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ABSTRACT 
 

Managed Pressure Drilling (MPD) is a drilling technology that has been developed to manage and 

control the downhole pressure in the well in order to minimize drilling-related problems. This 

technology uses a pressurized closed-loop system and specialized equipment that allows better and 

more accurate pressure control of downhole pressure profile, therefore avoids drilling problems 

associated with downhole pressure variations, optimizes the drilling process by minimizing the 

non-productive time (NPT) and enables drilling prospects that are technically and/or economically 

un-drillable with conventional drilling methods. 

An essential part of Managed Pressure Drilling operation is the control of the downhole pressure 

and it can be a challenging task due to the complex dynamics of wellbore hydraulics. In order to 

estimate the downhole pressure profile, a simplified hydraulic model has been recognized as a 

more convenient alternative than advanced hydraulic model since in the most cases, the available 

data contain insufficient information and several parameters are both uncertain and slowly 

changing that leads to higher level of complexity for the advanced hydraulic model.  

By using simplified hydraulic model and available measurements, the pressure and flow dynamics 

of the well can be estimated. However, the downhole measurement is less reliable than the topside 

measurement because of slow sampling, and loss of communication for low or no-flow conditions, 

e.g., during pipe connection procedures. Depending just on the topside measurement, the downhole 

pressure needs to be accurately estimated despite the uncertainties in parameters such as friction, 

density, fluid loss etc. 

This Master Thesis work describes an adaptive observer design to estimate the system states and the 

unknown parameter for the hydraulics of Managed Pressure Drilling using only one boundary 

measurement at the topside. Numerical simulations are performed to demonstrate the effectiveness 

of the adaptive observer. The results from simulations of drilling events such as drilling connection 

and lost circulation and also analysis from Lyapunov approach shows that the estimation error 

converges to zero, and the downhole pressure, the flow dynamics, the rate of lost circulation and 

other unknown parameters can be accurately estimated. 
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1. INTRODUCTION 
 

1.1 BACKGROUND 

The increase in the energy consumption rates that leads to the continuing high demands for petroleum 

and energy worldwide drives the oil and gas industry to discover ways to recover the resources that 

have been already used for years. However, the remaining prospect for hydrocarbon resources 

typically will be more challenging to drill compared to the past. One of the main challenges drilling 

these new prospects is related to drill wells with narrow pressure margin, e.g., drilling into depleted 

reservoirs or drilling wells with the shallow onset of abnormal pressure. In addition, safety and 

efficient drilling are very important issues to keep in mind for drilling operation and it leads into 

increasing requirement to the technology in the drilling industry. 

Managed Pressure Drilling (MPD) is a technology that addresses many of drilling-related issues or 

barriers to conventional drilling methods. This technology utilizes both a pressurized closed-loop 

drilling system and specialized equipment to more precisely control the downhole pressure profile 

throughout the wellbore (Hannegan, 2006). This is accomplished by sealing the top drive with a 

rotating control device (RCD), the use of a control valve and an extra pump. The aim is to maintain 

the downhole pressure profile within the pressure zone (formation pressure, collapse pressure, and 

fracture pressure) that is often referred to as pressure window.  

The pressurized closed-loop drilling system allows better and more accurate control of downhole 

pressure profile, therefore avoiding drilling problems associated with downhole pressure variation, 

optimizing the drilling process by minimizing the non-productive time (NPT) and enabling drilling 

prospects that are technically and/or economically un-drillable with conventional drilling methods 

(Rehm et al, 2008).  

In order to have an accurate pressure control in MPD operation, not only the mechanics of this 

pressurized closed-loop system or the software that need to be developed, but the entire MPD 

system needs to be designed from a control system point of view. Automation in MPD operation 

relates to the control system that regulates the choke opening at the topside facility in order to 

maintain the downhole pressure during any drilling events such as connection and loss circulation. 
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This automated MPD system requires a hydraulic well model that estimates the downhole pressure 

and a feedback control that automatically regulate the choke opening to maintain the required choke 

pressure according to the set point. Hence, the hydraulic well model plays an important role in 

determining the accuracy of the MPD system. 

In order to estimate the downhole pressure profile, some advanced hydraulic model has been 

developed to capture some particular aspects of drilling that is useful to compute some specific 

events or problems during the drilling operation. However, in most cases, the available data contain 

insufficient information required for an advanced hydraulic model. In addition, several parameters 

such as friction coefficient throughout the wellbore and the influx or outflux (loss circulation) rate 

are both uncertain and slowly changing. As this work aim to identify the hydraulic of MPD system, 

the mathematical model is not supposed to be too complex, since an advanced model requires a high 

number of measurement and adjustment of drilling parameter during operation and it would not be 

able to present a proper parameter estimation scheme (Kaasa et al, 2011). A simplified hydraulic 

model that captures the dominant phenomena of the drilling system has been recognized as a more 

convenient alternative than the advanced hydraulic model.  

Using the simplified hydraulic model and data from the available measurements, the downhole 

pressure can be estimated. However, the downhole measurement is less reliable than the topside 

measurement because the sensors are expensive, the data obtained are often noisy, and also due to 

slow sampling, and loss of communication for low or no-flow conditions, e.g., during pipe 

connection procedures. Therefore, the topside measurement will act as a control input in order to 

estimate the downhole pressure. The pressure profile can be difficult to obtain as it is a complex 

function of drilling parameters such as friction, density, etc. and these values have high degrees of 

uncertainty as there is no direct way of measuring them. Therefore, the downhole pressure has to be 

estimated and uncertainties should be taken into account when doing so. Depending just on the 

topside measurement, the downhole pressure needs to be accurately estimated despite the 

uncertainties in parameters such as friction, density, fluid loss etc. (Stamnes, 2011).  

For the estimation of the bottom hole pressure, the hydraulic system in MPD operation can be 

modeled by linear 2 × 2 partial differential equations (PDEs) of hyperbolic type. This type hyperbolic 

PDEs has attracted considerable attention due to the many examples of fluid flow systems that can 
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be modelled that way, such as flow of fluids in transmission lines (Curro, Fusco, and Mangarano, 

2011), gas flow pipelines (Gugat and Dick, 2011), mud flow in oil well drilling (Kaasa, 2012; 

Hauge, 2013; Hasan, 2014). The estimation of the dynamic system using deterministic approach is 

called as an observer. An observer is mainly used to estimate the dynamic system while the 

parameters are well-known. On the other hand, an adaptive observer is useful in the case of uncertain 

parameters in the system. As in the case of MPD operation, there are uncertain parameters such as 

friction, influx and fluid loss that need to be accurately estimated in order to have an accurate 

estimation of the state system, that is pressure dynamics of the wellbore. 

As the hydraulic model is transformed into 2 x 2 linear hyperbolic system PDEs, then the adaptive 

observer for this specific class of linear hyperbolic system needs to be reviewed. In this work, the 

adaptive observer is presented based on a backstepping method that is a systematic method for 

control and estimation problems of distributed parameter systems that have been used successfully 

for state and parameter estimation of many types of PDEs. This backstepping method allows the 

design of boundary control laws, boundary observers and output-feedback control laws, which 

guarantee the stability of the closed-loop system and convergence of the state estimates. The design, 

which is based on Volterra integral transformation relies only on a measurement at the right boundary 

of the system (topside), and the observer gains are obtained by solving a first-order hyperbolic 

system of Goursat-type PDEs (Hasan et al, 2015). This solution to the Goursat system is related to 

the solution of a simpler, explicitly solvable Goursat system through a suitable infinite series of 

powers of partial derivatives which is summed explicitly in terms of special functions, such as 

Bessel functions and the generalized Marcum Q-functions of the first order (Vazquez et al, 2013). 

This Master Thesis work describes an adaptive observer design to estimate the system states and the 

unknown parameter for the hydraulics of Managed Pressure Drilling using only one boundary 

measurement at the top of the well. Using an adaptive observer, where an uncertain parameter is 

estimated using the update-law, the downhole pressure and the rate of lost circulation can be 

accurately estimated and numerical simulations are performed to demonstrate the effectiveness of 

the adaptive observer.  
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1.2 OBJECTIVE 

The main goal of this thesis is to: 

1. Present Adaptive Observer Design for estimation of states and unknown parameters using only 

one measurement at the boundary (top of the well) in MPD operations. 

2. Present the proof of stability of Lyapunov-based adaptive observer to show that the estimates 

converge exponentially to the actual values. 

3. Perform a simulation study for drilling connection and lost circulation.  

1.3 THESIS OUTLINE 

The thesis is divided into 4 parts, and organized as follow: 

1. Part 1 (Chapter 1 - 2) provides an introduction, motivation, objective and presents necessary 

background on the technology evaluated and used in this thesis, managed pressure drilling, 

and the idea behind the pressure estimation in a drilling operation and adaptive observer 

design. 

2. Part 2 (Chapter 3 – 4) presents the mathematical model of the wellbore hydraulics, its 

transformation, and discretization. This part is introduced by the fit for purpose of modelling, 

derivation of generic low-order expression for pressure and flow dynamics, and proceeds 

with the model transformation. 

3. Part 3 (Chapter 5) is the main part of thesis, with presentation and detailed derivations of 

adaptive observer for the hyperbolic system, prove of convergence of the proposed scheme 

and analysis and discussion of the simulation results. 

4. Part 4 (Chapter 6) summarizes the results from this thesis and presents the conclusion. 
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2. THEORETICAL BACKGROUND 

As an introductory review for pressure control in Managed Pressure Drilling, this chapter presents 

the necessary background to understand the concept of MPD and downhole pressure estimation 

with an adaptive observer. This chapter summarizes the relevant information from the review of 

the literature on MPD operations and downhole pressure estimation. It provides an overview of 

MPD concepts compared to conventional drilling, its definition, application and benefits and also 

the different approach and equipment being used in MPD operation. For downhole pressure 

estimation, this chapter provides the necessary background on the need for accurate pressure 

estimation and the use of adaptive observer to estimate the MPD system states and unknown 

parameters.   

2.1 MANAGED PRESSURE DRILLING 

In today’s drilling environment, the industry is facing a greater challenge to drill the remaining 

prospect of hydrocarbon. One of the main challenges drilling these new prospects is related to drill 

wells with narrow pressure margin, e.g., drilling into depleted reservoirs or drilling wells with the 

shallow onset of abnormal pressure. Drilling into an area with the formation pressure very close to 

the fracture pressure will likely lead into drilling issues such as kick, loss circulation, stuck pipe etc. 

In addition, safety and efficient drilling are very important issues to keep in mind for a drilling 

operation. Due to these reasons, there are certain needs for increasing the requirement to the 

technology in the drilling industry. 

Managed Pressure Drilling (MPD) is an enabling technology that can help to accomplish those needs 

by addressing many of drilling-related issues or barriers to conventional drilling methods. This 

technology utilizes both a pressurized closed-loop drilling system and specialized equipment to more 

precisely control the downhole pressure profile throughout the wellbore (Hannegan, 2006). The aim 

is to maintain the downhole pressure profile within the pressure zone (formation pressure, collapse 

pressure, and fracture pressure) that is often referred to as pressure window.  

By having a better and more accurate control of downhole pressure profile using this pressurized 

closed-loop system, MPD helps to reduce non-productive time (NPT) and avoid many drilling-
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related issues such as kick, lost circulation, wellbore stability, stuck pipe, ballooning, potential 

damage to the reservoir, low rate of penetration (ROP), excessive mud cost due to the lost circulation, 

excessive number of casing string, failure to reach TD with proper hole diameter, and shallow 

geohazard etc (Rehm et al, 2008; Nas et al, 2009). With all the benefits and the capability to drill 

what was considered economically un-drillable wells, Managed Pressure Drilling has gained 

widespread popularity and a great deal of press coverage in the last decade.  

This section provides a closer look at what this really means, and what can be gained by using MPD 

rather than conventional drilling methods. 

2.1.1 Definition 

Managed Pressure Drilling, according to the International Association of Drilling Contractors 

(IADC), is defined as “an adaptive drilling process used to more precisely control the annular 

pressure profile throughout the wellbore”. The objectives are to ascertain the downhole pressure 

environment limits and to manage the annular hydraulic pressure profile accordingly.” (IADC; 

Hannegan, 2005).  

Further, MPD can be defined as (IADC; Hannegan, 2005): 

• MPD process employs a collection of tools and techniques which may mitigate the risks and 

costs associated with drilling wells that have narrow downhole environmental limits, by 

proactively managing the annular hydraulic pressure profile. 

• MPD may include control of backpressure, fluid density, fluid rheology, annular fluid level, 

circulating friction, and hole geometry, or combinations thereof. 

• MPD may allow a faster corrective action to deal with observed pressure variations. The 

ability to dynamically control annular pressures facilitates drilling of what might otherwise 

be economically unattainable prospects. 

IADC also separate MPD into two categories: 

• Reactive MPD: The well is drilled using conventional drilling method and as soon as 

unexpected pressure arise, the equipment for MPD system is rigged up to quickly react to the 

unexpected pressure changes. 
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• Proactive MPD: The drilling program is designed to take full advantage of the ability to precisely 

managed the downhole pressure profile, often referred as ‘walk the line’. This category offers 

the greatest benefit of MPD operation, but it requires the well to be pre-planned more thoroughly. 

2.1.2 Pressure Control in MPD 

In a drilling operation including MPD as illustrated in Figure 2.1, the topdrive which is a motor that 

turns the drillstring transmit the torque via the drillstring into the bit. The rotation of the drill bit at 

the bottom of the wellbore will remove or cut the formation in order to create holes or known as the 

wellbore. As a result, it generates drill cuttings which are a broken solid material removed from a 

formation. These cuttings have to be circulated out of the wellbore to avoid the cutting deposit in the 

bottomhole that might disrupt the drilling process. Once the bit on the bottom has drilled down to 

where the topdrive at the top reach the drillfloor, approximately 90ft, a new stand of pipe is again 

connected to the topdrive. This procedure is known as drilling connection. In addition to transmitting 

the torque to the bit, the drillstring also transmit the drilling fluid from the rig pumps through the 

drilling, the drill bit and up to the surface. The drilling fluid from the mud pit will be transferred to 

the rig pump, which pumps down a viscous drilling mud through the top drive, the drillstring, and 

the drill bit. The viscous drilling mud from the drillstring flows through the bit and carry the cutting 

into the annulus and the surface. The circulation of the drilling fluid is an important part of drilling 

operation because not only it will remove the cutting from the wellbore, the column of the drilling 

fluid along the wellbore provides hydrostatic pressure against the high-pressure formation. 
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Figure 2.1: Illustration of Automated Managed Pressure Drilling System (Kaasa, 2008) 

The downhole pressure needs to be maintained within the pore pressure, fracture pressure, and 

collapse pressure or often referred as pressure window. Pore pressure is the pressure exerted by 

formation fluid within the pores space of rock as a result of the overburden formation and fluids 

above. If the downhole pressure is less than the pore pressure, there will be an influx of formation 

fluids or hydrocarbon into the wellbore or known as a kick. A large amount of influx and an 

uncontrolled kick might lead into a blowout, which has catastrophic consequences for life and 

environment. Even if the effective measure can be taken to handle the kick, circulating the high-

pressure kick out of the wellbore might lead into wellbore collapse and stuck pipe. 

The upper-pressure limit for the downhole pressure is the fracture pressure, which is the minimum 

pressure that will fracture the formation. If the downhole pressure exceeds the fracture pressure, 

there will be a fracture opening that leads into lost circulation or formation damage. On the other 

hand, if downhole pressure is lower than the collapse pressure, it might reduce the structural integrity 

of the wellbore and cause pipe sticking or well collapse (Azar & Samuel, 2007). 

The uncertainties in pore pressure, fracture pressure and collapse pressure due to the geological 

unknowns and maturing fields also lead into difficulties to understand the pressure regime in which 

the drilling operation takes place. In the exploration for the new prospect, there are geological 
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uncertainties such as depth correlation or seismic time and the effect it has on pore pressure model. 

Meanwhile in mature fields, as a result of the reservoir being drawn down, the in-situ stress are 

redistributed and later create a narrow pressure window. Ensuring that the downhole pressure stays 

within the pressure window is essential to ensure safe as well as economically sound drilling 

operations. 

 
Figure 2.2: Pressure Window and Pressure Profile for UBD, MPD and OBD.  

Redrawn from Schlumberger (2011) 

In conventional drilling, the bottomhole pressure is equal to the sum of the hydrostatic weight of the 

mud column and the frictional pressure along the annulus, known as equivalent circulating density 

(ECD). The frictional pressure is a result of mud circulation in the wellbore while drilling the 

formation. However, in some specific cases or part of drilling procedure e.g., drilling connection, 

the mud circulation will be stopped at some point and it leads to loss of annular frictional pressure 

(AFP). As a result of the loss of annular frictional pressure, the bottom hole pressure in Eq. (2.1) will 

be equal to the hydrostatic pressure of the mud column or called as equivalent static density (ESD). 

While drilling operation takes place in a formation with normal pressure window, the loss of AFP 

might still keep the bottomhole pressure within the safe pressure window. However, challenging 

drilling environment such as depleted reservoir and the deepwater prospect with lower fracture 

pressure due to large portions of water in the overburdens, leaving only a narrow pressure window 

for drilling operation. Due to the limitations of the narrow pressure window, there is a need for 

precise control of the bottomhole pressure to keep it within this tight window. 

𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑀𝑀𝑀𝑀 + ∆𝐴𝐴𝐴𝐴𝐴𝐴 (2.1) 
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Figure 2.3: Pressure Profile in Conventional Drilling Operation.  

Redrawn from Weatherford 

MPD provides a more accurate control of downhole pressure because of the pressurized closed-loop 

system, in which a rotating control device seals the top of the annulus and the flow of the well is 

controlled by a choke manifold to apply a backpressure. This is typically achieved by using drilling 

fluid with the same or slightly lower density than the pore pressure, and as a result of annular friction 

loss due to mud circulation, the ECD will be slightly higher than the pore pressure and stay below 

the fracture pressure (Hannegan, 2006). Meanwhile in the case low-/no-flow during connection, the 

loss of annular frictional pressure will be compensated by applying the backpressure from the choke 

adjustment at the surface. Therefore, the bottomhole pressure will always stay above the pore 

pressure and below the fracture pressure either during normal mud circulation or during connection 

with no circulation. This is the main reason the MPD helps to avoid many drilling-related issues, 

especially in narrow pressure window environment. In addition, MPD system allows a faster 

corrective action to deal with observed pressure variation compared to mud weight and pump rate 

adjustments alone and in general it provides a precise control for the bottomhole pressure to be within 

its pressure window. 

𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑀𝑀𝑀𝑀 + ∆𝐴𝐴𝐴𝐴𝐴𝐴 + ∆𝐵𝐵𝐵𝐵 (2.2) 
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Figure 2.4: Pressure Profile in Managed Pressure Drilling Operation.  

Redrawn from Weatherford 

2.1.3 Benefits of MPD 

One of the main benefits of MPD is that it allows drilling operation into formations with narrow 

operating window between pore pressure and fracture pressure. The operational window during 

conventional drilling is illustrated in Figure 2.5. In the case of pressure window is sufficiently wide, 

stopping the circulation during connection might keep the ECD within the pressure window limit, 

therefore conventional drilling is acceptable in this case.  

 
Figure 2.5: Normal Operational Window. Redrawn from Thompson (2012) 
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However, Figure 2.6 shows the case where the operational window is quite narrow. In this case, if 

conventional drilling methods are employed, then downhole pressure during connections will no 

longer be within the safe operational window as shown in the following figure. In this case, the 

bottomhole pressure falls below pore pressure, indicating that during connections we will encounter 

a kick if we are drilling into a permeable zone. This case demonstrates one of the main application 

areas for managed pressure drilling.  

 
Figure 2.6: Narrow Operational Window. Redrawn from Thompson (2012) 

In general, the ability of MPD system to maintain the downhole pressure within the narrow pressure 

window offer a wide range of benefits (Hannegan, 2006; Rehm et al, 2008), such as: 

• Avoid drilling hazards such as kick, lost circulation, differential sticking, and 

wellbore stability, thereby reducing the non-productive time (NPT) 

• Enhance the efficiency of drilling operation by improving the rate of penetration 

(ROP) and prolongs bit life 

• Reduce the number of casing string, deepening casing set points and avoid failure to 

reach TD with large enough hole diameter 

• Minimizes health, safety and environmental (HSE) risks 

• Enables the drilling of otherwise un-drillable wells 

With all the benefits of using MPD technology, the remaining prospects in the more challenging 

environment such as offshore, deepwater, HPHT well, areas with total loss formation that considered 
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as un-drillable with conventional drilling methods will become available. Thereby without this 

technology, much of the world resources will be neglected. 

In order to have complete picture of MPD technology, the following list shows challenge and 

limitation for the technology to be implemented 

• Costly operation 

• More complicated operation 

• Specially trained personnel are required to work on MPD operations 

• It has slightly different approach compared to the conventional drilling operation, therefore 

well-established industry standards and work procedures are required for safe and efficient 

MPD operations 

2.1.4 MPD Techniques and Tools 

There are many variations of MPD techniques and some of the common MPD techniques include 

constant bottomhole pressure (CBHP), pressurized mud-cap drilling (PMCD), dual-gradient 

drilling (DGD) and also riserless drilling (Rehm et al, 2008; Nauduri et al, 2009). Each of the 

following techniques is addressed for drilling hazards to which it has proved applicable:  

• Constant Bottom Hole Pressure (CBHP): A technique to maintain the precise balance between 

the pore pressure and fracture pressure. The bottomhole pressure variation in narrow pressure 

window, such as when pumping stops during drilling connection, are often the root causes for 

drilling-related issue such as kick, lost circulation, wellbore stability etc. By using rotating 

control device and choke manifold, it allows a faster corrective action to maintain the bottomhole 

pressure within its safe pressure window compared to mud weight and pump rate adjustments 

alone. This technique is often used to compensate the loss of frictional pressure while the mud 

circulation stopped by applying the backpressure from the choke manifold at the topside. 
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Figure 2.7 Pressure Profile in Constant Bottomhole Pressure. Redrawn from Malloy (2007) 

• Pressurized Mud Cap Drilling (PMCD): A technique to safely drill into total loss formation or 

formations with large voids such as caverns. A heavy, viscous mud is pumped down the annulus 

and the annular fluid column will act as a cap or annular barrier, while a sacrificial drilling fluid, 

such as seawater, is used to drill into the total loss formation. The mud cap is maintained above 

the total loss formation that is taking the sacrificial drilling fluid and cuttings, therefore helping 

to stabilize the formation, preventing dangerous gasses flowing to the surface and minimize 

associated NPT while drilling into a total loss formation. 

 

Figure 2.8: Pressure Profile in Pressurized Mud Cap Drilling. Redrawn from Malloy (2007) 
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• Dual Gradient Drilling (DGD): In DGD, the wellbore is drilled with two different annulus fluid 

gradients in place either by injecting lightweight fluid into the annulus with a parasite string or 

by having a mud-lift pump to circulate out the drilling fluid with the cutting through a return line 

instead of the marine riser. By having two distinct pressure gradients, a favorable pressure profile 

in deepwater wells is expected specifically a profile closer to what naturally exists in the 

formations. This is because the deepwater formation will have lower overburden pressure and 

fracture pressure due to the pressure gradient from seawater instead of the pressure exerted by 

the typical sand-shale formation. As a result, the utilization of dual gradient drilling will reduce 

the number of casing strings required, reduce the non-productive time and also enhance well 

control, therefore it is possible for deepwater drilling resource to be drilled and developed safely 

and economically. 

 

Figure 2.9: Pressure Profile in Dual Gradient Drilling. Redrawn from Malloy (2007) 

• Riserless Drilling: A type of MPD technique which involves mud circulation during drilling 

without the use of a riser. When it comes to deepwater and HPHT applications, risers are 

considerably long with increased wall thickness. As a result, riser systems become quite 

expensive and also reduces options when it comes to choosing rigs as specialized rigs are 

needed to be able to handle heavy risers. In such a scenario, riserless drilling may be employed. 

In this technique, a separate mud return line is used a transport the returns from seabed to 

rigfloor. A subsea pump connected to a Rotating BOP (RBOP) diverts the returns to this mud 

return line. A schematic of riserless drilling in shown below in Figure 2.10. Such a riserless 
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drilling method has been developed by the company AGR and commonly referred to as 

RMR™ or Riserless Mud Recovery.  

 

Figure 2.10: Schematic of Riserless Drilling. Redrawn from www.drillingcontractor.org 

Managed-Pressure Drilling (MPD) employs both pressurized closed-loop drilling system and 

specialized equipment that allows potentially greater and more precise control of the downhole 

pressure profiles. Most of MPD variations requires at least a rotating control device (RCD), an 

MPD choke manifold and at least one non-return valve (e.g., floats) (Rehm et al, 2008; Nas et al, 

2009). These tools are briefly explained below. 

• Rotating Control Device (RCD): It is the main equipment in Managed Pressure Drilling. 

RCD is designed to seal off the wellbore and divert the flow from the annulus to the choke 

manifold through a flow spool beneath the RCD. It has an advanced compound sealing 

rubber and a sealing sleeve that allows rotation and vertical movement of drill pipe, while 

providing a required seal for the annulus. In addition, it has a rubber element on the bearing 

in order to reduce wear (Chrzanowski, 2011). 
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Figure 2.11: Rotating Control Device (Smith Services) 

 
• Drilling Choke Manifold: It is used to control the annular backpressure by adjusting the 

opening of the choke. The chokes are installed in the return flow line to allow back pressure 

to be applied during the drilling process and there should be two chokes mounted in parallel 

in case one of them gets plugged. The mud returns are circulated through the choke and 

when the choke is fully open there will only be little or no backpressure. Meanwhile in the 

case of no flow such as during connection, the choke need to be closed quickly to trap the 

pressure. A dedicated backpressure pump should be available in the case of no flow in 

order to boost the necessary backpressure. The choke system can be controlled manually, 

semi-automatic or fully automatic. In the fully automatic system, the chokes are 

hydraulically controlled by a Programmable Logic Controller (PLC) system. PLC adjust 

the choke opening based on real-time data measurement and the pressure and flow 

dynamics from the hydraulic model. The choke system in Managed Pressure Drilling is 

part of the continuous MPD operation to control the bottom hole pressure and should not 

be considered as secondary well control equipment as in the case of conventional drilling 

choke. 
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Figure 2.12: Operation Principle of Semi Auto Choke (Arnone, 2010) 

 

• Non-Return Valve (NRV): It only allows a downward flow of mud inside the drillstring. 

NRV or known as float valve are installed in the BHA to prevents the u-tube situation due 

to the positive unbalance in the annulus that forces drilling fluid to flow back up to the 

drillstring. In the case of MPD operation, the applied backpressure in the annulus might 

force the drilling fluid to flow back up to the drillstring, carrying cutting that can plug the 

bit, MWD and motor assembly. NRV is essential in MPD operation, because in order to 

control the bottomhole pressure some amount of back pressure is applied to compensate 

the annular friction losses. The NRV will keep the positive backpressure because of the 

restriction of flow up to the drillstring. Two types of NRV that are commonly used are the 

flapper floats and plunger floats. 
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Figure 2.13: Non-Return Valves (www.drillingformula.com) 

• Coriolis flowmeter: Coriolis flowmeter is used to provide an accurate measurement of mass 

flow, volumetric flow rates, and density. The main benefits of using Coriolis flowmeter in 

MPD operation is to accurately identify kick because it is not possible to perform 

conventional flow check in the closed-loop MPD system. 

 

Figure 2.14: Coriolis Flowmeter (www.drillingcontractor.org) 
 

• Surface separation equipment: MPD techniques are intended to keep out gas influx during 

drilling. However, the MPD system typically has a surface separation equipment to handle 

unwanted influx and to monitor returns.  
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Figure 2.15: MPD Multiphase Separation System (Sveinall, 2010) 
 

2.2 PRESSURE ESTIMATION IN MANAGED PRESSURE DRILLING 

In most MPD operation, the downhole pressure is used as the variable to control. There are two ways 

to estimate and control the downhole pressure, the indirect and the direct control. The indirect control 

uses measurements from choke manifold at the topside and then the downhole pressure is estimated 

by using either simulation or observer. Then, the mathematical model needs to be designed for the 

simulation or observer to estimate the downhole pressure. Meanwhile, the direct control uses 

measurements directly from the downhole using PWD tools or mud-pulse telemetry. Estimation and 

control of the downhole pressure based on the downhole measurement might not be reliable because 

these sensors are very expensive and the data obtained are often noisy, and also due to slow sampling, 

transmission delays, loss of communication for low or no-flow conditions (Hasan, 2014). 

Consequently, the topside measurement will act as a control input for downhole pressure estimation. 

Therefore, a pressure estimation scheme is required to accurately estimate the downhole pressure 

from the measurement at the surface (Stamnes, 2011). 

The downhole pressure profile can be difficult to obtain as it is a complex function of drilling 

parameter such as friction, density, etc. A simplified hydraulic model that capture the dominant 

phenomena of the drilling system has been considered as the more convenient solution than the 

advanced hydraulic model, because in most cases the available data contain insufficient information 
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for an advanced hydraulic model. In addition, several drilling parameters such as friction coefficient 

throughout the wellbore and the influx or out flux (loss circulation) rate are both uncertain as there 

is no direct way to measure them and also slowly changing. This simplified hydraulic model that is 

derived from mass balance equation and a simplified momentum balance can describe the flow and 

pressure dynamics along the wellbore (Kaasa et al, 2011). Using a PDE model of simplified 

hydraulic that captures the dominant phenomena of the drilling system, the physical system of MPD 

can be modeled in 2 x 2 linear hyperbolic system. The specific class of this hyperbolic system has 

been studied in recent years for many fluid flow systems such as flow in transmission lines (Curro, 

Fusco, and Mangarano, 2011), gas flow pipelines (Gugat and Dick, 2011), mud flow in annulus of 

the wellbore (Kaasa, 2012; Hauge, 2013). In order to have an estimation scheme for wellbore 

hydraulics in MPD operation, the infinite dimensional system of PDEs are discretized as a finite 

high-dimensional approximation in ODEs or known as early lumping approach. As a result, the 

linear hyperbolic system can be written into a lumped model. Therefore, the flow and pressure 

dynamics of the MPD system can be expressed as a state space representation that can be solved 

by numerical simulation.  

2.2.1 Adaptive Observer 

An adaptive observer is used to estimate unmeasured states in a dynamic system with parametric 

uncertainties. In an MPD operation, the pressure profile throughout the wellbore is not measured and 

the data quality for feedback control is low due to the noise, slow sampling rates and loss of 

communication.  Due to the lack of measurement for the control purposes, an estimation scheme for 

pressure and flow dynamics of the wellbore is important for control design in MPD system. In 

addition to estimating the pressure and flow dynamics, an adaptive observer can also be used to 

estimate parameter uncertainties such as friction, influx, and fluid loss (Stamnes, 2011). Based on 

the available measurement at the topside, these unmeasured data can be estimated by adjusting the 

dynamic system of wellbore hydraulics. 

Kalman (1960) presented an estimation of the dynamic system using stochastic approach or well-

known as filter or an estimator. Meanwhile, an observer is a term for the estimation of the dynamic 

system using deterministic approach. An observer is mainly used to estimate the dynamic system 

while the parameters are well-known. On the other hand, an adaptive observer is useful in the case 
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of uncertain parameters in the system. As in the case of MPD, there are uncertain parameters such 

as friction, influx and fluid loss that need to be accurately estimated in order to have an accurate 

estimation of the state system, that is pressure dynamics of the wellbore. 

An adaptive observer design for 2 x 2 linear hyperbolic system needs to be carefully reviewed for 

the application of wellbore hydraulic system in Managed Pressure Drilling. There have been some 

literature that propose methods for control design in this specific class of PDEs, including using 

control Lyapunov functions (Coron, d’Andrea Novel, and Bastin; 2007), Riemann invariants 

(Greenberg and Tsien;1984) and frequency domain approaches (Litrico and Fromion; 2006).  

The recent method for control of PDEs is called Backstepping method (Krstić and Smyshlyaev; 

2008). The backstepping method was actually a well-known method in nonlinear control theory for 

finite dimensions problem (Khalil; 2002, and Kokotović; 1992), where it starts by establishing a 

controller that stabilized the inner sub-systems before gradually ”backs out”, and then setting up new 

controllers that in turn stabilize the outer subsystems before the overall system is stabilized. 

Bosković, Krstić, and Liu (2001) also developed a backstepping-like transformation in order to 

stabilize an unstable heat equation. This method had few similarities with the earlier finite-

dimensional problem, with the nested subsystems emerging from the discretization of the PDE into 

a finite number of control volumes. For the stabilization of the remaining control volumes, a 

controller was designed for the innermost control volume, before gradually ”backing out” and then 

simultaneously extending the stabilization of the controller. Bosković et al. (2001) and Balogh and 

Krstić (2002) proposed a method that restricts the system with a number of open-loop unstable 

eigenvalues. This method involved recursively solving a series of equations for the unknown 

controller gains - frequently referred to as kernels used in the backstepping. As a result, an arbitrary 

level of instability was allowed by using the backstepping method on a semi-discretized version of 

the system making the close loop system stable (Anfinsen, 2013). 

The solutions of the kernel equations are required in order to implement the observer on a numerical 

simulation. Vazquez and Krstić (2013) proposed an explicit equation to the subsystem for the kernel 

equations by assuming that it has constant coefficients. The solution uses Bessel functions and 

generalized Marcum Q-functions of the first order. According to Vazquez (2013), there were two 

methods for solving the kernel equations. One of the alternatives is to discretize the PDEs. By 

discretizing the PDEs, there will be discontinuities to the system, and the number of discontinuities 
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tends towards infinity. Smyshlyaev and Krstić (2004) proposed an alternative by using a 

discretization method averaging certain terms, instead of using their exact values.  However, the 

solution was only applicable for certain boundary conditions. In order to apply the solution for 

another boundary conditions of kernel equations, one can use a method of characteristic that was 

presented in Vazquez (2013). This method can be used to proof the existence and uniqueness for 

specific kernels equations (Anfinsen, 2013). 
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3. HYDRAULIC WELL MODEL 

Automation in Managed Pressure Drilling operation relates to the control system that regulates the 

choke opening at the topside facility in order to maintain the downhole pressure. The automated 

MPD system requires a hydraulic well model that estimates the downhole pressure and a feedback 

control that automatically regulate the choke opening to maintain the required choke pressure 

according to the set point. Hence, the hydraulic well model plays an important role in determining 

the accuracy of the MPD system. 

For the selection of a mathematical model that represent the MPD system, there are at least two 

important factors that need to be considered. First, the model should consider as many variables in 

wellbore hydraulics such as friction and gravity, without being so complex as to require expert 

knowledge to setup and adjust, and the second is that the model should be able to be automatically 

calibrated with existing measurement (Kaasa et al, 2011). The main challenge here is to remove 

unnecessary dynamics such that the model includes only the dominating dynamics of the system 

while still achieving satisfactory accuracy. A fit-for-purpose modeling is important to understand the 

importance of the various dynamics in the system in order to figure out the suitable trade-off between 

accuracy and simplicity. 

This chapter presents a simplified hydraulic model based on basic fluid dynamics that captures the 

dominant phenomena of the MPD system. In the following section, the approach for fit-for-purpose 

modeling, the main simplification and the derivation of the simplified hydraulic model is outlined. 

A thorough derivations of the simplified hydraulic model can be found in Kaasa (2007) and Kaasa 

et al. (2011). The model has also been used in Stamnes et al. (2008), Zhou et al. (2011), Godhavn 

et al. (2011), Hauge (2013), and Hasan (2014) in order to estimate the downhole pressure, kick 

scenario, and pressure control etc.  

3.1 FIT FOR PURPOSE MODELLING 

It is important to understand the objective of the modeling before establishing the mathematical 

model of wellbore hydraulics that will be used in this work. The main objective of the hydraulic 

model is to estimate the pressure and flow dynamics of the wellbore and to estimate the unknown 
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parameter along the wellbore in order to determine the required backpressure from the choke based 

on the estimation of the downhole pressure (Stamnes, 2011). In addition, the relationship between 

the choke system and the downhole pressure should be reflected by the hydraulic model in order to 

allow the feedback control to provide a set point for the choke system based on the estimation of the 

downhole pressure.  

In order to estimate the dynamics of drilling hydraulics, there has been some work to develop both 

advanced hydraulic well model and simpler, more transparent model. The advanced models capture 

some particular aspects of drilling hydraulics that is useful for detailed simulation of some specific 

events or problems during a drilling operation and to improve the accuracy of the MPD system. 

However, in most cases, the available data contain insufficient information for an advanced hydraulic 

model. As a result, parameter estimation scheme might not be able to provide the result even for 

some of the main parameters. Due to the uncertainties, unknown parameters and also a lack of 

additional distributed measurement along the well during an MPD operation, most of the detail of 

advanced hydraulic model does not contribute to improving the accuracy of the downhole pressure. 

For the design of the control system, the use of advanced hydraulic model leads to higher level of 

complexity and higher frequency dynamics, so that the control system might not be able to 

compensate for changes that are faster than the dynamic response of choke valve and sampling rate. 

The control system is ineffective to response to the dynamics that are much faster than the bandwidth 

of the closed-loop system (Kaasa et al, 2011). 

Another issue with the use of a complex hydraulic model is related to the verification of numerical 

simulation of a control system based on the advanced model. Several parameters during drilling 

operation such as friction coefficient throughout the wellbore, the influx or outflux (loss circulation) 

rate, the amount of gas dissolved in the drilling fluid are both uncertain and slowly changing. An 

online parameter estimation is important to allow model calibration in order to improve the accuracy. 

However, the use of a complex model makes it difficult to create parameter estimation scheme that 

allows model calibration due to the presence of countless and complex parameter. 

With the main task of this work being system identification and the main objective is to estimate 

the system states and the unknown parameters for the hydraulics of MPD, then a simpler, more 

transparent hydraulic model will be the more convenient alternative compared to the advanced 
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hydraulic well model. It is important for the simplified hydraulic model to capture most dominant 

dynamics in order to have a suitable representation of wellbore hydraulics and to accomplish good 

accuracy of the system. In the following section, the fit-for-purpose model is obtained by 

neglecting the high-frequency dynamics that the control system is not able to compensate, 

neglecting the slow dynamics that can be handled more efficiently by feedback from measurement 

and lump together that are not possible to distinguish from one another in the available 

measurements. 

3.2 OUTLINE OF MODEL DERIVATION 

The wellbore hydraulic model is derived based on the assumption that the drilling fluid can be 

treated as a viscous fluid. It means that the flow can be described by the following fundamental 

equations (Merritt, 1967 and White, 1994). 

• Fluid viscosity: the viscosity as a function of pressure and temperature. 

• Equation of state: the density as a function of pressure and temperature. 

• Conservation of mass: the mass balance or equation of continuity. 

• Conservation of momentum: the force balance or Newton’s second law of motion. 

• Conservation of energy: the energy balance or the first law of thermodynamics. 

The formulation of continuity, momentum, and energy equation that will be used as the foundation 

of hydraulic model are based on the following assumptions: 

• Flow can be treated as 1D along the main flow path 

• Flow is radially homogeneous 

• Incompressible flow, so that the spatial time variance is negligible in the momentum 

equation 

• Time variance of the viscosity is negligible in the momentum equation 

In addition, the effect of the temperature with the dynamics in the energy equation will not be 

considered in the following model. 
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3.2.1 Equation of State 

An equation of state is a thermodynamic equation describing the constitutive mathematical 

relationship of a material or substance under a given set of physical conditions. In general, the 

equation of state is written as 

𝜌𝜌 = 𝜌𝜌(𝑝𝑝,𝑇𝑇) (3.1) 

The equation of state cannot be derived from physical fundamental principles. Instead, it can be 

found empirically from PVT data using interpolation of pressure and temperature dependency. The 

changes in density are generally small for a liquid, which makes it common to use the linearized 

equation of state around the reference point. 

𝜌𝜌 = 𝜌𝜌0 + 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑝𝑝 − 𝑝𝑝0) − 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑇𝑇 − 𝑇𝑇0) (3.2) 

where 𝜌𝜌0,𝑝𝑝0,𝑇𝑇0is the reference point for the linearization. Combining the isobaric cubical expansion 

coefficient (𝛼𝛼) and the isothermal bulk modulus (𝛽𝛽) that is reciprocal of the compressibility of the 

fluid, 𝑐𝑐 = 1
𝛽𝛽� , and a property that determine the dominating pressure transient in the system which 

is defined as 

𝛽𝛽 = 𝜌𝜌0 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑇𝑇
 (3.3) 

𝛼𝛼 = − 1
𝜌𝜌0
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑃𝑃

 (3.4) 

then the linearized equation of state can be written as follows 

𝜌𝜌 = 𝜌𝜌0 + 𝜌𝜌0
𝛽𝛽

(𝑝𝑝 − 𝑝𝑝0) − 𝜌𝜌0𝛼𝛼(𝑇𝑇 − 𝑇𝑇0) (3.5) 

or 

𝜕𝜕𝜌𝜌 = 𝜌𝜌
𝛽𝛽
𝜕𝜕𝜕𝜕 − 𝜌𝜌𝜌𝜌𝜕𝜕𝑇𝑇 (3.6) 
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The accuracy of linearization depends on the increase of pressure and temperature. However, for 

most drilling fluids in the ranges of 0 – 500 bar and 0 - 200°C, the linearization shows a fairly 

accurate result. 

Compared to the pressure transients, which are in the range of seconds to minutes, the temperature 

transients are much slower in the range of minutes and hours. The thermal expansion coefficient 

(𝛼𝛼), which represent the temperature changes with respect to transient effects, are usually small for 

liquids. As a result, transient temperature effect is slower compared to the pressure transient effect, 

so that the slow pressure effect due to the temperature changes can be handled by online calibration 

based on feedback from measurements. The simplified dynamic model for pressure transients in 

the system that neglect the dependence on the temperature can be written as 

𝜕𝜕𝜌𝜌 = 𝜌𝜌
𝛽𝛽
𝜕𝜕𝜕𝜕 (3.7) 

3.2.2 Equation of Continuity 

Assuming that the flow is radially homogeneous and one-dimensional flow along the flow path, 

the differential continuity equation is given by 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌𝜌𝜌) = 0 (3.8) 

where 𝑣𝑣 is the velocity of the flow, and 𝑥𝑥 is the spatial variable along the flow path. By substituting 

Eq. (3.7) into Eq. (3.8), the expression of pressure dynamics can be written as 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝛽𝛽
𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −𝛽𝛽
𝜌𝜌
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌𝜌𝜌) = −𝛽𝛽
𝜌𝜌
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑣𝑣 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜌𝜌� (3.9) 

Assuming that the flow is incompressible and that the cross-sectional area 𝐴𝐴(𝑥𝑥) is constant, then the 

expression of pressure dynamics can be rewritten with explicit dependence on time and spatial 

position as follows 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −𝛽𝛽 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −𝛽𝛽
𝜕𝜕� 𝑞𝑞

𝐴𝐴(𝑥𝑥)�

𝜕𝜕𝜕𝜕
= −𝛽𝛽

𝐴𝐴
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 (3.10) 
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The assumption of incompressible flow means that the effects of density to the flow characteristic 

are neglected. The main compressibility effects are taken into account through the variable bulk 

modulus (𝛽𝛽) from the equation of state that characterizes the dominating dynamics of the hydraulic 

system and reflected in the pressure along the flow path. As a result, the pressure dynamics at any 

point in the well can be approximated by the dynamics of average pressure in the entire well. By 

using integration of mass flow over a control volume (𝑉𝑉), then the mass balance can be written as 

𝑑𝑑
𝑑𝑑𝑑𝑑

(𝜌𝜌𝜌𝜌) = 𝜌𝜌𝑖𝑖𝑖𝑖𝑞𝑞𝑖𝑖𝑖𝑖 − 𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜 (3.11) 

where 𝜌𝜌 is the average density, 𝑤𝑤𝑖𝑖𝑖𝑖 = 𝜌𝜌𝑖𝑖𝑖𝑖𝑞𝑞𝑖𝑖𝑖𝑖 and 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜 = 𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜 are the mass flow rate. In order 

to have pressure as the main variable, the density dynamics from Eq. (3.7) need to be substituted as 

𝜌𝜌 𝑉𝑉
𝛽𝛽
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −𝜌𝜌 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝜌𝜌𝑖𝑖𝑖𝑖𝑞𝑞𝑖𝑖𝑖𝑖 − 𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜 (3.12) 

By assuming a homogeneous density along the well, 𝜌𝜌𝑖𝑖𝑖𝑖 = 𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜 = 𝜌𝜌, then the expression for 

pressure dynamics can be simplified as follows 

𝑝̇𝑝 = −𝛽𝛽
𝑉𝑉 �𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑞𝑞𝑖𝑖𝑖𝑖 + 𝑉̇𝑉� (3.13) 

3.2.3 Equation of Momentum 

White (1994) develop a force balance based on conservation of momentum for one-dimensional time 

invariant density and viscosity. It is assumed that the flow can be treated as one-dimensional flow 

along the path. As a result, the differential equation is simpler than the three-dimensional flow but 

still relatively accurate. The resulting partial differential equation can be written as  

𝜌𝜌 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝜌𝜌𝜌𝜌 cos 𝜃𝜃 (3.14) 

where 𝜌𝜌 is the mud density, 𝑣𝑣 is the velocity of the flow, 𝑥𝑥 is the spatial coordinate along the path, 𝜏𝜏 

is the viscous frictional force per spatial unit, 𝑔𝑔 is the gravitational constant, and 𝜃𝜃 is the slope of the 

flow path at 𝑥𝑥. By assuming that the cross-sectional area 𝐴𝐴(𝑥𝑥) is constant, then Eq. (3.14) can be 

rewritten with flow rate 𝑞𝑞 as the main variable 
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𝜌𝜌
𝐴𝐴
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝜌𝜌𝜌𝜌 cos 𝜃𝜃 (3.15) 

The friction term 𝜏𝜏 is a lumped friction term that is depending on the velocity of flow. It represents 

the term minor losses that account all frictional loss such as viscous dissipation, turbulence, swirl 

flow, and non-ideal flow conditions due to restrictions, section changes, bends, etc.  

The speed of sound characteristic can be found from the Newton-Laplace equation that shows the 

relationship between density and compressibility. It relates to the pressure transients that propagate 

as pressure waves in the fluid. The speed of sound is given by 

𝑎𝑎 = �𝛽𝛽
𝜌𝜌
 (3.16) 

The dynamics of the propagation of pressure transients are typically very fast for a hydraulic oil, and 

often it is much faster than the bandwidth of the MPD control system. As a result, it is reasonable to 

neglect this variable in the hydraulic model. 

The flow dynamics Eq. (3.15) that is expressed in partial differential equation can be approximated 

by assuming that the fluid accelerates homogeneously as a stiff mass. The simple equation for the 

average flow rate dynamics can be obtained by integration of Eq. (3.15) based on 

𝑀𝑀(𝑙𝑙1, 𝑙𝑙2) 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑝𝑝1 − 𝑝𝑝2 − 𝐹𝐹(𝑙𝑙1, 𝑙𝑙2, 𝑞𝑞, 𝜇𝜇) + 𝐺𝐺(𝑙𝑙1, 𝑙𝑙2,𝜌𝜌) (3.17) 

where  

𝑀𝑀(𝑙𝑙1, 𝑙𝑙2) = ∫ 𝜌𝜌(𝑥𝑥)
𝐴𝐴(𝑥𝑥)

𝑙𝑙2
𝑙𝑙1

𝑑𝑑𝑑𝑑 (3.18) 

𝐹𝐹(𝑙𝑙1, 𝑙𝑙2, 𝑞𝑞, 𝜇𝜇) = ∫
𝜕𝜕𝜕𝜕( 𝑞𝑞

𝐴𝐴(𝑥𝑥),𝜇𝜇)

𝜕𝜕𝜕𝜕
𝑙𝑙2
𝑙𝑙1

𝑑𝑑𝑑𝑑 (3.19) 

𝐺𝐺(𝑙𝑙1, 𝑙𝑙2,𝜌𝜌) = ∫ 𝜌𝜌(𝑥𝑥)𝑔𝑔 cos 𝜃𝜃(𝑥𝑥)𝑑𝑑𝑑𝑑𝑙𝑙2
𝑙𝑙1

 (3.20) 
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where 𝑀𝑀(𝑙𝑙1, 𝑙𝑙2) is the density per cross-section integrated over the flow path, 𝐹𝐹(𝑙𝑙1, 𝑙𝑙2, 𝑞𝑞, 𝜇𝜇) is the 

friction losses integrated along the flow path, and 𝐺𝐺(𝑙𝑙1, 𝑙𝑙2,𝜌𝜌) is the total gravity.  

3.3 SIMPLIFIED HYDRAULIC MODEL 

3.3.1 Simplified ODE Model 

Kaasa (2007) developed a third order model consists of nonlinear ODE’s for MPD system that 

captures the dominant phenomena in the system. This model does not consider the fast dynamics 

in the system, and similar effects are lumped together while slowly varying parameters are treated 

as constants. The system as illustrated in Figure 3.1 is divided into two control volumes, the drill 

string and the annulus, because it is assumed that the flow pattern is uniform along each control 

volumes. As a result, the well can be considered as two separate control volumes with different 

dynamics (Kaasa, 2007). The drillstring part consist of topside assembly, drill pipes, the 

bottomhole assembly including MWD tool and the drill bit. Meanwhile, the annulus part consists 

of an open hole section, a cased hole section, and the choke manifold at the surface. 

 

Figure 3.1: Simplified Schematic of the Drillstring and Annulus (Kaasa, 2007) 
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Using conservation of mass and momentum balances, the model is summarized in three ODEs 

equations, the main pump pressure equation and the choke pressure equation for the pressure 

dynamics and also the volumetric flow rates through the bit for the flow dynamics.  

The pressure dynamics are derived based on mass balance, Eq. (3.13). The equation for the pump 

pressure is given by 

𝑉𝑉𝑑𝑑
𝛽𝛽𝑑𝑑
𝑝̇𝑝𝑝𝑝 = 𝑞𝑞𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑞𝑞𝑏𝑏𝑏𝑏𝑏𝑏          (3.21) 

where 𝑉𝑉𝑑𝑑 is the volume of the drill string, 𝛽𝛽𝑑𝑑 is the effective bulk modulus of the drill string, 𝑝𝑝𝑝𝑝 is 

the pressure of the main pump, 𝑞𝑞𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the volumetric flow rates from the main pump, 𝑞𝑞𝑏𝑏𝑏𝑏𝑏𝑏 is the 

volumetric flow rates through the bit.  

The equation for the choke pressure can be written as follows     

𝑉𝑉𝑎𝑎
𝛽𝛽𝑎𝑎
𝑝̇𝑝𝑐𝑐 = 𝑞𝑞𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑞𝑞𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑞𝑞𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑉𝑉𝑎̇𝑎       (3.22) 

where 𝑉𝑉𝑎𝑎 is the volume of the annulus, 𝛽𝛽𝑎𝑎 is the effective bulk modulus of the annulus, 𝑉𝑉𝑎̇𝑎 is the 

change in volume in the annulus, 𝑝𝑝𝑐𝑐 is the pressure of the choke, 𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟 is the reservoir influx, 𝑞𝑞𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 

is the backpressure pump flow, and 𝑞𝑞𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜 is the volumetric flow rates through the choke.  

The flow dynamics is derived from a momentum balance, Eq. (3.17) and it is governed by: 

𝑀𝑀𝑞̇𝑞𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑝𝑝𝑝𝑝 − 𝑝𝑝𝑐𝑐 − 𝐹𝐹𝑑𝑑|𝑞𝑞𝑏𝑏𝑏𝑏𝑏𝑏|𝑞𝑞𝑏𝑏𝑏𝑏𝑏𝑏 − 𝐹𝐹𝑎𝑎|𝑞𝑞𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟|(𝑞𝑞𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟) + (𝜌̅𝜌𝑑𝑑−𝜌̅𝜌𝑎𝑎)𝑔𝑔ℎ𝑏𝑏𝑏𝑏𝑏𝑏  (3.23) 

where 𝑀𝑀𝑎𝑎 is the mass coefficient of the annulus, 𝑀𝑀𝑑𝑑 is the mass coefficient of the annulus, 𝐹𝐹𝑑𝑑 is 

the frictional pressure drop coefficients in the drillstring, 𝐹𝐹𝑎𝑎 is the frictional pressure drop 

coefficients in the annulus, ℎ𝑏𝑏𝑏𝑏𝑏𝑏 is the true vertical depth (TVD) of the bit, 𝜌̅𝜌𝑑𝑑 is the average density 

in the drill string, 𝜌̅𝜌𝑎𝑎 is the average density in the annulus, and 𝑔𝑔 is the acceleration of gravity. The 

mass coefficient (integrated density per cross section) 𝑀𝑀 is given by 𝑀𝑀 = 𝑀𝑀𝑎𝑎 + 𝑀𝑀𝑑𝑑, where  𝑀𝑀𝑗𝑗 =

∫ 𝜌𝜌𝑗𝑗(𝑥𝑥)/𝐴𝐴𝑗𝑗(𝑥𝑥)𝑑𝑑𝑑𝑑𝐿𝐿𝑗𝑗
0 .  
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The equation for the pressure at the bit or known as bottomhole pressure will be the sum of 

hydrostatic pressure, frictional pressure along the annulus, choke pressure and pressure due to the 

rate of change in 𝑞𝑞𝑏𝑏𝑏𝑏𝑏𝑏 as given by 

𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑝𝑝𝑐𝑐 + 𝑀𝑀𝑎𝑎𝑞̇𝑞𝑏𝑏𝑏𝑏𝑏𝑏 − 𝐹𝐹𝑎𝑎|𝑞𝑞𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟|(𝑞𝑞𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟) + 𝜌𝜌𝑎𝑎𝑔𝑔ℎ𝑏𝑏𝑏𝑏𝑏𝑏    (3.24) 

Using this model, the control system in MPD operation will be designed to control the 𝑞𝑞𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜 by 

using some inner control loop to set the choke opening, 𝑧𝑧𝑐𝑐 , in order to maintain the bottom hole 

pressure. The equation for the flow through the choke based on the orifice equation (Merritt, 1967) 

is given by 

𝑞𝑞𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐾𝐾𝑐𝑐𝑧𝑧𝑐𝑐�
2
𝜌𝜌𝑎𝑎

(𝑝𝑝𝑐𝑐 − 𝑝𝑝𝑜𝑜)         (3.25) 

where 𝐾𝐾𝑐𝑐 is the choke valve constant related to the valve characteristic, 𝑧𝑧𝑐𝑐 ∈ [0,1] is the choke 

opening, and 𝑝𝑝𝑜𝑜 is the atmospheric pressure. 

3.3.2 Simplified PDE Model 

In order to have a hydraulic well model that will provide better estimation on the downhole 

pressure and flow dynamics of a well, we will consider the model in sets of partial differential 

equation (PDEs) form. In order to implement this PDEs for the simulation, these equations will be 

discretized into a large set of ordinary differential equations (ODEs) that can be used to estimate 

the pressure and flow dynamics once all the data and parameters are fed into the simulators.  

White (2007), Kaasa et al. (2012), and Landet et al. (2013) proposed a hydraulic well model for 

fluid flow through the annulus. Assuming drilling fluid as a viscous fluid in order to fulfill the 

fundamental relations such as equation of state, mass conservation, momentum conservation and 

energy conservation as explained in Section 3.2.1 – 3.2.3, then the mass conservation for the case 

of single phase and one-dimensional flow can be written as follow 

𝜌𝜌𝑡𝑡(𝑧𝑧, 𝑡𝑡) = − 1
𝐴𝐴𝑎𝑎
𝑚𝑚𝑧𝑧(𝑧𝑧, 𝑡𝑡)         (3.26) 
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where 𝑡𝑡 ∈  [0, 𝑙𝑙] is the time instant, 𝑧𝑧 ∈  [0, 𝑙𝑙] is the spatial coordinate along the annulus, from 

bottomhole 𝑧𝑧 = 0 up to the annulus and to the topside 𝑧𝑧 = 𝑙𝑙, 𝜌𝜌 is the mud density, 𝐴𝐴𝑎𝑎 is the cross 

section area of the annulus and 𝑚𝑚 is the mass flow. Using the definition of bulk modulus 𝛽𝛽 = 𝜌𝜌𝑝𝑝𝜌𝜌, 

then we can write Eq. (3.26) as 

𝑝𝑝𝑡𝑡(𝑧𝑧, 𝑡𝑡) =  − 𝛽𝛽
𝐴𝐴𝑎𝑎

 𝑞𝑞𝑧𝑧(𝑧𝑧, 𝑡𝑡),          (3.27) 

where 𝑝𝑝 is the annular pressure, 𝛽𝛽 is the bulk modulus, 𝑞𝑞 is the mud volumetric flow rate through 

the annulus. The momentum conservation derived from Eq. (3.17) – (3.20)  can be written as 

𝑚𝑚𝑡𝑡(𝑧𝑧, 𝑡𝑡) =  −𝐴𝐴𝑎𝑎𝑝𝑝𝑧𝑧(𝑧𝑧, 𝑡𝑡) − 𝐴𝐴𝑎𝑎
𝜕𝜕
𝜕𝜕𝜕𝜕 ∫ 𝜌𝜌𝑣𝑣

2  𝑑𝑑𝑑𝑑 − 𝐹𝐹𝐹𝐹(𝑧𝑧, 𝑡𝑡) − 𝐴𝐴𝑎𝑎𝑔𝑔 𝑠𝑠𝑠𝑠𝑠𝑠 𝜏𝜏(𝑧𝑧)    (3.28) 

where 𝑣𝑣 is the fluid velocity, 𝐹𝐹 is the friction coefficient and 𝑔𝑔 is the gravitational constant. 

Assuming the integral of ∫𝜌𝜌𝑣𝑣2  𝑑𝑑𝑑𝑑 to be small enough and considering vertical well, the flow rate 

can be written as follow 

𝑞𝑞𝑡𝑡 (𝑧𝑧, 𝑡𝑡) =  −𝐴𝐴𝑎𝑎
𝜌𝜌

 𝑝𝑝𝑧𝑧(𝑧𝑧, 𝑡𝑡) −  𝐹𝐹
𝜌𝜌
𝑞𝑞(𝑧𝑧, 𝑡𝑡) − 𝐴𝐴𝑎𝑎𝑔𝑔,       (3.29) 

The boundary conditions are given by 

𝑞𝑞(0, 𝑡𝑡) = 𝑞𝑞𝑏𝑏(𝑡𝑡) = 𝑞𝑞𝑝𝑝(𝑡𝑡) + 𝑞𝑞𝑖𝑖(𝑡𝑡)         (3.30) 

𝑝𝑝(𝑙𝑙, 𝑡𝑡) = 𝑝𝑝𝑐𝑐(𝑡𝑡)           (3.31) 

where 𝑞𝑞𝑏𝑏 denotes the is mud flow rate at the bit, 𝑞𝑞𝑝𝑝 denotes the mud flow rate from the main pump 

which is measured, 𝑞𝑞𝑖𝑖 denotes volumetric in- or outflux which is an unknown parameter and 𝑝𝑝𝑐𝑐 

denotes the choke pressure which is the controlled input. 

The frictional pressure loss in the annulus is given by 

𝐹𝐹 = 𝜑𝜑1𝑞𝑞(𝑧𝑧, 𝑡𝑡) + 𝜑𝜑2𝑞𝑞(𝑧𝑧, 𝑡𝑡)2         (3.32) 

where 𝜑𝜑1 and 𝜑𝜑2 denotes the frictional coefficients. For a laminar flow throughout the annulus 

(Reynolds Number, 𝑅𝑅𝑅𝑅 < 2000), it will be modeled by setting 𝜑𝜑2 = 0. The frictional pressure 
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drop in the annulus is typically linear with respect to the flow. Therefore, the frictional pressure 

loss as a function of flow rate can be rewritten as 

𝐹𝐹 = 𝜑𝜑1𝑞𝑞(𝑧𝑧, 𝑡𝑡)           (3.33) 

The term hydrostatic pressure due to gravity from the momentum equation can be removed by 

defining 

𝑝̅𝑝(𝑧𝑧, 𝑡𝑡) = 𝑝𝑝(𝑧𝑧, 𝑡𝑡) − 𝜌𝜌𝜌𝜌(𝑙𝑙 − 𝑧𝑧)         (3.34)  

which gives  

𝑝̅𝑝𝑡𝑡(𝑧𝑧, 𝑡𝑡) = 𝑝𝑝𝑡𝑡(𝑧𝑧, 𝑡𝑡) = − 𝛽𝛽
𝐴𝐴𝑎𝑎
𝑞𝑞𝑧𝑧(𝑧𝑧, 𝑡𝑡)         (3.35) 

𝑞𝑞𝑡𝑡(𝑧𝑧, 𝑡𝑡) =  −𝐴𝐴𝑎𝑎
𝜌𝜌
�𝑝̅𝑝(𝑧𝑧, 𝑡𝑡) − 𝜌𝜌𝜌𝜌(𝑙𝑙 − 𝑧𝑧)� −  𝐹𝐹

𝜌𝜌
𝑞𝑞(𝑧𝑧, 𝑡𝑡) − 𝐴𝐴𝑎𝑎𝑔𝑔  

  =  −𝐴𝐴𝑎𝑎
𝜌𝜌
𝑝̅𝑝𝑧𝑧(𝑧𝑧, 𝑡𝑡) + 𝐴𝐴𝑎𝑎𝑔𝑔 −

𝐹𝐹
𝜌𝜌
𝑞𝑞(𝑧𝑧, 𝑡𝑡) − 𝐴𝐴𝑎𝑎𝑔𝑔    

    =  −𝐴𝐴𝑎𝑎
𝜌𝜌
𝑝̅𝑝𝑧𝑧(𝑧𝑧, 𝑡𝑡) − 𝐹𝐹

𝜌𝜌
𝑞𝑞(𝑧𝑧, 𝑡𝑡)        (3.36) 

This gives 

𝑝̅𝑝𝑡𝑡 = − 𝛽𝛽
𝐴𝐴𝑎𝑎
𝑞𝑞𝑧𝑧(𝑧𝑧, 𝑡𝑡)           (3.37) 

𝑞𝑞𝑡𝑡 =  −𝐴𝐴𝑎𝑎
𝜌𝜌

 𝑝̅𝑝𝑧𝑧(𝑧𝑧, 𝑡𝑡) −  𝐹𝐹
𝜌𝜌
𝑞𝑞(𝑧𝑧, 𝑡𝑡)        (3.38) 

𝑞𝑞(0, 𝑡𝑡) = 𝑞𝑞𝑝𝑝(𝑡𝑡) + 𝑞𝑞𝑖𝑖(𝑡𝑡)          (3.39) 

𝑝𝑝(𝑙𝑙, 𝑡𝑡) = 𝑝𝑝𝑐𝑐(𝑡𝑡)           (3.40) 
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4. TRANSFORMATION OF HYDRAULIC MODEL 
 

As mentioned in the previous chapter, the hydraulics of MPD system can be described by a set of 

PDEs derived from mass balance and momentum balance equations. This PDE model for hydraulics 

in MPD system can be modeled using 2 x 2 linear hyperbolic partial differential equations (PDEs) 

(Hauge, 2013). This specific class of hyperbolic system has been studied in recent years for many 

fluid flow systems such as flow in transmission lines (Curro, Fusco, and Mangarano, 2011), gas 

flow pipelines (Gugat and Dick, 2011), mud flow in annulus of the wellbore (Kaasa, 2012; Hauge, 

2013). 

The infinite dimensional systems of PDEs need to be discretized as a finite dimensional 

approximation in ODEs in order to simulate the flow and pressure dynamics in the wellbore.  By 

using a method of lines, the spatial coordinate (𝑥𝑥) can be discretized for N-nodes and as a result the 

2 x 2 linear hyperbolic system can be written into a lumped model (Hasan and Imsland, 2014). 

Therefore, the flow and pressure dynamics of the hydraulic system can be expressed as a state space 

representation that can be solved by numerical solvers in the simulator. 

4.1 MODEL TRANSFORMATION 

A thorough transformation of the hydraulic model into a linear hyperbolic system can be found in 

Hauge (2013), and the discretization is explained in Hasan (2014). In order to develop the observer 

in 2 x 2 linear hyperbolic system, the hydraulic PDE model needs to be transformed into the 

following equation 

𝑢𝑢𝑡𝑡 = −∈𝑖𝑖 (𝑥𝑥)𝑢𝑢𝑥𝑥 + 𝑐𝑐1(𝑥𝑥)𝑣𝑣,          (4.1) 

𝑣𝑣𝑡𝑡 = ∈2 (𝑥𝑥)𝑣𝑣𝑥𝑥 + 𝑐𝑐2(𝑥𝑥)𝑢𝑢,          (4.2) 

𝑢𝑢(0, 𝑡𝑡) = 𝑞𝑞𝑞𝑞(0, 𝑡𝑡) + 𝑣𝑣𝑖𝑖(𝑡𝑡) + 𝐶𝐶𝐶𝐶(𝑡𝑡)         (4.3) 

𝑣𝑣(1, 𝑡𝑡) = 𝑈𝑈(𝑡𝑡)           (4.4) 
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where the state 𝑢𝑢, 𝑣𝑣 ∈  [0,1] 𝑥𝑥 [0,∞).∈1 (𝑥𝑥),∈2 (𝑥𝑥) > 0, the constant 𝑞𝑞 ≠ 0, 𝑣𝑣𝑖𝑖(𝑡𝑡) ≥ 0, 𝑐𝑐1, 𝑐𝑐2 ∈

 [0,1]. The control input is 𝑈𝑈(𝑡𝑡), while 𝑢𝑢(𝑥𝑥 = 1, 𝑡𝑡) is the measurement at the topside facility. The 

subscripts 𝑥𝑥 and 𝑡𝑡 denote the partial derivatives with respect to spatial and time, respectively.  

 

Figure 4.1: Schematic of Managed Pressure Drilling System.  
Redrawn from Espen Hauge (2013) 

As mentioned in the previous chapter (Eq. 3.37 – 3.40), from the fundamental relations such as the 

mass conservation, and the simplified momentum conservation, the flow dynamics and pressure 

dynamics of wellbore can be written as  

𝑝𝑝 �𝑡𝑡 = − 𝛽𝛽
𝐴𝐴𝑎𝑎
𝑞𝑞𝑧𝑧(𝑧𝑧, 𝑡𝑡)           (4.5) 

𝑞𝑞𝑡𝑡 =  −𝐴𝐴𝑎𝑎
𝜌𝜌

 𝑝𝑝 �𝑧𝑧 −  𝐹𝐹
𝜌𝜌
𝑞𝑞          (4.6) 

 

CHAPTER 4. TRANSFORMATION OF HYDRAULIC MODEL Page | 37 



𝑞𝑞(0, 𝑡𝑡) = 𝑞𝑞𝑝𝑝(𝑡𝑡) + 𝑞𝑞𝑖𝑖(𝑡𝑡)          (4.7) 

𝑝𝑝(𝑙𝑙, 𝑡𝑡) = 𝑝𝑝𝑐𝑐(𝑡𝑡)           (4.8) 

In order to transform the above PDE model of wellbore hydraulics Eq. (4.5) – (4.8) into the form 

of 2 x 2 linear hyperbolic system Eq. (4.1) – (4.4), which is needed for the observer design, we 

need to consider the following variable based on Riemann’s coordinates 

𝑢𝑢�(𝑧𝑧, 𝑡𝑡) =  1
2
�𝑞𝑞(𝑧𝑧, 𝑡𝑡) + 𝐴𝐴𝑎𝑎

�𝛽𝛽𝛽𝛽
𝑝̅𝑝(𝑧𝑧, 𝑡𝑡)�         (4.9) 

𝑣̅𝑣(𝑧𝑧, 𝑡𝑡) =  1
2
�𝑞𝑞(𝑧𝑧, 𝑡𝑡) −  𝐴𝐴𝑎𝑎

�𝛽𝛽𝛽𝛽
𝑝̅𝑝(𝑧𝑧, 𝑡𝑡)�         (4.10) 

The time-derivative of Eq. (4.9) and (4.10) is given by 

𝑢𝑢�𝑡𝑡 =  1
2
�𝑞𝑞𝑡𝑡(𝑧𝑧, 𝑡𝑡) +  𝐴𝐴𝑎𝑎

�𝛽𝛽𝛽𝛽
𝑝̅𝑝𝑡𝑡(𝑧𝑧, 𝑡𝑡)� =  −�𝛽𝛽

𝜌𝜌
𝑢𝑢�𝑧𝑧 −

𝐹𝐹
2𝜌𝜌

(𝑢𝑢� + 𝑣̅𝑣)      (4.11) 

𝑣̅𝑣𝑡𝑡 =  1
2
�𝑞𝑞𝑡𝑡(𝑧𝑧, 𝑡𝑡) −  𝐴𝐴𝑎𝑎

�𝛽𝛽𝛽𝛽
𝑝̅𝑝𝑡𝑡(𝑧𝑧, 𝑡𝑡)� =  −�𝛽𝛽

𝜌𝜌
𝑣̅𝑣𝑧𝑧 −

𝐹𝐹
2𝜌𝜌

(𝑢𝑢� + 𝑣̅𝑣)      (4.12) 

The boundary condition can be written as follows 

𝑢𝑢�(0, 𝑡𝑡) =  1
2
�𝑞𝑞𝑝𝑝(𝑡𝑡) + 𝑞𝑞𝑖𝑖(𝑡𝑡) + 𝑢𝑢�(0, 𝑡𝑡) − 𝑣̅𝑣(0, 𝑡𝑡)� = −𝑣̅𝑣(0, 𝑡𝑡) + 𝑞𝑞𝑝𝑝(𝑡𝑡) + 𝑞𝑞𝑖𝑖(𝑡𝑡)  (4.13) 

𝑣̅𝑣(𝑙𝑙, 𝑡𝑡) =  1
2
��𝑢𝑢�(𝑙𝑙, 𝑡𝑡) + 𝑣̅𝑣(𝑙𝑙, 𝑡𝑡)� − 𝐴𝐴𝑎𝑎

�𝛽𝛽𝛽𝛽
𝑝𝑝𝑐𝑐(𝑡𝑡)� = 𝑢𝑢�(𝑙𝑙, 𝑡𝑡) − 𝐴𝐴𝑎𝑎

�𝛽𝛽𝛽𝛽
𝑝𝑝𝑐𝑐(𝑡𝑡)    (4.14) 

By defining 

𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝑢𝑢�(𝑥𝑥𝑥𝑥, 𝑡𝑡)𝑒𝑒𝑎𝑎𝑎𝑎           (4.15) 

𝑣𝑣(𝑥𝑥, 𝑡𝑡) = 𝑣̅𝑣(𝑥𝑥𝑥𝑥, 𝑡𝑡)𝑒𝑒−𝑎𝑎𝑎𝑎          (4.16) 

with aforementioned transformation, the time and spatial derivatives of Eq. (4.15) is given by 
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𝑢𝑢𝑡𝑡 =  −�𝛽𝛽
𝜌𝜌
𝑢𝑢�𝑧𝑧𝑒𝑒𝑎𝑎𝑎𝑎 −

𝐹𝐹
2𝜌𝜌

(𝑢𝑢(𝑥𝑥, 𝑡𝑡) + 𝑣𝑣(𝑥𝑥, 𝑡𝑡)𝑒𝑒2𝑎𝑎𝑎𝑎)       (4.17) 

𝑢𝑢𝑥𝑥(𝑥𝑥, 𝑡𝑡) = 𝑙𝑙𝑢𝑢�𝑧𝑧(𝑥𝑥𝑥𝑥, 𝑡𝑡)𝑒𝑒𝑎𝑎𝑎𝑎 + 𝑎𝑎𝑢𝑢�(𝑥𝑥𝑥𝑥, 𝑡𝑡)𝑒𝑒𝑎𝑎𝑎𝑎        (4.18) 

so that 

𝑢𝑢�𝑧𝑧(𝑥𝑥𝑥𝑥, 𝑡𝑡) = 1
𝑙𝑙
𝑢𝑢𝑥𝑥(𝑥𝑥, 𝑡𝑡)𝑒𝑒−𝑎𝑎𝑎𝑎 − 𝑎𝑎

𝑙𝑙
𝑢𝑢(𝑥𝑥, 𝑡𝑡)𝑒𝑒−𝑎𝑎𝑎𝑎        (4.19) 

By plugging Eq. (4.19) to (4.17), then 

𝑢𝑢𝑡𝑡 =  −1
𝑙𝑙
 �𝛽𝛽

𝜌𝜌
𝑢𝑢𝑥𝑥(𝑥𝑥, 𝑡𝑡) + �𝑎𝑎

𝑙𝑙 �
𝛽𝛽
𝜌𝜌
− 𝐹𝐹

2𝜌𝜌
� 𝑢𝑢 − 𝐹𝐹

2𝜌𝜌
𝑒𝑒2𝑎𝑎𝑎𝑎𝑣𝑣(𝑥𝑥, 𝑡𝑡)     (4.20)  

By defining 𝑎𝑎 =  𝐹𝐹𝐹𝐹
2�𝛽𝛽𝛽𝛽

 , and insert in Eq. (4.20) and the same for Eq. (4.16), we obtain the 

following equation  

𝑢𝑢𝑡𝑡 = −1
𝑙𝑙
 �𝛽𝛽

𝜌𝜌
𝑢𝑢𝑥𝑥(𝑥𝑥, 𝑡𝑡) − 𝐹𝐹

2𝜌𝜌
𝑒𝑒2𝑎𝑎𝑎𝑎𝑣𝑣(𝑥𝑥, 𝑡𝑡)       (4.21) 

𝑣𝑣𝑡𝑡 = 1
𝑙𝑙
 �𝛽𝛽

𝜌𝜌
𝑣𝑣𝑥𝑥(𝑥𝑥, 𝑡𝑡) − 𝐹𝐹

2𝜌𝜌
𝑒𝑒−2𝑎𝑎𝑎𝑎𝑢𝑢(𝑥𝑥, 𝑡𝑡)        (4.22) 

𝑢𝑢(0, 𝑡𝑡) =  −𝑣𝑣(0, 𝑡𝑡) + 𝑞𝑞𝑝𝑝(𝑡𝑡) + 𝑞𝑞𝑖𝑖(𝑡𝑡)        (4.23) 

𝑣𝑣(1, 𝑡𝑡) = 𝑢𝑢(1, 𝑡𝑡)𝑒𝑒−2𝑎𝑎 − 𝐴𝐴𝑎𝑎𝑒𝑒−𝑎𝑎

�𝛽𝛽𝛽𝛽
𝑝𝑝𝑐𝑐(𝑡𝑡)        (4.24) 

The equation above resembles to (4.1) to (4.4) with 

∈1 (𝑥𝑥) = ∈2 (𝑥𝑥) = 1
𝑙𝑙 �

𝛽𝛽
𝜌𝜌
         (4.25) 

𝑐𝑐1(𝑥𝑥) = − 𝐹𝐹
2𝜌𝜌
𝑒𝑒2𝑎𝑎𝑎𝑎          (4.26)  

𝑐𝑐2(𝑥𝑥) = − 𝐹𝐹
2𝜌𝜌
𝑒𝑒−2𝑎𝑎𝑎𝑎          (4.27)  
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𝑞𝑞 =  −1           (4.28) 

𝑣𝑣𝑖𝑖(𝑡𝑡) = 𝑞𝑞𝑝𝑝(𝑡𝑡)           (4.29) 

𝑈𝑈(𝑡𝑡) = 𝑢𝑢(1, 𝑡𝑡)𝑒𝑒−2𝑎𝑎 − 𝐴𝐴𝑎𝑎𝑒𝑒−𝑎𝑎

�𝛽𝛽𝛽𝛽
𝑝𝑝𝑐𝑐(𝑡𝑡)        (4.30) 

The original state for the flow and pressure dynamics can be obtained as follows 

𝑞𝑞(𝑧𝑧, 𝑡𝑡) = 𝑢𝑢 �𝑧𝑧
𝑙𝑙

, 𝑡𝑡� 𝑒𝑒−
𝑎𝑎
𝑙𝑙𝑧𝑧 + 𝑣𝑣 �𝑧𝑧

𝑙𝑙
, 𝑡𝑡� 𝑒𝑒

𝑎𝑎
𝑙𝑙𝑧𝑧        (4.31) 

𝑝𝑝(𝑧𝑧, 𝑡𝑡) = �𝛽𝛽𝛽𝛽
𝐴𝐴𝑎𝑎

�𝑢𝑢 �𝑧𝑧
𝑙𝑙

, 𝑡𝑡� 𝑒𝑒−
𝑎𝑎
𝑙𝑙𝑧𝑧 − 𝑣𝑣 �𝑧𝑧

𝑙𝑙
, 𝑡𝑡� 𝑒𝑒

𝑎𝑎
𝑙𝑙𝑧𝑧� + 𝜌𝜌𝜌𝜌(𝑙𝑙 − 𝑧𝑧)     (4.32) 

4.2 DISCRETIZATION 

For pressure estimation scheme, the infinite dimensional systems of PDEs are discretized as a finite 

high-dimensional approximation in ODEs or known as the early lumping approach (Hasan, 2014). 

The method of lines is a numerical technique to solve PDEs in which only one dimension is 

discretized. Generally, in a time-dependent PDEs, the analysis of numerical methods can be done by 

first discretizing the spatial derivatives and leaving the time variable continuous. In this section, the 

spatial coordinate (𝑥𝑥) will be discretized for N-nodes. As a result, the linear hyperbolic system in 

Eq. (4.1) - (4.4) can be written into a lumped model. Therefore, the flow and pressure dynamics of 

the system in Eq. (4.31) and (4.32) can be expressed as a state space representation that can be solved 

by numerical solvers in the simulator. For 𝑖𝑖 =  {1, … ,𝑁𝑁}, equation (4.1) - (4.2) can be written as 

𝑑𝑑𝑢𝑢𝑖𝑖
𝑑𝑑𝑑𝑑

=  −∈1 (𝑥𝑥𝑖𝑖)
𝑑𝑑𝑢𝑢𝑖𝑖
𝑑𝑑𝑥𝑥𝑖𝑖

+ 𝑐𝑐1(𝑥𝑥𝑖𝑖)𝑣𝑣𝑖𝑖                (4.33)  

𝑑𝑑𝑣𝑣𝑖𝑖
𝑑𝑑𝑑𝑑

= ∈2 (𝑥𝑥𝑖𝑖)
𝑑𝑑𝑣𝑣𝑖𝑖
𝑑𝑑𝑥𝑥𝑖𝑖

+ 𝑐𝑐2(𝑥𝑥𝑖𝑖)𝑢𝑢𝑖𝑖         (4.34)  

Using an upwind finite difference scheme, the definition of a derivative is given by 

𝑑𝑑
𝑑𝑑𝑑𝑑
𝑓𝑓(𝑥𝑥0) = lim

∆𝑥𝑥→0

𝑓𝑓(𝑥𝑥0)−𝑓𝑓(𝑥𝑥0−∆𝑥𝑥)
∆𝑥𝑥

  (4.35) 

Then the derivatives of Eq. (4.33) and (4.34) with respect to 𝑥𝑥, can be written as follows 
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𝑑𝑑𝑢𝑢𝑖𝑖
𝑑𝑑𝑑𝑑

=  𝑢𝑢𝑖𝑖−𝑢𝑢𝑖𝑖−1
𝛿𝛿𝛿𝛿

 (4.36) 

𝑑𝑑𝑣𝑣𝑖𝑖
𝑑𝑑𝑑𝑑

=  𝑣𝑣𝑖𝑖+1−𝑣𝑣𝑖𝑖
𝛿𝛿𝛿𝛿

 (4.37) 

where 𝛿𝛿𝛿𝛿 =  1
𝑁𝑁+1

. Due to the boundary conditions, the discretization scheme between 𝑢𝑢 and 𝑣𝑣 are 

slightly different. 

Insert Eq. (4.36) - (4.37) to (4.33) - (4.34): 

𝑑𝑑𝑢𝑢1
𝑑𝑑𝑑𝑑

=   −∈1 (𝑥𝑥1) 𝑢𝑢1−𝑢𝑢0
𝛿𝛿𝛿𝛿

+  𝑐𝑐1(𝑥𝑥1)𝑣𝑣1 (4.38) 

𝑑𝑑𝑢𝑢2
𝑑𝑑𝑑𝑑

=   −∈1 (𝑥𝑥2) 𝑢𝑢2−𝑢𝑢1
𝛿𝛿𝛿𝛿

+  𝑐𝑐1(𝑥𝑥2)𝑣𝑣2 (4.39) 

𝑑𝑑𝑢𝑢𝑁𝑁
𝑑𝑑𝑑𝑑

=   −∈1 (𝑥𝑥𝑁𝑁) 𝑢𝑢𝑁𝑁−𝑢𝑢𝑁𝑁−1
𝛿𝛿𝛿𝛿

+ 𝑐𝑐1(𝑥𝑥𝑁𝑁)𝑣𝑣𝑁𝑁 (4.40) 

𝑑𝑑𝑣𝑣1
𝑑𝑑𝑑𝑑

=  ∈2 (𝑥𝑥1) 𝑣𝑣2−𝑣𝑣1
𝛿𝛿𝛿𝛿

+  𝑐𝑐2(𝑥𝑥1)𝑢𝑢1 (4.41) 

𝑑𝑑𝑣𝑣2
𝑑𝑑𝑑𝑑

=  ∈2 (𝑥𝑥2) 𝑣𝑣3−𝑣𝑣2
𝛿𝛿𝛿𝛿

+  𝑐𝑐2(𝑥𝑥2)𝑢𝑢2 (4.42) 

𝑑𝑑𝑣𝑣𝑁𝑁
𝑑𝑑𝑑𝑑

=   −∈2 (𝑥𝑥𝑁𝑁) 𝑈𝑈2(𝑡𝑡)−𝑣𝑣𝑁𝑁
𝛿𝛿𝛿𝛿

+  𝑐𝑐2(𝑥𝑥𝑁𝑁)𝑢𝑢𝑁𝑁 (4.43) 

By considering that 𝑣𝑣1 ≈
𝑣𝑣0+𝑣𝑣1
2

, then left boundary can be computed by interpolating 𝑣𝑣0 ≈ 2𝑣𝑣1 − 𝑣𝑣2 

and as a result 𝑢𝑢0 = 𝑞𝑞(2𝑣𝑣1 − 𝑣𝑣2) + 𝑈𝑈1. The ODEs of Eq. (4.38) - (4.43) can be written as a state-

space representation, where a mathematical model in the first-order differential equation shown as a 

set of state variables, input, and output. The state-space representation is given by 

𝑥𝑥(𝑡𝑡) = 𝐴𝐴𝐴𝐴(𝑡𝑡) + 𝐵𝐵𝐵𝐵(𝑡𝑡)̇  (4.44) 

• 𝑥𝑥 is 𝑛𝑛 𝑥𝑥 1 (𝑛𝑛 rows by 1 column). It is the state vector and a function of time 

• 𝐴𝐴 is 𝑛𝑛 𝑥𝑥 𝑛𝑛. It is the state matrix 

• 𝐵𝐵 is 𝑛𝑛 𝑥𝑥 𝑟𝑟. It is the input matrix 
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• 𝑈𝑈 is 𝑟𝑟 𝑥𝑥 1. It is the input as a function of time. In practice, it is the representation of the input 

from the choke pressure over time 

The state of the system is represented as a vector within a space whose axes, in this case 𝑥𝑥, is the 

state variable. The state vector (𝑥𝑥) can be written as 

𝑥𝑥 =  [𝑢𝑢1 …𝑢𝑢𝑁𝑁  𝑣𝑣1 … 𝑣𝑣𝑁𝑁 ]𝑇𝑇 (4.45) 

The state matrix (𝐴𝐴) is given by 

𝐴𝐴 = �𝐸𝐸1 𝐶𝐶1
𝐶𝐶1 𝐸𝐸2

� (4.46) 

where  

𝐶𝐶1 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑐𝑐1) +  �2𝑞𝑞 ∈1(𝑥𝑥1)
𝛿𝛿𝑥𝑥1

−𝑞𝑞 ∈1(𝑥𝑥1)
𝛿𝛿𝑥𝑥1

0
0 0 0

�, (4.47) 

𝐶𝐶2 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑐𝑐2), (4.48) 

𝐸𝐸1 = 1
𝛿𝛿𝛿𝛿
�

−𝜀𝜀1(𝑥𝑥1) 0 ⋯
𝜀𝜀1(𝑥𝑥2)
⋮
0

−𝜀𝜀1(𝑥𝑥2)
⋮
0

⋯
⋮
⋯

0
0
⋮

−𝜀𝜀1(𝑥𝑥𝑁𝑁)
�, (4.49) 

𝐸𝐸2 = 1
𝛿𝛿𝛿𝛿
�

−𝜀𝜀2(𝑥𝑥1) 𝜀𝜀2(𝑥𝑥1) ⋯
0
⋮
0

−𝜀𝜀2(𝑥𝑥2)
⋮
0

⋯
⋮
⋯

0
0
⋮

−𝜀𝜀2(𝑥𝑥𝑁𝑁)
�, (4.50) 

The input matrix (𝐵𝐵) is given by 

𝐵𝐵 = 1
𝛿𝛿𝛿𝛿
�
𝜀𝜀1(𝑥𝑥1) 0

0 −𝜀𝜀2(𝑥𝑥𝑁𝑁)� (4.51) 

while the input can be defined as follows 

𝑈𝑈 = �𝑈𝑈1𝑈𝑈2
� (4.52) 
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4.3 SIMULATION 

In this section, the simulation is performed to consider the use of the hydraulic model in 2 x 2 linear 

hyperbolic system. It simulates the dynamics of the hydraulic system during drilling connection 

using MATLAB (Appendix A). The depth of the vertical well is 2000m and the flow rate of the main 

pump is 1000lpm. In the case of drilling connection, the main circulation will be stopped by turning 

off the main pump at 100 seconds, and by the time the drilling connection procedure finish at 300 

seconds, the main pump is turned back on to initial flow rate of 1000lpm before the drilling operation 

proceeds. The numerical values used for the physical parameters are given in Table 4.1 

Table 4.1: Wellbore Parameters for Simulation of Drilling Connection 

Parameter Description Value Unit 
𝛽𝛽 Bulk modulus 2 𝑥𝑥 109 𝑃𝑃𝑃𝑃 
𝐴𝐴𝑎𝑎 Annulus cross sectional area 0.03 𝑚𝑚2 
𝐴𝐴𝑑𝑑 Drillstring cross sectional area 0.006 𝑚𝑚2 
𝐹𝐹 Friction factor 1 𝑘𝑘𝑘𝑘/𝑚𝑚3 
𝑔𝑔 Gravity constant 9.81 𝑚𝑚/𝑠𝑠2 
𝜌𝜌 Mud density 1250 𝑘𝑘𝑘𝑘/𝑚𝑚3 
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Figure 4.2: Flowrate at the Inlet (Bottomhole) 

Figure 4.2 shows the dynamics of the flow in the bottomhole. It shows that at t=100s, the main 

circulation is stopped from 1000lpm to 0lpm by turning off the main pump, in order to prepare for 

making up connection. After making up connection finish at t=300s, the flow rate is turned back 

on to 1000lpm, in order to continue a drilling operation.  

 

CHAPTER 4. TRANSFORMATION OF HYDRAULIC MODEL Page | 44 



 

Figure 4.3: Flowrate at the Outlet (Choke) 

Figure 4.3 shows the dynamics of the flow in the topside (choke). It shows few seconds of delay 

compared to the flow dynamics on the bottomhole in Figure 4.1. This figure shows that the effect 

of turning off and turning on the flow rate of the main pump can be seen in the topside few seconds 

after it effects the flow dynamics in the bottomhole. The flowrate is going down from 1000lpm to 

0lpm at 103s and is going up to 1000lpm again at 303s. 
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Figure 4.4: Pressure at the Inlet (Bottomhole) 

Figure 4.4 shows the pressure dynamics in the bottomhole. It shows that at t=100s, the bottomhole 

pressure is going down because the flow rate from the main pump is turned off in order to prepare 

for making up connection. The reduction of bottomhole pressure from 256bara down to 245.5bara 

is because of the loss of frictional pressure along the annulus of the wellbore, and loss of 

backpressure from the choke as shown in Figure 4.5. The pressure is stable at 245.5bara due to the 

hydrostatic pressure from the drilling fluid (1250 kg/m3) in the annulus. After making up 

connection finish at t=300s, the flow rate is turned back on to 1000lpm. As a result, the bottomhole 

pressure is back at 256bara.  
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Figure 4.5: Pressure at the Outlet (Choke) 

Figure 4.5 shows the pressure dynamics in the topside (choke). It shows few seconds of delay 

compared to the pressure dynamics on the bottomhole. This figure shows that the effect of turning 

off and turning on the flow rate of the main pump can be seen in the topside few seconds after it 

effects the pressure dynamics in the bottomhole. The choke pressure is initially maintained at 10.5 

bara before going down to 0bara during the start of connection at 103s, and the choke pressure is 

back at 10.5 bara at t=303s to continue drilling operation. 

These simulations show that the hydraulics in MPD system can be modeled in 2 x 2 linear hyperbolic 

PDEs. The result from numerical simulation of shows that the pressure and flow dynamics during 

drilling connection can be computed by using the hydraulic model that has been transformed into 

a linear hyperbolic system, and it shows a proper relation between turning off and turning on the 

main pump during connection to the bottomhole pressure, choke pressure, and choke flowrate. In 

the following chapter, an adaptive observer will be outlined and the numerical simulation will be 

performed to compare the observer with the actual pressure and flow dynamics that has been 

simulated in this chapter. 
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5. ADAPTIVE OBSERVER DESIGN 
 

In a drilling operation, the downhole measurements are typically less reliable than the topside 

measurements due to slow sampling, transmissions delays, and loss of communication for low or 

no-flow conditions. Therefore, the measured volumetric flow and pressure from the flow meter and 

the pressure gauge at the topside of the well are considered as the only reliable measurement during 

drilling. Since the downhole pressure is the variable to control in MPD operation, an adaptive 

observer or parameter estimation scheme is required to accurately estimate the downhole pressure 

based on the measurement at the surface. 

An adaptive observer design based on backstepping method is presented in this chapter. The 

backstepping method is a systematic method for control and estimation problems of distributed 

parameter systems that have been used successfully for state and parameter estimation of many types 

of PDEs. It allows the design of boundary control laws, boundary observers and output-feedback 

control laws, which guarantee the stability of the closed-loop system and convergence of the state 

estimates. The design, which is based on Volterra integral transformation relies only on a 

measurement at the right boundary of the system (topside), and the observer gains are obtained by 

solving a first-order hyperbolic system of Goursat-type PDEs (Hasan, 2015). This solution to the 

Goursat system is related to the solution of a simpler, explicitly solvable Goursat system through 

a suitable infinite series of powers of partial derivatives which is summed explicitly in terms of 

special functions, such as Bessel functions and the generalized Marcum Q-functions of the first 

order (Vazquez et al, 2013). 

In practice, the observer can be used to accurately estimate the downhole pressure, flow dynamics 

and the unknown parameter such as fluid loss using only on measurement at the topside. Numerical 

simulations of drilling events such as drilling connection and lost circulation are also presented in 

this chapter to examine the accuracy of the observer for the estimation of downhole pressure, the 

rate of lost circulation and another unknown parameter. In addition, analysis from Lyapunov 

approach is outlined to investigate the convergence of the estimation error. 
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5.1 STATE AND PARAMETER ESTIMATION 

The main objective of an adaptive observer is to estimate unmeasured states in a dynamic system 

with parametric uncertainties. In most MPD operation, the pressure profile throughout the wellbore 

is not measured and the data quality for feedback control is low due to the noise, slow sampling rates 

and loss of communication.  Due to the lack of measurement for the control purposes, an estimation 

scheme for pressure and flow dynamics of the wellbore is important for control design in MPD 

system. In addition to estimating the pressure and flow dynamics, an adaptive observer can also be 

used to estimate parameter uncertainties such as friction, influx, and fluid loss. These unmeasured 

data can be estimated by adjusting the dynamic system based on the available measurement at 

topside (Stamnes, 2011).  

The estimation of the dynamic system using deterministic approach is called as an observer, while 

the estimation of the dynamic system using stochastic approach is called filter or an estimator as 

discussed in Kalman (1960). An observer is mainly used to estimate the dynamic system while the 

parameters are well-known. On the other hand, an adaptive observer is useful in the case of uncertain 

parameters in the system. As in the case of MPD, there are uncertain parameters such as friction, 

influx and fluid loss that need to be accurately estimated in order to have accurate estimation of the 

state system, that is pressure dynamics of the wellbore. 

The current adaptive observer design does not cover the linear hyperbolic system to which the 

hydraulic model has been transformed in this work. Therefore, an adaptive observer design for this 

specific class of linear hyperbolic system is presented in this chapter. The adaptive observer is based 

on a backstepping method that guarantees stability and convergence of the state estimation. 

5.1.1 Adaptive Observer 

This section provides an introduction to the adaptive observer. The observer provides an estimation 

the downhole pressure and the unknown parameter (friction) in the annulus. The detail presented 

below is based on the linear time varying model (Stamnes, 2007) and it serves only as an introduction 

to the adaptive observer design. Meanwhile, the main topic of this work, that is adaptive observer 

design based on a linear hyperbolic system will be outlined in the next section, Chapter 5.2 and 5.3. 

Consider linear systems as follows 
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𝑥̇𝑥 = 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 (5.1) 

𝑦𝑦 = 𝐶𝐶𝐶𝐶 (5.2) 

where 𝑥𝑥 is the state, 𝑢𝑢 is the measured input and 𝑦𝑦 is the measurements (∆𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏). Due to the presence 

of uncertain parameters in the hydraulic model, then an adaptive observer is designed for state and 

parameter estimation. In many cases, the unknown parameter is represented by introducing 𝜃𝜃, and 

multiply it by a measured function. 

𝑥̇𝑥 = 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 + 𝜙𝜙(𝑡𝑡)𝜃𝜃 (5.3) 

𝑦𝑦 = 𝐶𝐶𝐶𝐶 (5.4) 

where  

𝐴𝐴(𝑡𝑡) = �
0 0 𝑎𝑎13
0 0 𝑎𝑎23
𝑎𝑎31 −𝑎𝑎31 𝑎𝑎33

� (5.5) 

𝐵𝐵(𝑡𝑡) = �
𝑏𝑏11 0
0 𝑏𝑏22
0 0

� (5.6) 

𝐶𝐶(𝑡𝑡) = �
𝑐𝑐1
𝑐𝑐2
𝑐𝑐3
�
𝑇𝑇

 (5.7) 

where 𝑥𝑥1 and 𝑥𝑥2 are measured. 𝑎𝑎33 is dependent on the estimated unknown parameter, 𝐹𝐹𝑎𝑎, therefore 

𝜃𝜃 = 𝑎𝑎33 and it is estimated by 𝜃𝜃�. 

5.1.2 Error Dynamics 

The dynamics of 𝜉𝜉, can be written as 

𝜉̇𝜉 = ∆𝑥̇𝑥3 + 𝑙𝑙1∆𝑥̇𝑥1 (5.8) 

𝜉̇𝜉 = 𝑎𝑎31∆𝑥𝑥1 − 𝑎𝑎31∆𝑥𝑥2 + (𝜃𝜃 + 𝑙𝑙1𝑎𝑎13)∆𝑥𝑥3 + 𝑙𝑙1𝑏𝑏11∆𝑢𝑢1 (5.9) 

An observer of ∆𝑥𝑥3 is given by 

∆𝑥𝑥�3 = 𝜉𝜉 − 𝑙𝑙1∆𝑥𝑥1 (5.10) 

The dynamics of the estimation error can be found as 
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∆𝑥𝑥�3 = ∆𝑥𝑥3 − ∆𝑥𝑥�3 = 𝜉𝜉 − 𝜉𝜉 = 𝜉𝜉 (5.11) 

𝜉𝜉 = 𝜉𝜉 − 𝜉𝜉 = 𝜃𝜃∆𝑥𝑥3 − 𝜃𝜃�∆𝑥𝑥�3 + 𝑙𝑙1𝑎𝑎13∆𝑥𝑥�3 (5.12) 

Since 𝜃𝜃∆𝑥𝑥3 − 𝜃𝜃�∆𝑥𝑥�3 = 𝜃𝜃∆𝑥𝑥3 − 𝜃𝜃∆𝑥𝑥�3 + 𝜃𝜃∆𝑥𝑥�3 − 𝜃𝜃�∆𝑥𝑥�3 = 𝜃𝜃∆𝑥𝑥�3 + 𝜃𝜃�∆𝑥𝑥�3, then the dynamics of the 

estimation error can be written as follows 

𝜉𝜉 = 𝜃𝜃∆𝑥𝑥�3 + 𝜃𝜃�∆𝑥𝑥�3 + 𝑙𝑙1𝑎𝑎13∆𝑥𝑥�3 = (𝜃𝜃 + 𝑙𝑙1𝑎𝑎13)𝜉𝜉 + 𝜃𝜃�∆𝑥𝑥�3 (5.13) 

5.1.3 Lyapunov Analysis 

The Lyapunov function is given by 

𝜃𝜃(𝜉𝜉,𝜃𝜃�) = 1
2
𝜉𝜉2 + 1

2𝛾𝛾
𝜃𝜃�2 (5.14) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜉𝜉𝜉𝜉 + 1
𝛾𝛾

 𝜃𝜃 = �(𝜃𝜃 + 𝑙𝑙1𝑎𝑎13)𝜉𝜉2� + 𝜃𝜃�(∆𝑥𝑥�3𝜉𝜉 + 1
𝛾𝛾

,𝜃𝜃�) (5.15) 

The dynamics of parameter estimation error can be found as 

𝜃𝜃� = −𝛾𝛾∆𝑥𝑥�3𝜉𝜉 (5.16) 

Assuming the parameter estimation error is slowly changes, then 𝜃̇𝜃 = 0. Then Lyapunov function, 

can be written as 

𝑉̇𝑉 = (𝜃𝜃 + 𝑙𝑙1𝑎𝑎13)𝜉𝜉2 (5.17) 

By choosing 𝑙𝑙1 to satisfy (𝜃𝜃 + 𝑙𝑙1𝑎𝑎13) ≤ 0, then the solution that is uniformly bounded can be found 

as follows 

lim
𝑡𝑡→100

(𝜃𝜃 + 𝑙𝑙1𝑎𝑎13)𝜉𝜉2 = 0 (5.18) 

5.2 ERROR DYNAMICS 

This section present the adaptive observer design for hydraulic model in linear hyperbolic system 

that has been presented in Chapter 4. A thorough derivation of the observer design can be found in 

(Hasan, 2014). In the previous chapter, Eq. (4.21) – (4.24) shows that the physical system of wellbore 

hydraulic can be expressed by the following 2 x 2 linear hyperbolic system  

𝑤𝑤𝑡𝑡(𝑥𝑥, 𝑡𝑡) = ∑(𝑥𝑥)𝑤𝑤𝑥𝑥(𝑥𝑥, 𝑡𝑡) + 𝐶𝐶(𝑥𝑥)𝑤𝑤(𝑥𝑥, 𝑡𝑡)  (5.19) 
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𝑢𝑢(0, 𝑡𝑡) = 𝑞𝑞𝑞𝑞(0, 𝑡𝑡) + 𝑣𝑣𝑝𝑝 + 𝜃𝜃  (5.20) 

𝑣𝑣(1, 𝑡𝑡) = 𝑈𝑈(𝑡𝑡)  (5.21) 

where 𝑤𝑤 = �𝑢𝑢𝑣𝑣� , ∑ = �
−∈𝑖𝑖 (𝑥𝑥) 0

0 ∈2 (𝑥𝑥)� and the matrix 𝐶𝐶(𝑥𝑥) = �
0 𝑐𝑐1(𝑥𝑥)

𝑐𝑐2(𝑥𝑥) 0 � 

An observer for wt(x, t), where 𝑢𝑢(1, 𝑡𝑡) is measured at the boundary 

𝑤𝑤�𝑡𝑡 = ∑(𝑥𝑥)𝑤𝑤�𝑥𝑥 + 𝐶𝐶(𝑥𝑥)𝑤𝑤� + 𝑝𝑝(𝑥𝑥)𝑢𝑢�(1, 𝑡𝑡) (5.22) 

𝑢𝑢�(0, 𝑡𝑡) = 𝑞𝑞𝑣𝑣�(0, 𝑡𝑡) + 𝑣𝑣𝑝𝑝 + 𝜃𝜃�(𝑡𝑡) (5.23) 

𝑣𝑣�(1, 𝑡𝑡) = 𝑈𝑈(𝑡𝑡) (5.24) 

where 𝑝𝑝(𝑥𝑥) = [𝑝𝑝1(𝑥𝑥) 𝑝𝑝2(𝑥𝑥)]𝜏𝜏 is the observer gain to be determined later by solving a first-order 

hyperbolic system of Goursat-type PDEs. 

From Eq. (5.19) and (5.22), Eq. (5.20) and (5.23), also Eq. (5.21) and (5.24), we have 𝑢𝑢� = 𝑢𝑢 −

𝑢𝑢� , 𝑣𝑣� = 𝑣𝑣 − 𝑣𝑣� and 𝜃𝜃� = 𝜃𝜃 − 𝜃𝜃�, then the dynamics of the state estimation error becomes: 

𝑤𝑤�𝑡𝑡 = ∑(𝑥𝑥)𝑤𝑤�𝑥𝑥 + 𝐶𝐶(𝑥𝑥)𝑤𝑤� − 𝑝𝑝(𝑥𝑥)𝑢𝑢�(1, 𝑡𝑡) (5.25) 

𝑢𝑢�(0, 𝑡𝑡) = 𝑞𝑞𝑣𝑣�(0, 𝑡𝑡) + 𝑣𝑣𝑝𝑝 + 𝜃𝜃�(𝑡𝑡) (5.26) 

𝑣𝑣�(1, 𝑡𝑡) = 0 (5.27) 

In Aamo (2013), the coordinate transformation Eq. (4.1) – (4.2) decoupling into a subsystem, by 

using the infinite-dimensional backstepping transformation. In the case of  𝜃𝜃 = 0, then the 

backstepping method to control the linear PDEs with Volterra nonlinearities is given by 

𝑤𝑤�(𝑥𝑥, 𝑡𝑡) = 𝛾𝛾�(𝑥𝑥, 𝑡𝑡) − ∫ 𝑃𝑃(𝑥𝑥,1
𝑥𝑥 𝜉𝜉)𝛾𝛾�(𝜉𝜉, 𝑡𝑡) 𝑑𝑑𝑑𝑑 (5.28) 
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where 𝛾𝛾� = �𝛼𝛼�𝛽𝛽�� and 𝑃𝑃 = �𝑃𝑃
𝑢𝑢𝑢𝑢 𝑃𝑃𝑢𝑢𝑢𝑢
𝑃𝑃𝑣𝑣𝑣𝑣 𝑃𝑃𝑣𝑣𝑣𝑣� is the transformation kernel. The target system will be 

exponentially stable and converge to the true values by using  𝛾𝛾� = [𝛼𝛼 𝛽𝛽]𝜏𝜏. The transformation 

kernel 𝑃𝑃𝑣𝑣𝑣𝑣 and 𝑃𝑃𝑣𝑣𝑣𝑣 from Eq. (5.28) are the solutions to the following system of PDEs 

𝜀𝜀1(𝑥𝑥)𝑃𝑃𝑥𝑥𝑢𝑢𝑢𝑢 + 𝜀𝜀1(𝜉𝜉)𝑃𝑃𝜉𝜉𝑢𝑢𝑢𝑢 = −𝜀𝜀′1(𝜉𝜉)𝑃𝑃𝑢𝑢𝑢𝑢 − 𝑐𝑐1(𝑥𝑥)𝑃𝑃𝑣𝑣𝑣𝑣 (5.29) 

𝜀𝜀1(𝑥𝑥)𝑃𝑃𝑥𝑥𝑢𝑢𝑢𝑢 − 𝜀𝜀2(𝜉𝜉)𝑃𝑃𝜉𝜉𝑢𝑢𝑢𝑢 = 𝜀𝜀′2(𝜉𝜉)𝑃𝑃𝑢𝑢𝑢𝑢 − 𝑐𝑐1(𝑥𝑥)𝑃𝑃𝑢𝑢𝑢𝑢 (5.30) 

𝜀𝜀2(𝑥𝑥)𝑃𝑃𝑥𝑥𝑣𝑣𝑣𝑣 − 𝜀𝜀1(𝜉𝜉)𝑃𝑃𝜉𝜉𝑣𝑣𝑣𝑣 = 𝜀𝜀′1(𝜉𝜉)𝑃𝑃𝑣𝑣𝑣𝑣 + 𝑐𝑐2(𝑥𝑥)𝑃𝑃𝑢𝑢𝑢𝑢 (5.31) 

𝜀𝜀2(𝑥𝑥)𝑃𝑃𝑥𝑥𝑣𝑣𝑣𝑣 + 𝜀𝜀2(𝜉𝜉)𝑃𝑃𝜉𝜉𝑣𝑣𝑣𝑣 = −𝜀𝜀′2(𝜉𝜉)𝑃𝑃𝑢𝑢𝑢𝑢 + 𝑐𝑐2(𝑥𝑥)𝑃𝑃𝑢𝑢𝑢𝑢 (5.32) 

defined over the triangular domain 𝑇𝑇 = {(𝑥𝑥,𝑦𝑦): 0 ≤ 𝑦𝑦 ≤ 𝑥𝑥 ≤ 1} with boundary condition 

𝑃𝑃𝑢𝑢𝑢𝑢(0, 𝜉𝜉) = 𝑞𝑞𝑃𝑃𝑣𝑣𝑣𝑣(0, 𝜉𝜉) (5.33) 

𝑃𝑃𝑢𝑢𝑢𝑢(𝑥𝑥, 𝑥𝑥) = 𝑐𝑐1(𝑥𝑥)
𝜀𝜀1(𝑥𝑥)+𝜀𝜀2(𝑥𝑥) (5.34) 

𝑃𝑃𝑣𝑣𝑣𝑣(𝑥𝑥, 𝑥𝑥) = − 𝑐𝑐2(𝑥𝑥)
𝜀𝜀1(𝑥𝑥)+𝜀𝜀2(𝑥𝑥) (5.35) 

𝑃𝑃𝑣𝑣𝑣𝑣(0, 𝜉𝜉) = 1
𝑞𝑞
𝑃𝑃𝑣𝑣𝑣𝑣(0, 𝜉𝜉) (5.36) 

The control kernels above are given in terms of modified Bessel functions, and also in terms of the 

generalized Marcum Q-function of the first order. Backstepping transformation is used to derive the 

explicit solutions. The kernels used in the feedback law are found by solving a 2 x 2 linear hyperbolic 

PDEs in a triangular domain (known as kernel equations). When the plant model has a constant 

coefficient, the resulting kernel equations have a very specific structure which can be exploited to 

obtain an explicit solution in terms of special functions (Vazquez et al, 2013). 

The unknown parameter such as fluid loss will be estimated by introducing an update-law (𝜃𝜃) and 

using backstepping method in Eq. (5.28), then equation Eq. (5.25) – (5.27) will be transformed as 

follows 
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𝛾𝛾�𝑡𝑡 = ∑𝑥𝑥 (𝛾𝛾�𝑥𝑥) + 𝑝̅𝑝𝛼𝛼(1, 𝑡𝑡) (5.37) 

𝛼𝛼�(0, 𝑡𝑡) = 𝑞𝑞𝛽𝛽�(0, 𝑡𝑡) + 𝜃𝜃�(𝑡𝑡) (5.38) 

𝛽𝛽�(1, 𝑡𝑡) = 0 (5.39) 

where 𝑝̅𝑝 = [−𝜅𝜅 0]𝜏𝜏 and 𝛽𝛽 is exponentially stable. The explicit expression for observer gains 𝑝𝑝1(𝑥𝑥) 

and 𝑝𝑝2(𝑥𝑥) from the first-order hyperbolic system of Goursat-type PDEs can be obtained as 

𝑝𝑝1(𝑥𝑥) = 𝜅𝜅 − 𝜀𝜀1(1)𝑃𝑃𝑢𝑢𝑢𝑢(𝑥𝑥, 1) − ∫ 𝜅𝜅𝑃𝑃𝑢𝑢𝑢𝑢(𝑥𝑥,1
𝑥𝑥 𝜉𝜉) 𝑑𝑑𝑑𝑑 (5.40) 

𝑝𝑝2(𝑥𝑥) = −𝜀𝜀1(1)𝑃𝑃𝑣𝑣𝑣𝑣(𝑥𝑥, 1) − ∫ 𝜅𝜅𝑃𝑃𝑣𝑣𝑣𝑣(𝑥𝑥,1
𝑥𝑥 𝜉𝜉) 𝑑𝑑𝑑𝑑 (5.41) 

Consider 𝛼𝛼 to check if Eq. (5.19) – (5.21) is exponentially stable 

 𝛼𝛼�𝑡𝑡(x, t) = −𝜀𝜀1(𝑥𝑥)𝛼𝛼�𝑥𝑥(𝑥𝑥, 𝑡𝑡) −  𝜅𝜅𝛼𝛼�(1, 𝑡𝑡) (5.42) 

𝛼𝛼�(0, 𝑡𝑡) = 𝜃𝜃�(𝑡𝑡) (5.43) 

By defining 𝜙𝜙�(𝑥𝑥, 𝑡𝑡) = 𝛼𝛼�(𝑥𝑥, 𝑡𝑡) − 𝜃𝜃�(𝑡𝑡), and 𝜙𝜙�𝑡𝑡(𝑥𝑥, 𝑡𝑡) + 𝜀𝜀1(𝑥𝑥)𝜙𝜙�𝑥𝑥(𝑥𝑥, 𝑡𝑡) = 𝛼𝛼�𝑡𝑡(𝑥𝑥, 𝑡𝑡) − 𝜃𝜃�(𝑡𝑡) +

𝜀𝜀1(𝑥𝑥)𝛼𝛼�𝑥𝑥(𝑥𝑥, 𝑡𝑡), then the update law for parameter estimation is given by 

𝜃𝜃�(𝑡𝑡) = 𝜅𝜅𝛼𝛼�(1, 𝑡𝑡) (5.44) 

for 𝜅𝜅 > 0. The 𝜙𝜙� can be expressed as: 

𝜙𝜙�(𝑥𝑥, 𝑡𝑡) = −𝜀𝜀1(𝑥𝑥)𝜙𝜙�𝑥𝑥(𝑥𝑥, 𝑡𝑡) (5.45) 

𝜙𝜙�(𝑥𝑥, 𝑡𝑡) = 0 (5.46) 

The error for the update law is given as follows 

𝜃𝜃�(𝑡𝑡) = −𝜅𝜅𝜙𝜙�(1, 𝑡𝑡) − 𝜅𝜅𝜃𝜃�(𝑡𝑡) (5.47) 
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5.3 CONVERGENCE OF ESTIMATED STATE (𝝎𝝎�) AND PARAMETER (𝜽𝜽�) 

The stability of the system will be found from Lyapunov function as shown in Eq. (5.14). The 

Lyapunov function used for this system is given by 

𝑉𝑉(𝑡𝑡) = 1
2
𝜃𝜃�(𝑡𝑡)2 + 𝑐𝑐 ∫ 2−𝑥𝑥

𝜀𝜀1(𝑥𝑥)
𝜙𝜙�(𝑥𝑥, 𝑡𝑡)2𝑑𝑑𝑑𝑑1

0  (5.48) 

where 𝑐𝑐 > 0. Computing its time derivative along Eq. (5.45), (5.46), and (5.47) using integration by 

parts yields 

𝑉̇𝑉(𝑡𝑡) = −𝜅𝜅𝜃𝜃�(𝑡𝑡)2 − 𝜅𝜅𝜙𝜙�(1, 𝑡𝑡)𝜃𝜃�(𝑡𝑡) − 𝑐𝑐𝜙𝜙�(1, 𝑡𝑡)2 − 𝑐𝑐 ∫ 𝜙𝜙�(𝑥𝑥, 𝑡𝑡)2𝑑𝑑𝑑𝑑1
0  (5.49) 

where 𝑐𝑐 > 0. Since 𝑢𝑢�(1, 𝑡𝑡) = 𝜃̅𝜃(𝑡𝑡), then 

𝜅𝜅
2
𝜃𝜃�(𝑡𝑡)2 + 𝜅𝜅𝜙𝜙�(1, 𝑡𝑡)𝜃𝜃�(𝑡𝑡) + 𝑐𝑐𝜙𝜙�(1, 𝑡𝑡)2 ≥ 0 (5.50) 

𝑉̇𝑉(𝑡𝑡) = −𝜅𝜅
2
𝜃𝜃�(𝑡𝑡)2 − 𝑐𝑐 ∫ 𝜙𝜙�(𝑥𝑥, 𝑡𝑡)2𝑑𝑑𝑑𝑑1

0  (5.51) 

As time derivative of the Lyapunov function Eq. (5.51) has negative real parts, then Eq. (5.37) – 

(5.39) is exponentially stable in the following term. 

�𝜃𝜃�(𝑡𝑡)2 + ∫ 𝛼𝛼�(𝑥𝑥, 𝑡𝑡)2𝑑𝑑𝑑𝑑1
0 + ∫ 𝛽𝛽�(𝑥𝑥, 𝑡𝑡)2𝑑𝑑𝑑𝑑1

0 � (5.52) 

In Vazquez et al. (2013), the proof of existence and uniqueness of solutions Eq. (5.29) – (5.32) and 

Eq. (5.33) – (5.36) were outlined, and it was also proved that the solutions are continuous over 𝑇𝑇. 

The stability of Eq. (5.37) – (5.39) can be converted into the stability of the state estimation error 

Eq. (5.37) – (5.39) because the transformation using backstepping method Eq. (5.28) is invertible. 

As a result, the state estimation 𝜔𝜔� and parameter estimation 𝜃𝜃� converge exponentially to the true 

values of 𝑢𝑢, 𝑣𝑣, and 𝜃𝜃. 

5.4 SIMULATION 

There are several operational procedure and drilling problems during MPD operation that affect the 

downhole pressure. One of the most common procedure in drilling operation is pipe connection, that 
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is a procedure where once the bit on the bottom has drilled down to where the topdrive at the top 

reach the drillfloor, approximately 90ft, then a new stand of pipe is again connected to the topdrive. 

In order to connect the new stand to the drillstring, the mud circulation need to be stopped by ramping 

down the main pump flow. Once the procedure for making up new stand is completed then the main 

pump flow is ramped back up to the required flow rate for drilling the formation. The procedure for 

pipe connection affects the downhole pressure due to the loss of frictional pressure along the annulus 

as the main pump flow is ramped down to zero flow to attach new stand of drillpipe. 

On the other hand, lost circulation is the situation of uncontrolled flow of mud into the formation. It 

might happen due to the natural or induced causes. The natural causes include scenario of drilling 

into zones which are highly permeable, cavernous, and inherently fractured. Induced losses occur 

when the wellbore pressure exceeds the fracture pressure of formation. As a result, there will be a 

fracture opening that leads to loss circulation. In the case of total loss returns where no fluid comes 

out of the annulus, the wellbore may not remain full of fluid. As a result, the fluid column drops and 

pressure exerted on the formation is reduced, which might allow an influx of formation fluid that 

could lead into a catastrophic loss of well control. Therefore, estimating and controlling lost 

circulation is an important issue in drilling operation. 

The flow and pressure dynamics of the MPD system in Eq. (3.16) – (3.17) has been expressed in a 

state space representation which is convenient in order to utilize the numerical solvers included in 

MATLAB. The hydraulic model is solved by using MATLAB solver ode23. Using the adaptive 

observer presented in Eq. (5.22) – (5.24), where an uncertain parameter is estimated using the update 

law Eq. (5.47), the downhole pressure and the unknown parameter such as rate of lost circulation 

will be estimated in the following section 

Case 1: Drilling Connection 

The simulation of adaptive observer for pressure and flow dynamics estimation during pipe 

connection will be based on the result of plant simulation in Chapter 4.3. The estimation of pressure 

and flow dynamics from the observer will be compared to the result from plant simulation or 

measurement in order to verify the capability of observer to accurately estimate the pressure and 

flow dynamics in the hydraulic system of MPD operations using only one measurement at the 
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boundary (topside) . The numerical values used for the simulation of pipe connection are similar 

with physical parameter presented in Table 4.1. 

 
Figure 5.1: Flowrate at the Inlet (Bottomhole) 
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Figure 5.2: Flowrate at the Outlet (Choke) 

 
Figure 5.3: Pressure at the Inlet (Bottomhole) 
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Figure 5.4: Pressure at the Outlet (Choke) 

Figure 5.1 shows that at t=100s, the main pump is ramped down from 1000lpm to 0lpm. It leads 

to the loss of frictional pressure in the annulus and consequently the downhole pressure. Figure 

5.3 shows the reduction of bottomhole pressure from 256bara down to its Equivalent Static Density 

(ESD) of 245.5bara. After t=300s, the main pump is ramped up back to 1000lpm and as a result 

the downhole pressure is back to 256bara. In this case, it is assumed that there is no influx from or 

outflux into the formation, therefore the flowrate profile at the choke manifold, Figure 5.2, follow 

the flowrate profile in the downhole. The choke pressure is initially maintained at 10.5bara before 

going down to 0bara during the start of connection, and the choke pressure is back at 10.5 bara at 

t=300s to continue drilling operation.  

Figure 5.1 – 5.4 shows that the observer (blue lines) converge to the true values (red lines) that has 

been simulated in previous chapter, Figure 4.2 – 4.5. It can be concluded that the adaptive observer 

can accurately estimate the system state and the unknown parameter during drilling connection 

procedure. The discrepancy at the beginning of the simulation is a result of the observer being 

initialized with values different from the plant. Meanwhile at t=100s and t=300s, we can see 

oscillations of pressure and flow dynamics due to change of main pump flow during connection. 
 

CHAPTER 5. ADAPTIVE OBSERVER DESIGN Page | 59 



Case 2: Lost Circulation 

In this case, the simulation is performed to study the adaptive observer in the case of loss circulation. 

The aim is to be able to accurately estimate the bottomhole pressure and adapts to the unknown 

parameter, that is the fluid loss rate. The MATLAB scripts and functions for this simulation is written 

in Appendix B. The depth of vertical well is 700m, and the flow rate of the main pump is 1000lpm. 

The simulation starts with normal drilling operation and normal main pump flow at 1000lpm. At 

t=150s, it is assumed that a highly permeable zone is drilled and as a result lost circulation occurs. 

The rate of fluid loss is gradually increase as the mud start to flow into the formation until it stables 

at some point. The numerical values used for the physical parameters are given in Table 5.1 

Table 5.1: Wellbore Parameters for Simulation of Loss Circulation 

Parameter Description Value Unit 
𝛽𝛽 Bulk modulus 2 𝑥𝑥 109 𝑃𝑃𝑃𝑃 
𝐴𝐴𝑎𝑎 Annulus cross sectional area 0.03 𝑚𝑚2 
𝐴𝐴𝑑𝑑 Drillstring cross sectional area 0.006 𝑚𝑚2 
𝐹𝐹 Friction factor 1 𝑘𝑘𝑘𝑘/𝑚𝑚3 
𝑔𝑔 Gravity constant 9.81 𝑚𝑚/𝑠𝑠2 
𝜌𝜌 Mud density 1250 𝑘𝑘𝑘𝑘/𝑚𝑚3 
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Figure 5.5: Flowrate at the Outlet (Choke) 

 
Figure 5.6: Pressure at the Inlet (Bottomhole) 
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Figure 5.7: Fluid Loss Estimation 

Figure 5.5 – 5.7 shows flow and pressure dynamics during loss circulation. The estimated and 

measured flowrate at the topside and downhole pressure can be seen from Figure 5.5 and Figure 5.6, 

respectively. Meanwhile Figure 5.7 shows the fluid loss during drilling operation. At t=150s, drilling 

encounter a highly permeable formation and as a result drilling fluid flow into the formation. Figure 

5.5 shows that initially flowrate is maintained at 1000lpm. Due to the loss circulation at t=150s, the 

flowrate out of the hole is gradually decrease, and it affects the downhole pressure in Figure 5.6. 

Figure 5.7 shows the fluid loss due to high permeable zone. The fluid loss gradually increases to the 

point where the loss circulation stable at 320lpm. As the fluid loss stable at t=250s, the flowrate and 

the downhole pressure are going down to 720lpm and 22bara, respectively. 

These simulations show that the adaptive observer design has been successfully implemented in 

order to provide state estimation such as flow dynamics and downhole pressure during drilling 

connection and lost circulation. The results show that the adaptive observer converges to the actual 

value and that the update law accurately estimates the unknown parameter, that is the fluid loss rate.  
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6. CONCLUSION AND FUTURE WORK 

6.1 CONCLUSION 

The main conclusion from this thesis is related to the adaptive observer design for linear hyperbolic 

system in MPD operation that is presented in Chapter 5. 

• An adaptive observer that fulfills the main goals stated in Section 1.2 has been presented in 

Chapter 5. The adaptive observer is capable to accurately estimate the pressure and flow 

dynamics in the hydraulic system of MPD operations using only one measurement at the 

boundary (topside) and adapts to key unknown parameters such as fluid loss for an accurate 

downhole pressure estimation. 

• The adaptive observer design is based on a backstepping method that have been successfully 

used for state and parameter estimation of many types of PDEs. It allows the design of the 

boundary observers that is exponentially stable at the origin guarantee the convergence of 

the state estimates. It also shows that the observer gain can be obtained by solving a first-

order Goursat-type PDEs through a suitable infinite series of powers of partial derivatives in 

terms of special functions, such as Bessel functions and the generalized Marcum Q-functions 

of the first order. 

• Simulation of the system dynamics produce state outputs that reflect the plant or 

measurement to a satisfactory degree. It shows that the observer can handle scenarios during 

drilling operation such as change in main pump flow during connection and change of 

hydraulic dynamics due to loss circulation. The result shows promising behavior of adaptive 

observer for hydraulic system in MPD, and it might offer wide range of application in MPD 

operation. 

6.2 FUTURE WORK 

Few suggestions for the future work, including: 

• In this thesis, the hydraulic model is represented by a one-phase (liquid) incompressible flow 

model. In the future, we can consider a hydraulic model of the two-phase (gas-liquid) flow 

in the wellbore to be used for Underbalanced Drilling application or Kick / Well Control 
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scenarios. When linearized, the model takes the form of a first-order hyperbolic system as 

presented in this thesis. The uncertainty of the downhole conditions might result in uncertain 

boundary parameters in the linearized model. A boundary observer design involving more 

than two PDE states may be developed for this purpose in the future works. 

• The controller design is not yet discussed in this thesis. It is important especially in the case 

of MPD operation to have a control law that regulates the downhole pressure to its set point. 

As the simplified hydraulic model has been transformed into 2 x 2 linear hyperbolic system, 

the identified system model could serve as a necessary prerequisite to develop the controller 

design.  
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NOMENCLATURE 
 

General  

• Symbols are generally defined right after they appear in the text  

• Only the most used symbols are listed in the following section  

• Over-dots signify differentiation with respect to time  

 

Alphabet  

𝐴𝐴  Cross-sectional area 

𝑎𝑎  Speed of sound 

𝑑𝑑𝑖𝑖𝑖𝑖  Inner diameter of annular flow area 

𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜  Outer diameter of annular flow area 

𝐹𝐹𝑎𝑎  Friction coefficient for the annulus 

𝐹𝐹𝑏𝑏  Friction coefficient for the bit 

𝐹𝐹𝑑𝑑  Friction coefficient for the drill string 

𝐹𝐹𝑔𝑔  Gravitational forces 

𝐹𝐹𝑤𝑤  Frictional forces between the fluid and the wall 

𝑔𝑔  Gravity 

ℎ  True vertical depth 

𝑘𝑘𝑐𝑐  Choke parameter  

𝑀𝑀  Integrated density per cross section 

𝑃𝑃𝑖𝑖𝑖𝑖  Observer kernels 

𝑝𝑝𝑐𝑐   Annulus choke pressure 

𝑝𝑝𝑝𝑝  Rig pump pressure 

𝑝𝑝1,𝑝𝑝2  Gain functions 

𝑞𝑞𝑏𝑏   Flowrate through the bit 

𝑞𝑞𝑏𝑏𝑏𝑏𝑏𝑏  Backpressure pump flow 

𝑞𝑞𝑐𝑐   Annulus choke flow 

𝑞𝑞𝑝𝑝   Rig pump flowrate 

𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟  Flowrate from the reservoir 
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𝑡𝑡  Time variable 

𝑈𝑈  Control input 

𝑢𝑢, 𝑣𝑣  State variables 

𝑉𝑉  Control volume 

𝑉𝑉𝑎𝑎  Annulus volume 

𝑉𝑉𝑑𝑑  Drillstring volume 

𝑤𝑤  Mass flow rate 

𝑦𝑦  Measurement 

𝑧𝑧𝑐𝑐  Choke opening 

 

Symbols  

βa  Effective bulk modulus for annulus 

βd  Effective bulk modulus for drill string 

∈  System parameter 

𝜌𝜌𝑎𝑎  Fluid density in annulus 

𝜌𝜌𝑑𝑑  Fluid density in drillstring 

𝜃𝜃  Inclination 

 

Abbreviation  

AFP  Annular Frictional Pressure 

BHA  Bottomhole Assembly 

BHP  Bottom Hole Pressure 

BOP  Blowout Preventer 

BP  Back Pressure 

CBHP  Constant Bottomhole Pressure 

DGD  Dual Gradient Drilling 

DSV  Drillstring Valve 

ECD  Equivalent Circulating Density 

ESD  Equivalent Static Density 

HPHT  High Pressure High Temperature 

HSE  Health, Safety, and Environment 
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IADC  International Association of Drilling Contractors 

MPD  Managed Pressure Drilling 

MW  Mud Weight 

NPT  Non- Productive Time 

NRV  Non-Return Valve 

OBD  Overbalanced Drilling 

ODE  Ordinary Differential Equation 

PDE  Partial Differential Equation 

PLC  Programmable Logic Control 

PMCD  Pressurized Mud Cap Drilling 

RBOP  Rotating Blowout Preventer 

RCD  Rotating Control Device 

RKB  Rotary Kelly Bushing 

ROP  Rate of Penetration 

TD  Target Depth 

TVD  True Vertical Depth 

UBD  Underbalanced Drilling 
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APPENDIX A 
 

Main Script 
close all; 
clear variables; 
clc; 
  
beta=2e9; 
La=2000; 
Dd=0.088; 
Da=0.2; 
Ad=Dd^2/4*pi; 
Aa=Da^2/4*pi-Ad; 
rho=1250; 
F=1; 
  
q=-1; 
  
a=0.5*La*F/sqrt(rho*beta); 
  
eps1=1/La*sqrt(beta/rho); 
eps2=eps1; 
  
N=40; 
dt=0.1; 
Tspan=0:dt:400; 
xspan=(0:N+1)/(N+1); 
  
c1=-0.5*F/rho*exp(2*a*xspan); 
c2=-0.5*F/rho*exp(-2*a*xspan); 
  
%% compute output injection gains 
  
% Exclude boundaries 
xspan=xspan(2:N+1); 
c1=c1(2:N+1); 
c2=c2(2:N+1); 
  
% flow rate from pump 
qp=1/60; % 1000 lpm 
  
% Initial conditions. 
load init_u_v 
y01=[u_init v_init];  
  
[tt,yy] = ode23(@(t,x) hypsys(t,x,0,qp,eps1,eps2,q,c1,c2),Tspan,y01); 
  
uu=yy(:,1:N); 
vv=yy(:,N+1:2*N); 
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[q0,p0]=uv2qp(uu(:,1), vv(:,1), a,La, beta, rho, Aa, 0); 
[qL,pL]=uv2qp(uu(:,N), vv(:,N), a, La, beta, rho, Aa, La); 
  
%% plotting 
print_results 
 
 
Function hypsys 
function [dx]=hypsys(t,x,uin,qp,eps1,eps2,q,c1,c2) 
  
if t>100; 
  qp=0; 
end 
  
if t>300; 
  qp=1/60; 
end 
  
N=length(x)/2; 
dx=1/(N+1); 
  
u=x(1:N); 
v=x(N+1:2*N); 
  
v0=2*v(1)-v(2); % Interpolate v to boundary 
u0=q*v0+qp; 
v1=uin; % Input. 
dudx=(u-[u0;u(1:N-1)])/dx; 
dvdx=([v(2:N);v1]-v)/dx; 
  
dx=[-eps1*dudx+c1'.*v;... 
    eps2*dvdx+c2'.*u]; 
 

Function uv2gp 
function [ q,p ] = uv2qp( u,v,a,l,beta,rho,Aa,z ) 
%UV2QP Converts from u and v coordinates back to flow and pressure 
%   Detailed explanation goes here 
  
if nargin<8 
    z=linspace(0,l,numel(u)); 
end 
  
q=u.*exp(-a/l*z)+v.*exp(a/l*z); 
p=sqrt(beta*rho)/Aa*u.*exp(-a/l*z)-v.*exp(a/l*z)+rho*9.81*(l-z); 
  
end 
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Print result 
close all; 
  
[T,X]=meshgrid(Tspan,xspan); 
T_end=Tspan(end); 
  
%h_fig(1)=figure('Name', 'u'); 
%mesh(T,X,uu'); 
%xlabel('Time [s]'); 
%ylabel('x [-]'); 
%zlabel('u'); 
%xlim([0 T_end]); 
% grid; 
  
%h_fig(2)=figure('Name', 'v'); 
%mesh(T,X,vv'); 
%xlabel('Time [s]'); 
%ylabel('x [-]'); 
%zlabel('v'); 
%xlim([0 T_end]); 
% grid; 
  
h_fig(5)=figure('Name', 'flowrate_in'); 
ax(5:6)=plot(Tspan, q0*60e3); 
grid; 
xlabel('Time [s]'); 
ylabel('Volumetric flow rate [lpm]'); 
legend('Flow rate in, plant'); 
xlim([0 T_end]); 
  
h_fig(6)=figure('Name', 'flowrate_out'); 
ax(7:8)=plot(Tspan, qL*60e3); 
grid; 
xlabel('Time [s]'); 
ylabel('Volumetric flow rate [lpm]'); 
legend('Flow rate out, plant') 
xlim([0 T_end]); 
  
h_fig(7)=figure('Name', 'pressure_in'); 
ax(9:10)=plot(Tspan, p0*1e-5); 
grid; 
xlabel('Time [s]'); 
ylabel('Pressure [bara]') 
legend('Pressure at inlet, plant'); 
xlim([0 T_end]) 
  
h_fig(8)=figure('Name', 'pressure_out'); 
ax(11:12)=plot(Tspan, pL*1e-5); 
grid; 
xlabel('Time [s]'); 
ylabel('Pressure [bara]') 
legend('Pressure at outlet, plant') 
xlim([0 T_end])  
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APPENDIX B 
 

Main Script 
close all; 
clear variables; 
clc; 
  
load q_c_m_sim.mat; 
load q_dh_m_sim.mat; 
load p_c_m_sim.mat; 
load p_dh_m_sim.mat; 
load q_lss_m_sim.mat; 
load u_t.mat; 
  
q_c_m_sim=smooth(q_c_m_sim,0.01,'rloess'); 
  
beta=2e9; 
La=700; 
Dd=0.1243; 
Da=0.1548; 
Ad=Dd^2/4*pi; 
Aa=Da^2/4*pi-(Ad/0.93); 
rho=1000; 
F=100; 
q=-1; 
a=0.5*La*F/sqrt(rho*beta); 
  
 for i=1:length(q_c_m_sim); 
     
u_1_m(i)=0.5*((q_c_m_sim(i)/60e3)+(Aa/sqrt(beta*rho))*(p_c_m_sim(i)/1e
-5))*exp(La*F/(2*sqrt(beta*rho))); 
 end 
  
eps1=1/La*sqrt(beta/rho); 
eps2=eps1; 
  
N=40; 
dt=0.1; 
Tspan=0:dt:400; 
xspan=(0:N+1)/(N+1); 
  
c1=-0.5*F/rho*exp(2*a*xspan); 
c2=-0.5*F/rho*exp(-2*a*xspan); 
  
%% compute output injection gains 
  
% Exclude boundaries 
xspan=xspan(2:N+1); 
c1=c1(2:N+1); 
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c2=c2(2:N+1); 
  
% flow rate from pump 
qp=1/60; % 1000 lpm 
  
% Initial conditions. 
load init_u_v 
y01=[u_init v_init];  
  
[tt,yy] = ode23(@(t,x) 
hypsys(t,x,0,qp,eps1,eps2,q,c1,c2,u_1_m,u_t),Tspan,y01); 
  
uu=yy(:,1:N); 
vv=yy(:,N+1:2*N); 
  
[q0,p0]=uv2qp(uu(:,1), vv(:,1), a,La, beta, rho, Aa, 0); 
[qL,pL]=uv2qp(uu(:,N), vv(:,N), a, La, beta, rho, Aa, La); 
  
[theta,pH]=uv2qp(3.5*(u_1_m'-uu(:,N)), vv(:,N), a, La, beta, rho, Aa, 
La); 
  
%% plotting 
print_results 
 

Function hypsys 
function [dx]=hypsys(t,x,uin,qp,eps1,eps2,q,c1,c2,u_1_m,u_t) 
  
u_1_m = interp1(u_t,u_1_m,t); 
  
N=length(x)/2; 
dx=1/(N+1); 
  
u=x(1:N); 
v=x(N+1:2*N); 
  
v0=2*v(1)-v(2); % Interpolate v to boundary 
u0=q*v0+qp; 
v1=uin; % Input. 
dudx=(u-[u0;u(1:N-1)])/dx; 
dvdx=([v(2:N);v1]-v)/dx; 
  
dx=[-eps1*dudx+c1'.*v+0.4*(u_1_m-u);...%0.4 
    eps2*dvdx+c2'.*u-5*(u_1_m-u)];   %5 
 

Function uv2gp 
function [ q,p ] = uv2qp( u,v,a,l,beta,rho,Aa,z ) 
%UV2QP Converts from u and v coordinates back to flow and pressure 
%   Detailed explanation goes here 
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if nargin<8 
    z=linspace(0,l,numel(u)); 
end 
  
q=u.*exp(-a/l*z)+v.*exp(a/l*z); 
p=sqrt(beta*rho)/Aa*(u.*exp(-a/l*z)-
v.*exp(a/l*z))+rho*sin(pi/360)*9.81*(l-z); 
end 
 
 
Print result 
close all; 
  
[T,X]=meshgrid(Tspan,xspan); 
T_end=Tspan(end); 
  
 %h_fig(1)=figure('Name', 'u'); 
 %mesh(T,X,uu'); 
 %xlabel('Time [s]'); 
 %ylabel('x [-]'); 
 %zlabel('u'); 
 %xlim([0 T_end]); 
 % grid; 
%  
 %h_fig(2)=figure('Name', 'v'); 
 %mesh(T,X,vv'); 
 %xlabel('Time [s]'); 
 %ylabel('x [-]'); 
 %zlabel('v'); 
 %xlim([0 T_end]); 
 % grid; 
  
 %h_fig(5)=figure('Name', 'flowrate_in'); 
 %ax(5:6)=plot(Tspan, q0*60e3); 
 %grid; 
 %xlabel('Time [s]'); 
 %ylabel('Volumetric flow rate [lpm]'); 
 %legend('Flow rate in, plant'); 
 %xlim([0 T_end]); 
  
h_fig(6)=figure('Name', 'Top side flow rate'); 
ax(7:8)=plot(Tspan, qL*60e3);hold 
on;plot(u_t',smooth(smooth(smooth(smooth(q_c_m_sim))))','r'); 
grid; 
xlabel('Time [s]'); 
ylabel('Volumetric flow rate [lpm]'); 
legend('Flow rate out, observer','Flow rate out, plant') 
xlim([0 T_end]); 
ylim([600 1100]); 
  
h_fig(7)=figure('Name', 'Downhole pressure'); 
ax(9:10)=plot(Tspan, smooth(smooth(smooth(p0)))*1e-5);hold 
on;plot(u_t',p_dh_m_sim','r'); 
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grid; 
xlabel('Time [s]'); 
ylabel('Pressure [bara]') 
legend('Pressure at inlet, observer','Pressure at inlet, plant'); 
xlim([0 T_end]); 
ylim([20 50]); 
  
h_fig(8)=figure('Name', 'Fluid loss'); 
ax(9:10)=plot(Tspan, smooth(smooth(smooth(theta)))*60e3);hold on;plot(u_t',-
q_lss_m_sim','r'); 
grid; 
xlabel('Time [s]'); 
ylabel('Volumetric flow rate [lpm]') 
legend('Fluid loss, observer','Fluid loss, plant'); 
xlim([0 T_end]); 
ylim([-500 200]); 
  
 %h_fig(8)=figure('Name', 'pressure_out'); 
 %ax(11:12)=plot(Tspan, pL*1e-5); 
 %hold on; 
 %ax(13:14)=plot(Tspan, smooth(p0*1e-5),'r'); 
 %grid; 
 %xlabel('Time [s]'); 
 %ylabel('Pressure [bara]') 
 %legend('Pressure at outlet, plant') 
 %xlim([0 T_end]); 
 %ylim([20 45]); 
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