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Abstract 

Rock/pore typing is a process of classifying reservoir rocks into units with similar 

petrophysical properties. When properly classified, each unit possesses a unique porosity-

permeability relationship. This leads to improved reservoir characterization, which further 

leads to improved decision-making and finally, improved oil recovery.  

 

This thesis investigates whether parametrization of mercury injection capillary pressure 

(MICP) curves could be used for rock/pore typing of the complex, multi-modal formations in 

Edvard Grieg field. The heterogeneous origin of the field together with different diagenetic 

processes lead to large variation in the porosity-permeability distribution, even within facies. 

Therefore, conventional rock typing methods tend to fail. This leaves room for improved 

reservoir characterization by using MICP-based rock/pore typing.  

 

In this study, the parametrization of the MICP data was performed by using Thomeer 

hyperbolas and modified Gaussian error distribution functions, assisted by a workflow based 

on a spreadsheet developed by Lundin Norway. Quality control (QC) of MICP data is 

incorporated in this workflow to ensure that only high-quality MICP data is included in the 

rock/pore typing procedure. The workflow’s main focus is on Thomeer curve fitting 

procedure.  

 

A total of 273 MICP samples from the Edvard Grieg field were analyzed, including QC. The 

lithology of the samples varied from good sorted aeolian sandstones to poorly sorted alluvial 

fan conglomerates. The analysis has shown that parametrization of MICP data using Thomeer 

hyperbolas provides good results for aeolian sandstone samples, it does not, however, provide 

good results for alluvial fan conglomerate samples. Further investigations identified a critical 

weakness related to the Thomeer curve fitting procedure: it is sensitive to heterogeneous pore-

throat distributions, resulting in unrealistic Thomeer parameters. These findings indicate that 

the Thomeer curve fitting procedure is not suitable for evaluation of alluvial fan 

conglomerates in Edvard Grieg field, since these formations are often associated with 

heterogeneous pore-throat distributions. This study has suggested that Gaussian error 

distributions are a better alternative than Thomeer hyperbolas for alluvial fan conglomerates, 

but future investigations are needed. 
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Moreover, investigations of the Thomeer parameters were performed and the analysis 

showed: high correlation between the Thomeer parameter equivalent to largest pore-throat 

radius and permeability measured by CCA. This was used for rock/pore typing attempts, the 

study suggests that the Thomeer parameter equivalent to largest pore-throat radius, could be 

used as cut-off parameter for rock/pore typing of the complex, multi-modal formations in 

Edvard Grieg field, but future studies are needed to confirm.  
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1 Introduction 

The spatial distribution of reservoir properties, such as porosity and permeability, is of great 

importance for hydrocarbon (HC) reservoir evaluation and characterization. Predictions by 

3D reservoir models are used for decision making regarding, among others, optimal recovery 

schemes and well placements. Improved reservoir characterization will improve predictions 

from the reservoir models and hence improve oil recovery. 

 

Rock/pore typing is a process of classifying reservoir rocks into units with similar 

petrophysical properties. When properly classified, each unit possesses a unique porosity-

permeability relationship. It can be used for prediction of the spatial distribution of reservoir 

properties, like porosity and permeability, if a strong link is established to a 3D model 

parameter, such as facies. Hence, rock/pore typing leads to improved reservoir 

characterization and is of key importance for the accuracy of predictions by reservoir models.  

 

Various rock typing procedures exist. Conventional rock typing procedures are often based on 

porosity-permeability cross plots together with Reservoir Quality Index (RQI) and Flow Zone 

Indicator (FZI). For carbonate reservoirs, however, rock/pore typing based on mercury 

injection capillary pressure (MICP) parametrization is also used, due to the complex pore 

structure of carbonate formations. There are several case studies of MICP-based rock/pore 

typing of carbonates, among others (Clerke et al., 2008; Skalinski & Kenter, 2014; 

Theologou, Skalinski, & Mallan, 2015). However, there are few such studies concerning 

clastic reservoirs.  

 

The Edvard Grieg field is located at the Utsira High in the Norwegian North Sea. It consists 

of clastic reservoir rocks spanning an age range of 300 million years with wide variation in 

reservoir quality, from high-quality sandstone to conglomerate and porous basement. The 

heterogeneous origin of the field and different diagenetic processes leads to complex pore 

structures and great variation in porosity and permeability, even within facies. Thus, 

conventional rock typing procedures are not optimal. 

 

The aim of this thesis is to investigate whether parametrization of MICP data could be useful 

for rock/pore typing of the complex, multi-modal formations in Edvard Grieg field. To 

achieve this aim, parametrization of MICP data was performed, analyzed, and quality 
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controlled (QC), assisted by a workflow based on a spreadsheet developed by Lundin 

Norway. A total of 273 MICP samples from the Edvard Grieg field were analyzed, including 

QC. The lithology of the samples varied from good sorted aeolian sandstones to poorly sorted 

alluvial fan conglomerates.  

 

Moreover, investigations of the Thomeer parameters were performed and the analysis 

showed: high correlation between the Thomeer parameter equivalent to largest pore-throat 

radius and permeability measured by CCA. This was used for rock/pore typing attempts, the 

study suggests that the Thomeer parameter equivalent to largest pore-throat radius, could be 

used as cut-off parameter for rock/pore typing of the complex, multi-modal formations in 

Edvard Grieg field, but future studies are needed to confirm.  

 

The rest of this thesis is organized as follows. Chapter 2 provides a short introduction to the 

Edvard Grieg field and geology, while Chapter 3 introduces the concept of rock/pore typing. 

Subsequently, Chapter 4 opens with theory related to capillary pressure and capillary pressure 

measurements. It also describes capillary pressure models and porosity-permeability models. 

In Chapter 5, the MICP parametrization workflow used in this thesis is described. Chapter 6 

presents QC of the MICP dataset, together with the results and discussion of the MICP 

parametrizations. A final conclusion and future recommendations are described in Chapter 7. 
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2 Edvard Grieg 

2.1 Field Introduction 

The oil-producing Edvard Grieg field lies 180 

kilometers west of Stavanger, in block 16/1 on 

the Utsira High in the Norwegian North Sea 

(Figure 2.1). The field was discovered in 2007 

with the exploration well 16/1-8. The plan for 

development and operation (PDO) was approved 

in 2012, and the production started in November 

2015 with production license 338. Fourteen 

wells have been drilled, of which ten are 

producers and four are water injectors. The 

owners are Lundin Norway (65 %), which is the 

operator, and OMV Norge (20 %) and 

Wintershall Norge (15 %), which are partners. 

(Lundin Norway, 2012; Oljedirektoratet, n.d.) 

 

The reservoir is located at a depth of around 1900 m below surface, with a water depth of 

around 110 m. The reservoir fluid is moderately undersaturated oil with a low produced 

gas/oil ratio (GOR), with the oil-water contact (OWC) located at around 1939 m below sea 

level. The reservoir does not have a gas cap. The oil is transported to Sture Terminal in 

Hordaland through the Grane pipeline, while the gas is transported to St. Fergus in Scotland 

through a separate pipeline system. (Lundin Norway, 2012; Oljedirektoratet, n.d.) 

 

The originally recoverable reserves were estimated to be 36.3 million sm3 oil equivalents 

(o.e.), including 32.0 million sm3 o.e. of oil, 2.8 million sm3 o.e. of gas, and 1.5 million sm3 

o.e. of natural gas liquid (NGL). The expected lifetime of the field is around 30 years with a 

production plateau rate of 100 000 barrels of oil equivalents per day (boepd). The remaining 

reserves were estimated by December 2017 to be 25.8 million sm3 o.e., including 22.6 million 

sm3 o.e. of oil, 2.0 million sm3 o.e. of gas, and 1.3 million sm3 o.e. of NGL. The plateau 

extended to the end of 2019, which is two additional years compared to the PDO. This is due 

to a combination of better overall reserves than the pre-drill expectations together with strong 

reservoir performance. There is potential for further extension of the plateau through the infill 

Figure 2.1: Map of the Edvard Grieg field. 

Modified after NPD interactive FactMaps 

(2019). 
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development drilling program planned for 2020. (Lundin Norway, 2012; Norwegian 

Petroleum, n.d.) 

 

2.2 Geology  

The Edvard Grieg field contains the Luno and Tellus discoveries, with reservoir rocks 

spanning an age range of 300 million years, from 440 to 140 million years old. These vary 

from porous basement rock to alluvial, aeolian, and shallow marine conglomerates and 

sandstones of Triassic to lower Cretaceous origin. The different depositional environments are 

illustrated by using Death Valley as an Edvard Grieg analogue in Figure 2.2. (Lundin 

Norway, 2012, 2017) 

 

With its 2018 “Play” concept, Lundin Norway is focusing on recovering oil and gas from four 

entirely new reservoir types on the Norwegian continental shelf, called “plays.” Three of 

these new reservoir types can be found in the Edvard Grieg field, namely aeolian sandstone, 

conglomerate, and fractured basement. These three types are described below. (Lundin 

Norway, 2012) 

 

2.2.1 Aeolian Sandstone 

One of the new plays on the Norwegian shelf is aeolian sandstone. Edvard Grieg is the only 

field on the Norwegian shelf where large parts of the reserves come from aeolian sandstone. 

(Lundin Norway, 2018a).  

 

Aeolian sandstone is rock formed by wind-blown desert dunes, hence the name. The wind’s 

sorting ability makes the sand type more uniform in quality and size compared to other types 

of sandstone formed by, for example, rivers. This gives aeolian sandstone higher permeability 

and porosity. As a result, production from aeolian sandstone can result in a high recovery rate 

while maintaining a high production rate. (Lundin Norway, 2018a) 

 

Aeolian sandstone constitutes the majority of the reservoir in the western part of the Edvard 

Grieg field. It originated around 200 million years ago, when Norway was at the same latitude 

as North Africa is today, giving it a similar hot and dry climate. This climate, together with 

sand and winds, formed the desert dunes, resulting in the high-quality aeolian sandstone 
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reservoir at the Edvard Grieg field. An analogue is illustrated in Figure 2.2. (Lundin Norway, 

2018a) 

 

2.2.2 Conglomerate 

Another type of reservoir rocks at Edvard Grieg are conglomerates. Conglomerates are rocks 

that contain large clasts, which are gravel- or boulder-sized pieces of rock with poor sorting. 

The clasts are cemented together in a matrix, which may consist entirely of cementing 

material or contain sand and/or silt. (Lundin Norway, 2018c; Mahmic, Dypvik, & Hammer, 

2018; The University of Auckland, n.d.) 

 

The conglomerates in the Edvard Grieg field originated from alluvial fan deposits around 200 

million years ago. As mentioned, the climate was hot and dry, which resulted in a barren 

desert landscape in the area where Edvard Grieg is located today. Since there was little 

vegetation, floods generated by episodic heavy rains could carry large masses down the 

hillsides. This created alluvial fan deposits in the valley, which resulted in the conglomerate 

oil reservoir at Edvard Grieg. An, analogue is illustrated in Figure 2.2. (Lundin Norway, 

2018c) 

 

The clasts are made of granite with a diameter of up to 20 cm. Between the clasts, there may 

be sand, which gives the rock reservoir properties, or there may be silt, resulting in poorer 

reservoir properties. A challenge regarding the conglomerates is that conventional logs are 

difficult to interpret. This is due to the low porosity and strong heterogeneity of the 

conglomerates, with clasts considered to be without flow capacity. Hence, well logs, well test 

data, and core data are essential for reservoir evaluation. (Lundin Norway, 2018c) 

 

2.2.3 Fractured Basement 

Fractured basement is the third new reservoir type that exists in the Edvard Grieg field. 

Previously, it was not considered commercial to produce HC from granitic basement rock. 

This was mainly due to high rock density, which is usually connected with low porosity. 

However, if the granite basement is fractured and weathered, meaning that water has flowed 

through the fractures and dissolved minerals, it can be both porous and permeable. It may 

then act as good reservoir rock, where cracks and pores can become saturated with 
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hydrocarbons (HC). A stronger degree of weathering leads to higher dissolution of granite, 

which gives relatively better reservoir properties. Fractured granite basement underlies the 

main reservoir rocks in the northern part of the Edvard Grieg field, across the Tellus area. 

(Lundin Norway, 2018b, 2018d)  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Death Valley can be used as an analogue for the Edvard Grieg field. This figure 

illustrates the depositional environments that resulted in the heterogeneous formations of the 

Edvard Grieg field. Modified after map retrieved from Google Earth Pro (June 19, 2015). 
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3 Rock/Pore Typing 

The aim of this thesis is to evaluate the potential to use MICP-based rock/pore typing for the 

complex, multi-modal formations in the Edvard Grieg field. Among other applications, this 

could improve predictions of permeability from porosity. The purpose of this chapter is to 

introduce rock/pore typing. 

 

 

 

There are several different definitions of a rock/pore type, but a frequently used one is Gunter, 

Finneran, Hartmann, and Miller (1997): “units of rock deposited under similar conditions 

which experienced similar diagenetic processes resulting in a unique porosity-permeability 

relationship, capillary pressure profile and water saturation for a given height above free 

water in a reservoir” (p. 1). Figure 3.1 illustrates how a specific rock/pore type and parameters 

are connected. According to Archie (1950), a specific “rock type will have certain effective 

pore-size distributions which will produce a particular family of capillary pressure curves. 

The pore-size distribution controls the porosity and is related to the permeability and water 

saturation. Further, a certain rock will exhibit a relation between porosity and permeability” 

(p. 944).  

 

Rock/pore typing is a way of classifying reservoir rocks into units with similar petrophysical 

properties. Various definitions of and approaches to rock/pore typing exist, and the petroleum 

Figure 3.1: Illustrates how rock/pore types are connected to capillary pressure and other 

parameters. Modified after Archie (1950). 



8 

 

industry lacks a common definition (Skalinski & Kenter, 2014). Conventional methods are 

often based on cross plots of porosity and permeability together with RQI and FZI to identify 

rock types (Amaefule, Altunbay, Tiab, Kersey, & Keelan, 1993). However, these tend to fail 

for formations with complex pore systems.  

 

In this thesis, rock/pore typing is defined as the process of identifying rock/pore types with 

unique porosity-permeability relationships at core scale. Extrapolate these to log scale and 

link to geological attributes in a 3D model for field scale application. When done properly, 

rock/pore typing can be used to estimate permeability distribution by using the unique 

porosity-permeability relationship that a given rock type possesses. (Guo, A. Diaz, Paz, 

Smalley, & A. Waninger, 2007) 

 

MICP based rock/pore typing attempts to correlate pore-throat (passage between pores) 

structures to petrophysical properties such as porosity and permeability, by using 

parametrization of MICP curves. To evaluate the potential for improved reservoir 

characterization of the Edvard Grieg field. Mainly based on the MICP parametrization studies 

of Clerke et al. (2008) and Theologou et al. (2015). Clerke et al. (2008) used Thomeer 

hyperbolas (Thomeer, 1983) for parametrization of MICP curves, and Theologou et al. (2015) 

used modified Gaussian error functions.  

 

During rock/pore typing, the properties of interest are storage and flow of fluids. It is possible 

that two facies can be grouped as one rock type, or that two or more rock types are needed to 

describe one facies (Tavakoli, 2018). The reason is that, even if similar facies were deposited 

in the same depositional environment, they may have been subject to different diagenetic 

processes, resulting in different petrophysical properties. (Gomes, Teresa Ribeiro, J. 

Strohmenger, Naghban, & Kalam, 2008) 
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4 Theory 

4.1 Surface Forces 

The main objective of this thesis involves parametrization of MICP curves. Hence, it is 

essential to have an understanding of capillary pressure, which is closely related to interfacial 

tension, wettability, and pore-throat radius. This chapter provides an introduction to these 

parameters and how capillary pressure is measured. 

 

4.1.1 Surface Tension  

Speight (2017b, p. 685) defines surface tension as “the elastic tendency of a fluid surface 

which makes it acquire the least possible surface area”. The phenomenon occurs because of 

attractive forces between liquid molecules and because the system aims to minimize its 

energy. 

 

 

 

When a liquid molecule is completely surrounded by other similar molecules, it is equally 

attracted to all sides, and thus experiences balanced cohesive forces (zero net force). In 

contrast, when a liquid molecule is at an interface, like liquid-gas, it experiences greater 

attraction to its own molecules (called cohesion) than to the gas molecules (called adhesion). 

This leads to a net force directed at the interior of the medium; see Figure 4.1. This force is 

called surface tension, and it is responsible for liquids contracting to the smallest surface area 

Figure 4.1: Illustration of surface tension. Liquid molecules experience strong cohesive 

forces. When a liquid molecule is completely surrounded by other liquid molecules, it is 

equally attracted to all sides, whereas when a liquid molecule is at an interface, it 

experiences a net force directed at the interior of the medium.  
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possible. The force is often referred to as interfacial tension (IFT) when the interface is 

between two immiscible liquids. Values for IFT can be found through laboratory experiments 

or in the literature. (Glover, n.d.; Speight, 2017a) 

 

4.1.2 Wettability 

Wettability is defined as the “the tendency of one fluid to spread on or adhere to a solid 

surface in the presence of other immiscible fluids” (Speight, 2017b, p. 745). 

 

At a solid surface, the wetting fluid will displace non-wetting fluid. If a liquid is placed on a 

solid surface, the shape it will make depends on the wettability; see Figure 4.2. At one 

extreme, if the surface is completely non-wet, the liquid drop will remain a sphere to 

minimize the contact with the surface. At the other extreme, if the surface is completely wet, 

the fluid will spread out on the entire surface. If the wetting is somewhere in between, the 

bottom of the liquid drop will flatten out. The extent to which this occurs depends on the 

wetting. The liquid drop will make a contact angle (𝜃) with the surface; this is shown in 

Figure 4.2, and possible values are listed in Table 4.1.  (Abdallah et al., 2017) 

 

 

 

 

 

Figure 4.2: Illustration of the equilibrium contact angle that a liquid drop makes on an ideal 

solid surface for different wettabilities. Modified after Anderson (1986). 
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Contact angle measured through 

Fluid A, 𝜽 [degrees] 
Wettability of the surface 

0 Completely Fluid A wet 

0 − 90°, Fluid A wet 

90 Neutrally wet 

90 − 180° Fluid B wet 

180° Completely Fluid B wet 

 

The wettability of a solid surface can be studied by measuring the contact angle. Young’s 

equation describes the contact angle on an ideal solid surface: 

 

𝜎𝐴𝐵 cos 𝜃 = 𝜎𝐵𝑆 − 𝜎𝐴𝑆,       (4.1) 

 

where 𝜎𝐴𝑆 is the interfacial energy between fluid A and the solid, 𝜎𝐵𝑆 is the interfacial energy 

between fluid B and the solid, 𝜎𝐴𝐵 is the interfacial energy between fluid A and fluid B, and 𝜃 

is the contact angle. Equation (4.1) can be derived from the force balance between the 

interfacial energies shown in Figure 4.2. Young’s equation applies for ideal, smooth surfaces, 

but most rock surfaces are heterogeneous, and few can be prepared with a smooth surface. 

(Ebnesajjad & Ebnesajjad, 2013, pp. 11-12) 

 

When a porous solid is in contact with fluids, it will tend to imbibe the wetting phase. Thus, 

the non-wetting phase will be displaced, which is called imbibition. The wettability of a 

reservoir rock can either be water-wet, oil-wet, or an intermediate state between the two, 

called intermediate-wet. Intermediate-wetting can mean that the rock is neutral-wet, which is 

when the rock does not have a strong preference for contacting either the water or the oil, or 

that the rock is mixed-wet, meaning that some surfaces or grains of the rock are water-wet 

while others are oil-wet. (Schlumberger, n.d.-b)  

Table 4.1: Contact angles (𝜃) for different wettabilities of the surface. (Glover, n.d.) 
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In reservoir rocks, different minerals may 

have different wettability. Sandstone, 

carbonate, and dolomite are usually water-

wet prior to oil migration (Figure 4.3a). 

Oil migration is a drainage process (i.e. a 

process with decreasing wetting-phase 

saturation). However, when the pore 

surfaces are contacted by oil during and 

after migration, the surfaces may be altered 

to oil-wet (Figure 4.3b). This may leave the 

contacted surfaces oil-wet while the un-touched surfaces remain water-wet, resulting in 

mixed-wet conditions. Since oil migrates more easily through the larger pore-throats, large 

pores and pore-throats are more likely to be oil-wet, while smaller pores and pore-throats are 

most likely to be water-wet. Thus, the mixed-wet state depends on pore and pore-throat 

geometry in addition to surface roughness. (Abdallah et al., 2017; Christiansen, 2005; 

Schlumberger, n.d.-a) 

 

Several methods exist to measure the wettability of a reservoir. The most common methods 

performed on cores are the Amott (imbibition) test and the USBM (centrifuge) test. Values 

also exist in the literature. (Abdallah et al., 2017) 

 

4.1.3 Capillary Pressure  

Capillary pressure is “the difference in pressure across the interface between two phases and 

has also been defined as the pressure differential between two immiscible fluid phases 

occupying the same pores caused by interfacial tension between the two phases that must be 

overcome to initiate flow” (Speight, 2017b, p. 109).  

 

Capillary pressure, 𝑃𝑐 , is related to IFT and curvature of the interface through:  

 

 𝑃𝑐 = 𝑃𝑛𝑤 − 𝑃𝑤 = 𝜎 (
1

𝑅1
+

1

𝑅2
).        (4.2) 

 

Figure 4.3: Illustration of (a) a water-wet system 

and (b) an oil-wet system, from left to right, 

respectively. (Green & Willhite, 1997) 
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This is known as the Young-Laplace equation, where 𝑃𝑛𝑤 and 𝑃𝑤 are the pressure of the non-

wetting phase and of the wetting phase, respectively, 𝑅1 and 𝑅2 are the principal radii of 

curvature of the interface, and 𝜎 is the IFT. (Brooks & Corey, 1964) 

 

When a capillary tube is placed in contact with a wetting fluid, the wetting fluid is drawn into 

the tube due to net cohesive forces. This phenomenon is known as capillary rise. The fluid 

continues to rise until equilibrium is reached, which is when the capillary force is balanced by 

the gravitational force. This results in an interface with an approximately half sphere shape; 

see Figure 4.4. Then, the two radii of the curvature are equal, and equation (4.3) is reduced to  

  

𝑃𝑐 = 𝑃𝑛𝑤 − 𝑃𝑤 =
2𝜎

𝑅
,       (4.3) 

 

where the radius of the straight capillary tube, 𝑟, is related to the radius of the curvature, 𝑅, 

and the contact angle, 𝜃, as follows: 

 

𝑟 = 𝑅 cos 𝜃.         (4.4) 

  

Inserting equation (4.4) into (4.3) yields: 

 

𝑃𝑐 = (𝑃𝑛𝑤 − 𝑃𝑤) =
2𝜎 cos 𝜃

𝑟
,      (4.5) 

 

The equation above shows that capillary pressure rises with increasing IFT and decreasing 

capillary tube radius. (Christiansen, 2005; Glover, n.d.) 
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Capillary pressure is related to the height of the capillary rise (ℎ) through the following 

equation: 

 

𝑃𝑐 = 𝑃𝑛𝑤 − 𝑃𝑤 = (𝜌𝑤 − 𝜌𝑛𝑤)𝑔ℎ,       (4.6) 

 

where 𝜌𝑤 and 𝜌𝑛𝑤 are the density of the wetting phase and non-wetting phase, respectively. ℎ 

is measured as height above free water level (FWL); see Figure 4.4. FWL is defined as the 

depth at which the capillary pressure is zero, 𝑃𝑐 = 0. Rearranging equation (4.6) gives the 

height: 

 

ℎ =
𝑃𝑐

(𝜌𝑤−𝜌𝑛𝑤)𝑔
.          (4.7) 

 

The above equations shows that the capillary pressure rises as height above FWL increases. 

(Glover, n.d.; Vavra et al., 1992) 

 

The complex geometry of pore systems can be approximated using a simplified model known 

as the bundle of capillary tubes model, where a capillary tube radius is analogous to pore-

Figure 4.4: Illustration of capillary rise. The wetting fluid rises in the capillary tube until 

equilibrium is reached. Inspired by Vavra et al. (1992). 
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throat size. Hence, a cylindrical approximation of pore-throat radius can be calculated from 

capillary pressure by rearranging (4.5) to solve for pore-throat radius: 

 

𝑟 =
2𝜎 cos 𝜃

𝑃𝑐
.          (4.8) 

         

Combined with equations (4.6) and (4.7) shows capillary pressure rises with decreasing pore-

throat radius and with an increasing height above FWL. In other words, as HC column height 

increases, the water saturation decreases. This explains how HC are able to enter increasingly 

small pore-throats as height above FWL rises. (Glover, n.d.; Vavra et al., 1992) 

 

4.2 Capillary Pressure Measurements 

As previously mentioned, during migration, HC displaces formation water in the reservoir, 

which is usually a drainage process. The HC saturation increases with HC column height, as 

HC are able to enter smaller pore-throats. The capillary pressure curve can be evaluated using 

laboratory experiments conducted on rock samples, where non-wetting fluid displaces wetting 

fluid by applying increasing external pressure. For each pressure step, the non-wetting fluid 

saturation is measured.  

 

The experiment result in a capillary pressure curve, where capillary pressure is plotted against 

non-wetting or wetting phase saturation. A capillary pressure curve for a sample with a single 

pore system is illustrated in Figure 4.5, where a pore system is defined as “an aggregate of 

pores and pore throats that shares a similar morphology” (Hartmann & Beaumont, 2000, p. 

18). The geometry of a pore system includes pore and pore-throat sizes, pore system shapes, 

pore connectivity, and the ratio of pore-throat radius to pore radius. 
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Capillary pressure also provides an estimation of pore-throat size distributions using equation 

(4.8). This distribution is essential to reservoir quality since it has strong influence on many 

petrophysical properties, like permeability and saturation (Elnaggar & Temraz, 2018) 

 

There exist multiple methods to measure capillary pressure curves in rocks. The three most 

used in the petroleum industry are MICP, porous plate, and centrifuge. These methods are 

discussed below, with greater detail given on MICP since the capillary pressure data used in 

association with this thesis were obtained using this method. 

 

4.2.1 MICP Method 

Capillary pressure measurements can be performed using the MICP method. This method is 

routinely employed in the petroleum industry to evaluate geological/petrophysical parameters 

of conventional cores, sidewall cores, and cuttings. It involves injecting mercury into a 

cleaned, dry rock sample. Mercury is a non-wetting fluid, so pressure must be applied in order 

for mercury to intrude the rock sample. In other words, it is not a spontaneous process and 
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Figure 4.5: Illustration of a capillary pressure curve for a sample with a single pore system. 

As the external pressure is increased, the non-wetting saturation also increases. 
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provides measurements of drainage capillary pressure. (Purcell, 1949; Shafer & Neasham, 

2000) 

 

First, the rock sample is weighed and placed in a 

chamber. Air is evacuated from the chamber and 

then filled with mercury (Figure 4.6). Next, the 

pressure on the mercury is increased in the desired 

number of steps, ranging from vacuum to 60 000 

psi. (McPhee, Reed, & Zubizarreta, 2015) 

 

 The first volume of mercury enters the pores of the 

rock sample when the displacement pressure is 

reached, which is the pressure required for mercury 

to overcome the capillary pressure of the largest pores of the rock sample. As the pressure is 

increased beyond the displacement pressure, mercury overcomes higher entry pressures. As a 

result, mercury is able to intrude increasingly small pore-throats (Glover, n.d.; Hirasaki, n.d.; 

Purcell, 1949)   

 

At each pressure step, the volume of mercury injected into the sample is measured, which 

yields the mercury saturation. Based on the experiment, the capillary pressure curve can be 

constructed by plotting the pressure in the mercury at each step against the volume of mercury 

intruded. The shape of the capillary pressure curve contains information about pore-throat 

sizes and pore geometries. (Glover, n.d.) 

 

Figure 4.7: Idealized MICP curves for samples with 

different degrees of sorting. All have the same 

displacement pressure and maximum mercury 

saturation, but different MICP curves due to 

different pore-throat size distributions: from the one 

extreme of a very well sorted sample with a flat 

plateau (lower curve), to a poorly sorted sample 

with a steeper plateau, and to the other extreme of 

an unsorted sample (upper curve). (Vavra, Kaldi, & 

Sneider, 1992)   

Figure 4.6: Simple illustration of MICP 

measurements. (Christiansen, 2005) 
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Idealized MICP curve shapes for samples with different degrees of sorting are shown in 

Figure 4.8. Well sorted samples, which are dominated by similarly sized pore-throats, yield 

long, flat plateaus. The plateaus become steeper with lower degrees of sorting. Thus, even 

though samples with different degrees of sorting may have the same displacement pressure 

and maximum mercury saturation, their different pore-throat size distributions will result in 

different fluid saturation distributions. This can be observed from the difference in the shapes 

of the MICP curves in Figure 4.8. (Vavra et al., 1992)   

 

Some of the advantages of the MICP method are that it is low-cost and faster than the other 

methods mentioned. It generates large amounts of data in a short time and is therefore usually 

the preferred method to define pore-throat size distributions. In addition, it can be performed 

on samples that are much smaller than conventional core analysis (CCA) plugs, and these 

samples can have irregular shapes and even be broken into several pieces, like core chips. 

Together, this normally makes MICP a favored and routine method. (McPhee et al., 2015; 

Shafer & Neasham, 2000)   

 

However, there are also disadvantages associated with the method. First, MICP is not a 

capillary test, since there is no strong wetting phase and provides total wetting phase drainage 

(𝑠𝑎𝑖𝑟 = 0) if the pressure is raised high enough. Furthermore, mercury-air is not 

representative of reservoir fluids, so corrections are needed. A closure correction is also often 

required. Some other disadvantages are that the test is sensitive to sample size, destructive, 

and not suitable for samples with sensitive or reactive clays, as clays might be damaged 

during cleaning and drying when clay bound water (CBW) is removed. (McPhee et al., 2015) 
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4.2.2 Other Methods 

4.2.2.1 Porous Plate 

Another method to measure capillary pressure is the porous plate method.  

 

First, the sample is fully saturated with a wetting 

fluid, typically formation water. Then, one end of 

the sample is placed on a porous plate in a pressure 

vessel (Figure 4.9). The porous plate is saturated 

with the same formation water as the sample and is 

a semipermeable membrane that is only permeable 

to the water. Non-wetting fluid, oil or gas, is then 

admitted under pressure into the vessel. As a result, 

some of the water is expelled from the sample 

through the porous plate. The expelled water is 

collected, and the volume is measured. After equilibrium is reached, the procedure is repeated 

by increasing the pressure of the non-wetting phase in steps. As a result, the capillary pressure 

curve can be constructed by plotting the pressure against water saturation (or non-wetting 

phase). (Ahmed, 2010; Glover, n.d.) 

 

Some of the advantages of the porous plate method are that actual reservoir fluids can be used 

for the measurements, so no fluid correction is needed, and the method is considered the most 

accurate. In addition, it is not destructive, so the samples are reusable, and it is the preferred 

method for clay-rich samples. In addition, it is usually cheaper than the centrifuge method. 

(McPhee et al., 2015) 

 

However, it is also a slow method: several weeks or months may be required to reach 

equilibrium for each pressure step, and the shape of the resulting capillary pressure curve is 

sensitive to the time allowed to reach equilibrium. Another disadvantage is that it requires the 

sample to be water-wet to provide representative drainage capillary pressure. (Glover, n.d.; 

McPhee et al., 2015) 

 

 

Figure 4.8: Illustration of porous plate capillary 

pressure measurement. (Christiansen, 2005) 
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4.2.2.2 Centrifuge  

The third method to measure capillary pressure is the centrifuge method. 

 

First, the sample is fully saturated 

with a wetting fluid, typically water, 

and placed inside a centrifuge core 

holder (Figure 4.10). Then, it is 

rotated with steps of increasingly high 

speed. The centripetal force displaces 

wetting fluid from the sample and 

replaces it with non-wetting fluid (oil 

or air). The displaced wetting fluid 

accumulates in the fluid collector and the 

volume is measured for each rotational speed. When equilibrium is reached, the speed is 

increased to the next step. As the speed increases, the centripetal force is able to displace the 

wetting fluid from increasingly small pores, and the corresponding capillary pressures are 

calculated. The water saturation is calculated from the collected volumes for each rotational 

speed. Then, the capillary pressure curve can be constructed by plotting the capillary pressure 

against the water saturation (or non-wetting phase). (Christiansen, 2005; Glover, n.d.) 

 

Some of the advantages of the centrifuge method are that it is faster than the porous plate 

method and that it is relatively simple. The test is not destructive, so the samples can be 

reused for other tests. Furthermore, the test can be used for both drainage and imbibition 

cycles, and tests with reservoir conditions are possible. (McPhee et al., 2015) 

 

On the other hand, the centrifuge method is the most expensive method. Moreover, the 

rotational speed generates an unusual stress field where fracturing of the sample is possible, 

so it should not be used for samples sensitive to these kinds of stress. Another drawback is 

that the capillary pressure is a function of distance from the axis of rotation, and raw data 

therefore needs to be corrected. Some additional disadvantages are that air is typically used as 

displacing fluid and, as for the porous plate method, the sample is required to be water-wet to 

produce a representative drainage capillary pressure curve. (Glover, n.d.; McPhee et al., 2015) 

 

Figure 4.9: Illustration of centrifuge capillary 

pressure measurements. (Christiansen, 2005) 
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4.3 Reliability of Measurements 

The main objective of an MICP study is often to measure capillary properties for use in 

reservoir evaluation and modeling, like in the present work. Thus, the reliability of the 

measurements is a critical issue. To obtain reliable MICP data, it is important to ensure proper 

sampling of rocks for measurements, measurement methods, and treatment of data from the 

measurements, among others. The measurement methods were described above, but some 

other critical issues related to the reliability of the measurements are elaborated below. 

(Christiansen, 2005) 

 

4.3.1 Sample Selection 

Proper sampling of rocks for measurements is essential to achieve reliable MICP data. To be 

able to use MICP data for reservoir characterization such as rock/pore typing, it is important 

to gather sufficient and representative data to extrapolate representative pore/rock types from 

clustering analysis. Sample selection is an important step to achieve this. (Theologou et al., 

2015) 

 

How often cores are taken and how the samples are chosen are essential for proper sampling. 

Biased sampling, like selecting the most homogeneous samples, might result in undesirable 

bias in the results. Therefore, the selection should be based on a logical or statistical selection 

of samples. The MICP data should be able to reflect the porosity and permeability distribution 

from CCA data. If samples are selected from a narrow range of porosity-permeability 

relationships, this may lead to an unrepresentative dataset and, hence, unrepresentative results 

based on that dataset. Poor or biased sample collection is one of the reasons why saturation-

height models from capillary pressure data fail. The minimum requirement for statistical 

validity is 10 samples per facies or rock/pore type. (Christiansen, 2005; McPhee et al., 2015) 

 

4.3.2 Sample preparation 

Air is the wetting phase in the mercury-air system, and since air is not a strong wetting phase, 

all water needs to be removed from the sample. If not, the water will act as the wetting phase 

instead of air, yielding error in the results. MICP samples are usually cleaned by immersion in 

a Soxhlet extractor and convection oven drying. Chemical and visual checks should be 

conducted to ensure complete removal of fluids. However, the harsh preparation techniques 
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have disadvantages, one being that CBW will most likely be removed from the system, hence 

requiring a correction for these cases. (McPhee et al., 2015) 

 

4.3.3 Sample Size 

The MICP method can be performed on samples of various sizes and shapes. However, 

Hirsch and Thompson's (1995) percolation theory states that sample size and shape affect 

capillary pressure measurements: smaller samples with higher “surface area/bulk volume” 

tend to give slightly lower displacement pressure and a more optimistic MICP curve. Thus, 

the ideal MICP sample “should be as large as possible but still compatible with the bulk and 

pore volume capacity of the glass penetrometer” (Shafer & Neasham, 2000, p. 5). This is 

typically a sample size of 1x1 inch. 

 

When it comes to sample size, the representativeness of the sample for the whole CCA plug 

must also be discussed. CCA plugs are typically 1-1.5 x 2 inch in size, while MICP samples 

are smaller. They can even be plug end-trims or chips (an even smaller piece of an end-trim). 

For homogeneous samples, end-trims and chips are usually representative of the whole plug 

and hence yield reasonable results, but for heterogeneous samples, like conglomerates, they 

may not be. The porosity and permeability measurements are usually performed on the whole 

CCA plug, and results from end-trims and chips may thus cause problems when trying to 

relate measured permeability to pore structure. (Theologou et al., 2015)  

 

The volume of the MICP sample should be larger than the representative elementary volume 

(REV). The REV can be defined as the minimum volume where the average values for a 

quantity of interest, like porosity or permeability, remain more or less constant – that is, when 

the investigated “parameter becomes independent of the size of the sample” (Al-Raoush & 

Papadopoulos, 2010, p. 69). The REV should be “such that parameters that represent the 

distributions of the void space and of the solid matrix within it are statistically meaningful” 

(Bear & Bachmat, 1991, p. 5). This is especially critical when it comes to conglomerates 

where the volume of the MICP sample (especially for end-trims and chips) may be smaller 

than REV, or where a sample may contain only matrix or clast, or a distribution of such that is 

not representative. (Bear & Bachmat, 1991) 
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To summarize, performing MICP analysis on larger pieces of CCA plugs will increase the 

reliability of measurements compared to MICP analysis performed on end-trims or chips. 

Another advantage is that all of the measured data, like porosity and permeability, come from 

the same sample. This is especially important when the aim is to correlate measured 

permeability and pore-throat distribution, as is the case in this thesis. (Theologou et al., 2015) 

 

4.3.4 Data Correction 

As mentioned above, corrections are required for MICP data to be reliable and applicable to 

reservoir settings. Some of these corrections are discussed below. 

 

4.3.4.1 Blank Cell Corrections 

During high-pressure MICP measurements, compression of the components of the MICP 

testing equipment occurs. To account for these effects, blank corrections are needed. These 

are often performed by using correction data from a blank run without a sample, and they are 

usually incorporated in the MICP instrumental software. The corrections do not correct for 

grain compressibility. (Shafer & Neasham, 2000) 

 

4.3.4.2 Closure Correction 

A sample is rough and may contain surface irregularities, like induced fractures. If mercury is 

injected to samples with surface voids larger than the largest pore-throats, mercury first fills 

the voids before it intrudes the true pore system of the rock sample; see Figure 4.10. This 

results in a so-called closure effect, also known as conformance effect, in the MICP data, 

which is due to the non-wetting characteristics of the mercury. The closure effect appears in 

the MICP data as lower displacement pressure than actual and must be corrected. The 

correction, called closure correction, is performed by subtracting the apparent volume of 

mercury intruded prior to the actual displacement pressure from the MICP raw data. Hence, 

measure-dependent data that is not a property of the rock is removed. Smaller samples with 

irregular surfaces, like end-trims, require greater correction than larger samples, such as 

plugs. This is because smaller samples have larger external surface area to volume ratios. The 

closure correction is subjective and thus leads to uncertainty. In addition, if some pore-throats 

are large enough, mercury may intrude the sample while closing around it, which makes it 
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difficult to discriminate between their contribution to the increasing mercury saturation. 

(McPhee et al., 2015; Shafer & Neasham, 2000) 

 

 

 

 

4.3.4.3 Fluid Correction 

To be able to apply the capillary pressure curve to the reservoir, it must represent reservoir 

fluids and rocks; therefore, correction is needed. The MICP data can be converted from a 

mercury-air system to an oil-water system by using the following relationship: 

 

 𝑃𝑐(𝑜𝑤 𝑟𝑜𝑐𝑘⁄ ) = 𝑃𝑐 (𝑚𝑎 𝑟𝑜𝑐𝑘⁄ )
𝜎𝑜𝑤 cos 𝜃𝑜𝑤

𝜎𝑚𝑎 cos 𝜃𝑚𝑎
,      (4.9) 

 

where ma is mercury/air. In this thesis, values from the literature are used for the contact 

angle and surface tension of the different systems, as listed in. (Glover, n.d.; Vavra et al., 

1992)  

 

Table 4.2: Contact angle and surface tension values used in this thesis. 

System IFT (𝝈) 
Contact angle 

(𝜽) 
𝐜𝐨𝐬 𝜽 𝝈 𝐜𝐨𝐬 𝜽 

Mercury/air/rock 485 dynes/cm 130 0.643 312 

Oil/brine/rock 30 dynes/cm 30 0.866 26 

 

 

 

 

 

Figure 4.10: Schematic illustration of closure effect on a samples outer surface. 
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4.4 Capillary Pressure Models 

Capillary pressure can be used to obtain information about other reservoir properties, such as 

water saturation and permeability, using the relationships between them. Several capillary 

pressure models exist. The ones discussed here are the Leverett J-function, Thomeer model, 

Brooks and Corey’s model, and the Swanson permeability relation. 

 

4.4.1 Leverett J-function 

The Leverett J-function, 𝐽(𝑆𝑤), is a dimensionless correlation between capillary pressure, 

water saturations and rock properties, given by 

 

𝐽(𝑆𝑤) =
𝑃𝑐

𝜎 cos 𝜃
√

𝑘

𝜙
,         (4.10) 

 

where 𝑘 is permeability, 𝜙 is porosity, 𝜎 is IFT, and 𝜃 is the contact angle.  𝐽(𝑆𝑤) can be 

obtained by plotting 
𝑃𝑐

𝜎 cos 𝜃
√

𝑘

𝜙
 against 𝑆𝑤. Then, it may be used to calculate capillary 

pressures. Note that by assuming 𝐽(𝑆𝑤) is unaffected by fluid type, one can obtain the fluid 

correction relationship given in equation (4.9). (Fanchi, 2010)  

  

4.4.2 Thomeer model 

Thomeer (1960, 1983) presented a mathematical model describing MICP data “based on the 

observation that the location and shape of a capillary pressure curve reflect characteristics of 

the pore structure of the sample” (p. 73). He observed that the MICP curve present in a log-

log plot of capillary pressure against bulk volume occupied by mercury could be 

approximated by a hyperbola, and that the curve could be uniquely described by three pore-

network parameters.  

 

Thomeer (1960, 1983) presented the following hyperbola equation:  

 

𝑉𝑏

𝑉𝑏∞
= 𝑒−𝐺/(log 𝑃𝑐/𝑃𝑑 ),        (4.11) 
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where 𝑉𝑏 is the bulk volume occupied by mercury and the three pore-network parameters 

are 𝑃𝑑, 𝑉𝑏∞ and 𝐺. 𝑃𝑑 is the displacement pressure, 𝑉𝑏∞ is the percent bulk volume occupied 

by mercury at infinite capillary pressure and 𝐺 is the pore geometrical factor. 

 

Thomeer (1983) also related absolute permeability (𝑘𝑎) to the three pore-network parameters: 

𝐺, 𝑉𝑏∞, and 𝑃𝑑. He presented the following empirical relationship: 

 

𝑘𝑎 = 3.8068𝐺−1.3334 (
𝑉𝑏∞

𝑃𝑑
)

2.0
.      (4.12)     

 

He obtained this by using weighted regression from 279 samples, with 𝑘𝑎  in [mD], 𝑉𝑏∞ in 

[%], 𝑃𝑑 in [psi] and G is unitless.  

 

4.4.3 Brooks and Corey 

Brooks and Corey (1964) provided the following power-law relationship 

 

𝑆𝑒 = (
𝑃𝑑

𝑃𝑐
)

𝜆
,         (4.13) 

 

where 𝜆 is the pore-size distribution index and 𝑃𝑑 is displacement pressure. 𝑆𝑒  is defined as 

the effective saturation of the wetting phase given by:  

 

𝑆𝑒 =
𝑆−𝑆𝑟

1−𝑆𝑟
,         (4.14) 

 

where 𝑆 is the saturation of the wetting phase and 𝑆𝑟 is the residual wetting phase saturation.  

 

4.4.4 Swanson Permeability Relation 

Swanson (1981) sought to improve Purcell (1949) and Thomeer (1960) with 

improvements that would enhance our ability to estimate permeability of small rock 

samples such as portions of sidewall core samples or drill cuttings. Capillary pressure 

curves measured on drill cuttings usually present a very gradual, poorly defined 

plateau … The depressed plateau leads to optimistic estimates of permeability using 
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the Purcell approach. Also, cuttings capillary pressure data are not well represented by 

a hyperbola. This results in poor fits of Thomeer parameters to cuttings data. (p. 2498) 

 

Swanson (1981) used a data set consisting of 203 sandstone samples from 41 formations and 

116 carbonate samples from 33 formations, all with permeability and capillary pressure 

measured on the same sample. He obtained the following permeability and MICP correlation 

using regression analysis:  

 

𝑘𝑎 = 399 (
𝑆𝑏

𝑃𝑐
)

𝐴

1.691
,        (4.15) 

 

where 𝑘𝑎  is permeability and 𝑆𝑏  corresponds to the Thomeer parameter 𝑉𝑏. The apex (𝐴) is 

defined as the intersection of the capillary pressure curve in the log-log plot of 𝑃𝑐 against 𝑆𝑏  

with a 45° tangent to the origin of the hyperbolic axes; see Figure 4.11.  

 

 

 

 

 

 

 

Figure 4.11: Illustrating the definition of correlating parameter at the apex (A). 
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4.4.5  MICP Curve Fitting Algorithms   

For parametrization of MICP curves, curve fitting algorithms are used. While several exist, 

the Thomeer hyperbolas and Gaussian error functions are used in the present study. The main 

focus is on the Thomeer hyperbolas. 

 

4.4.5.1 Thomeer Hyperbolas 

The fundamentals of the Thomeer model were described in Section 4.4.2. Further elaboration 

is given below. 

 

Figure 4.13 illustrates the Thomeer (1960) hyperbola from equation (4.11) for one pore 

system. The equation can be derived by considering the general equation for a hyperbola 

present in a log-log plot, which is given by:  

  

(log 𝑦 − log 𝑦𝑎)(log 𝑥 − log 𝑥𝑎) = 𝑘,     (4.16) 

 

where xa and ya are the vertical and horizontal asymptote, respectively, and k is the shape 

factor. As shown in in Figure 4.13, the vertical asymptote of the Thomeer hyperbola 

represents the fractional bulk volume occupied by mercury at infinite capillary pressure 

(𝑉𝑏∞), while the horizontal asymptote represents the displacement pressure (𝑃𝑑). As a result, 

equation (4.16) can written as: 

 

(log
𝑃𝑐

𝑃𝑑
) (log

𝑉𝑏

𝑉𝑏∞
) = 𝑘.      (4.17)   

 

Thomeer uses the shape factor 𝑘 =  log 𝑒−𝐺. Therefore, by introducing this shape factor and 

rearranging equation (4.17), one can arrive at the Thomeer hyperbola equation (4.11), namely: 

 

𝑉𝑏

𝑉𝑏∞
= 𝑒−𝐺/(log 𝑃𝑐/𝑃𝑑 ),        

 

where 𝐺 is defined as the pore geometrical factor and determines the shape of the hyperbola. 

(Clerke et al., 2008) 
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To create the plot in Figure 4.13, it is necessary to convert the mercury saturation (𝑆𝐻𝑔) to 

percent bulk volume occupied by mercury (𝑉𝑏). The mercury saturation is defined as 

 

𝑆𝐻𝑔 =
𝑉𝐻𝑔

𝑉𝑃𝑜𝑟𝑒
,         (4.18) 

 

where 𝑉𝐻𝑔 is the volume of mercury intruded while 𝑉𝑃𝑜𝑟𝑒 is the pore volume (PV) of the 

sample. Bulk volume occupied by mercury (Vb) is defined as: 

  

𝑉𝑏 =
𝑉𝐻𝑔

𝑉𝑏𝑢𝑙𝑘
,         (4.19) 

 

where 𝑉𝑏𝑢𝑙𝑘 is the bulk volume (BV) of the sample. Combining equation (4.18) and (4.19) 

together with the definition of porosity, leads to the following conversion:   

 

𝑉𝑏 =
𝑉𝐻𝑔

𝑉𝑏𝑢𝑙𝑘
=

𝑉𝑝𝑜𝑟𝑒

𝑉𝑏𝑢𝑙𝑘
×

𝑉𝐻𝑔

𝑉𝑝𝑜𝑟𝑒
= 𝜑 × 𝑆𝐻𝑔.     (4.20) 
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Figure 4.12: Illustration of Thomeer hyperbola (blue 

line) in a log-log plot of MICP (𝑃𝑐) against bulk 

volume occupied by mercury (𝑉𝑏), including definitions 

of the three Thomeer parameters. 
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Thus, the conversion is done by multiplying the mercury saturation with the porosity of the 

sample. 



𝑉𝑏∞ and 𝑃𝑑 defines the location of the Thomeer hyperbola. In Figure 4.14, the G parameter is 

kept constant to highlight the effect that change in 𝑉𝑏∞ and 𝑃𝑑  has on the location of the 

curve. As mentioned, 𝑉𝑏∞ is percent bulk volume occupied by mercury at infinite capillary 

pressure. This is equal to the total interconnected pore volume (effective porosity) given that 

mercury is able to fill all the interconnected pores. 𝑃𝑑 is controlled by the size of the largest 

pore-throat, where increasing pore-throat radius leads to a decrease in 𝑃𝑑. (Thomeer, 1960) 

 

The value of G is determined by the pore geometry, and, as mentioned, G defines the shape of 

the hyperbola. In Figure 4.15, the location parameters are kept constant to highlight the effect 

of changing the G parameter. At one extremity, for very good sorting, the pore-throats will be 

of almost uniform size; therefore, the mercury will enter almost all pore-throats at the same 

capillary pressure, and the value of G will be extremely low. The other extremity is that when 

the sample has very poor sorting, meaning that it has a very wide variety of pore-throat sizes, 

the shape of the curve will become more linear and the value of G will be very high. 

(Thomeer, 1960) 
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Figure 4.13: Illustration of the effect of change in 𝑉𝑏∞ and 𝑃𝑑 on location of the Thomeer 

hyperbola. The 𝐺 parameter is kept constant to highlight the effect.  

 

Figure 4.14: Illustration of the effect of the 𝐺 parameter on the Thomeer hyperbola. 

The location parameters are kept constant to highlight the effect. A better degree of 

sorting leads to a lower 𝐺. 
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Thomeer (1960) also provided a method to fit the capillary pressure curve for multi-modal 

pore systems: namely, while one pore system is described by one Thomeer hyperbola, 

Thomeer proposed to simply use a combination of individual hyperbolas. However, he did not 

explain how to calculate the Thomeer permeability – equation (4.12) –  when more than one 

pore system is present. Clerke et al. (2008) proposed to use the parameter from the first pore 

system since it mainly controls the permeability. Other investigators has followed their 

recommendation (Gao, Wu, Chen, Kwak, & Funk, 2011). 

 

Clerke et al. (2008) used Thomeer hyperbolas to curve-match over 500 MICP data to 

investigate “the basic geological and petrophysical properties of the multimodal pore systems 

in the Arab D limestone facies in Ghawar field, Saudi Arabia” (p.113). In this study, the 

Thomeer parameter 𝑃𝑑 was found to be the major controlling parameter on permeability 

among the three Thomeer parameters. Clerke et al. (2008) defined porositons as a “distinct 

and separable frequency distribution of maximum pore-throat diameters, Pd, which has a 

Gaussian distribution in the Log(𝑃𝑑) domain, i.e. a mode in the maximum pore-throat 

diameter space” (p. 115). They also identified the dominant porositons of each sample, 

resulting in four major porositons. Based on a grouping of these, the pore systems of the Arab 

D limestones were classified in terms of petrophysical rock types. Then, the authors related 

these types to geological facies. 

 

Clerke et al. (2008) proposed the use of the following two-term model to predict permeability: 

 

Log(kpredicted) = a + b × Log(dmax) + c × φ,    (4.21) 

 

where a, b and c are empirical constants, 𝑑𝑚𝑎𝑥 is maximum pore-throat diameter (calculated 

from 𝑃𝑑 from the first pore system) in [µm], and 𝜑 is the porosity in [%]. This resulted in a 

correlation coefficient (𝑅2) of 89% when related to measured permeability. The two-term 

model has the potential for well-site implementation when using properly processed well-log 

data. 
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Theologou et al. (2015) observed two 

disadvantages of the Thomeer model. 

First, the combination of individual 

Thomeer hyperbolas leads to artificial 

discontinuities at the merge of the 

hyperbolas; see Figure 4.16. The 

discontinuities are a result of the 

superposition of the hyperbolas and 

were not present in the authors 

laboratory data. Second, the model 

shows a skewness to smaller pore-

throats.  

 

4.4.5.2 Modified Gaussian Error Function  

By using a log-normal distribution that provided a better fit with their data, Theologou et al. 

(2015) developed a model with modified Gaussian error functions instead of Thomeer 

hyperbolas. They stated that “key features of the proposed Gaussian model form are that it 

mimics the observed character of many pore-throat systems, the implemented parameters 

relate to real characteristics of the pore system, and that multiple modes can be superimposed 

without the creation of discontinuities in the model” (p. 3). 

 

Theologou et al. (2015) provided the following equation for the pore volume displaced for a 

given capillary pressure, 𝑉𝑃𝑐
, for pore system i:  

 

𝑉𝑏(𝑖) =
𝑉𝑏∞(𝑖)

2
(1 + erf[𝑥(𝑖)]),       (4.22) 

 

where the Gaussian error function is included, and defined as 

 

erf[𝑥(𝑖)] =
2

√𝜋
∫ 𝑒−𝑡2

𝑑𝑡
𝑥(𝑖)

0
,        (4.23) 

 

and 𝑥(𝑖) is defined as:  
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𝑥(𝑖) =
1

𝑆(𝑖)
log (

𝑃𝑐

𝑃𝑚(𝑖)
).        (4.24) 

 

𝑆, 𝑃𝑚 and 𝑉𝑏∞
 are the pore system parameters, where 𝑆 is the shape factor, 𝑃𝑚 is the modal 

pressure and 𝑉𝑏∞ is the bulk volume of the pore system. Figure 4.16 illustrates the Gaussian 

error function given by equation (4.22) in a semi-log plot of MICP against bulk volume 

occupied by mercury [%]. 

 

When more than one pore system is present the total pore volume displaced, 𝑉𝑃𝑇
,  is given by 

the sum of the contributions from the individual pore systems: 

 

𝑉𝑃𝑇
= ∑ 𝑉𝑃𝑐

(𝑖)𝑝
𝑖=1 ,        (4.25) 

 

where p is the total number of pore systems present. (Theologou et al., 2015) 
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Figure 4.16: Illustration of the implemented Gaussian error function (blue line) given by 

equation (4.22) in a semi-log plot of MICP against bulk volume occupied by mercury [%], 

including definitions of the three Gaussian fitting parameters. 
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The value of 𝑆 is determined by the pore geometry. In Figure 4.17, 𝑃𝑚 and 𝑉𝑃∞
 are kept 

constant to highlight the effect that varying the 𝑆 parameter has on the Gaussian error 

function for a pore system. Increasing 𝑆 leads to a steeper slope of the MICP saturation curve 

and is equivalent to decreasing the degree of sorting. (Theologou et al., 2015) 

 

The value of 𝑃𝑚 is related to the pore-throat size of the largest connected pore system. In 

Figure 4.18, the curve fitting parameters 𝑆 and 𝑉𝑃∞
 are kept constant to highlight the effect of 

varying 𝑃𝑚 on the Gaussian error function for a pore system: namely, increasing 𝑃𝑚 leads to 

upwards vertical displacement of the MICP saturation curve and is equivalent to decreasing 

pore-throat sizes. (Theologou et al., 2015) 

 

As mentioned, 𝑉𝑏∞ is the bulk volume of that pore system. In Figure 4.19, 𝑆 and 𝑃𝑚 are kept 

constant to highlight the effect that change in 𝑉𝑏∞ has on the Gaussian error function for a 

pore system. An increase in 𝑉𝑃∞
 of a pore system is equivalent to an increase in the fraction of 

total porosity occupied by this pore system. (Theologou et al., 2015) 
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Figure 4.17: Illustration of the effect of the 𝑆 parameter on the Gaussian error function for a 

pore system. The other curve fitting parameters (𝑃𝑚 and 𝑉𝑃∞
) are kept constant to highlight 

the effect. Increasing 𝑆 leads to a steeper slope of the MICP saturation curve and is 

equivalent to decreasing the degree of sorting. Inspired by Theologou et al. (2015). 

 



36 

 

 

 

 

 

1

10

100

1000

10000

02468101214161820

M
er

cu
ry

 c
ap

ill
ar

y 
pr

es
su

re
 [p

si
a]

Bulk Volume occupied by mercury [%]

Pm= 20

Pm= 40

Pm= 60

Pm= 80

Pm= 100

Pm= 120

Increasing Pm

1

10

100

0102030405060

M
er

cu
ry

 c
ap

ill
ar

y 
pr

es
su

re
 [p

si
a]

Bulk Volume occupied by mercury [%]

Vb inf [%] = 20

Vb inf [%] = 25

Vb inf [%] = 30

Vb inf [%] = 35

Vb inf [%] = 40

Vb inf [%] = 45

Increasing Vb∞

Figure 4.18: Illustration of the effect of the curve fitting parameter 𝑃𝑚 on the Gaussian error 

function for a pore system. The other curve fitting parameters (𝑆 and 𝑉𝑃∞
) are kept constant 

to highlight the effect. Increasing 𝑃𝑚 leads to upwards vertical displacement of the MICP 

saturation curve. Inspired by Theologou et al. (2015).  

Figure 4.19: Illustration of the effect of the 𝑉𝑏∞ parameter on the Gaussian error function for 

a pore system. The other curve fitting parameters (𝑆 and 𝑃𝑚) are kept constant to highlight 

the effect. Increasing 𝑉𝑃∞
 of a pore system leads to horizontal displacement of the MICP 

saturation curve to the left and is equivalent to increasing fraction of total porosity that is 

occupied by this pore system. Inspired by Theologou et al. (2015). 
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Clearly, there are similarities between the proposed Gaussian model and the Thomeer model. 

𝑉𝑃∞
 is defined equally in both models, and 𝑆 is comparable with the Thomeer pore 

geometrical parameter 𝐺. However, the Gaussian model differs from the Thomeer model by 

using 𝑃𝑚, which depends on the pore-throat size of the largest connected pore volume, instead 

of the displacement pressure, 𝑃𝑑 , used in the Thomeer model. (Theologou et al., 2015) 

 

Theologou et al. (2015) used modified Gaussian error functions for the parametrization of 501 

MICP samples. They identified MICP-based pore type groups using cluster analysis of the 

MICP-derived parameters. Then, they extrapolated the pore types from MICP samples to 

CCA samples, and finally, they extrapolated to the log domain. 
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4.5 Porosity-Permeability Models 

To obtain effective reservoir descriptions, it is critical to have strong knowledge about 

permeability and the permeability distribution. This is usually determined from core data, but 

since there are often uncored intervals and wells, it is important to have good prediction 

methods to estimate this information. Two typical porosity-permeability relationships used to 

estimate permeability from log-derived porosity are described below. (Amaefule et al., 1993) 

 

4.5.1 Classical Porosity-Permeability Relationship 

The classical empirical porosity-permeability relationship used to estimate permeability from 

log-derived porosity is given by 

 

log 𝑘 = 𝑎𝜑 + 𝑏,        

 

where 𝑘 is the estimated permeability, 𝜑 is log-derived porosity, and a and b are empirical 

constants. Since permeability appears to be log-normally distributed, the cross plot of 

permeability against porosity is plotted in semi-log space; hence, log 𝑘 is used. 

 

4.5.2 Hydraulic Units  

To improve existing reservoir description techniques Amaefule et al. (1993) proposed to base 

rock typing on flow units. They developed a technique to identify and characterize units with 

similar pore-throat geometrical attributes, called hydraulic units, from core and log data. 

Among others, they did this to improve permeability predictions in uncored intervals or wells. 

 

Amaefule et al. (1993) based their technique on a modified Kozeny-Carman equation. A 

generalized form of the Kozeny-Carman relationship is given as 

 

𝑘 =
𝜑𝑒

3

(1−𝜑𝑒)2

1

𝐹𝑠𝜏2𝑆𝑔𝑣
2 ,        (4.26)  

    

where 𝐹𝑠𝜏2 is known as the Kozeny constant. According to Amaefule et al. (1993), the 

Kozeny constant is only constant within a hydraulic unit, whereas it varies between different 

units. They focused their studies on solving the issue of a variable Kozeny constant. They 
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addressed this by dividing both sides of equation (4.26) by porosity (𝜑𝑒) and taking the square 

root of both sides. This results in the following: 

 

√
𝑘

𝜑𝑒
= [

𝜑𝑒

1−𝜑𝑒
] [

1

√𝐹𝑠𝜏𝑆𝑔𝑣
].       (4.27) 

 

Furthermore, they introduced the three variables; 𝑅𝑄𝐼, 𝜑𝑧, and 𝐹𝑍𝐼. 𝑅𝑄𝐼 is defined as the 

Reservoir Quality Index and is given by the following equation: 

 

𝑅𝑄𝐼 = 0.0314√
𝑘

𝜑𝑒
,        (4.28) 

 

where the constant 0.0314 is included to account for 𝑅𝑄𝐼 measured in [μm] and 𝑘 in [mD]. 𝜑𝑧 

is the pore volume to grain volume ratio, given by 

 

 𝜑𝑧 =
𝜑𝑒

1−𝜑𝑒
,         (4.29) 

 

and 𝐹𝑍𝐼 is the Flow Zone Indicator and is given by 

 

𝐹𝑍𝐼 =
1

√𝐹𝑠𝜏𝑆𝑔𝑣
=

𝑅𝑄𝐼

𝜑𝑧
.        (4.30) 

 

Including these three variables into equation (4.27) and taking the logarithm of both sides 

gives: 

 

log 𝑅𝑄𝐼 = log 𝜑𝑧 + log 𝐹𝑍𝐼.      (4.31)  

   

Clearly, when 𝑅𝑄𝐼 is plotted against 𝜑𝑧 on a log-log scale, equation (4.31) yields a straight 

line with a unit slope. Then, on the same plot, 𝐹𝑍𝐼 can be found from the intersection between 

the graph and 𝜑𝑧 = 1; see Figure 4.20. Different FZI values will yield parallel lines, where 

samples that lie on the same line constitute a hydraulic unit, having similar pore-throat 

attributes.  
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Figure 4.20: Graph of 𝑅𝑄𝐼 plotted against 

𝜑𝑧 in log-log space. 𝐹𝑍𝐼 can be found from 

the intersection between the graph and  

𝜑𝑧 = 1. 

 

Figure 4.21: FZI lines in semi-log plot of 

permeability against porosity. 

 

Equation (4.31) can also be rearranged to solve for permeability. This results in the following:  

  

𝑘 = 1014(𝐹𝑍𝐼)2 [
𝜑𝑒

3

(1−𝜑𝑒)2],      (4.32) 

 

where k is in [mD], FZI is in [μm] and 𝜑𝑒 as fraction. Figure 4.21 illustrates FZI lines in a 

graph of permeability against porosity. (Amaefule et al., 1993) 
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5 Workflow for Parametrization of MICP Curves 

To perform the parameterization of the MICP curves, a spreadsheet developed by Lundin 

Norway AS was used. In addition, to be able to perform both Thomeer and modified Gaussian 

analysis, a QC of the laboratory data was incorporated in the workflow. This was done to 

ensure that only high-quality MICP data was included in the rock/pore typing procedure. The 

following workflow was followed for one sample at a time: QC of the raw laboratory data, 

closure correction, pore system collection, and, finally, the MICP curve matching procedure. 

 

5.1 Quality Control of Laboratory Data 

The first step when starting the analysis of a new rock sample is to QC the laboratory data. 

This is done to ensure that only high-quality MICP data is included in the rock/pore typing 

procedure. Each sample is left with a QC flag of 1, 2, or 3, as well as comments on 

observations from the sample picture and data when necessary. QC flag 1 corresponds to 

there being no specific errors/problems with the data, QC flag 2 means that there are 

uncertainties regarding the data, and QC flag 3 means that the MICP data should be rejected. 

Detailed descriptions of the QC flags are listed in Table 5.1, and some are elaborated below.  

 

The first point to consider during QC is the sample size; larger samples are usually preferred. 

As mentioned, smaller samples with irregular surfaces are more prone to closure effects and 

may not be representative, among other issues. Hence, very small samples are given QC flag 

2, if they are not rejected.  

 

The next QC step is to examine the difference between the helium (He) porosity measured by 

CCA and the MICP porosity. The MICP porosity should reflect the CCA porosity for the 

MICP data to be representative. A tolerable deviation of 20% is used: 

 

|
𝜑𝐻𝑒−𝜑𝑀𝐼𝐶𝑃

𝜑𝐻𝑒
| ∙ 100% < 20%.        (5.1)   

 

If the difference is larger, the sample is given QC flag 3 and is rejected from the study. 

Next QC examines, look at the difference in the permeability measurements between the 

Klingenberg corrected gas permeability from CCA (𝑘𝑙) and the Swanson permeability from 
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MICP (𝑘𝑠𝑤𝑎𝑛𝑠𝑜𝑛). 𝑘𝑠𝑤𝑎𝑛𝑠𝑜𝑛  should reflect 𝑘𝑙  for the MICP data to be representative. The 

tolerable difference is set to a factor of 10: 

 

0.1 <
𝑘𝑠𝑤𝑎𝑛𝑠𝑜𝑛

𝑘𝑙
< 10.        (5.2)   

 

If the deviation is larger, the sample obtains QC flag 3 and is thus rejected from the study.  

 

Next, QC of the sample photo is performed, if present. During this step, it is especially 

important to pay close attention to the outer surface of the sample to have an idea about the 

degree of closure correction needed. As mentioned, irregular surfaces may result in high 

closure correction. However, when the permeability of the sample is relatively high, it may 

have some large pores that will reduce the closure correction. If the sample photo is not 

included in the report, core photos together with lithological descriptions from CCA are used 

as an alternative. 

 

QC flag Description of QC flag Details 

1 No specific errors/problems 

with the data 

• Data OK 

2 Uncertainties regarding 

MICP data 

• Very small sample 

• Possible but difficult to match (low 

confidence in fitting parameters) 

3 Rejection of MICP data • Noisy data (the points should define a 

smooth shape) 

• Suspicious closure results (especially for 

tight samples) 

• Difference between He-porosity and MICP 

porosity is large (> 20% in homogeneous 

sample)  

• Unrealistic Thomeer fitting parameters (G > 

2, Σ𝑉𝑏∞,1+2+3 >> actual volume injected) 

• Significant difference in permeability 

between CCA Kl-permeability and MICP 

Swanson permeability (> factor of 10) 

5.2 Closure Correction  

Table 5.1: Description of how a QC flag is selected for a sample.   
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Then the closure correction is determined to account for irregularities in the sample surface. 

Several approaches exist to determine the closure correction needed for MICP data, like the 

intercept method and EOG method. In analyses associated with this thesis, the intercept 

method is mainly used for the closure corrections.  

 

The intercept method uses a closure correction chart, which is a semi-log plot of MICP 

against uncorrected (raw) bulk volume occupied by mercury [%]; see Figure 5.1. The closure 

correction is selected as the intersection of two tangents. The first tangent is defined at the 

steep slope at the beginning of the capillary pressure curve, using a closure value. In contrast, 

the second tangent is placed at the plateau of the capillary pressure curve, which is where it 

first starts to stabilize, resulting from the first pore system entered. This tangent is defined by 

a seat value. The intersection of these two tangent lines is the closure correction, shown in 

Figure 5.1. 

 

 

 

The intercept method is chosen because it reduces subjectivity related to the determination of 

closure correction, and thus decreases the bias related to the interpreter. Furthermore, it is a 
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Figure 5.1: Closure correction chart: a semi-log plot MICP [psi] plotted against uncorrected 

(raw) bulk volume occupied by mercury [%]. The closure correction is determined by the 

intersection of two tangent lines to the curve: the closure tangent and the seat tangent. 
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relatively simple method. As an additional QC of the closure correction from the intercept 

method, this closure correction is compared to the closure correction determined by the 

laboratory. However, there are not always well-defined seat and closure tangents, especially 

for low-permeability samples. In these cases, the closure value from the laboratory is tested 

and corrected if needed, resulting in higher subjectivity. 

 

Bailey (2009) observed that the closure-corrected MICP-derived porosity for samples with 

low permeability, specifically shales, was often significantly lower than porosity derived from 

other methods, such as He-porosity. According to him, this is a consequence of pore volume 

(PV) compressibility prior to mercury entering the largest pore-throats. This statement is 

based on observations that a log-log plot of PV compressibility against MICP results in a 

straight line with a negative slope until actual intrusion begins. This leads to three places 

where the injected mercury could go, namely the closure, the compressibility, and the actual 

intrusion. Bailey (2009) then proposed a modified closure correction approach that accounts 

for this PV compressibility, called the EOG method.  

 

In this workflow, the EOG method is implemented in the spreadsheet (Figure 5.2), but it is 

mainly used as QC of the closure correction obtained using the intercept method, or the 

closure correction stated by the laboratory. This is done to evaluate whether the PV 

compressibility will cause significant error if not accounted for, especially for tight (i.e. low-

permeability and low-PV) samples.  

 

Samples with suspicious closure results obtain QC flag 3 and are rejected, as shown in Table 

5.1.  
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5.3 Pore Systems Selection  

The next step in the framework is to select the pore systems from the MICP data. The pore 

system intervals are determined from the MICP curve in a semi-log plot of MICP against bulk 

volume occupied by mercury [%], as shown in Figure 5.3. Pore systems are identified as 

arches in the curve. The number of pore systems can also be identified by examining the 

histogram of the pore-throat size distribution (Figure 5.4). Each pore system is defined by an 

interval limited by the maximum and minimum value of bulk volume occupied by mercury. 

In the procedure used in this spreadsheet, a maximum of three pore systems can be selected. 

This can be justified by the fact that pore systems above the maximum HC column height will 

be water filled, and the largest pore systems are the most essential for permeability. 

Figure 5.2: Illustration of EOG plot used for QC of closure correction and to 

evaluate wheter PV compressibility will cause significant error if not accounted for. 
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Figure 5.3: Selection of pore systems from 

MICP plotted against bulk volume occupied 

by mercury [%]. Solid lines represent pore 

system intervals, while the dashed line 

represents maximum HC column height.  

 

Figure 5.4: Pore systems can also be 

identified from the pore-throat size 

distribution histogram.  

 

5.3.1 Maximum HC Column Height  

The maximum HC column height (hmax) is included in the semi-log plot of MICP against bulk 

volume occupied by mercury [%], as a tool to evaluate which pore systems are most 

important. The pore systems above the maximum HC column height will be less relevant for 

analyses since they are mainly water filled and contribute little to flow. The height is 

indicated by a red dashed line in Figure 5.5, and it is approximated from the field of interest, 

here Edvard Grieg. 

 

The oil-water capillary pressure, 𝑃𝑐𝑜𝑤, that corresponds to the maximum HC column height 

can be calculated using equation (4.6) with oil as the non-wetting phase and water as the 

wetting phase: 

 

𝑃𝑐𝑜𝑤 = 𝐶(𝜌𝑤 − 𝜌𝑜)𝑔ℎ = 0.145(𝜌𝑤 − 𝜌𝑜)𝑔ℎ,    (5.3) 

 

where 𝐶 = 0.145 is the correction factor needed to obtain 𝑃𝑐𝑜𝑤 in [psi] when 𝜌 is in [g/cm3], 

𝑔 in [m/s2], and h in [m]. To apply this to the MICP plot, it needs to be converted to mercury-

air capillary pressure as described in Section 4.2.1, by rearranging equation (4.9) in 

combination with the values listed in Table 4.2. This results in the following: 

  

𝑃𝑐𝑚𝑎 = 𝑃𝑐𝑜𝑤  
𝜎𝑚𝑎 cos 𝜃𝑚𝑎

𝜎𝑜𝑤 cos 𝜃𝑜𝑤
= 𝑃𝑐𝑜𝑤

312

28
= 1.616(𝜌𝑤 − 𝜌𝑜)𝑔ℎ.  (5.4) 
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The densities and maximum HC column height values used in this thesis are listed in Table 

5.2. 

 

 

5.3.2 Histogram of Pore-Throat Size Distribution 

The pore-throat size distribution, illustrated in Figure 5.6, is obtained from MICP data. First, 

pore-throat sizes are estimated using equation (4.8) in combination with the values listed in 

Table 4.2. The pore-throat radius from the mercury-air system becomes 

   

𝑟 = 𝐶
2𝜎 𝑐𝑜𝑠 𝜃

𝑃𝑐
= 0.145038

2𝜎 𝑐𝑜𝑠 𝜃

𝑃𝑐
=

90.4318

𝑃𝑐
,    (5.5) 

 

where 𝐶 = 0.145038 is the correction factor needed to obtain the radius in [μm], when 𝑃𝑐 is 

in [psi] and 𝜎 in [dynes/cm]. Then, the logarithm of the pore-throat sizes (log 𝑟) is calculated. 

Table 5.2: Values of maximum HC column 

height, water density and oil density used in 

this thesis (from Edvard Grieg). 

Edvard Grieg Values 

ℎ𝑚𝑎𝑥 100 m 

𝜌𝑤 1.02 g/cm3 

𝜌𝑜 0.71 g/cm3 

 

Figure 5.5: MICP plotted against bulk volume occupied by mercury. The red dashed line 

represents the maximum HC column height converted to MICP. It indicates that for this 

sample, mainly the first pore system will be relevant. 
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This is done because pore-throats are highly variable in size, ranging over several orders of 

magnitude, so their sizes are characterized on a logarithmic scale. Next, the pore-throat size 

distribution (𝑃𝑆𝐷) can be determined by deriving the fractional PV injected (𝑣) with respect 

to log 𝑟: 

 

𝑃𝑆𝐷 =
𝑑𝑣

𝑑(log 𝑟)
.        (5.6) 

 

The following approximation for the derivative is used:  

 

𝑃𝑆𝐷𝑖 ≈ |
𝑣𝑖+1−𝑣𝑖

log 𝑟𝑖+1−log 𝑟𝑖
|,       (5.7) 

 

which can be normalized by using 

 

𝑃𝑆𝐷 =
𝑃𝑆𝐷𝑖

∑ 𝑃𝑆𝐷𝑖
.        (5.8) 

 

Finally, the histogram of pore-throat size distribution is obtained by plotting PSD against 

log 𝑟 in a semi-log plot, as shown in Figure 5.6. The definitions of the pore-throat sizes are 

listed in Table 5.3. 

 

 

Figure 5.6: Histogram of pore-throat size distribution, 

obtained by plotting PSD against pore-throat radius (r) on 

a semi-log plot.  

Table 5.3: Definitions of the 

Pore-throat sizes  

 

Pore-throat size r [µm] 

Mega >10 

Macro 2–10 

Meso 0.5–2 

Micro 0.1–0.5 

Nano <0.1 
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5.4 MICP Curve Fitting Algorithms 

After the pore system intervals are determined, the curve fitting procedure can begin. The 

following MICP curve fitting algorithms are used in this study: Thomeer hyperbolas and 

modified Gaussian error function. The procedures are described below. 

 

5.4.1 Thomeer Hyperbolas  

First, the MICP curve fitting procedure with Thomeer hyperbolas is performed. Starting with 

the first pore system (i.e. the pore system with the largest pore-throats), an initial estimate of 

the Thomeer parameters (𝑉𝑏∞, 𝑃𝑑, and 𝐺) is made based on the selected pore system. Then, 

the Solver module in Excel is used to find the best fit between the Thomeer fitting curve and 

the data points (further details in Section 5.4.1.1). The objective of the Solver is set to the 

solution cell and the Thomeer parameters as variable cells: 𝑉𝑏∞, 𝑃𝑑, and 𝐺 (Figure 5.7). It 

may be useful to include a constraint in the solver that 𝐺 ≤ 2, to avoid unrealistic solutions. 

After Excel Solver has found a match, as in Figure 5.8, the histogram of pore-throat size 

distribution is studied to evaluate that match (Figure 5.9). Next, the Thomeer permeability is 

calculated based on the fitted parameters from the first pore system using equation (4.12), and 

it is compared to the Klinkenberg corrected permeability from CCA, if available, for QC. The 

procedure is subsequently repeated for pore systems 2 and 3, if present. Samples with 

unrealistic Thomeer parameters are given QC flag 3 and rejected; see Table 5.1. 
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Attempts have been made to develop software-supported analysis of MICP curves with 

Thomeer hyperbola functions. For example, Göppert (2016) developed software to address 

drawbacks from previous programs, namely complex pore geometry, raw data corrections, 

and a continuous work flow. Since it is not necessary to go through samples one at a time 

using Göppert’s software, analysis speed is increased. However, this also affects the quality of 

the analysis, mainly the QC associated with going through one sample at a time, such as QC 

for the core photo and the visualization of the closure correction. As a result, analyses 

associated with this thesis are conducted sample-by-sample with QC and the Excel Solver 

module for curve matching, as described above. 

 

5.4.1.1 Best Fit Procedure 

The quality of the curve fitting of the MICP curve with Thomeer functions is evaluated for 

each pore system using Pearson’s (1900) chi-squared goodness-of-fit test. The Pearson’s chi-

squared test for the capillary pressures is given by the following equation: 

 

𝜒2 = ∑ (
𝑃𝑐,𝑐𝑎𝑙𝑐,𝑖−𝑃𝑐,𝑖

𝑃𝑐,𝑖
)

2
𝑛
𝑖=1 ,       (5.9) 

 

where 𝑃𝑐,𝑐𝑎𝑙𝑐,𝑖 is calculated by rearranging equation (4.11): 

 

𝑃𝑐,𝑐𝑎𝑙𝑐,𝑖 = 𝑃𝑑 × 10−𝐺/(ln 𝑉𝑏,𝑖/𝑉𝑏∞ ).      (5.10) 

 

 

Figure 5.9: Once Excel Solver has found a 

match between the Thomeer fitting curve 

and the data points, the quality of the match 

is evaluated in the histogram of pore-throat 

sizes. 
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In addition, to reduce the effect of extreme values, a maximum error threshold value of 50% 

is used. If 𝜒2 exceeds this value, it is clipped to 50%.  

 

Similarly, for the fractional bulk volume, 

 

𝜒2 = ∑ (
𝑉𝑏,𝑐𝑎𝑙𝑐,𝑖−𝑉𝑏,𝑖

𝑉𝑏,𝑖
)

2
𝑛
𝑖=1 ,       (5.11) 

 

where 𝑉𝑏,𝑐𝑎𝑙𝑐,𝑖 is calculated by rearranging equation (4.11): 

 

𝑉𝑏,𝑐𝑎𝑙𝑐,𝑖 = 𝑉𝑏∞ × 𝑒−𝐺/(log 𝑃𝑐,𝑖/𝑃𝑑 ).     (5.12) 

 

The same maximum error threshold concept as above applies.  

 

To obtain the best possible match between the Thomeer hyperbola for a given pore system 

and the MICP curve, a weighted combination method is used. This weighted combination is 

given by: 

 

𝜒2 =
1

2
∑ [(

𝑃𝑐,𝑐𝑎𝑙𝑐,𝑖−𝑃𝑐,𝑖

𝑃𝑐,𝑖
)

2

× 𝑖𝑤 + (
𝑉𝑏,𝑐𝑎𝑙𝑐,𝑖−𝑉𝑏,𝑖

𝑉𝑏,𝑖
)

2

× [(𝑛 + 1) − 𝑖]𝑤]𝑛
𝑖=1 ,  

(5.13) 

 

where 𝑛 is the total number of measurements for the given pore interval, and 𝑤 is the 

weighting factor (𝑤 = 1, is used in this study). The objective of the Excel Solver tool is set to 

minimize 𝜒2 with the Thomeer parameters as the variables. The solution is used as the best 

fit. 
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5.4.2 Modified Gaussian Error Function  

The procedure for curve fitting with 

the modified Gaussian error function 

is similar to the Thomeer function. 

Starting with the first pore system, 

an initial guess is made of the error 

function variables, 𝑉𝑏∞, 𝑃𝑚, and 𝑆. 

Excel Solver is used to find the best 

fit by minimizing the error cell by 

changing the variables (described in 

Section 5.4.2.1). Next, the histogram 

of the pore-throat size distribution is 

studied to determine whether it is a good match (Figure 5.10). The procedure is then repeated 

for pore systems 2 and 3, if present. 

 

The QC process in this workflow is mainly based on Thomeer analysis, so the QC flag is 

unaffected by the Gaussian analysis results. 

 

5.4.2.1 Best Fit Procedure 

To obtain the best possible match between the modified Gaussian error functions given by 

equation (4.22) and the MICP curve, the Pearson (1900) chi-squared test for fractional bulk 

volume is used. This is given by: 

 

𝜒2 = ∑ (
𝑉𝑏,𝑐𝑎𝑙𝑐,𝑖−𝑉𝑏,𝑖

𝑉𝑏,𝑖
)

2
𝑛
𝑖=1 ,       (5.14) 

 

where 𝑉𝑏,𝑐𝑎𝑙𝑐,𝑖 is calculated from equation (4.22). In addition, to reduce the effect of extreme 

values, a maximum error threshold value of 50% is used. If 𝜒2exceeds this value, it is clipped 

to 50%. Then, the best fit used is the solution obtained by setting the Excel Solver objective to 

minimize 𝜒2 by using the Gaussian parameters as the variables. 

 

 

Figure 5.10: Result of curve fitting with the Gaussian 

error function in the histogram of pore-throat 

distributions. 
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6 Results and Discussion 

For the study associated with this thesis, data from the Edvard Grieg field was used. First an 

introduction to databases developed during this study is provided. Followed by an 

introduction to the main facies. Next QC of the database are performed. Followed by the 

results from MICP analyses and finally, rock/pore typing attempts.  

 

6.1 Data Description 

6.1.1 Database intro 

Three databases were developed during the study associated with this thesis, consisting of 

rock samples retrieved from nine cored wells in Edvard Grieg field. These are presented 

below. 

 

The first database is a CCA database. It consists of data from 3711 CCA samples. The 

database is developed with purpose of comparison and QC of MICP samples. 

 

The second database is a MICP database without QC filter. It consists of data from 273 MICP 

samples without QC. The database is developed with purpose of comparison and QC of MICP 

sampling database.  

 

The third and main database is a MICP database after QC filter. After careful QC only 168 of 

the original 273 MICP samples was accepted to the QC filtered database for further rock/pore 

typing analyses. The rejection of samples is due to QC flag 3 caused by low quality MICP 

data or unrealistic Thomeer parameters.  

 

As previously stated, MICP data from samples consisting on lager pieces of CCA plugs is 

preferred. Ideally only these samples should be included in the main database for further 

rock/pore typing analyses. The majority of the MICP samples on Edvard Grieg are end-trims 

or chips. To obtain sufficient data for statistical analyses, it was decided to accept these MICP 

samples. The included samples are accepted after careful QC and thus the uncertainty linked 

to sample size should have been minimized. Still, there will be some uncertainty related to 

sample size. 
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6.1.2 Facies intro  

The rock samples (both CCA and MICP) were assigned facies from the facies log using depth 

shifted sample depth. 151 of the 168 QC filtered MICP samples identifies as four facies. 

Thus, the main focus was given to these facies. The facies are called Aeolian, Fluvial Aeol 

Rework, Alluvial Sand Matrix, and Alluvial Silty Matrix. These are described in Table 6.1. 

 

Facies Abbreviation 

in plots 

Description Facies color 

in plots 

Aeolian Aeol Aeolian sandstone with better 

reservoir quality 

 

Fluvial Aeol 

Rework 

FluvAeolRew Aeolian sandstone with poorer 

reservoir quality  

 

Alluvial Sand 

Matrix 

AlluSdMx Alluvial fan conglomerates with 

matrix of better reservoir quality 

 

Alluvial Silty 

Matrix 

AlluSltMx Alluvial fan conglomerates with 

matrix of poorer reservoir quality 

 

 

6.2 Quality Control of MICP Dataset 

After the databases was developed, QC of the MICP dataset was performed. The aim was to 

investigate the representativeness of the MICP dataset, because a sufficient and representative 

MICP dataset is essential for successful rock/pore typing.  

 

In Figure 6.1a, a cross plot of permeability and porosity of all the CCA samples was made. 

Data points are colored by facies and the lines are FZI-lines. Note that there is a very high 

scatter in the data, also within the facies. The data from each facie is spread across several 

FZI-lines; hence, the FZI plot is not optimal for rock typing. As a result, finding other or 

additional ways to establish improved porosity-permeability relations from MICP data may 

have great potential. Note that there is a tendency that Aeolian samples dominates at higher 

permeability, followed by Fluvial Aeol Rework, Alluvial Sand Matrix and Alluvial Silty 

Matrix from higher to lower permeability, respectively.   

 

Table 6.1: Description of the four main facies. 
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In Figure 6.1, scatter plots of the permeability and porosity measured of all the samples 

measured by CCA were made. There are three plots, one for each database. The colors of the 

data points represent facies. Note that there is a much higher scatter in the data from the CCA 

database compared to the MICP databases. Also note that there are very few MICP samples at 

low porosity and permeability, especially for the MICP samples after QC filter.  

 

 

To be representative, the porosity-permeability distribution from the MICP samples should 

reflect the heterogeneity of the distribution from the CCA samples. The few samples in the 

low porosity-permeability region shows that this region is underrepresented in the MICP 

databases, and hence suggest biased MICP sampling towards best-quality rocks, which might 

lead to bias in the results, so it should be further investigated.  

 

   

 

Figure 6.1: Scatter plots of permeability 

against porosity measured by CCA from (a) 

the CCA database, (b) MICP database 

without QC filter, and (c) MICP database 

after QC filter. The displayed samples are 

colored by facies. The lines are FZI-lines. 

Note that there are high scatter in the 

porosity-permeability relationship, and that 

facies spread across FZI-lines. There are 

very few MICP samples at low permeability 

and porosity. 
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In Figure 6.2 and Figure 6.3, plots of the porosity and permeability measured by CCA data 

are displayed, respectively. Three plots are made in each figure, one for each database. The 

boxes represent the 25th and 75th percentile (P25 and P75), while the line in the box represents 

the median (P50). The outgoing lines, called whiskers, represents the maximum or minimum 

values that does not exceed a distance of 1.5 times the interquartile range (IQR). IQR is the 

range between the 25th and 75th percentile. The boxes are colored by facies. 

 

 

 

 

Figure 6.2: Box plots of porosity measured by CCA from (a) CCA database, (b) MICP 

database and (c) QC filtered MICP database, colored by facies. 

 

Figure 6.3: Box plots of permeability measured by CCA from (a) CCA database, (b) MICP 

database and (c) QC filtered MICP database, colored by facies. 

a b c 

a b c 
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These plots (Figure 6.2 and Figure 6.3) was used to further investigate how the 

representativeness of  the MICP dataset was affected by few MICP samples at low porosity 

and permeability. Note that the P50 values are generally higher for both porosity and 

permeability in the MICP samples, especially after QC filter, and there is generally less 

spread in the data from MICP samples. To be representative for the facies, the MICP dataset 

from each facies should reflect both the porosity and permeability distribution from CCA 

samples. The P50 values, together with the distribution, should be similar, however, this is not 

the case here. 

 

Overall, this QC study suggests biased MICP sampling towards best-quality rocks. For a 

future study, it would recommend selecting more MICP samples in the low porosity-

permeability region to better reflect the CCA database. However, the grid cells used during 

reservoir modeling are coarse and the parameters assigned to the grid is intended to represent 

an average. Thus, it is not necessarily critical that these samples are underrepresented.   

 

6.2.1 Quality Control of MICP Samples from Wells 

Next, the MICP samples from the different wells was investigated, to study whether the MICP 

sample collection were representative of the porosity-permeability distribution of each well.  

 

The study was performed by using scatter plots of permeability against porosity measured by 

CCA shown in Figure 6.4 and Figure 6.5. There are 9 plots, one for each well from which 

MICP samples are collected. The wells are here referred to as well A-I. The colored points are 

the MICP samples surviving QC filter. In addition to the observations made from the QC 

studies above, note that there are very few MICP samples that survives QC filter in the low 

porosity and permeability region, and there are some high permeability MICP samples that 

are removed. Furthermore, in well G and well I, there are very few samples in both low and 

high porosity-permeability region that survives QC, and the samples that do survive QC are 

outliers. 

 

The study suggests that well A-F have a representative collection of MICP samples, if 

disregard the low porosity-permeability region. Furthermore, well G-I does not have a 

representative collection of MICP samples.   
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Figure 6.4: Plots of permeability against porosity measured by CCA for 6 of the 9 wells with 

MICP samples, A-F. Grey points are CCA data, black hollow circles are MICP samples, and 

colored points are MICP samples surviving QC. 
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6.2.2 Quality Control of MICP Samples from Facies 

The next QC of the MICP dataset was performed by investigating the MICP samples from the 

different facies. To study whether the MICP sample collection were representative of the 

porosity-permeability distribution of each facies.  

 

In Figure 6.6, scatter plots of the permeability and porosity of all the samples measured by 

CCA was made. There are four plots, one for each facies. The colored points are the MICP 

samples surviving QC. Note that there are very few MICP samples at the low porosity-

permeability, and the majority are removed by QC filter. There is a much higher scatter in the 

porosity-permeability distribution form the CCA samples (grey dots) than the MICP samples 

for Alluvial Sand Matrix and Alluvial Silty Matrix.  

Figure 6.5: Plots of permeability against 

porosity from CCA measurement for 6 of 

the 9 wells with MICP samples, G-I. Grey 

points are CCA data, black hollow circles 

are MICP samples, and colored points 

are MICP samples surviving QC. 
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Non-weighted regression lines were included to the scatter plots in Figure 6.6, to investigate 

how the MICP sample collection was affected by QC filter. There are two regression lines for 

each facie, one for all MICP samples (colored line) and one for MICP samples surviving QC 

(black line). Note that the two regression lines should overlap for the QC filtered MICP 

samples to reflect all MICP samples.  

 

For Aeolian facies (Figure 6.6a) the regression line from all MICP samples (yellow line) 

overlaps with the QC filtered MICP samples (black line). The QC filtered samples reflects the 

heterogeneity in the porosity-permeability distribution from CCA samples, when disregards 

the lower porosity-permeability region.  

 

For Fluvial Aeol Rework, the observations were similar to that of Aeolian. The two regression 

lines are quite similar, and the selected samples capture the heterogeneity in the porosity-

permeability distribution from CCA quite well, when disregards the lower porosity-

permeability region. 

 

For Alluvial Sand Matrix (Figure 6.6c) the observations were different. The two regression 

lines are quite different. The MICP samples from this facies has the poorest reflection of the 

porosity-permeability distribution from the CCA database, and many of the MICP samples 

are outliers.  

 

For Alluvial Silty Matrix (Figure 6.6d) the regression lines are more similar than that for 

Alluvial Sand Matrix. However, the regression lines are slightly offset to lower increase in 

permeability with increasing porosity compared to the CCA samples. 
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Figure 6.6: Plots of permeability against porosity measured by CCA for (a) Aeolian, (b) 

Fluvial Aeol Rework, (c) Alluvial Sand Matrix, and (d) Alluvial Silty Matrix. The grey points 

are CCA samples, the hollow circles are MICP samples removed by QC, and the colored 

points are the QC filterd MICP samples. The colored line is the regression from the MICP 

database, while the black line is the regression from the selected (QC filtered) samples.  
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The number of MICP samples by 

facies for each database were 

investigated and are listed in Table 

6.2. Note that all facies meet the 

minimum requirement of 10 MICP 

samples for statistical validity. 

There is little reduction in the 

number of samples per facies for 

Aeolian Sand Matrix and Fluvial 

Aeol Rework, and high reduction in the number of samples per facies for Alluvial Sand 

Matrix and Alluvial Silty Matrix. Highest reduction for Alluvial Sand Matrix.  

 

Overall, this study showed that the MICP datasets from Aeolian and Fluvial Aeol Rework are 

representative, if disregard the low porosity-permeability region. The number of MICP 

samples from these to facies, are much higher than the minimum requirement for statistical 

validity. There is higher uncertainty related to the MICP datasets from Alluvial Sand Matrix 

and Alluvial Silty Matrix, especially the former. Although the number of samples per facies is 

greater than the minimum requirement for statistical validity, the great reduction in samples 

after QC filter together with poorer reflection of the porosity-permeability distribution, leads 

to uncertainty regarding the representativeness. Hence, any results from these two facies, 

especially Alluvial Sand Matrix, should be used with caution.  

 

6.3 Review of the Curve Fitting Procedures 

Furthermore, a comparison study between the two MICP curve fitting procedures: Thomeer 

hyperbolas and Gaussian distribution functions, was performed. The aim of the study was to 

investigate whether one model proved to be significantly better than the other based on 

parametrization of 273 samples.  

 

Pore-throat size distribution plots was used to evaluate the curve fitting results, typical 

examples are shown in Figure 6.7 and Figure 6.8. There are two plots in each figure, one for 

each curve fitting result. The points are laboratory measurements, and the lines are curve 

fitting results. Note that for samples with good sorting (Figure 6.7) Thomeer model provides 

Table 6.2: Number of samples by the four main facies 

for each database. 

Database 

Number of samples by facies 

Aeolian 

Fluvial 

Aeol 

Rework 

Alluvial 

Sand 

Matrix 

Alluvial 

Silty 

Matrix 

MICP 85 54 70 32 

MICP 

(QC filter) 
73 43 15 20 
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better result than Gaussian model, and for samples with poor sorting (Figure 6.8) Gaussian 

model provides a better result than Thomeer model.  

 

  

 

  

 

The study showed that Thomeer model provided good curve fitting results on MICP data from 

samples with good sorting, i.e. less heterogeneous pore-throat distribution (Figure 6.7a). For 

samples with poor sorting, i.e. heterogeneous pore-throat distribution, the model provided 

poor results (Figure 6.8a). 
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Figure 6.7: Plots of a typical pore-throat size distribution where (a) Thomeer model 

provides a very good match, (b) Gaussian model provides poor match. The points are 

MICP measurenments converted to pore-throat sizes, and the lines are curve matches. Note 

that Gaussian model  needs three curves to match the two pore systems evident in the data.  

Figure 6.8: Plots of a typical pore-throat size distribution where (a) Thomeer model 

provides a poor match, (b) Gaussian model provides a better match. The points are MICP 

measurenments converted to pore-throat sizes, and the lines are curve matches. 

a b 

a b 
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The study also showed that Gaussian model did not provide good curve fitting results on 

MICP data from samples with good sorting, i.e. less heterogeneous pore-throat distribution 

(Figure 6.7b). For samples with poor sorting, i.e. heterogeneous pore-throat distribution, the 

model provided poor results (Figure 6.8b).  

 

Aeolian and Fluvial Aeol Rework are aeolian sandstones with relatively good sorting. For 

these samples the Thomeer model generally provided good curve fitting results. Alluvial 

Sandy Matrix and Alluvial Silty Matrix are alluvial fan conglomerates with relatively poor 

sorting. For these samples the Thomeer model generally did not provide good curve fitting 

results.  

 

The QC filter used on the MICP samples were based on Thomeer curve fitting results. This 

explains why the majority of the MICP samples from alluvial fan conglomerates, in Figure 

6.6, were rejected by QC filter. In addition, why the majority of MICP samples from aeolian 

sandstones, in Figure 6.6, survived QC filter.  

 

Overall, this study shows that parametrization of MICP data using Thomeer model generally 

provides good results of MICP data from aeolian sandstones in Edvard Grieg field. It does 

not, however, provide good results on the majority of MICP data from alluvial fan 

conglomerates. Hence, a separate workflow or a separate QC flag (unaffected by Thomeer 

model) for the Gaussian model are recommended for future MICP parametrization studies of 

alluvial fan conglomerates. Furthermore, the curve matching procedures are time-consuming 

by using the proposed workflow. Hence, a more automated access, while maintaining the 

sample-by-sample QC are recommended for future studies. 

 

6.4 Results from Database 

After the curve fitting procedures review of the curve fitting procedures was finalized, the 

data from the resulting QC filtered MICP database were thoroughly examined.  

 

The MICP data from each sample was parameterized using Thomeer hyperbolas and modified 

Gaussian error functions. The results from both models were included in the MICP databases. 

Due to time constraints the Thomeer parameters was chosen for further investigations, since 

the workflow is mainly based on Thomeer results.  
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A total of 293 Thomeer hyperbolas was used to curve fit the MICP data from the 151 QC 

filtered MICP samples from the four facies, that is 293 𝑃𝑑, 𝑉𝑏∞, and 𝐺 values. In Table 6.4, a 

table of the pore system modality of the different facies was made. The pore system modality 

is referred to as the number of Thomeer hyperbolas (pore systems) required to fit the MICP 

data from each sample. Note that all facies mainly have bimodal pore-throat size distribution, 

which is probably related to the heterogeneous origin of the Edvard Grieg field.   

 

 

 

 

 

 

 

 

 

 

 

6.4.1 Comparison of MICP and CCA Porosity 

The CCA (He) porosity and the porosity derived from MICP was investigated. 

 

In Figure 6.9, a plot of CCA porosity against MICP porosity was made. The red points are the 

data, the dashed line is the one-to-one (1-1) relationship and the black line is a linear 

regression line. Note that the CCA porosity is generally higher than MICP porosity (possible 

reasons are listed in Table 6.4), however the correlation factor (R2) is high.  

Facies 
Number of pore systems [%] 

1 2 3 

Aeolian 16.4 75.3 8.2 

Fluvial Aeol Rework 20.9 62.8 16.3 

Alluvial Sand Matrix 13.3 53.3 33.3 

Alluvial Silty Matrix 30.0 60.0 10.0 

Table 6.3: Pore system modality of the different facies.  
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6.4.2 Comparison of MICP and CCA Permeability 

Next, the Thomeer permeability was calculated from the Thomeer parameters from the first 

pore system, and then compared with CCA (𝑘𝑙) permeability. 

 

In Figure 6.10, a scatter plot of Thomeer permeability and permeability measured by CCA 

was made. The green triangles are datapoints, the black line is regression. Note that the CCA 

permeability tends to be slightly higher than Thomeer permeability, and that the correlation 

factor (R2) is high. 

 

Based on the observation that CCA permeability tends to be higher than Thomeer 

permeability, attempts were made to include the second pore system to the Thomeer 

permeability calculations. The attempts did not provide significant improvement, and the high 

R2 of 93 % strongly suggests that the first pore system has primary control on permeability. 

 

Figure 6.9: CCA (He) porosity vs MICP 

porosity for QC filtered samples. The red 

points are data, the stipled line is 1-1 

relationship, and the black line is a linear  

regression line. 

Table 6.4: Some possible reasons why CCA 

(He) porosity overestimates MICP porosity. 
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6.4.3 MICP Curves 

The closure-corrected MICP curves and corresponding pore-throat size distributions was 

investigated to evaluate whether the different facies characteristics was reflected in the MICP 

data. Among other, to investigate whether the MICP dataset from one facies are sufficiently 

homogeneous to assign one unique rock type to the facies, or whether it will be necessary to 

divide the facies into several rock types. 

 

In Figure 6.11, a log-log plot of MICP curves was made, colored by facies. Note that there is 

a large spread in the capillary pressure curves, also within the facies, however tendencies of 

groupings are evident. Aeolian tend to group in the low MICP for a given bulk volume 

occupied by mercury in [%], 𝑉𝑏. Followed by Fluvial Aeol Rework, Alluvial Sand Matrix and 

Alluvial Silty Matrix from lower to higher MICP for a given 𝑉𝑏, respectively.  

 

In Figure 6.12, a plot of pore-throat size distributions was made, colored by facies. Note that 

there is a large spread in the pore-throat size distributions, also within the facies, and the same 

tendencies of groupings are evident.  
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Figure 6.10: Log-log plot of CCA permeability against Thomeer permeability. The Thomeer 

parameters from the first pore system was used to calculate Thomeer permeability. 
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This study suggests that the MICP curves are not necessarily sufficiently homogeneous for 

assigning one unique rock/pore type to describe one facies.  

 

  

 

6.4.4 Thomeer Median (P50) Hyperbolas  

Thomeer curve fitting parameters from the first pore system was studied. The aim was to 

investigate whether there was a distinct connection between Thomeer parameters and facies. 

 

In Figure 6.13, a plot of MICP against 𝑉𝑏 was made. There are four Thomeer hyperbolas, one 

for each facie. The Thomeer hyperbolas was defined by the P50 Thomeer parameters from the 

first pore system, values are listed in Table 6.5. Note that there is a clear distinction between 

the Thomeer P50 hyperbolas for the different facies. Aeolian facies show the most optimistic 

MICP curve, while Alluvial Silty Matrix shows the least optimistic. In Figure 6.14 the 

Thomeer P50 hyperbolas was converted to saturation height functions, which illustrates how 

the non-wetting fluid behavior with increasing height above FWL.  
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Figure 6.11: MICP curves colored by the 

facies considered from QC filtered samples. 

Figure 6.12: Pore-throat size distribution 

colored by the facies considered from QC 

filtered samples. 
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Aeolian (yellow curve) has the lowest P50 for 𝑃𝑑,1 and 𝐺1, i.e. largest pore-throats and best 

sorting, compared to the other facies. Combined with highest 𝑉𝑏∞,1, Aeolian has higher 

permeability than the other facies; see Table 6.5.   

 

Fluvial Aeol Rework (red curve in Figure 6.13) has the second lowest P50 for both 𝑃𝑑,1 and 

𝐺1, and the second highest 𝑉𝑏∞,1. Hence, the facies show poorer sorting, smaller pore-throat 

sizes and lower reservoir quality than Aeolian, but better sorting than the alluvial fan 

conglomerates. 

 

Alluvial Sand Matrix (green curve in Figure 6.13) has the second highest P50 for 𝑃𝑑,1 

together with second lowest 𝑉𝑏∞,1. Consequently, the facies show better reservoir quality with 

respect to permeability than Alluvial Silty Matrix, as expected. Despite having slightly higher 

𝐺1 than Alluvial Silty Matrix. 𝑃𝑑,1 seems to have the main control over permeability. 

 

Alluvial Silty Matrix (grey curve in Figure 6.13) has the highest P50 for 𝑃𝑑,1 together with the 

lowest 𝑉𝑏∞,1. Consequently, it is the facies with generally lowest reservoir quality with 

respect to permeability. Despite the fact that the P50 𝐺1 value is slightly lower than for 

Alluvial Sand Matrix. Alluvial Silty Matrix generally shows a slightly more homogeneous 

pore-throat distribution, which can also be observed from Table 6.4, than Alluvial Sand 

Matrix, but with smaller pore-throats explaining the lower permeability.   
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Figure 6.13: Thomeer hyperbolas 

constructed from the P50 Thomeer 

parameters for the first pore system, colored 

by facies. The Thomeer hyperbola is 

displayed in a linear plot of MICP against 

𝑉𝑏. 

Figure 6.14: Plot of Thomeer P50 

hyperbolas converted to saturation height 

functions. Height above FWL against 

normalized non-wetting saturation. 
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In Figure 6.17, Thomeer P50 hyperbolas was 

superimposed on the MICP plot from Figure 6.11. 

Colored by facies, highlighted lines are P50 

hyperbolas. Note that the P50 hyperbolas are able to 

reflect the principal differences of the facies. The 

red dashed line is Maximum HC column height and 

was included to demonstrate the most essential 

parts of the capillary pressure curve.  

 

Overall, it seems to be potential to investigate the 

possibility of using the Thomeer parameters for 

rock/pore-typing, like intended in this study, 

especially 𝑃𝑑. There is also potential for a later 

study to investigate the possibilities for application 

of the Thomeer hyperbolas to saturation-height 

modeling. The study could start with comparison of 

the P50 Thomeer models for each facies to the existing model.  

 

Facies 
𝑃𝑑,1 

[psi] 

𝑉𝑏∞,1 

[%] 

𝐺1 

 

𝑘𝑇ℎ𝑜𝑚𝑒𝑒𝑟  

[mD] 

𝜑𝑀𝐼𝐶𝑃 

[-] 

𝑘𝐾𝑙  

[mD] 

𝜑𝐻𝑒 

[-] 

Aeolian 3.9 25.1 0.25 1147.2 0.28 1558.0 0.30 

Fluvial 

Aeolian 

Rework 

5.6 20.7 0.37 215.5 0.23 292.2 0.23 

Alluvial 

Sand 

Matrix 

5.7 17.2 0.48 154.5 0.21 312.7 0.21 

Alluvial 

Silty 

Matrix 

10.9 15.4 0.46 10.9 0.18 11.4 0.19 

 

 

Table 6.5: P50 for QC filtered MICP samples 

Figure 6.15: The Thomeer P50 curves for the first 

pore system, superimposed on MICP curves 

colored by facies from QC filtered samples, in 

log-log space. The red dashed line is maximum 

HC column height converted to mercury capillary 

pressure.  
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6.4.5 Thomeer Parameters  

The Thomeer parameters from the first pore system were studied. The study was conducted to 

evaluate whether the Thomeer parameters could provide cut-offs for rock/pore typing.   

 

6.4.5.1 Cluster Analysis of Thomeer Parameters 

First, investigation of correlation between 𝑃𝑑,1 and 𝐺1, i.e. displacement pressure with sorting, 

was performed. Simple cluster analysis was used for the investigation. The result is shown in 

Figure 6.16, the boxes represents P25 and P75 values, while the dashed lines represents P10 

and P90 values. There are four clusters, one for each facies. Note that there is a clear 

distinction between Aeolian and Alluvial Silty Matrix, while there is less distinction between 

Fluvial Aeol Rework and Alluvial Sand Matrix.  

 

Second, correlation between 𝑃𝑑,1 and 𝑉𝑏∞,1, i.e. displacement pressure with effective pore 

volume of the first pore system, was performed. The same type of cluster analysis as the 

above study was used. The result is shown in Figure 6.17. There are four boxes, one for each 

facies. The observations are similar to the study above, there is a clear distinction between 

Aeolian and Alluvial Silty Matrix, while there is less distinction between Fluvial Aeol 

Rework and Alluvial Sand Matrix.  
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Figure 6.16: 𝑃𝑑,1 is plotted against 𝐺1 for 

simple cluster analysis. The boxes represent 

P25 and P75, while the lines are P10 and 

P90.  

Figure 6.17: 𝑃𝑑,1 is plotted against 𝑉𝑏∞,1 

for simple cluster analysis. The boxes 

represent P25 and P75, while the lines are 

P10 and P90.  
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6.4.5.2 Comparison of CCA Permeability and Thomeer Parameters 

Next, comparison of CCA permeability and the Thomeer parameters from the first pore 

system 𝑃𝑑,1, 𝑉𝑏∞,1 and 𝐺1 was performed. 

 

In Figure 6.18, a scatter chart of CCA permeability and the Thomeer parameters from the first 

pore system was made. There are three plots, one for each Thomeer parameter, colored by 

facies. Note that there is highest correlation between CCA permeability and 𝑃𝑑,1. Increase in 

CCA permeability with increase in largest pore-throat. There is a higher scatter in the relation 

between CCA permeability and 𝑉𝑏∞,1 and 𝐺1, highest for 𝐺1. However, they follow the 

expected trends: the permeability increased with decreasing 𝐺1 and with increasing 𝑉𝑏∞,1. 

Moreover, note that all facies follow the same trends.  

 

Similar to the findings of (Clerke et al., 2008), this study suggests that the major control on 

permeability is the Thomeer parameter, 𝑃𝑑,1. It is difficult to separate the observations by 

facies other than the tendencies observed from earlier, namely that Aeolian tends to dominate 

the high permeability region, followed by Fluvial Aeol Rework, Alluvial Sand Matrix and 

Alluvial Silty Matrix from higher to lower permeability regions, respectively. 

 

  

 

Figure 6.18: Graphs of CCA permeability 

against Thomeer parameter for the first 

pore system (a) Displacement pressure, 𝑃𝑑,1, 

(b) Bulk volume occupied by mercury at 

infinity pressure, 𝑉𝑏∞,1, and (c) Pore 

geometrical factor, 𝐺1. 
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A similar study was conducted to compare the curve fitting parameters of the Thomeer model 

and the Gaussian model, to investigate whether one model would prove to be significantly 

better than the other. The study is included in Appendix A.  

 

6.4.5.3 Two-Term Permeability Model 

To further investigate whether the Thomeer parameter, 𝑃𝑑,1, could be used to predict 

permeability, the two-term permeability model proposed by Clerke et al. (2008) was 

investigated.  

 

To modify the empirical constants to fit data form Edvard Grieg field, goodness-of-fit tests 

were performed from the MICP dataset used in this thesis. The empirical constants were 

found by to be a = −2.42, b = 1.35 and c = 0.112. The resulting modified two-term 

permeability model became:  

 

Log(kpredicted) = −2.42 + 1.35 × Log(𝑑𝑚𝑎𝑥) + 0.112 × (𝜑), 

 

where k is the predicted permeability in [mD], 𝑑𝑚𝑎𝑥 is maximum pore-throat diameter 

calculated from 𝑃𝑑,1 in [µm] and 𝜑 is the porosity in [%].  

 

In Figure 6.19, a scatter chart of predicted two-term permeability and CCA permeability was 

made. Black points are data and the dashed red line is the 1-1 relationship. Note that the 

predicted permeability gives very good predictions over several orders of magnitude in 

permeability. There is a high correlation, with 𝑅2 of 85%. This suggests that the model works 

well also for clastic reservoirs.  

 

The two-term permeability model reduces the number of unknowns compared to Thomeer 

permeability equation, with proper calibration, log-derived porosity may be used to predict 

permeability. If so, 𝑃𝑑,1 is the only unknown. This study suggests that if a clear link is 

established between 𝑃𝑑,1 and a continuous value in wells that can be extrapolated to 3D, the 

two-term model may have potential for improved permeability predictions for the Edvard 

Grieg field.  
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6.5 Rock/Pore Typing Attempts  

After the MICP dataset were closely investigated, simple rock/pore typing attempts was 

performed. The aim was to investigate whether rock/pore types based on MICP data could 

establish improved relationships between porosity and permeability on Edvard Grieg field. 

First, two rock/pore typing attempts based on the Thomeer parameter, 𝑃𝑑, were performed, 

followed by an attempt based on the mode of the pore-throat size distribution.  

 

6.5.1 Rock/Pore Typing Methods Based on Parametrizations of MICP Curves  

After closely investigation of Thomeer parameters, there was established that there was 

highest correlation between the Thomeer parameter, 𝑃𝑑, and permeability. Based on this 

observation it was investigated whether the Thomeer parameter, 𝑃𝑑, could be used as cut-off 

for rock/pore typing. First, a study based on the displacement pressure from the first pore 

system, 𝑃𝑑,1, was performed. Followed by a study inspired by Clerke et al. (2008) Porositons 

groups. 
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Figure 6.19: Predicted permeability using Clerke et al. (2008) two-term permeability model 

with modified empirical constants for the data from Edvard Grieg versus measured (CCA) 

permeability. 
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6.5.1.1 Rock/Pore Typing Based on Thomeer Parameter, 𝑃𝑑,1 

First, rock/pore typing attempt based on Thomeer parameter, 𝑃𝑑,1, was performed. 𝑃𝑑,1 was 

converted to the size of the largest pore-throat (𝑟𝑚𝑎𝑥,1), to be more relatable.  

 

In Figure 6.20, a scatter chart of permeability and porosity measured by CCA was made. The 

points are colored by rock/pore type based on 𝑟𝑚𝑎𝑥,1 cut-off values, listed in Table 6.6. Note 

that groups show order, especially the two groups defined by smallest 𝑟𝑚𝑎𝑥,1, namely group 3 

and 4. There is a higher scatter between the two groups with greatest 𝑟𝑚𝑎𝑥,1. Overall, 

relatively distinct porosity-permeability trends are observed.  

 

The definition of the groups was defined by observations and trials from the cumulative 

frequency of 𝑟𝑚𝑎𝑥,1 (Figure 6.21), so it should be improved for proper analyses. However, the 

aim of this study was to evaluate whether it has potential for rock/pore typing, more advanced 

analyses tools are necessary to establish rock/pore types. 

 

 

 

 

 

 

Figure 6.20: Graph of permeability against porosity, with colors 

from grouping of samples based on Thomeer parameter 𝑃𝑑,1. 

The grey circles are CCA data and the lines are FZI, included 

as a reference. 
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6.5.1.2 Method Based on Thomeer Parameter, 𝑃𝑑 

Next, a study based on Clerke et al. (2008) Porositons grouping method was performed. The 

method involves grouping after modes of 𝑃𝑑 distribution. Thomeer parameter, 𝑃𝑑, from up to 

three pore systems for each sample were used for grouping. 𝑃𝑑 is converted to size of the 

largest pore-throat for pore system i (𝑟𝑚𝑎𝑥,𝑖) to be more relatable.  

 

In Figure 6.22, a scatter chart of permeability and porosity measured by CCA was made. The 

points are colored by rock/pore type based on combinations of 𝑃𝑑 values for each sample. 

Note that the general trends are quite similar to that observed for rock/pore typing attempt 

based on 𝑃𝑑,1, in Figure 6.20. 

 

The definitions used for the classification of each pore system are listed in Table 6.7, and the 

definition of the groups is present in Figure 6.22. An example, if the first pore system 

classifies as 2 and the second as 3, then the sample has combination 2-3, and belongs to group 

E.  

 

The definition of the classifications was defined by observations and trials from the 

cumulative frequency of  𝑟𝑚𝑎𝑥,𝑖, shown in Figure 6.23, so it should be improved for proper 

analyses. However, the results of the grouping after 𝑃𝑑 is quite similar to grouping after 𝑃𝑑,1. 

Table 6.6: Definitions of groups based on size 

of the larges pore-throat. 

Group Symbol Definition 

1 
 

Log(𝑟𝑚𝑎𝑥,1) > 1.4 

2 
 

1 < Log(𝑟𝑚𝑎𝑥,1) < 1.4 

3 
 

0.4 < Log(𝑟𝑚𝑎𝑥,1) < 1 

4 
 

Log(𝑟𝑚𝑎𝑥,1) < 0.4 

Figure 6.21: Histogram of cumulative 

frequency [%] of 𝑟𝑚𝑎𝑥,1 calculated from 𝑃𝑑,1. 
Selected 𝑟𝑚𝑎𝑥,1 limits for grouping are 

highlighted.   
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Based on this observation, the grouping after 𝑃𝑑,1 may be preferred rather than 𝑃𝑑, since it 

only contain one cut-off parameter.  

 

 

 

 

 

 

Figure 6.22: Graph of permeability against porosity, with petrophysical 

rock types based on combinations of the Thomeer parameter 𝑃𝑑, from each 

pore system. The grey circles are CCA data and the lines are FZI, added as 

a reference. 

Table 6.7: Classifications of pore systems 

(up to three) for each sample. 

Classification Definition 

(i = pore system, 1-3) 

1 
Log(𝑟𝑚𝑎𝑥,𝑖) > 1.17 

2 
0.43 < Log(𝑟𝑚𝑎𝑥,𝑖)  < 1.17 

3 
-0.53 < Log(𝑟𝑚𝑎𝑥,𝑖)  < 0.43 

4 
Log(𝑟𝑚𝑎𝑥,𝑖) < -0.53 

  

 

Figure 6.23: Cumulative frequency [%] of 

𝑃𝑑,𝑖 converted to 𝑟𝑚𝑎𝑥,𝑖. 
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6.5.2 Rock/Pore Typing Based on Mode of Pore-Throat Size Distribution 

Rock/pore typing attempt based on the mode of the pore-throat distribution was performed.  

 

In Figure 6.24, a scatter chart of permeability and porosity measured by CCA was made. The 

points are colored by rock/pore type based on mode of pore-throat size distribution. Note that 

there is a relatively clear distinction between the rock types, especially if one combines the 

Micro and Meso groups.  

 

The cut-off values used for each group are listed in Table 5.3. The values were selected based 

on the pore-throat size definitions given in Table 5.3. Note that the nano size is added to the 

Micro group.  
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Figure 6.24: Graph of permeability against porosity, with petrophysical rock types based on 

mode of pore-throat size distribution. The grey circles are CCA data and the lines are FZI, 

added as a reference.Porosity-permeability rock. FZI lines are added as reference.  
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Overall, these rock/pore typing attempts suggest that parametrization of MICP curves may 

have potential for rock/pore typing of the complex, multi-modal formations in Edvard Grieg 

field, but future studies are needed to confirm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.8: Definitions of groups based on mode of pore-throat distribution.  

Group Symbol Definition [µm] 

Micro  𝑟𝑚𝑜𝑑𝑒 < 0.5  

Meso  0.5 < 𝑟𝑚𝑜𝑑𝑒 < 2 

Macro  2 < 𝑟𝑚𝑜𝑑𝑒 < 10 

Mega  𝑟𝑚𝑜𝑑𝑒 > 10 
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7 Conclusions and Future Recommendations 

This study aimed to investigate whether parametrization of MICP data could be used for 

rock/pore typing of the complex, multi-modal formations in Edvard Grieg field. Among other 

applications, this could improve the predictions of the permeability distribution in this field. 

In this study, 273 MICP samples were analyzed, including QC, with lithology ranging from 

aeolian sandstones to alluvial fan conglomerates. The parametrizations were conducted using 

Thomeer hyperbolas and modified Gaussian error functions. Special attention was given to 

QC of the MICP raw data, parametrizations, and the resulting MICP dataset.  

 

7.1 Conclusions 

The following conclusions can be drawn from the results: 

• The study identified biased MICP sampling towards best-quality rocks. An implication 

of this is the possibility that any MICP-based rock types might not be representative of 

the formations in Edvard Grieg field.  

• The study also identified a critical weakness of the Thomeer curve fitting procedure: it 

is sensitive to heterogeneous pore-throat distributions, resulting in unrealistic Thomeer 

parameters. These findings clearly indicate that the Thomeer curve fitting procedure is 

not suitable for evaluation of alluvial fan conglomerates, since the complex 

microstructure of these formations is often associated with heterogeneous pore-throat 

distributions.  

• The results suggest that modified Gaussian error functions could be a better alternative 

for MICP parametrization of MICP data from Alluvial fan conglomerates than the 

Thomeer curve fitting procedure, but further investigations are needed. On the other 

hand, the Thomeer hyperbolas provides good curve fitting results for samples with less 

heterogeneous pore-throat distributions, such as aeolian sandstone. 

• In the analyzed data, there was a very high correlation between measured permeability 

and permeability estimated using the Thomeer (1983) permeability equation. There was 

also a high correlation between measured permeability and the Thomeer parameter for 

displacement pressure (𝑃𝑑,1). In addition, the two-term permeability model proposed by 

Clerke et al. (2008) with modified empirical constants for the data from the Edvard 

Grieg field provided good results, reducing the number of unknowns to maximum pore-

throat size and porosity. This suggests that permeability can be predicted from log-

derived porosity if it is possible to find a clear link between maximum pore-throat size 
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and a parameter that can be extrapolated in 3D models, like facies. Further 

investigations are needed to establish such relations.  

• Results from simple rock/pore typing attempts suggest that the Thomeer parameter 

equivalent to largest pore-throat radius, could be used as cut-off parameter for rock/pore 

typing of the complex, multi-modal formations in Edvard Grieg field, but future studies 

are needed to confirm. 

 

Overall, the study suggests that rock/pore typing based on parametrization of MICP data may 

be useful for the Edvard Grieg field, but future studies are needed to confirm.  

 

7.2 Future Recommendations 

Future studies are recommended and might explore: 

• Repeating the study with a separate QC filter for curve fitting results from modified 

Gaussian error functions, for potentially better evaluation of the alluvial fan 

conglomerates in the Edvard Grieg field. 

• A more automated workflow while maintaining the sample-by-sample QC, to increase 

analysis speed. 

• Additional MICP sampling, to gather a more representative MICP database.  

• Using more advanced analyses to identify rock/pore types, like in porosity-permeability 

space or 3D space of the Thomeer (or Gaussian) parameters. 

• Potentially utilizing Thomeer parameter results for improved water saturation modeling. 
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Appendix A: Comparison Study of Curve Fitting Parameters 

A small comparison study of the curve fitting parameters of the Thomeer model and the 

Gaussian model was performed to investigate whether one model would prove to be 

significantly better than the other. The study was conducted using scatter plots of permeability 

measured by CCA against the curve fitting parameters of the two models. This is illustrated in 

Figure A.1. There are six plots, one for each curve fitting parameter. The grey hollow circles 

are data points, while the red lines are non-weighted regression lines.  

 

Permeability measured by CCA is plotted against the Thomeer fitting parameter 𝑃𝑑,1 and the 

Gaussian fitting parameter 𝑃𝑚,1 in Figure A.1 (a) and (d), respectively. The correlation factor 

(R2) is higher for 𝑃𝑚,1 than 𝑃𝑑,1. However, the trends are similar and the lower R2 for 𝑃𝑑,1 is 

probably a result of unweighted regression due to there being slightly more spread in the data 

from the Thomeer model.  

 

Permeability measured by CCA is plotted against the Thomeer fitting parameter 𝑉𝑏∞,1 and the 

Gaussian fitting parameter 𝑉𝑏∞,1 in Figure A.1 (b) and (e), respectively. The trends are similar 

for both models. There is slightly more spread in the data from Thomeer. R2 is low for both 

models.  

 

Permeability measured by CCA is plotted against 𝐺1 and S1 in Figure A.1 (c) and (f), 

respectively. R2 is low for both models. 

 

In conclusion, this study suggests that there is not a significant difference in the correlations 

between permeability and the curve fitting parameters of the Thomeer model compared to the 

Gaussian model, at least for the samples investigated from the QC filtered MICP database. 

The QC process described in Chapter 5.1 is based on Thomeer curve fitting results, so these 

parameters were used in further analyses.  
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Figure A.1: Permeability measured by CCA is plotted against Thomeer parameters (a) 𝑃𝑑,1, 

(b) 𝑉𝑏∞,1, and (c) 𝐺1, respectively. Permeability is plotted against modified Gaussian 

parameters in (d) 𝑃𝑚,1, (e) 𝑉𝑏∞,1, and (f) 𝑆1 , respectively. The grey hollow circles are data 

points while the red lines illustrate the trend. 
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