCA). Data collection was conducted between March 2002 and September 2004 to 66 

evaluate the quality of CPR in three cities: Akershus (Norway), Stockholm (Sweden), and London 67 

(UK).
3,18

 Modified Heartstart 4000 (Philips Medical Systems, Andover, MA, USA) defibrillators 68 

with enhanced monitoring capabilities were used to record the data. ECG data were sampled at 500 69 

Hz with 16 bits per sample and a resolution of 1.031 μV per least significant bit. The study was 70 

approved by ethical boards at each site. The need for informed consent from each patient was waived 71 

as decided by these boards in accordance with paragraph 26 of the Helsinki Declaration for human 72 

medical research. The study was registered as a clinical trial at http://www.clinicaltrials.gov/, 73 

(NCT00138996). 74 

In the original study,
3
 the initial rhythm category and all transitions throughout the episodes were 75 

annotated into five categories (AS, PEA, PR, VF, VT) under two different conditions: 1) during chest 76 

compression pauses (CC-pauses) in which there were no CPR-artefacts, and 2) during chest 77 

compression intervals (CC-intervals) in which there were significant CPR-artefacts. The CCD from 78 

CPR assist-pads was used to recognize CC-intervals.  79 

Data was annotated concurrently by an anesthesiologist specialized in advance life support and by 80 

a biomedical engineer with expertise in resuscitation science, to ensure adherence to rhythm 81 
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definitions.
3
 Differences were adjudicated by consensus between the two reviewers. During CC-82 

intervals rhythm transitions were annotated conservatively, i.e. only when clear signs of the rhythm 83 

transition were observable such as QRS complexes appearing during CPR after asystole (AS to 84 

PEA). The reviewers followed these definitions for rhythm categories.
3,13

 AS for rhythms with peak-85 

to-peak amplitude below 100 μV, and/or rates under 12 bpm. Rhythms with supraventricular activity 86 

(QRS complexes) and rates above 12 bpm were labelled as either PR or PEA. Pulse annotations (PR) 87 

were based on clinical annotations of return of spontaneous circulation made in patient charts during 88 

CPR, and on the observation of fluctuations in the TTI signal aligned with QRS complexes. Irregular 89 

ventricular rhythms were annotated as VF. Fast and regular ventricular rhythms without pulse, and 90 

rates above 120 bpm were annotated as VT.  91 

Finally, data were reviewed by an independent biomedical engineer, and intervals with severe 92 

noise, large artefacts (not due to compressions), or with loss of ECG signal were labelled as uncertain 93 

and discarded from further analysis. 94 

2.2 Architecture for rhythm category classification of resuscitation episodes 95 

The proposal for the functional architecture of the automatic resuscitation rhythm annotator 96 

(ARA) is shown in Fig 1, and it consists of four subsystems. The first subsystem is a CC-interval 97 

detector in which compressions are detected using the CCD signal.
19

 During CC-intervals CPR 98 

artefacts are removed from the ECG using a CPR-artefact removal filter (CARF),
20

 during CC-pauses 99 

the ECG remains untouched. The next subsystem, the rhythm classification engine (RCE), is the core 100 

algorithm of the ARA and classifies the ECG into the five resuscitation rhythm categories. The final 101 

subsystem, the post-processing filter, combines consecutive rhythm labels from the RCE to avoid 102 

rapidly changing annotations during transitional states. The CC-interval detector and CARF have 103 

been described elsewhere,
19,20

 so we describe the RCE and the post-processing filter in the following. 104 
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2.3 Rhythm classification engine 105 

The RCE is an improved version of our classification algorithms,
12,13

 and it was designed to 106 

classify artefact-free 3-s ECG segments. It consists of a neural network committee machine that 107 

combines the decisions of 10 artificial neural networks (ANNs). The detailed technical description is 108 

provided in Appendix A. The dataset used to train the ANNs had no CPR-artefacts,
13

 so the RCE was 109 

designed to work during CC-pauses or after CPR-artefact suppression. To classify a complete 110 

episode, the RCE was applied to 3-s segments with an overlap of 2-s, this produced a rhythm 111 

category annotation every second. 112 

2.4 Post-processing filter 113 

The output of RCE is a sequence of rhythm labels, one label every second. During long 114 

sequences of a particular rhythm some isolated annotations from the other classes may appear. For 115 

instance, during a long VF interval, we may have some AS labels (short segments of lower 116 

amplitude) or some PEA labels (short segments with a more organized pattern). These labels either 117 

could be misclassifications of the ARA, or caused by the localness (short analysis intervals) of the 118 

ARA. To address these effects and partially benefit from the mutual information of adjacent labels 119 

two post-processing blocks were added, a moving average filter to avoid isolated label changes (see 120 

Appendix A), and a post-processing filter that replaces rhythm labels sustained during less than 6s 121 

with the previous rhythm label. 122 

2.5 Evaluation of the performance 123 

The detailed performance evaluation of the ARA can be summarized in a 5-class confusion 124 

matrix, with the correct classifications in the diagonal and the incorrect classifications for each 125 

rhythm category class into the rest of the classes outside the diagonal, see Rad et al.
13

 for a 126 

comprehensive description. In addition, the overall performance of our system was evaluated using a 127 
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summarizing metric, the unweighted mean of sensitivities (UMS). UMS is the average of the 128 

sensitivities for each rhythm type (proportion of correct classifications), and in an application with 129 

multiple classes (5 rhythm categories) and imbalanced data (different rhythm prevalence) it is an 130 

adequate summary of the performance of the ARA.
13

 UMS is computed from the confusion matrix as 131 

the average of the values of its diagonal. Confusion matrices and UMS were computed separately for 132 

intervals with and without CPR-artefacts, since rhythm analysis during CPR is much less reliable 133 

even in simpler shock/no-shock decision scenarios.
21 

 134 

3. RESULTS 135 

The aggregate duration of the 281 episodes was distributed in 62.7h during CC-pauses, 54.5h 136 

during CC-intervals, and 9.3h in intervals labeled as “uncertain” due to the high level of background 137 

noise. The numbers of hours for each rhythm type, as labeled by expert clinicians, during both CC-138 

pauses and CC-intervals are summarized in Table 1. 139 

The performance of the ARA during CC-pauses and CC-intervals are shown in Table 2. Data are 140 

presented in the form of confusion matrices. For each rhythm category, misclassification rates into 141 

other rhythm categories are read row-wise, and the values of the diagonals show the sensitivities for 142 

each rhythm category. In addition, the table shows the numbers of hours of data for each possibility. 143 

The overall performance in terms of UMS of our ARA during CC-pauses and CC-intervals were 144 

75.0% and 52.5%, respectively. Filtering CC-artefacts improved the performance of the ARA since 145 

without CARF the overall performance dropped 5.2-points to 47.3%, see Table 3.  146 

Fig. 2 and 3 show examples of rhythm annotations by the ARA. Fig. 2 shows two successful 147 

examples where the annotations by the ARA match the manual ones, however Fig. 3 shows examples 148 

in which there are misclassified segments. Fig. 3 panel (a) shows a 35-second interval that was 149 
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annotated as PEA by clinicians. The ARA misclassified a 12s CC-pause interval (10-22s) as AS 150 

because no evident complexes occurred in the ECG, and during the CC-interval the CARF removes 151 

the artefact but leaves a filtering residual that is misclassified as VF, a well-known problem in 152 

shock/no-shock decision during CPR.
20,22

 The example in Fig. 3 panel (b) shows a VF in which there 153 

are intervals of lower amplitude (fine VF) that are misclassified as AS. However, during 15s CC-154 

interval (20-35s) the CARF efficiently removes the artefact revealing the underlying VF. 155 

4. DISCUSSION 156 

This paper presents an automatic system for the comprehensive retrospective analysis of 157 

resuscitation episodes that integrates different subsystem which were designed either exclusively for 158 

this task (RCE) or for other tasks but adapted to the current system, such as the CARF
20

 or the chest 159 

compression detector.
19

 To the best of our knowledge, this is the first system capable of annotating 160 

resuscitation rhythms (5 types) and chest compression events automatically for complete episodes (or 161 

datasets of episodes). Furthermore, the rhythm annotation performance of the system was 162 

demonstrated using a comprehensive dataset of resuscitation rhythms, as a proof of concept study 163 

that allowed the identification of caveats and areas of improvement and future research.   164 

4.1 Performance for rhythm category annotation on complete episodes  165 

The UMS of the ARA during CC-pauses and during CC-intervals were 75% and 52.5%, 166 

respectively. These UMS figures are 55-points and 32.5-points above the 20% value a random guess 167 

would achieve in this 5-state problem. During CC-pauses, the UMS was 2.7 percentage points below 168 

that of our previous experiments with a simpler RCE.
13

 However, those experiments were conducted 169 

using isolated 3-s ECG segments of quality-controlled data (1.4h of data) suitable for the 170 

development of the RCE, i.e. segments with a single rhythm category and no artefacts. When taken to 171 
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a real scenario, i.e. the annotation of a large repository of resuscitation data, performance drops due 172 

to the presence of transitional rhythms, borderline rhythms, and artefacts. 173 

During chest compressions, the use of a CPR-artefact removal filter (CARF) increased the UMS 174 

5.2-points, from 47.3% to 52.5%. CPR artefacts pose a great challenge to rhythm identification, a 175 

well-known problem also for shock advice algorithms.
21

 For the shock/no-shock decision problem, 176 

filtering increases the average performance by 14 to 17 points.
20,23,24

 However, resuscitation rhythm 177 

annotation is much more complex since there are four misclassification possibilities for each rhythm 178 

category. In this study, we used a CARF designed for the shock/no-shock decision problem in 179 

combination with an RCE designed to annotate artefact-free ECG segments. Future developments 180 

should explore the design of CARFs for resuscitation rhythm annotation and the design of RCEs 181 

specifically for rhythm classification during CC-intervals, in line with some recent developments for 182 

shock advice algorithms.
25

 183 

4.2 Post-processing of annotations and contextual analysis of ECG data  184 

An ARA system is conceived to retrospectively annotate data, and could therefore use and 185 

process all data in the episode before producing the final rhythm labels. In the current study the RCE 186 

was designed using isolated ECG segments, and the ARA system used contextual information only to 187 

remove isolated mislabeled rhythms (moving average filter) or rhythm annotations sustained during 188 

less than 6-s (post-processing filter). Although limited in scope, the use of these two blocks improved 189 

the UMS by 4.4 and 3.7 percentage points during CC-pauses and CC-intervals, respectively. These 190 

results evidence that future ARA designs will strongly benefit from the use of contextual information 191 

and general knowledge of resuscitation rhythm dynamics,
26

 such as rhythm prevalence, the 192 

prevalence of patterns in rhythm changes,
7
 or the probabilities of rhythm transitions.

27
  193 
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To highlight the necessity of the contextual analysis of ECG data further, one can scrutinize on 194 

the labeling process of the demonstrated examples in Fig 3 panel (a). Even in the labeling process, an 195 

expert needs the contextual analysis of the ECG signal to label each segment correctly. In this figure, 196 

an expert can only identify PEA in either 10-22s or 22-35s intervals by looking at the previous and 197 

probably future segments of the ECG signal. In fact, the reason that our algorithm fails to classify 198 

those ECG segments correctly is that it analyses the isolated segments without considering the 199 

contextual information.   200 

Higher level (expert-level) contextual information can also be used to improve the accuracy 201 

during chest compressions. For instance, if the rhythm labels are the same before and after a series of 202 

chest compressions, it would be safe to assume no rhythm transitions occurred during compressions. 203 

This simple post-processing increases the UMS for CC-intervals by further 3.6-points (52.5% to 204 

56.1%) in our data. Consequently, more elaborate techniques like identifying the possible and likely 205 

rhythm transitions during compressions, or only allowing a single transition during a chest 206 

compression interval may increase the accuracy of the ARA, and should be explored in the future. 207 

4.3 Main sources of misclassification 208 

An in-depth look at the confusion matrices reveal the most frequent occurrences of 209 

misclassification. During CC-pauses AS and PEA are the rhythms most difficult to identify. AS is 210 

frequently mislabeled as PEA (20%) or VF (8%), indicating the frequent presence of bradycardia 211 

(borderline AS/PEA) and fine VF (low amplitude VF). PEA is also misclassified as AS (9%) but 212 

most frequently as PR (24%), underlining the inherent difficulties of pulse detection based solely on 213 

the ECG.
28,12

 The use of additional signals and/or data when available, such as the transthoracic 214 

impedance or the end-tidal CO2 levels, should definitely improve PEA/PR discrimination.
29

 PEA is 215 

the rhythm with largest variability and future developments may focus on specific PEA detectors.  216 
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During chest compressions, the sensitivity for most rhythm categories drops considerably, even 217 

after filtering. The filter has an overall positive impact, and its efficiency is demonstrated by the 218 

increase in AS sensitivity from 18% before filtering to 51% after filtering. Interestingly, filtering 219 

increased VF sensitivity from 71% to 86%, which was better than the 82% obtained during CC-220 

pauses. On the other hand, many other rhythms were misclassified as VF after filtering, for instance 221 

PEA classified as VF was 13% before filtering and 27% after filtering. This shows that filtering 222 

residuals, which frequently resemble VF,
22

 were still large and that the CARF subsystem could be 223 

further improved or should be tailored to resuscitation rhythm annotation (see Fig. 3a for an 224 

example).  225 

4.4 Practical implementation considerations 226 

The current accuracy of the ARA means the system is semi-automatic, since it would still need a 227 

final revision/correction by a clinician to ensure the quality of the annotations. However, compared to 228 

annotating rhythms anew, the workload will be considerably reduced, and corrections would be 229 

limited to instances with rare rhythm transitions and/or rhythms with high misclassification rates such 230 

as PEA. 231 

The quality of the ECG signal is very important for rhythm annotation. In our dataset 9.3h of data 232 

(7% of time) were discarded because the quality of the recordings was not sufficient for any further 233 

processing, these data had been labeled as “undecided” or “uncertain” by human experts. Those 9.3h 234 

of data were not considered in our analysis. In the future, intervals with low quality ECG should be 235 

automatically detected using a signal quality index subsystem, in line with some recent developments 236 

in ECG signal processing.
30

  237 

Another important aspect is the availability of signals, particularly for the chest compression 238 

detector and the CARF subsystems. Our dataset contained compression depth data (or compression 239 
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acceleration) which facilitated the identification of CC-intervals and the design of the CARF. Many 240 

other datasets may not have synchronized signals from CPR feedback devices, for instance large 241 

datasets acquired using LIFEPAK (Physio-Control, Redmond WA, USA) defibrillators.
31

 In those 242 

cases, the chest compression detector and the CARF can be adapted to use the transthoracic 243 

impedance, which would make the ARA applicable to most of the datasets currently available for 244 

research. Some studies on the accuracy of impedance-based chest compression detection,
19 

and CPR 245 

artefact removal
24

 suggest the accuracy of the ARA may not be much affected if based on the 246 

impedance, although it remains to be proved.  247 

5. CONCLUSION 248 

We have defined and implemented an architecture for an automatic resuscitation rhythm 249 

annotator, and we have demonstrated its performance using a large dataset of resuscitation cases. 250 

This system opens the possibility of annotating rhythms in large datasets of resuscitation data, and 251 

although its current accuracy requires the manual revision of the automatic annotations, the workload 252 

for clinicians would be considerably reduced.  253 
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Rhythm classification engine 259 
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The RCE designed for this study is an evolution of our previous RCE, and uses the same ECG 260 

features.
13

 Our previous RCE was based on a single artificial neural network (ANN); our current 261 

evolution improves the robustness of the rhythm classifier by combining 10 ANNs in a committee 262 

machine. Each ANN had two hidden layers and 25 hidden neurons per layer. The number of neurons 263 

in the output layer was five in order to classify each feature vector into one of the five rhythm 264 

categories (AS, PEA, PR, VF, VT). All neurons in both hidden and output layers had the hyperbolic 265 

tangent activation function. The Levenberg–Marquardt optimization method
32

 with Bayesian 266 

regularization backpropagation
33

 algorithm was used to train each ANN. 267 

The RCE was developed using the quality-controlled data described in Rad et al.
13

 ANNs were 268 

trained by using 10-fold cross-validation committee,
34,35

 and a wrapper-based feature selection 269 

method was used in each training fold to obtain 14 features for classification.
13

 The final rhythm label 270 

of the 10-ANN committee machine was obtained applying a trimmed mean (10% of the 271 

lowest/highest values were discarded) to the 10 outputs. In the final stage, a 9-s moving average filter 272 

is used to smooth the fast fluctuations (cancel the isolated rhythm changes) in the output of ANNs. 273 

 274 

 275 

 276 

 277 

 278 

 279 

 280 



 14 

 281 

 282 

 283 

 284 

Fig. 1. The architecture of automatic resuscitation rhythm annotator (ARA). In the first step, chest compressions are 285 

detected in Chest Compression Interval Detector subsystem using CCD. CCD is the chest compression depth signal 286 

derived from the acceleration recordings. In the next step, if there is no CPR-artefact the ECG directly passes to Rhythm 287 

Classification Engine (RCE), but if there is CPR-artefact at first CPR artefacts are removed using a CPR-artefact removal 288 

filter (CARF). RCE classifies every second of ECG into the five resuscitation rhythm categories by using overlapping 289 

sliding windows. In the final step, rhythm annotations sustained during less than 6-s is replaced by previous rhythm label 290 

in Post-processing Filter block. 291 

 292 

Fig. 2. Panels (a) and (b) show two successful examples where the annotations by the ARA match the manual 293 

annotations by clinicians. In each panel the first plot shows the original ECG annotated by clinicians, the second plot 294 

shows the CCD, and the third plot shows the ECG after applying CARF (ECGf) and annotated by ARA. The gray vertical 295 

lines indicate start/end of the CC-intervals. During CC-pauses ECGf is the same as ECG since CARF is applied only 296 

during CC-intervals. “C” before the rhythm name indicates annotations during CC-intervals.   297 

 298 

Fig. 3. Panels (a) and (b) show two examples in which there are misclassified segments by ARA. In each panel the 299 

first plot shows the original ECG annotated by clinicians, the second plot shows the CCD, and the third plot shows the 300 

ECG after applying CARF (ECGf) and annotated by ARA. The gray vertical lines indicate start/end of the CC-intervals, 301 

and the red vertical lines show incorrect rhythm changes in ECGf. During CC-pauses ECGf is the same as ECG since 302 

CARF is applied only during CC-intervals. “C” before the rhythm name indicates annotations during CC-intervals.  303 

 304 
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Table1 

The number of hours for each rhythm type in our dataset during both CC-pauses and CC-intervals; the numbers in 

parentheses show the corresponding proportion of the total time. 

Rhythm CC-pauses CC-intervals 

AS 15.2(24.2%) 20.1(36.8%) 

PEA 16.9(27.0%) 19.4(35.5%) 

PR  20.2(32.2%) 2.3(4.2%) 

VF 10.0(16.0%) 12.5(22.9%) 

VT 0.4(0.6%) 0.3(0.6%) 

Total 62.7(100%) 54.6(100%) 
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Table 2 

The confusion matrices of cardiac rhythm classification of resuscitation episodes during CC-pauses and during CC-

intervals by using CARF; the numbers show the classification/misclassification rates and the duration in hours for each 

possibility in parenthesis. 

 ARA label 

  AS PEA PR VF VT 

Clinicians’ 

label during 

CC-pauses 

AS  66.8% (10.17) 19.8% (3.02) 3.6% (0.54) 8.3% (1.27) 1.5% (0.23) 

PEA 9.3% (1.57) 55.8% (9.43) 24.4% (4.12) 5.8% (0.98) 4.8% (0.81) 

PR  1.2% (0.24) 6.9% (1.40) 86.5% (17.45) 0.8% (0.17) 4.6% (0.92) 

VF 9.1% (0.91) 2.9% (0.29) 1.3% (0.13) 82.1% (8.23) 4.6% (0.46) 

VT 2.7% (0.01) 0.0% (0.00) 2.7% (0.01) 10.8% (0.04) 83.8% (0.31) 

Clinicians’ 

label during 

CC-intervals 

AS 51.1% (10.25) 10.7% (2.14) 5.9% (1.18) 29.4% (5.91) 3.0% (0.60) 

PEA 10.2% (1.98) 34.1% (6.60) 23.2% (4.50) 26.5% (5.13) 6.0% (1.17) 

PR 4.8% (0.11) 13.5% (0.31) 58.7% (1.35) 17.8% (0.41) 5.2% (0.12) 

VF 7.2% (0.90) 1.4% (0.17) 1.9% (0.24) 86.4% (10.76) 3.1% (0.38) 

VT 3.6% (0.01) 0.0% (0.00) 3.6% (0.01) 60.7% (0.17) 32.1% (0.09) 
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Table 3 

The confusion matrix of cardiac rhythm classification of resuscitation episodes during CC-intervals without using CARF; 

the numbers show the classification/misclassification rates and the duration in hours for each possibility in parenthesis. 

 ARA label 

  AS PEA PR VF VT 

 

Clinicians’ 

label during 

CC-intervals 

AS 17.9% (3.46) 21.6% (4.16) 5.9% (1.14) 34.2% (6.59) 20.4% (3.94) 

PEA 1.7% (0.33) 42.3% (8.02) 25.0% (4.75) 13.0% (2.47) 17.9% (3.40) 

PR 0.4% (0.01) 22.9% (0.52) 53.7% (1.22) 7.1% (0.16) 15.9% (0.36) 

VF 0.7% (0.09) 2.1% (0.25) 1.3% (0.16) 70.9% (8.64) 25.0% (3.04) 

VT 3.7% (0.01) 0.0% (0.00) 3.7% (0.01) 40.7% (0.11) 51.9% (0.14) 
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