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Abstract 

Optimization has always been a challenging scope in any field of science, and reservoir 

management is no exception. By the advent of computational power, the use of mathematical 

algorithms in conjunction with reservoir simulators has prospered drastically. These mathematical 

optimization algorithms are divided into two main categories, namely gradient-based algorithms 

and gradient-free algorithms. 

The optimization in petroleum industry is mostly focused on maximization of the Net Present 

Value (NPV) of the project. Utilization of gradient-based optimization techniques for this aim, 

even though being popular, has some limitations including risk of convergence to local optima and 

difficulties in optimizing discrete and categorical variables such as well path and well locations. 

On the other hand, gradient-free optimization techniques, which mostly rely on probabilistic and 

stochastic principles, have their own limitations. 

This study shows that hybridization of the gradient-free and gradient-based optimization 

techniques has a good potential to result in a robust reservoir optimization scheme which 

outperforms both gradient-free and gradient-based optimizers separately. In doing so, a serial 

optimization algorithm is devised by hybridization of genetic algorithm, simulated annealing, and 

stochastic gradient descent method. Employing this algorithm in several optimization problems in 

a two-dimensional oil field, has proved that this algorithm outperforms its previous forerunners in 

optimization of the number of wells in the field, their location, and drilling schedule.  

Findings of this study can be used to raise a foundation for generation of new optimization 

techniques which can boost the standards in both the complexity of problems solved in petroleum 

industry and their computational efficiency.  
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1 Introduction 

Defining it in a general way, optimization is the process of finding a minimum or maximum of an 

objective function in a search space while satisfying a set of constraints. In petroleum reservoir 

management, normally the objective function is the Net Present Value of the field over a certain 

period of time, which is a measure of how satisfactory the project is, in economic standards. The 

search space is made of the parameters forming the field development plan and production 

schedule including the number of wells, ICVs, timing of drilling, order of wells to be drilled, 

injection or production switches as well as several IOR methods and many other parameters which 

form a hyper-complex search space. The constraints such as the limitations on production, 

environmental issues, well head and piping facilities as well as reservoir restrictions, etc. normally 

confine the search space and consequently complexify the problem to a higher degree. The 

problem that is finally in front, is almost impossible to solve. Nonetheless, in order to be able to 

solve the problem, some simplifications on the search space are required. 

In the first step, according to the conventions of industry, some of the parameters are set to be 

fixed or limited. Setting the well path to be fixed or deciding on the IOR method to be planned 

prior to the optimization are examples of this simplification. These simplifications should also 

happen over the variables that are changing with time and need to be optimized. ICV openings, for 

instance, can change at any point in time; however, since by doing so optimization of the problem 

becomes impossible, the ICV openings are set to be constant at certain periods of time and their 

modification is limited to discrete time intervals, every 3 months for example. These are all added 

to the initial simplification of geological reality to an ensemble of geological models. The 

hypothesis that the reality and its uncertainty can be modelled with an ensemble of static models 

and a dynamic model, whose accuracy in prediction of reservoir behavior is still unknown, are 

other influential simplifications. After all these steps, an optimization problem is formed which is, 

finally, computationally feasible to solve. 

Regardless of the traditional methods of optimization and the novel machine learning techniques, 

the process of finding the optimized solution in the simplified search space is classically performed 

using some mathematical optimization methods which are generally divided into two categories: 

gradient-based optimization techniques and gradient-free optimization techniques [1]. As it can be 
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inferred from their name, their difference comes from relying of one category of techniques on 

calculation of the gradient of the objective function over the search space. Despite being very 

successful and widely used in industry, gradient-based optimization techniques have problems in 

handling discrete or categorical parameters. In petroleum engineering, the number of wells to be 

drilled and their location are examples of these parameters. On the other hand, gradient-free 

optimization techniques are designed to overcome this kind of problems, yet they also have their 

own limitations.  

The main objective of this study is to set up an initiative on hybridization of gradient-based and 

gradient-free optimization techniques to come up with a more robust optimization scheme which 

can optimize the number of wells and their location and time of drilling based on the preferred 

objective function. In doing so, the performance of several gradient-based and gradient-free 

algorithms on optimization of reservoir and similar problems were studied, and three optimization 

algorithms were finalized for hybridization. These three algorithms are Genetic Algorithm (GA), 

Simulated Annealing (SA), and Stochastic Gradient Descent (SGD). In order to make a discrete 

form of the problem, which is closer to the reality, it was assumed that the well locations are in the 

center of the grid cells and their drilling time is in a certain year of the project, which reduces the 

problem into a discrete problem of finding the proper number of wells and the grid in which they 

are drilled and their year of drilling. Assuming the wells to be controlled by the bottom hole 

pressure (BHP) for the whole production time and the wells to be vertical, which is the basic form 

of any optimization problem, and the field to be consisted of 800 (40 by 20) grid cells, initially a 

sensitivity analysis was performed on the parameters of the above-mentioned algorithms to tune 

them for the case study, and following that, all the algorithms as well as their hybridization in 

several ways were tried on the field and the quality of their optimization was assessed 

quantitatively. 

As the previous studies suggest, one of the best hybrid optimization schemes that has proved to 

work well in similar problems, is the serial use of optimization algorithms that can result in a better 

optimization scheme, when comparing to the original algorithms [1-5]. Accordingly, the above-

mentioned algorithms were firstly, adjusted for optimization of some similar problems on the 

proposed petroleum field, and then merged serially with each other. Consequently, several case 



3 

 

studies were performed using the algorithms. And six of these problems are presented in this thesis 

in order to compare the quality of optimization algorithms. 

Finally, a brief elaboration of potential extensions of this work and the application its ideas in 

industry were addressed.  
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2 Theory 

By the developments in technology the computational power has increased drastically. As 

optimization entails several simulations as part of it, this development in technology has helped a 

lot in advancements in optimization realm. As early methods were only capable of solving linear 

programming problems and heuristics, the more novel methods can solve much more complex 

problems with nonlinearity involved. The use and improvement of many new techniques such as 

discrete and continuous optimization, stochastic programming, metaheuristics, and genetic 

algorithms have made us capable of uncertainty handling and solution of much more complex 

problems [1]. 

The approach towards optimization in petroleum industry and literature can be categorized into 

three mainstreams including, sensitivity analysis and use of simulation tools, learning and machine 

learning based on the intuition and data form the past, and the generic term used in mathematics 

for optimization which entails mathematical and programming algorithms for optimization [6, 7]. 

Even though the first two categories of optimization were assumed to be outdated. In recent years 

thanks to upcoming of big data analysis and machine learning techniques as clustering, regression 

methods and neural networks, the second category, which relies on data-driven decisions, is 

emerging again. This emergence has proven to be successful both in optimization and substitution 

of simulators and models with proxies [8-12]. 

This study mainly focuses on the last category of the optimization, in which several optimization 

schemes are investigated, and some new hybridized methods are generated to attack the problems 

in petroleum industry. The optimization schemes in mathematics are divided into two main 

categories, gradient free and gradient-based Optimizations. Each of the categories have been 

widely used in the petroleum industry. A brief representation of the main subcategories and their 

employment in the petroleum industry will be covered in this chapter. 

2.1 Gradient-free optimization techniques: 

There are several gradient-free optimization techniques which have been used in petroleum 

reservoir management. We will cover them in brief here. 
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2.1.1 Nelder-Mead Simplex method: 

This method uses a heuristic approach to search for the optimum solution. It can also be referred 

as nonlinear simplex in the literature.  

A simplex in an n-dimensional space is formed using n+1 points whose any 4 points are not in a 

same plane. The n-dimensional space itself is formed using our control variables which are meant 

to be optimized. The n+1 points forming the simplex are a set of potential solutions that are used 

as initial guess and are optimized in every step so as to finally converge in our optimum solution.  

At any step of the optimization process either the simplex shrinks into a smaller size or it is 

reflected, expanded or contracted so that the mean of the simplex vertices decreases. This means 

that in any step we are moving forward towards the optimized solution; assuming that there are no 

very local good solutions to our problem which is a logical assumption. In petroleum reservoir 

management the models that we run for optimization are more of smooth functions with only some 

exceptions in highly heterogeneous fields or fractured reservoirs. Additionally, very local good 

solutions normally have a higher risk of failure which are not of our interest. 

 

Figure 2. 1 Evolution of Nelder-Mead method in a sample problem 
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In general even though this method does not require calculation of derivative which benefits us in 

computational cost, it does not show good convergence speed in high number of dimensions, 

especially in problems with more than 10 design variables. This method has been used in reservoir 

production optimization in the literature. In a study by Rahmawati et al. two scenarios were 

considered for optimization of the NPV in a WAG project[13]. In the first scenario the optimization 

variables were listed as sales gas fraction, DPC temperature, gas-condensate reinjection fraction, 

and lean gas-condensate re-injection fraction. In the second scenario, the decision variables were 

comprised of sales gas fraction, DPC temperature, gas injection rate and water injection rate for 

WAG scenario and WAG period. This research showed that using nonlinear simplex method for 

optimizing the NPV could result in 12 to 25 percent of growth in the NPV compared to initial 

engineering guess. 

In another study for a case study of optimization of a reservoir in Brugge the Simplex reflection 

Nelder-mead method of optimization was compared with four other optimization schemes 

including Pattern Search Hook-Jeeves method, Generalized Pattern Search method, Line search 

derivative free method, and sequential quadratic programming method[14]. The control variables 

were the water cuts of the production wells under which the wells were shut. According to the 

study, the line-search derivative-free method was the most efficient among them and the Nelder-

mead was the slowest in convergence.  The reason behind this can be the big number of control 

variables (54 wells) which has resulted in the slowness of Nelder-Mead method. 

The same group in another research conducted on optimization of reservoir NPV using NPV as its 

objective function, proved that taking a set of water cuts as their optimization variables, a good 

initial guess can be made to start gradient-based optimization[15]. This study also proved that 

using a big number of search variables, will result in slow convergence of Nelder-Mead method 

among other methods for optimization. 

In some older studies the simplex method is used to optimize daily oil rate without the use of 

simulators and by linearizing the optimization problem. These have resulted in sub-optimal 

solutions [16, 17]. 
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2.1.2 Genetic Algorithm 

A widely recognized method of optimization which is essentially inspired by the process of natural 

selection is the genetic algorithm. This method was initially devised and used by John Holland to 

understand the evolution of life by computational simulation[18]. This method is based on three 

main principles. 

• Survival of the fittest species 

• Reproduction of the species and transferring their traits to the next generation 

• Mutation and randomized modification of the species characteristics 

A short introduction of this useful algorithm in petroleum engineering will be provided in this 

section. 

The algorithm starts with generating a population of possible solutions to the problem. In any 

optimization technique we are aiming at minimizing an objective function considering some 

constraints to the problem. Accordingly, based on the objective function and some other side-

functions a term called “fitness” is defined. Any of the population members has its own value of 

objective function, and consequently fitness. This fitness is the essence of GA inspired by the 

natural selection. A member with a higher fitness is a better fit to the environment, hence has a 

higher chance of reproduction which means it is more probable that we have that member or some 

of its traits in the next generation. The good traits or the good members are transferred from one 

generation to the next and hereby it is assumed that by convergence of the objective function and 

fitness to its highest value in this probabilistic approach the optimum solution to the problem is 

found. 

The process of reproduction and other concepts as mutation and generation which are adopted 

from natural phenomena, necessitate us to define their essence as well—the genome. 

Any member of the population is a set of control variables which can lead us to an objective 

function; these control variables are called phenotype, since they are defined in the real 

environment of optimization. In order to make possibility for definition of the aforementioned 

concepts of optimization as reproduction, we have to define and encode the characteristics of any 

solution into a genome, which is called genotype. Consider this example: 
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Plan A, has drilling well W1A in location L1A and time T1A after that drilling well W2A in location 

L2A and time T2A. Plan B has drilling well W1B in location L1B and time T1B followed with drilling 

well W2B in location L2B and time T2B. There are several methods of encoding including binary 

encryption, decimal encryption, table encryption etc. These two plans can be encoded simply using 

decimal encryption in the following way: a string of 16 digits with 1st four digits showing the 

location of the 1st well the 2nd four digits the timing of the 1st well, the 3rd four digits the location 

of the 2nd well and the 4th four digits time of time of the drilling of the 2nd well. 

Plan A:  

Plan B: 

If these two plans go into a reproduction process, using crossover we can come up with a pair of 

children for them. The crossover is switching between the parents at certain locations. For 

example, if the crossover is to happen after the location of the first well the children will be: 

Plan C1:  

Plan C2: 

The crossover is normally performed in a probabilistic way and its rate is adjusted in such a way 

that the average number of crossovers in a pairing would be about 1 which is mimicked from the 

natural phenomena [19]. Also, the crossovers which break the structure and make the plan 

meaningless are also avoided, that is why normally the crossover is performed at the end of each 

gene section, but this is not a rule and in binary encryption it is not enforced. There are also some 

continuous schemes for crossover. Consider a crossover between well locations for example. In 

the scheme that was introduced previously, the child either had the traits from one parent or the 

traits from the other, therefore the trait that is inherited is only close to one of the parents. However, 

if the variable search space is a continuous one, the location of the well can be anything between 

the location of its parents or even anywhere in the search space. The probability density function 

of the location of the wells in one dimensional space with peaks in the location of the wells of the 

parents in figure 2.2 is an example of continuous crossover [19].  

L1A T1A L2A T2A 

L1B T1B L2B T2B 

L1A T1B L2B T2B 

L1B T1A L2A T2A 
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Figure 2. 2 Probability distribution function example for the children in GA 

Another technique which is used to mimic natural phenomena in this method of optimization is 

mutation. As in natural processes this mutation can by chance act positive or negative for our 

objective function. As for the previous example, the mutation can be introduced in the following 

way: 

Plan: 

Mutated: 

The drilling time of the first well is randomly changed to another time in the search space. The 

fitness of the mutated plan will decide probabilistically that it will go through reproduction again 

or not. 

There are some other techniques that can help the optimization to progress better. Elitism, for 

instance, makes it possible that some of the best results of the generation survive to the next with 

a probability of unity; hence our best results so far will be saved. Niching divides the population 

into some subpopulations so that each of the subpopulations will occupy a certain proportion of 

fitness landscape. Diversifying is another technique in genetic algorithms which targets 

exploration of the search space. It introduces another term in the objective function, distance to 

other members of the population for example by growth in which the exploration of the search 

space will improve, and consequently the results of optimization will become more reliable[19]. 

L1 T1 L2 T2 

L1 T*1 L2 T2 
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One of the difficulties when using genetic algorithm is handling nonlinear constraints. When there 

is a discontinuity in some area of the search space, the children of any reproduction are not 

necessarily valid scenarios for the optimization process. Suppose one of the constraints tells us 

that the distance between any two wells has to be at least a certain amount. In the initial population 

satisfying the criterion is not difficult since human can be involved, but from that point on human 

intrusion in every step will be both time-consuming and bothersome; hence it has to be resolved 

in another way. In a study conducted by Emerick et al this problem was resolved using an algorithm 

called Genocop III[20]. This technique updates any invalid population member several times with 

the existing valid members so that it finally becomes a feasible production scenario. An article 

using this technique targeted simultaneous optimization of the number of wells as well as their 

location and trajectory [20]. The results showed that even though the totally random selection of 

the initial population had a better result than those of base case engineering guess, they were 

inferior to those conducted by an initial engineering guess. 

An application of the genetic algorithms in reservoir optimization is planning and optimization of 

the unconventional wells. Defining and optimizing such kind of well is arduous in other methods 

of optimization since these wells are completely dependent on geological characteristics of the 

area at which the well is to be drilled. Using the GA though, a fixed chromosome of well 

characteristics can be defined and by change in the drilling environment the genome will evolve 

to comply with the geological traits of the reservoir. A study by Yeten et al used this method in 

conjunction with artificial neural network as proxy for reservoir simulation and a final state hill 

climbing optimizer to optimize the choice of well type and well plan of unconventional wells. This 

method was more successful than randomly chosen wells[21]. 

In another research on well placement for water flooding in the gulf of Mexico, polytope algorithm, 

artificial neural network, and kriging were introduced to GA algorithm to add some hill-climbing 

theme to its stochastic approach of optimization. This method showed to be computationally 

efficient by reducing the computational cost and also avoiding the local minima[22]. This 

technique has also been used to optimize the pipeline network in use, separator pressure, gas 

injection rate, well connection systems [23-25]. 

As of particular interest, the optimization problem of well-placement under uncertainty in addition 

to involving risk taking capability into objective function is also investigated in some studies [22, 
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26]. This has been done by designing an objective function which is weighted average based on 

the compromise in maximization of the objective function and minimization of its variance. 

However, in another study, a comparison between GA and PSO has been performed and the 

superiority of PSO over GA in the optimization of well types including vertical, deviated, dual 

lateral, etc. over single and multiple reservoir realizations has been shown [27].  

2.1.3 Particle Swarm Optimization: 

Another gradient-free optimization technique that is inspired from nature is the particle swarm 

optimization. This algorithm essentially mimics flocking of the birds. It starts form a random 

colony of possible answers to the problem and using the fitness function and previous responses 

to the problem it tries to improve it. The basic idea behind the PSO is as follows. 

Initially a population of possible answers are generated. Each of the members is assumed to be a 

particle moving in the search space, which is assumed to be a n-dimensional space formed by the 

decision variables with some constraints. Any of these particles at each time-step has its own 

position, velocity, and direction of movement. Two terms are to be defined here; the best global 

position, and the best personal position of each particle. The position of the particle in the next 

time-step is a compromise between the current position, the velocity and direction of movement, 

the location of the best personal record, and the location of the best global record. The formulation 

on compromise is shown in equations 2.1 and 2.2. 

𝑣𝑖,𝑗
𝑘+1 = 𝑣𝑖,𝑗

𝑘 + 𝑐1𝑟1(𝑥𝑏𝑒𝑠𝑡𝑖,𝑗
𝑘 − 𝑥𝑖,𝑗

𝑘 ) + 𝑐2𝑟2(𝑥𝑔𝑏𝑒𝑠𝑡𝑗
𝑘 − 𝑥𝑖,𝑗

𝑘 ) (2.1) 

𝑥𝑖,𝑗
𝑘+1 = 𝑥𝑖,𝑗

𝑘 + 𝑣𝑖,𝑗
𝑘+1 (2.2) 

In the above-mentioned formula, vi,j
k is the jth component of velocity of ith particle in kth time-step. 

xi
k is the position of ith particle in kth time-step. r1 and r2 are two random numbers with uniform 

probability in (0,1). xbesti and xgbest are the best position of ith component and the best position 

of the whole group so far. c1 and c2 are factors representing the particle’s confidence in itself and 

swarm respectively. A graphical representation of the update is shown in figure 2.3 [28]. 
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Figure 2. 3 Schematic of compromise between particle velocity, its trust in itself and its trust in swarm 

The velocities of particles adaptively slow down as they converge to the solutions, and the 

solutions are obtained [29]. This method has recently become very popular in optimization of the 

problems faced in petroleum industry. 

In a study by Shirang and Durlofsky, the development plan for number, type, location, and controls 

of the new wells is optimized using robust optimization. The uncertainty is taken into account 

using multiple realizations and the objective function has been the net present value of the entire 

project [30]. In some other studies the categorical variables such as well locations, are defined as 

integer-valued parameters and are optimized simultaneously with continuous variables such as 

valve openings using the PSO [31-33]. The objective function varies from the NPV, to total oil 

production of the field, and some other multi-objective functions that were defined previously. 

2.1.4 Simulated Annealing 

Simulated annealing is a probabilistic simulation method inspired by the annealing process in 

metallurgy. In metallurgy a piece of metal is tempered and cooled down several times 

consecutively so as to finally have the metal frozen in its least energy configuration. This method 

is mimicking the mentioned physical phenomenon to compute the minimum of the objective 

function after several stochastic moves which get more and more limited by the progress of the 

algorithm. As the metal reaches to its minimum state of energy, the simulated annealing algorithm 
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is aimed to conduct the control variable to its minimum state of energy or in other words optimized 

solution of the problem [34]. 

 

Figure 2. 4 An example of SA advancement 

This method has been used in optimization of a wide range of problems in petroleum industry 

from minimum miscibility pressure prediction to fracture network modeling [5, 35]. 

2.2 Gradient-based optimization techniques: 

Gradient-based techniques of optimization are both diverse and widespread in the academic 

literature and industry. All of these methods entail 4 main steps [36]; 

1. Convergence criteria check 

2. Search direction computation 

3. Step length calculation 

4. Design variables update 

Most of the gradient-based techniques including steepest descent method, conjugate gradient 

method, nonlinear conjugate gradient method, Newton’s method, modified and quasi-Newton 

method, Davidon-Fletcher-Powell (DFP) Method, trust region method etc. entail computation of 

the derivative of the objective function, e.g. gradient, Hessian matrices. As we use commercial 

simulators in the petroleum industry for calculation of the objective function, calculation of these 



14 

 

matrices is either very costly or even impossible. Accordingly, instead of using gradient-based 

techniques for optimization of the reservoir we mostly use stochastic gradient descent techniques 

which are numerical estimations of the gradient based techniques, which are not very good 

approximates of steepest descent method; however, they prove to be practically very successful.  

In this method a stochastic direction and a step length in the search space is chosen. The algorithm 

then updates to the next search location based on these two parameters and the current location, 

satisfying the condition that the objective function is to be improved. Figure 2.5 depicts a 

comparison between gradient descent method and stochastic gradient descent method in a two-

dimensional search space [37]. 

 

Figure 2. 5 comparison of Gradient Descent and Stochastic Gradient Descent methods 

  

These techniques are widely used in the optimization section of the closed loop management  for 

several purposes basically focusing in optimization of the continuous variables of the problem [38-

42]. This technique has also been used in well-placement optimization by taking the hypothesis 

that wells are continuous variables in a constrained search space [43]. 

2.3 Hybridization of algorithms 

The attraction of simultaneous benefit from pros of both categories of optimization methods in 

addition to minimizing their weakness in practice has encouraged many scientists to devise some 

hybridized techniques by which the problems are handled more efficiently. The  joint use of 
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gravitational search and Nelder-Mead algorithm has been used to improve thin-wall structures in 

auto-motive industry [44]. Hybridization of joint genetic algorithm and particle swarm 

optimization has been used for training neural network-based artificial intelligence (AI) in 

oceanography and rainfall forecast [45]. Particle swarm optimization has been used in conjunction 

with simulated annealing to improve the prediction of minimum miscibility prediction of 

petroleum fluids and a combination of genetic algorithm and simulated annealing is used stochastic 

reservoir modeling improvement [5, 46]. Also, hybrid algorithms made from combination of 

genetic algorithm and simulated annealing are used for optimization of multiple water reservoirs 

in the field of hydrology [47, 48]. The probabilistic genetic algorithm has also been used in a 

hybridized format with the deterministic gradient-based approach to optimize the total number and 

placement of wind turbines in a wind farm which is a close problem to the problem of our interest 

[4]. 

Siavashi et al., in their study, have compared utilization of genetic algorithm and particle swarm 

optimization and a hybrid of the two on water flooding optimization in which the hybrid 

optimization has showed excellence over the pure GA and pure PSO [2]. The genetic algorithm  

and finite difference gradient methods have also been used in conjunction with artificial neural 

networks and kriging to optimize the number, location and type of the wells in a petroleum 

reservoir [3, 49]. The genetic algorithm has also been hybridized with polytope search in order to 

optimize the injection strategy in a reservoir so as to optimize the oil production [50].   
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3 Methodology: 

In order to implement the optimization process in test cases, we need both the optimization 

algorithms compiled in a computer platform and the case designed for this purpose. As for this to 

happen, we should start the test with simple cases. As usual for the initiation of any research on 

optimization, our basic simple case is a 2-dimensional reservoir. The structural view and a sample 

of permeability ensemble of this reservoir is represented in figure 3.1. The problem that is going 

to be solved is summarized in table 3.1, and a more comprehensive elaboration on the reservoir 

model characteristics can be found in appendix A. 

Property  

Reservoir Type 2-phase, black oil 

Dimensions: 20 x 40 x 1 

Grid Size: 100m x 100m x 20m 

Top Depth: 2700 m 

Initial Pressure: 2000 psi 

Porosity: 0.2 

Initial water saturation 0.25 

Fault 1: Between rows 13 and 14, Transmissibility: 0.2 

Fault 2: Between rows 27 and 28, Transmissibility: 0.05 

Fetkovich Aquifer properties: PI:5, Volume: 1.0E9, Eastern side of the field 

Wells: BHP controlled; set be 500 psi 

Table 3. 1 The structural properties of the simulation case 
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Figure 3. 1 3D representation of the field structure 

3.1 Ensemble methods and Robust Optimization 

One of the most difficult tasks in petroleum engineering is uncertainty quantification. One the most 

popular methods to tackle this problem is using ensembles of models instead of a single 

deterministic model. In this research, as usual in the literature and industry, we put our uncertainty 

on the static models; the dynamic model which is our simulator is supposed to work accurate for 

now.  The uncertain parameter in this case is assumed to be the permeability field; accordingly, an 

ensemble of realizations is acquired to account for this uncertainty. A sample of these permeability 

fields can be found in figure 3.2. All of these permeability fields are assumed equiprobable. This 

entails that when calculating the objective function of the optimization process the arithmetic mean 

of the NPVs of the ensemble is calculated and reported as the final result for the objective function 

of each case. This will be referred to as Robust Optimization (RO). 

One of the properties of the objective function formed out of an ensemble of realizations is that it 

is smoother than any of them. This is a direct consequence of normalization. Any of the NPV 

functions of each member of ensemble forms a potential surface in the multi-dimensional search 

space of the optimization problem. Adding up and normalization of two or several of these 

potential surfaces will result in alleviation of local exclusive features and more emphasis on the 
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common features of all ensemble members. This results in a smoother potential surface of the 

objective function. Accordingly, finding the optimized solution in an ensemble-based method 

becomes easier relative to single reality method, simply because the chance of getting stuck in the 

local minima decreases. 

In order to prove the quality of our algorithm we try optimization of both single reality and 

ensemble-based reality models and provide the results. 

The field that we are planning to optimize, has two pre-drilled wells in the first year of field 

development plan. There is also a constraint in the number of wells that can be drilled in each year. 

In this case, it is supposed that we can drill only one well per year. There exists an aquifer in the 

eastern side of the field so that it supports the pressure drop of field due to production. Problem is 

defined by the number of the wells to be drilled in this field, their location, as well as the time of 

drilling the wells limited by the afore-mentioned constraint. All of the wells are producing at 

constant pressure. Since the time they are drilled, they start to produce at constant pressure. We 

are aiming at maximizing the NPV function for the whole project. Drilling any well has its own 

constant cost which is initially set to be 5 million dollars for drilling and completion of the well. 

The objective function for this problem is the Net Present Value of the project. It is calculated 

based on the formula 3.1 [51]: 

𝑁𝑃𝑉(𝑖, 𝑁) = ∑
𝑅𝑡

(1 + 𝑖)𝑡

𝑁

𝑡=0

 (3.1) 

In this formula, t denotes time of the cash flow, i is the discount rate, and Rt is the cash flow rate. 

As for this problem, the parameters for the cash flow rate are oil price per barrel, water treatment 

cost per barrel, water injection cost per barrel, and well drilling cost per well. 
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Figure 3. 2 Permeability fields of a sample ensemble of realizations 
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3.2 Optimization program structure: 

The optimization program consists of two basic parts designing a test case and running the 

simulation on that. The simulations are run using commercial Schlumberger Eclipse E100. 

Designing the test cases on the other hand is done using a MATLAB program which is written to 

construct test cases based on the employed optimization technique. These optimization techniques 

are including genetic algorithm with several schemes, local search and metaheuristics, simulated 

annealing, and stochastic gradient descent. 

The structure of the algorithm design code is depicted in figure 3.4. More comprehensive 

depictions of particular algorithms will follow in next sub-chapters. 

 

Figure 3. 3 Basic structure of the optimization algorithm 

In the initialization process, eclipse files, proper population of initial engineering guess for 

beginning of the optimization process, optimization parameters setup, and several other parameters 

are decided and set.  

Then the output of this section is fed to the optimization algorithm. There the algorithm modifies 

the include eclipse file which is the well plan of the field and using that the Eclipse DATA file is 

ready to be run in the Eclipse simulator. 
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The DATA file is finally run in Eclipse simulator and the results of the run are fed back to the 

optimizer so as to calculate the objective function and decide on the next run of the algorithm or 

convergence criteria. 

3.2.1 Genetic Algorithm: 

In this algorithm initially a population of initial guess which can be both random and meaningful 

is generated. The structure of the genome is designed in a completely discrete manner. For any of 

the possible scenarios we would either drill a well or not, the location of the well can be a 

completely discrete encoded number which denotes the number of the grid cell at whose center the 

well is drilled. In this case we have used a column following row order for the grid numbering. 

The drilling schedule will simply be the order of the wells in the genome. Consider the following 

structure for example: 

389 1 47 1 221 0 180 1 98 0 

 

In the above-mentioned 5-year drilling schedule, any of the integer codes in odd cells denotes 

location of the grid cell at which the well is drilled and the binary codes at the even cells shows 

whether that well is drilled or not. The size of the genome simply represents the possible drilling 

period at the end of which the Net Present Value will be calculated. 

After designing the genome, we should also design a proper evolutionary algorithm for the 

designed genome. In practice a genetic algorithm consists of two main parts, both of which are 

inspired by the nature: crossover and mutation. 

Crossover, as mentioned in the previous chapter, consists of choosing two members of the 

population as parents and getting their genomes for the breeding process. In this process a location 

in the genome is chosen and the first part of the genomes are retained while the second part is 

exchanged. As for this research, the location of the genome cut is chosen after the binary code, as 

other than that it would be meaningless; however, it may add to the exploration capability of the 

code. The rate of crossover which means what is the probability of crossover happening while the 

genome is traversed is set to be proportional to inverse of genome size which is a rule of thumb 

and sensitivity analysis would be carried out on it. 
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The mutation on the other hand is responsible for adding to the exploration capability of the code 

by a completely random change in the genome the rate at which this genome change happens also 

is a factor to be investigated. 

Elitism is another technique in GA which is also considered in this research. Based on elitism some 

members of the code with the highest fitness or objective function always survive to the next 

generation regardless of the probability function and probabilistic approach of the algorithm. The 

ratio of the Elites that are chosen from one generation to the next is also a number to be changed 

and decided. With the increase in this ratio the exploitation capacity of the code will be boosted, 

but there will be a chance that the algorithm gets stuck in local optima. The optimum ratio for that 

should be decided based on the problem characteristics and via sensitivity analysis.  

The fitness function and its calculations are among the core segments of the genetic algorithm. 

Initially the objective function itself was assumed to be the fitness function which literally means 

that the chance of any species to survive is proportional to its objective function. However, there 

is a problem with this approach. If the objective function potential hyper-surface is flat, the fitness 

function for both the worst and best solutions of the problem will be the same. This implies that in 

any upcoming generation of schemes the probability of survival of the best solution and the worst 

solution will be very close to each other. This will result in very low convergence speed. In an 

attempt to attack this issue, we modified the fitness function to be not the objective function itself 

but an increasing function of it. Two different functions were proposed in this study and the 

sensitivity analysis of them are also carried out. 

The first function that is introduced keeps the linearity of the fitness function. In fact, it is a linear 

transform of this function to a space where the chance of the best solution to survive is K times 

the chance of the worst solution. Being an increasing function the order of the solutions is also 

maintained, which means that if scheme A has a higher objective function than scheme B, it will 

have a higher chance of survival in the new fitness function probability space as well. The 

formulation of this function is presented as equation 3.2. 

𝑓𝑛 = 𝑓𝑜 −
𝐾 ∗ 𝑀𝑖𝑛(𝑓𝑜) − 𝑀𝑎𝑥(𝑓0)

𝐾 − 1
 (3.2) 

 

𝑓𝑛 = 𝑛𝑒𝑤 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 
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𝑓𝑜 = 𝑜𝑙𝑑 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

𝐾 = 𝑡ℎ𝑒 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑡ℎ𝑒 𝑐ℎ𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑡𝑜 𝑡ℎ𝑎𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑜𝑟𝑠𝑡 

𝑀𝑖𝑛 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑖𝑡𝑜𝑛 𝑎𝑚𝑜𝑛𝑔 𝑡ℎ𝑒 𝑚𝑜𝑠𝑡 𝑟𝑒𝑐𝑒𝑛𝑡 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

𝑀𝑎𝑥 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑖𝑡𝑜𝑛 𝑎𝑚𝑜𝑛𝑔 𝑡ℎ𝑒 𝑚𝑜𝑠𝑡 𝑟𝑒𝑐𝑒𝑛𝑡 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

A final normalization of the function is required for the sum of probabilities to be equal to one. A 

representation of the comparative probability functions is presented in figure 3.4. 

Another scheme that is also examined in this study uses exponential transform function to build 

the new fitness function. In this scheme the transform function gives a respectively higher chance 

to the solutions with higher objective function than those with lower. In other words, the 

probability density function is denser around the best solutions. This will result in more 

exploitation in the algorithm which has both its own positive and negative points which has to be 

balanced. A mathematical formulation of the function is represented in equation 3.3. 

𝑓𝑛 = exp (
ln(𝐾) ∗ (𝑓𝑜 − 𝑀𝑖𝑛(𝑓𝑜))

𝑀𝑎𝑥(𝑓𝑜) − 𝑀𝑖𝑛(𝑓𝑜)
) (3.3) 

𝑓𝑛 = 𝑛𝑒𝑤 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

𝑓𝑜 = 𝑜𝑙𝑑 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

𝐾 = 𝑡ℎ𝑒 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑡ℎ𝑒 𝑐ℎ𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑡𝑜 𝑡ℎ𝑎𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑜𝑟𝑠𝑡 

𝑀𝑖𝑛 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑖𝑡𝑜𝑛 𝑎𝑚𝑜𝑛𝑔 𝑡ℎ𝑒 𝑚𝑜𝑠𝑡 𝑟𝑒𝑐𝑒𝑛𝑡 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

𝑀𝑎𝑥 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑖𝑡𝑜𝑛 𝑎𝑚𝑜𝑛𝑔 𝑡ℎ𝑒 𝑚𝑜𝑠𝑡 𝑟𝑒𝑐𝑒𝑛𝑡 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 
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(c) 

 

(d) 

Figure 3. 4 Different formats of GA fitness function 

As it can be seen in figure 3.4, the fitness function initially was proportional to the mean NPV of 

the ensemble for any of the drilling schedules (b). This will imply that in the example above (a), 

when we have cases with completely random location of the wells which generate NPV values of 

about 550 million dollars due to good quality of the reservoir, and some much better optimized 

schemes that produce about 700 million dollars of NPV, the probability of survival of the former 

would be 0.15 and that of the latter would be 0.18, which does not give a much higher privilege to 

the optimized solutions. Using this fitness function without any modification will result in very 

slow convergence speed. 

On the other hand, we have proposed two different schemes, one linear (c) and one exponential 

(d), that will set the exploitation/exploration ratio to our preferred adaptive rate. 

Another constraint that we have forced in the problem is the distance between the production wells. 

As for the production to be closer to optimal point, the distance of the wells is adjusted so that the 

drainage area of two production wells does not collide. Even though it is not a mathematically 

provable idea to keep the wells apart; however, this idea is implemented widely in industry, so we 

add this constraint to our list of constraints. Since we are in 2-dimensional discrete space in this 

problem we will define the distance of two wells with Manhattan distance, which can be defined 

as number of cells a rook in chess moves to reach its destinations times the dimension of each cell 

movement. The constraint on the spacing between the wells is the Manhattan distance between 
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any two wells has to be more than or equal to a certain value D, which is set to be a positive 

constraint so as to help us avoid any unnecessary calculations, in this study we avoided neighboring 

cells to have wells simultaneously by implementation of this method i.e. D=2. 

The Genetic Algorithm used in this study can be defined as follows: 

1. Generate a of meaningful ensemble of realizations 

2. Generate an ensemble of initial guess or initial population of drilling scheme genotypes--

This can be both done randomly be machine or continuously by engineer 

3. Transform the genotypes to phenotypes and simulate for all the drilling schemes and their 

realizations using Schlumberger Eclipse E100 

4. Calculate the mean NPV of all the realizations for any of the drilling schemes based on the 

Eclipse files 

5. Calculate the fitness function for any of the phenotypes and make a lottery pot using this 

population and the elites list 

6. Choose N pair of parents by lottery and intersect them to come up with a population of N 

children 

7. Check if the children are fit to the self-appointed constraint otherwise substitute the unfit 

children using the lottery pot and new parents 

8. Transform the children genotypes to phenotypes and simulate for all the drilling schemes 

and their realizations using Schlumberger Eclipse E100 

9. Calculate the mean NPV of all the realizations for any of the drilling schemes based on the 

Eclipse files 

10. Compare the new generation with the previous generations and if the convergence criteria 

are not satisfied go to 6 

11. Report scheme with the highest mean NPV as the solution to the problem 

A flow chart of this algorithm can be found in figure 3.5. 
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Figure 3. 5 Flow chart of the GA used in this study 

The population size which is also a very critical parameter in the runtime of the code is to be 

decided. A prevailing number for that in the literature is the genome size [19]. As the genome size 

increases, with any unit of this increase, another dimension is added to the search space which 

makes the problem incomparably bigger but with adding one member to the population the 

computational cost will only increase linearly. 
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Another problem that is faced in robust optimization is that we should generate several realizations 

and simulate all of them. The objective function for the optimization algorithm will finally be the 

mean of the NPV or any other fitness function of the ensemble. This would imply that with increase 

in the size of the ensemble the computational cost will increase linearly. And due to the limited 

capacity of the accessed clusters this would mean that a normal robust optimization with an 

ensemble of size 10 will take 10 times more computation runtime than normal single-realization 

optimization. 

3.2.2 Live Genetic Algorithm (LGA) 

As it can be simply recognized in the problem and its size, the use of clusters for this problem 

seems inevitable. One of the problems with the traditional sequential genetic algorithms is that the 

results of any full cycle of breeding, simulation, and objective function calculation should be 

determined at the end of any cycle for the next generation to be formed. This implies that if we 

have a cluster of 100 and our population size is 60 for example, in this case 60 of the cores are 

assigned to the computational costs pertaining to each of the population members and the other 40 

will be out of use or a more complex algorithm should be implemented to use the whole 100 cores 

for different realizations in case of robust optimization. But even in this case, using traditional 

genetic algorithm, reaching 100 percent of computational power usage is impossible. In order to 

attack this problem, we design a new scheme in genetic algorithms called “Live Genetic 

Algorithm” (LGA) using which we can attain the 100 percent usage of computational cluster 

capacity. 

The LGA as the GA itself is inspired by the nature. As we do not have any discrete form of 

generations is the nature, which means that second generation of some species will not stay for the 

first generation to end their lifetime so that they can start their lifespan. Different generations and 

genome lines coexist together but have a certain life expectancy. This is exactly what we have 

mimicked to design LGA. Starting with a population of genomes, we specify a lifetime “L” for 

each of the population members. This means that any of the population members can take part in 

L lotteries to be one of the parents. After pairing if the child was fit to the environment, which is 

the set of constraints, the child goes for simulation in all of its realizations and the necessary data 

about each of them in addition to its own genome is stored in a live list. So each of the cores can 

parallelly come to this list, choose a pair of parents from the last L members of the list, generate a 
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fit child genome, run the simulations of all of the realizations based on the phenotype built on the 

child’s genome, and store the chief data at the end of the live list and update it. The algorithm and 

a schematic of the live GA can be seen below.  

The Live Genetic Algorithm outline: 

1. Generate an initial live list of drilling schemes of size L 

2. Simulate the realizations of all the members in the initial population (live list) 

3. Calculate the mean NPV for any of the population members based on the simulations 

4. Calculate the fitness function for any of the members of the list 

5. Add the last L members of the list to the lottery pot together with the elites list 

6. If any core is free choose two parents from the lottery pot based on the probabilistic 

approach generate a child member 

7. Simulate all the realizations based on the child scheme 

8. Calculate the NPV of all the realizations of the child member 

9. Calculate the mean NPV and the fitness function accordingly 

10. Add the child member and the chief data of all of its realizations to the end of the list 

11. Update the elites list 

12. If the convergence criteria are not met go to 5 

13. Report the top of elites as the optimized scheme of this algorithm 

As it can be seen in figure 3.6 in any step the child is generated by selection of parents in lottery 

among the last L members of the list and an elite list, and after simulations and calculation of its 

mean NPV it is added to the end of the list. 
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Figure 3. 6 The population list in LGA 

3.2.3 Simulated Annealing: 

This method is widely used specially in the problems with complex search spaces. This is due to 

its probabilistic approach in direction of the movement. Thanks to this probabilistic approach, the 

algorithm becomes capable of dealing with the problem of local optima. 

As for the problem of our interest, the technique should be modified for the discrete search space 

[52]. For this purpose, the same graph that will be introduced in the gradient-based search is 

constructed. The two algorithms differ in the point that in stochastic gradient descent method the 

new neighboring scheme that we try at any step is only accepted if it improves the objective 

function, which increases the risk of getting stuck in the local optima, while in simulated annealing 

the worse solution is also accepted with some probability. This probability decreases with time so 

that finally the method will be very close to stochastic gradient descent method.  
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In simulated annealing method, the probability of accepting the decrease in objective function has 

to be a function of the step at which the algorithm is. The functionality in equation 3.4 is proposed 

in this research for that purpose. 

𝑃(𝑘) = 𝑃0 exp (−𝛼 𝑘) (3.4) 

 

𝑘 = 𝑡ℎ𝑒 𝑠𝑡𝑒𝑝 (𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑜𝑛𝑒 𝑢𝑛𝑖𝑡 𝑏𝑦 𝑒𝑣𝑒𝑟𝑦 𝑓𝑢𝑙𝑙 𝑠𝑒𝑡 𝑜𝑓 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠) 

𝑃(𝑘) = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑎𝑐𝑐𝑒𝑝𝑡𝑖𝑛𝑔 𝑎 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛 𝑁𝑃𝑉 𝑖𝑛 𝑘𝑡ℎ 𝑠𝑡𝑒𝑝 

𝑃0 = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑎𝑐𝑐𝑒𝑝𝑡𝑖𝑛𝑔 𝑎 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛 𝑁𝑃𝑉 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑙𝑦 

𝛼 = 𝑡ℎ𝑒 𝑑𝑒𝑐𝑎𝑦 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 

The decay rate is to be adjusted based on how fast we want to avoid the moves towards the 

decreasing objective function. In order to quantify it we use the half-life terminology. If we want 

the probability of accepting the reduction in objective function to be halved every Kth step the 

formula 3.5 can be used to determine α. 

𝛼 =  
ln (2)

𝐾
 (3.5) 

The α in equation 3.5 should be determined in a way that the exploitation to exploration ratio be 

adjusted well for the problem. 

The following is an algorithm proposed in this research for the simulated annealing. 

1. Take one of the vertices as the initial guess 

2. Update the probability of accepting reduced objective function—P(k)  

3. Randomly choose either time or space as for search in this step (not equal chances) 

4.  Take one of the wells as for the trial in this step 

5. Randomly choose one of the directions to which the cell can move (2 directions in time 

domain and 4 directions in space domain) 

6. Simulate the neighboring scheme that is formed 

7. Calculate the objective function and compare it with the objective function in the previous 

cell 

8. Generate a random number R between 0 and 1 with uniform probability.  
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9. If the objective function has increased or R is smaller than P(k) move to the new cell 

10. If the convergence criteria are not satisfied move to step 2 

11. Report the final scheme and its NPV as the solution to the problem 

3.2.4 Gradient-based optimizer: 

As mentioned in the previous chapter, the optimizers of this category are trying reach the optimum 

solution by moving along the direction with the steepest dip. Even though there are many 

successful gradient-based techniques in the literature, most of them are not applicable in petroleum 

industry for a couple of major reasons. Firstly, the calculation of derivatives is not technically 

possible as we normally use commercial software for simulation of our study cases. Secondly, if 

want to calculate the derivative matrices in a numerical way, it will take a gigantic computational 

cost, as most of the time that optimization takes is due to simulation of the cases. Because of these 

two main reasons and some other minor ones, the industry tries to cope with the problem through 

use of stochastic gradient methods. In this subcategory, the searching move will not be in the 

direction with the steepest slope. Instead of that, the move will be in a random direction with our 

preferred sign of slope. This would be a very bad approximate of the best move direction, but in 

practice it has shown to be the most successful among the gradient-based techniques. A two-

dimensional symbolic representation of this technique is shown in the figure3.7 [37].  

 

Figure 3. 7 A comparison of GD and SGD 

When we are in the discrete search space, such as the discrete (2+1)*n dimensional search space 

that we have in this problem, where 2 stands for two spatial dimensions, 1 for time dimension, and 

n for the number of wells, we can modify the continuous search into a metaheuristic search. By 
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discrete, we mean that the well can be drilled only in the center of a grid, not at any point of interest 

which is also prevailing in industry, where the location of the wells are mainly discrete. The same 

goes for the timing of drilling.  

In order to modify the problem into a metaheuristic search, we consider any of the schemes as 

node in a graph. Two nodes in this graph are connected to each other, if one can be switched to the 

other by a “minor” change. The word minor here refers to either changing the location of a well to 

one of its neighboring cells or changing the drilling time of a well one year forth or back. 

Depending on the number of wells that are tried to be optimized, a node in this graph is connected 

to between 3 to 36 other nodes. As in stochastic gradient descent method, which tries different 

directions around a point, in this metaheuristic search, the algorithm tries to calculate the mean 

NPV for a random neighboring node and if its objective function was greater than the previous 

cell, the algorithm leads itself to the new node, if not it will stay in the same node. If a node has an 

objective function higher than all of its neighbors, it can be assumed at least as a local maximum. 

In order to prove that this search will help us to obtain our optimum solution, we should prove that 

the graph that we have built for our problem is a connected graph, which means that there is a path 

between any pair of vertices in this graph. This assumption seems axiomatic, since if we want to 

transform the first node into the second one, we can simply move the first well in the former node 

cell by cell to its location in the latter. The same can be done with the second well and the rest of 

the wells one by one. In the next step we will move the wells in the time domain and the first node 

is converted to the second node through a path which passes through some other valid nodes. This 

simply proves our basic assumption. A hidden presumption that we took was that the number of 

the wells have to be the same in two schemes which has to be taken into account. A depiction of 

the two sample neighboring plans is shown in figure 3.8 (a) and 3.8 (d). 
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Figure 3. 8 SGD progress example 

As it can be seen in figure 3.8, a well is to be drilled in the top left blue cell and another one in the 

bottom right blue one as shown in sub-figure (a), which together form the spatial location of the 

wells in drilling plan, a group of neighbors of this drilling plan are formed by moving the top left 

blue cell to one of its neighboring cells as shown in sub-figure (b), for example its neighbor to the 

bottom side, which finally forms a new drilling schedule (d) which is connected to the previous 

drilling schedule in the search graph. 

When looking at the problem in large scale all of the aforementioned vertices in the problem form 

a gigantic graph. The algorithm does not traverse all the vertices in this graph though. Many of the 

are excluded from the problem search space by imposing the self-constraint boundaries. The 

algorithm only traverses a tiny proportion of the vertices in the graph but if the search space is not 



34 

 

very complex it without several local optima it can be simply proved that the algorithm is capable 

of finding the solution for us. Figure 3.9 is a two-dimensional depiction of how a graph would look 

like. The size of a graph is defined by the number of vertices in it. The graph in figure 3.8 is of 

size 22. The gigantic graph in our study is of an incomparable size. 

 

Figure 3. 9 A simplistic graph on metaheuristic neighborhood 

The following is a representation of the metaheuristic search proposed in this research: 

1. Take one of the vertices as the initial guess 

2. Randomly choose either time or space as for search in this step (not equal chances) 

3.  Take one of the wells as for the trial in this step 

4. Randomly choose one of the directions to which the cell can move (2 directions in time 

domain and 4 directions in space domain) 

5. Simulate the neighboring scheme that is formed 

6. Calculate the objective function and compare it with the objective function in the previous 

cell 

7. If the objective function has increased move to the new cell 

8. If the convergence criteria are not satisfied move to step 2 

9. Report the final scheme and its NPV as the solution to the problem 
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3.2.5 Hybridizing the Algorithms: 

As suggested by the academic literature and some tested results, genetic algorithm shows to be 

very successful for finding the locality of the optimized solution but becomes very slow in 

convergence. On the other hand, gradient descent and simulated annealing methods are very robust 

in finding the local optima. Accordingly, the sequential usage of these algorithms seems natural. 

In doing so, based on the afore-mentioned algorithms in this chapter, a hybridized algorithm is 

devised in which, initially, an initial guess is found using the Genetic Algorithm, and after that, it 

is optimized using the Simulated Annealing and Stochastic Gradient Descent Algorithms 

respectively. Or in other words, the algorithms work sequentially to solve the optimization 

problem. The optimized solution form the genetic algorithm is fed to simulated annealing to be 

optimized, and consequently the solution of this algorithm is the initial guess for the stochastic 

gradient descent method to be optimized. The final solution would then be the optimized solution 

which is generated after all the 3 steps (GA-SA-SGD). Other schemes were also tried which are 

including the sequential implementation of genetic algorithm and simulated annealing (GA-SA), 

and sequential implementation of genetic algorithm and stochastic gradient descent method (GA-

SGD). The algorithms that are finally used for optimization are including pure GA, pure SA, pure 

SGD, hybrid GA-SA, hybrid GA-SGD, and fully Hybrid GA-SA-SGD. In all the mentioned 

algorithms a sequential implementation of the algorithms form left to right is performed. A Flow 

chart of the fully Hybridized GA-SA-SGD Algorithm which is the most complex among all is as 

depicted in figure 3.10. Since transformation of simulated annealing to stochastic gradient descent 

method entails only the change of probability of acceptance of decrease in the objective function 

to zero, they are shown in a same block in the flow chart. 
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Figure 3. 10 Hybrid algorithm flow chart  
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4 Results and discussion: 

In this chapter the results and achievements obtained in this study will be presented. For any of the 

algorithms that we have used in this study, there is an optimized version which is suitable for 

solving the problem described in the previous chapter. Any of the parameters involved in these 

algorithms are optimized using sensitivity analysis, meaning that the best performance obtained 

through running the algorithm using several values for the parameter is chosen and utilized in the 

final hybridized algorithm. 

4.1 Sensitivity analysis: 

4.1.1 Sensitivity analysis for the genetic algorithm 

There are several parameters in the genetic algorithm that can be tuned for the algorithm to work 

better, among which fitness function design parameters, crossover probability, mutation ratio, 

elitism number, and population size are of more importance. We will go through them one by one. 

4.1.1.1 Linear fitness function format 

As elaborated in the previous chapter, two formats of manipulation of the fitness function are 

presented in this research. And for each of them the maximum to minimum chance ratio is a crucial 

parameter in the algorithm. We would call this parameter “the inflation rate”. For the linear 

scheme, various values for the inflation rate are tried on a test problem. Based on that, the mean 

of NPV of population at any generation, maximum value of the NPV achieved at any generation, 

and the convergence speed of the algorithm are recorded. Figures 4.1 and 4.2 present the mean and 

maximum of NPV achieved at any generation by different values of inflation rate. 
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Figure 4. 1 Mean of NPV achieved by different inflation rates 

 

Figure 4. 2 Maximum NPV achieved by different inflation rates 

 

As it can be seen in the figures 4.1 and 4.2, the best results are obtained by the inflation rate 

between 2 and 8. The higher values for inflation rate would result in hyper-emphasis on the best 

local results which have been achieved in that certain generation which decreases the exploration 
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capability of the algorithm. As it can be seen in this figure 4.2, after 8 generations, or 160 

simulations, the improvements on the objective function slows down drastically and the mean of 

the NPV of the generations are moving towards the maximum NPV achieved which means that 

variance of the population decreases over time, and this is a sign of convergence of the genetic 

algorithm to its fittest members. 

4.1.1.2 Exponential fitness function format 

Another fitness function designed in this study is the exponential scheme of the fitness function 

transform. The chance of the fittest or best solution divided by the chance of the worst solution in 

any generation of the genetic algorithm is, similarly, called the inflation rate. As it can be seen in 

the figures 4.3 and 4.4, all the inflation rates that are examined improve the optimization 

convergence speed and show better results than the original fitness function. This can be due to 

high objective function values for all of the solutions which decreases the comparative chance of 

the best solutions relative to solutions with completely random location and drilling schedule of 

the wells. 

 

Figure 4. 3 mean of the NPV achieved by different inflation rates 
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Figure 4. 4 Maximum NPV achieved by different inflation rates 

The high values as 16 on the other hand may have higher achievements in the objective function 

but no improvements are seen in the objective function maximum for a long while and the good 

performance of this scheme may be due to good initial guess for this scheme to start up with. 

Inflation rates between 4 and 8 seem to show reasonable results in optimization. 

4.1.1.3 Crossover probability 

Another parameter that needs to be adjusted is the crossover probability. By decrease in this 

parameter the rest of population members are generated using random mutation and elitism. As it 

can be seen in figures 4.5 and 4.6 except for the crossover probabilities as small as 70 percent 

which reduce the rest of population to only a random search in the search space or copying the 

previous good solutions, the rest of crossover probabilities show the same quality in optimization. 

Hence, we can conclude that if the crossover probability is big enough, more improvements do not 

affect the optimization quality. Accordingly, we choose crossover probability of 85 percent for the 

final algorithm as it has a slight superiority over other examined options. 
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Figure 4. 5 Mean of the NPV of population for different crossover ratios 

 

Figure 4. 6 Maximum NPV achieved by different crossover ratios 
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4.1.1.4 Elitism rate 

Elitism is used in order to keep the best solutions that are achieved under more investigation. Some 

of the best results are directly copied to the next generation without going through any parenting 

process. In order to assess the effect of this technique in our algorithm, 4 different schemes are 

investigated. Between 0 and 4 members of any generation are chosen to be elites. As our population 

size is 20 in this case, the numbers will refer to 0 to 20 percent elitism respectively. 

 

Figure 4. 7 Mean NPV achieved for different elitism schemes 

Different schemes do not show drastically different results as it is presented in figure 4.7; however, 

as it is clearly seen in figure 4.8, the elitism rate of 20 percent which refers to the scheme with 4 

elite members, has a very high standard deviation in different runs. This shows that this scheme 

lacks stability; converging sometimes to good and some other times to bad solutions based on the 

initial guess and random path that it goes during the optimization. If good results are achieved the 

scheme keeps the results in the population, on the other hand if bad results are obtained in previous 

steps the scheme keeps them in the process. Hence, high values for the elitism rate should be 

avoided. We choose this rate to be less than 10 percent. 
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Figure 4. 8 Standard deviation of the maximum NPV achieved in several runs of the algorithm for different elitism 

schemes 

4.1.1.5 Mutation rate: 

Another key parameter in the genetic algorithm is the mutation rate which expands our exploration 

area to a higher degree than the crossover technique does. This parameter should be tuned in a way 

that it does not convert the algorithm to a mere random search.  

The scheme with no mutation, will be equal to only using crossover for the search. This would 

simply result in finding the optimized solution in a sub-space of our big search space and 

accordingly, low objective functions, this can clearly be seen in the figure 4.10. On the other hand, 

mutation rates as high as 20 percent reduce the algorithm capability by making it closer to a mere 

random search in the search space. Low objective function values are good evidence of this 

occurrence. Mutation rates of about 10 percent, which on average result in between one and two 

changes in each genome shows the best results which is in close to the literature norms. 
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Figure 4. 9 Mean of the NPV of the population in different mutation ratios 

 

Figure 4. 10 maximum NPV achieved in different mutation rates 
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4.1.1.6 Population size 

Population size is one of the most important parameters to be tuned in the genetic algorithm. As it 

is clear, the bigger the population size, the better coverage of the search space is achieved, which 

results in better optimization scheme and higher probability of converging to the global maxima. 

However, this implies more computational cost. In this trade off we should decide the population 

size which does not converge to sub-optimal solutions and does not dictate a big computational 

burden simultaneously. 

 

Figure 4. 11 Mean of the NPV of the population for different population sizes 
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rule of thumb for population size in the literature also leads us to a population size the same as the 

genome size, where 20 is a good choice. A counter-intuitive point that can be seen in figure 4.11 

is that the average NPV of the population in population size of 20 is higher than that of population 

size of 40. This may be due to 2 main reasons, firstly it may be due to convergence of all the 

population towards the best member of population, as it can be seen in figure 4.12 the best result 

obtained by the GA has not changed from 7th to 14th generation in population size of 20, this means 

that due to existence of elitism in the algorithm, the best solution is dragging other population 

members towards itself. This can also be seen in steep linear growth of its mean NPV in figure 

4.11. Another reason maybe the stochastic nature of the genetic algorithm. As both the initial 

population and the process that the two population sizes have gone through differ, sometimes the 

genetic population size of 20 may have better results than population size of 40. However, the 

outcome of the genetic algorithm is not the mean of the NPV of the population, it is the maximum 

NPV of the population. This maximum NPV represents the mean of the NPV of the ensemble of 

realizations in the best scheme of the population. As it can be seen in figure 4.12, the maximum 

NPV achieved by population size of 40 is greater than the maximum NPV achieved by the 

population size of 20, which is how it should normally be. 

 

Figure 4. 12 Maximum NPV achieved for different population sizes 
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4.1.2 Simulated Annealing Sensitivity Analysis 

In order to use this algorithm both individually and hybridized with other algorithms, it should be 

tuned for solving this problem. The quality of implementation of this algorithm highly relies on 

two parameters; namely, initial chance of accepting reduction in objective function and its decay 

rate. Two experiments have been conducted to see the effect of these parameters on the quality of 

the algorithm. The value of objective function obtained at the end of these algorithms are aimed to 

be maximized. 

4.1.2.1 Initial acceptance chance 

As in classical simulated annealing, the moves towards increase in the objective function are 

always accepted by the algorithm. Additionally, in order to add to the exploration capability of the 

algorithm, the reductions in the objective function are also accepted by a probability which 

decreases exponentially. The sensitivity of the final NPV to the initial chance in the first move is 

investigated and the results are provided in figure 4.13. 

 

Figure 4. 13 Maximum NPV achieved for different acceptance chance ratio 
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percent shows to be the most successful among the initial chances. Accordingly, we choose our 

optimized initial chance to be 70 percent. 

4.1.2.2 Decay rate 

The rate of reduction in the acceptance chance of decrease in the objective function is called the 

decay rate. In order to make it more sensible, we use another term called the half-life. Half-life 

simply refers to the number of steps at which the chance of acceptance of reduction in objective 

function reduces to its half. Several values have been tried and the best of them is chosen in the 

rest of experiments onward. 

 

Figure 4. 14 Maximum NPV achieved for different acceptance probability half-lives 
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4.2 Solved Problems 

After implementation, hybridization, and tuning the algorithms using sensitivity analysis, we try 

to solve some optimization problems on the field using the hybridized algorithms and compare 

them with pure individual algorithms. As mentioned in the previous chapter, in order to prove the 

quality of the algorithm we provide example problems both on ensemble and deterministic models, 

which are more difficult to optimize. 

4.2.1 Primary problem 

In this problem the aim is optimization of number, location, and drilling time of the wells in the 

single-realization field introduced in the previous chapter, in which two pre-drilled wells are 

planned. A summary of problem definition can be found in table 4.1. 

Problem Definition Pre-drilled wells location 

  

 

Single Realization  

Objective Function: NPV 

Field Optimization time: 8 years 

Well Drilling Cost 3 MM USD per well 

Oil Price 50 USD per barrel 

Water production cost 6 USD per barrel 

Discount Rate 8 percent 

Pre-drilled well 1 location: Cell 79 

Pre-drilled well 2 location: Cell 447 

Number wells to be drilled: ? 

Location of them ? 

Timing of their drilling ? 

Table 4. 1 Primary problem definition 

As it can be seen in figure 4.15, the hybrid algorithm has proved to be the most successful among 

all the listed techniques. Simulated annealing and stochastic gradient descent method show the 
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poorest performance by getting stuck in the local minima. Among the rest of algorithms, GA 

followed by stochastic gradient descent is closest in performance to the hybrid method. 

 

Figure 4. 15 Maximum NPV in different optimization algorithms for primary problem 

 

Figure 4. 16 Simulations ran in different optimization algorithms for primary problem 

As in can be seen in figure 4.16, the computational cost of the SGD and SA for this problem is the 

hugest. The reason for this to happen is that due to getting stuck in the local optima, several initial 
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guesses should be tried for this problem to be tackled; however, these algorithms do not show 

comparable results to the rest of algorithms. The pure GA is let to explore its search twice the GA 

which is implemented and fed to the other algorithms, but still it has failed to provide results as 

good as the hybrid algorithms. The GA followed SGD results in both better solution in terms of 

the final NPV and lower computational cost compared to the GA. The Fully hybrid method which 

has the highest computational cost among the GA involved algorithms, also shows the best results 

in the final NPV; the big computational cost of this algorithm, accordingly, is a sign of its good 

exploration of the search space.  

The solution that the hybrid algorithm gives is summarized in table 4.2. The two wells are proposed 

to be drilled in the western side of the field, which is in good harmony with intuition since there is 

an active aquifer in the eastern side of the field. The number of the wells is also tuned well, as one 

fewer well would have resulted in less production of oil and one more would have imposed 

additional 3 million dollars. 

Problem Solution Location of the wells 

  

 

Final NPV: 59.2 MM USD 

Number of additional wells 

to be drilled: 2 

Pre-drilled well 1 location: Cell 79 

Pre-drilled well 2 location: Cell 447 

Additional well 1 location: Cell 18 

Additional well 1 drilling 

time: Year 2 

Additional well 2 location: Cell 113 

Additional well 2 drilling 

time: Year 3 

  

Table 4. 2 Solution to primary problem 
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4.2.2 Main Problem: 

The main problem that we aimed to solve was the ensemble format of the previous problem in 

which the objective function changes to the mean of the NPV of the ensemble in any of the 

scenarios. A summary of the problem description is provided in table 4.3. 

Problem Definition Pre-drilled wells location 

  

 

Multiple Realizations Ensemble size:5 

Objective Function: Mean NPV 

Field Optimization time: 8 years 

Well Drilling Cost 3 MM USD per well 

Oil Price 45 USD per barrel 

Water production cost 6 USD per barrel 

Discount Rate 8 percent 

Pre-drilled well 1 location: Cell 79 

Pre-drilled well 2 location: Cell 447 

Number wells to be drilled: ? 

Location of them ? 

Timing of their drilling ? 

Table 4. 3 Definition of main problem 

As it can be seen in 4.17, the two non-population-based optimization schemes; namely stochastic 

gradient descent and simulated annealing, show unsuccessful results and due to their big 

computational cost and sub-optimal solutions do not seem to be good methods for optimization of 

this field unless good engineering guess are available, which we provide them with using genetic 

algorithms. The rest of algorithms show comparable results and like the previous case the hybrid 

scheme proves to be the most successful among all. 
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Figure 4. 17 Maximum NPV in different optimization algorithms for the main problem 

 

Figure 4. 18 Simulations ran in different optimization algorithms for the main problem 

As it is evident in figure 4.18, the computational cost of the algorithms is on average 5 times more 

than the computational cost in the previous problem, simply because the ensemble size is 5 times 

the previous ensemble. The GA followed by SGD provides the lowest computational cost among 

all the algorithms, and Full Hybrid method gives the best results even though being 
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computationally costly. This bigger computational cost, nonetheless, as mentioned in the previous 

problem is due to better coverage of the search space since it finally results in higher NPVs. 

Problem Solution Location of the wells 

  

 

Final NPV: 62.9 MM USD 

Number of additional wells 

to be drilled: 2 

Pre-drilled well 1 location: Cell 79 

Pre-drilled well 2 location: Cell 447 

Additional well 1 location: Cell 18 

Additional well 1 drilling 

time: Year 2 

Additional well 2 location: Cell 34 

Additional well 2 drilling 

time: Year 3 

  

Table 4. 4 Solution to the main problem 

Drilling proposal of the 2 additional wells in the western most side of the reservoir, due to existence 

of an aquifer in the eastern side of the reservoir could have been logically guessed as usual and 

can be assumed as a sign of good reservoir optimization, knowing that the initial guess has been 

totally random, and having different number of wells. The final water saturation map of the five 

ensemble members is given in figure 4.19. The saturation map in the top left corner is the initial 

oil saturation of uniform 75 percent. As it can be seen almost all of the wells face water 

breakthrough in all of the realizations, which is a good visual sign of maximum reservoir 

exploitation. Taking into account that the strategy in this problem has basically been exploitation 

of the reservoir with the help of aquifer, facing these water breakthrough almost at the end of the 

simulation time (8 years) is a sign of successful reservoir optimization. 
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Figure 4. 19 Final water saturation map of the ensemble in the main problem 
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The NPV growth of our optimized case is calculated and plotted in figure 4.20. It is compared to 

one of the sub-optimal solutions proposed by the genetic algorithm in the plot. 

 

Figure 4. 20 NPV evolution of the optimized solution and its ensemble and its comparison to a sub-optimal solution 

and its ensemble 

Except for the overall negative second differentiative of the NPV curve which is due to the 

reduction in the production of the wells by time, any other downturn or decrease in the second 

differential before sixth year is due to drilling of additional wells which imposes 3 million dollars 

per well to us. The decrease in the 2nd differential at 6th year in GA sub-optimal solution seems to 

be due to the water breakthrough in one the wells. 

4.2.3 Problem of moderate drilling cost 

In the next two problems we aim at investigating the effect of increase in the drilling cost on the 

optimization. Accordingly, we try two different well drilling prices of 5 and 10 million dollars per 

well. A small addition to the water production cost is also exerted. In this part due to big 

computational cost of sole stochastic gradient descent method and sole simulated annealing as well 

as their convergence to sub-optimal solutions, these algorithms are only used together with other 

optimization techniques and sole implementation of them is ignored. A description of the problem 

of moderate drilling cost is provided in table 4.5. 
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Problem Definition Pre-drilled wells location 

  

 

Single Realization  

Objective Function: Mean NPV 

Field Optimization time: 8 years 

Well Drilling Cost 5 MM USD per well 

Oil Price 45 USD per barrel 

Water production cost 7 USD per barrel 

Discount Rate 8 percent 

Pre-drilled well 1 location: Cell 79 

Pre-drilled well 2 location: Cell 447 

Number wells to be drilled: ? 

Location of them ? 

Timing of their drilling ? 

Table 4. 5 Definition of the problem of moderate drilling cost 

 

Figure 4. 21 Maximum NPV achieved by different optimization algorithms for the problem of moderate drilling cost 
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Figure 4. 22 Number of simulations ran in different optimization algorithms for the problem of moderate drilling 

cost 

Problem Solution Location of the wells 

  

 

Final NPV: 56.1 MM USD 

Number of additional wells 

to be drilled: 2 

Pre-drilled well 1 location: Cell 79 

Pre-drilled well 2 location: Cell 447 

Additional well 1 location: Cell 18 

Additional well 1 drilling 

time: 

Year 2 

Additional well 2 location: Cell 74 

Additional well 2 drilling 

time: 

Year 3 

Table 4. 6 Solution to the problem of moderate drilling cost 
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As we check the final population of solutions in the genetic algorithm, number of the wells vary 

between 3 and 4 in them. This shows that the well drilling cost of 5 million dollars is in the 

transition zone of changing of the optimized plan with 4 wells to 3 wells. As it can be seen in 

figures 4.21 and 4.23, the hybrid algorithm has again converged to a plan which visually seems 

rational, in which due to the existence of the aquifer the wells are forced towards the western side 

of the field and also shows the highest objective function obtained among all the tested algorithms. 

The more expensive wells and addition to the water production cost has reduced the final NPV to 

56.1 million dollars. The computational cost of the main four algorithms, as it can be seen in figure 

4.22, follows the trend of the previous problems with small changes. 

4.2.4 Problem of costly drilling 

In this problem the cost of drilling has been increased so as to investigate the sensitivity of the 

optimization algorithm to the parameters of the objective function. A summary of the problem 

definition can be found in table 4.7. 

 

Problem Definition Pre-drilled wells location 

  

 

Single Realization  

Objective Function: Mean NPV 

Field Optimization time: 8 years 

Well Drilling Cost 10 MM USD per well 

Oil Price 45 USD per barrel 

Water production cost 6 USD per barrel 

Discount Rate 8 percent 

Pre-drilled well 1 location: Cell 79 

Pre-drilled well 2 location: Cell 447 

Number wells to be drilled: ? 

Location of them ? 

Timing of their drilling ? 

Table 4. 7 Definition of the problem of costly drilling 



60 

 

 

Figure 4. 23 Maximum NPV achieved by different optimization algorithms for the problem of costly drilling 

 

Figure 4. 24 Number of simulations ran in different optimization algorithms for the problem of costly drilling 
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Problem Solution Location of the wells 

  

 

Final NPV: 50.8 MM USD 

Number of additional wells 

to be drilled: 1 

Pre-drilled well 1 location: Cell 79 

Pre-drilled well 2 location: Cell 447 

Additional well 1 location: Cell 20 

Additional well 1 drilling 

time: 

Year 3 

  

  

Table 4. 8 Solution to the problem of costly drilling 

As it can be seen in figures 4.23 and 4.24, the ranking of quality of optimization remains the same. 

Full Hybrid optimization gives the best solutions even though being computationally costlier than 

other methods, and GA followed by SGD yields to acceptable results with the least computational 

cost. 

The increase in the drilling cost of the wells has resulted in removal of one well by the algorithm 

compared to the previous problem and reducing the number of planned wells to only one. Also 

drilling of this one well is forced to the 3rd year to benefit from 8 percent discount rate; one year 

of delay in drilling is recommended by the algorithm. These two have only decreased the objective 

function for about 5 million USD decrease in NPV. This plan is absolutely better than continuing 

with the previous plan since drilling 1 more well would have costed 10 million dollars which even 

if drilled in the 3rd year would have resulted in more than 7 million dollars of present cost for us. 

This shows that the algorithm can adapt itself with costlier drilling expenses and suggest suitable 

well numbers to different problems. 
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4.2.5 Problem of different initial well locations 

The location of the pre-drilled wells is a very important parameter in the form of objective function 

potential surface. In this problem, it is assumed that the location of the initial wells which are 

drilled in the exploration phase are totally different from those of the first four problems. A visual 

representation of the location of the new pre-drilled wells and the description of new problem is 

provided in table 4.9. 

 

Problem Definition Pre-drilled wells location 

  

 

Single Realization  

Objective Function: NPV 

Field Optimization Time: 8 years 

Well Drilling Cost 5 MM USD per well 

Oil Price 45 USD per barrel 

Water production cost 6 USD per barrel 

Discount Rate 8 percent 

Pre-drilled well 1 location: Cell 400 

Pre-drilled well 2 location: Cell 600 

Number wells to be drilled: ? 

Location of them ? 

Timing of their drilling ? 

Table 4. 9 Definition of the problem of different well initial well locations 
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Figure 4. 25 Maximum NPV achieved by different optimization algorithms for the problem of different initial well 

locations 

 

Figure 4. 26 Number of simulations ran in different optimization algorithms for the problem of different initial well 

locations 

Bad location of one of the fixed wells compared to previous problem, has decreased the production 

ability of four wells. The hybrid algorithm, accordingly, suggests drilling of one additional well to 
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add up their number to 5 wells in total. The final NPV is accordingly 54.5 in total which is about 

2 million dollars less than the plan with more appropriate fixed well locations. Both the final NPV 

of the algorithms and their computational cost follows the same trends from the previous problems. 

The location of the suggested wells by the hybrid algorithm is in the zones with highest 

permeability which is a good visual quality check on the algorithm. The distance between the 

proposed wells is also close to its maximum value and again they are forced to the side of the 

reservoir by the active aquifer. All these geological and intuitive quality controls prove the quality 

of our optimization. 

Problem Solution Location of the wells 

  

 

Final NPV: 54.5 MM USD 

Number of additional wells 

to be drilled: 3 

Additional well 1 location Cell 17 

Additional well 1 drilling 

time: 

Year 2 

Additional well 2 location: Cell 113 

Additional well 2 drilling 

time: 

Year 3 

Additional well 3 location: Cell 2 

Additional well 3 drilling 

time: 

Year 4 

Table 4. 10 Solution to the problem of different initial well locations 

4.2.6 Problem of single pre-drilled well 

In this section, the previous problem is modified by reduction of one of the fixed wells. The 

description of this problem can be found in table 4.11. 
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Problem Definition Pre-drilled wells location 

  

 

Single Realization  

Objective Function: NPV 

Field Optimization time: 8 years 

Well Drilling Cost 5 MM USD per well 

Oil Price 45 USD per barrel 

Water production cost 6 USD per barrel 

Discount Rate 8 percent 

Pre-drilled well 1 location: Cell 400 

Number wells to be drilled: ? 

Location of them ? 

Timing of their drilling ? 

  

Table 4. 11 Definition of the problem of single pre-drilled well 

 

Figure 4. 27 Maximum NPV achieved by different optimization algorithms for the problem of single pre-drilled well 
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Figure 4. 28 Number of simulations ran in different optimization algorithms for the problem of single pre-drilled 

well 

As it is seen in table 4.12, this reduction in the number of fixed wells has not resulted in drastic 

change in the objective function value. This is because of bad location of the removed fixed well 

which was very close to the aquifer and is not a big help for reservoir exploitation, due to early 

water breakthrough. The final NPV is 53.6 million dollars with 4 active wells in 8 years of 

production. The distance between the wells is again close to its maximum and the wells are 

proposed to be drilled in high permeability zones. Comparative quality of the algorithms and their 

computational cost, as it can be found in figures 4.27 and 4.28 follow the pattern from the previous 

problems; the full hybrid algorithm being the most successful in optimization of the problem, and 

the hybrid GA-SGD having the least computational cost. 
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Problem Solution Location of the wells 

  

 

Final NPV: 53.6 MM USD 

Number of additional wells 

to be drilled: 3 

Additional well 1 location Cell 18 

Additional well 1 drilling 

time: 

Year 2 

Additional well 2 location: Cell 151 

Additional well 2 drilling 

time: 

Year 3 

Additional well 3 location: Cell 77 

Additional well 3 drilling 

time: 

Year 4 

Table 4. 12 Solution to the problem of single pre-drilled well 

  



68 

 

5 Conclusion and future work 

In this study the performance of several gradient-free and gradient-based optimization techniques 

as well as the hybridization of these schemes in solving petroleum industry problems were 

investigated. A set of optimization problems on the number of wells, well placement and their time 

of drilling on a 2-dimensional reservoir were defined and several optimization techniques were 

tried on them. The results show that the sequential hybridization of genetic algorithm, simulated 

annealing, and stochastic gradient descent method (GA-SA-SGD) results in the highest NPV 

values after optimization among all the examined methods. The other methods investigated in this 

study are including pure genetic algorithm (GA), pure simulated annealing (SA), pure stochastic 

descent method (SGD), hybrid genetic algorithm and simulated annealing (GA-SA), as well as 

hybrid genetic algorithm and stochastic gradient descent method (GA-SGD). Both pure simulated 

annealing and pure stochastic gradient descent methods were prone to convergence to local optima 

and their convergence to comparable results with other algorithms were highly dependent on the 

initial guess. This helped the hybrid algorithm to perform very well when it is designed by 

hybridization of genetic algorithm, which yields into a good initial guess, and local optimizers, 

which can convert the good initial guess into an optimal solution. 

The computational cost of the hybrid GA-SGD method is the lowest on average among all the 

studied optimization schemes. This algorithm is both more successful than hybrid GA-SA and 

more computationally efficient. All the hybrid algorithms and the pure GA are successful in 

finding the locality of the optimized planned wells. 

The full hybrid algorithm (GA-SA-SGD) proved to be robust by providing good reactions to 

change in the drilling cost and removal of suitably positioned pre-drilled wells in the problem. It 

decreased the number of wells and delayed their drilling time so as to benefit from the discount 

rate in the NPV function when the drilling cost increased. Also, in the case of removal of suitably 

positioned pre-drilled wells, the algorithm increased the number of wells for compensation. The 

algorithm also recommends the wells to be drilled in high permeability zones and as distant as 

possible form the aquifer, both of which intuitively prove the quality of optimization. These were 

inferred by analysis of the results of six different optimization problems in this study. 
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A study that can be conducted as continuation of this work is incorporation of real geological 

models, which can be followed by simultaneous optimization of continuous and categorical 

variables. This can be done by introduction of real field data into the models and slight changes in 

the algorithms. Assessment of hybridization of other algorithms which have good potential in 

exploration of the search space such as PSO with the algorithms introduced in this study would 

also be a good extension of this research. 

Another future work which seems helpful for the petroleum industry is inspired by the 

computational cost of the simulation process. As most of the computational cost is dictated by 

simulation phase, introduction of multi-level optimization into this work would be a reasonable 

way to tackle this problem. This can be done by using proxies or simpler simulators in simulation 

cases where the objective function accuracy is of less importance, i.e. initial steps of GA, and using 

more accurate simulators when getting close to the optimal solutions. 
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Appendix A—The Eclipse DATA file 

RUNSPEC 

TITLE 

REMA  

DIMENS 

 20 40 1 / 

AQUDIMS 

 4* 2 40/ 

FIELD 

OIL 

WATER 

START 

   01 JAN 2008 / 

WELLDIMS 

-- Item 1: maximum number of wells in the model 

--     - there are two wells in the problem; injector and producer 

-- Item 2: maximum number of grid blocks connected to any one well 

--     - must be one as the wells are located at specific grid blocks 

-- Item 3: maximum number of groups in the model 

--     - we are dealing with only one 'group' 

-- Item 4: maximum number of wells in any one group 

--     - there must be two wells in a group as there are two wells in total 

 15 1 2 15 / 

UNIFOUT 

UNIFIN 

NSTACK  --Linear solver stack size 

10/ 

FAULTDIM 

-- FAULTDIM 

-- This keyword specifies the maximum number of segments of  

-- fault data entered with the FAULTS keyword in the GRID  
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-- section. 

2 / 

----------------------------------------------- 

GRID      

GRIDFILE   --Control output of the grid geometry file. 2 produce EGRID file 

2 / 

INIT 

TOPS 

 800*2700.0 / 

DX 

 800*100.0 / 

DY 

 800*100.0 / 

DZ 

 800*20.0 / 

PORO      

800*0.2 / 

INCLUDE 

 'PERMXTrue1.GRDECL' / 

--PERMX 

-- 800*200 / 

COPY 

'PERMX' 'PERMY' / 

/ 

PERMZ 

800*0.001 / 

FAULTS 

--  IX1 IX2 IY1 IY2 IZ1 IZ2 FACE 

'South' 1 20 13 13 1 1 Y / 

'North' 1 20 27 27 1 1 Y / 

/  
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MULTFLT 

-- Fault Multiplier  

South 0.2 / 

North 0.05 /  

/ 

EDIT 

PROPS 

PVDO 

0.0      1.01202  3.0 

1000.0  1.01101  3.0 

2000.0   1.01     3.0  / 

PVTW 

2000.0      1.00        5.00E-07  1.0  / 

ROCK 

2000.0     3.00E-05  / 

DENSITY 

 48.623232    62.312542      0.06054  / 

SWOF 

0.2 0 0.81 0 

0.25 0 0.81 0 

0.27 0.002 0.7512 0 

0.3 0.005 0.663 0 

0.33 0.0092 0.5622 0 

0.35 0.012 0.495 0 

0.4 0.021 0.362 0 

0.45 0.032 0.261 0 

0.5 0.048 0.185 0 

0.55 0.068 0.128 0 

0.6 0.089 0.081 0 

0.65 0.119 0.049 0 

0.67 0.137 0.035 0 
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0.7 0.158 0.022 0 

0.73 0.181 0.016 0 

0.75 0.211 0.009 0 

0.8 0.301 0 0 

/ 

----------------------------------------------- 

REGIONS 

SOLUTION 

PRESSURE 

800*2000.0 / 

SWAT 

800*0.25 / 

RPTSOL      

-- Controls on output from SOLUTION section 

-- RESTART 2: the inter block flows of each phase are written to the Restart files. 

'RESTART=2' / 

AQUFETP 

-- Defines Fetkovich Aquifers properties 

-- Aq#  D    P@D  Vol   Comp   PI 

   1   800  1*   1.0E9  1E-5   5  / 

-- 1   861  1*   1.0E7  1E-5   5  / -- Original 

/ 

AQUANCON 

-- connects analytic aquifers 

-- Face: of the cube where the aq acts 

-- AQ#  i1 in  j1  jn  k1   kn  Face   

    1   20  20  1  40  1    1   I+  / 

/ 

----------------------------------------------- 

SUMMARY 

RUNSUM 
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SEPARATE 

RPTONLY 

WOPR 

'P1' 'P2' 'P3' 'P4' 'P5' 'P6' 'P7' 'P8' 'P9'/ 

WWCT 

'P1' 'P2' 'P3' 'P4' 'P5' 'P6' 'P7' 'P8' 'P9'/ 

FOPT 

FWPT 

FWIT 

----------------------------------------------- 

SCHEDULE 

RPTSCHED  -- Controls on output from SCHEDULE section 

RESTART=2 / 

RPTRST 

BASIC=3 4* 1 21* 999999 / 

INCLUDE 

'WELSPECS_COMPDAT.INC' / 

end 


