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Abstract
This thesis reviews methods for interest point detectors to detect salient points that

have an expressive structure such as corners or blob features. Properties of good inter-

est point detectors are that interest points are being detected regardless of geometric

or photometric changes such as scaling, rotation, noise, and brightness in the image.

Two of the more common interest point detectors are Speeded Up Robust Features

(SURF) and Smallest Univalue Segment Assimilating Nucleus (SUSAN), both being

essential milestones in feature detection and are still wildly used in various applica-

tions in fields like interest point detection. In contrast, research on KAZE algorithm

has been scarce. However, interest in further research has been gaining traction within

the community. This stands to the reason why the focus will be on how the KAZE

detector will perform compared to SUSAN and SURF detectors. KAZE was selected

as it is quite new compared to the others, and the fact that it uses nonlinear scale space

compared to algorithms such as SURF that uses Gaussian scale space. Furthermore,

three images were used for the experiments, where the first image is a synthetic image

with different geometrical shapes. Second and third images are real-life images of a

building and a boy, respectively.

The results of the synthetic image with different geometrical shapes show that the

detectors have different results on each experiment carried out for this type of image.

While for the real-life images, KAZE and SURF proved vastly superior compared to

SUSAN. This led to the conclusion that the detectors should be selected according to

the type of experiment carried out. Additionally, in terms of the detector speed, SURF

was the fastest detector compared to the other detectors.
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1. Introduction
Point- or blob features are frequently applied detectors types where detection is a

primary asset of the workload within computer vision. Whether it be detecting faces

of various live feeds at the airport or preventing potential hazardous situations for

workers when moving about on oil platforms, the possibilities are endless. Nowadays,

detectors are more versatile with the introduction of KAZE, although depending on

the method of development, such as non-diffusion filtering, or DoG (Difference of

Gaussian-filter). Alongside KAZE, there are numerous different approaches to detect

interest points from digital images. Interest points are a series of point in an image

with an expressive texture such as corner which is an intersection point between two

edges or obvious point that is distinguished from the rest of the image. The charac-

teristics of a good interest point detector are to detect many true interest points as

possible and no false interest points. Besides, an interest point detector should also be

robust to different transformations. In this project, three interest point detectors are

chosen to detect interest points, which are further analyzed and tested. The purpose

of conducting this analysis is to test how the detectors are detecting interest points at

a synthetic image with different figures and real-life images and to analyze what kind

of interest points are being detected.

1.1 Feature detection methods

Feature detection is an important element in the field of computer vision. This is due

to the depth and size of feature detection approaches and the fact that it is used in

many applications like image registration, camera calibration, or object detection. It is

important to introduce the essential parts of the feature detection such as images, local

features, global features, and the characteristics for good features.

Images are an artificial creation of what the naked eye sees through the lens of the

camera, which is made from elements called pixels and vectors. For the human eye to

detect something particular inside an image, a simple look is all that is needed. Unlike

humans, computer vision analysis the pictures by using specific algorithms to achieve

a similar result. In computer vision tasks, images can be represented by using either

global features and local features. The global feature is used to describe an image by
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1.1. FEATURE DETECTION METHODS

one multidimensional feature vector, precisely, the image seen as a whole. The local

feature is used to describe the different regions within the image. Moreover, describe

the image with a set of features like image regions or keypoints [1].

Figure 1.1: Global feature representation (left) and local feature representation (right) [1]

Identifying local features are an essential task within the field of computer vision.

Local features can be divided into several categories all depending on what kind of

features are desired to detect. The first kind of local features are the ones that are

in a specific location, such as building corners, windows, or geometric shapes. These

features are usually referred to as interest points or corners. The second kind of local

features are edges, which is all about finding boundaries, straight lines, or curves [2].

The last type is the texture that has a unique structure on their surface, which can

be found in mountains, buildings, or natural scenes [3]. There are many more local

features, but the ones mentioned above are the most important one.

Figure 1.2: Edge detection on a cup (left) and Corner detection on a building (right) [4]

2



1.2. OVERVIEW OF FEATURE DETECTION METHODS

To apply feature detection, the location and sizes of any features must be first found

and then extracts this feature from the background. An ideal feature detector should

be able to identify and locate these features regardless of their positions, scale, or orien-

tation. History shows that many different approaches are considering different prop-

erties for great detection. This idea applies for feature detection in general, whether it

is a corner or an edge that is to be detected. Moreover, a good detector is determined

by several criteria. As this project focuses heavily on interest points, the characteristics

for good point features are as following [5] [1]:

• Repeatability: The detected point features are visible in multiple images of the

same object taken from different viewpoints.

• Robustness: The same point features are detected regardless of scaling, rotation,

noise, and brightness changes. Additionally, the point features should be geo-

metric and photometric invariant as well.

• Distinctiveness: The detected point features have variations in the intensity pat-

tern, and thereby such features can easily be distinguished from each other.

• Accuracy: Accurate localization of the detected point features.

• Efficiency: Proficient detection of point features. A detector should be both fast

and efficient.

• Invariance: Point features are detected independent of scale changes or transfor-

mations within an image.

• Quantity: All or most of the point features should be detected, so that all ob-

jects are detected even the small objects. Note that an ideal number of features

depends on the application.

1.2 Overview of feature detection methods

The most common point feature detector is the Harris Detector, developed and pub-

lished by Chris Harris and Mike Stephens in 1988 [6]. It improves upon the Moravec

3



1.2. OVERVIEW OF FEATURE DETECTION METHODS

detector [1] when detecting small image variations and points near edges. In other

words, a desirable detector in terms of repeatability rate and detection can be ob-

tained by changes and alterations of auto-correlations at any orientations. The Harris

detector permitted the development and widespread utilization of the Harris-Affine

and the Shi-Tomasi/Kanade-Tomasi detectors [7]. SUSAN (Smallest Univalue Segment

Assimilating Nucleus) is favorable in application whenever image noise reduction is a

vital part of the workload, including corner- and edge detection. The detector uses a

circular mask to find intensity differences in the image regions. All the pixels which

have the same intensity value as the center pixel is verified as the USAN (Univalue Seg-

ment Assimilating Nucleus) [8]. In order to find a corner or edge, a threshold value is

set to distinguish the intensity values in the center pixel from the rest. Furthermore,

based on the number of identical pixels found in the circular mask, a corner or edge

can be found. In addition, the performance of this detector is most satisfactory in the

presence of noise by not making use of image derivatives, as well as yield substantial

noise rejection. This is easily comprehended by understanding that noise is ignored

when it is too small for the USAN function [8]. Both SUSAN and detectors based on

the Harris detector are known as corner detector, as they can detect features of any

given object within a picture that comprises of corners, or other point-characteristics

and compare it to similar images.

There are several well-established algorithms within interest point detection or corner

detection like Moravec corner detection algorithm, Harris corner detection algorithm,

SUSAN corner detector. For computational efficiency and high-speed performance,

Rosten and Drummond proposed FAST (Features from Accelerated Segment Test) cor-

ner detector in 2006. The purpose of the FAST algorithm was to develop an interest

point detector to be used in ’real time frame rate applications’ such as SLAM (Simul-

taneous Localization And Mapping) [9] on a mobile robot, which has limited com-

putational resources [10]. To detect interest points at an arbitrary pixel, the algorithm

compares the intensity between pixels on a circle surrounding with the examined pixel

p. If the intensity of the surrounding pixels is all above or all below p, then the algo-

rithm is said to have found an interest point at p. The most exciting advantage of the

FAST detector is its computational efficiency as well as the fact that it is several times

4



1.2. OVERVIEW OF FEATURE DETECTION METHODS

faster than the other corner detectors, which enables it to be very suitable for real-time

video processing application because of its high-speed performance[11]. Despite these

advantages, the FAST algorithm is not robust to high-level noises and is dependent on

a threshold.

On the other hand, most of the mentioned methods are not invariant to scale changes.

Therefore, a new approach had to be created to deal with changes in image scale. One

of the most well-known and widely used today is the SIFT (Scale Invariant Feature

Transform) detector [12]. This was a breakthrough proposed by Lowe in 2004 which

finds scale invariant features in an image. SIFT is an approach for extracting keypoints

from images using local extrema detection and Difference of Gaussians (DoG) which

is an approximation of the Laplacian of Gaussian (LoG) [13]. The detector aims to

produce scale-invariant features, which means it can detect features at different scale

levels [14]. From the results in ”Comparison and Study of Classic Feature Point Detection

Algorithm” [15], the SIFT algorithm has shown positive results in dealing with transla-

tion, rotation, scaling and brightness change which make this algorithm more robust

and accurate compared to others. Nevertheless, it is slow in terms of high computa-

tional cost and execution time [16].

In 2008, Bay, Tuytelaars and Van Gool, published a new algorithm called SURF (Speeded

Up Robust Features) that is a faster version of SIFT. The SURF algorithm is based on

the same principles and steps as SIFT, but it utilizes a different scheme, and it aims

to provide a better and faster result. SURF uses integral images and Hessian deter-

minants to detect interest points. According to the article Speeded-Up Robust Features

(SURF) [17], Hessian-based detectors are more stable and repeatable.

For that reason, SURF and SIFT are often used as baselines in evaluations of other

detectors. BRISK (Binary Robust Invariant Scalable Keypoints) is a detector that is

based on the FAST detector. It detects keypoints in a scale-space pyramid by perform-

ing non-maxima suppression and interpolation across all scale levels [18]. Recently, a

new algorithm called KAZE has been published with claims to surpass SIFT in both

precision and speed [19]. The KAZE detector is based on the determinant of Hessian

5



1.3. THESIS OBJECTIVE

computed at multiple scale levels. Besides that, the KAZE feature detector is also con-

structed through nonlinear diffusion filtering, which means that the image is locally

adapted to the image. This means that noise, i.e., Gaussian noise, are reduced and

object boundaries in a subject image are maintained at the same time [16].

1.3 Thesis objective

The objective of this thesis is to identify interest points within a synthetic image with

different transformations and real-life images. Three detectors called KAZE, SURF and

SUSAN are chosen for this purpose. The majority of the focus will be on how these

detectors are recognizing true interest points for different experiments of geometric or

photometric changes such as scaling, rotation, Gaussian noise, and brightness in the

synthetic image. After that test these detectors to identify interest points in real-life

images.

1.4 Thesis outline

Chapter 1 - Introduction

The reader is introduced to the background and existing algorithms of the thesis topic.

The problem statements are also defined, and assumptions and limitation described.

Chapter 2 - Theory

Theory relevant to this thesis is presented.

Chapter 3 - Methods and Experiments

A detailed description of the methods and experiments are arranged to verify the

performance of the proposed methods (KAZE, SURF, and SUSAN).

Chapter 4 - Results and discussion

This chapter contains all results obtained from the experiments described in chapter

3. Discussions are based on these results.

Chapter 5 - Conclusions

Conclusions based on the report’s topics.

6



2. Theory
This master thesis addresses various methods utilized in KAZE, SURF, and SUSAN.

It is therefore crucial to provide a theory to make a foundation to help understanding

this type of detection. The following chapter and sections introduce the main theories

of KAZE, SURF, and SUSAN detectors. Most theories are based upon information

learned through various articles.

2.1 KAZE features

Originating from the Japanese language, KAZE means ’wind’ and therefore an appro-

priate word describing the flow of air ruled by nonlinear processes on a large scale.

The KAZE feature detector algorithm was developed in 2012 by Pablo F. Alcantar-

illa, Adrien Bartoli and Andrew J.Davison [19]. The main purpose of this algorithm is

to detect and describe 2D features through nonlinear diffusion filtering by operating

entirely in nonlinear scale space. KAZE features make use of nonlinear diffusion fil-

tering (NDF) (explained in appendix A) alongside Additive Operator Splitting (AOS)

schemes (explained in Appendix B) which makes the input image locally adaptive to

blurring, and simultaneously not affecting details and edges. Put differently, the KAZE

features is an improvement of SIFT using nonlinear diffusion filtering instead of the

difference of Gaussian scale space for detection purposes. This approach is preferred

since algorithms like SURF adds the same degree of smoothness on details and noise

at all scale levels, which affects the localization accuracy of interest points. The KAZE

feature algorithm can be divided into three steps [20]:

1. Build a nonlinear scale space using AOS schemes and conductivity functions.

2. Detect 2D features by computation of the determinant of Hessian response and

execute non-maxima suppression in images within the nonlinear scale space.

3. Calculations of main orientation and a descriptor for all interest points.

More detailed illustrations of these steps are shown through the flowchart in Figure

2.1. This figure shows the step by step flowchart of the KAZE algorithm. Additionally,

the flowchart was made with regard to the KAZE features [19].
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Start

Input image

yes

Compute the contrast factor k
 using nonlinear diffusion filtering

Compute the determinant of
Hessian at multiple scale levels

Conductivity
function g1

Conductivity
function g2

Conductivity
function g3no no

yes yes

no

The position of the keypoints are
found by performing subpixel

refinement  

Compute the multiscale derivatives for the
detector using Scharr filters

Define a set of evolution times from
the discrete scale levels in pixel

units σi

Select the conductivity function
Perona Malik g1, Perona Malik g2 or

Weickert g3 

End

Get the information from the keypoints and
calculate the derivatives responses for points

within radius of 6*σi

Circle segment covering angle pi/3 slides the
window around the interest point

The dominant orientation is obtained from the
longest vector produced from this window

Calculate M-SURF descriptor for this interest
point

Show results

Build a nonlinear scale space

Feature detection

Feature descriptor

Nonlinear scale space is built in a
iterative way using the AOS schemes

solution

Figure 2.1: Shows step by step flowchart of the KAZE algorithm
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2.1.1 Build a Nonlinear Scale Space

The purpose of building a scale space is to differentiate the image structures in the

original image, so that good scale image structures only exist at the better scales in

multi-scale representations like pyramids, scale-space representations, and nonlinear

diffusion methods [21]. The nonlinear scale space built for KAZE feature algorithm

was realized as diffusion-type Partial Differential Equations (PDEs), permitting im-

plementation in the Perona and Malik equation [22] [23]. Keep in mind that the scale

space in this project makes use of AOS schemes (see appendix B) and conductivity

functions from NDF (see appendix A). The nonlinear scale space corresponds to a set

of O octaves and S sub-levels, similar to approaches in SIFT and SURF. To be more

precise, the scale space is discretized in logarithmic steps of organized series of these

octaves and sub-levels in the original image resolution without downsampling every

new octave. The discrete values of octave index o and sub-level s are therefore used to

identify the sets of octaves and sub-levels respectively [19]. The scale is defined by its

standard deviation, which is represented as follows:

si(o, s) = s02o+s/S where o 2 [0 . . . O � 1], s 2 [0 . . . S � 1], i 2 [0 . . . N] (2.1)

Where N represents the total number of filtered images and s0 is the base scale level.

However, it is necessary to convert the collection of discrete scale levels to time units

ti as NDF is defined in terms of time. The application of this conversion will yield

sets of evolution times, enabling transformation of the scale space si(o, s) to time units

from the mapping si �! ti [19]. Note that the purpose of this mapping is to utilize

the obtaining sets of evolution times in the development of the nonlinear scale space.

The following expression shows the formula for mapping si �! ti:

ti =
1
2

s2
i , i = {0 . . . N} (2.2)

In other terms, building a nonlinear scale space utilizing techniques from AOS schemes

requires both the contrast parameter k and the set of evolution times ti [19]. The con-
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2.1. KAZE FEATURES

trast parameter is obtainable by computing the image gradient histogram from an

altered base image (see section A.1). This image has been convolved with a Gaussian

kernel of standard deviation s0 to reduce noise and possible artifacts. After obtaining

both contrast parameter k and the sets of evolution times ti, the nonlinear scale space

is built in an iterative way using the AOS schemes solution Li+1 (equation (B.2) in

appendix B) [19].

Figure 2.2 displays blur with Gaussian scale space and nonlinear scale space respec-

tively over certain evolution times ti.

Figure 2.2: Difference between the bluriness Gaussian scale space and nonlinear diffusion scale

space for different evolution times ti [19]. First row: Shows that the image get blurred using

the Gaussian scale space (linear diffusion) and Second row: Shows that the image is retaining

important object details using the Nonlinear diffusion scale space with conductivity function

g3

2.1.2 Feature Detection of KAZE

The incorporation of a feature detection when developing a KAZE algorithm will per-

mit the identification of image primitives of interest, e.g., points and regions. This algo-

rithm attribute highlights visual cues in any given image and allows the user to extract

stable features effectively. Note that the detection accuracy of interest points can be in-

creased by computing the response of scale-normalized determinant of the Hessian

(DoH) in the nonlinear scale space at multiple scale levels (Figure 2.4), subsequently

enhancing the algorithm identification capability to multi-scale feature detection.
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The Hessian matrix is a square matrix of second-order partial derivatives of a function

[24]. Each element of Hessian Matrix using indices i and j for determining the position

are described in equation (2.3).
Hi,j =

∂2 f
∂xi∂xj

(2.3)

The determinant of Hessian (DoH) is used to find a point of interest in an image

where the determinant is maximum. In KAZE feature detection, DoH computes for

each of the filtered images Li in the nonlinear scale space. The matrix below (figure

2.3) represents the Hessian matrix H(x, s), where x = (x,y) is the given point and s are

chosen as the scale in given image I [17].

Figure 2.3: The Hessian matrix H(x, s) in point x with scale s [17]

where Lxx(x, s) represents the convolution between image I in point x and the Gaus-

sian second order derivative (Gaussian kernels) is given as ∂2

∂x2 g(s). Similarly for

Lxy(x, s) and Lyy(x, s). With regard to this matrix, the determinant of the Hessian

used for the KAZE detector can be expressed as follows:

LHessian = s2(LxxLyy � L2
xy) (2.4)

Where the second order horizontal and vertical derivatives are given as Lxx and Lyy

respectively, and Lxy is the second order cross derivative. The set of first and second

order derivatives are estimated by 3⇥ 3 Scharr filters (See section 2.2) of different scale

levels si. The Scharr filters have a greater rotation invariance and capability to differ-

entiate central differences compared to popular filters such as Sobel filters and stan-

dard central differences differentiation [20] [25]. Consecutive Sharr Filters in desirable

derivative coordinates enable approximation of second order derivatives. Furthermore,

it is recommended to analyze the detector response at the previously mentioned dif-

ferent scale levels si provided the set of filtered images from the nonlinear scale space

11
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Li has been calculated in advance.

First and foremost, the detector response analysis require a search of maxima in scale

and spatial location before the search for each extrema in all filtered images except

i = 0 and i = N over a rectangular window of size si x si on the current i, upper

i + 1 and lower i � 1. The size of the search window is set to 3 ⇥ 3 pixels to effi-

ciently search and discard non-maxima responses [19] within the set of values from

the analysis. The descriptor step in the algorithm therefore saves computational efforts

by utilizing the same set of aforementioned calculated derivatives if incorporated with

this Hessian-based feature detection, even when the necessary computations of multi-

scale derivatives for every pixel are taken into account [19]. Finally, the position of

each interest point is calculated with sub-pixel refinement by appropriate a quadratic

function to the determinant of the Hessian in a 3 ⇥ 3 pixels neighborhood and finding

its maximum [22].

Figure 2.4: Shows how the Hessian blob detection algorithm is detecting blob features of the

input image using Gaussian scale space. KAZE uses similar approach only difference is the

use of nonlinear scale space instead of Gaussian scale space, where nonlinear scale space is

keeping the image details instead of blurring the image as done here with the Gaussian scale

space. Note that, the pixels for the input image here are given in the unit nm
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2.1.3 Feature descriptor of KAZE

The last step of the KAZE feature algorithm is to develop a feature descriptor which

differentiates one feature in an image from another. An ideal descriptor is invari-

ant to image transformations. Simply put, a feature descriptor that distinguishes key

characteristics in an image through the calculative process of feature description, a

process which assimilates interest points from an image and yields feature descriptors

[20]. Note that a KAZE feature descriptor is the Modified-SURF (M-SURF) descriptor

adapted to the nonlinear scale space framework mentioned in section 2.1.1 [19].

Bear in mind that it is necessary to compute the dominant orientation for all interest

points before building the descriptor. If the objective is to build a rotation invariant

descriptor, the dominant orientation for each detected interest point should be calcu-

lated. The dominant orientation can be estimated with a sampling step of size si in a

circular area of radius 6si. Each sample within this circular area includes first order

derivatives Lx and Ly where the derivative responses are represented as points. The

dominant orientation is then defined from the longest vector from calculating the sum

of all derivative responses as points in vector space within the sliding aforementioned

orientation circle covering an angle of p/3 [19] [20].

With the dominant orientation estimated, the next step is to construct the descriptor.

KAZE descriptor utilize the structure of the Modifed-SURF interest point descriptor

embedded to the framework of the nonlinear scale space stated in section 2.1.1. The

first order derivatives Lx and Ly of size si are calculated over a 24si x 24si rectangular

grid for a detected feature at scale si. This grid is then divided into 4⇥ 4 subregions of

size 9si x 9si with an overlap of 1.5si to preserve important information. In each subre-

gions, the derivative responses is Gaussian weighted using (s1 = 2.5si) centered in the

subregion center and summed into a descriptor vector dv = (Â Lx, Â Ly, Â |Lx| , Â
��Ly
��)

[19]. Each subregion vector is thereafter Gaussian weighted using (s2 = 1.5si) defined

over a mask of size 4⇥ 4 with an interest point as center. The derivatives are computed

in consideration of the dominant orientation of interest points rotated accordingly for

both samples in the rectangular grid. Finally, to achieve invariance to contrast, the de-
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scriptor vector of length 64 is converted into a unit vector [19] [20]. Figure 2.5 shows

the rectangular grid and subregions in a Modified Surf descriptor building process.

Figure 2.5: Modified Surf Descriptor building process [26]

2.2 Scharr filter

The approximation used for Sobel operator lack accuracy when it comes to small ker-

nels. Specifically, for a 3-by-3 Sobel filter, the inaccuracies are more frequent when the

gradient angle is farther away from horizontal or vertical. For that reason, a filtering

method called Scharr filter can be used. This is a filtering method used to identify

gradient features along the x-axis (horizontally) and y-axis (vertically) using the first

derivatives. Besides, the Scharr filter is also more precise, better in terms of rotation

invariance and equally fast as the Sobel filter [27] [25]. Figure 2.6 shows the operator

for both horizontal and vertical direction.
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Figure 2.6: The 3-by-3 Scharr filter for both horizontal and vertical direction. horizontal kernel

on right and vertical kernel on left.

2.3 SURF - Speeded Up Robust Features

SURF - Speeded Up Robust Features is another scale- and rotation invariant detector

and descriptor. SURF was developed in 2008 by Herbert Bay, Tinne Tuytelaars and

Luc Van Gool. As mentioned earlier, the SURF detector uses Hessian determinants to

detect interest points while the descriptor uses Haar-wavelets response. The following

subsections give a detailed description of the detector and the descriptor.

2.3.1 SURF detector

Similar to KAZE, the SURF detector [17] also uses an approximation of the deter-

minant of the Hessian matrix to find interest points as well. This is due to its great

performance in terms of computation time and accuracy (see section 2.1.2 for the ex-

planation of the Hessian).

The second order partial derivatives must be discretized and cropped before applying

9x9 box filters. Top right and top left of Figure 2.7 shows the Gaussian second order

partial derivative in y-direction, Lyy and xy-direction, Lxy. The bottom right and bot-

tom left of Figure 2.7 shows how the SURF algorithm approximates these Gaussian

second partial order derivatives with s = 1.2 by using box filters of size 9x9 pixels. The

Illustrated gray area corresponds to value 0, and the black area is -1, and the white

area is 1 [17].
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Figure 2.7: Top left: Gaussian second order partial derivative in y-direction, Lyy [17]. Top right:

Gaussian second order partial derivative in xy-direction, Lxy. Bottom left: 9x9 Boxfilter in y-

direction (Dyy). Bottom right: 9x9 boxfilter in xy-direction (Dxy).

The computational time of the approximated Gaussian derivatives is reduced by using

integral images or Summed Area Table. An integral image represents the sum of all gray

level pixels in a rectangular area where each point x = (x, y)T stores the sum of all

pixels between origo and x in the input image I [17]. The formula for the sum of all

possible rectangle is given as follow.

IÂ(x) =
ix

Â
i=0

jy

Â
j=0

i(i, j) (2.5)

This method calculates the average intensity within the given image, allowing us to be

more effective than first computing the darker and lighter pixels in different regions

and then calculating the sum of these pixels [28].
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Figure 2.8: Input Image vs Integral Image [29]

Figure 2.8 illustrates 4 array references in the input image. The formula can be written

as following;

s(x, y) = i(x, y) + s(x � 1, y) + s(x, y � 1)� s(x � 1, y � 1) (2.6)

Note that, in the summed area table, the value at any point (x,y) is the sum of all the

pixel values above and to the left of the interest area. For example for i(x,y) in figure

2.8, the summed area table are calculated as follow by using formula 2.6.

s(x, y) = 6 + 3 + 2 + 5 = 16 (2.7a)

s(x � 1, y) = 3 + 5 = 8 (2.7b)

s(x, y � 1) = 2 + 5 = 7 (2.7c)

s(x � 1, y � 1) = 5 (2.7d)

The integral image from Figure 2.8 b) is calculated using the values from input image

Figure 2.8 a). Once the integral image is computed, it needs three additions to compute

the average intensity of the rectangular region. Figure 2.9 illustrates how the total
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intensity is calculated using 3 additions [17].

Figure 2.9: Calculating the total intensity using 3 additions [17]

Thus, the calculation time is independent of the rectangular region. This is important

due to SURF is utilizing big filter sizes.

The approximated Gaussian second partial derivatives (Gaussian kernel) is denoted

as Dxx, Dxy and Dyy. Also, weights are applied to the rectangular regions to make

the calculations more efficient. The determinant of the Hessian with this weight is

approximated as:

det(Happrox) = DxxDyy � (wDxy)
2 (2.8)

Note that this equation is similar to the one used for KAZE detection (Equation 2.4).

The only differences are that KAZE analyzes the detector response at different scale

levels by using s while SURF adds the weight w to the rectangular regions to enhance

the computation.

The reason for using the weight w of the filter response is to balance the expression

for the Hessian determinant. Additionally, this is also required for the energy conser-
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vation between Gaussian second order partial derivatives (Gaussian kernels) and the

approximated Gaussian second order partial derivatives (Gaussian kernels) [17]. The

equation for the weight w is as following:

w =

��Lxy(1.2)
��

F

��Dyy(9)
��

F
|Lxx(1.2)|F

��Dxy(9)
��

F
= 0.912... ' 0.9 (2.9)

Where |⇠|F is the Frobenius norm, which is a matrix norm, s is equal to 1.2, and 9x9

is the area utilized. Theoretically the weight w changes according to the scale. In SURF

algorithm this weight is kept as 0.9 [17].

Usually, many feature detection algorithms use the standard method, which consists

of implementing the scale using an image pyramid. SURF, on the other hand, make use

of box filters and integral images. Instead of iteratively applying the same filter at the

output image from the previous filtering, box filters of any size can be directly applied

to the original image. By doing this, the image doesn’t lose any resolution during the

process, and the filter size is upscaled [17]. Figure 2.10 illustrates both downscaling

and upscaling of image and filter size, respectively.

Figure 2.10: Right: Other feature detection down scales the image. Left: SURF is up-scaling the

filter size and image keeps the same size [17]

The first scale layer considers the output of the 9x9 filter as its initial scale layer, which

is referred to as s = 1.2. The subsequent layers are made by gradually increasing the

filter size over an image. The reason for this type of sampling is due to its efficiency in

terms of computation. This results in filters of size 9x9, 15x15, 21x21, 27x27, etc.
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The scale space in an image pyramid is divided into octaves. The SURF algorithm de-

fines an octave in scale space as a series of filter response maps achieved by convolving

a filter with increasing size with input image [17]. Figure 2.11 shows how the filter is

upscaled from 9x9 to 15x15.

Figure 2.11: Filter Dyy (top) and Dxy (bottom) are up-scaled from filter size 9x9 to 15x15 [17]

To ensure the appearance of the central pixel and keep the size of the filter irregular,

the filter needs to be increased by a minimum of 2 pixels (one pixel on each side).

Thus, the filter increases its size with 6 pixels in the first octave. This means the first

octave will be represented by filters with sizes 9x9, 15x15, 21x21, and 27x27. For each

new octaves, the filter increases its size with a factor of 2, which means the filter size of

the second octave is increased from 6 to 12 and third octave from 12 to 24. An octave

can be added if the image size is larger than the filter size of the previous octave.

However, an increase in the number of octaves causes a decrease in the detection of

interest points in each octave. Note that the interest points are detected at the lowest

filter size at given octave [17]. Figure 2.12 illustrates the overlay between two given

octaves and the increase of the range in filter sizes for each octave.
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Figure 2.12: Depicts how various filters are increasing at different octave steps [30]

A fast variant of Non-Maxima Suppression (NMS) introduced by Neubeck and Van

Gool is applied to localize interest points in the image [31]. After that, the maximum

value of the determinant of the Hessian matrix is interpolated in scale and image space

with a method developed by Brown and Lowe [32].

2.3.2 SURF descriptor

The SURF descriptor approach consists of finding the orientation assignment and ex-

tract the SURF descriptor from a square region. To make the descriptor invariant to

rotation, SURF utilizes Haar Wavelets responses in x and y-direction within a circular

area of radius 6s, where s is the scale at which the interest point is detected. By adjust-

ing the size of the wavelets to a side length of 4s, integral images can be used for fast

computation of the filter responses. This implies that only six operations are required

to calculate wavelets response [17]. Figure 2.13 shows the Haar wavelets filters in x

and y-direction.
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Figure 2.13: Depicts Haar Wavelets filter in x-direction (left) and y-direction (right). The weight

on the dark parts are -1 and white part +1 [17]

After the wavelet’s responses are calculated and weighted with Gaussian (s = 2s)

centered at the interest point, the responses are represented as points alongside the

horizontal and vertical axis. Afterward, the dominant orientation is estimated by sum-

ming all responses within a sliding orientation window of size p/3 [17]. Figure 2.14

illustrates this. For applications where rotation invariance is not necessary, an alter-

native method called Upright version of SURF (U-SURF) can be used. It is robust to

rotation about ±15� and increased computational speed.

Figure 2.14: Orientation assignment: Blue points represent the Haar wavelet responses, gray

region is the window of size p/3 and red arrow is the longest vector the dominant orientation

is obtained [17]
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The extraction of the descriptor consists of a square region area with a window size 20s

constructed around the interest point alongside the orientation described in the pre-

vious section. To preserve important information, the region is divided into smaller

square sub-regions with size 4 x 4. After that, the Haar wavelet responses are com-

puted in horizontal direction dx and vertical direction dy respectively. The responses

dx and dy are weighted with a Gaussian (s = 3.3s) centered at the interest point in

order to increase the robustness of the geometric deformations and the localization

errors [17].

Figure 2.15: Shows how the descriptor is build [1]

The Haar wavelet responses dx and dy in each sub regions are summed and a fea-

ture vector is formed from this. In addition the sum of absolute values of the re-

sponses |dx| and
��dy
�� computed in order to include the polarity of the intensity changes.

Consequently, each sub-regions will include a four dimensional feature vector v =

[Â dx, Â dy, Â |dx| , Â
��dy
��]. Thus, the interest point can be described with a descriptor

vector of length 64. Contrast invariance is achieved by turning the descriptor into a

unit vector.
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2.4 SUSAN

SUSAN (Small Univalue Segment Assimilating Nucleus) feature detector was devel-

oped in 1995 by S.M. Smith and J.M Brady [8]. SUSAN is known for its capability of

detecting both edge and corner. In addition, the SUSAN detector has several advan-

tages such as no derivatives are used, high repeatability and invariant to translation

and rotation. The drawbacks of this detector are that it is not invariant to scaling and

using a fixed global threshold value is not appropriate [1]. The following subsections

will give a more detailed explanation of this detector.

2.4.1 SUSAN feature detector

The SUSAN principle for feature detection is as follows. SUSAN detector applies a

circular mask with a given radius at each pixel in an image. The usual radius value

for such circular mask is 3.4 (giving a mask of 37 pixels) [8].

For each pixel, the difference between the brightness of each pixel within the circular

mask is compared with the circular mask center also called nucleus, to determine if

they have the same or different intensity values. The area of the mask which has similar

intensity values as the nucleus is known as USAN (Univalue Segment Assimilating

Nucleus) [8]. The equation (2.10) shows the comparison function c(~r, ~r0), which verifies

if a pixel is within USAN or not.

c(~r, ~r0) =

8
<

:
1, i f |I(~r)� I(~r0)|  t

0, i f |I(~r)� I(~r0)| > t
(2.10)

Where ~r0 is the position of the nucleus and~r is the position of any other point within

the circular mask. The intensity value of any given point and nucleus are given as I(~r)

and I(~r0) respectively. The equation (2.11) illustrates how the USAN area is calculated

from the circular mask.

n(~r0) = Â
~r

c(~r, ~r0) (2.11)

24



2.4. SUSAN

Where the value n represents the number of pixels within the circular mask that are

verified as USAN, from which the USAN area can be retrieved from.

The value t is the threshold that is used to determine the difference in intensity value

between the nucleus and any other pixel within the circular mask. If this difference is

higher than the threshold value t, then the tested pixel isn’t part of the USAN. Figure

2.16 shows how the pixels used for USAN calculations are extracted.

Figure 2.16: A circular mask placed on a figure (left) and the pixels verified as USAN are

marked with red circles (right). In addition the nucleus of mask is labelled as r0 [33]

Even though the equation (2.10) gives good results, it is not stable in practice. For that

reason, an improved version of the comparison function can be used.

c(~r, ~r0) = e�(
I(~r)�I(~r0)

t )6
(2.12)

This change allows to slightly vary the pixel’s brightness without affecting the compar-

ison function c(~r, ~r0), even if it’s near the threshold value t. Also, using this equation

gives an optimal balance of improvement and stability [8]. This corresponds to fulfill

the criterion of a minimum number of false negatives and false positives, which is

expressed as follows:

F(d, t, s) =
p

var(RS) +
p

var(RN)
< RS > � < RN >

(2.13)

Where F is proportional to the number of false positives and false negatives, s is the
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standard deviation of the image noise, RS is the SUSAN edge response strength when

the mask is centered on an edge with a strength d and RN represents the SUSAN edge

response strength with no edge present. The value F is dependent on the values d, t

and s. A more detailed explanation of these variables are given in the article SUSAN -

A New Approach to Low-Level Image Processing [8].

Figure 2.17 clearly shows that for the best possible optimization of the SUSAN filters

is by setting the exponent factor in the brightness comparison to J = 6, which is also

done in equation (2.12). This is due to the lowest number of false negatives, and false

positives are settled around this value J = 6.

Figure 2.17: illustrates the resulting plot of F against J, which uses the mean results F and J

factor [8]

Figure 2.18 shows the difference between between a, representing equation (2.10), and

b which represents the equation (2.12). The purpose of Figure 2.18 is to show how

large the threshold value has to be for it to be verified as USAN. For equation (2.10)

represented as graph a, the threshold value t has to be somewhere between ±27 for the
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pixel to be verified as USAN. Equation (2.12) represented as b shows a more smoother

version comparing to a, which gives a more stable result. The graph c illustrates the

boundary detector B, which is just a method of selecting the narrow area that lies on

the boundary between the USAN and non-USAN regions [8].

Figure 2.18: shows the comparison between the equation (2.10) (shown as a) and the equation

(2.12) (shown as b). The y-axis represents the original comparison function with no units, the

x-axis is the grey level value for the pixel brightness and the threshold value t is set at ±27

grey levels [8]

Note that to distinguish edges and corners, a geometric threshold g is fixed to a specific

value and compared with equation (2.11). This threshold value decides whether a

corner or an edge is detected. Following subsections gives a more detailed description.

2.4.2 SUSAN edge detector

In order to detect edges, the geometric threshold g is set to 3nmax
4 where nmax represents

the maximum number of pixels in the circular mask. Furthermore, this geometric

threshold of g is compared with n only if the USAN area is smaller than the geometric
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threshold [8]. The following equation shows how the edge response can be obtained:

R(~r0) =

8
<

:
g � n(~r0), i f n(~r0) < g

0, otherwise
(2.14)

where R(~r0) represents the initial edge response. Besides, this formula is a straightfor-

ward formulation where the smaller the USAN area is, the greater is the edge response

[8].

After the initial edge response is calculated, the edge direction needs to be computed.

This is due to different reasons like computational efficiency using methods such as

NMS, which requires the edge direction. The edge direction is related to a point in an

image which has non zero edge strength. Moreover, the edge response can be found

by analyzing the USAN area, which results in either the inter-pixel edge case or intra-

pixel edge case depending on the edge type examined [8].

Inter-pixel edge case is used if the USAN area (in pixels) is larger than the mask diam-

eter (in pixels) and the center of gravity of USAN and the nucleus is perpendicular to

the local edge direction [8]. Both the centre of gravity and the edge direction for this

type of edge point (see Figure 2.19 a and b) are found by using the following formula:

~r(~r0) =
Â~r~rc(~r, ~r0)

Â~r c(~r, ~r0)
(2.15)

Intra-pixel edge case is used if the USAN area (in pixels) is smaller than the mask

diameter (in pixels) or else if the center of gravity of USAN lies less than one pixel

away from the nucleus. The edge direction for this kind of point (see Figure 2.19 c) is

estimated from the following sums:

(x � x0)2(~r0) = Â
r
(x � x0)

2c(~r, ~r0) (2.16)

(y � y0)2(~r0) = Â
r
(y � y0)

2c(~r, ~r0) (2.17)

28



2.4. SUSAN

(x � x0)(y � y0)(~r0) = Â
r
(x � x0)(y � y0)c(~r, ~r0) (2.18)

The orientation of the edge is determined by using the following ratio (y�y0)2

(x�x0)2 and

whether a diagonal edge has positive and negative gradient is determined by the sign

of (x � x0)(y � y0).

Figure 2.19: The USAN area with 3x3 mask on three different image positions. Point a and b

are edge points lying on each side of the edge, while the point c lies on a thin gray band that

represent a mixture of two regions [8]

Ultimately, the NMS is applied on the edge responses so that the non-maxima points

perpendicular to the edge are avoided being defined as edge points. Besides by using

a thinning process called ”binary thinned”, the incorrectly removed edge points by

NMS can be replaced. For more details, see article SUSAN - A New Approach to Low-

Level Image Processing [8].
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2.4. SUSAN

2.4.3 SUSAN corner detector

There are some similarities between SUSAN edge and corner detection. The only dif-

ference is the geometric threshold g, which is set to nmax
2 . Thus, the formula for corner

detection can be written as the following:

R(~r0) =

8
<

:

nmax
2 � n(~r0), i f n(~r0) <

nmax
2

0, otherwise
(2.19)

Figure 2.20 illustrates how USAN is extracted. The dark rectangle represents an object

within an image. Five circular masks a, b, c, d, and e are applied at different positions

on the image. The circular mask with the smallest USAN has a corner, and an edge is

detected when USAN is covered more than half but less than 3nmax
4 . This means that

the circular mask (a) has a corner, while a circular mask (b) has an edge.

(a) Four circular masks at different places on

the image

(b) USAN shown as the white parts of the mask

are extracted from the four circular masks

Figure 2.20: SUSAN feature detection (a) using circular masks at different places on the dark

area and USAN (b) shown in white, which is extracted from the dark area [8]

To reduce false positive corner responses caused by noise or an edge, two procedures

have been developed [34].

1. The first method is to find the center of gravity of USAN (see equation (2.15)). Then

find the length from the nucleus to the center of gravity. If the center of gravity is far

away from the nucleus, then the USAN equals to a corner, while short distance corre-
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2.4. SUSAN

sponds to a thin line passing through the nucleus. Thus, false positives are discarded.

2. The second method forces the contiguity in the USAN area. To detect a corner, all

of the pixels in the circular mask lies in a straight line pointing towards the direction

of the center of gravity of USAN from the nucleus. This reduces false positives and is

useful in terms of forcing the USAN to have a degree of uniformity.

The last step consists of using the NMS to find corners.
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3. Methods
This chapter presents descriptions of methods to provide solutions to the problem

statement. The code use MATLAB, a common choice in development of feature detec-

tion and description due to several toolboxes dedicated for work with computer vision

in its vast library. It includes functions from built-in toolbox. Images and the exper-

iments regarding these images are described as well. The following sections explain

the different functions, test images and experiments in this project.

3.1 Experimental setup and source code

The experiments have been carried out on an Intel Core i5-6300HQ 2.30GHz portable

computer with 8GB of RAM. The source code was made in MATLAB with calling

functions from a built-in library named Image Processing Toolbox. Matlab is a mathe-

matical program which lets you model, compute, and do different calculations. All

coding and experiments were done in a 2017b version of Matlab for compatibility rea-

sons and given requirements by the task. The following subsection briefly describes

the different code files used in this project.

3.1.1 Description of code based on KAZE features

Made with respect to the KAZE feature detection algorithm, the code detects inter-

est points by using the built-in MATLAB-function called detectKAZEFeatures, where

additional options such as threshold, conductivity functions (diffusion type), number

of octaves (multiscale detection factor) and scale levels within each octave have to be

specified with input arguments [35]. Note that diffusion types in the function docu-

mentation are based on equations (A.3) and (A.4).

The flowchart in Figure 3.1 shows the steps to take in MATLAB code KAZEdetect.m

(Appendix C.2). Note that the built-in MATLAB-function detectKAZEFeatures is gen-

erated from the programming language C++ written by the author Pablo F. Alcantar-

illa. The source code can be found in his GitHub account [36].
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3.1. EXPERIMENTAL SETUP AND SOURCE CODE

start

Read image

yes

Convert to grey scale

Compute the contrast

factor k

Compute the determinant of

Hessian at multiple scale levels

Conductivity

function g1
Conductivity

function g2
Conductivity

function g3
no no

yes yes

no

The position of the keypoints are

found by performing subpixel

refinement  

Compute the multiscale derivatives for the

detector using Scharr filters

Build octaves in the nonlinear scale

space for all evolution levels

Conductivity function selected based

on the user input:

Perona Malik g1, Perona Malik g2 or

Weickert g3 

Set the number of octaves, scale

levels, threshold value and

conductivity function

end

Get the information from the keypoints and

calculate the derivatives responses for points

within radius of 6*σi

Circle segment covering angle pi/3 slides the

window around the interest point

The dominant orientation is obtained from the

longest vector produced from this window

Calculate M-SURF descriptor for this interest

point

Save the nonlinear

scale space images

Show results by plotting these

points in the input image

Select the strongest interest points

from nonlinear scale space images

User input

Build a nonlinear scale space

Feature detection

Feature descriptor

Save the nonlinear scale space images

Output

DetectKAZEfeatures

Figure 3.1: Shows step by step flowchart of the MATLAB code KAZEdetect.m.
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3.1. EXPERIMENTAL SETUP AND SOURCE CODE

KAZEdetect.m:

This script file converts an input image to grayscale image using the function rgb2gray.

Furthermore, the user has to include the four aforementioned input arguments re-

quired by detectKAZEFeatures in order for this code-function to work. The input

threshold value is determined by experimenting with several threshold values to de-

termine which value gives the most true interest points, while the number of octaves

(O) and scale levels (S) are selected based on the image size and scale changes respec-

tively. Diffusion type in this case is set to ”Region” which means the KAZE algorithm

detect features like interest points such as corners or blobs using the conductivity

function g2 in equation (A.3).

After these input arguments are determined and applied to KAZEdetect.m, the built-

in function detectKAZEfeatures will produce results based on the KAZE algorithm.

The algorithm steps include building a nonlinear scale space from the input image,

interest point detection using Hessian determinant, build an M-SURF descriptor from

the dominant orientation, and save the nonlinear scale space images by plotting the

interest points found. Finally, the strongest interest points are selected from the saved

nonlinear scale space images and shown alongside both time and number of keypoints

labels.

Note that conductivity functions g1 and g3 are not used here as they are only suitable

for edge detection such as sharp-edges and edges respectively. For that reason, the

only conductivity function used in this project to detect interest points is g2.

3.1.2 Description of code based on SURF features

SURF.m:

This script file call upon the built-in MATLAB function called detectSURFFeatures in

the Image Processing Toolbox [17]. Similar to detectKAZEFeatures, detectSURFFeatures

can only return values from a grayscale image. The script file is therefore capable of

converting an input image to a grayscale image using the function rgb2gray. Further-

more, the metric threshold, number of octaves and scale levels are set to appropriate
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3.2. IMAGES USED TO EVALUATE THE DETECTORS

numbers in order to achieve most true interest points. The results with the strongest

interest points are plotted alongside both time and number of keypoints labels. The

code for SURF can be found in Appendix C.3.

3.1.3 Description of code based on SUSAN

SUSAN.m:

This script file is a modified version of the code made by Ke Yen, which was taken

from the MATLAB file exchange web page [37]. The code is capable of detecting both

edges and corners using two geometric thresholds and two intensity values. These

values allow the code to distinguish between an edge or a corner. In this project, both

geometric thresholds and intensity values are manually assigned as the default values

calculated from nmax
2 explained in section 2.4.3 did not detect enough corner points.

Despite the detectors’ main capabilities of detecting both edge and corners, it can be

adapted to identify interest points in images. It is therefore suited for this project; the

code for the adapted SUSAN detector can be found in Appendix C.4.

3.2 Images used to evaluate the detectors

Several images are selected to be analyzed with KAZE, SURF and SUSAN. The syn-

thetic image with geometrical shapes allow a review of detection capabilities for each

detector. Other images will be used to evaluate detectors when detecting interest

points in real life images.

3.2.1 Synthetic image with geometrical shapes

Figure 3.2 is an image designed in ”Paint 3D”, a program for drawing figures and

editing images. This synthetic image consists of different geometric shapes, i.e triangle,

rectangle, pentagon, lightning, diamond, square and circle. Through the application

of detectors on this image easily illustrate the different capabilities of each detector to

detect interest points on given geometrical shapes. This image will be referred to as

image 1 in the experimental part of the project later.
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3.2. IMAGES USED TO EVALUATE THE DETECTORS

Figure 3.2: An image designed to experiment KAZE, SUSAN and SURF

3.2.2 Real life images taken at different locations

The following images are taken from a test dataset called ”2015 Test images”. This

dataset is from a database called COCO, an extensive database that contains numerous

datasets for various purposes like object detection, segmentation and captioning [38].

Additionally, an experiment with this dataset allow the assessment of each detectors’

detection capability on real life images.

There are a total of two real life images from the dataset used in this experiment. The

first image displays a tower, and the second image represents a boy that throws a

baseball. In the experimental part of the project, the images will be labelled as image

2 and 3, respectively.
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(a) Image of a clock tower

(b) Image of a boy throwing a baseball

Figure 3.3: Shows different real life images
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3.3. APPLICATION OF INTEREST POINT DETECTORS

3.3 Application of interest point detectors

In order to implement the detectors in real life applications, it is important that the

interest point detectors are adaptable to changes in parameters and scenes. First, the

detectors are assessed for their detection capabilities of interest points on the synthetic

image with geometrical shapes without any image transformations. Afterwards, the

same experiment will be done, however, with regards to four image transformations,

i.e. rotations, scale changes, brightness changes and detection in the presence of Gaus-

sian noise. The focus will be on how well these detectors locates interest points, in this

case corners of the geometrical shapes, as well as the consistency of these points. The

experiments are divided into the following five categories:

• Image without any transformations

• Experiment of rotational invariance

• Experiment of scale invariance

• Experiment of brightness changes

• Experiment of detection in the presence of Gaussian noise

The goal of each experiment is to detect corner points with the different detectors of

KAZE, SURF, and SUSAN, respectively. Note that there are no image transformations

added to the real life images as the main purpose of these images is to see how well

the detectors are detecting interest points in natural surroundings.

3.3.1 Images without any transformations

The aim of this experiment is to examine the detection abilities of the detectors of

corner points in image without any transformations.
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3.3. APPLICATION OF INTEREST POINT DETECTORS

Figure 3.4: Image 1 converted to grayscale and without any transformations or noise

3.3.2 Experiment of rotational invariance

The goal of this experiment is to evaluate the rotational invariance of the detectors. As

all three detectors are allegedly rotation invariant, each image were rotated using the

function imrotate.

(a) Image rotated 10 degrees (b) Image rotated 30 degrees
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3.3. APPLICATION OF INTEREST POINT DETECTORS

(c) Image rotated 70 degrees (d) Image rotated 90 degrees

Figure 3.5: Illustration of various rotated images of image 1

3.3.3 Experiment of scale invariance

The experiment of scale invariance is crucial as it confirms or denies the detectors

claims of being scale invariant. Images are resized with the MATLAB function imresize

using scale factor 2 and 0.5, respectively. Note, imresize use the interpolation method

”bicubic”.

(a) Image 1 resized with scale factor 2
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3.3. APPLICATION OF INTEREST POINT DETECTORS

(b) Image 1 resized with scale factor 0.5

Figure 3.6: Illustration of image 1 with different scale factors

3.3.4 Experiment of brightness changes

Brightness can differ in many different ways. A change in image brightness is a com-

mon problem in real life applications. The detectors are therefore examined for their

performance of locating interest points at different brightness variations by adding the

number to the output image from imread.

(a) Image 1 with very low brightness (b) Image 1 with low brightness

(c) Image 1 with high brightness (d) Image 1 with very high brightness

Figure 3.7: Image 1 with different brightness change
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3.3.5 Experiment of detection in the presence of Gaussian noise

In this experiment, the goal is to detect the interest points in the presence of Gaussian

noise with increasing variance considering the grayscale value images. The mean value

is set to zero for all images.

(a) Image with variance = 0.0001 (b) Image with variance = 0.0005

(c) Image with variance = 0.001 (d) Image with variance = 0.005

Figure 3.8: Illustration of Gaussian noise with increasing variance on image 1
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4. Results and discussion
In this chapter, the results of all the tests that were done with different images are

presented by values, tables and figures. Additionally, the challenges encountered and

results that were attained are discussed here. The main purpose of this chapter is to

evaluating the KAZE detector abilities to detect interest points in comparison to SURF

and SUSAN detectors. There are two main experiments carried out in this project. First

main experiment will produce results to each detectors abilities to identify interest

points in image 1 based on the experiments mentioned in section 3.3. Second main

experiment checks each detectors’ ability to detect interest points in real life images.

The results will enable interpretation and discussion when comparing KAZE detector

with SUSAN and SURF. Additionally, it should be noted that all the detectors mark

interest points differently. Both KAZE and SURF mark interest points within the area

of the green detection ring. SUSAN allow interest points to be marked with a green

detection cross.

4.1 Main experiment on image 1

Before conducting the main experiment on image 1, suitable values for the KAZE

detector has to be chosen. The following subsection is an evaluation and compari-

son of KAZE detectors with different property values used on image 1 without any

transformations. The purpose of this evaluation is to determine the property values

of the KAZE detector that gives the best results in terms of detecting many true in-

terest points as possible. Thereafter, the KAZE detector with best values are used in

comparison with SURF and SUSAN detectors.

4.1.1 Evaluation of KAZE detector with different threshold values

The property values of KAZE consisted of selecting octaves (O), scale levels (S), dif-

fusion type, and threshold value. The octave (O) is chosen according to the resolution

and the size of the input image, while the scale levels (S) is selected with regards to that

higher scale space value results into smoother scale changes [35]. The diffusion type

is set to ”Region” which is equivalent to the conductivity function g2. The threshold

value is selected according to an experiment of the image by using multiple threshold

values. Furthermore, the image used for this evaluation process was image 1 without
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4.1. MAIN EXPERIMENT ON IMAGE 1

any transformations.

KAZE Detector

Detectors Threshold Octaves Scale levels Diffusion

KAZEdetect.m

0.00005

2 4 ’Region’
0.0001

0.0005

0.001

Table 4.1: Property values for the KAZE detector for experiment of different threshold values

Table 4.1 shows the values that are used for the evaluation of the KAZE detector. As

seen from the table, the octave (O) is set to the value 2 due to the low resolution of

image 1. The scale levels (S) is set to the value 4 which is the highest number of scale

levels. The reason for high number of scale levels is to achieve smoother scale changes.

When it comes to the threshold values, there are a total of four different threshold

values that are selected to be examined against each other to see how many true

interest points that are being identified. Note that the threshold value with the best

accuracy and most true interest points detected are used throughout this experiment.

Additionally, it should be noted that only the threshold values are being examined for

this evaluation. The other values remain unchanged.

The following Figure 4.1 shows the results of the evaluation with the KAZE detector

using the aforementioned threshold values.

(a) Image 1 with threshold T=0.00005 (b) Image 1 with threshold T=0.0001
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(c) Image 1 with threshold T=0.0005 (d) Image 1 with threshold T=0.001

Figure 4.1: Image 1 with different threshold values

The detector has a lot of false interest points detected when using the threshold values

0.00005 and 0.0001. Both thresholds are especially struggling on figures such as the

pentagon and both triangles. For that reason, these thresholds are therefore not suit-

able for further experiment. Furthermore, the threshold values 0.0005 and 0.001 have

many true interest points detected. Even though there are a lot more false detected

interest points in the threshold value 0.0005 than 0.001, the threshold value 0.0005 is

slightly better than 0.001 by detecting two true interest points more. With regards to

that, the threshold value 0.0005 is used for the main experiments on image 1 alongside

the other values from Table 4.1. The following Figure 4.2 shows the accuracy rate in %

for the threshold values evaluated.

Figure 4.2: Accuracy rate in terms of true detected interest points for various thresholds given

in precentage %
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4.1.2 Property setup for the main experiment on image 1

The detector setup for KAZE, SURF, and SUSAN for the main experiment on image

1 are explained here. Table 4.2 shows the property values used by the KAZE detector

throughout this experiment.

KAZE Detector

Detectors Threshold Octaves Scale levels Diffusion

KAZEdetect.m 0.0005 2 4 ’Region’

Table 4.2: Property values of the KAZE detector for experiment of image 1

The ’MetricThreshold’ of the SURF detector was used to determine the number of

interest points to appear. Smaller threshold value is equivalent to more interest points,

and vice versa. Table 4.3 shows the values used for the SURF detector throughout

this experiment. Note that both KAZE and SURF uses the same number of octaves

(O) and scale levels (S). The reason for that is to compare the performance of these

detectors in terms of detecting interest points using the same octave and scale levels.

There were some differences between how the detectors used these octaves and scale

levels. However, this will be mentioned in the experiments later.

SURF Detector

Detectors MetricThreshold Octaves Scale levels

SURF.m 100 2 4

Table 4.3: Property values of the SURF detector for experiment of image 1

The SUSAN method is quite different from the other detectors. SUSAN make use

of two geometric threshold values and two intensity values in order to distinguish

corners from the edge. The values are set according to what gives corner points rather

than edge. Table 4.4 shows values that are used for the SUSAN method throughout

this experiment:
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SUSAN Detector

Detectors GeoThresh GeoThresh 2 IntThresh IntThresh 2

SUSAN.m 17 19 0.05 0.06

Table 4.4: Property values of the SUSAN detector for experiment of image 1

The following experiments show the results achieved from using the detectors KAZE,

SURF and SUSAN with the property values from above.

4.1.3 Results of image 1 without any transformations

The results obtained from KAZE, SURF and SUSAN detecting image 1 without any

transformations are discussed here.

KAZE detector

The result obtained from using the KAZE detector is as follows:

Figure 4.3: Results of image 1 without transformations using KAZE

Figure 4.3 shows that the KAZE detector is capable of detecting almost all true interest

points. Only one true interest point is missed out of all possible true interest points.

Note that since KAZE detector is detecting in multiple scale levels, there are multiple

true interest points detected at the same area. Besides this detector also detects interest

points at circles that do not contain any corners. These are false interest points as these
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figures do not have any interest points characteristics.

SURF detector

The result obtained from using the SURF detector is as follows:

Figure 4.4: Results of image 1 without transformations using SURF

Figure 4.4 shows that SURF detects interest points very well with only two true interest

points missed. Note that there are many true interest points with green scale rings of

different size that are detected in the same area. This is due to SURF, similar to KAZE,

is detecting these interest points at multiple scale levels as well. SURF is also known for

being more suitable for blob features rather than corner. However, in this experiment,

it can be seen that the detector is detecting corner points accurately. Based on the

results obtained here, SURF can be utilized for corner detection as well.
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SUSAN detector

The result obtained from using the SUSAN detector is as following:

Figure 4.5: Results of image 1 without transformations using SUSAN

The SUSAN detector is very accurate in terms of detecting corner points using the

manually assigned values from Table 4.4. Only one interest point is missed out from

all possible true interest points. The reason for not localizing this specific interest point

is because the angle of the point is either exceeding or equal to the geometric threshold

for corner detection. Thus, disregards this point as a corner. A noticeable issue with

this detector is that there are many interest points detected in the same area. This is

because several circular masks are overlapping each other in the related point area,

which results in to many corner points.

Despite the issues mentioned, the detection accuracy of this detector is quite impres-

sive as it is detecting actual corners. Most the points being from the true interest point

area. A possible solution is to decrease number of interest points by changing the in-

tensity thresholds, however, this will also decrease the number of true interest points

and increase false interest points. For that reason, the values are kept the same in this

experiment.
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Comparison of the detectors in terms of images without any transformations

Table 4.5 shows the number of interest points detected, time used for the whole pro-

cess, and time each interest points. Whereas Table 4.6 shows the number of true and

false interest points detected and the accuracy the detectors in terms of true interest

points detected.

Detectors Number of interest points Time [s] Time each interest points [s]

KAZE 144 0.40917 0.00284

SURF 82 0.16413 0.002

SUSAN 96 6.7024 0.06982

Table 4.5: Number of interest points found using KAZE, SURF and SUSAN and the time usage

for these

Table 4.5 shows the detection speed of the detectors. The fastest detector in terms of

detecting interest points was SURF with around 0.2 sec, and following up was KAZE

detector with around 0.4 sec. The reason for SURF being faster, is due to constructing

the nonlinear scale space for KAZE detector is a time consuming process compared

to the Gaussian scale space used by SURF. Lastly with almost seven seconds is the

SUSAN detector, which was excpected as SUSAN is known for its time-consuming

process of detecting interest points accurately.

Detectors Ntrue NTotal NFalse Accuracy rate in %

KAZE 33 34 67 97.1%

SURF 32 34 9 94.1%

SUSAN 33 34 6 97.1%

Table 4.6: Illustrates the accuracy of true detected interest points, as well as the number of true

and false detected interest points. Ntrue represents the number of true detected interest points,

NFalse represents the number of false detected interest points and Ntotal represents the total

number of interest points in the image. Note that, the Ntrue is number of true detected interest

points compared to the total number of interest points Ntotal
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Concerning Table 4.6, it can be seen that KAZE alongside SUSAN achieve the best

results for both detectors by detecting 33 out of the total 34 true interest points. SURF

also does a good job as well by detecting 32 out of the total 34 true interest points as

well.

The following Figure 4.6 shows the accuracy rate of the different detectors in terms

of detecting true interest points. KAZE alongside SUSAN had the best accuracy rate

with 97.1% with regard to detecting true interest points. SURF, on the other hand, had

a decent accuracy rate as well with 94.1%. Overall, all detectors are performing well in

terms of detecting true interest points.

Figure 4.6: Accuracy rate in terms of true detected interest points given in precentage %

As mentioned in the experiments KAZE detector and SURF detector, these detectors

detects multiple interest points in the same point area. This implies to that many inter-

est points are overlapping each other at the same point area. These are not necessarily

false interest points, but rather an interest point detected at different scale levels in the

same point area. This can be seen in this experiments as well, where some of the true

interest points have many green scale rings around it. The following figures show an

interest point detected in two different ways.
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(a) Single scale detection (b) Multiscale detection

Figure 4.7: KAZE detecting an interest point detected using single scale (a) and same interest

point detected using multiscale (b).

Figure 4.7 shows the detector detecting the same interest point in two different ways,

a single scale detection and b multiscale detection. The difference between these is

that in a, the detector is detecting the interest point at one scale level, which means

that only one interest point is detected in the point area. Whereas in b, the detector

is detecting the interest point at different scale levels, which means that many interest

points are detected in the same point area. More specifically, interest points detected

from a multiscale detection are the same interest point detected at different scale levels.

This entails to that true interest points obtained from a multiscale detection in a specific

point area, are equal to one true interest point in the same specific point area.

Table 4.6 takes this into account. The table section Ntrue from this table considers only

one true interest point from each point area. Thus, if there are multiple points detected

at different scale levels as seen in Figure 4.7 (b), only one interest points are regarded

from this point area.

Thus, if all interest points from the other scale levels are included, then, the number of

true detected interest points for the KAZE detector is 77. Hence using the knowledge

from previous paragraph, the KAZE detector only detects 33 true interest points which

is what is written in Table 4.6. When it comes to the rest of the 44 true interest points,

these are disregarded due to fact that these interest points are the same as the already

labelled 33 true interest points. Additionally, it should also be noted that these are
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not included in the number of false detected interest points NFalse because these are

true interest points. Note that this also applies to SURF, as this detector also detects

at multiple scale levels. The number of true detected interest points for the SURF

detector including the detection from the other scale levels are 73 true interest points.

However, same as KAZE, the SURF detector only regards one true interest point from

the same true point area. This means that only 32 true interest points are detected for

SURF. The rest of the 41 true interest points are therefore disregarded as these are the

same interest points as the 32 true interest points. Furthermore, it should be noted

that this information implies to all further experiments as well, which means that the

main experiments of image 1 regarding rotation, scale changes, brightness changes

and presence of Gaussian noise are using this information for their experiment as

well.

SUSAN, on the other hand, also has many interest points detected on the same point

area as well. However, SUSAN is not using any scale space, which means that there

might be several circular masks overlapping each other on that related point. Thus,

gives many interest points from that area. Similar to KAZE and SURF, SUSAN also

regards one true interest point from an area where there might be many true interest

points detected for further experiments as well.
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4.1.4 Results of image 1 in terms of rotational invariance

The essential qualities of all the detectors used for this experiment are the fact that they

are claimed to rotational invariant. In this section the results obtained from KAZE,

SURF and SUSAN of image 1 with different rotations are shown.

KAZE detector

The results obtained from using the KAZE detector are as following:

(a) Image rotated 10 degrees (b) Image rotated 30 degrees

(c) Image rotated 70 degrees (d) Image rotated 90 degrees

Figure 4.8: Results of various rotated images of image 1 using KAZE

The KAZE detector shown in Figure 4.8 detects the same number of true interest points

at rotated angles: 10° and 90°. While for angles 30° and 70°, there are only 5 and 3 true

interest points missed respectively. Additionally, it can be seen that there some false
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interest points detected as well. It was excepted for the detector to detect all true

interest points as KAZE is claimed to be rotational invariant [19]. However, the KAZE

detector is based on the determinant of Hessian, which is known for having weakness

of detecting interest points around rotated angles, especially for odd multiples for p
4 or

45°. This is a weakness that all Hessian-based detectors generally have [17]. Figure 4.9

shows the repeatability score between two hessian based detectors that are detecting

interest points in terms of rotation up to 180°.

Figure 4.9: Shows how the repeatability score between two Hessian based detectors in terms

of rotating the image [17]

The average repeatability score for Hessian-based detector to detect interest points

in rotated images is between 60%-80%. Thus, from this figure it can be concluded

that Hessian-based detectors have weakness of detecting interest points in image with

different rotations. This is also why KAZE struggled to detect the same amount of true

interest points in all angles in this experiment.
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SURF detector

The results obtained from using the SURF detector is as following:

(a) Image rotated 10 degrees (b) Image rotated 30 degrees

(c) Image rotated 70 degrees (d) Image rotated 90 degrees

Figure 4.10: Results of various rotated images of image 1 using SURF detector

SURF detector has a massive increase of false detected interest points when rotated

with angle 10°, with almost 700 interest points more than the others. The reason for

that might be because of the edges having interest point characteristics. Nevertheless,

the false detected interest points decreases drastically when the image is rotated more.

For 30°, it can be seen that there are some false detected interest points as well. Notably,

on the pentagon edge having a lot these false detected points. Pentagon still have

false interest points on 70°. Although, the number of false detected interest points

eventually decreases when rotating the image to 90°.
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SURF detector, similarly to KAZE, also uses the determinant of Hessian, which means

that the weaknesses described in KAZE detector regarding the detection of interest

points around rotated angles also applies here.

SUSAN detector

The result obtained from using the SUSAN detector is as following:

(a) Image rotated 10 degrees (b) Image rotated 30 degrees

(c) Image rotated 70 degrees (d) Image rotated 90 degrees

Figure 4.11: Results of various rotated images of image 1 using SUSAN detector

The number of false interest points detected for the SUSAN detector is elevated at

10° but gradually decreases when rotating to 70°. Regardless of that, the number of

false interest points detected are still high. This could be due to the circular mask

of SUSAN is placed on figures that might be too big, which makes it more of an

edge detector rather than a corner. Thus many false interest points are being detected.
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However, when it comes to true interest points, SUSAN manages to detect a lot more

true interest points at 90° compared to the other angles.

Comparison of detectors in terms of rotational invariance

Detectors Angles Number of in-

terest points

Time [s] Time each interest

points [s]

KAZE

0° 144 0.40917 0.00284

10° 111 0.64107 0.00578

30° 89 0.83823 0.00942

50° 97 0.86565 0.00892

70° 108 0.74686 0.00692

90° 147 0.41082 0.00279

SURF

0° 82 0.16413 0.002

10° 783 0.11951 0.00015

30° 135 0.13656 0.00101

50° 126 0.20546 0.00163

70° 174 0.10672 0.00061

90° 84 0.089549 0.00107

SUSAN

0° 96 6.7024 0.06982

10° 338 9.3289 0.02760

30° 259 11.5072 0.04443

50° 284 13.4162 0.04724

70° 253 10.8919 0.04305

90° 96 6.2394 0.06499

Table 4.7: Number of interest points found using KAZE, SURF and SUSAN in terms of rotation

and the time usage for these detectors

Table 4.7 illustrates the number of interest points and the time usage of the different

detectors in for various rotations. As seen from the table, the SURF detector is still

the fastest detector. Next is KAZE detector and the slowest detector is SUSAN. The

speed of the different detectors is similar to the first experiment. Although, there was
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a difference in the number of interest points detected. Especially for SURF and SUSAN

which had many more interest points detected.

Detectors Angles Ntrue NTotal NFalse Accuracy rate in %

KAZE

0° 33 34 67 97.1%

10° 33 34 43 97.1%

30° 29 34 38 85.3%

50° 32 34 38 94.1%

70° 31 34 44 91.2%

90° 33 34 77 97.1%

SURF

0° 32 34 9 94.1%

10° 22 34 754 64.7%

30° 25 34 92 73.5%

50° 28 34 72 82.4%

70° 20 34 131 58.8%

90° 32 34 9 94.1%

SUSAN

0° 33 34 6 97.1%

10° 19 34 319 55.9%

30° 18 34 241 52.9%

50° 11 34 273 32.4%

70° 20 34 233 58.8%

90° 33 34 6 97.1%

Table 4.8: Illustrates the accuracy of true detected interest points, the number of true and false

detected interest points.

Table 4.8 shows how many true and false interest points are detected for different

rotations. The detectors tested here claimed to be rotational invariance. This claim is

partly true as the detectors are only detecting the same amount of true detected interest

points when the image is rotated with 90° as done in the image at 0°. However, these

detector failed for the other angles. It can therefore be concluded that these detectors

fail in terms of rotational invariance due to not detecting the same amount of true

interest points.
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Figure 4.12: Accuracy in terms of true detected interest points at different rotated angle

Detectors Average accuracy rate

KAZE 92.7%

SURF 72.8%

SUSAN 66.2%

Table 4.9: Illustrates the average accuracy rate of true detected interest points

Figure 4.12 shows the accuracy rate of the different detectors in terms of detecting

the true interest points at different angles. It can be seen that KAZE had the best

accuracy rate through all angles in terms of detecting true interest points with an

average accuracy rate of 92.7%. Following up was SURF with an average accuracy rate

of 72.8%, and SUSAN had the worst average accuracy rate of 66.2% compared to the

others.
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4.1.5 Results of image 1 in terms of scale invariance

Both SURF and KAZE are known for being scale invariant detectors, while SUSAN is

a corner detector. In this section, the results obtained from KAZE, SURF, and SUSAN

of image 1 with different scale changes are shown.

KAZE detectors

The results obtained from using the KAZE detector in terms of different scale changes

are as following:

(a) Image 1 resized with scale factor 2

(b) Image 1 resized with scale factor 0.5

Figure 4.13: Results of image 1 with scale changes using KAZE detector

It can be seen that the KAZE detector struggles to detect true interest points at all

figures when the image is resized with scale factor 2, whereas for image resized with

scale factor 0.5, the detector only misses one true interest point. Besides, there is a lot
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of false detected interest points in the image with scale factor 2, especially on the dark

triangle and the pentagon. KAZE is known for being scale invariant, but it is only

apparent when the image is resized with scale factor 0.5 but fails when the image is

resized with scale factor 2.

SURF detector

The results obtained from using the SURF detector are as following:

(a) Image 1 resized with scale factor 2

(b) Image 1 resized with scale factor 0.5

Figure 4.14: Results of image 1 with scale changes using SURF detector

SURF detector is detecting a lot more true interest points than KAZE in the image

with scale factor 2. However, the detector has some issues at some of the figures. The

detector misses out all interest points on the black square, and there are too many

false interest points detected on the pentagon. When it comes to image with scale

factor 0.5, the detector is missing out six true interest points. Despite detecting more
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true interest points than KAZE in the image with scale factor 2, the SURF detectors

falls a bit behind KAZE in terms of detecting interest points at images resized with

scale factor 0.5.

SUSAN detector

The results obtained from using the SUSAN detector are as following:

(a) Image 1 resized with scale factor 2

(b) Image 1 resized with scale factor 0.5

Figure 4.15: Illustration of image 1 with different scale factors

SUSAN detector also misses out figures when it comes to the image with scale factor

2. Similar to KAZE and SURF, SUSAN has a lot of false interest points detected on the

pentagon. While for the image with scale factor 0.5, SUSAN only misses out two true

interest points. SUSAN does a decent job considering that this detector is not a scale

invariant to scale changes.
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Comparison of detectors in terms of scale change

Detectors Scale factor Number of in-

terest points

Time [s] Time each interest

points [s]

KAZE
0.5 136 0.19304 0.001419

2 620 5.5811 0.009

SURF
0.5 49 0.022968 0.00047

2 112 0.42524 0.003797

SUSAN
0.5 95 1.6394 0.01726

2 224 19.7755 0.08828

Table 4.10: Number of interest points found using KAZE, SURF and SUSAN in terms of rota-

tion and the time usage for these detectors

Table 4.10 illustrates the speed of the different detectors in terms of scale changes.

In terms of speed, the SURF detector is fastest to detect interest points for images

resized with scale factor 0.5 and 2 respectively, while SUSAN was the slowest for both

scale factors. When it comes to quantity of interest points detected, the KAZE detector

detects most interest points for images resized with both scale factors 0.5 and 2.

Detectors Scale factor Ntrue NTotal NFalse Accuracy rate in %

KAZE

0.5 33 34 51 97.1%

1 33 34 67 97.1%

2 20 34 568 58.8%

SURF

0.5 27 34 4 79.4%

1 32 34 9 94.1%

2 24 34 70 70.6%

SUSAN

0.5 31 34 8 91.2%

1 33 34 6 97.1%

2 17 34 207 50%

Table 4.11: Illustrates the accuracy of true detected interest points, the number of true and

false detected interest points.
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Table 4.11 shows how many true and false interest points are detected for different

scale changes. Note that the scale factor 1 represents the image at the original scale,

which is the same as image without any transformations. The reason for including

is to see how the detectors with different scale change are detecting compared to the

original image.

As seen from the table, KAZE only misses one true interest point when the image

is resized with scale factor 0.5. It detects the same amount of true interest points as

done in the image with scale factor 1. The detectors are struggling when it comes

to detecting true interest points at image resized with scale factor 2. SURF detector

was the only detector that had a decent result with 70.6% in accuracy rate when the

image was resized with scale factor 2. Additionally, the SURF detector was also the

detector with fewest false interest points detected as well. The following Figure 4.16

shows the accuracy rate of the different detectors in terms of detecting true interest

points at different scale changes. Note that both SUSAN and SURF have a slightly

less accuracy rate when the image is resized with scale factor 0.5, while KAZE has the

same accuracy rate. In regards to scale factor 2, all detectors have smaller accuracy rate

when compared to the other scale factors.

Figure 4.16: Accuracy in terms of true detected interest points at different scale factors
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4.1.6 Results of image 1 in terms of brightness changes

A change in image brightness is a common problem that might occur in real life

applications. In this experiment, the detectors are tested at the different change of

brightness. The brightness is tested in the presence of low and high brightness changes.

KAZE detector

The results for KAZE in terms of different brightness changes are as following.

(a) Image 1 with very low brightness change (b) Image 1 with low brightness change

(c) Image 1 with high brightness change (d) Image 1 with very high brightness change

Figure 4.17: Results of image 1 with different brightness change using KAZE detector

By looking closely at all figures, it can be seen that the KAZE detector misses a lot

of true interest points at very high and low brightness change. Additionally, there are

a lot of false detected interest points in these figures e.g. pentagon and circles. Note

that the detector still detecting false interest points at circles as well. Despite that, the

detector is actually capable of detecting interest points at low and high brightness. It
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should be noted that detectors that are based on the determinant of Hessian might

struggle to detect interest points at very high brightness. This is due to the fact that in

order for the KAZE detector to detect any interest points, the determinant of Hessian

searches for strong change in the image gradient in two directions. A corner is detected

where the change in the image gradient occurs in two directions [39]. However, in the

image with very high brightness, the both the diamond and triangle are too similar

to the background, which means there is no change in the image gradients in any

direction. Therefore interest points on these figures are not detected.

SURF detector

The results obtained from using the SURF detector are as following:

(a) Image 1 with very low brightness change (b) Image 1 with low brightness change

(c) Image 1 with high brightness change (d) Image 1 with very high brightness change

Figure 4.18: Results of image 1 with different brightness change using SURF detector

SURF is capable of detecting many true interest points at very low brightness, which

makes SURF useful for detection in the presence of low brightness changes. However,
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the detector struggles when the brightness is increased to a very high value. This is

due to the fact that this detector also uses determinant of hessian, which means the

same things that were mentioned for the KAZE detector applies here as well.

SUSAN detector

The results obtained from using the SUSAN detector are as following:

(a) Image 1 with very low brightness change (b) Image 1 with low brightness change

(c) Image 1 with high brightness change (d) Image 1 with very high brightness change

Figure 4.19: Results of image 1 with different brightness change using SUSAN detector

Similar to SURF, the SUSAN detector is also capable of detecting interest points at

very low brightness. In fact, SUSAN had the capabilities of detecting the same amount

of true interest points for three of the experiments. However, similar to both KAZE

and SURF, SUSAN did not manage to detect interest points at both diamond and

triangle at very high brightness. This is because these figures were too bright, almost

the same as the background. For that reason, SUSAN was not able to place the circular

mask as there is no clear distinction between the background and figures. Despite this
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experiment, the detector was capable of detecting the same amount of true interest

points for three of the experiments.

Comparison of detectors in terms of brightness change

Detectors Brightness

change

Number of in-

terest points

Time [s] Time each interest

points [s]

KAZE

None 144 0.40917 0.00284

Very low 100 0.3729 0.003729

Low 139 0.37356 0.002687

High 139 0.37821 0.002721

Very high 181 0.36767 0.002031

SURF

None 82 0.16413 0.002

Very low 83 0.069035 0.000832

Low 85 0.053633 0.000631

High 84 0.063212 0.000753

Very high 68 0.050713 0.000746

SUSAN

None 96 6.7024 0.06982

Very low 96 5.5897 0.05823

Low 96 5.3786 0.05603

High 96 5.651 0.05886

Very high 67 5.4046 0.08067

Table 4.12: Number of interest points found using KAZE, SURF, and SUSAN for brightness

variations and the time usage for these detectors

Table 4.12 shows the number of interest points detected and time usage for the dif-

ferent detectors in terms of detecting at various brightness variations. It can be seen

that in terms of speed, SURF is still the fastest detector and SUSAN is still the slowest.

Note that SUSAN is capable of detecting the same amount of interest points at three

of the experiments. All detectors are struggling at very high brightness by detecting

more or less interest points compared to image with no change. Additionally, it can

also be seen that KAZE has a different amount of detected interest points at very high
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and low brightness.

Detectors Brightness

change

Ntrue NTotal NFalse Accuracy rate in %

KAZE

None 33 34 67 97.1%

Very low 14 34 83 41.2%

Low 33 34 66 97.1%

High 33 34 67 97.1%

Very high 21 34 146 61.8%

SURF

None 32 34 9 94.1%

Very low 33 34 7 97.1%

Low 33 34 9 97.1%

High 33 34 7 97.1%

Very high 26 34 7 76.5%

SUSAN

None 33 34 6 97.1%

Very low 33 34 6 97.1%

Low 33 34 6 97.1%

High 33 34 6 97.1%

Very high 26 34 12 76.5%

Table 4.13: Illustrates the accuracy of true detected interest points, the number of true and

false detected interest points.

Table 4.13 shows how many true and false interest points are being detected for dif-

ferent brightness changes. Both SURF and SUSAN do a great job of detecting true

interest points in the three first experiment with only one interest point missed out in

these experiments. When it comes to KAZE, the detector struggled to detect the same

amount of interest points at very high and low brightness. However, KAZE detects the

same amount of true interest points at low and high brightness. Common for all de-

tectors, is the fact that they all struggled at very high brightness where two important

figures were missed out due to the similarity between the background and the figures.

Additionally, it can also be seen that SURF alongside SUSAN have few false interest

points detected compared to KAZE.
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Figure 4.20: Accuracy in terms of true detected interest points at different brightness

Figure 4.20 shows that all detectors have a good accuracy rate for low and high bright-

ness. However, the KAZE detector struggles at both very low and very high brightness,

while SURF and SUSAN struggle at very high brightness. Note that SURF detector has

better accuracy rate at very low, low, and high brightness compared to the image with-

out any brightness which is quite impressive.

4.1.7 Results of image 1 in the presence of Gaussian noise

This experiment is carried out in the purpose of testing the KAZE detector in the

presence of Gaussian noise as this detector makes use of nonlinear diffusion filtering

(NDF) which is good in the presence of noise [19]. KAZE is tested in comparison with

SURF and SUSAN. SURF uses linear filtering (Gaussian) and SUSAN uses circular

masks. SUSAN is also known for being robust to noise as this detector does not use

any image derivatives [8]. The results obtained from KAZE, SURF, and SUSAN of

image 1 in the presence of Gaussian noise are shown as following:

71



4.1. MAIN EXPERIMENT ON IMAGE 1

KAZE detector

The results obtained using the KAZE detector in the presence of various Gaussian

noise are as following:

(a) Image with variance = 0.0001 (b) Image with variance = 0.0005

(c) Image with variance = 0.001 (d) Image with variance = 0.005

Figure 4.21: Results of image 1 with different variances of Gaussian noise using KAZE

The KAZE detector is known for the utilization of the nonlinear diffusion filtering

which is capable of reducing the noise, simultaneously, retain important image details

such as object boundaries and edges [19]. As seen from the figures, the detector is

detecting some true interest points, but at the same time having many false interest

points as well. Additionally, it can be seen that false interest points are expanding

when the variance is increased, especially for the black square which goes from one

false interest point detected to several false interest points. Same goes for the pentagon

as well, where the number false interest points increases as well.
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SURF detector

The results obtained from using the SURF detector are as following:

(a) Image with variance = 0.0001 (b) Image with variance = 0.0005

(c) Image with variance = 0.001 (d) Image with variance = 0.005

Figure 4.22: Image 1 with different variances of Gaussian noise using SURF

The SURF detector has a lot of false interest points detected when detecting in the

presence of Gaussian noise. It can be seen that the number of false detected interest

points expands when the variance of Gaussian noise is increased. It can be concluded

that the detector is not robust for detecting interest points in the presence of Gaussian

noise.
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SUSAN detector

The results obtained from using the SUSAN detector are as following:

(a) Image with variance = 0.0001 (b) Image with variance = 0.0005

(c) Image with variance = 0.001 (d) Image with variance = 0.005

Figure 4.23: Image 1 with different variances of Gaussian noise using SUSAN

As mentioned earlier, SUSAN is robust to noise as the detector does not use any

image derivative [8]. SUSAN starts promising by detecting a lot of true interest points.

However, as the variance is increasing, so does the number of false interest points as

well. Especially for variance values 0.001 and 0.005, which is just very poor in terms of

detecting interest points. Thus, from this experiment, it can be seen that the SUSAN

detector is not robust for Gaussian noise and not suited for detection in the presence of

this kind of noise. Note that, tweaking with geometric threshold and intensity values

can give better results. However, this will also affect the other results as well.
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Comparison of the detectors in presence of Gaussian noise

Detectors Variance Number of in-

terest points

Time [s] Time each interest

points [s]

KAZE

0 144 0.40917 0.00284

0.0001 123 0.51855 0.00422

0.0005 132 0.51357 0.00389

0.001 148 0.47447 0.00321

0.005 229 0.44187 0.00193

SURF

0 82 0.16413 0.002

0.0001 129 0.17721 0.00137

0.0005 591 0.076071 0.000129

0.001 925 0.065965 0.00007

0.005 4648 0.15909 0.00003

SUSAN

0 96 6.7024 0.06982

0.0001 84 8.2619 0.09836

0.0005 6419 6.3774 0.00099

0.001 47818 6.9982 0.000146

0.005 330555 8.3273 0.00025

Table 4.14: Number of interest points found using KAZE, SURF and SUSAN in presence of

Gaussian noise and the time usage for these detectors

Table 4.14 shows the number of interest points detected and the time usage of these

in terms of detecting in the presence of Gaussian noise. Both SURF and SUSAN have

many interest points detected, most of them being false detected interest points. It is

abnormal for a detector to detect these many points. These detectors are therefore not

robust or suitable for detection in the presence of Gaussian. In contrast, KAZE has

more stable detection. In regards to speed, there is no point in discussing it as two of

the detectors have a lot of false detected interest points.
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Detectors Gaussian Ntrue NTotal NFalse Accuracy rate in %

KAZE

0 33 34 67 97.1%

0.0001 26 34 85 76.5%

0.0005 21 34 99 61.8%

0.001 22 34 111 64.7%

0.005 11 34 210 32.4%

SURF 0 32 34 9 94.1%

0.0001 25 34 62 73.5%

0.0005 14 34 571 41.2%

0.001 6 34 915 17.6%

SUSAN 0 33 34 6 97.1%

0.0001 33 34 6 97.1%

Table 4.15: Illustrates the number of true and false interest points detected and the accuracy

of true interest points detected.

Table 4.15 shows how many true and false interest points are detected in the presence

of Gaussian noise. Note that variances such as 0.0005, 0.001 and 0.005 for SUSAN,

and 0.005 for SURF are not included here as these are not detecting any true interest

points at all. Both SURF and SUSAN does a decent job when the variance is 0.0001 but

decreases its performance the variance is increased. SUSAN goes from detecting 33

true interest points to not detecting any true interest points at all. SURF, on the other

hand, manage to detect some true interest points. However, the number of false interest

points obscures the true interest points. As for KAZE, there is a different distribution

of true interest points detected. Compared to the other detectors, KAZE manages to

detect some interest points at the other variances as well. Despite SUSAN being the

only detector to detect the same number of true interest points as the image without

any Gaussian noise, KAZE detectors did the best job overall as this detector was able

to detect some true interest points through all variances. Thus, it can be concluded that

the KAZE detector did the best job overall in terms of detecting true interest points

throughout this experiment with different variances. The following Figure 4.24 shows

the accuracy rate for the true interest points detected at different variances.
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Figure 4.24: Accuracy of interest point detectors in presence of Gaussian noise with different

variances

The detectors have less accuracy rate in all variances compared to the image without

any Gaussian noise. Even though the decrease in performance, the KAZE detector does

a better job overall compared to the other detectors when Gaussian noise is added. The

reason for that is because KAZE makes use of nonlinear diffusion filtering, which is

all about detecting point or region of interest at different scale levels in nonlinear scale

space. Moreover, by comparing the different detectors in terms of average accuracy

rate, the results are as following. KAZE has an average accuracy rate of 58.9%, while

both SURF and SUSAN have an average rate of 33.1% and 24.3% respectively. Al-

though KAZE detectors are better than the other detectors, the detector still missed

many true interest points. From this experiment, it can be concluded that in terms

of detecting interest points in the presence of Gaussian noise, the KAZE detector is

a better choice than the other detectors even though the detector missed many true

interest points.
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4.1.8 Discussion about image 1

It should be noted that there were a couple of weaknesses in image 1.

One weakness was the issue when very high brightness was applied to image 1. The

figures diamond and triangle were similar to the background. Thus made it difficult

for both the KAZE and SURF detector to detect any interest points. This is due to

the fact that these detectors are based on the determinant of Hessian (DoH), which is

known for detecting corners where there are change in image gradient in two direc-

tion. Additionally, SUSAN also did not managed to detect any interest points in these

figures because of the circular mask of SUSAN struggled to identify as these figures

were too similar to the background as well, and therefore not regarded by the circular

mask.

Another weakness was the sudden transition between background and the figures. A

sudden transition like this is not very common in a real-life applications.

However, it should be noted that the sole purpose of a image like this is to test the

detectors in terms of detecting interest points. Therefore a synthetic image of this type

is well suited for this task as it verifies the simple aspect of how the detectors are

detecting obvious interest points when different transformations are applied. Test of

the detectors in synthetic image with different transformations is a step towards the

use of these detectors in real-life applications.

4.2 Main experiment on image 2 and 3

This section presents the results for the performance of interest points detection on

real life images. Real life images are useful for the testing the overall ability of the

detectors to provide realistic interest points detection results under real life conditions.

The purpose of this main experiment is to evaluate the performance of the detectors in

terms of detecting interest points in real life images such as image 2 and 3. Since these

images are different from the previous one, new property values for the detectors have

to be chosen.

78



4.2. MAIN EXPERIMENT ON IMAGE 2 AND 3

4.2.1 Property setup for the main experiment on image 2 and 3

The threshold, octaves and scale levels are set to appropriate values in order for accu-

rate detection of true interest points. The KAZE detector utilizes a threshold value that

has been tested in multiple image to give the best possible result. The most important

characteristics of finding the right property values is to eliminate false interest points

and promotes true interest points, which was considered when the threshold value

was selected. The property values used for this experiment is as following:

KAZE Detector

Detectors Threshold Octaves Scale levels Diffusion

KAZEdetect.m 0.01 3 4 ’Region’

Table 4.16: Property values of the KAZE detector for experiment of real-life images

Table 4.16 shows the values used for this experiment. The octave is increased to 3

as these are high-resolution images and to detect extensive features like blobs and

corners. The number of scale levels is kept at 4 as smoother scale changes are desired

in this experiment as well. The threshold is decreased to 0.01 as this gave the best result

in terms of detecting true interest points, simultaneously reduce false interest points.

Figure 4.25 shows image 2 detected with the property values from the previous main

experiments (Table 4.2) and the property values from this experiment (Table 4.16).
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(a) Property values from the previous

main experiments

(b) Property values for current main ex-

periment

Figure 4.25: Shows images detected with different property values

There is a massively decrease in the number of false interest points. The detector goes

from detecting 762 interest points to 41. Additionally, the detector also detects more

large features using current property values than values from previous experiments.

SURF Detector

Detectors MetricThreshold Octaves Scale levels

SURF.m 5000 3 4

Table 4.17: Property values of the SURF detector for experiment of real-life images

The ’MetricThreshold’ of the SURF detector, which determines the number of points

to appear is set to 5000. This is done to decrease the false detected interest points. The

high threshold value is equivalent to a few features, and vice versa. The following table

shows the values used for SURF detector throughout this experiment. Similar to the

previous experiment, both KAZE and SURF uses the same number of octaves (O) and

scale levels (S). The reason for that is to be able to compare the performance of these

detectors in terms of detecting interest points at the same octave and scale levels, even
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though they are different from each other. Increased octave number in SURF means

that larger blob features are being detected.

SUSAN Detector

Detectors GeoThresh GeoThresh 2 IntThresh IntThresh 2

SUSAN.m 7 12 0.2 0.01

Table 4.18: Property values of the SUSAN detector for experiment of real-life images

Unlike the other methods, SUSAN needs to be tested with different values to differ-

entiate corners from the edge. Similar to the previous experiment, these values are

manually assigned. Although, SUSAN needs to have different values for each image,

the values from Table 4.18 are initially set to be used throughout this experiment.
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4.2.2 Results of interest points detected in image 2

This experiment is carried out with the purpose of testing the KAZE detector to detect

true interest points at buildings from a real image. KAZE is tested in comparison with

SURF and SUSAN. The results obtained from KAZE, SURF, and SUSAN of the image

are as following:

KAZE detector

The result obtained from using the KAZE detector is as following:

Figure 4.26: Image 2 detected with KAZE detector

The detection of true interest points of image 2 is quite impressive. By looking at the

image, the detector is detecting true interest points such as corners, tower top, and

center of both clocks. Additionally, it can be seen that the responses are mainly on

corners and some on areas where there are a clear distinction between point area and

background. Figure 4.27 shows some of the true interest points detected.
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(a) Center of clock (b) Tower top (c) Corner

Figure 4.27: Results of true interest points in image 2

SURF detector

The result obtained from using the SURF detector is as following:

Figure 4.28: Image 2 detected with SURF detector

Similar to KAZE, SURF also detects true interest points at corners, tower top, and

center of both clocks. The only difference is that SURF has a lot more interest points

detected than KAZE, which is due to multiscale detection of same true interest point.

Additionally, similarly to KAZE, responses are mainly on corners and some on areas

where there are a clear distinction between point area and background as well. Figure

4.29 show some of the true interest points detected.
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(a) Center of clock (b) Tower top (c) Corner

Figure 4.29: Results of true interest points in image 2

SUSAN detector

The result obtained from using the SUSAN detector is as following:

Figure 4.30: Image 2 detected with SUSAN detector

After tweaking with many SUSAN values, it can be seen that the best result for SUSAN

is achieved by using the values from Table 4.18. SUSAN is not suited for this kind of

experiment and manages to detect more false than true interest points, especially at

the edge and bottom right corner. Additionally, it can be seen that SUSAN is detecting

more edges than corner. Thus, it can be concluded that SUSAN struggles to detect true

interest points in this specific real life image.
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Comparison of the detectors in terms of detecting image 2

Table 4.19 shows the number of interest points detected, the time used for the whole

process and time each interest points.

Detectors Number of interest points Time [s] Time each interest points [s]

KAZE 41 0.19782 0.00482

SURF 57 0.016506 0.0002896

SUSAN 264 1.8866 0.00715

Table 4.19: Number of interest points found using KAZE, SURF and SUSAN and the time

usage for these

In terms of detection speed, the SURF detector has the highest detection speed. Follow-

ing up is KAZE with a decent detection speed as well. At last is the SUSAN detector

having slowest detection speed. By comparing the detectors in terms of detecting true

interest points, it can be seen that both KAZE and SUSAN have very good detection

precision by detecting a lot of true interest points than false interest points. While

SUSAN has the worst detection precision by detecting more false interest points than

true interest points.
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4.2.3 Results of interest points detected in image 3

This experiment is carried out with the purpose of testing the KAZE detector to detect

interest points on a person from a real image. KAZE is tested in comparison with

SURF and SUSAN. The results obtained from KAZE, SURF, and SUSAN of the image

are as following:

KAZE detector

The result obtained from using the KAZE detector is as following:

Figure 4.31: Image 3 detected with KAZE detector

The results are impressive in this experiment as well. The detector is capable of de-

tecting many true interest points. In addition, there is no sign of false interest points

as well. Similar to the previous experiment, it can be seen that interest points are de-

tected in areas where there are a clear distinction between point area and background

as well. Figure 4.32 shows some of the true interest points detected.

(a) Right leg (b) Hat (c) Jersey (d) Left leg

Figure 4.32: Results of true interest points in image 3
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SURF detector

The result obtained from using the SURF detector is as following:

Figure 4.33: Image 3 detected with SURF detector

SURF detects many true interest points as well. However, it can be seen that there are

one false interest points detected in the background. Similar to the KAZE detector, it

can be seen that there are detection of areas where it is a clear distinction between

point area and background. However, there are also many interest points overlapping

each other which makes it difficult to distinguish them from each other. Figure 4.29

shows some of the true interest points detected and the false interest point from the

background.

(a) Ball and hand (b) Emblem (c) Leg

Figure 4.34: Results of true interest points in image 3

Figure 4.35: The false interest point in the background
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SUSAN detector

The result obtained from using the SUSAN detector is as following:

Figure 4.36: Image 3 detected with SUSAN detector

The SUSAN detector manages to detect some true interest points using the values

from Table 4.18. However, the majority of detected interest points are false. Similar to

the previous image, it can be concluded that SUSAN is not suited for this experiment

either as there are lot more false interest points detected than true.

Comparison of the detectors in terms of detecting image 3

Table 4.19 shows the number of interest points detected, time used for the whole

process and time each interest points.

Detectors Number of interest points Time [s] Time each interest points [s]

KAZE 20 0.23569 0.01178

SURF 47 0.02339 0.000498

SUSAN 58 2.0782 0.03583

Table 4.20: Number of interest points found using KAZE, SURF and SUSAN and the time

usage for these

In this image, the SURF detector still has the highest detection speed. Following up

is KAZE and at last is the SUSAN detector. Both KAZE and SURF has a lot of true

interest points detected. However, SURF had a false interest point which can be seen

in the background. For the SUSAN detector, it is clear that from both this and the
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previous experiment SUSAN somehow struggles on real-life images as the majority of

the detected interest points are false.

Overall it can be concluded that both KAZE and SURF did a very good job in terms of

detecting true interest points in real life images. SUSAN, on the other hand, had many

false interest points. This is due to fact that SUSAN needs to adjusted according to the

image experimented.
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5. Conclusion
In this project, three interest point detectors have been tested for two types of images,

a synthetic image with different geometrical shapes and real-life images. Based on

the results received, it can be concluded that all detectors had their strengths and

weaknesses detecting interest points in these images. In addition, the detectors also

had a common weakness, where the threshold values and other parameters had to be

adjusted according to image properties.

KAZE showed varying results throughout the experiment of the synthetic image with

geometrical shapes. The detector surpassed the other detectors in terms of detecting

most true interest points on image 1 with rotation and Gaussian noise. However, the

detector was not that robust when it came to very high and low brightness, and up-

scaled images, where the detector struggled to detect true interest points. In terms

of real-life images, KAZE did a very good job by detecting many true points in both

image 2 and 3. This detector was competitive in terms of detecting true interest points

in many experiments, and had a decent detection speed.

SURF detector did an outstanding job at many experiments of the synthetic image,

especially image 1 with different brightness changes. The detector did a better job of

detecting true interest points when the image had very low, low, and high brightness

changes than without any brightness. In terms of real-life image, SURF had some true

interest points detected as well. The detector had most true interest points on image

3, but there were a lot of false interest points as well. Despite that, SURF did a decent

job throughout a lot of the experiments and had the best detection speed compared to

the other detectors.

SUSAN was very accurate, given that the correct threshold values are chosen. SUSAN

had its best performance at the image with brightness changes and image without any

transformations, where the detector did an outstanding performance. SUSAN also had

some struggles as well, especially on the image with Gaussian noise, where it went

from detecting almost all true interest points to none true interest points. SUSAN also

did very bad in the experiment of real-life images and had the slowest detection speed

compared to the other detectors.
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5.1. FUTURE WORK

5.1 Future work

As mentioned in the subsection of 4.1.3 Comparison of the detectors in terms of images

without any transformations, there were many true interest points detected in the same

”corner” or point area. This was unnecessary considering that only one true interest

point is needed from each ”corner” or point area. A solution to this is by making use

of post processing of removing redundant true interest points and only keep one true

interest point for each ”corner” or point area. Thus, make it easier for distinguishing

different interest points.

The precision of the detectors such as KAZE and SURF might be inaccurate in few of

the experiments when detecting true interest points compared to SUSAN. Although

most of the experiments are detected accurately as possible, there were some few

experiments where the interest points were selected based on the green scale area

rings rather than the middle cross of these rings. A possible future work, is to examine

the precision of these detectors by comparing the centre points of these green rings

with SUSAN in terms of determine the precision of the detectors.

Finally, an alternative approach that might be better to use instead of KAZE is AKAZE.

AKAZE is a better alternative than KAZE in terms of detecting interest points as

AKAZE increases both speed and performance by make use of Fast Explicit Diffusion

(FED), which constructs the nonlinear scale space faster than using Additive Operator

Splitting (AOS).
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A. Nonlinear diffusion filtering
This chapter will discuss how to fully understand how KAZE features enhance de-

tectors and the necessity to know what Nonlinear Diffusion Filtering is and how it is

applied in KAZE detection. Introduced by Perona and Malik in 1990 [40], Nonlinear

Diffusion Filtering (NDF) makes the blurriness locally adaptive to the image data, thus

blurs noise but details such as edges will remain the same (see figure A.1) [26]. More

specifically, it reduces the diffusion at edges without the trade off of loosing important

image details like natural boundaries of objects using efficient schemes, namely AOS

techniques and conductivity functions. The reader should note that in the absence of

these schemes that it will lead to poor efficiency and limitations to practical use as NDF

is only stable for limited, small time steps. The common difficulties in the application

of NDF are associated with blurring and localization of problems. The solution is a

nonlinear diffusion method (equation A.1) named ”the Perona-Malik model”, which

utilize an inhomogeneous diffusivity process in image data where there are a large

likelihood to be edges [41] [42]. The expression is written as following:

∂L
∂t

= div(c(x, y, t) ·rL) (A.1)

where div is the divergence operator, r is the gradient operator and L is the image

brightness. c(x, y, t) is the conductivity function and vital to make the diffusion adap-

tive to the local image structure. Time parameter t is the scale parameter where larger

values lead to a simpler image representation [19]. Figure A.1 shows the difference

between Gaussian filtering and NDF. Gaussian filtering blurs the image and remove

both noise and detail in the image, whereas NDF makes the blurring locally adaptive

to the image.
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A.1. THE CONDUCTIVITY FUNCTIONS

Figure A.1: Blur with Gaussian filtering (left). Blur with nonlinear diffusion filtering (right)

[26]

A.1 The conductivity functions

In 1990 Perona and Malik proposed to make the function c dependent on the gradient

magnitude [19]. The magnitude of the image gradient controls the diffusion at each

scale level, thus the conduction function c(x, y, t) A.2 is defined as

c(x, y, t) = g(|rLs(x, y, t)|) (A.2)

where rLs is the gradient of the Gaussian smoothed version of the original image

L. The KAZE features make use of three different types of the function g, where g1

promotes high-contrast edges, g2 promotes wide regions over smaller ones, and g3

smoothes the internal area and retain boundary information. Perona and Malik de-

fined g1 and g2 in Scale-space and edge detection using anisotropic diffusion [40] as:

g1 = exp(�
|rLs|

2

k2 ), g2 =
1

1 + |rLs |
2

k2

(A.3)

where the contrast factor k determines which edges to be corrected using smoothing.

This factor is empirical estimated in KAZE features to be 70% of a gradient histogram

calculated from a smoothed version of the original image. Note that the value can also
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A.1. THE CONDUCTIVITY FUNCTIONS

be calculated from the image-gradient estimates if necessary [19]. Figure A.2 illustrates

the the conductivity coefficient g1 and g2 in the Perona and Malik equation as a func-

tion of the contrast factor parameter k. By observing the figure, it can be seen that only

high gradients are preserved when the contrast factor parameter k is increased. This

implies to that low k preserves most of the gradients and high k only preserves the

strongest gradients.

Figure A.2: First row: The conductivity coefficient g1 using different values for the contrast

factor parameter k Second row: The conductivity coefficient g2 using different values for the

contrast factor parameter k [26]

The last conductivity function is referred to the J. Weickerts diffusion function for

rapidly decreasing diffusivities, slightly different from the g1 and g2 functions. De-

fined as g3 (A.4), this function favors intraregional smoothing to interregional blurring,

where smoothing on both sides of an edge is much stronger than across it [43].

g3 =

8
<

:
1, |rLs|

2 = 0

1 � exp(� 3.315
(|rLs |

2/k)8 ), |rLs|
2 > 0

(A.4)
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B. AOS schemes
As PDE’s inclusion in nonlinear diffusion filtering return no analytical solutions, it is

imperative to utilize numerical methods to obtain iterative solutions [19]. The meth-

ods are calculated by approximating the differential equations similar to equation A.1.

There are several possible approaches in diffusion equations in terms of discretization

using various techniques such as the semi-implicit scheme or the explicit scheme. A com-

mon preference is to use the explicit scheme due to its ability to be utilized using a direct

implementation. However, it does come with a major drawback being computationally

intense as a result of the required number of iterations necessary to reach a desirable

scale level following stability issues.

An alternative method is utilizing the semi-implicit scheme with the AOS scheme. This

method provides stable solutions at any step size with efficient performance, addi-

tionally creating nonlinear scale spaces for description problems and feature detection

[22]. The discretization of equation A.1 using the AOS scheme is expressed as following:

Li+1
� li

t
=

m

Â
l=1

Al(Li)Li+1 (B.1)

where Al represents a matrix that encodes the image conductivities for each dimen-

sion and t is a constant time step in order to respect stability conditions [44]. The

AOS schemes produces the nonlinear scale space iteratively using the solution Li+1, in

which I is the identity matrix. This solution can be expressed as following:

Li+1 =

 
I � t

m

Â
l=1

Al(Li)

!�1

Li (B.2)

According to the article Efficient and reliable schemes for nonlinear diffusion filtering [45],

the performance efficiency is the result of utilizing the Thomas Algorithm. This variation

of the Gaussian elimination algorithm allow the semi-implicit scheme to efficiently solve

a linear system of equations. Note that the system matrix is tridiagonal and diagonally

dominant.
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C. Source code
A overview of the code used in this project can be found here.

• Main.m

• KAZEdetect.m

• SURF.m

• SUSAN.m

C.1 Main.m
1 % Author: Niroshan Thangalingam

2 % Date: 13.06.2019

3 close all;

4 clear;

5 clc;

6 %% Interest point detection

7 %img = imread('eksperiment1/shapes.png ');

8 %KAZEdetect(img);

9 %SURF(img);

10 %SUSAN(img);
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C.2 KAZEdetect.m
1 function [] = KAZEdetect(image)

2 if size(image , 3)==3

3 image_gray = rgb2gray(image);% Converting image from rgb

to grayscale

4 else

5 image_gray = image; %If image is already in grayscale

6 end

7 kaze_img = uint8 (255* mat2gray(image_gray)); %Normalising

gray values in image

8

9 tic %Starting the timer

10 points = detectKAZEFeatures(kaze_img ,'Diffusion ','region ','

threshold ' ,0.01,'NumOctaves ', 3, 'NumScaleLevels ', 4); %

KAZEdetector

11 t=toc; %Ending the timer

12 num_points = length(points); %Finding number of stored

points

13 strongestPoints = points.selectStrongest(num_points); %

Select strongest points

14

15 %plotting the feature detector points and displaying the

time and number

16 %of keypoints

17 figure;

18 imshow(image_gray);

19 hold on;

20 plot(strongestPoints);

21 annotation('textbox ', [0.05, 0, 0.1, 0.1], 'String ', "Number

of keypoints: "+ strongestPoints.Count)

22 annotation('textbox ', [0.7, 0, 0.1, 0.1], 'String ', "Elapsed

time: " + t)

23 end
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C.3 SURF.m
1 function [] = SURF(image)

2 if size(image , 3)==3

3 image_gray = rgb2gray(image);% Converting image from rgb

to grayscale

4 else

5 image_gray = image; %If image is already in grayscale

6 end

7 tic %Starting the timer

8 points = detectSURFFeatures(image_gray ,'MetricThreshold '

,5000,'NumOctaves ', 3, 'NumScaleLevels ', 4); %SURF

detector

9 t=toc; %Ending the timer

10 num_points = length(points); %Finding number of stored

points

11 strongestPoints = points.selectStrongest(num_points); %

Select strongest points

12

13 %plotting the feature detector points and displaying the

time and number

14 %of keypoints

15 figure;

16 imshow(image_gray);

17 hold on;

18 plot(strongestPoints);

19 annotation('textbox ', [0.05, 0, 0.1, 0.1], 'String ', "Number

of keypoints: "+ strongestPoints.Count)

20 annotation('textbox ', [0.7, 0, 0.1, 0.1], 'String ', "Elapsed

time: " + t)

21 end
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C.4 SUSAN.m
1 function [] = SUSAN(image)

2 %SUSAN corner detection inspired by

3 %https ://se.mathworks.com/matlabcentral/fileexchange /30789 -

corner -detection -using -susan -operator

4 %Modified by Niroshan Thangalingam

5 if size(image , 3)==3

6 image_gray = rgb2gray(im2double(image));% Converting

image from rgb to grayscale

7 else

8 image_gray = im2double(image); %If image is already in

grayscale

9 end

10

11 tic; % Starting the timer

12 map = nlfilter(image_gray ,[7 7],@func);

13 [r,c] = find(map);

14 t = toc; %Ending the timer

15 %plotting the feature detector points and displaying the

time and number

16 %of keypoints

17 figure;

18 imshow(image_gray);

19 hold on;

20 plot(c,r,'g+')

21 annotation('textbox ', [0.05, 0, 0.1, 0.1], 'String ', "Number

of keypoints: "+ length(c))

22 annotation('textbox ', [0.7, 0, 0.1, 0.1], 'String ', "Elapsed

time: " + t)

23 end

24

25 function USAN = func(img)

26 % SUSANFUN Determine if the center of the image patch IMG

27 % is corner(res = 1) or not(res = 0)

28 mask = [...
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29 0 0 1 1 1 0 0

30 0 1 1 1 1 1 0

31 1 1 1 1 1 1 1

32 1 1 1 1 1 1 1

33 1 1 1 1 1 1 1

34 0 1 1 1 1 1 0

35 0 0 1 1 1 0 0];

36 % Geometric threshold for seperating corners and edges

37 thresholdGeo = 7;

38 thresholdGeo2 = 12;

39

40 % Intensity threshold

41 threshold_t = 0.2;

42 threshold_t2 = 0.01;

43

44 image_size = size(img ,1);

45 nucleus = ones(image_size)*img(round(image_size /2),round(

image_size /2));

46

47 similar = (abs(img -nucleus)<threshold_t).*mask;

48 USAN = sum(similar (:));

49

50 if USAN < thresholdGeo

51 dark = nnz((img -nucleus <-threshold_t2).*mask);

52 bright = nnz((img -nucleus >threshold_t2).*mask);

53 USAN = min(dark ,bright)<thresholdGeo2 && max(dark ,

bright)>thresholdGeo2;

54 else

55 USAN = 0;

56 end

57 end
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