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Abstract

In this paper we study variables that can predict bubbles in cryptocurrency prices.

Bubble periods are detected by employing a recursive augmented Dickey-Fuller algorithm

called the PSY test, developed by Phillips et al. (2015a,b). Through probit and linear

regression models we study the possible predictors of the bubble periods. We utilize both

detected days and the underlying test statistics produced by the algorithm as dependent

variables in the analysis. Compared to other studies, we emphasize uncertainty measures

as predictors and include an extended selection of cryptocurrencies. We apply panel

regressions to investigate predictors across cryptocurrencies and time series regressions

to study predictors for specific cryptocurrencies. We detect multiple bubble periods in

all cryptocurrencies, particularly in 2017 and early 2018. The predictive ability of the

variables appear to be dependent on the cryptocurrency studied. Though in general, we

find that higher volatility and trading volume is positively associated with the presence of

bubbles across cryptocurrencies. When it comes to uncertainty variables, the VIX-index

consistently demonstrates negative relationships with bubble behavior. Furthermore,

transactions and the EPU-index mostly exhibit positive associations with bubbles, but

the effects are dependent on the cryptocurrency examined. In terms of bubble prediction,

the probit models perform better than the linear models.

Keywords – Cryptocurrency bubbles; detection; prediction; PSY test; probit regression

model; linear regression model
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1 Introduction

The emergence of digital currencies has been one of the most remarkable financial

innovations of the last decade. Their futuristic properties and extreme price behavior

have earned excessive media coverage, as well as attention from regulators and researchers.

Most cryptocurrency prices are known to be volatile, and has experienced dramatic

increases and collapses in the recent years. This has triggered a conversation about

bubbles and whether the price levels can be justified by a fundamental value. Bubbles are

commonly interpreted as deviations from intrinsic value. In this paper, we try to detect

bubbles by analyzing the statistical properties of the cryptocurrencies prices.

Bitcoin has been the most prominent of the cryptocurrencies and has experienced severe

price fluctuations over the recent years, with the price reaching a peak in late 2017.

Bitcoin was originally intended to be digital money. It supposedly contributes to a more

reliable and trustworthy transaction system with lower costs (Grinberg, 2012). Bitcoin

and other cryptocurrencies have potential to replace the intermediate role of financial

third parties. Though it was intended to be utilized as money, its decentralized and

unregulated market have made it subject to criticism (Grinberg, 2012). The question of

classification as either a speculative asset or a means of exchange have also been discussed.

Yermack (2015) and Glaser et al. (2014) concluded in their research that it was primarily

held as a speculative asset. Given its apparent risky nature and extreme price behavior,

the presence of bubbles in these assets are naturally a topic of research interest. Multiple

studies have detected bubbles in cryptocurrencies, mainly in the Bitcoin price (Cheah

and Fry, 2015; Corbet et al., 2018; Su et al., 2018).

A novel method for detecting bubbles was developed by Phillips et al. (2015a). This

framework is commonly referred to as the PSY framework and is based on the preceding

PWY framework (Phillips et al., 2011). The PSY procedure has been shown effective for

bubble detection and is employed in asset monitoring by central banks, particularly for

several real estate markets (Phillips and Shi, 2018). By utilizing a recursive augmented

Dickey-Fuller test algorithm it can detect periods were the price behavior deviates
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from its assumed normal behavior. It tests whether the observed asset prices follow a

martingale process with a mild drift, which is assumed to be normal behavior. The

alternative behavior is that the price is in an expansionary bubble phase were it follows

a mildly explosive process, or that the price is in a depreciative crisis phase defined

as a martingale process with a random drift term (Phillips and Shi, 2018). The PSY

procedure is presented in detail in the methodology section.

This study uses the PSY framework to locate bubbles and generate corresponding test

statistics for the cryptocurrencies Bitcoin, Ethereum, Ripple, Litecoin, Monero, Dash

coin, Nem coin and Dogecoin. We consider the ability to predict bubbles as an important

contribution in both normative analysis, such as utilization in market monitoring, and in

positive analysis for understanding the price dynamics of the cryptocurrency markets. The

relationship between the bubbles/test statistics is studied by estimating different regression

models with relevant explanatory variables. Compared to other papers, we attempt to

look at an extended selection of cryptocurrencies, with an emphasis on some uncertainly

measures. We study the predictive ability of Google search queries, volatility, transactions,

trading volume, EPU-index, VIX-index and the TED-spread. We find that volatility and

trading volume consistently exhibit a positive relationship with bubble behavior, while the

VIX-index demonstrates a negative association. Other variables exhibit significant effects,

but they appear to be more dependent on the estimated model and cryptocurrency studied.

The remainder of the paper is structured in the following way: Section 2 provides an

overview of the background literature. Section 3 describes the data utilized in the paper.

Section 4 briefly explains the methodology used. An analysis of the results are conducted

in section 5. Finally, a conclusion is provided in section 6.
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2 Literature Review

This section provides a review of literature related to our paper. First, we review the

literature about the drivers of cryptocurrency prices. Second, we give an overview of the

development in the research of empirical bubble detection strategies. Third, we look at

the application of bubble detection strategies in cryptocurrency markets.

2.1 Cryptocurrency Price Determinants

Many papers have studied cryptocurrency price determinants. Examined variables can

be categorized into two groups: intrinsic variables and extrinsic variables. Intrinsic

variables can be referred to as variables that are direct properties of the cryptocurrency

phenomenon, such as trading volume, volatility, search interest etc. Extrinsic variables

are not directly connected to cryptocurrencies and can be stock market returns, gold

price, interest rates etc. This research lays the foundation for the conducted analysis and

has contributed to the choice of relevant variables studied in the regression models.

An asset’s volatility and returns together with it’s transactions and trading volume are

common research variables. These variables has also been studied for cryptocurrencies.

Ciaian et al. (2016) shows that the price formation of Bitcoin, to a large extent, can be

explained by traditional economic models. The aggregated number of unique Bitcoin

transactions, which is considered a demand side variable, has greater influence than

the total supply of Bitcoins. The research of Balcilar et al. (2017) shows that trading

volume has predictive ability of future returns in Bitcoin. Though, the relationship is

subject to non-linearity and structural breaks. Contrarily, Aalborg et al. (2018) do not

find predictive ability of trading volume, but rather unique addresses and transactions.

They also show that price volatility appears to be strongly positively related to the

previously observed levels of volatility. Blau (2017) studies the level of speculative trading

in Bitcoin. Interestingly, the research do not demonstrate an association between the

level of speculative trading and the level of volatility or extreme returns.
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Studying the relationship between proxies of interest and cryptocurrency prices is

common in cryptocurrency research. Web search queries, such as Google Trends and

Wikipedia, are common proxies. Kristoufek (2013) concludes that there is a strong

correlation between the Bitcoin price and the frequency of "Bitcoin" search queries on

Google Trends and Wikipedia. The correlation is bidirectional, meaning that the search

frequency has an impact on the Bitcoin price and vice versa. Panagiotidis et al. (2018)

find that Google searches exhibit a positive relationship with Bitcoin returns when it is

above the 7-day trend of Google search queries and a negative relationship when below

trend. Aalborg et al. (2018) report that Google search frequency is negatively associated

with future trading volume. All referenced papers note that web search queries can serve

as a proxy for public interest and that the variable has demonstrated relationships with

cryptocurrency prices. An interesting paper by Kristoufek (2015) states that the Bitcoin

price is influenced by investors’ interest in the asset. Particularly, greater investor interest

generates price rises during explosive periods in the Bitcoin price, and vice verca.

Other studies, like Panagiotidis et al. (2018) and Demir et al. (2018), have examined

different uncertainty variables’ relationship to the Bitcoin price. Panagiotidis et al. (2018)

examine multiple determinants for Bitcoin returns in their research. The most influential

variables of those examined were Google search frequency, gold returns and economic policy

uncertainty indices. Uncertainty indices such as the VIX-index and different economic

policy indices were mostly negatively associated with returns. The research of Demir et al.

(2018) find that the EPU-index has predictive potential of Bitcoin returns and that the

cryptocurrency demonstrates hedging capabilities. The results show that a higher EPU

indicates lower returns, but not for the the higher and lower quantiles of returns where

the relationship is positive.

2.2 Empirical Bubble Detection Strategies

Empirical bubble detection has been a topic of study for decades. One of the most

common methods to identify bubbles empirically is to investigate the time series properties

of the underlying asset’s price. Asset pricing theory proposes that a bubble component in

an asset price exists if the prices demonstrate explosive behavior. This lays the foundation
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for establishing econometric tests of the price’s stochastic properties, which is targeted at

detecting episodes of explosiveness in time series data (Caspi, 2017).

There have been numerous attempts to develop statistical procedures for bubble

identification. Diba and Grossman (1988) were early to apply a unit root test in order to

detect explosive behavior in asset prices. Phillips et al. (2011) and Phillips et al. (2015a,b)

continued the research of Diba and Grossman (1988), by expanding on their methodology.

The PWY and PSY strategies apply different forms of the augmented Dickey-Fuller test

to identify and date-stamp bubbles. Phillips et al. (2015a,b) show through different tests

that the PSY method outperforms the PWY method when it comes to detecting multiple

bubbles.

The PSY framework was originally exclusively developed to identify price bubbles.

Subsequent research by Phillips (2017) has shown that the PSY procedure also can

be used as a warning device for crisis, as the method can be extended to cover market

collapse dynamics. Phillips and Shi (2018) incorporates the crisis detection aspect into

the PSY method presented in Phillips et al. (2015a,b). Furthermore, Phillips and Shi

(2018) improves the PSY procedure by optimizing the recursive evolving test algorithm.

2.3 Explosive Behavior in Cryptocurrency Prices

Previous researchers have utilized different types of bubble detection strategies to detect

explosiveness in cryptocurrencies. The most common method used for detecting bubbles

in cryptocurrency prices, and especially Bitcoin, has been PSY framework.

Cheung et al. (2015) and Su et al. (2018) apply different versions of the PSY test

to detect bubbles in the Bitcoin price. Cheung et al. (2015) employs the PSY

framework presented in Phillips et al. (2013), which is a early version of the PSY

method, to detect bubbles in the Bitcoin market during the period 2010-2014. They

identify three extensive periods of bubble behavior in the time span ranging from

2011 to 2013. The bubble periods lasted from 66 days to 106 days, and seems
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to be influenced by major events that appeared in the Bitcoin market. Su et al.

(2018) uses the PSY procedure presented in Phillips et al. (2015a,b) to identify and

date-stamp bubbles in the Bitcoin market. In total, the researchers detects 4 bubble

periods during the period 2011-2017. They identify two bubbles in 2013 and two

bubbles in 2017. Similar to the research of Cheung et al. (2015), Su et al. (2018)

also find the bubble periods to coincide with major events that affected the Bitcoin market.

Corbet et al. (2018) and Bouri et al. (2018) use the PSY framework to identify bubbles

in multiple cryptocurrencies. Corbet et al. (2018) look at Bitcoin and Ethereum, and

detect bubble behavior in both, particularly at the end of their sample period (mid

2017). They also investigate the fundamental drivers of the prices, contrary to the papers

mentioned above. Their conclusion is that there is no clear relationship between the

fundamental variables and bubble development in both Bitcoin and Ethereum. The paper

proposes that there are short periods were fundamental variables (hashrate, block size,

volatility and liquidity) affect the price in both currencies, but these influences disappear.

Bouri et al. (2018) identify bubbles in Bitcoin, Ripple, Ethereum, Litecoin, NEM, Dash

and Stellar. They also apply a logistic regression to study the co-explosivity between

the cryptocurrencies. The paper shows that there were numerous bubble periods in all

cryptocurrencies, particularly in 2017. The results from the logistic regression shows

that the likelihood of bubble periods in one cryptocurrency typically is contingent on

the existence of bubbles in other cryptocurrencies, implying a high-degree of co-explosivity.

There are papers which do not use the PSY framework. Cheah and Fry (2015) use

economic and econometric models to examine the fundamental value of Bitcoin and if

there exists speculative bubbles. They find that the Bitcoin price is prone to speculative

bubbles similarly to other assets. Furthermore, the paper proposes that Bitcoin appear to

behave more like an asset than a currency. Fry and Cheah (2016) employ econophysics

models to identify bubbles in Bitcoin and Ripple. In the analyzed period from 2011 to

2015, the researchers detects negative bubbles in both cryptocurrencies from 2014 and

onwards. The paper further note that there is a spillover from Ripple to Bitcoin that

intensifies price decreases in the latter.
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3 Data

The data used in this paper cover the time period December 27, 2013 to February

15, 2019. Starting dates vary depending on the availability of data for the individual

cryptocurrencies studied (see table 3.1). The considered cryptocurrencies are primarily

chosen based on the length of their data sets, their respective popularity and

total market value. The VIX-index, which is used in our analysis, is not reported

on weekends and on certain holidays etc. These days have been omitted from our

analysis and the gaps have been dealt with by using the last observed value when necessary.

The daily price data and trading volume of the cryptocurrencies are collected from

CoinMarketCap through an API in R Studio. Transaction volume has been collected

from Coinmetrics. Though it is possible to get earlier data from other sources, we chose

to use these data sets due to their apparent reliability compared to other available

sources. Economic policy uncertainty index (EPU) is collected from the Economic Policy

Uncertainty web page. Data on the TED-spread and VIX-index are collected from the

FRED database, the reserve bank of St. Louis.

For the remainder of the paper, we frequently use ticker symbols when we refer to each

cryptocurrency. The tickers are displayed in parenthesis in table 3.1.

Table 3.1: Time Period Employed for Each Cryptocurrency

The table presents the start and end dates of the price dataset for the eight cryptocurrencies.

Cryptocurrency From To # of days

Bitcoin (BTC) 27.12.2013 15.02.2019 1876
Ethereum (ETH) 27.07.2016 15.02.2019 933
Ripple (XRP) 31.12.2013 15.02.2019 1872
Litecoin (LTC) 27.12.2013 15.02.2019 1876
Monero (XMR) 16.04.2015 15.02.2019 1401
Dash coin (DASH) 20.01.2015 15.02.2019 1487
Nem coin (XEM) 29.03.2016 15.02.2019 1053
Dogecoin (DOGE) 16.12.2014 15.02.2019 1522
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3.1 Variables

Volatility

To measure the volatility of the cryptocurrencies we use the method originally proposed by

Garman and Klass (1980), later applied in Kim et al. (2018). This estimator utilizes the

trading price range during a day. The method is considered an improvement in accuracy

compared to the common method of measuring volatility by standard deviation of returns

(Molnár, 2012). Daily volatility is calculated as follows:

Volatilityt =

√
1

2
(ht − lt)2 − (2 log 2− 1)c2t , (3.1)

where

ct = log(closet)− log(opent),

lt = log(lowt)− log(opent),

ht = log(hight)− log(opent).

In order to deal with possible weekly seasonality, we convert the preceding daily values

into a 7-day arithmetic average by the following equation:

Volatilityt =
1

7

−1∑
t=−7

Volatilityt. (3.2)

Transactions

Transfers of cryptocurrencies can either be done over an exchange or directly between users

within the blockchain network. In general, direct transfers is assumed to be more regularly

used as a means of exchange, as opposed to transfers over an exchange. For this reason

it is useful to differentiate between these forms of transfers. In our paper, transactions

is classified as direct transfers of a cryptocurrency between users. Transactions (TV) is

standardized the same way as in Aalborg et al. (2018). It is standardized by estimating

the deviation from the average volume over the last year, and is divided by the standard

deviation in the same period:
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Transactionst =
TVt − TV

σ(TV)
. (3.3)

Volume

In our paper, trading volume for a cryptocurrency is classified as transfers over an

exchange, which do not include direct transfers between users. The time series for trading

volume of Bitcoin has historically exhibited both linear and exponential trend components

(Balcilar et al., 2017). By following the procedure of Gebka and Wohar (2013) we can

remove these from the series, which is necessary to make the variable stationary. The

trend elements can be estimated by converting the data to logarithmic form and regressing

a constant, (t/T ) and (t/T )2 on volume, where T is total observations. Following these

estimations, each observation is corrected by subtracting the trend components. Trends

exist for all cryptocurrencies, as all the estimated coefficients are statistically significant.

Google Trends: Adjusted Search Volume Index

Search volume from Google trends is applied in the analysis because it measures public

interest in the specific cryptocurrencies analyzed. The variable is constructed as the

relative level of web searches provided by Google, and have previously demonstrated to

have predictive potential, as Choi and Varian (2009, 2012); Molnár and Bašta (2017); Bijl

et al. (2016) have reported. The data can be collected for various time scales, and is

measured as an index of relative search volume (SVI) between 0 and 100. The daily data

can only be collected in samples with a maximum time span of 10 months. In order to

make observations between data sets into one complete set, we apply the methodology of

Bleher and Dimpfl (2018). The search results are not case sensitive and the keywords

used are: "Bitcoin", "Litecoin", "Ripple", "Ethereum", "Monero", "Dash coin", "Nem

coin" and "Dogecoin".

We standardize the data following the procedure used in Da et al. (2011) and Kim et al.

(2018). Each daily observation is measured as a deviation from the median. The measure

is calculated as the difference from the median of the previous 8 corresponding weekdays.

For example, if the observation is on a Monday it is compared against the 8 previous
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Mondays. The following equation has been used:

Googlet = log[SVIt]− log [Median (SVIt−7, SVIt−14, . . . , SVIt−56)] . (3.4)

EPU-index

The EPU-index can be considered a proxy for the level of economic policy uncertainty

in the US economy, as perceived by the public. It is constructed by measuring and

standardizing the volume of news articles that contains certain key words and has a theme

of economic uncertainty from over 1000 US news outlets (Economic Policy Uncertainty,

2019). In an attempt to reduce noise in the data series and deal with possible weekly

seasonality, we use the moving average of the most recent 7 days in our analysis:

EPUt = log

[
1

7

−1∑
t=−7

EPUt.

]
(3.5)

VIX-index

The VIX-index is a measure of perceived short term price uncertainty in the stock market

and is commonly called a fear index. It is constructed from option prices based on the SP

500, with an expiration date of approximately one month (CBOE, 2019). Historically the

VIX-index has exhibited a negative relationship with Bitcoin returns, which might be due

to a "safe haven" property of the cryptocurrencies, as examined by Bouri et al. (2017).

The variable has been converted by logarithmic transformation in our analysis.

TED-spread

The TED-spread is used as a proxy for the level of credit risk in the economy. It is

constructed as the difference between the US inter-bank rate and the risk free US treasury

rate. The intuition behind the metric is that the spread between the inter-bank interest

rate and treasury rate increases when the possibility of counter party default increases.

Historically, when the financial sector has experienced periods of uncertainty and higher

default risk, the TED-spread has been more volatile and at a higher level (Boudt et al.,

2017). The variable has been converted by logarithmic transformation in our analysis.
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3.2 Summary Statistics

Table 3.2 provides a short summary of the variables used in the analysis of bubble

predictors.

Table 3.2: Variable Summary

Variable Definition Data Source

Google Google search frequency for a particular cryptocurrency API Google Trends

Volatility Range-based volatility of cryptocurrency prices API CoinMarketCap

Transactions Transfers of cryptocurrency, directly between users Coinmetric

Volume Transfers of cryptocurrency, over exchanges API CoinMarketCap

EPU-index US policy uncertainty proxy Economic Policy Uncertainty

VIX-index Stock market uncertainty proxy FRED database

TED-spread Credit risk proxy FRED database

Table 3.3 provides the descriptive statistics of the specific variables included in the

analysis. The term specific reflects that the variables are distinct for each cryptocurrency.

Table 3.3: Descriptive Statistics for Specific Variables

BTC ETH XRP LTC

Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev.

Google 0.026 0.309 0.045 0.481 0.017 0.317 0.018 0.331
Volatility 0.027 0.018 0.043 0.025 0.037 0.034 0.037 0.026
Transactions 1.078 1.133 1.289 1.572 0.644 1.380 0.276 1.435
Volume 16.639 0.804 14.799 0.835 11.932 1.345 15.446 1.214

XMR DASH XEM DOGE

Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev.

Google 0.007 0.303 -0.688 0.805 -0.129 1.038 0.018 0.308
Volatility 0.055 0.026 0.049 0.027 0.062 0.034 0.048 0.031
Transactions 0.45 1.385 0.539 1.494 0.944 1.470 0.222 1.281
Volume 8.213 1.072 9.891 1.055 9.479 1.334 11.263 1.255

Table 3.4 provides the descriptive statistics of the non-specific variables included in
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the analysis.1 The term non-specific express that the variables are independent of

the cryptocurrencies. All the non-specific variables can be considered uncertainty variables.

Table 3.4: Descriptive Statistics for Non-Specific Variables

Variables N Mean St. Dev. Min Max Skew Kurtosis

EPU 1259 4.37 0.323 3.526 5.649 0.386 3.407
VIX 1259 2.669 0.254 2.213 3.707 0.751 3.374
TED 1259 -1.199 0.336 -1.897 -0.386 0.282 2.059

The correlations between the variables are presented in table 3.5. It is notable that

the correlation between volume and volatility, as well as volume and transactions are

relatively high with 47% and 41%, respectively. Furthermore, we see that the correlation

between the uncertainty variables (EPU-index, VIX-index and TED-spread) are quite

low. This indicates that collinearity does not seem to be a problem and that the variables

seemingly capture different aspects or forms of uncertainty.

Table 3.5: Correlation Matrix

The table illustrates the correlations between the independent variables used in the analysis. We apply
the same methodology as Da et al. (2011) when estimating the correlations in table 3.5. First we estimate
each correlation individually for the specific cryptocurrencies, then we average the results across all
cryptocurrencies.

Google Volatility Transactions Volume EPU-index VIX-index TED-spread

Google 1.00
Volatility 0.22 1.00

Transactions 0.36 0.40 1.00
Volume 0.25 0.47 0.41 1.00

EPU-index 0.04 0.14 0.13 0.07 1.00
VIX-index 0.27 0.14 0.31 0.19 0.06 1.00
TED-spread 0.09 0.16 0.16 0.25 0.20 0.12 1.00

1For the remainder of this paper (regression tables and equations), EPU, VIX and TED are respectively
abbreviations for the EPU-index, VIX-index and TED-spread.
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4 PSY Methodology

In the following paragraphs we present the PSY procedure. First, we provide the rationale

behind the identification of price explosiveness. Second, we present the PWY and PSY

tests and their respective test statistics. Third, we outline how the date-stamping of

bubbles is executed. Lastly, we describe how the PSY framework can be extended to

identify market collapses or crisis.

4.1 Identification of Price Explosiveness

Phillips and Magdalinos (2007) propose that explosive behavior in asset price series can be

regarded as a warning signal of market explosiveness in the expansionary phase of a bubble

period. It is this assumption that lays the foundation for econometric testing of time

series market data by applying recursive right-tailed unit root test procedures. Although

the PWY, the sequential PWY and the PSY date-stamping strategies uses distinctive

recursive algorithms for each strategy, they are all based on recursive right-sided unit root

tests.

Phillips et al. (2015a,b) integrate the mild drift in price processes that frequently appear

over long time series. By adding an asymptotically negligible drift to the martingale null

they incorporate this effect. The null hypothesis (H0) of the date stamping strategies

assumes normal market behavior and has the following form:

yt = dT−η + θyt−1 + εt, εt
iid∼
(
0, σ2

)
, θ = 1 (4.1)

where dT−η (with constant d, and sample size T ) perceive any small drift process that

may occur in the price time series, but which is of lower order than the martingale

element θyt−1 and consequently is asymptotically negligible. The localizing coefficient η is

a parameter that regulates the impact of the intercept and drift as the sample size goes

to infinity T →∞.
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Solving equation 4.1 gives yt = d t
T η

+
∑∞

j=1 εj + y0. The deterministic drift is represented

by the component d t
T η

. The drift is minor in relation to a linear trend when the localizing

coefficient η > 0, the drift is minor relative to the martingale element of yt when η > 1
2
.

The standardized output T−
1
2yt also behaves like a Brownian motion with drift when η > 1

2
.

The reason for the inclusion of the drift term is to separate the transient drift component

and be able to perform tests for explosiveness similar to the ordinary augmented Dickey-

Fuller unit root test against stationarity.

4.2 Models and Test Statistics

Phillips et al. (2011) presented the sup augmented Dickey-Fuller test (SADF), known

as the PWY test. Later Phillips et al. (2015a,b) presented the general sup augmented

Dickey-Fuller test (GSADF), named the PSY test. Both tests are based on recursive

approaches and contains a rolling window augmented Dickey-Fuller style regression. The

window size of the rolling ADF regression is denoted rw, defined by rw = r2 − r1 and the

set minimum window width r0. A general rolling window ADF (RADF) test procedure is

illustrated by figure 4.1 below.

Figure 4.1: Illustration of RADF Procedure (Caspi, 2017)

The PWY and PSY procedures are based on the following reduced form empirical equation,

to respectively obtain the SADF and GSADF test statistics:

∆yt = α̂r1,r2 + β̂r1,r2yt−1 +
k∑
i=1

ψ̂ir1,r2∆yt−i + ε̂t, εt
iid∼
(
0, σ2

)
(4.2)
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where k is the transient lag order. α̂r1,r2 , β̂r1,r2 and ψ̂r1,r2 are parameters estimated

using OLS and yt is the logarithm of the cryptocurrency price. The numbers r1 and r2

represents the starting and ending point in the regression window of the total sample (T ).

The observation quantity in the regression is denoted by Tw = bTrwc, where b·c is the

floor function. The ADF statistic (t-ratio) from the regression, denoted by ADF r2
r1
, is

given by the ratio of β̂r1,r2 and its standard error. We then apply this type of ADF rolling

window regression to acquire a series of ADF statistics and detect bubbles.

To identify explosiveness (explosive behaviour) we perform a right-tailed variation of the

standard Augmented Dickey-Fuller unit root test. As Caspi (2017) specifies, in both the

PWY and PSY framework, we test for

H0 : β̂r1,r2 = 1,

H1 : β̂r1,r2 > 1.
(4.3)

The null and alternative hypothesis is dependent on the test statistic used. In the PWY

test the null hypothesis is of a unit root, and the alternative hypothesis is of a single

periodically collapsing bubble period. The PSY test’s null hypothesis is also of a unit root,

but the alternative hypothesis is of multiple periodically collapsing bubbles. A comparison

between PWY and PSY are given in 4.2.3 Comparison of Bubble Identification Tests.

4.2.1 The PWY Test for Bubbles (SADF test)

Phillips et al. (2012) suggest a sup ADF (SADF) process, also known as the PWY

approach, to identify bubbles in asset prices. The SADF statistics series is denoted by

SADF (r0) = sup
r2∈[r0,1]

{ADF r2
0 }. (4.4)

This statistic is obtained through the PWY test which, as mentioned above, relies on

repeated estimation of the Augmented Dickey Fuller regression model on a forward

expanding sample sequence. The window size rw expands from r0 (smallest window width
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fraction of the total sample size) to 1 (largest window width fraction of the total sample

size). In the PWY test, the starting point in the data r1 is fixed at 0. The endpoint varies

with rw and ends up in r2 = 1. The non-varying starting point in the PWY test stand in

contrast to the PSY test, where both the starting point r1 and ending point r2 in the

sample window is allowed to vary. The recursion of the PWY test is illustrated below in

figure 4.2.

Figure 4.2: Illlustration of SADF Procedure (Phillips et al., 2015a)

4.2.2 The PSY Test for Bubbles (GSADF test)

Phillips et al. (2015a) suggest a generalized sup ADF (GSADF) process, also known as

the PSY approach, to detect and date-stamp bubble periods. The date-stamping is done

by performing a recursive backward method which is presented in 4.3 Date-stamping

Bubbles. Similar to PWY, the PSY dating strategy applies recursive right-tailed ADF

tests and accepts flexible window widths. As distinct from the SADF test of PWY, the

GSADF process allows to adjust both the starting and ending point over a reasonable

range of flexible windows. The PSY test allows the starting point in the ADF regression

model 4.2 to vary from 0 to r2 − r0, in addition to also changing the endpoint as in the

PWY test. As a consequence, the subsamples used in the recursion are substantially more

comprehensive than those of the PWY test. The power of the GSADF statistic is hence

larger compared to the SADF statistic. The recursion of the PSY test is illustrated in

figure 4.3 below. Formally the GSADF statistic is defined as

GSADF (r0) = sup
r2∈[r0,1],r1∈[0,r2−r0]

{ADF r2
r1
}. (4.5)
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Figure 4.3: Illlustration of GSADF Procedure (Phillips et al., 2015a)

4.2.3 Comparison of Bubble Identification Tests

In Phillips et al. (2015a) it is shown that the PSY method outperforms the PWY

approach, a modified sequential PWY algorithm developed in the same paper, as well as a

procedure called the CUSUM approach. The main reasons for the outperformance is that

the PSY approach covers more subsamples and have superior flexibility when it comes

to choosing and adjusting window width. The PWY approach can be unreliable when

multiple bubbles appear. When the sample period includes several episodes of explosive

behavior, the PWY approach may suffer from reduced power and can be unreliable when

it comes to detecting the presence of bubbles. The inconsistencies becomes even more

evident when using long time series or swiftly fluctuating market data where more than

one bubble period is expected.

The high degree of volatility in cryptocurrency prices makes the PWY method unsuitable

to employ in our study. In contrast to the PWY dating strategy, the PSY procedure is

consistent in time stamping the origination and termination of multiple bubbles. The

PSY approach is hence considerably more suitable to use when identifying bubbles in

cryptocurrencies because of its rapidly changing price behavior. We therefore use the PSY

approach further in this paper.
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4.3 Date-stamping Bubbles

The PSY test allows for date stamping the origination and termination points of a bubble.

Bubble periods are found by executing a rolling window test backwards. The psymonitor

package used in our paper employs a optimized recursion, introduced in Phillips and Shi

(2018), when performing the bubble date-stamping. The PSY statistic is defined as the

supremum of the ADF statistic sequence, i.e.,

PSYr†(r0) = sup
r1∈[0,r†−r0],r2=r†

{ADF r2
r1
}. (4.6)

The PSY framework then suggest comparing each element of the estimated ADF r2
r1

test

statistic sequence to the related right-tailed critical values of the standard ADF statistic

to detect explosive behaviour at time Tr† . The first chronological observation where

the ADF statistics exceeds the critical value is defined as the origination point of the

bubble Tre . The estimated termination point of the bubble Trf is the first chronological

observation after Tre where the ADF statistics goes below the critical value from above.

The origination and termination of the explosiveness is respectively stated according to

the following crossing time fractions:

r̂e = inf
r†∈[r0,1]

{
r† : PSYr†(r0) > cvr†(βT )

}
, (4.7)

r̂f = inf
r†∈[r̂e,1]

{
r† : PSYr†(r0) < cvr†(βT )

}
, (4.8)

where cvr†(βT ) is the 100(1− βT ) critical values of the PSYr†(r0) statistic and βT is the

test size.

4.4 The PSY Test for Bubble vs. Crisis Identification

The PSY method presented in Phillips et al. (2015a,b) was intended to detect and

time-stamp explosive behavior in asset prices. More recently, Phillips (2017) has shown
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that the PSY procedure also can be used as a warning device for crisis, as the algorithm

can be extended to cover market collapse dynamics.

Under the null hypothesis of normal market behavior, asset prices follow a martingale

process with a mild drift function. In the setting of bubble identification, the alternative

hypothesis is a mildly explosive process (described in subsection 4.4.1). When it comes to

detecting crisis, the alternative hypothesis is a random-drift martingale process (explained

in subsection 4.4.2).

In our paper we examine whether the asset prices follow a martingale process with a

mild drift (null hypothesis - normal market conditions) or not (alternative hypothesis -

either a bubble or crisis). We do not distinguish between bubbles and crisis since the

PSY algorithm doesn’t separate the two of them.2 In the following two subsections we

present the rationale associated with the PSY test for bubble and crisis identification,

respectively. Table 4.1 summarizes the null and alternative hypotheses for bubble and

crisis identification.

Table 4.1: The PSY Test for Bubble and Crisis Identification

Identification Null Hypothesis (Normal Market Conditions) Alternative Hypothesis (Bubble/Crisis)

Bubble Identification Martingale process with mild drift Bubble: Mildly explosive process
Crisis Identification Martingale process with mild drift Crisis: Random-drift martingale process

4.4.1 The PSY Test for Bubble Identification

Phillips and Magdalinos (2007) propose that explosive behavior in asset price series can

be regarded as a signal of bubble behavior. In this case, asset prices can be expressed as

a mildly explosive process of the form

logPt = δT logPt−1 + ut, (4.9)

2When using the terms "bubble", "explosive behavior", "crisis", "market collapse" and so on, we
have detected that there is a deviation from normal market conditions (null hypothesis of martingale
process with mild drift fails) and that there is either a bubble or a crisis (alternative hypothesis of either
a mildly explosive process or random-drift martingale process is valid).
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in which δT = 1 + cT−η is a autoregressive coefficient which mildly exceeds unity (with

c > 0 and η ∈ (0, 1)).

As presented in table 4.1, bubble identication is achieved by testing the null hypothesis

of normal market conditions (martingale process with a drift) against the alternative of

bubble (mildly explosive process). When it comes to bubble identification, the null and

alternative hypotheses of the empirical regression model equation 4.2 can be stated as

H0 : µ = gT and ρ = 0

H1,bubble : µ = 0 and ρ > 0.
(4.10)

4.4.2 The PSY Test for Crisis Identification

Phillips (2017) modeled the dynamics of asset prices during market collapses as a random

drift martingale process. The logarithmic price change (logPt − logPt−1) is affected by a

random sequence term (−Lt) and the martingale difference innovations ut, expressed by

the following equation

logPt − logPt−1 = −Lt + ut. (4.11)

ut are the superposition of martingale differences with variance σ2. Lt is a random

sequence independent of ut, which follows an asymmetric scaled uniform distribution. Lt

may take different forms, which cause diversity in the type of crises, and is given by

Lt = Lbt, bt
iid∼ U [−ε, 1] , 0 < ε < 1, (4.12)

where L is a positive scale quantity which represents the shock intensity and bt is uniform

on the interval from −ε to 1.

As summarized in table 4.1, crisis identification is done by testing the null hypothesis of

normal marked conditions (martingale process with a drift) against the alternative of crisis

(random-drift martingale process). Mathematically the null and alternative hypothesis of
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the empirical regression model from equation 4.2 can then be written as

H0 : µ = dT−η and ρ = 0

H1,crash : µ = K and ρ = 0,
(4.13)

where K is the expected value of Lt and dT−η perceive any small drift process that may

occur in the price time series as in equation 4.1.
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5 Analysis & Results

This section presents the results of our analysis. First, we describe the research model of

the study. In subsection 5.2 Bubble Detection - PSY Test, we display the results from

running the PSY algorithm, and provide some general statistics and graphics of the

bubble periods. In subsection 5.3 Bubble Predictors - Regression Models, we study bubble

predictors through regression models.

5.1 Research Model of the Study

The analysis in this paper consists of two parts that are integrated to evaluate the main

issue of this paper, to detect and predict bubbles in cryptocurrencies. The framework for

the paper is illustrated in figure 5.1 below.

Figure 5.1: Illustration of the Framework for the Paper
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First, we employ the PSY test to identify and date-stamp bubble periods in each

cryptocurrency separately. Then we investigate variables that can possibly predict

explosive periods in the cryptocurrency prices. Thereafter we develop regression models

to study the relationships between the chosen predictors and the cryptocurrency bubbles.

In the probit models we use a dummy variable as dependent variable. The variable is

generated by giving the value 1 to the bubble dates and the value 0 to the dates where no

explosive behavior is observed. In the linear regression models we use the PSY statistic3

as dependent variable. Finally, we evaluate the results.

5.2 Bubble Detection - PSY Test

The results from application of the PSY algorithm show that there have been several

bubbles in each of the cryptocurrencies investigated. Figure 5.2 illustrates the PSY test,

when applied to the logarithm of the Bitcoin price (represented by the black line). The

red line represents the 95%-level critical value of the bootstrapped Dickey-Fuller test

statistics generated by this framework. The explosive periods occur when the PSY test

values, illustrated by the blue line, exceeds the critical value. Evidently, there have been

numerous bubble periods in Bitcoin in the observed sample.

Figure 5.2: PSY Test of Bitcoin Bubbles

3As defined in the PSY methodology section, the PSY values are the suprema of the ADF statistics
(generated by the algorithm) for each observation.
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The PSY procedure has also been performed for the seven other cryptocurrencies

too. Table 5.1 provides descriptive statistics of the generated PSY statistics and the

bootstrapped 95% critical values for each of the cryptocurrencies.

Table 5.1: Descriptive Statistics of the PSY Values

Mean St. Dev. Min Max Skew Kurtosis 95% CV

BTC 0.185 1.049 -1.945 5.044 1.250 1.461 1.251
ETH 0.314 0.961 -2.823 4.572 0.781 1.148 1.167
XRP -0.152 1.090 -1.885 8.005 1.759 5.568 1.330
LTC -0.233 1.146 -3.049 5.478 0.828 1.021 1.338
XMR 0.022 0.898 -2.300 3.297 -0.055 -0.408 1.171
DASH 0.015 1.085 -1.631 4.770 0.958 0.680 1.368
XEM 0.021 1.155 -2.753 4.262 0.185 1.776 1.244
DOGE -0.505 1.027 -1.949 6.070 2.046 6.885 1.315

Figure 5.3 illustrates the time-stamped bubble periods of the PSY test and development of

the variables measuring uncertainty (VIX-index, EPU-index and TED-spread) employed

in the regression models. For all of the studied cryptocurrencies, we detect 925 days of

explosiveness in total. Most of the explosive periods last only for a few days, with the

exception of some extensive long-lived bubbles. The short-lived bubbles occur at different

time periods for the individual cryptocurrencies. The long-lived bubbles coincide to a

greater extent compared to the short-lived bubbles.
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Figure 5.3: Bubble Periods in Cryptocurrencies and Uncertainty Variables

Coloured areas in this figure mark the explosive periods in the individual cryptocurrencies detected by
the PSY framework. The black lines for the cryptocurrencies represent the price in $. The line starts
where the dataset of prices begins for the individual cryptocurrency and ends at February 15, 2019. The
black lines for the uncertainty variables VIX-index, EPU-index and TED-spread display their historical
development.
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The prices for all cryptocurrencies studied in this paper increased dramatically during

2017. As can be seen from figure 5.3, the PSY algorithm reveals that there were

bubbles in most of the cryptocurrencies in large parts of 2017. Especially Bitcoin exhibit

long-lived bubble periods in 2017 and 2018. The date-stamped bubble periods for each

cryptocurrency ended some time after the price collapse in January 2018. Notably, the

price decline seems to coincide with a substantial increase in the VIX-index. By February

15, 2019, the analyzed cryptocurrencies declined on average 90.4% from their peak in

December 2017/January 2018 (see table 5.2).

Table 5.2: Price Decline from Peak for Each Cryptocurrency

The table provides the price decline from all-time high to February 15, 2019, for the eight cryptocurrencies.

Cryptocurrency Pric decline from peak

BTC 81.4 %
ETH 91.3 %
XRP 91.1 %
LTC 88.1 %
XMR 89.9 %
DASH 94.9 %
XEM 97.7 %
DOGE 88.8 %
Average 90.4 %

An overview of bubble periods is provided in table 5.3. Panel A specifies the number of

bubble days, where BTC and DASH display the highest number of total bubble days

with 193 days and 188 days, respectively. Most bubble days occurs in 2017. DASH had

the highest frequency of bubble days in 2017 (174 days). Panel B indicates that the

percentage of days with explosiveness is higher in 2017 compared with other years. The

explosive periods occured more in DASH (10.3% of days with explosiveness in the time

period 2015-2019) and less in DOGE (2.9% of days with explosiveness in the time period

2014-2019) compared to the other cryptocurrencies.
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Table 5.3: Statistics of Bubble Periods

Panel A specifies the number of bubble days for the individual cryptocurrencies. Panel B provides the %
of days with explosiveness. Total % is the average % of days with explosiveness over the sample period.

BTC ETH XRP LTC XMR DASH XEM DOGE Sum

Panel A: Number of bubble days

2013 0 - 0 0 - - - - 0
2014 1 - 25 4 - - - 0 30
2015 3 - 0 11 0 0 - 0 14
2016 12 1 0 1 24 0 11 2 51
2017 129 79 57 91 44 174 66 54 694
2018 48 11 18 11 24 14 2 8 136
2019 0 0 0 0 0 0 0 0 0
Sum bubble days 193 91 100 118 92 188 79 64 925

Panel B: % of days with explosiveness Average

2013 0.0 % - 0.0 % 0.0 % - - - - 0.0 %
2014 0.3 % - 6.8 % 1.1 % - - - 0.0 % 2.1 %
2015 0.8 % - 0.0 % 3.0 % 0.0 % 0.0 % - 0.0 % 0.6 %
2016 3.3 % 0.3 % 0.0 % 0.3 % 6.6 % 0.0 % 3.0 % 0.5 % 1.7 %
2017 35.3 % 21.6 % 15.6 % 24.9 % 12.1 % 47.7 % 18.1 % 14.8 % 23.8 %
2018 13.2 % 3.0 % 4.9 % 3.0 % 6.6 % 3.8 % 0.5 % 2.2 % 4.7 %
2019 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %
Total % 7.6 % 6.2 % 3.9 % 4.6 % 5.0 % 10.3 % 5.4 % 2.9 % 5.7 %

5.3 Bubble Predictors - Regression Models

Having applied the PSY framework, we generate the PSY statistics for each of the

cryptocurrencies. We then analyze the results by performing various regressions in order

to evaluate which variables can predict cryptocurrency bubbles. We estimate both probit

models and regular linear regression models. First, we estimate panel models with all

cryptocurrencies in the same sample. Second, we estimate models for each cryptocurrency

separately.

The two dependent variables (bubble dates dummy and PSY test statistic) applied in the

regressions do to some extent measure the same property, as they both are derived from

the PSY statistics. As described in subsection 2.1, previous studies have shown that there

are correlations between the cryptocurrency prices and variables such as Google Trends,

EPU, volatility and trading volume etc. This research provides a starting point for the

predictor selection in our analysis.
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The predictor vector xi,t−1 for the panel regression models has been established as:

xi,t−1 = [Googlei,t−1,Volatilityi,t−1,Transactionsi,t−1,Volumei,t−1,EPUi,t−1,VIXi,t−1,

TEDi,t−1],

(5.1)

where Googlei,t−1, Volatilityi,t−1, Transactionsi,t−1, and Volumei,t−1 are cryptocurrency

specific variables, and EPUi,t−1, VIXi,t−1 and TEDi,t−1 can be categorized as uncertainty

variables for individual cryptocurrencies, i = BTC,ETH, . . . ,DOGE.

The predictor vector for the time series regression models can be stated as:

xt−1 = [Googlet−1,Volatilityt−1,Transactionst−1,Volumet−1,EPUt−1,VIXt−1,

TEDt−1],
(5.2)

where the variables have the same interpretation as in predictor vector 5.1, only that we

examine one cryptocurrency at a time.

The dependent binary variable of the probit models, denoted BUBi,t for panel probit

regressions and BUBt for time series regressions, takes the values one and zero. BUBi,t

and BUBt is set to 1 when the PSY statistic, for the respective observation, is above the

generated critical value for the cryptocurrency (bubble phase) and zero when below (no

bubble):

BUBi,t =

1, if PSYi,t(r0) > cvi,t(βT )

0, if PSYi,t(r0) < cvi,t(βT )

(5.3)

BUBt =

1, if PSYt(r0) > cvt(βT )

0, if PSYt(r0) < cvt(βT )

(5.4)



5.3 Bubble Predictors - Regression Models 29

The panel probit model and time series probit model can, respectively, be expressed as

P (BUBi,t = 1) = Φ(βxi,t−1 + νi), (5.5)

P (BUBt = 1) = Φ(βxt−1), (5.6)

where Φ(·) is the cumulative distribution function. In the panel probit models, xi,t−1 is the

vector of lagged predictors (equation 5.1) in cryptocurrency i = BTC,ETH, . . . ,DOGE

and νi
iid∼ N (0, σ2

ν). xt−1 is a vector of lagged predictors (equation 5.2) in the time series

probit models.

The linear regression models use the generated PSY statistic as dependent variable.

The PSY statistic is the supremum of the estimated ADF statistics for the respective

observation, generated by the algorithm (as defined in equation 4.6). The estimated

models try to predict what variables affects this statistic, independent of the generated

critical value.

The linear panel regression model is specified as follows:

PSYi,t(r0) = β0 + β1Googlei,t−1 + β2Volatilityi,t−1 + β3Transactionsi,t−1 + β4Volumei,t−1

+ β5EPUi,t−1 + β6VIXi,t−1 + β7TEDi,t−1 + εi,t,

(5.7)

while the linear time series regression model is specified as follows:

PSYt(r0) = β0 + β1Googlet−1 + β2Volatilityt−1 + β3Transactionst−1 + β4Volumet−1

+ β5EPUt−1 + β6VIXt−1 + β7TEDt−1 + εt.

(5.8)

The following subsections present the regression results of our models. An overview of

the models used are presented in table 5.4. The models includes samples from either all

or individual cryptocurrencies. Due to some autocorrelation and heteroscedasticity, we

apply models more suitable to deal with this issue.
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The panel probit models is estimated with random effects and cluster robust standard

errors, by cryptocurrency. The linear panel models use a Prais-Winsten estimator with

standard errors corrected for AR(1) autocorrelation, heteroscedasticity and cross-sectional

correlation. Both these methods are suggested by Hoechle (2007).

The time series models are estimated with Newey-West standard errors (Newey and

West, 1987), treating the gaps as equally spaced as suggested by Datta and Du (2012).

Optimal lags are 5 for all models, following the lag selection procedure presented in

Greene (2007).4 All variables are stationary.

For the measure of fit metrics, regular R-squared is the share of variance in the dependent

variable that can be explained by the estimated model. Interpretation of the the McFadden

R-squared is not as straightforward, but still applicable when comparing the fitness of

different models. It is constructed by utilizing the log-likelihood ratio of the models with

and without explanatory variables (McFadden, 1974).

Table 5.4: Summary of Regression Models

Sample Dependent Variable Estimator

All Bubble dummy Panel probit with random effects & cluster robust standard errors
All PSY statistics Panel Prais-Winsten with panel corrected standard errors

Individual Bubble dummy Probit with optimal lag Newey-West standard errors
Individual PSY statistics OLS with optimal lag Newey-West standard errors

5.3.1 Panel Regressions: All Cryptocurrencies

The regression results from the probit panel regressions and the PSY statistic panel

regressions is provided in table 5.5 and table 5.6, respectively. We use panel regressions

to analyze the variables’ predictive effects across cryptocurrencies. We estimate both

single variable models, termed univariate models, and models which include all variables

studied, termed complete models. The univariate models investigate one explanatory

variable at a time, for each cryptocurrency.

4Optimal lag size is calculated by the smallest integer of T
1
4 , where T is total sample size. The

procedure is presented on page 463 in Greene (2007).
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For the probit models, positive coefficients indicate a higher predicted probability. An

increase in the variable is thus associated with a higher likelihood of bubbles. A negative

coefficent would similarly decrease the likelihood of bubbles. In the linear models, an

increase in a variable with a positive coefficient indicates a higher predicted PSY statistic.

Given the definition of the PSY statistics, this can imply that there is a tendency of

changes in price to be affected by the previous observed price level. A negative coefficient

implies a lower PSY statistics, indicating an opposite effect.

The probit models and the linear models essentially identify the same predictors of

bubbles, with a few differences. In the estimated univariate models, almost all the

independent variables exhibit highly significant associations, except the EPU-index and

TED-spread, in table 5.6 (linear panel regression).

Volatility exhibits positive effects in all panel models. Thus, an increase in this variable

raises the likelihood of bubble states. The research of Bekiros et al. (2017) states that

herding behavior5 is usually more prevalent in periods of excessive volatility, which might

make volatility a natural property of bubbles. Volume exhibits a positive relationship

with the dependent variables in all models. Thus, increases in volume corresponds with a

higher likelihood of bubbles. This can possibly be explained by theories such as rational

bubbles6 or herding behavior. Trading volume is naturally related to the price dynamics

of cryptocurrencies, and is thus assumed to be closely connected with bubble behavior.

This differs from the findings of Blau (2017), which does not find a connection between

speculative trading and extreme market behavior. Google searches and transactions have

positive effects on bubble behavior in all panel models. Though, these effects are not

significant when other variables are controlled for in the complete probit panel model.

We suspect that both these variables are closely connected to the trading volume, which

can explain why the effects disappear in the complete probit panel model, when trading

volume is included. To an extent the three variables; volume, Google searches and

5In behavorial finance, herding behavior is when an investor’s decisions is based on the trend of past
trades (Avery and Zemsky, 1998).

6The concept of rational bubbles was established by Blanchard and Watson (1982), which indicates
that temporary price levels above intrinsic value can be consistent with rationality, if the expected future
price is higher than the current price.



32 5.3 Bubble Predictors - Regression Models

transactions are similar, as they are related to the market demand for cryptocurrencies.

The fact that they demonstrate the same direction of effects can support this suspicion.

When it comes to uncertainty variables, the VIX-index is significant in both the probit

models and the linear models. An increase in the VIX-index demonstrates negative

relationships with bubbles in all panel models. An increase in the VIX-index usually

implies higher volatility in the stock market. The negative relationship might be

related to the "safe haven" property, which is discussed by Bouri et al. (2017). The

referenced paper indicates a negative correlation between the volatility of Bitcoin and the

VIX-index. The EPU-index is positive and significant for the probit models, but not

for the linear models. This implies that the probability of bubbles is higher when US

political uncertainty increases. As stated in our literature review, Demir et al. (2018)

identifies that the EPU-index is generally negatively associated with future returns, but

exhibits a positive relationship with high and low quantiles of returns. This can possibly

explain why the EPU-index is only positively associated with bubbles in the probit model,

which only captures extreme PSY values. The TED-spread is significant and negatively

associated with bubbles in the univariate probit model, but the effect disappears when

other variables are included in the complete model.

Considering the measures of fit metrics of the panel probit models, the McFadden

R-squared shows that the different models display varying ability to predict bubbles.

The VIX-index marginally displays the highest value and the TED-spread displays the

lowest value. For the linear panel models, the R-squared is generally very low for the

univariate models, which indicates that the estimated models predict only a small share

of the variance in the PSY statistics. In the complete model, R-squared is considerably

higher, but still relatively low. It is able to predict 8.3% of the total variance in the PSY

statistics.
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Table 5.5: Probit Regression Results - Panel Regression

The dependent binary variable BUBi,t only takes the values 1 (explosive dates) and 0 (non-explosive
dates). Independent variables are described in the data section. The sample includes all cryptocurrencies
(see table 3.1 for the individual time spans). ∗, ∗∗ and ∗∗∗ represents significance at the 10%, 5% and 1%
level, respectively. All the reported estimates are coefficients with corresponding cluster-robust standard
errors, by cryptocurrency. The McFadden R-squared for this table has been calculated manually.

Dependent variable: BUBi,t

(1) (2) (3) (4) (5) (6) (7) (8)

Googlei,t−1 0.894*** 0.180
(0.251) (0.276)

Volatilityi,t−1 19.94*** 7.241***
(1.671) (1.997)

Transactionsi,t−1 0.368*** 0.129
(0.103) (0.0791)

Volumei,t−1 0.920*** 0.651***
(0.0891) (0.124)

EPUi,t−1 0.618*** 0.432**
(0.115) (0.218)

VIXi,t−1 -2.724*** -1.441***
(0.381) (0.359)

TEDi,t−1 -0.557*** 0.152
(0.156) (0.221)

Intercept -1.347*** -2.309*** -1.626*** -13.05*** -3.971*** 5.764*** -1.855*** -8.190***
(0.0866) (0.129) (0.167) (1.868) (0.510) (0.975) (0.179) (1.464)

Observations 8060 8060 8060 8060 8060 8060 8060 8060
McFadden R-squared 0.1083 0.1510 0.1507 0.0515 0.0198 0.152 0.0123 0.3613
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Table 5.6: Linear Regression Results - Panel Regression

The dependent variable is the PSY statistic. Independent variables are described in the data section.
The sample includes all cryptocurrencies (see table 3.1 for the individual time spans). ∗, ∗∗ and ∗∗∗

represents significance at the 10%, 5% and 1% level, respectively. The coefficients are are estimated by
Prais-Winsten regression. The standard errors are corrected for AR(1) autocorrelation, heteroscedasticity
and cross-sectional correlation.

Dependent variable: PSYi,t(r0)

(1) (2) (3) (4) (5) (6) (7) (8)

Googlei,t−1 0.0409*** 0.0413***
(0.00628) (0.00729)

Volatilityi,t−1 3.397*** 5.076***
(0.400) (0.414)

Transactionsi,t−1 0.0403*** 0.0351***
(0.00472) (0.00476)

Volumei,t−1 0.0241*** 0.0419***
(0.00460) (0.00405)

EPUi,t−1 -0.00328 0.0650
(0.0338) (0.0414)

VIXi,t−1 -0.148*** -0.339***
(0.0538) (0.0602)

TEDi,t−1 -0.0497 -0.0499
(0.0576) (0.0614)

Intercept 0.00759 -0.138*** -0.0164 -0.291*** 0.0233 0.404*** -0.0463 -0.194
(0.0320) (0.0348) (0.0302) (0.0653) (0.153) (0.148) (0.0746) (0.277)

Observations 8060 8060 8060 8060 8060 8060 8060 8060
R-Squared 0.0043 0.0189 0.0106 0.0040 0.0000 0.0028 0.0002 0.0830

5.3.2 Time Series Regressions: Individual Cryptocurrencies

The results from the estimated probit regressions and linear regressions for individual

cryptocurrencies are shown in table 5.7 and table 5.8, respectively.7 We study the

cryptocurrencies separately to examine whether the predictive effects seem to be

cryptocurrency-dependent or consistent across cryptocurrencies.

Similar to the results of the panel regressions, volatility and volume exhibit positive

associations with bubbles for most cryptocurrencies. This implicates that increases in

volatility or volume corresponds with a higher likelihood of bubbles, as demonstrated

7We have also estimated univariate regressions for the individual cryptocurrencies, which are included
in the appendix (table A0.1 and A0.2).
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in the panel regression models. Google searches shows varying direction of effects and

predictive ability depending on the cryptocurrency studied. It displays positive effects for

BTC and ETH in both the linear models and the probit models. On the other hand,

Google searches are negatively associated with bubbles for DASH in both time series

regression models and XMR in the linear regression models. The variation in effects can

possibly be explained by the differences in total market value for the cryptocurrencies.

Transactions generally demonstrates a positive relationships with bubbles. The exceptions

are transactions for BTC in both time series models and XRP in the linear regression

model, where the variables display a negative direction of effect. A possible explanation for

this exception is that BTC and XRP are among the cryptocurrencies which ranks highest

in terms of total market value. An increase in transactions for these cryptocurrencies can

imply a higher degree of use as means of exchange. This can lead to a weaker association

with bubble behavior, as it could indicate practical utility for the owners. Overall, the

cryptocurrency-specific variables mostly demonstrate the same positive associations with

bubble behavior as in the panel regression models.

The examined uncertainty variables; EPU-index, VIX-index and TED-spread shows

varying relationships with bubble states when it comes to direction of effects. As the

panel models indicate, the EPU-index is positively associated with bubbles. Though,

this relationship seems to be very dependent on the cryptocurrency studied, as many

models fails to demonstrate an significant effect. The VIX-index are in general negatively

associated with bubbles across cryptocurrencies, similarly to the panel regression models.

In the probit models, BTC, DASH and DOGE is negatively associated with bubbles,

which might explain why the panel models exhibit the same effects. In the linear

models, all the effects are negative, but not significant for LTC and DOGE. ETH

is an exception in terms of the predictive effect for the VIX-index. It is positively

associated with bubble states in both time series regression models. The TED-spread

shows a positive relationship with bubbles for BTC in both the time series models, as

opposed to the panel models, where there are weak indications of an effect. In the probit

models, the TED-spread shows no significant effects for other cryptocurrencies. In the

linear models, the TED-spread shows differing effects in terms of direction and significance.
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The measures of fit metrics, R-squared and McFadden R-squared, demonstrates that the

models have a considerable ability to predict bubbles, as they are relatively high.

Table 5.7: Probit Regression Results - Time Series Regressions

The dependent binary variable BUBt only takes the values 1 (explosive dates) and 0 (non-explosive
dates). Independent variables are described in the data section. The sample includes all dates for the
respective cryptocurrency (see table 3.1 for individual time spans). ∗, ∗∗ and ∗∗∗ represents significance at
the 10%, 5% and 1% level, respectively. All the reported estimates are coefficients with corresponding
Newey-West standard errors.

Dependent variable: BUBt

BTC ETH XRP LTC XMR DASH XEM DOGE

Googlet−1 1.406*** 1.464*** 0.0818 0.438 0.798* -0.509** -0.00304 0.239
(0.392) (0.336) (0.273) (0.322) (0.458) (0.251) (0.0860) (0.333)

Volatilityt−1 21.31*** 8.548* 4.692 5.828* 12.93*** 10.21* 6.168* -1.956
(5.462) (4.657) (2.907) (3.214) (4.083) (5.514) (3.632) (4.435)

Transactionst−1 -0.271** 0.448*** 0.0083 0.277** 0.154** 0.178 0.312*** -0.135
(0.106) (0.165) (0.123) (0.112) (0.0730) (0.161) (0.120) (0.167)

Volumet−1 0.903*** 0.147 0.952*** 0.532*** 0.543*** 0.861*** 0.280*** 1.394***
(0.211) (0.123) (0.162) (0.140) (0.179) (0.315) (0.0849) (0.253)

EPUt−1 -0.566 0.445 0.351 -0.036 0.243 1.592*** 0.601 1.240***
(0.414) (0.401) (0.570) (0.461) (0.441) (0.414) (0.366) (0.428)

VIXt−1 -1.566** 1.060** -1.062 0.539 -0.43 -2.996*** -0.822 -2.793**
(0.641) (0.447) (0.708) (0.645) (0.770) (1.155) (0.616) (1.324)

TEDt−1 0.879** -0.327 -0.876 0.305 0.593 -0.0515 -0.471 0.790
(0.345) (0.459) (0.574) (0.416) (0.512) (0.600) (0.391) (0.510)

Intercept -9.335** -9.919*** -14.06*** -8.659*** -6.432** -9.919*** -6.093** -16.34***
(3.754) (3.123) (3.266) (3.230) (3.004) (3.521) (2.457) (3.704)

Observations 1258 625 1256 1258 939 998 707 1019
McFadden R-squared 0.4854 0.5383 0.5781 0.5531 0.4651 0.5674 0.3959 0.6876
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Table 5.8: Linear Regression Results - Time Series Regressions

The dependent variable is the PSY statistic. Independent variables are described in the data section.
The sample includes all dates for the respective cryptocurrency (see table 3.1 for individual time spans).
∗, ∗∗ and ∗∗∗ represents significance at the 10%, 5% and 1% level, respectively. All the reported estimates
are coefficients with corresponding Newey-West standard errors.

Dependent variable: PSYt(r0)

BTC ETH XRP LTC XMR DASH XEM DOGE

Googlet−1 0.885*** 0.520*** 0.0947 0.0152 -0.451*** -0.196*** 0.0599*** 0.127*
(0.154) (0.112) (0.107) (0.101) (0.146) (0.101) (0.0298) (0.139)

Volatilityt−1 12.07*** 5.506*** 8.548*** 10.32*** 2.961* 7.231*** 8.236*** 5.307**
(2.854) (1.757) (2.404) (2.695) (1.519) (2.297) (1.972) (2.062)

Transactionst−1 -0.191*** 0.304*** -0.186*** 0.175*** 0.355*** 0.228** 0.149*** 0.132***
(0.0340) (0.0368) (0.0329) (0.0521) (0.0465) (0.104) (0.0519) (0.0364)

Volumet−1 0.423*** 0.0953* 0.446*** 0.320*** 0.115** 0.320*** 0.164*** 0.462***
(0.0647) (0.0545) (0.0454) (0.0552) (0.0491) (0.0984) (0.0281) (0.0658)

EPUt−1 0.451*** -0.0141 0.144 -0.0267 0.441*** 0.569*** -0.159 0.365***
(0.117) (0.107) (0.117) (0.132) (0.119) (0.145) (0.110) (0.129)

VIXt−1 -0.485*** 0.722*** -0.301** -0.0423 -0.733*** -1.057*** -0.769*** -0.0208
(0.158) (0.191) (0.135) (0.178) (0.175) (0.217) (0.147) (0.166)

TEDt−1 0.469*** -0.877*** -0.181 -0.006 0.218 0.745*** -0.208* -0.16
(0.118) (0.133) (0.117) (0.137) (0.156) (0.155) (0.107) (0.127)

Intercept -7.118*** -4.384*** -5.716*** -5.342*** -0.941 -2.349* 0.720 -7.670***
(1.279) (1.036) (0.894) (1.151) (0.799) (1.209) (0.721) (1.036)

Observations 1258 625 1256 1258 939 998 707 1019
R-Squared 0.603 0.722 0.583 0.566 0.617 0.560 0.568 0.585

5.3.3 Summary of Regressions Results

In general, the cryptocurrency-specific variables volatility and trading volume demonstrate

similar and consistent results for both the panel regressions and time series regressions.

In the panel regression models, Google searches and transactions are generally positively

associated with bubbles. In the time series regression models, Google searches and

transactions demonstrates varying effects depending on the cryptocurrency studied.

The uncertainty variables EPU-index, VIX-index and TED-spread exhibit differing

associations with bubble behavior in the panel regression models. The EPU-index shows

positive relationships in the probit panel models, the VIX-index demonstrates negative

relationships with bubbles in all panel models, while the TED-spread exhibits a more
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ambiguous relationship. The time series regressions for the uncertainty variables show

varying effects depending on the cryptocurrency studied.

In summary, we find that several variables can predict bubbles. Overall, the panel

regression results for the uncertainty variables are primarily in line with the time series

regression results. In particular, we find that volatility, trading volume and the VIX-index

demonstrates a general potential to predict bubble behavior across cryptocurrencies. The

predictive effect of other variables is contingent on whether we look at the probit models

or the linear models, and which cryptocurrency we examine.

5.3.4 Predictive Ability of Models

Table 5.9 presents a comparison between the time series models’ ability to predict the

estimated bubble dates from the PSY framework. The models utilized to test the

predictive ability are the complete models displayed in table 5.7 and table 5.8. The probit

models presented in panel A predict that a bubble is expected for the next observation if

the estimated probability is above a 50% threshold. The linear regression models predict

the PSY statistic for the next observation. A bubble is predicted if the estimated PSY

statistic exceeds the critical value8 (generated by the PSY framework) for the respective

cryptocurrency.

Table 5.9: Predictive Ability of Models

% True Bubble Days Predicted is the share of bubble days detected by the PSY framework which the
respective model is able to predict. % Correct Predictions is the share of predicted bubble days, which
are true PSY bubble days.

BTC ETH XRP LTC XMR DASH XEM DOGE Average

PSY Detected Bubbles Days 193 91 100 118 92 188 79 64

Panel A: Probit regression

Predicted Bubble Days 144 76 69 94 53 169 46 54
% True Bubble Days Predicted 58.6 % 65.9 % 53.00 % 62.7 % 46.7 % 75.5 % 40.51 % 70.3 % 59.2 %
% Correct Predictions 78.5 % 79.0 % 76.81 % 78.7 % 81.1 % 84.0 % 69.57 % 83.3 % 78.9 %

Panel B: Linear Regression

Predicted Bubble Days 115 113 86 81 52 79 70 38
% True PSY Bubble Days Predicted 46.63 % 78.02 % 59.00 % 52.54 % 34.78 % 32.98 % 53.16 % 48.44 % 50.69 %
% Correct Predictions 78.26 % 62.83 % 68.60 % 76.54 % 61.54 % 78.48 % 60.00 % 81.58 % 70.98 %

8The critical values can be found in table 5.1.



5.3 Bubble Predictors - Regression Models 39

The results in table 5.9 indicate that the probit models are generally superior to the

linear regression models, except when it comes to % True Bubble Days Predicted

for XRP and XEM. These results contradict our a priori suspicion that the linear

models would perform better than the probit models. We suspected that by trying to

predict the underlying PSY values, the consequence would be improved predictive accuracy.

Figure 5.4: Comparison of Linear Model and Probit Model on BTC

The figure to left represents the linear model, while the figure to the right represents the probit model.

We speculate that the reason the probit models are superior to the linear models are due

to the binary categorization of the detected bubble days. Following the definition used in

the PSY framework, bubble days are detected when the PSY values are high and above

the generated critical value. Therefore, we suspect that the extreme values are better

fitted in the binary structure (bubble/no bubble) of the probit models. On the other

hand, the linear PSY models might be a better fit with the underlying PSY data.

An illustration of the two different regression models applied on Bitcoin is given in figure

5.4. In this figure we see that the blue lines for the models (Test Values PSY for the

linear model and Estimated Probability for the probit model) are different. The probit

model estimates more extreme values than the linear model, which can be an indicator

of why the probit model is superior to the linear model. If the objective is to predict

bubbles, the results indicates that the probit approach is preferred. If the objective is to

analyze the tendency of the price to be affected by the previous observed prices, the PSY

approach might be better.
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6 Conclusion

In this paper, we examine variables that have predictive ability of bubbles in

cryptocurrency prices. We utilize the novel PSY framework and explore variables’

predictive effects. The ability to predict bubbles can be an important contribution to

market monitoring and in the understanding of price dynamics for cryptocurrencies. To

our knowledge, this is the first study to examine predictors of PSY detected bubbles in

cryptocurrencies. We use the price determinants research, presented in subsection 2.1, to

identify which variables have an impact on the cryptocurrency prices and use this as a

basis for our selection of predictors in the regression models.

Similar to the research presented in subsection 2.3, our results from running the PSY test

reveals multiple bubble periods in all cryptocurrencies. Recently published papers, like

Corbet et al. (2018) and especially Bouri et al. (2018), identifies long-lived bubble periods

in multiple cryptocurrencies during 2017 and 2018. These findings coincide to a large

extent with our results, which also detects extensive cryptocurrency bubbles in the same

periods. Furthermore, Bouri et al. (2018) finds that particularly Bitcoin demonstrates

extensive price explosivity, which is also in line with our findings.

The conclusion of our paper is that several variables demonstrate predictive ability of

cryptocurrency bubbles. Of cryptocurrency-specific variables, volatility and volume are

distinctly associated with bubble behavior across cryptocurrencies. Google trends and

transactions mostly demonstrates positive relationships with bubbles, but the effects are

dependent on the cryptocurrency studied and type of regression model. For the uncertainty

variables, the VIX-index generally exhibits a negative association with bubbles. The

EPU-index demonstrates positive relationships with bubbles, but the effects are dependent

on the cryptocurrency investigated and type of regression model. The TED-spread exhibits

a more ambiguous relationship with bubbles. We find that the probit models demonstrates

better predictive ability, compared to the linear models. In summary, many variables

exhibit predictive potential of bubbles, where trading volume, volatility and the VIX-index

appear to be particularly prevalent.
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Appendix

The regression results from the probit univariate regressions and the PSY statistic

univariate regressions is provided in table A0.1 and A0.2, respectively. The univariate

models employ regressions between the dependent variable (PSY-statistic or bubble dates

dummy) with one explanatory variable at a time, for each cryptocurrency. The models

are estimated with a constant, but only the parameters of the explanatory variables

and the corresponding standard errors are reported in the table. This implies that we

estimate 7 univariate regression equations per cryptocurrency.

Table A0.1: Probit Regression Results - Univariate Time Series Regressions

The dependent binary variable BUBi,t only takes the values 1 (explosive dates) and 0 (non-explosive
dates). Independent variables are described in the data section. The sample includes all dates for the
respective cryptocurrency (see table 3.1 for individual time spans). ∗, ∗∗ and ∗∗∗ represents significance at
the 10%, 5% and 1% level, respectively. All the reported estimates are coefficients with corresponding
Newey-West standard errors.

Dependent variable: BUBi,t

BTC ETH XRP LTC XMR DASH XEM DOGE

Googlet−1 1.187*** 2.075*** 1.173*** 1.725*** 1.866*** 0.454*** 0.311*** 1.742***
(0.420) (0.298) (0.416) (0.486) (0.608) (0.137) (0.0799) (0.431)

Volatilityt−1 36.23*** 20.25*** 17.69*** 22.97*** 22.65*** 15.77*** 16.52*** 19.07***
(4.685) (4.939) (4.364) (4.806) (3.810) (4.515) (3.446) (3.317)

Transactionst−1 -0.213** 0.700*** 0.162** 0.162** 0.609*** 0.450 0.445*** 0.374***
(0.0836) (0.174) (0.0691) (0.0691) (0.0909) (0.313) (0.108) (0.0713)

Volumet−1 1.204*** 0.620*** 1.070*** 1.051*** 0.847*** 0.954*** 0.526*** 1.338***
(0.160) (0.162) (0.132) (0.140) (0.171) (0.160) (0.0816) (0.186)

EPUt−1 0.464** 0.489* 0.563* 0.767*** 0.0138 1.003*** 0.828*** 0.866***
(0.208) (0.291) (0.292) (0.234) (0.362) (0.248) (0.289) (0.229)

VIXt−1 -2.117*** -2.370*** -2.659** -3.296*** -1.936*** -4.864*** -1.572* -4.001**
(0.754) (0.827) (1.132) (1.160) (0.650) (1.129) (0.830) (1.711)

TEDt−1 -0.199 -1.020*** -0.579*** -0.353** 0.113 -1.064*** -1.098*** -0.912***
(0.193) (0.304) (0.200) (0.160) (0.427) (0.290) (0.311) (0.216)

Observations 1258 1258 1256 1019 998 939 625 707
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Table A0.2: Linear Regression Results - Univariate Time Series Regressions

The dependent variable is the PSY-statistic. Independent variables are described in the data section.
The sample includes all bubble dates for the respective cryptocurrency i (see table 3.1 for individual time
spans). ∗, ∗∗ and ∗∗∗ represents significance at the 10%, 5% and 1% level, respectively. All the reported
estimates are coefficients with corresponding Newey-West standard errors.

Dependent variable: PSYr†(r0)i,t

BTC ETH XRP LTC XMR DASH XEM DOGE

Googlet−1 1.069*** 1.071*** 0.775*** 0.899*** 0.588** 0.453*** 0.205*** 0.936***
(0.267) (0.174) (0.295) (0.233) (0.229) (0.150) (0.0474) (0.340)

Volatilityt−1 28.87*** 19.23*** 19.28*** 25.11*** 10.42*** 13.93*** 15.28*** 20.53***
(3.346) (2.783) (2.700) (2.939) (2.372) (4.020) (2.382) (2.843)

Transactionst−1 -0.250*** 0.404*** -0.0344 0.491*** 0.467*** 0.458*** 0.281*** 0.392***
(0.0458) (0.0463) (0.0459) (0.0322) (0.0359) (0.111) (0.0631) (0.0558)

Volumet−1 0.734*** 0.478*** 0.539*** 0.629*** 0.373*** 0.561*** 0.561*** 0.619***
(0.0708) (0.107) (0.0451) (0.0391) (0.0663) (0.0827) (0.0827) (0.0629)

EPUt−1 0.836*** -0.0322 0.267 0.292 0.725*** 1.030*** 0.184 0.389*
(0.154) (0.235) (0.206) (0.211) (0.191) (0.223) (0.188) (0.219)

VIXt−1 -1.176*** -0.988*** -1.043*** -0.995*** -1.539*** -1.985*** -1.250*** -0.779**
(0.267) (0.261) (0.275) (0.294) (0.215) (0.261) (0.263) (0.305)

TEDt−1 0.263* -1.246*** -0.559*** -0.639*** 0.674*** 0.281 -0.913*** -1.079***
(0.147) (0.221) (0.177) (0.179) (0.213) (0.242) (0.223) (0.213)

Observations 1258 1258 1256 1019 998 939 625 707
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