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Abstract

Robotics, AI and automation; search for these words and two things become apparent. An
era of automation is upon us, but even so there are still some simple tasks that grinds it
to a halt, e.g. picking and placing objects. These simple tasks require coordination from a
robot, and object detection from a computer vision system. That’s not to say that robots
are incapable of picking up objects, as the simple and organised cases have been solved
some time ago. The problems occur in cases where there are no order, in other words
chaos. In these cases it is beneficial to detect and find the pose of the object, so that it
can be picked up and packed while having full control over the position the object was
placed in. This thesis is written at the behest of Pickr.ai, a company looking to automate
the picking and packing for retail businesses.

The objective of this thesis is to evaluate available pose estimating methods, and if possible
single out one that is best suited for the retail environment. Current state of the art
methods that are capable of estimating the pose of objects utilise convolutional neural
networks for both detection and estimation. The leading methods can achieve accuracy
upwards of the high 90% on pretrained objects. The case with retail is that the volume of
available wares may be so large that training on each item is prohibitive. Therefore the
testing done has mostly been aimed at the method’s generalisability, whether they can
detect objects without prior training specific for the object.

A few different methods with varying solutions were examined, from the simpler pure
object detectors to two stage 6D pose estimators. Unfortunately none of the methods can
be deemed appropriate for the task as it currently stands. The methods do not recognise
new objects, and the improvement from limited training does not improve the scores
significantly. However, by applying the approaches that are incorporated in the other
methods, it may be possible to develop an appropriate new pose estimator capable of
handling a retail environment.
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Chapter 1

Introduction

This chapter serves as an introduction into the content of the thesis. It presents the

problem and provides background information, allowing for understanding about how the

problem came to be and why it needs to be solved.

1.1 Motivation

1.1.1 A More Automated World

The world is getting increasingly automated, with everything from self driving cars to

storage facilities that require little to no aid from workers. The benefits of a robotic

workforce are many. They are accurate and flexible, and can be adapted to other uses

through for example switching the end effector1. Robots are also cost effective and can

work day and night. They are actually so cost competitive that industries known for being

low cost are looking to expand their robotic workforce [1]. The benefits are many and

the possibilities increasing [2]. With this in mind it makes sense to pursue technology

and science that can follow this trend, and for companies to look for opportunities to

automate. Online shopping companies like Amazon [3] and Komplett [4] are looking to
1E.g. switching from a gripper to vacuum suction.

1
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automate as much as possible. As others before them [3, 5], a small start up company by

the name of Pickr.ai is looking to do both automated storage and delivery.

1.1.2 Pickr.ai

Pickr.ai [6] is a startup company located on Forus, Norway. They are approaching online

shopping and logistics with the intention of cutting costs across the whole value chain.

Their current focus is on automating entire warehouses without the need for a complete

overhaul and redesign. The intent is to increase profit on online sales such that even low

margin products become profitable.

An example of how the process could work would be something akin to this:

An order is received by the warehouse and the system gets to work planning pick order

and locates where the different items are. Different robots are activated and move into

position in front of the boxes containing the different wares. A camera attached to the

robot provides the visuals needed to locate the items. The system uses a method to locate

and estimate the pose of the system. From there a pick point is generated that the robot

places its vacuum end effector to and picks up the item. Since the system knows the size of

the item, it can utilise a packing algorithm to plan where to place it in the order bin. The

order bin travels around the warehouse and is filled with wares pertaining to the order.

The items are packaged and the order is now ready for delivery, all done automatically.

In the future this will be a smaller part of the larger process exemplified in Figure 1.2.

1.2 Problem Definition

The assignment, paraphrased, as defined by Pickr.ai: "Currently a human workforce is

needed for the cost and time consuming picking and packing process. Therefore a fully

automated system is in development that uses a gantry robot2, with a single depth camera

mounted on the arm to provide visual input. The goal is to evaluate possible methods of

locating an item through the use of images of the item within a standardised scene."
2Cartesian three axis robot with two additional rotational joints.
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More specifically for this thesis is the problem of estimating the pose of a given object

given little to no prior knowledge. This was chosen as a starting point since there are

no guarantees that sufficient knowledge about the object can be acquired. A suggested

solution should surpass earlier methods, and/or add in extended usability. The method(s)

put forth should give information about the pose of the object, since further functions

rely on this information. The intention of this thesis is not to create a new method, but

evaluate methods already available. A picture of the robot can be seen in Figure 1.1.

The proposed methods will also be subjected to some constraints that may reduce their

usability:

• Should work on a wide range of objects and be adaptable: Optimally the

proposed method will be able to recognise, or at least handle, a wide range of

products. It should therefore be as general as possible, or trained to work in many

situations. A solution that only works on a few objects will be regarded as sub par,

unless it still surpasses the baseline method. Expanding on that idea, it should be

adaptable to more object types if need be.

• Time, work and upkeep: Adapting the method to new objects should not require

too much time. This is purposefully left vague since it is dependent upon how often

the methods would have to be adapted, and how much time Pickr.ai would be willing

to invest in upkeep. Following that, the amount of work required to keep the method

up to date should be minimal.

• Data: Proper amounts of knowledge or data about each object cannot be expected

either, because of the time and effort needed to collect this data.

1.3 Problem description

Automation brings with it several problems. In the case of picking wares, be it shampoo,

a bag of chips or a can of peas, there’s the challenges of locating, pose estimating, picking

and robot path planning. For this thesis it is the locating and pose estimation challenges
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Figure 1.1: The current robot prototype developed by Pickr.ai, here seen in its testing
conditions.
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Figure 1.2: A simple overview of how ordering could work

that are the most relevant. When picking, the robot has to be able to find the items,

discern one item from another, plan how to move to get to the item and figure out where

to grip the item. Using Figure 1.3 as an example. These cans of peas all have the same

size, but looking from the top it is difficult to see how large the bottom can actually is.

Figure 1.4 shows another potential problem, where it can be difficult to see where one

object ends and the other starts. As for textureless objects, a clear bottle of water can be

close to invisible. This is something that has to be accounted for if the system is going to

be able to handle those clear bottles.

1.3.1 The Bin Picking Problem

In general this problem is called the bin picking problem [7]. There have been made many

advancements in regards to robots picking up objects from bins, but the final stop that is

random bin picking robots has yet to be reached. What’s missing is accuracy. Robots are

good at doing repeatable monotonous work, but when the objects are placed randomly
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Figure 1.3: Example of what the system may see.

Figure 1.4: Easy for humans, but a computer vision system may have difficulties
noticing that there are two cans in the upper left corner and not one long object.

the accuracy comes into play. The goal is to pick up an object in an environment that

may change for each pick. To keep up with all of these changes the solution should have

a combination of dexterous robots, computer vision, and software and hardware that is

powerful enough to compute this in real time.
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There are three grades of difficulty of bin picking which is visualised in Figure 1.5:

1) Structured - Objects are laid out or stacked in a predictable and organised manner.

This makes it easy to register and pick up the objects. Boxes travelling down a

conveyor belt with even spacing in a single line is an example of this.

2) Semi-structured - The objects are somewhat laid out in a predictable and organised

manner. Picking with the aid of imaging is still a relatively easy task. Items dropped

on a conveyor belt and thus laying somewhat disorganised is an example of this.

The items are still laying in a somewhat predictable matter, on the conveyor belt,

but there is a need to register where they are on the belt to be able to pick them up.

3) Random - Here the objects are random in every aspect. This means that the

orientation, rotation and stacking changes from object to object. This is basically

the case when objects have been placed into a bin without regard for anything but

them being in a bin. Continuing with the conveyor example, this is at the end when

everything is dropped into the bin. The items, be it parts for a car or boxes of candy,

are now laying disorganised in a bin. Each time an item is picked up, the top layer

might shift and settle down differently. There might also be difficulties discerning

one specific item from a mass of items.

Aside from how orderly the objects are placed there is also the problem of the type

of objects. A robot, or rather the vision system dealing with the imaging, may have

difficulties recognising two boxes simply because they have different texture, much like

in Figure 1.4. Same goes for textureless objects, this could be minimalistic designs or

see-through objects like plastic bottles. Telling these objects or very thin objects apart

may be difficult. As can be seen, or not be seen, where the edge of the product in Figure

1.6 stops and where the background starts. Using a camera with a depth sensor solves the

texturelessness to a certain degree, but comes short when applied to low volume objects.

The same goes in the case of deformable objects and packaged objects. A bag of chips

and a bag of screws are two examples of this. One bag of chips will not be similar to

another bag simply because they may have a slight different bend. Similarly a clear bag
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Figure 1.5: Grades of bin picking difficulty

containing screws may prove difficult, since the system may have problems knowing that

a screw might be in a bag while others are outside.

1.3.2 Pose estimation techniques

DeepIM [8], Keypoint detector localization [9] and PVNet [10] are examples of the current

cutting edge pose estimation methods. All of these utilise some form of neural networks

to calculate the pose of an object. The challenge with neural networks is that they require

large amounts of data to be sufficiently trained, where the challenge lies in obtaining
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Figure 1.6: One example where the edge blends in with the background to such an
extent that is it difficult for a human to notice it.

enough usable data. To recognise several items the net has to be trained on all of those

items, and have enough quality data for each of them. Neural networks are trained by

giving them examples of what they are looking for, so the more and better examples the

better it should perform. Three ways of achieving this is by imaging and labels, data

augmentation and synthetic data. Data augmentation artificially expands image datasets

by creating modified images, this can be e.g. mirroring, flipping and turning the images.

Synthetic data is data that is created and not gathered. An example of this is placing 3D

models on an image, Figure 1.7 illustrates how this can be done.

The first data collection method requires access to all of the objects, or datasets containing

enough relevant data for a good approximation. Either way a large amount of data in

the form of images are required for optimal performance. There’s not really such a thing

as too much data either, given that it is quality data that is representative of what the

network is supposed to learn. The more representative data that is processed, the better

a neural network can perform. The amount of data needed also increases fast if the net is

supposed to recognise large amounts of products. So, if there are 30 000 different wares

in a warehouse, and each item needs over 1000 images to be properly identified3, then
3The pose estimator SingleShotPose uses 1151 images during training to recognise an iron.
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Figure 1.7: Illustration of how synthetic data can be made. Background from Wikimedia
commons, public domain

there’s going to be at least 30 million pictures. Whether this is possible is a different

question entirely, as YOLO9000[11] is trained to detect just over 9000 object classes, but

the resulting performance is not necessarily great.

1.4 Outline

The intention of this thesis is to propose a solution that will manage to estimate the pose

of objects in a controlled environment, and be a comparatively better solution than the

one currently used. Chapter 2 goes into other solutions currently being employed by other

companies, and other related work. Chapter 3 expands upon the software and methods

that are used and considered, whereas Chapter 4 delves into the testing and observations

of the selected methods. Chapter 5 and 6 are discussion and the reached conclusion.



Chapter 2

Related Work

There are two different areas relevant as related work. It is either complete solutions that

other suppliers have, that aim to do the same thing as Pickr.ai, or they are methods for

localisation and pose estimation. Outright related methods are explored in Chapter 3 as

they may be usable solutions for the problem at hand. It is on the basis of that, that

most related work mentioned in this chapter is about other complete solutions and not

methods.

Pickr.ai isn’t the first company looking at automation, be it parts or the whole chain from

order to delivery, or are they the only ones looking at bin picking. Dex-Net is an ongoing

project to handle object picking, dealing with data generation for datasets and all parts

up to optimal grasp quality. There are also several companies trying to automate their

warehouses, some noteworthy are Amazon, Komplett.no and Ocado. Amazon are trying to

both give incentives to others and develop their own solutions, while Komplett.no bought

their solution from Autostore. There are solutions that share ground with what Pickr.ai

is looking for, but none that offers everything.

2.1 Company Solutions

The solutions that other companies have developed and are currently in use. None of

them deal entirely with the same sets of problems as Pickr.ai, but the areas do overlap.

11
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2.1.1 Autostore

Autostore [12] is a distributor of efficient warehouse solutions that have amongst others

provided the storage solutions for Komplett.no. Instead of having rows of shelves, their

solution is to make a cube structure that contains all the wares. This allows for a greater

storage capacity without the need for more storage space. The grid where all the bins

are placed, is advertised as being just a little bit more difficult than LEGO bricks to put

together. This means that the transition from a traditional warehouse to one using the

solution Autostore provides should be a relatively easy procedure. A shortcoming is that

humans are still necessary to deal with the actual picking, as the robots only bring the

bins to a picker that then manually picks and packs the order [4]. Nonetheless the setup

gives increased speed, efficiency, better overview and control, and a greater storage density

[12].

2.1.2 Ocado

In the area of automated warehouses there are a few different companies with different

solutions. Most of them employ both human and robotic workers. One of these is Ocado

[13], an online only supermarket based in the UK. Their most advanced warehouse, as of

May 2018, is located on the outskirts of Andover, England. Their solution is a system

where wares are placed in stacks ranging up to 17 boxes high. How these boxes are stacked

is algorithmically decided based on the frequency items are ordered. To then reach the

items at the bottom requires a temporary restacking of potentially 16 other boxes. The

robots are controlled by a central machine, allowing them to work in unison to move the

other boxes away when needed.

To facilitate automation of this magnitude in a new warehouse would require a considerable

rebuilding, as old solutions with shelves require access from the side, and not the top.

This solution is quite space efficient, but is not fully automatic. The machines simply

move the crates containing the wares to human workers so that they can pick up the items

by hand. The reason for this goes back to a subproblem in bin picking that the robots
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still have difficulties with, amongst other, bagged items. In the end, the goal of a cheaper

and more efficient workforce is achieved.

2.1.3 Universal Robots

Universal Robots [14] is a provider of robotics aimed at more general automation, and

not necessarily automation in storage facilities. Of the services their robots may help

automate, the most relevant ones are picking and placing, packaging and palletizing.

Through the use of their UR+ platform, a degree of automated bin picking is achievable.

They say it is simple enough for non-experts to set it up within a few hours. A human

operator will, during the setup phase, configure the robots action through a series of

wizards. Whether this has to be performed for each new part the robot is meant to pick,

is not specified, but the wording suggests that it depends on the objects in question.

Some other provider of pick and place robots are ABB [15], FANUC [16], Yaskawa

Motoman [16] and KUKA Robotics [16].

2.2 Previous Research

Previous research and development that to a certain degree reflects the work done either

by Pickr.ai, or the solutions looked at in this thesis.

2.2.1 Vision-based Robotic Grasping from Object Localisation, Pose

Estimation, Grasp Detection to Motion Planning

This thesis will examine the following recent methods for object localisation and pose

estimation:

• YOLOv3 by Redmon et al. [17]

• SingleShotPose by Tekin et al. [18]
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• DOPE by Tremblay et al. [19]

• DenseFusion by Wang et al. [20]

• DeepIM by Li et al. [8]

These methods will be described in Chapter 3. For additional details on these and other

methods the reader is referred to a very recent (16th May 2019) and excellent review paper

by Du et al. [21]. The study goes into detail about the currently available solutions for

the whole process, as well as what challenges still remain for the type of approaches the

methods propose. Naturally, as the paper looks on the whole process, all of the solutions

explored here are also mentioned in review.

2.2.2 Direct Grasp Detection Without Pose Estimation

The Dexterity Network is a research project by Mahler et al. [22] aimed at generating

datasets of synthetic point clouds, robot parallel-jaw grasps and metrics of grasp robustness.

The project includes code, datasets and algorithms for making these synthetic datasets.

The aim of the project is to develop highly reliable robot grasping across a wide variety of

rigid objects ranging from industrial parts to everyday items like household items. Each

iteration of Dex-Net adds to the previous versions by giving more support and utility [22].

The project does everything but estimate the pose of objects. It can locate and generate a

pick up point for a range of end grippers, be it suction or jaw grippers. A more thorough

examination can be found in Appendix C.



Chapter 3

Software, Equipment and Methods

This chapter goes into detail about the different methods that were considered, but also the

prerequisites needed for the testing including both hardware and software dependencies.

3.1 Software

An overview of the base software that was used, as well as the reasoning behind why one

version of the software was chosen above another.

3.1.1 Operating system: Ubuntu

Ubuntu [23] is a free, open source, Linux operating system. It is one of the more popular

of the many Linux distributions available. In addition to this there are also different

versions available. The two latest long term support ones are 16.04 and 18.04 [23]. In

regards to the research, different versions give rise to problems where some software may

be made for a certain version, but experimental or not at all available in others.

During the initial research the distribution of choice was Ubuntu 18.04, chosen because it

was relatively new and because the initial impression was that the software support was

extensive enough. This proved to be a faulty conclusion as the software support turned

15
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out to be lacking as some vital software was version locked. Together with user error, this

created an opportunity to downgrade to Ubuntu 16.04. This move made it so that the

research and development environment was close to identical to what Pickr.ai was using,

thus ending in a tested and proven environment1. While Ubuntu 16.04 is an older version

it is also a long term support version. In this case it means that it will receive standard

support until 2021, and security maintenance until 2024 [23].

3.1.2 Programming Language: Python

Python is an object-oriented programming language. It is available under an open source

license, making it free to use. There are over 180 000 projects [24] available through

pypi.org, with some notable mentions as Numpy, Scikit, Matplotlib, TensorFlow and

PyTorch. The two latter ones are widely used deep neural network (DNN)/machine

learning libraries.

Python comes in several versions with 3.7 being the newest [25]. However, to ensure the

most compatibility between all files Python 2.7 was chosen. All methods mentioned later

are compatible with 2.7, and in extension the packages they use. That is not to say that

3.x is unsupported, but the authors cannot guarantee that the method will work as they

might not have done extensive testing.

3.1.3 Robot Operating System (ROS)

ROS is a type of robotics middleware:

"... robotic middleware is designed to manage the complexity and heterogeneity

of the hardware and applications, promote the integration of new technologies,

simplify software design, hide the complexity of low-level communication and the

sensor heterogeneity of the sensors, improve software quality, reuse robotic software

infrastructure across multiple research efforts, and to reduce production costs." [26]

ROS [27] allows for processes to be run in separate nodes. These nodes may post and

receive messages. These messages usually contain the information generated by the node.
1Further elaborated in subchapter 3.2.1.

pypi.org
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The different messages are posted to topics, so one node may have several messages being

distributed through several topics. To get access to the messages, the user has to subscribe

to one or more of these topics. This can either be done in a script or one node subscribed

to another. For example, one camera node publishes the image stream, and a different

node subscribes to the topic containing the image stream. The node may then do object

recognition and show the video feed with the object marked. In a larger scope, many

nodes may be connected to each other to control a robot, where each joint would be

a node. So, instead of creating a complete control system that will only work for that

specific setup. ROS allows to "simply" connect nodes and control the system through

these nodes. This makes it easier to configure new setups, since all the components are

configured to work within ROS already. The ROS ecosystem can be divided into three

groups:

• Packages oriented towards applications that use some of the available ROS-libraries.

• Roscpp, rospy and other library implementations of the ROS client.

• The tools used to build, distribute and maintain the ROS-based software.

There are several distributions of ROS, depending on which operating system is used.

ROS Kinetic (v10) was made for users on Ubuntu 15.10 and 16.04, while ROS Melodic

(v12) was created for the users on Ubuntu 17.04 and 18.04. Cross-platform usage is not

supported, but technically possible by building from source [27].

During the initial research and testing phase, ROS Melodic was the version utilised as it was

the only version that supported Ubuntu 18.04. Being the newest and recommended version

with the longest planned support time gave precedence to choose version 18.04 over the

others. However, both due to a change in operating system and software incompatibility,

ROS version had to be changed for compatibility reasons. While it is one of the older

versions, it still is under support as it is one of the other major releases.
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3.1.4 Artificial Neural Networks

An artificial neural network (ANN) [28] is a potentially powerful tool in the category of

machine learning. It works by mimicking how a biological neural network works in a

general sense. A neural network consists of three general layers, one is the input layer,

then some hidden layers and an output layer. Each of these layers consists of one or more

nodes that are interconnected, in a way that is reminiscent of how biological neurons

connect to each other through synapses. The nodes can transmit signals to one another

through these connection, similar to how neurons communicate through the synapses.

However the signals in a neural network only move one way from the input layer, through

the hidden layers and out to the output layer.

One of the more popular classes of neural networks that is often used in image analysis

is convolutional neural networks (CNN) containing several convolutional layers, each

consisting of several spatial filters with coefficients learnt from training data [29]. The

CNNs belongs in the DNN type of networks that can have several hidden layers, all

depending what applications they are used for. The CNN that is shown in Figure 3.1

belongs to the SingleShotPose method. The configuration files reveal that the first

convolutional layer is configured to use 32 filters. From the resulting activation map the

method alternates between max-pooling and a few convolutional layers to extract the

relevant features from the input image. What max-pooling does is downsampling the

input by the largest value, see Table 3.1 for an example. The output depends on what

the user is looking for. In the case of SSP it’ll output 9x2 coordinates representing the

centre and the eight corners defining a bounding box around the object. As well as one

class value and two range values for X and Y. Similarly with the method You Only Look

Once v3 (YOLO), it outputs two corner coordinates x and y, the height and width of the

bounding box, a predicted class and the confidences it gives for the class.

The success of a neural net largely depends on how it is built up and the data it is allowed

to train on. As most stages of creating a NN, the training also takes some time to complete.

This is however dependent on how powerful the hardware is, one which the algorithm

is run on. Newer and more powerful hardware is also required for the newer versions of

required software.
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0 1 2 3
4 5 6 7
8 3 1 4
9 2 5 0

5 7
9 5

Table 3.1: Visual representation of how max-pooling downsampling works, each coloured
area is represented by its largest value. Inspiration from en.wikipedia.org/wiki/

Convolutional_neural_network

Figure 3.1: A representation of the CNN used in SingleShotPose, In accordance with
MIT Licensing, taken from github.com/Microsoft/singleshotpose [18]

3.1.5 Limiting Factors in Neural Networks

The factors mentioned in the problem definition directly limits much of the machine

learning methods [30]. In theory there is no limit to how many objects a neural net can

recognise. As long as the net is sufficiently trained it can detect and recognise a large

quantity of objects2. What limits the number of objects is the amount of data that is

available. A neural network will not correctly classify an object without having been

trained to find it. It may be able to see and classify it nonetheless, but the classification

will in that case not be correct without further processing. Even if there is enough data,

the net requires time to train. The more data to train on the more time it will take,

depending on how fast the hardware is. However, that there is no need to train it further
2For example, YOLO that is mentioned later can recognise up to 80 different classes.

en.wikipedia.org/wiki/Convolutional_neural_network
en.wikipedia.org/wiki/Convolutional_neural_network
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unless a higher accuracy is needed or it has to be expanded with new data. Whenever

the material that the network calculates on changes or is added to, it will have to be

retrained to work on the new data. The aforementioned upkeep may be time consuming,

be it gathering and preprocessing new data or retraining. Adding to the preprocessing, it

may take longer if labelling has to be done manually as well.

3.1.6 Training

Training is the process of adjusting the weights of the network to obtain a desired

classification result. In supervised learning, each training sample is presented together

with a class label, often obtained by manual labelling. In general, the more data a neural

network can be trained on, the better are the chances of it performing well. Neural

networks runs a risk of overfitting if the data is insufficient essentially learning the training

examples with poor generalisation to novel same-class examples. A model is overfitted

to a dataset when small changes to said dataset results in a large variance. Ideally this

variance should be as low as possible, so that changing a data point results in only a minor

shift. Bias can also affect the results, when trying to approximate complex patterns to

a too simple model, which happens when the data does not lend itself to be simplified

because of its complexity [31]. Not necessarily applicable to DNNs, but something to keep

in mind for simpler machine learning algorithms. Combating overfitting may be done by

dividing the data into three parts of train, cross-validation and test set, and as mentioned

increasing the amount of representative data [32].

Generally data can be anything, and any given neural net is designed to handle a specific

set of inputs. In the case of methods discussed later in the chapter, e.g., some can only

handle images in the JPG file format and labels in PNG file format. A solution to not

having enough representative data is to train the model on a larger but still relevant

dataset, for then to train the model additionally on a smaller dataset. This is called transfer

learning [33] and borrows from the idea that humans are capable of using previously

learned knowledge and apply it to new tasks. By transferring knowledge learned in one

task, to a related task and thus improving learning of the new task.
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3.1.7 cuDNN

NVIDIA CUDA Deep Neural Network library (cuDNN) [34] is a library of primitives

that allows for GPU-accelerated computations for deep neural networks. cuDNN provides

implementations for standard routines use by DNN such as forward/backward convolution,

pooling, normalisation, and activation layers. The framework is used by many researchers

and is thus necessary when testing the more advanced methods in this thesis. It is

advertised to GPU-accelerate several deep learning frameworks, such as TensorFlow and

PyTorch, which are utilised by the methods that will be examined later. The newer

versions of CUDA, which is the toolkit, require better hardware. For comparison, an old

NVIDIA GeForce 660M GPU can only run version 3.0, while the servers at the University

of Stavanger have NVIDIA Tesla P100s, allowing for CUDA version 10.0. Not only will

the newer versions improve computational time, but it is also required for certain functions

that the older versions lack.

A different platform that is available is OpenCL3. OpenCL is an open source platform im-

plemented by amongst others AMD. However, since none of the tested methods implements

OpenCL, it is only mentioned here as an alternative.

3.2 Equipment

Some information about the robot and the camera line that was used.

3.2.1 Intel RealSense D400 series

The Intel RealSense D400 series [35] is a popular line of low-cost depth cameras. The

D400 series uses stereo vision to calculate depth, but also features an RGB sensor for

colour images and an infrared projector to aid the depth perception. See Appendix A

for technical specifications about D415 and D435. The nodes realsense_camera and
3www.khronos.org/opencl/



Chapter 3. Current Solution Chapter 3 Software, Equipment and Methods

realsense_camera2 publishes several different topics, that in general falls into parameters,

depth image stream, colour image stream and infrared.4

The RealSense cameras have a ROS package that allows for easy integration into ROS

projects. The realsense package only supports Ubuntu 14.04 and 16.04, making it the

main reason for the switch from Ubuntu 18.04 to 16.04, as the workarounds necessary to

make it compatible simply shifted the problems further down the line. The package can

be can be found at github.com/IntelRealSense/librealsense.

3.2.2 The Robot and the Storage Solution

The current iteration of the robot is a cartesian, three axis, gantry robot with two

additional joints. It is to be mounted in front of shelves as seen in Figure 1.1. The storage

racks that it is designed to be attached to are regular frames, with a slight decline allowing

for the crates to roll towards the robot. This allows for the currently used crates to be

replaced on the backside of the shelves.

3.3 Considered and Current Solutions

This section goes into detail about the different computer vision based methods that were

considered, as well as the baseline methods used for comparison.

3.3.1 Baseline: Cylindrical Pose Estimation

The current, and therefore the baseline, method used is an adaptation of Random Sample

Consensus (RANSAC) [36, 37]. It is an iterative method that is used to estimate the

parameters of a mathematical model in observed data without being affected by outliers.

This means that the method is capable of ignoring some degree of noise. In regards to

pose estimation it is used to fit a cylindrical shape over the object in question. The pose

estimation uses the PointCloud data and overlays the cylindrical shape. The noise in this
4Taken from topics listed when running the D415.

github.com/IntelRealSense/librealsense
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Figure 3.2: The PointCloud data where RANSAC can be applied, here the edges of the
box are removed as well. The PointCloud here is a representation of the image in fig.1.3

case is therefore points that fall outside of norm, e.g. if a point on Figure 3.2 is much

larger than the others surrounding it.

This technique is both intuitive and easy to visualise, but the simplest might not be the

best solution. The estimator in its current form will also only work on cylindrical objects.

That is not to say that it would not work on other shapes, something it would be able to

do, and has been done with circular shapes. Another caveat however, is that it can only

check for one shape at the time, so the estimator will only be able to find items that fits

its current pattern. That is unless the database contains knowledge about the shape of

the object, and thus allows for the system to use the correct shape for the estimation. In

a less than optimal situation, the system might have to cycle trough several shapes before

finding the correct one.

3.3.2 Baseline: SIFT & SURF

One of the previously considered solutions are the Scale-invariant feature transform (SIFT)

[38] and Speeded up robust features (SURF) [39] methods, and the later improvements.
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SIFT is a feature detection algorithm that detects and describes local features in an image.

SIFT can be used for object recognition, video tracking, match moving, 3D modelling and

more. These properties makes SIFT a tempting choice for both detecting objects and

pose estimation especially since the algorithm is invariant to both scale and orientation.

The caveat, however, is that it requires features to work. Features meaning details in this

regard, something that textureless objects by definition lacks in any meaningful amounts.

Furthermore, SIFT does not provide a pose estimation, but this is something that could

be implemented separately. SURF is regarded to be a more robust and faster algorithm to

SIFT. It covers similar tasks as object detection, image registration and 3D registration.

The two algorithms are based on the same principles as well, but details in steps are

different. These differences do however not make up enough of a difference to work well

on textureless object.

Both of the algorithms would also need one or more sample images of the products they

are supposed to detect. The reason is that both algorithms need a reference to compare to.

The references also need to cover the whole object, meaning that there are pictures from

several angles. Which is similar to neural networks, but for other reasons. Neural networks

train to give a probability of a certain object being in the image, while SIFT/SURF

compares the points in the image to references they already have to tell if the object is in

the image.

3.4 Neural Network Methods

The two previously mentioned classical methods provide a baseline for the more recent

neural network methods considered in this thesis. The development of neural networks for

computer vision is a fast moving field. Finding the state of the art methods is possible

by looking at the web page paperswithcode.com. It has an assortment of papers about

several tasks within computer vision problems, and one of these is 6D pose estimation.

The page uses leaderboards to measure methods up against each other, and topping these

charts are methods using neural networks.

paperswithcode.com
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3.4.1 Datasets

LINEMOD5 and Yale-CMU-Berkeley (YCB)6 are two datasets that are used both for

training and to measure accuracy of methods. Some others are the Occlusion dataset,

which is a relabelling of the LINEMOD dataset and the Imagenet dataset that YOLO is

pretrained on. The datasets used for object detection are generally significant amounts of

pictures7 taken of objects with accompanying labels, masks and bounding boxes. These

large dataset allows for much more training without running the risk of overfitting the

networks, as explained in the training section. In addition to having images of the objects

the more advanced methods also require a 3D model and bounding box.

The accuracy of the 6D pose estimation methods are generally measured using an average

distance score called ADD, Equation 3.1, which was first used by Hinterstoisser et al. [40],

ADD = 1
m

∑
xεM

∥∥∥(Rx+ t)− (R̂x+ t̂)
∥∥∥ (3.1)

where m is the number of points on the 3D model and M is the set consisting of all 3D

points of the model. [R|t] is the ground truth and [R̂|t̂] is the estimated pose. Through

the use of this metric it is possible to compare the different methods against each other

when applied on the same dataset. It is this metric that will allow for comparison between

the different methods, and is also one of the most often used metrics in pose estimation

[41].

A different accuracy measure is the mean average precision. The score goes from 0-1 and

conveys how well the predicted boundary box fits with the ground truth boundary box.

When the overlap goes over a certain threshold it is regarded as a match. The average

score for different thresholds is what makes up the mean average precision score. It is one

of the primary scores used to compare object detectors but not the one primarily used

here. Therefore, unless otherwise stated, the meaning behind accuracy refers to the ADD

score.
5http://campar.in.tum.de/Main/StefanHinterstoisser
6http://www.ycbbenchmarks.com/
7Imagenet has in total ≈ 14.2 million pictures, image-net.org.

http://campar.in.tum.de/Main/StefanHinterstoisser
http://www.ycbbenchmarks.com/
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3.4.2 Single Shot- and Two-Stage Detectors

Object detection using neural networks come in three main variants, although one could

be said to just be a subgroup of the other. Two-stage detection, Single Shot Detection [42]

and YOLO are the variants of deep learning-based object detection. Regions with CNN

features(R-CNN) [43] and its variants are examples of two stage detectors because they

divide the process into one feature extraction part, and one predicting part. In the case

of the original R-CNN the features are found by first using a selective search algorithm8,

the regions found are then sent into a CNN. The CNN outputs a feature vector which is

fed into a Support Vector Machine (SVM). The SVM then classifies the presence of an

object within the proposed regions. Calculating all of this takes time, both for training

and object detection. The Fast R-CNN presented in [43, 44] improved training time by 9x

and test time with 213x. The Fast R-CNN uses the image as a whole as input into the

CNN, and not just regions.

R-CNNs can be very accurate but they are slow compared to single shot detectors,

obtaining 5 frames per second compared to the 45 to 155 frames per second that a single

shot detector can achieve [45]. This speed does come at a price though. Looking at

YOLO, a family of single shot detectors, the YOLO9000 version could only achieve a

16% mean Average Precision. Delivering quantity over quality, since it could classify 9000

different object categories [11]. Since then improvements have been made with YOLOv3

[17]. R-CNNs are not the only two-stage detectors developed, and while YOLOv3-tiny

achieves speeds up to 220 frames per second [17], some two-stage methods are achieving a

good balance with a real time computation of 30 frames per second. High frame rate isn’t

strictly necessary for the system, so accuracy is therefore a more relevant measure to look

at. Figure 3.3 shows the current accuracy rankings on the LINEMOD dataset populated

by both both two-stage and single shot methods.

See Appendix C for a more software based examination of the following methods.
8Combines several candidate regions into larger ones.
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Figure 3.3: The current rankings of LINEMOD on the paperswithcode.com leaderboards

3.4.3 YOLOv3

The newest iteration of YOLO called YOLOv3 by Redmon et al. [17] is a type of single

shot detector. It is one of the simpler neural net methods, and doesn’t require CUDA

or similar software to be tested. YOLOv3 can quickly be implemented in Python with

OpenCV, and is quick enough to work on a live image stream, accomplished on an ageing

processor9. YOLOv3 predicts bounding boxes through the use of dimension clusters.

Together with the bounding boxes it supplies a class and its probability [17].

What YOLOv3 does not include is an estimation of the pose of the object, as is simply an

object detector as can be seen in Figure 3.4. Therefore YOLOv3 cannot be used on its

own, but it may still prove a useful starting point.

3.4.4 SingleShotPose

Building on the more simplistic YOLO object detector, there is the more advanced

SingleShotPose (SSP) by Tekin et al. [18] SSP is a single shot detector that detects
9Seven year old Intel Core i7-3630QM.
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Figure 3.4: A simple test using YOLO to detect an object, however it did miss on the
actual type of object.

objects and tries to predict their 6D pose. Since it takes advantage of the single shot

detection principle, there is no need for multiple stages or hypotheses. The method uses a

CNN architecture that is inspired by YOLOv2, it directly predicts the 2D image locations

of the projected vertices of the objects 3D bounding box. Then the object is 6D pose

is estimated through the use of a Perspective-n-Point (PnP) 10 algorithm [18]. At the

time of writing, SSP is the highest ranking method on the OCCLUSION dataset, on the

leaderboards found at [41]. SSP is also among the top four methods on the LINEMOD

dataset leaderboard.

Usage is not as straight forward as with YOLOv3 as it is not possible to pass an image

stream to SSP. SSP can probably be modified to accept an image stream, but as it stands

now the testing has to be done by creating a new dataset and testing through the included

evaluating functionality. One example of this test is shown in Listing 3.1.
10See https://en.wikipedia.org/wiki/Perspective-n-Point for an overview.
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2019 -06 -12 15:17:45 Testing glue ...

2019 -06 -12 15:17:45 Number of test samples : 1036

-----------------------------------

tensor to cuda : 0.000487

predict : 0.005314

get_region_boxes : 0.008109

eval : 0.009506

total : 0.023416

-----------------------------------

2019 -06 -12 15:18:35 Results of glue

2019 -06 -12 15:18:35 Acc using 5 px 2D Projection = 96.62%

2019 -06 -12 15:18:35 Acc using 10% threshold - 0.0176 vx 3D Transformation = 44.79%

2019 -06 -12 15:18:35 Acc using 5 cm 5 degree metric = 55.41%

2019 -06 -12 15:18:35 Mean 2D pixel error is 2.441506 , Mean vertex error is 0.033075 , mean corner error is 3.569845

2019 -06 -12 15:18:35 Translation error : 0.032786 m, angle error : 5.442948 degree , pixel error : 2.441506 pix

Listing 3.1: The results running SSP on a trained object

3.4.5 DOPE

A solution with native ROS support has the advantage of easy integration and adaptation

to a robot system. One such method is Deep Object Pose Estimation (DOPE) [19] made

by Tremblay et al. DOPE is a ROS package for detection and 6D pose estimation. It only

works for known objects11 with input from an RGB camera. The pretrained objects are

all from the YCB dataset. Figure 3.5 is an example of DOPE in action.

The fact that DOPE already has native ROS support makes it a strong contender for

further testing. It works well on the six objects it has been trained on, but as it is a specific

method it will require training to recognise new objects. The way DOPE is trained is

through the use of synthetic data [19]. Originally this data comes from the YCB dataset,

and from there generated images resulting in a dataset known as Falling Things (FAT)

[46]. Pickr.ai looked into this and found the time necessary to train far exceeding the time

frame they envisioned.
11Cracker box, sugar box, tomato soup can, mustard bottle, potted meat can, and a gelatin box.
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Figure 3.5: Example of DOPE in use, used in accordance to Creative commons licensing
[19]

3.4.6 DenseFusion

An RGB-D camera can, as mentioned before, register both colours and depth. So far the

methods mentioned are only using the colour image for the estimation. Therefore, in order

to make use of as much of the available data as possible, the method DenseFusion was

researched. Wang et al. [20] made DenseFusion which is a 6D object pose estimator that

takes an RGB-D image as input and tries to predict the pose of the objects in the image.

This method fully leverages both RGB and depth when estimating the pose of a known

object. Just as the other neural network methods, DenseFusion uses a CNN for estimation.

But what differentiates it from other methods is the fact that it combines the two data

sources, RGB and depth. After the initial per-pixel prediction, the method goes through

an iterative process to improve the predictions. This improvement, seen in Figure 4.1,

raises the average accuracy from 86.2% to 94.3% on the LINEMOD dataset [20]. At the

time of writing, DenseFusion is currently the leading method on the YCB-Video dataset

[41].

3.4.7 DeepIM

What none of the previous methods have claimed to be capable of, is to give an estimation

of an unseen object. DeepIM [8] stands out in this regard, as Li et al. [8] claims it is able

to estimate the pose of unseen objects from the ModelNet12 dataset. So while [11, 18, 20]
12modelnet.cs.princeton.edu

modelnet.cs.princeton.edu
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Figure 3.6: Visual explanation of how DenseFusion works 1/2. In accordance to MIT
licensing [20, 20]

Figure 3.7: Visual explanation of how DenseFusion works 2/2. In accordance to MIT
licensing [20, 20]



Chapter 3. Neural Network Methods Chapter 3 Software, Equipment and Methods

all are capable of some form of object detection and estimation, only DeepIM suggest that

it is capable of handling unseen objects. As for known datasets, DeepIM is at the time

of writing ranked number two [41] on the LINEMOD dataset when used in cooperation

with a method called PoseCNN [47]. The reason PoseCNN is utilised is because DeepIM

doesn’t actually handle the initial pose estimation, it simply refines the pose found by a

different pose estimator. Therefore, to use DeepIM a primary pose estimator is required.

3.4.8 Dex-Net

Even though Dex-Net was mentioned in related work, there are some merit to further

investigate if it can be applied to the problem at hand. So while it doesn’t actually predict

the 6D pose of the object, it is quite capable of grabbing an item it hasn’t seen before. As

stated in Appendix C about Dex-Net 4.0, it achieves a pick success rate of 95% [22, 48].

Therefore Dex-Net may prove to be useful paired with a pose estimator, as they don’t

necessarily provide a pick point by default. Dex-Net also allows for robotic path planning

and it can also be acquired as a ROS package.



Chapter 4

Experiments and Evaluation

This chapter delves into the experimental part of the thesis. It goes into how the

experiments were conducted and the reasoning behind the execution of the experiments.

The results of the experiments will also be presented, as well as the results from the

original authors to provide context. Seeing the test results in light of the original results

allows for evaluation of the methods.

4.1 Experimental Setup and Dataset

This section goes into the way the experiments were supposed to be, and was conducted.

As well as how the preprocessing was done.

4.1.1 Initial Setup

The initial setup consisted of the RealSense D415 depth camera placed above a red box

that was to be filled with different wares, see Figure 1.3. This resembles how the visual

system operates on the robot, but lacks the moving parts as they aren’t an integral part

to the object detection and pose estimation. Although the robot isn’t an integral part

of the object detection, the system it operates on is arguably worth implementing. As

mentioned in Chapter 3 about ROS, it works by having nodes send information through
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the use of topics and messages. Although this adds to the complexity of the testing, it

can be argued that it is necessary. How well a given method works may be influenced by

this complexity, and gives an indication of the performance in a real life scenario.

One semi plausible example of how the system can grind to a halt, is when there are several

ongoing CPU intensive operations. One node publishing a PointCloud2 message, that then

is translated into an image message by a different node, has caused a system freeze. Faster

hardware can of course alleviate this problem, but it is nonetheless worth keeping in mind.

With this premise in mind any method would have to be able to handle a continuous

image stream or snapshots from the stream, and to then process this information and

pass it along to other nodes. Optimally without causing lag in the system.

This idea was however hampered by the ways the different methods work. This is because

the methods were not necessarily created with robotics in mind, or at least ROS. While

DenseFusion, Dex-Net and DOPE all have varying levels of ROS integration, the other

methods like YOLOv3 and SSP has none. This means that a ROS node, or something

similar would have to be made to integrate the other methods into an ROS environment.

A requirement for this is that the methods only require an image and/or depth data1 to

work. But this is not the case either, SSP and DenseFusion cannot be evaluated without

also having access to the ground truth/labels for each image sent to the method. That is

the situation with the released code, as the authors at least in the case of DenseFusion

has a unreleased method that does not need the ground truth. For the released method it

would essentially mean applying the bounding boxes of the items in real time, to then use

the methods on them. This would of course not work since the sole purpose is to find

these bounding boxes2 in close to real time.

4.1.2 Revised Test Setup

One thing most of these methods have in common, besides pose estimation, is the datasets

they have been trained on, and in extension what they are evaluated up against. Some
1Like Point Clouds
2More correct would be the 6D pose, but the bounding box can be regarded as an extension of this

and is also in part what the methods find.
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widely used dataset in regards to pose estimation are Common Objects in Context

(COCO)3, LINEMOD4 and YCB5. For object detection there is ImageNet6 which YOLOv3

is pretrained with. If two or more methods are tested up against the same dataset, then

it is possible to compare them to each other.

In extension to this, the evaluation scripts that give these results and metrics can then

be tested the same way with new data. As long as the data is properly formatted. E.g.

the way SSP does it with 21 values, where all the coordinates are normalised and the

first number pointing to which class it belongs to. Testing this way gives an indication as

to how well the method would work in an actual application, but does not say anything

about how easy it is to customise it and integrate it into existing systems. Not all methods

could be tested on new data though, as some have no official way or guidelines of how to

create a new dataset.

The goal of the tests is firstly to see if the methods will work without any specific training

towards the new objects that the methods will recognise the objects as something that the

method is already trained on. The methods are only trained on a few items, therefore it

is not feasible for them to classify the objects correctly. A correct classification is however

not necessary as long as it can give an estimation that is within reasonable limits, e.g.

estimating a tube with something similar like a bottle. With similar shapes and sizes,

the resulting bounding boxes should have enough resemblance that they can be used

interchangeably. By post-processing the results it could be possible to get an accurate

pose, but that hinges on the methods producing viable results.

Stage two is improvement, where the methods are trained on the test data through the

use of transfer learning. The hypothesis is that the minimal training will give some

improvement over the non-training results. Proper training would guarantee a higher level

of accuracy, as can be seen in Table 4.1. But to reach that level of accuracy, more images

and time are needed, and this violates the constrictions that the methods must adhere to

as mentioned in Chapter 1.
3cocodataset.org
4campar.in.tum.de/Main/StefanHinterstoisser
5ycbbenchmarks.com
6image-net.org
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4.1.3 Test Data

Even though the test setup changed, the test data is still acquired from the original test

setup. However, it is now done by making a dataset with 103 pictures, Figure 4.1a shows

an example from the dataset. These pictures are then used to create a ground truth with

masks and bounding boxes, Figure 4.1c. In this case it was done manually to make sure

the results were correct, but masks could for example be generated through automatic

segmentation. SSP only requires images and corresponding labels for evaluation, and the

masks are used during training.

The methods only accept labels in a specific format. To account for this in the case of

SSP, a script was used that extracted the four corner coordinates of the bounding box,

and then generated a plausible 3D bounding box. The centre point is also generated from

the original bounding box.

In the case of DenseFusion the tool called LabelFusion was utilised. To label with

LabelFusion it is necessary to have a connected depth camera, and a 3D model of the

item that is to be labelled

Labelling

Preprocessing is a time consuming process and since there are restrictions on time usage,

it needs to be surveyed. The dataset made for this project has 103 pictures, where 88

contain single items and 15 contain more than one item. Each item in the pictures has to

be given a bounding box and a mask. Total labelling time was 2.4 hours with a mean

of 82 seconds per picture. This is an upper estimate, as the program did not account

for non-effective work. This means that small breaks counted towards total time. These

labels are then reformatted via a script into the correct format.

4.1.4 Test Dataset

The test dataset was provided by Pickr.Ai and contains about 103 pictures, of which some

representatives can be seen in Figure 4.2. The dataset consists of bottles of approximately
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(a) (b)

(c) (d)

Figure 4.1: a) One of the pictures in the test dataset
b) Example of a mask used during training

c) Mask and bounding box layer overlaid on top of Figure 4.1a
d) Test picture with the original bounding box in blue and the generated in cyan, as

well as the centre point generated from the original box

the same size and shape, however the colouration differs between the different brands.

There are also nine images that contain more than one product. These are not included in

the training, just as a precaution as SSP only trains with one correct item at the time.

4.2 Experimental Results

A summary of the results gathered from the in-house experimenting, as well as the results

from the official testing. The official results have also been verified before testing of the

test dataset.
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Figure 4.2: Some representative images from the test set

4.2.1 LINEMOD Dataset

Methods that did not allow for training on a custom made test data set, at the time of

writing, were instead tested on the LINEMOD set This was the case with DeepIM and

PoseCNN for reasons discussed in Appendix C. Some results from the methods can still

be acquired through the use of e.g. LINEMOD. These results show how each method

fares against the others given the same input, and at the same time confirms the results

mentioned in the papers. As the numbers in Table 4.1 have been matched with tests done

in-house, so that a comparison can be made.

4.2.2 SSP: Test Dataset

Table 4.2 shows the results when running SSP without training it on the test dataset, as

well as the results of SSP running testing on the Glue object from the LINEMOD dataset.

Looking at the results from both the unseen object and the properly trained object, it is

easy to see some large differences. The results show that SSP is not estimating the correct

pose of the objects. The errors on the test dataset are also magnitudes above what the
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Method RGB RGB-D

Object SingleShotPose DeepIM+PoseCNN DenseFusion
(per-pixel)

DenseFusion
(iterative)

Ape
Benchwise
Cam
Can
Cat
Driller
Duck
Eggbox
Glue
Holepuncher
Iron
Lamp
Phone

92.10
95.06
93.24
97.44
97.41
79.41
94.65
90.33
96.53
92.86
82.94
76.87
86.07

98.4
97.0
98.9
99.7
98.7
96.1
98.5
96.2
98.9
96.3
97.2
94.2
97.7

79.5
84.2
76.5
86.6
88.8
77.7
76.3
99.9
99.4
79.0
92.1
92.3
88.0

92.3
93.2
94.4
93.1
96.5
87.0
92.3
99.8
100.0
92.1
97.0
95.3
92.8

Average 90.37 (SD = 6.90) 97.5 (SD = 1.5) 86.2 (SD = 8.2) 94.3 (SD = 3.5)

Table 4.1: Comparison of accuracy(ADD) between SSP, DeepIM and DenseFusion on
the LINEMOD dataset [8, 18, 20], all numbers are percentages.

properly trained results are. Furthermore, the difference between untrained and trained is

mostly small but noticeable, with a trend towards improvement after training.

Acc 5 px 2D projection: Pose estimate is regarded as correct when the mean distance

between the 2D projections and the ground truth is less than 5 pixels[18].

Acc 10% threshold: A pose estimation is taken to be correct if the mean distance

between the true coordinates of 3D mesh vertices and those estimated given the pose is

less than 10% of the objects diameter[18].

Acc 5 cm 5 degree metric: Much like the ADD metric, but instead of having the

accuracy based upon the size and shape of the object, it has here been set to 5cm and

5°[49].

No official account for the other metrics were found, but they seem like they are key

number taken from the other metrics.
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Untrained Retrained LINEMOD glue
Acc 5 px 2D Projection 0 0 96.62
Acc 10% threshold 0 0 44.79
Acc 5 cm 5 degree metric 0 0 55.41
Mean 2D pixel error 11476 5332 2
Mean vertex error 0.615 0.471 0.033
Mean corner error 272.86 267.17 3.57
Translation error 0.611 0.467 0.033
Angle error 108.72 107.18 5.44
Pixel error 11476 5332 2

Table 4.2: The results from testing SSP on the test dataset, and glue from the LINEMOD
dataset

4.2.3 DenseFusion

The test dataset was supposed to be tested on DenseFusion as well, so to be able to

compare it to SSP the same way as official testing is done. However, formatting the test

data proved to be a difficult task as there were no clear way of formatting it. Therefore

a temporary test set was made using LabelFusion, which allowed for about 300 labelled

pictures to be gathered from about 15 seconds of film. Although this is one of the

recommended labelling tools7 [20], it did not produce data that could be used directly for

training. The preprocessing in the form of formatting the label data was not sufficient for

exporting it into DenseFusion. The results from the trial run is only useful as proof of

concept, as it failed to find anything. This is most likely to be due to imprecision in the

data labels, as some guesswork had to be done because of a lack of information regarding

what the different metrics represent.

An attempt was also made to use the YCB dataset and organising the test dataset similarly.

It wasn’t the full dataset, but only a small part of it that still ended up with about 265

GB of data. The test run on the YCB dataset was however not finished. The testing has

gone on for about a week of continued training, and has yet to finish8.

7See https://github.com/j96w/DenseFusion for mention
8As of the time of writing this, June 9th.

https://github.com/j96w/DenseFusion
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Discussion and Future Work

This chapter discussed the suitability of the considered methods in light of the test results

reported in the prvious chapter. It also explores some ideas surrounding neural networks

and how they can be developed to better estimate the pose of unseen objects.

5.1 Choice of Methods

The reasoning for primarily choosing SSP and DenseFusion for testing is as follows. SSP

is a 6D pose estimating method that leads the Occlusion leaderboard, and ranks high

in the LINEMOD rankings. DeepIM is the current leading method of the LINEMOD

leaderboard. It could be of interest for further testing, since results give the impression it

can handle unseen objects with some success. The figures presented by DeepIM suggest

that it mostly finds the outline of the objects [8]. Looking back at how the robot operates,

it needs a pick point for which to pick up the object. SSP finds a centre point of the object

it is estimating [18]. This centre point may be possible to use as a pick point, after some

post processing. While not a defining reason, it did contribute to the selection of SSP.

DenseFusion is the other main method taken into consideration. It leads the YCB-Video

leaderboard, albeit with just a 0.1% lead above PoseCNN combined with a iterative post

refinement method. It is also one of the newest methods available having been released

15. Jan 2019. It was chosen because it leverages both RGB and Depth data for pose
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estimation [20]. When having access to two sources of input data, it is reasonable make

use of both and not ignore one.

Dex-Net was proposed at an early stage of this research and would have been a good

candidate had it not been for the fact that is does not actually estimate the pose of an

object. Dex-Net 4.0, as mentioned in Chapter 2, has a high success rate of more than

95% on 25 novel objects [48]. By default it also proposes a pick up point depending on

the gripper used. Therefore, Dex-Net in parallel with a different method could give good

results.

YOLOv3 is primarily an object detector, so it does not provide an estimated pose.

Nonetheless, SSP is built on a YOLOv2 implementation [18], so with this in mind it

seemed worth investigating if YOLOv3 could detect objects from the test dataset. If it

did, then that would give cause to modify it to work as a pose estimator.

SIFT and SURF were mostly considered because they do not require training and they

are already implemented in libraries like OpenCV [50]. As touched upon in Chapter 3,

neither SIFT nor SURF work well with textureless objects. It is for this reason that SIFT

and SURF are only mentioned. Worth noting as well is that the methods provide only

keypoints, that will need to be matched to a model to infer the 3D pose.

5.2 Future work

Seeing as the work done just gives an overview of potential solutions, there is much work

that can be done by going in depth into one or all presented methods. The section also

includes a concept that might fit the overall goal that Pick.ai was looking for.

5.2.1 Continued Evaluation

The methods tested in this thesis does not represent an exhaustive list of all suitable

methods. Furthermore, as the technology progresses and matures, there is bound to be

more pose estimators created. Therefore, there could be several methods in the coming
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years that are good candidates for further evaluation. Fully implementing or rewriting the

methods evaluated in this thesis could also be put up for consideration. However, in order

to test several methods the thorough testing had to be skipped, as the process would have

been too time consuming.

There is also the case of other non neural network methods. While SIFT & SURF may

not be suitable due to texturelessness, expanding upon the RANSAC method could work

for other shapes than the cylindrical. Other computer vision approaches could also be

worth investigating. Just because neural networks are on the rise, does not mean that

simpler solutions should be disregarded as they can be used together with a more advanced

catch-all solution.

5.2.2 Concept: General 6D Pose Estimation Method

As will be further expanded upon in the conclusion, there are no methods capable of

achieving a proper 6D pose estimation of unseen objects. However, most of the methods

bring with them functionality and features which may be of use for a general pose estimator.

The following concept should therefore include:

• Use of RGB-D data

• Transfer learning

• Use of synthetic data

• Post processing

• (Pick point)

According to Li et al. [8], methods that use both RGB and Depth outperform pure RGB

methods unless some form of post refinement is applied. Therefore, by using DenseFusion

as either the framework or a template can be recommended, as it allows for the complete

RGB-D data to be used. Using an existing method is not necessary, but may save time

since it is already proven to work.
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First and foremost in regards to training, is the use of transfer learning. All previous

methods, apart from Dex-Net, utilise some form of transfer learning. Transfer learning

is used heavily as it allows for training on a large and representative dataset, and is

therefore recommended. A synthetic dataset may so be used to further specialise the

method. Tremblay et al. [19] mention that synthetic data helps with proofing the method

against extreme lighting environments. Even if the environment the robot operates in is

controlled, making it able to handle a wider selection of environments can be argued to

be mostly positive. A downside with synthetic data is that is has to be generated, which

takes time, and will only be as as good as the original objects it is based on.

The main problem with current pose estimators is that they, for the most part, can only

handle objects they have been trained on. Solving this can theoretically be done by

training on general shapes instead of specific items. By categorising items into general

shapes, like spheres, cylinders, boxes etc., the method may be capable of providing a pose

estimation that fits the object approximately. Meaning that e.g. both a bottle of soda and

a bottle of shampoo is estimated to be equally large cylinders. The consequence of this is

that some detail is lost, but theoretically it should not impact the packing algorithm nor

the actual packing procedure. This is because the detail has already been reduced into

the height, width and depth of the bounding box. Training on geometry and not RGB

is however an unsolved challenge, but one that should be manageable since depth data

already is used in DenseFusion [20].

Both DeepIM and Dex-Net may be beneficial to implement. Using DeepIM in post

processing to refine the pose may counteract the less detailed pose the concept above

produces. While not a necessity, the improved pose would allow for a more precise packing

of the items. Implementing Dex-Net could be considered, as it is capable of handling

both the robotic path calculation and the generation of pick points. Dex-Net has already

proven itself with good results [22], so an implementation could act as a second layer

of robustness. In the event of a false negative where no object or pose is procured, the

implementation of Dex-Net could be used as an backup to at least pick and pack an item1.

1This may again cascade into further problems, as the packing algorithm now have an unknown object
in the packing crate.
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Conclusion

The goal of the thesis was to evaluate existing pose estimating methods, and to see if any

of them are suitable for locating an item within a standardised scene, as well as estimating

the pose of said item. The method in question should be general and adaptable, and

should work fast so to be efficient. It should not require much work to maintain, and

should work with small amounts of available data.

From the results, or rather the lack of results, and other observations done through the

work on this thesis, it cannot be concluded that any method tested is viable in their

current state. They either cannot estimate the pose of the item, as they only work on

pretrained items, or they would require a considerable amount of time to train, so that

they are trained for each specific item. Even if the time was found to properly train one

of the methods, it would require constant retraining as designs are subject to change. If

this work keeping the neural network up to date is feasible given the necessity for both

time and hardware, is up to Pickr.ai.

The testing that could be accomplished on the test dataset gave mostly poor results,

further underlining that the neural networks tested are not suitable. The fact that the

methods proved difficult to test and train is also worth taking into account. That does not

however conclude that neural network based methods are ill advised for this problem, just

that a different route may be the better choice1. What has not been taken into account
1E.g. a method like the one conceptualised in Chapter 5
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is how much work it would take to implement one of these methods. Observations do

however indicate that it may be substantial, which is the same reasoning for the change

in how the experiments were conducted.
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Intel RealSense Appendix A Intel RealSense D400 series

Appendix A

Intel RealSense D400 series

Intel RealSense Depth Camera D415

Environment Indoor and outdoor

Depth Technology Active infrared (IR) stereo

Image Sensor Technology Rolling shutter: 1.4 µm x 1.4 µm pixel size

Main Intel RealSense™Products Intel®RealSense™vision processor D4

Intel®RealSense™module D410

Field of View (FOV)- 63.4°x 40.4°(+/- 3°)

(Horizontal x Vertical) for HD 16:9

Depth Stream Output Resolution Up to 1280 x 720

Depth Stream Output Frame Rate Up to 90 fps

Minimum Depth Distance (Min-Z) 0.16 m

Maximum Range Approximately 10 meters

RGB Sensor Resolution & Frame

Rate

1920 x 1080 at 30 fps

RGB Sensor FOV (Horizontal x Ver-

tical)

69.4°x 42.5°(+/- 3°)

Camera Dimension (Length x Depth

x Height)

99 mm x 20 mm x 23 mm

Connector USB Type-C

Mounting Mechanism One 1/4-20 UNC thread mounting point

Two M3 thread mounting points
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Intel RealSense Depth Camera D435

Environment Indoor and outdoor

Depth Technology Active IR stereo

Image Sensor Technology Global shutter: 3 µm x 3 µm pixel size

Main Intel®RealSense™Products Intel®RealSense™vision processor D4

Intel®RealSense™module D430

Depth Field of View (FOV) 85.2°x 58°(+/- 3°)

(Horizontal x Vertical) for HD 16:9

Depth Stream Output Resolution Up to 1280 x 720

Depth Stream Output Frame Rate Up to 90 fps

Minimum Depth Distance (Min-Z) 0.11 m

Maximum Range Approximately 10 meters

Accuracy varies depending on calibration,

scene, and lighting conditions

RGB Sensor Resolution & Frame

Rate

1920 x 1080 at 30 fps

RGB Sensor FOV

(Horizontal x Vertical)

69.4°x 42.5°(+/- 3°)

Camera Dimension (Length x Depth

x Height)

90 mm x 25 mm x 25 mm

Connector USB Type-C*

Mounting Mechanism One 1/4-20 UNC thread mounting point

Two M3 thread mounting points
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Results

Figure B.1: The best result from testing on the test dataset using SSP.

Testing glue ...

Number of test samples : 73

-----------------------------------

tensor to cuda : 0.000407

predict : 0.004782

get_region_boxes : 0.014281

eval : 0.007301

total : 0.026771

-----------------------------------

Results of glue

Acc using 5 px 2D Projection = 0.00%

Acc using 10% threshold - 0.0176 vx 3D Transformation = 0.00%

Acc using 5 cm 5 degree metric = 0.00%

Mean 2D pixel error is 11476.583008 ,

Mean vertex error is 0.615241 , mean corner error is 272.864685

Translation error : 0.611315 m, angle error : 108.721245 degree ,

pixel error : 11476.583136 pix
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Listing B.1: The results running SSP without training on the test dataset

Testing glue ...

Acc using 5 px 2D Projection = 0.00%

Acc using 10 px 2D Projection = 0.00%

Acc using 15 px 2D Projection = 0.00%

Acc using 20 px 2D Projection = 0.00%

Acc using 25 px 2D Projection = 0.00%

Acc using 30 px 2D Projection = 0.00%

Acc using 35 px 2D Projection = 0.00%

Acc using 40 px 2D Projection = 2.74%

Acc using 45 px 2D Projection = 4.11%

Acc using 50 px 2D Projection = 4.11%

Listing B.2: Testing with the multi-object weights
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Software

C.1 YOLOv3

Software

YOLOv3 can be run on any system as long as it has Python , OpenCV and Numpy. It is

possible to either run it by command line or implement it in a Python script. The only

extras required is the YOLOv3 model and optionally the example image.

Usage

The command line testing can be done after downloading the files from https://pjreddie.

com/darknet/yolo/, a tutorial is also available there. When it comes to using YOLOv3

in a script, a good tutorial can be found at https://www.pyimagesearch.com/2018/11/

12/yolo-object-detection-with-opencv/.

Training was not tested as YOLOv3 does not provide the 6D pose of item, but a tutorial

explaining how to train is also on the official YOLO page. However, just running YOLOv3

on an image stream from e.g. a webcamera shows that it is both fast and powerful for

what it is made for. It was capable of finding several chairs and the people sitting on it,

as well as computers and cups all while working near real time on an aging computer.
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C.2 SingleShotPose

Software

The research group tested the code on Linux running CUDA v8, cuDNN v5.1, PyTorch

0.3.1 with the code being Python 2.71. The testing on UiS’s servers was with CUDA

v10.0.130, cuDNN v7.5, PyTorch 0.3.1 and Python 2.7. Under the MIT License the

software is free to use without limitations as long as the licensing agreements are met.

Installation is straightforward, mostly requiring downloading training data and pretrained

weights that sums up to about 9.6 GB. The Python Libraries numpy, scipy, PIL and

opencv-python are also required to run the code. As for the code itself it is attained

through git cloning of the repository found at github.com/Microsoft/singleshotpose.

Usage

Training and testing the software can be done right after the environment is set up 2.

Since the software contains already trained weights3, there is no need to train before

testing. Retraining the weights is simply done trough terminal commands. Optionally

there is also pretraining of the model, this also through one command.

It is worth noting that there is one set of weights for each object and one set of weights

for multiple objects. This means that a dataset can either be tested on one by one set of

weights, or for all at the same time. Training works the same way whether it is single or

multi-object weights.

The way this code is made does not lend itself to be implemented into other projects

without major rewriting. The software works as a contained project, meaning that it can

train and test without much extra work. However, to expand upon the usability and

adapt it to new challenges may be difficult. An example of the standard output from SSP

can be seen in Listing 3.1. To be able to show these results, there is a need for labels as

well. This limits testing and usage to datasets consisting of images that have labels.
1There is also one version using Python 3.0 which is PyTorch 0.4 compatible
2All prerequisites installed, software and datasets downloaded
3Pretrained on the LINEMOD dataset

github.com/Microsoft/singleshotpose
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Labels

The labels are in .txt format consisting of 21 values. The first value denotes the class of

the object. The second and third are the x and y coordinates for the centre point of the

object. Following are eight coordinate (xy) pairs marking the corners of a 3D bounding

box. The last two are the x- and y-range, which are the max length and width of the

object given xy coordinates. All values but the class value are normalised by the image

dimensions, meaning x/image_width and y/image_height. Some code to format and

prepare these labels have been attached to the thesis.

C.3 DOPE

Software

The code has been tested on Ubuntu 16.04 with ROS Kinetic. Unless the system has a

full ROS installation, there might be some ROS packages that needs to be downloaded.

As for Python libraries, DOPE requires pyrr, PyTorch, rospkg, numpy, scipy, OpenCV,

PIL, torchvision and PyYaml. Installation can either be through a docker image, or by

building from the repository.

Usage

Because DOPE already has ROS integration, all it takes to test it is to start the ROS

master, run a camera node like RealSense and start the DOPE node. Some rewriting of

the configuration file may be necessary for it to work properly.

Training

The code for training is included, but it is not officially supported.

C.4 DeepIM

Software DeepIM runs on Python 2.7, but the authors note that is should be possible to

use 3.x. Unlike the other methods, DeepIM requires OpenGL. Therefore it is necessary

to install libglfw3-dev and libglfw3, and of course have OpenGL installed. Following
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that there is a few Python packages required that should be easily installed by pip. The

authors also recommend git cloning of a package named Glumpy. The network used by

DeepIM is also available as a python package, and as usual the actual files of DeepIM

must be clone from the repository. The code has been tested on Ubuntu 14.04/16.04.

Usage Initialising DeepIM may take a while if following the recommendations of the

authors. Running the init.sh file that readies and organises the data may take a few hours.

This is just for the repository from github, using DeepIM with a custom-made dataset

would require a new dataset file to be written akin to LM6D_REFINE.py.

Training DeepIM requires quite a few things to train on a new dataset. RGB images,

ground truth poses, 3D models, camera intrinsic matrix and segmentation masks. To

train on a custom-made dataset is, from what can be gathered from the discussions on

the github repository4, there is currently no official way of creating a dataset for neither

DeepIM nor PoseCNN.

C.5 DenseFusion

Software

Installing DenseFusion is done through git cloning. The code works with Python

2.7/3.5/3.6, although 2.7 needs a rebuild of lib/knn/. The method has one branch

for PyTorch 0.4.1 that works with Python 2.7, and one with PyTorch 1.0. At great cost

to training speed, it is possible to run on CPU-only. However, CUDA 7.5/8.0/9.0 is highly

recommended. Other requirements are PIL, scipy, numpy, PyYaml, logging and matplotlib.

One thing that came up during testing was that torchvision had to be installed even when

using PyTorch 0.4.1. By downloading torchvision the newer PyTorch 1.0 is installed along

with it. To circumvent this it is necessary to force download the specific versions required.

Usage

As with SSP, the code uploaded to GitHub does not provide an easy to use command that

allows for pose estimation in real time. There is ROS integration for a robot grasping
4github.com/liyi14/mx-DeepIM and github.com/yuxng/PoseCNN

github.com/liyi14/mx-DeepIM
github.com/yuxng/PoseCNN
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experiment, but that code is not included in the GitHub repository. Therefore, it is

necessary to create a new dataset and run it through the evaluation function that is

provided. Simply testing DenseFusion is straight forward when all prerequisites are met.

E.g. when testing on the LINEMOD dataset it is only necessary to run one script to

download, and then one script to test. Testing and training on the YCB dataset is similar,

but requires much more space as well as much more time to train.

Labels

The labels that DenseFusion use differ from the other methods. There are however a

few tools that are recommended by Wang et al.[20]. One of these is LabelFusion[51], a

tool specifically made for labelling RGB-D data in cluttered scenes. LabelFusions run

in a Nvidia docker 1 container, and allows for mass labelling of data with relative ease.

From ten seconds of filming, about 300 labelled images where created. Since docker and

the attached image allows for the whole process to be contained, only a depth camera

is required to create new datasets. Although LabelFusion provides much of the required

data, it is not sufficient enough to create a correctly formatted dataset.

C.6 Dex-Net

Dex-Net 1.0

A growing dataset of over 10 000 unique 3D object models and 2.5 million parallel-jaw

grasps, and an associated algorithm to study the scaling effects of big data and cloud

computation on robust grasp planning. This first version of Dex-Net used Multi-View

Convolutional Neural Networks, a deep learning method for 3D object classification, as a

similarity metric between objects. This was then run simultaneously on up to 1500 virtual

machines using the Google Cloud Platform. Experiments suggested that prior data could

speed up the robust grasp planning by a factor of 2 on average. The quality of the grasps

also increased with the number of similar objects in the dataset. The code for this is

deprecated as of May 2017 [22, 52]. This gave a foundation for the rest of the project, as

they now had a good dataset that they could use to build and expand upon.
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Dex-Net 2.0

In an effort to reduce data collection times for deep learning in regards to robust robotic

grasp plans, the Dex-Net team explored training from a synthetic dataset of 6.7 million

point clouds, grasps and robust analytic grasp metrics. This was generated from the 3D

models in Dex-Net 1.0, and the result was Dex-Net 2.0. The dataset is used to train

a Grasp Quality Convolutional Neural Network (GQ-CNN) that rapidly predicts the

probability of success of grasp from depth images. The grasps are specified with as the

planar position, angle and depth of a gripper relative to an RGB-D sensor. The results

from over 1000 trials suggest that a GQ-CNN can plan grasps in 0.8s with a success rate of

93% when it has been trained on synthetic data from Dex-Net 2.0, when planning grasps

on eight known objects. When tested on ten common household objects, it achieved a

100% precision on 29 grasps. [22, 53]

Dex-Net 3.0

Suction-based end effectors are a widely used end effector in the industry, much due to

their ability to lift objects with a single point of contact. It is also the solution used by

Pickr.ai. Given that the method only requires one spot on a planar surface , the grasp

planning becomes much easier than that of the parallel-jaw and multifinger grippers. A

model that computes the quality of the seal between the suction cup and the target object

is used to generate Dex-Net 3.0. To evaluate a given grasp, they measure the robustness

to perturbations in the end-effector, as well as the object pose, material properties and

external wrenches5. As before, a GQ-CNN is trained on the dataset. When the shape,

pose and mass properties of an object is known, a 99% precision is achieved on objects of

adversarial geometry 6. A policy trained Dex-Net 3.0 achieves 99% and 97% precision

respectively on a dataset of basic and typical objects. [22, 54]
5E.g gravity
6E.g sharply curved surfaces
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Dex-Net 4.0

With the bin picking problem in mind, the Dex-Net 4.0 policy allows a physical robot to

consistently clear a bin with 25 novel objects. This is done with a reliability greater than

95% at a picking rate averaging on 300 picks per hour. These policies are trained for both

parallel-jaw and vacuum-based suction cup grippers, on 5 million synthetic depth images,

grasps and rewards generated from heaps of 3D objects. [22, 48]
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Labelformatting/BoundingBxViz.py

# coding=utf-8
import cv2
import numpy as np

# Hvis denne klarer å hente ut infoen fra label fila og plasserer prikker i hvert hjørne av en tenkt 3D bounding box,
# så er filen formatert riktig. Første tallet er class, ikke veldig viktig. Så er det xy koord til senter punkt i objektet
# De neste tallene representerer x og y koord til hvert hjørne og avslutter med en x range og en y range verdi.

# test_bilde = cv2.imread("/home/harald/Documents/Labels/Bilder/000001.jpg")

test_bilde = cv2.imread("/home/harald/singleshotpose/LINEMOD/benchvise/JPEGImages/000106.jpg")

# Reads test image
#test_bilde = cv2.imread ("/home/harald/Documents/Labels/Bilder/" + "ir_Fri Apr 26 16:25:47 2019%0A.png")
shape = test_bilde.shape

# Reads label.txt file
f = open("/home/harald/singleshotpose/LINEMOD/glue/labels_occlusion/000106.txt", "r")
# f = open("/home/harald/Documents/Labels/Labels/000001.txt", "r")

if f.mode == 'r':
    contents = f.read()
f.close()

data = np. asarray(contents.split(), dtype=np.float)
# Loads all the points
points = np.array(
    [[data[1], data[2]], [data[3], data[4]], [data[5], data[6]], [data[7], data[8]], [data[9], data[10]],
     [data[11], data[12]], [data[13], data[14]], [data[15], data[16]], [data[17], data[18]]])

# Transforms it into pixel values
pixPoints = np.round(points * np.flip(shape[0:2])).astype(np.int32)


range1 = np.round(shape[1]*data[19]).astype(np.int32)
range2 = np.round(shape[0]*data[20]).astype(np.int32)

# test_bilde = cv2.line(test_bilde, (pixPoints[2][0], pixPoints[2][1]), (pixPoints[2][0], pixPoints[8][1]), (255, 0, 0), 1)

print(range1, range2)

# Prints all points onto the image, should make sense
for i, (coords) in enumerate(pixPoints):
    if i <= 4:
        test_bilde = cv2.circle(test_bilde, (coords[0], coords[1]), 3, (255, 0, 0), -1)
#        cv2.putText(test_bilde, str(i), (coords[0], coords[1]), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2, cv2.LINE_AA)
    else:
        test_bilde = cv2.circle(test_bilde, (coords[0], coords[1]), 3, (255, 255, 0), -1)
#        cv2.putText(test_bilde, str(i), (coords[0], coords[1]), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 0), 2, cv2.LINE_AA)


    # This just prints some lines that should, to a certain degree at least, line up with the length and width of the
    # object. 
    # if i == 1:
        # test_bilde = cv2.line(test_bilde, (coords[0], coords[1]), (np.add(range1, coords[0]), coords[1]), (0, 255, 0), 1)
        # test_bilde = cv2.line(test_bilde, (coords[0], coords[1]), (coords[0], np.add(range2, coords[1])), (0, 0, 255), 1)


cv2.imshow("Bilde", test_bilde)
cv2.waitKey(0)
cv2.destroyAllWindows()







Labelformatting/LabelFormatter.py

# coding=utf-8
import json
import cv2
import numpy as np

with open("/home/harald/Documents/Labels/LabelsMask.json") as x:
    j_obj = json.load(x)
x.close()

depth_mask_list = []
mask_list = []
x_marks_the_spot_list = []
for i, (x) in enumerate(j_obj):
    x_marks_the_spot = np.array((0, 0))

    # Fetch pictures using the json file and save in correct format
    first_run = False  # Set to True if the pictures are in the wrong format
    if first_run:
        orig_image = cv2.imread("/home/harald/Documents/Labels/Bilder/" + x.get('External ID'))
        cv2.imwrite("/home/harald/Documents/Labels/Bilder/" + str('{:06d}'.format(i)) + ".jpg", orig_image)

    Label_coord = x.get('Label').get('BoundingBox')
    orig_image = cv2.imread("/home/harald/Documents/Labels/Bilder/" + str('{:06d}'.format(i)) + ".jpg")

    height, width, _ = orig_image.shape

    if len(Label_coord[0].get('geometry')) == 4:
        for coordinates in Label_coord[0].get('geometry'):
            xcoord = coordinates.get('x')
            ycoord = coordinates.get('y')
            image = cv2.circle(orig_image, (xcoord, ycoord), 3, (255, 0, 0), -1)
            x_marks_the_spot = x_marks_the_spot + np.array((xcoord, ycoord))
            mask_list.append((xcoord, ycoord))

        # Finds the center point of the object in question
        x_marks_the_spot_list.append(x_marks_the_spot/4)
        image = cv2.circle(image, (x_marks_the_spot_list[i][0], x_marks_the_spot_list[i][1]), 3, (255, 0, 0), -1)

        # Finds the center point in the image
        center_point = np.array((width, height), dtype=np.int32) / 2
        # image = cv2.line(image, (0, height/2), (width, height/2), (255, 0, 0), 2)
        # image = cv2.line(image, (width/2, 0), (width/2, height), (255, 0, 0), 2)

        # Calculates an approximation on the shift that constitutes a 3D boundingbox
        for l in range(4):
            old_coord = np.array(mask_list[i*4+l])
            ratio = np.true_divide(old_coord - center_point, center_point)*(-40)
            depth_coord = np.round(old_coord + ratio).astype(np.int32)
            image = cv2.circle(image, (depth_coord[0], depth_coord[1]), 3, (0, 255, 0), -1)
            depth_mask_list.append(depth_coord)

    else:  # If there's a boundingbox that doesn't have 4 points, simply skip/fill in zeros
        x_marks_the_spot_list.append((0, 0))
        for l in range(4):
            mask_list.append((0, 0))
            depth_mask_list.append((0, 0))

        height, width, _ = image.shape

    # Reformats the numbers from pixel values into ratio values
    for j, co in enumerate(mask_list):
        w = np.round(np.true_divide(co[0], width), decimals=6)
        h = np.round(np.true_divide(co[1], height), decimals=6)
        mask_list[j] = (w, h)

    for j, co in enumerate(depth_mask_list):
        w = np.round(np.true_divide(co[0], width), decimals=6)
        h = np.round(np.true_divide(co[1], height), decimals=6)
        depth_mask_list[j] = (w, h)

    for j, co in enumerate(x_marks_the_spot_list):
        w = np.round(np.true_divide(co[0], width), decimals=6)
        h = np.round(np.true_divide(co[1], height), decimals=6)
        x_marks_the_spot_list[j] = (w, h)

    # Finds and sets the X and Y range
    xr_temp = []
    yr_temp = []
    for k, a in enumerate(mask_list[i*4:i*4+4] + depth_mask_list[i*4:i*4+4]):
        for l, b in enumerate(a):
            xr_temp.append(a[0])
            yr_temp.append(a[1])

    xr = np.round(max(xr_temp) - min(xr_temp), decimals=6)
    yr = np.round(max(yr_temp) - min(yr_temp), decimals=6)

    # Sets the values into their proper place
    bounding_box_string = "8 " + str(x_marks_the_spot_list[i][0]) + " " + str(x_marks_the_spot_list[i][1]) + " "\
                          + str(mask_list[i*4][0]) + " " + str(mask_list[i*4][1]) + " "\
                          + str(mask_list[i*4+3][0]) + " " + str(mask_list[i*4+3][1]) + " "\
                          + str(mask_list[i*4+1][0]) + " " + str(mask_list[i*4+1][1]) + " "\
                          + str(mask_list[i*4+2][0]) + " " + str(mask_list[i*4+2][1]) + " "\
                          + str(depth_mask_list[i*4][0]) + " " + str(depth_mask_list[i*4][1]) + " "\
                          + str(depth_mask_list[i*4+3][0]) + " " + str(depth_mask_list[i*4+3][1]) + " "\
                          + str(depth_mask_list[i*4+1][0]) + " " + str(depth_mask_list[i*4+1][1]) + " "\
                          + str(depth_mask_list[i*4+2][0]) + " " + str(depth_mask_list[i*4+2][1]) + " "\
                          + str(xr) + " " + str(yr)

    f = open("/home/harald/Documents/Labels/Labels/" + str('{:06d}'.format(i)) + ".txt", "w+")
    f.write(bounding_box_string)
    f.close()








