

FACULTY OF SCIENCE AND TECHNOLOGY

MASTER'S THESIS

Study programme/specialisation:

Information Technology –
Robotics and Signal Processing

Spring semester, 2019

Open/Confidential

Author:
Simen Norrheim Larsen

…………………………………………
(signature of author)

Programme coordinator: Trygve Eftestøl

Supervisor(s): Postdoc researcher Ketil Oppedal

Title of master's thesis:
Data-assisted differential diagnosis of dementia by deep neural networks

Credits: 30

Keywords:
Deep Learning, Deep Neural Networks,
Convolutional Neural Networks, Dementia
Classification, Alzheimer’s Disease, Dementia
with Lewy Bodies

Number of pages: 73

+ supplemental material/other: 6

Stavanger, 29 July 2019

Title page for Master's Thesis

Faculty of Science and Technology

Faculty of Science and Technology
Department of Electrical Engineering and Computer Science

Data-assisted differential
diagnosis of dementia by deep

neural networks

Master’s Thesis in Robotics and Signal Processing
by

Simen Norrheim Larsen

Supervisors

Ketil Oppedal
Trygve Eftestøl

June 29, 2019

Abstract

There are currently 50 million people suffering from dementia worldwide. With
an increasing life expectancy of the elderly, this number is expected to increase
drastically over the next decade. With today’s diagnosis of dementia being highly
dependent on the expertise of clinical personnel, there is thus a pressing need for
readily available and reliable diagnosis systems.

In this thesis, the potential for computer-aided diagnosis systems based on deep
neural networks and structural magnetic resonance imaging is investigated. An
ensemble model was designed and trained on 690 class-balanced brain scans for
the differentiation of subjects diagnosed with Alzheimer’s disease and dementia
with Lewy bodies, as well as normal control subjects. All scans were initially
skull-stripped and spatially normalized to remove unwanted information.

A final accuracy of 71.9% was reported for the three class differentiation of 171
test subjects. The results presented in this thesis fall a little short in comparison
with those of related work, but indicates, nonetheless, a potential for this type of
deep learning-based diagnosis systems.

Acknowledgements
This thesis marks the end of my Master’s degree in Robotics and Signal processing
at the University of Stavanger. I want to thank the lecturers, personnel, and
co-students at the Univerity of Stavanger for two exciting years filled with new
knowledge, challenges, and good memories. I would also like to give a special
thanks to Trygve Eftestøl and, in particular, my primary supervisor, Ketil Oppedal,
for their valuable advice and feedback during this last semester. A final thank
goes out to Theodor Ivesdal for his technical support concerning the use of the
university’s UNIX-system.

iv

Contents

Abstract ii

Acknowledgements iv

Abbreviations viii

1 Introduction 1
1.1 Dementia . 1
1.2 Alzheimer’s disease . 2
1.3 Dementia with Lewy bodies . 3
1.4 Motivation . 4
1.5 Thesis objective . 5
1.6 Deep learning and neuroimaging . 5
1.7 Thesis outline . 6

2 Background 8
2.1 Magnetic resonance imaging . 8

2.1.1 MRI markers . 9
2.2 Preprocessing . 11

2.2.1 Spatial normalization . 12
2.2.2 Brain extraction . 12
2.2.3 Data normalization . 12

2.3 Artificial neural networks . 13
2.3.1 Multi-layer perceptron . 13
2.3.2 Feedforward neural networks 15
2.3.3 Convolutional neural networks 16
2.3.4 Pooling . 18
2.3.5 Loss functions . 19
2.3.6 Backpropagation . 20
2.3.7 Optimizers . 20
2.3.8 Activation functions . 23
2.3.9 Overfitting . 25
2.3.10 Regularization . 28

v

CONTENTS vi

2.3.11 Data augmentation . 31
2.3.12 Batch normalization . 31
2.3.13 Hyperparameter tuning . 32
2.3.14 Evaluation metrics . 34

2.4 Software . 36
2.4.1 Pytorch . 36
2.4.2 SciKit-learn . 36
2.4.3 Docker . 37
2.4.4 NiPype . 37

3 Materials and method 39
3.1 Dataset construction . 39
3.2 Preprocessing implementation . 42
3.3 Model design . 44

4 Experiments and Results 46
4.1 Experiments . 46

4.1.1 Experimental layout . 48
4.1.2 Experiment - Learning rate 49
4.1.3 Experiment - Dropout . 49
4.1.4 Experiment - Bayesian optimization 51
4.1.5 Experiment - Augmentaion 52

4.2 Final evaluation . 55

5 Discussion 57
5.1 Dementia classification . 57
5.2 Limitations . 59

5.2.1 Dataset . 59
5.2.2 Preprocessing . 60
5.2.3 Classifier . 60

6 Conclusion and future directions 62
6.1 Conclusion . 62
6.2 Future directions . 63

List of Figures 63

List of Tables 65

A Python code 66
A.1 fit.py . 66
A.2 main_setup.py . 67
A.3 system_resources.py . 67
A.4 test.py . 68

CONTENTS vii

A.5 data_resources.py . 69
A.6 NormalizeSkullStripPipeline.py . 69

Bibliography 70

Abbreviations

AD Alzheimer’s Disease

DLB Dementia with Lewy Bodies

NC Normal Control

CAD Computer-Assisted Diagnosis

MRI Magnetic Resonance Imaging

sMRI structural Magnetic Resonance Imaging

MTL Medial Temporal Lobe

ML Machine Learning

DL Deep Learning

ANN Artificial Neural Network

FC Fully Connected

DNN Deep Neural Network

CNN Convolutional Neural Network

SVM Support Vector Machine

SD Standard Deviation

GPU Graphical Processing Unit

GD Gradient Descent

SGD Stochastic Gradient Descent

ReLU Rectified Linear Unit

CV Cross-Validation

BN Batch Normalization

SPM Statistical Parametric Mapping

FSL FMRIB Software Library

E-DLB European Dementia with Lewy Bodies consortium

viii

Abbreviations ix

ADNI Azheimer’s Disease Neuroimaging Initiative

Chapter 1

Introduction

1.1 Dementia

Dementia is a collective name for progressive brain syndromes that affect memory,

thinking, behavior, and emotion[1]. There are many risk factors associated with

dementia and with age being the strongest among them, the increase in life

expectancy for the elderly[2] causes the number of people affected by dementia to

increase drastically. Currently, around 50 million people have dementia worldwide,

with nearly 10 million new cases every year. The total number of people living

with dementia is projected to reach 82 million in 2030 and 152 million in 2050[3].

The economic strain on society caused by dementia was in 2015 calculated to 818

million USD, about 1,1% of the global gross domestic product. This number was

projected to reach 1 trillion USD by 2018 and 2 trillion USD by 2030[4].

The condition is very demanding for the patients themselves, their families, and

their caretakers. The psychological, and emotional stress dementia inflicts on

families can be severe and may lead to the need for additional assistance from

public health-, social-, financial-, and legal systems. There currently exists no cure

for dementia[3].

1

Introduction 2

1.2 Alzheimer’s disease

Figure 1.1: Plaque and tangles1

Alzheimer’s disease(AD) was first

described by Alois Alzheimer in

1906 and is today the most com-

monly diagnosed form of dementia,

accounting for 50% to 70% of all

cases[5]. The disease causes nerve

cells to die, resulting in symptoms

such as loss of short and eventually

long term memory, degraded ability

to communicate, and compromised spatial and temporal orientation[6]. Alzher-

imer’s disease is irreversible and manifests in the brain long before any cognitive

problems appear[7]. The condition gradually worsen until symptoms are clear

enough for a diagnosis to be made and does not stop until the patient dies, normally

four to ten years after initial diagnosis[6].

The substantially higher buildup of plaque and tangles in the brains of people

suffering from AD is suspected to be causing the death of nerve cells associated

with the disease. The plaque is deposits of a protein fragment called beta-amyloid

and builds up in the space between nerve cells. The tangles are twisted fibers of a

protein called tau which builds up inside the cells themselves. Figure 1.1 illustrates

how plaque and tangles manifests in the brain. Exactly how these buildups affects

the brain is not known, but scientists believe that they block signals between the

nerve cells and disrupts processes needed for the cells to survive[8].

There are no known causes for AD, but common risk factors are old age and

degraded hearing, as well as those associated with cardiovascular disorders such

as high blood pressure, diabetes, obesity, and high cholesterol. Age is the most

dominant risk factor, with 3% of people above 65 and 12% to 15% of people above
1cbaThis work is by the National Institute on Aging, NIH, and is licensed under a Creative

Commons Attribution-NonCommercial 2.0 Generic License.

Introduction 3

80 being affected by the disease. Age is a consistent factor as well, with 95% of all

people suffering from AD being more than 65 years old[6].

Diagnosis is considered to be reasonably certain when indicative symptoms are

present and typically consist of a multitude of clinical tests, including cognitive

tests, neuroimaging, and blood analysis[6].

1.3 Dementia with Lewy bodies

Figure 1.2: Intraneural Lewy-body2

Behind AD and vascular dementia, Demen-

tia with Lewy bodies(DLB) is estimated to

be the third most common form of demen-

tia accounting for 5% to 10% of all cases[9].

In 1912, Friederich Lewy was working in

Dr. Alois Alzheimer’s lab when he dis-

covered alpha-synuclein protein buildups to

be disrupting the normal brain function of

people with Parkinson’s disease[10]. These

buildups are today known as Lewy-bodies, shown in Figure 1.2. Lewy bodies are

not only found in the brains of people with DLB but also other brain disorders

like AD and Parkinson’s disease dementia[9].

A large part of DLB diagnosis is the differentiation to other cognitive diseases, as

there might be multiple overlapping symptoms. Early-stage diagnosis is especially

hard as initial symptoms of DLB resemble those of AD, causing DLB to be

frequently misdiagnosed or even missed altogether. A total of 10% to 15% of

autopsy reports on dementia patients describe DLB pathology. These reports also

indicate that comorbidity is a problem, showing that the pathological changes

associated with DLB might show up together with those of AD[11].
2cbaThis work is from Wikimedia Commons and is licensed under a Creative Commons

Attribution-ShareAlike 3.0 Unported License. Author: Marvin 101

Introduction 4

Getting a correct initial diagnosis of patients suffering from DLB is essential as

treatment and care differs from that of AD. Prescribing the correct medication for

DLB patients is especially vital as some antipsychotic drugs occasionally prescribed

to AD patients can give serious side effects like sudden changes in consciousness,

impaired swallowing, acute confusion, episodes of deletion, and appearance or

worsening of Parkinson’s syndrome3for people with DLB[9]. Today, diagnosis is

performed clinically by looking at symptoms, conducting physical examinations

and cognitive tests. Known risk factors of DLB are being older than 60, male, and

having family members with DLB or Parkinson’s disease[12].

1.4 Motivation

Both AD and DLB are, as mentioned, currently diagnosed clinically. Diagnosis

relies on a set of tests and evaluations, and the quality of diagnosis is thus dependent

on the procedures used and the experience of the medical personnel. Misdiagnosis

of dementia may lead to delayed treatment, complications, and low quality of life

for those affected. It is also unfortunately not uncommon[14, 15]. The financial

savings of correct early diagnosis have been estimated to be quite substantial for

both patients and healthcare systems as well[16].

Deep learning(DL) techniques such as convolutional neural networks(CNNs) have,

in recent years, gained much attention for their high performance in solving

computer vision tasks such as object detection and image classification[17]. With

nonintrusive medical imaging techniques such as magnetic resonance imaging(MRI)

being commonly available, DL-based computer-assisted diagnosis(CAD) systems

could potentially contribute to increased reliability of clinical diagnosis. Such CAD

systems may also free up precious time for experts and provide better assessments

for institutions lacking thereof.
3Parkinsonian symptoms include tremors, slowed movement, rigid muscles, impaired posture

and balance, degraded ability to perform unconscious movements like blinking, smiling etc. and
speech and writing changes[13]

Introduction 5

1.5 Thesis objective

The objective of this thesis is to explore the potential of deep neural network(DNN)-

implementations for structural MRI(sMRI4)-based computer-assisted differential

diagnosis of subjects suffering from AD or DLB, as well as normal control(NC)

subject.

1.6 Deep learning and neuroimaging

Many different types of machine learning(ML) techniques have been proposed and

investigated for dementia classification, with most being developed for differential

diagnosis of subjects suffering from AD or mild cognitive impairment, as well as

NC subjects[18, 19].

Different variations of the support vector machine(SVM) have been widely re-

searched and reported to deliver promising performance for dementia classification[20–

23]. However, most of the proposed SVM-based implementations rely on gathering

features either by hand or through extensive preprocessing. These processes of

feature extraction can be both time-consuming and require expertise. The quality

of handcrafted features is also dependent on the person performing the procedure,

which introduces variability to the overall system and limits reproducibility. The

fact that these features are predetermined might also be limiting the performance

of these methods[24].

In 2012, A. Krizhevsky et al.[25] illustrated the promising potential of CNNs

for computer vision tasks. The ability for these networks to learn task-specific

image features makes them good candidates for various neuroimaging tasks. The

technology has therefore gained popularity in the neuroimaging community over

the last few years. Promising results in dementia classification has been made

using multiple types of DL techniques on different image modalities[18, 19]. The
4The term structural magnetic resonance imaging refers to the use of a standard MRI technique

without the use of contrast.

Introduction 6

performance of DNNs is, however, generally dependent on access to large amounts

of data, which in the case neuroimaging often is limited[18, 26].

Much less effort has been directed towards MRI-based differential diagnosis of

different types of dementia and DLB diagnosis. Two papers using quite different

approaches showed, however, promising performance for MRI-based differential

diagnoses of subjects suffering from AD or DLB, and NC subjects. Wada et

al.[27] proposed a six-layer CNN for classification of MR connectome maps[28],

and Oppedal et al.[29] used texture analysis of MRI scans and a random forest

classifier.

1.7 Thesis outline

Chapter 2 - Background

Chapter two will give an introduction to relevant background theory for this thesis.

MRI-based biomarkers, artificial neural networks, data preprocessing, and utilized

software will be reviewed.

Chapter 3 - Materials and rethod

This chapter will cover the data used in this study, as well as how it is handled and

processed. The model proposed for image classification is presented in section 3.3.

Chapter 4 - Experiments and results

Experiments and results are reported chronologically in this chapter as conducted

experiments are based on the results from the previous experiments. A final model

is evaluated in section 4.2.

Introduction 7

Chapter 5 - Discussion

In this chapter, the results from chapter four will be discussed and compared to

related work. Limitations of this work will be covered in section 5.2.

Chapter 6 - Conclusion and future directions

Chapter six will conclude this thesis and propose directions for future research.

Chapter 2

Background

In this chapter, relevant background theory for this thesis will be introduced.

2.1 Magnetic resonance imaging

In order to examine and differentiate the brains of subjects suffering from different

types of dementia in a nonintrusive way, the medical imaging technique known

as magnetic resonance imaging, will be utilized. In this section, this commonly

available technology will be presented, along with some biomarkers of dementia

that these images might display.

MRI was first tested on a living human in 1976 by Peter Mansfield[30]. Almost a

decade later, in 1984, the first MRI scanner was implemented for clinical use. These

machines have since then played a large part in the field of medical imaging[31].

MRIs are acquired by utilizing the magnetic properties of the hydrogen nucleus.

Hydrogen was chosen as it is found in abundance throughout the body. As hydrogen

has one single proton in its nucleus, each nucleus has one magnetic north and south

pole which is aligned with its spinning axis. Under normal circumstances, all the

axes of the body’s hydrogen nuclei are oriented randomly. During an MRI scan,

the subject’s body is exposed to a strong magnetic field causing these axes to align,

8

Background 9

creating a magnetic vector along the main magnetic field of the MRI scanner. By

introducing a radio wave to this magnetic field, theses axes begin to resonate about

the magnetic axis of the scanner. Incrementally small changes in the magnetic field

throughout the scanned area cause the axes to resonate at different frequencies.

When the radio wave is switched off, the axes of the nuclei return to align with the

axis of the main magnetic field. During this process, the axes will resonate, causing

the nuclei to emit energy in the form of radio waves. These waves are picked up by

the machine, interpreted, and processed to produce magnetic resonance images[32].

2.1.1 MRI markers

Diagnosis of both AD and DLB is, as mentioned today performed clinically, and

there has yet to be determined a single set of pathological markers good enough

for definitive diagnosis[33, 34]. This section will present some proposed biomarkers

which might be perceivable on sMRI scans and potentially could be utilized for

dementia diagnosis. Coronal images of subjects diagnosed with AD or DLB are

shown in Figure 2.4, as well as an NC subject.

Figure 2.1: NC Figure 2.2: AD Figure 2.3: DLB

Figure 2.4: Brains of subjects belonging to NC, AD or DLB. All subjects are of
about the same age

Common for the markers presented below is that they are all based on cerebral

atrophy. Atrophy is, by definition, the loss of cells and in the case of cerebral

atrophy, the loss of nerve cells and their connections[35]. This loss of nerve cells is

Background 10

as mentioned a characteristic of dementia and might be observed as a loss of brain

matter or volume on an sMRI. Most mentioned regions are visualized in Figures

2.5 and 2.6.

Alzheimer’s disease

AD is characterized by causing widespread atrophy throughout the brain. Some

regions are, however, more distinctive for AD than other neurological disorders.

One of these regions is the medial temporal lobe(MTL)[36], with the hippocampus

being one of the most prominent and earliest occurring AD markers[37]. Atrophy

of the hippocampus has, in fact, been projected to diverge from atrophy caused

by normal aging before the age of 40. The lateral ventricles and the amygdala

diverges shortly thereafter[38].

Figure 2.5: Healthy and AD affected brain indicating relevant areas1

Dementia with Lewy bodies

DLB is characterized by generally lower rates of atrophy than AD. This difference

is especially apparent when looking at the MTL, where it has been proposed

as a marker for differentiation of the two diseases[39, 40]. In particular, the
1pThis image is from Wikimedia Commons and is in the public domain.

Background 11

hippocampus, for which atrophy is highly associated with AD, has been shown

to be better preserved in DLB subjects[41]. Even though there is generally less

atrophy involved with DLB, there are still some areas that are characteristically

affected by the disease. Some of these areas are the midbrain and putamen, which

has been shown to be even more atrophic than in AD[36, 42]. It has also been

shown that the degeneration of white matter is most prominent in the early stages

of DLB, while it continues throughout the progression of AD[43].

Figure 2.6: Parts of the brain indicated on coronal slice2

2.2 Preprocessing

To optimize the training of a DL model, reducing the amount of irrelevant informa-

tion in the dataset is desirable as it increases the probability of a model learning

more general features. Below some preprocessing steps used to reduce unwanted

characteristics of MRI scans are introduced.
2pThis image from Pixabay and is in the public domain

Background 12

2.2.1 Spatial normalization

Spatial normalization addresses the issue of difference in size, spatial location,

rotation, translation, and warping of brain matter between images. The procedure

involves fitting the data to a standardized template, resulting in a dataset with

all images sharing the same coordinate system. Spatial normalization procedures

might also correct variations in image intensity caused by the varying strength of

the magnetic field during an MRI scan.

2.2.2 Brain extraction

As the name implies, brain extraction allows for the exclusion of the parts of a

head scan which are not brain matter.

2.2.3 Data normalization

When working with neural networks, it is common practice to normalize the input

data. This means that the data is altered as shown in Equation 2.1 to have a mean

of zero and a unit standard deviation(SD). Natural images generally have values

within a specific range and are thus often just zero centered using the mean value

per channel.

ŷ = y −mean
SD

(2.1)

The normalization of the data is done to speed up training by stabilizing the

distribution of the input layer[44]. The idea is that by ensuring all inputs are of

the same distribution and relatively similar scale, it becomes easier for the model

to learn relevant patterns for the given task.

Background 13

2.3 Artificial neural networks

For the classification of brain scans, a highly popular technology known as artificial

neural networks(ANNs) will be utilized.

ANNs exist in many different shapes and sizes and can be categorized in many

different ways. This thesis will be focused on what is called supervised learning,

meaning that an ANN-model is created using data for which we already know the

desired model output. A dataset used for supervised learning thus consists of a

set of input data, as well as the correspondingly wanted outputs. Such a dataset

can, therefore, be interpreted as a description of the desired model. These known

outputs are often referred to as the ground truth, targets or, in a classification

scenario, labels. Training an ANN means to expose the network to a set of samples

and optimize its characteristics to make its predictions as equal to the corresponding

ground truths as possible. This process can also be regarded as fitting the network

to the desired model description, as described by the dataset.

As the name implies, ANNs are inspired by the inner workings of the human brain.

It is, however, important to emphasize that these networks are based on a very

loose analogy to the biological brain. This analogy is none the less a useful tool for

understanding the concept on which ANNs are based.

2.3.1 Multi-layer perceptron

A simplified description of the human brain could be a network-like structure of

biological neurons. Each biological neuron receives signals from the nearby neurons

of the network and processes them, before passing on its own resulting signal.

Figure 2.7 illustrates a biological neuron and some of its components. As we are

all aware, such biological neural networks are capable of representing very powerful

models and can be trained to perform a variety of complex tasks.

Background 14

Figure 2.7: Illustration of a biological neuron3

The artificial neuron mimics the abovementioned description of the biological neuron.

Each artificial neuron consists of a set of weights and a nonlinear activation function.

All inputs of the neuron have one assigned weight, and the first step of calculating

a neuron’s output is to take the sum of all inputs, multiplied by their corresponding

weight. This sum, plus a bias term, is fed to the activation function, giving the

final output of the neuron. As with biological networks, the idea behind ANNs is

to create systems capable of learning complex models by exposing them to data.

An early example of an artificial neuron is the perceptron, a binary linear classifier.

The perceptron uses a unit step activation function, causing the output to be either

a one or a zero corresponding to whether the input is above or below a linear

threshold. This threshold is determined by the input weights and the bias of the

neuron. Combining multiple perceptrons in a layered network structure makes it

possible to create complex non-linear models, composed by the different discriminant

functions represented by each perceptron. Such networks are commonly known as

multi-layer perceptrons.
3pThis illustration is from SVG Silh and is in the public domain

Background 15

Figure 2.8: Multi-layer perceptron

The general structure of multi-layer perceptrons consists of multiple layers of

neurons and is often visualized as graphs like the one shown in Figure 2.8. These

graphs are characterized by their input layer, output layer, the number of layers

in between, called hidden layers, as well as the number of nodes in each layer.

These nodes represent the neurons of the network, with the exception of the input

layer, in which the nodes represent each value of the input data. The nodes of the

network are connected by lines, which can be interpreted as input weights of the

next neuron. If all outputs of the previous layer are connected to a given layer, the

layer is said to be fully connected(FC).

2.3.2 Feedforward neural networks

The multi-layer perceptrons can, in many ways, be considered the early version of

what is today referred to as feedforward neural networks. These networks are a

category of ANNs where all information is being fed from one end of the network

to the other, without creating any cycles.

The size and complexity of the models that can be represented by feedforward

neural networks make them very popular when solving complex tasks. Training

such networks can however require very large amounts of data and might be

Background 16

computationally demanding. These networks have, therefore, first gained popularity

in recent years, with the rise of computational power and available data.

2.3.3 Convolutional neural networks

CNNs are currently a very popular class of DNNs. DNNs are referred to as ANNs

that have multiple hidden layers and generally implies models of high complexity. In

recent years CNNs have gotten much attention in the computer vision community

as they have shown great promise in tasks such as image classification, image

segmentation, and object detection. Even though much of the theory and many of

the concepts behind CNNs have been known for quite some time, the technology’s

popularity has first risen during the last decade, with the improvement of graphical

processing units(GPUs). Modern GPUs allow for large-scale parallel computing,

which is ideal for matrix operations used in CNNs.

Convolutional layer

CNNs are to some extent based on the human, or animal, visual system in that they

mimic the use of local receptive fields to evaluate visual inputs. These receptive

fields are represented by filters or kernels. A convolutional layer operates by sliding

a filter over a matrix-shaped input, convolving it with the part of the matrix

that it covers. The convolution term is used quite loosely in this instance as the

procedure does not correspond to classical convolution but is, in fact, more like the

dot product between the filter coefficients and the values of the given part of the

image. The covolution procedure is illustrated for a 3D matrix input in Figure 2.9.

Background 17

Figure 2.9: Illustration of 3D convolution operation with a kernel of 3x3x3(blue),
bias(purple), stride of one and no padding. * indicates element wise multiplication

When sliding the filter over an image, convolving the filter with a given part of the

image gives the filter-activation at the image location covered by the center value

of the filter. For this reason, the filter has to be of an odd length, width, depth,

etc., depending on the dimension of the input. The result of all these convolutions

is saved as a matrix which is often called a feature map. The feature map indicates

how much the receptive field represented by a given filter was activated at each

point of the input. The output of any convolutional layer is a number of feature

maps, corresponding to the number of filters in the given layer. The nonlinearity of

convolutional layers is introduced by applying an activation function to each value

of the feature map independently. The size of the receptive field of a convolutional

layer is defined by the filter size, which is a parameter set by the network designer.

Such parameters are called hyperparameters.

A filter can not be applied at the edges of a matrix input as it would cover parts

outside of the matrix bounds. This means that the convolutional operation can

only be applied over image locations with a certain distance from its edges. The

filter size determines this distance. The result is a feature map that is smaller

than the input. How much smaller is determined by the size of the filter. In

general, a feature map will shrink along a given dimension by the filter size of the

same dimension, minus one. A common way to avoid this effect is by using what

is referred to as padding. Padding means that the input image is expanded, or

padded, along its edges by a number of values. How many values that are added

at each location along the edges is a hyperparameter of the convolutional layer. A

Background 18

popular choice is to pad images using values of zero, but any value can theoretically

be used.

Another important hyperparameter of convolutional layers is the stride. The stride

defines how the algorithm slides the filter over the input matrix and can be set for

each dimension separately. As an example, the algorithm can be set to apply the

filter convolution at every other value of the input along one dimension, and every

third along another. This will reduce the size of the feature map and the number

of calculations.

During the training of a neural network, the filter coefficients of each convolutional

layer are altered to better represent features, or parts of features, relevant for

the task at hand. By stacking multiple convolutional layers, a network can learn

increasingly complex features. Higher-level convolutional layers learn activation

patterns of the feature maps of the lower-level layers, creating a hierarchical

structure of low to high-level feature representations.

2.3.4 Pooling

Pooling is referred to as the act of combining or grouping a set of values. In neural

network scenarios, pooling typically means to represent a set of values by one value

and is used in so-called pooling layers. Pooling layers works somewhat similar to

convolutional layers in that they slide a filter of a given size over the inputs and

returns a value which somehow represents the part of the input covered by the

filter. These filters are often called windows when working with pooling layers. As

with convolutional layers, pooling layers have hyperparameters such as kernel size,

stride, and padding. Pooling layers are often used between convolutional layers

of a CNNs as a tool to reduce the spatial size of data, and thus also the memory

consumption and computational strain on the system. One commonly used form

of pooling is max pooling. Max pooling represents the windowed part of the input

by its maximum value.

Background 19

2.3.5 Loss functions

Training any form of ANN requires some measure of how well the model performs,

for which the network can be optimized. During supervised training, the network

is exposed to data at the input for which we know the desired output. The data

is propagated through the network, producing the model’s corresponding output.

This process is called a forward pass. The performance measure is usually calculated

by comparing the output of the model with the desired output. There are many

different techniques designed specifically for this purpose, and they are implemented

as what is called loss functions. Loss functions are designed to quantify how wrong

a model is in its prediction. This quantity is called the model loss and can be

interpreted as a model’s penalty for being wrong.

Different ANN applications require different loss functions. Examples of such

applications are regression, segmentation, and classification. This section will

introduce a common loss function used for classification tasks, the cross-entropy

loss function.

Cross-entropy loss

In a classification scenario, the loss calculated by the cross-entropy loss function can

be considered as being based on the model’s confidence in its prediction, meaning

that the model is not only penalized according to whether its output was right or

wrong, but also by how confident it is in its prediction. This property makes the

cross-entropy loss function popular, as it does not stop improving the model even

if it classifies everything correctly.

The function is based on the idea of maximizing the likelihood of the model’s

prediction representing the distribution of the correct class labels by altering the

model’s characteristics. The model’s characteristics are optimized indirectly by

determining the model’s loss.

Background 20

2.3.6 Backpropagation

When training an ANN, the goal is to minimize the loss for any given input by

changing the parameters of the network. This is normally done by altering the

parameter values according to their gradient, calculated with respect to the model

loss.

Following a forward pass, backpropagation is the procedure of propagating the

calculated loss back through the network. Starting from the output, the algorithm

works by recursively applying the chain rule, calculating the gradient with respect

to each parameter moving through every node and branch of the network. A simple

example of how the chain rule can be applied to is shown in Equation 2.2, where f

could represent the network’s output function.

∂Loss

∂w
= ∂Loss

∂f

∂f

∂w
(2.2)

For backpropagation to be possible, all intermediate values needed to calculate

the gradient have to be saved during the forward pass. The use of the chain rule

simplifies the computation of the gradient as the derivatives of each parameter can

be calculated using the intermediate values from the forward pass and the gradient

of the previous parameter, moving down the network.

2.3.7 Optimizers

The algorithms responsible for updating the parameter values of a network according

to the calculated gradient are called optimizers. In this section two commonly used

optimizers are presented.

Stochastic gradient descent

Stochastic gradient descent(SGD) is a well-established optimizer which is, as most

of the commonly used algorithms are, based on the original gradient descent(GD)

Background 21

algorithm. To get an intuitive interpretation of how these algorithms work, the

general loss corresponding to different network parameters is often thought of as a

graph or a landscape. An example of a two-dimensional loss landscape is illustrated

in Figure 2.10.

Figure 2.10: Loss over a two dimensional system parameter space. −5 indicates
the direction of the negative of the gradient

The GD algorithm attempts to optimize the network’s performance by altering its

parameters in the opposite direction of their gradient. Equation 2.3 shows how the

system parameters w4are updated according to the gradient, which is calculated

from the loss corresponding to a given input x. In this equation, η represents the

learning rate, an important hyperparameter of all gradient-based optimizers. The

learning rate scales the magnitude of the parameter updates.

wi+1 = wi − η ·
∂

∂wi

Loss(xi,wi) (2.3)

4The system parameters are often denoted with w as most of them are weights of the different
layers of the network.

Background 22

The idea is that the network, when exposed to enough data, will reach parameter

values for which the gradient is zero. In a loss-landscape, a point with a gradient

of zero will either be a minimum, a maximum or a saddle point. Moving in the

negative direction of the gradient, the parameter values at a minimum point could

represent the lowest possible loss. The point corresponding to the lowest possible

loss is known as the global minimum, and it represents the optimal model for the

given task.

When using the original GD optimizer, the gradients are calculated and summed for

all samples in the dataset before the parameters are updated. This means that as

the size of the dataset increases, the number of calculations before each parameter

update increase with it. These computations can become time-consuming, causing

the model to have a slow progression towards the global minimum.

SGD differentiates from GD by updating the parameter values according to the

gradient calculated by one single input. SGD does not necessarily move as directed

towards the same minimum as GD, but the more frequent updates can reduce the

time of computation drastically and thus speed up training.

Another, more commonly used version is the mini-batch GD. Mini-bath GD

calculates the gradient using a small batch of the dataset rather than just one

sample, as with SGD. This method has the advantage of getting a better estimate

of the overall gradient without increasing the number of computations significantly.

The size of the mini-batches is a hyperparameter determined by the designer.

For all these three methods, a problem arises with the presence of local minima

or saddle points. At these points, the gradient will become zero, and parameter

updates will thus stop before reaching the global minimum. Even if the algorithm

does not lead to one of these points exactly, parameter values near them will

cause training to slow down drastically. To overcome this problem, the notion of

momentum was proposed. The momentum can be regarded as an accumulation of

the gradients calculated as the optimizer iterates through the different batches of

the dataset. Each update is the result of a decayed running average of the previous

Background 23

gradients, as well as the current gradient. This makes the algorithm more robust

and able to recover from saddle points and small local minima.

Adam

The Adam optimizer is a gradient-based optimization algorithm with adaptive

parameter updates dependent on the decayed average of the gradients and their

square. When compared to SGD with momentum, the inclusion of the squared

gradients improves the algorithm’s robustness to large relative differences between

the derivatives of the different system parameters. A simple example is illustrated in

Figure 2.10, where w2 highly dominates the illustrated gradient. The introduction

of the squared term can be used to limit dominant parameters with the intuition

that it will direct parameter updates more efficiently towards the global minima.

Adam has been shown to speed up training in most applications and occasionally

lead to better final performance[45].

2.3.8 Activation functions

The activation function can be seen as the main characteristic of a network’s nodes.

All the hidden nodes of a network should contain a non-linear activation function.

It is this nonlinearity that makes the network capable of learning complex nonlinear

models. In this section some common activation functions will be introduced.

Sigmoid

Figure 2.11: Plot of sigmoid function

The sigmoid activation function can be in-

terpreted as a saturated firing rate for a

neuron as it truncates its output between

zero and one according to Equation 2.4.

f(x) = 1
1 + e−x (2.4)

Background 24

The function was one of the earlier activation functions used with ANNs but has

lost its popularity as some drawbacks of the function has become apparent.

A significant problem with this activation function is the saturation of the output.

When the input of the function has a large absolute magnitude the neuron saturates

to either zero or one, as shown in Figure 2.11. This means that the gradient with

respect to these points becomes close to zero. In a chain of multiple neurons with

sigmoid activation functions, the gradients are thus likely to become very close to

zero before they are propagated back to the input layer. This problem is known as

vanishing gradients and results in very slow progress during the training of deep

structures, especially in layers close to the input.

ReLU

Figure 2.12: Plot of ReLU and ReLU6

The rectified linear unit (ReLU) is cur-

rently a popular activation function.

For all inputs of either negative values

or zero, the function outputs zero, while

all positive inputs are passed through.

The ReLU is plotted in Figure 2.12.

The function has some specific features

which make it popular. One important

feature is that it does not saturate the

output and thus avoid the vanishing gradient problem. Another important factor

is that the function is computationally efficient, which contributes to both faster

training and execution. The ReLU function is presented in Equation 2.5.

f(x) = max(0, x) (2.5)

A commonly used version of the ReLU is the ReLU6. This function has a has a

hard maximum of six, as illustrated in Firgue 2.12. ReLU6 has been shown to have

Background 25

some fortunate characteristics like encouraging the model to learn more sparse

features and reducing memory consumption[46].

2.3.9 Overfitting

During supervised training, an ANN is optimized to create a model that fits the

training data for a given task. A problem arises when this data is not a perfect

representation of the general data distribution for this task. An example of such

a general distribution could be all possible images of animals when training an

animal classifier. Prefect datasets does not exist in practice as they would require

an infinite amount of noise-free data samples.

Figure 2.13: Model over- and underfitting on regression problem

A high complexity model has a large representation power, also referred to as its

capacity. Such models might be able to fit a given data distribution quite precisely.

A model with very high complexity might, in fact, fit the training data too well,

meaning that it learns patterns applicable to the less than perfect training data,

and not the general data distribution. This is called overfitting, and the result is a

model that performs well on the training data and less so on new data from the

same general distribution, so-called unseen data.

Models with very low complexity will, on the other hand, have a lower capacity.

Such models might not be sufficiently complex to properly represent the nature of

Background 26

the task at hand, resulting in what is referred to as underfitting. Figure 2.13 shows

an example of over- and underfitting for a two-dimensional regression problem.

Overfitting is a common challenge when designing DNNs as they have the potential

to represent very complex models.

Model bias and variance

As mentioned, models with large capacity might overfit a given training set. This

means that if multiple such models were trained on different subsets of the same

general distribution, the resulting models would vary greatly. Such models are, for

this reason, said to have a high variance. Oppositely, models with very low capacity

might create a simple representation of the desired model. With all the data

stemming from the same general distribution, these models will tend to become

very similar and are thus said to have a low variance. As an example, changing

one point in Figure 2.13 would significantly alter the red model and not the blue.

How much a model generally differs from the true model of the given task is defined

as the model bias. When solving complex tasks, most low capacity models tend

to become very simple versions of the desired model and are thus said to have

a high bias. High capacity models tend to have a lower bias as they are able to

resemble the complex nature of the problem better. Figure 2.14 illustrates the

connection between the concepts described above. It is important to emphasize

that it is impossible to measure the model bias and variance as this would require

knowledge of the true model.

Background 27

Figure 2.14: Bias/Variance trade-off

Designing a model of the correct complexity is not always a trivial task. Too low

complexity means that there is unused potential in the data. Too high complexity

may result in overfitting. Both scenarios will lead to suboptimal generalization

performance. As it is difficult to reduce the variance without increasing the

bias, and vice versa, balancing a model’s complexity is often referred to as the

bias-variance trade-off.

Validation and test

In order to estimate how well a model performs on unseen data, it is common

practice to set aside a part of the available data before training the model. In

doing so, the model can be trained on one subset of the data and its performance

validated on another. The validation performance will then give an estimate of how

well the model generalizes, meaning how well it fits the general data distribution

for the given task. To reduce the chance of overfitting, hyperparameters, and

other model design aspects can be optimized for the model’s performance on the

validation set rather than the training set.

Even though this means that the model is not trained on the validation data directly,

there is still a probability of overfitting as the model is designed to better fit the

validation set. A third set can be used to estimate the final model’s performance

Background 28

on unseen data. This dataset is called the test set and should contain data which

in no way has influenced the construction of the model5.

Cross-validation

Figure 2.15: Illustration of 5-fold cross-
validation operation

Because of large model variance, es-

timating model generalization can be

quite challenging when working with

complex models like DNNs. Cross-

validation(CV) is a tool used during

model design to improve these esti-

mates.

When performing CV, a dataset is split

into a given number of subsets, called folds. Selecting one fold as a validation set, a

given model is trained on all remaining folds before being evaluated on the selected

fold. Training one model for each such split, a better estimate of the model’s

generalization can be made by combining the performance metrics calculated for

each validation fold. Figure 2.15 shows how the algorithm splits up the dataset

and iterates through the different folds.

2.3.10 Regularization

When trying to combat overfitting, there are generally two ways to go. Either

increase the chance of the model prioritizing features specific to the general dis-

tribution or limit the models capacity. Below some techniques used to reduce a

model’s capacity will be introduced.
5There is an inconsistency of the terminology used for these datasets. In some cases, switching

meanings of the validation and test terms can be observed. In this thesis, the terminology will be
used as described above

Background 29

L2 regularization

L2 regularization tries to limit a model’s capacity by penalizing the parameter

updates according to the model’s current weights. A penalty is added to the loss as

a regularization term6. This is show in Equation 2.6, where m is the total number

of weights in the network.

Loss+ λ
m∑
i

w2
i (2.6)

The technique is especially hard on large weights as each parameter update is

penalized by the current parameters’ square product, scaled by the regularization

hyperparameter, λ. The technique is sometimes referred to as weight decay as is

will force the weights towards zero as the model iterates during training.

There are multiple intuitions behind why L2 regularization reduces the model

capacity. One being that features of the general distribution might tend to be more

subtle than those specific to the training set. Penalizing higher weights might then

reduce the chance of the network prioritizing these features.

Dropout

There are many aspects to consider when designing a model, e.g., which optimizer

and loss function to chose, how to set the hyperparameters and structural elements

like the model’s size and shape. Different configurations will result in different

models. These models will perform differently for any given task, each having

individual characteristics, strengths, and weaknesses. Intuitively, combining the

strengths of multiple different models into one might provide higher performance

than simply choosing the best one among them. This may, however, be impractical

when working with DNNs as each of these models would have to be tuned, stored,

and ran at each execution of the final model.
6There is another type of regularization called L1 regularization, where the regularization term

is based on the non-squared weights. This type of regularization is, however, not as commonly
used

Background 30

Figure 2.16: Dropout implemented in a multi-layer perceptron

The main idea of dropout is to estimate this combination of multiple models

using only one. The intuition is that by randomly dropping layer outputs and

connections during training, the resulting model can be interpreted as a combination

of multiple thinned out versions of the original model. The dropping of layer outputs

is illustrated in Figure 2.16. The probability of an output being dropped is a

hyperparameter set by the system designer.

For each iteration, the system only updates the parameters of the thinned out

model. In order to combine these thinned-out versions of the network during

validation and testing, an equally weighted geometric average of the models is

estimated. This is done by scaling the layer outputs which were dropped during

training by their probability of being dropped.

When tuned well, dropout has been shown to reduce overfitting and thus improve

generalization in most applications[47]. Dropout is also said to have a somewhat

regularizing effect in that it introduces random noise within the network structure,

encouraging the model to learn more general features.

Background 31

2.3.11 Data augmentation

Improving a training set’s representation of the general data distribution for a

given task might increase the given model’s generalization. Increasing the number

of unique samples in the training set is usually a good place to start as the most

common features across all samples then will be more likely to represent the

general distribution. Increasing the number of unique samples in a given dataset

is, however, not always possible.

In such scenarios, data augmentation might be a good option. For classification

implementation, data augmentation generally refers to the altering of data in ways

that do not change its ground truth. As an example, rotating or flipping an image

of a cat does not alter the fact that it pictures a cat, but provides another different

representation of it. With the same argumentation as in the previous paragraph,

increasing the size of the dataset with such augmented samples might improve

model generalization.

2.3.12 Batch normalization

Batch normalization(BN) builds on the same principle of input normalization as

mentioned in section 2.2.3 but brings it into the network structure itself.

When training a neural network, the input of each hidden layer, as well as the

output layer, receives the output of a previous layer. Normalization of the input

data ensures that the first layer always receives data of the same distribution. As

the data propagates through the layers of the network, the distribution of the

activations is, however, not guaranteed to be consistent. This is where BN comes

in.

A BN layer works much like the normalization of the input data in that it normalizes

the layer inputs by their mean and standard deviation. However, having data of

zero mean and a standard deviation of one may not always be desirable inside the

network. For this reason, the data is scaled by two learnable parameters, β and γ,

Background 32

as shown in Equation 2.7, where x̂ represents the normalized inputs.

y = γx̂+ β (2.7)

These parameters become the new mean and standard deviation of the given data.

As with other learnable parameters, these are updated for every mini-batch when

using a mini-batch gradient-based optimizer. The consequence is that as the model

is trained, iterating through the dataset, these parameters change slightly. This

change in distribution can be considered as noise, which, as with dropout, might

have a regularizing effect. BN has been shown to speed up the learning process

quite drastically and potentially improve the final performance of the network[48].

2.3.13 Hyperparameter tuning

As the system itself does not optimize hyperparameters, these need to be determined

by the system designer. The difference in performance between a poorly tuned

and a well-tuned model can be substantial. Choosing the right hyperparameters is

thus a crucial part of creating a DNN model. There is, unfortunately, no uniquely

correct way of finding these optimal hyperparameters. There are, however, some

techniques that can be used to search a given hyperparameter space methodically.

Common for all methods is that they sample from a set of hyperparameters, which

all are within a bounded range.

Grid search

A commonly used approach is grid search. By constructing a grid of different

hyperparameter values, the system can iterate through these combinations, train

models, and record the corresponding performance. This method works fine for

smaller dimensional hyperparameter spaces, and particularly in combination with

models that have short evaluation time.

Background 33

Random search

When using the random search apporoach, one set of hyperparameters is chosen

randomly for each iteration. Random search has been shown to be more efficient

than grid search, in most scenarios[49].

Bayesian optimization

Training and evaluating a DNN can be a time-consuming task, and tuning hyper-

parameters using methods like grid and random search can thus become close to

infeasible. Bayesian optimization is a technique used to determine which hyperpa-

rameters to test based on prior knowledge.

Finding the right hyperparameters can be considered an optimization problem,

much like the training of a neural network. The model representing the relationship

between the different sets of hyperparameters and the corresponding network

performance is, however, often considered as unknown. There is also no way of

calculating the gradients of the hyperparameters as they are considered to have no

direct mathematical connection to the model’s performance.

Bayesian optimization is a technique that can be used for black-box optimization

problems, like the one described above. The idea is to consider the connection

between the hyperparameters and the model performance as a random function

and build a probabilistic model of this function using a prior distribution. When

iterating through different sets of hyperparameters, the prior distribution is updated

using the previous results. The prior at a given iteration is used to estimate the

next set of hyperparameters. Different prior distributions can be used. A popular

choice is to use a Gaussian distribution. Bayesian optimization has been shown

to find well-performing hyperparameters using significantly fewer iterations than

manual or random search[50].

Background 34

2.3.14 Evaluation metrics

The evaluation of a model’s performance is an essential part of any ML design

process, and neural networks are no exception. There exist many different perfor-

mance metrics made for different purposes and applications. In this section, some

of the more commonly used performance metrics for classification applications will

be introduced.

Loss

When training an ANN the value of a given loss function can be used as an estimate

of model performance. Depending on the type of loss function, the loss can be

more or less a rough estimate of performance and is usually only considered while

training a model.

Accuracy

Accuracy is one of the most commonly used performance metrics. The measure

is the percentage of the total data which was correctly classified. A limitation of

this measure is reliability when having imbalanced amounts of data between the

different classes.

Confusion matrix

The confusion matrix is a powerful tool for inspecting how the model’s predictions

are in comparison with the corresponding labels. Represented as a square matrix

of length and width corresponding to the number of classes, one axis represents the

predicted values and the other the true labels. An example is shown in Figure 2.17.

Some performance metrics can be derived from inspecting the confusion matrix.

Examples are accuracy, precision, recall, and F-beta score.

Background 35

Figure 2.17: Example of confusion matrix

Precision

Precision is defined as the share of the data predicted to be of one specific class

that actually belongs to the given class. A typical scenario where this measure

becomes relevant is when having imbalanced amounts of data between the classes.

Recall

The share of the data that belongs to a given class that is correctly classified is

referred to as a model’s recall. As with precision, this can give a broader sense

of a model’s performance and might be especially relevant when working with

imbalanced datasets. Another typical scenario where recall might be a valuable

measure is when there is a high risk associated with misclassifying a given class.

Background 36

F-beta score

The F-beta score is a performance measure based on the harmonic mean between

precision and recall. The score is, e.g., useful when comparing different models by

their precision and recall. The measure is calculated according to Equation 2.8.

Fβ = (1 + β2) · precision · recall
(β2 · precision) + recall (2.8)

The beta value determines a weighting of the algorithm toward either precision or

recall. A beta value between zero and one increases the weight of precision, while a

beta value between one and infinite yields an increased weight of recall. A special

case of the F-beta score is when beta is set to one. This is called the F1 score and

is the harmonic mean between precision and recall as they are weighted equally.

2.4 Software

Some of the librarys used in this thesis will be introduced below.

2.4.1 Pytorch

For this thesis, the PyTorch platform was used for deep learning implementation.

PyTorch is based around tensors and is an open-source deep learning platform

written in the Python programming language. The platform was chosen for its

flexibility and its use of the standard Python debugger. PyTorch also includes

Nvidia GPU support and can parallelize between multiple GPUs, which helps

speed up network training.

2.4.2 SciKit-learn

SciKit-learn is a popular open-source ML platform built on the Python programming

language. The platform delivers a large selection of tools for many different aspects

Background 37

of machine learning, such as system setup, different types of models, performance

evaluation and visualization.

2.4.3 Docker

Docker is a software that allows for the utilization of custom system images on most

common operating systems. The software accesses the host’s operating system

and instantiates a Linux kernel that can run what is referred to as images. These

images are instances of a system set up, which means that the same system image

can be loaded on multiple machines with different operating systems, ensuring

compatibility across platforms. As an image is a saved instance of a system set

up at a given time, software used in the image will not implement the developers

delivered updates. This helps with compatibility over time.

2.4.4 NiPype

An issue when comparing different ML neuroimaging studies is the lack of re-

producibility and the use of different types of preprocessing and data[51]. Some

attempts have been made to standardize the way of conducting ML neuroimaging

studies with dedicated software platforms[52, 53], Clinica7. One such platform is

NiPype[54], a standardized preprocessing pipeline for neuroimaging.

Most of the software used for preprocessing of neuroimages today are provided

by different parts of the neuroimaging research community. This software is

thus often made by people with good technical background, but which are not

software engineers. Even though the software delivers good results, it might

not be particularly efficient, user-friendly, or robust. To handle some of these

challenges, NiPype provides a Python user interface for most of the preprocessing

software commonly used with neuroimaging today. Popular software such as

SPM12, FreeSurfer, FSL, and ANTs are implemented in NiPype.
7Clinica software platform (www.clinica.run) developed by the ARAMIS Lab

(www.aramislab.fr)

Background 38

SPM

The Statistical Parametric Mapping(SPM) software was created by members and

collaborators of the Wellcome Centre for Human Neuroimaging at University

College London. The software provides functionality for processing of neuroimages

like realignment, normalization to standard templates, smoothing and more.

FMRIB Software Library

FMRIB Software Library(FSL) delivers a multitude of tools for processing and

analysis of different types of neuroimaging modalities[55]. Their software can only

be run on macOS or Linux.

Chapter 3

Materials and method

This chapter will go through the different steps and methods used to handle and

process the data used in this thesis, as well as the proposed model for this thesis.

3.1 Dataset construction

The data used in this thesis consists of T1 weighted sMRI from both the European

Dementia with Lewy bodies consortium(E-DLB) and the Alzheimer’s Disease

Neuroimaging Initiative(ADNI) databases. Out of the 853 MRI scans provided

by the E-DLB consortium, 288 were of subjects having a DLB diagnosis, 171 had

an AD diagnosis, and 146 were NC subjects. As the E-DLB dataset was the

only source of DLB diagnosed scans, AD and NC subjects from this study were

supplemented with data from ADNI. To improve the chance of subjects having

a correct diagnosis, only ADNI scans from baseline studies or initial screening

was chosen. The intuition behind this being that these subjects had a clinical

diagnosis within a reasonably short time of the scan being performed, increasing

the reliability of the image labels. The dataset was determined to be split into two

subsets of 80% for training and 20% for testing.

39

Materials and method 40

Age and gender matching

In the dementia section, common risk factors for dementia were introduced. Some

of these factors might be more or less present throughout the dataset. As neural

networks are statistical models, any known underlying patterns in the dataset

which are not general enough for the differentiation of these diseases should be

either removed or matched as well as possible. Doing so increases the probability

of the model generalizing better.

Both the E-DLB and ADNI datasets were supplied with metadata containing

relevant information about their subjects. This metadata was used to match

the subjects. Removing subjects from the already relatively small dataset would

be unfortunate and was avoided to a reasonable extent. As the ADNI database

contains greater amounts of data than the available DLB data, the DLB data was

chosen as a template to which the AD and NC subjects were matched. Relevant

risk factors listed in the metadata were age, gender, years of education, and other

conditions such as vascular diseases, etc. After ruling out partial metadata, age

and gender were chosen for matching. The age distribution of all available subjects

is shown in Figure 3.1.

Figure 3.1: Age distribution in original dataset

Materials and method 41

Age is the most dominant risk factor for dementia. Having different age distributions

between the different classes during training might be unfortunate and result in a

biased model. Gender is not as strong a risk factor, but its characteristics might

be present in the scans. Any pattern in data perceivable by the model, but which

are not disease-related might misguide the model during training and result in a

reduced generalization.

Table 3.1: Characteristics of the final dataset
Dataset

characteristics
Training (80.1%) Testing(19,9%)

Diagnosis NC DLB AD NC DLB AD

Mean age 74.48 74.49 74.50 69.51 68.88 74.34

age SD 6.72 6.72 6.72 11.24 11.05 9.51

Count 230 230 230 57 57 57

Males 131 131 131 45 45 45

Females 99 99 99 12 12 12

Gender is binary by nature and was thus matching for each subject individually.

As it is during training that a neural network learns viable patterns, the training

dataset was prioritized during matching. The result was a training set where all

subjects having an AD or NC diagnosis were matched to the DLB subjects with

an age difference within half a year. The subjects belonging to the test set were

age-matched as well as possible and were at least within two standard deviations

of the age distribution of the DLB subjects from the training set. The resulting

age distributions for the training and test sets are presented in Table 3.1. One

subject from the DLB data was initially discarded, being more than three standard

deviations from the mean age of the DLB dataset.

Materials and method 42

3.2 Preprocessing implementation

Figure 3.2: Nipype workflow
for image preprocessing

As the MRI scans used in this thesis originates from

different MRI machines, studies and are of people

with different demographics, image preprocessing

was considered necessary in order to increase the

likelihood of the model learning features specific

to the different diseases, rather than the different

image acquisition processes. In order for the data

to be compatible with preprocessing software, all

scans were initially converted to the commonly used

NIfTI format.

All neuroimaging specific preprocessing was con-

ducted using the NiPype platform. NiPype delivers

its own official docker image1, which was utilized

in this thesis to ensure a fully working environment

and reproducibility. The steps of the used preprocessing pipeline are shown in

Figure 3.2 and explained below.

Spatial Normalization

Spatial normalization was conducted using the SPM12 normalization software,

which is based on[56]. In addition to performing spatial normalization, the software

also corrects image intensity variations due to varying strength in the magnetic

field throughout the images. Most of the images used in this thesis were originally

of a voxel size of about 1x1x1 mm. To retain as much detail as possible, this size

was chosen as the standard for the resulting normalized images. Images that were

not of the correct voxel size were either downsampled or upsampled using b-spline

interpolation of degree four[57]. The result of conduction spatial normalization is

a dataset that is more structurally and spatially comparable.
1NiPype docker-image ID: sha256:2444418803137c4e1554074d9e6edd66d5a6a682e38d18d3c3f0f8ece3a673e0,

date:13.03.2019

Materials and method 43

Brain extraction

As dementia mainly manifests in the brain, the information in the form of eyes,

ears, skin, and bone is generally undesirable. The brains of the normalized images

were thus extracted using the FSL brain extraction(BET) software. This software

implementation is based on [58] which reported segmentation of brain matter with

high performance. The resulting images were of size 157x189x156 voxels.

Dataset normalization

As the voxel values were drastically different between images in the dataset, the

first step of the data normalization was to scale all images down to a distribution

between zero and one. Next, all images were zero-centered by the voxelwise

subtraction of the mean image, which was calculated for the training data. This

was chosen over subtracting the over-all mean voxel value of the dataset as the

images consist of only one channel, and the variance of a large part of the voxels

was relatively small. For instance, with the brains being of a somewhat elliptical

shape, a significant number of voxels located in the corners of each image were zero

across all scans. Scaling all images by the average voxel value of a single channel

image would simply shift up or down the image. This linear transformation is not

very powerful.

Materials and method 44

3.3 Model design

Figure 3.3: Proposed network
structure. Parentheses indicate
number of filters in a given layer

This section presents a model inspired by the

conventional CNN structure of multiple convolu-

tional and max-pooling layers, followed by fully

connected layers. The complete model is visu-

alized in Figure 3.3. ReLU6 was chosen as the

activation function for all layers.

The MRI-based biomarkers of dementia pre-

sented in section 2.1.1 indicates the importance

of volumetric measures when utilizing MRI scans

for dementia diagnosis. Several newer studies

have reported good performance using 3D convo-

lutional layers for their feature extraction[59, 60],

and in their comparison [61] found that 3D con-

volution outperformed 2D for MRI classification.

3D convolution was thus chosen for the model’s

convolutional layers. All convolutional layers

were set up with a filter size of 3x3x3 and a stride of one. Layer inputs were padded

with values of zero in order to not lose information from the images’ edges.

As often done in conventional CNN structures, the spatial resolution of the network

was downsampled between each convolutional layer using max-pooling layers. Max

pooling was utilized with a kernel size of 3x3x3 and a stride of two. As the size of

each feature map decreased, moving up through the layers, an increasing number

of filters were chosen. The number for filters were chosen in such that the number

of computations was somewhat consistent throughout the convolutional layers.

The convolutional layers were followed by a set of three FC layers. These layers

interpret the features maps of the final convolutional layer to determine the diagnosis

of a given input. Training time becomes an important aspect when designing a

Materials and method 45

deep model. To speed up training and potentially increase performance, BN was

implemented for every layer of the network.

Chapter 4

Experiments and Results

In this chapter, all performed experiments and corresponding results will be

presented chronologically. This approach was chosen as later experiments were

based on the experience gained from earlier results.

4.1 Experiments

Initial testing

Initial testing was performed to determine how the planned experiments should

be conducted. The variation in performance as a result of random initialization

of network parameters and different training/validation splits were of particular

interest as this would determine if the general performance could be estimated

using a single training/validation split, or if the use of CV would be necessary.

Two six-fold CV runs were thus conducted with equal configurations and without

any regularization. Both runs were executed with a learning rate of 1 · 10−6 and

the remaining system configurations according to Table 4.2. The results of both

runs are reported in Table 4.1. Figure 4.1 shows learning curves for a fold with a

close to average maximum validation accuracy.

46

Experiments and Results 47

Table 4.1: Results of two initial cross-validation executions with a learning rate
of 1 ∗ 10−6

Run A Run B Run A Run B

Fold Loss Loss Accuracy[%] Accuracy[%]

1 0.800934296 0.795536779 61.53846359 60.68376541

2 0.794067509 0.796742983 61.53846359 62.39316559

3 0.795691714 0.828704454 64.91228485 63.15789413

4 0.694504805 0.665960576 70.17543793 71.92982483

5 0.783715405 0.837599628 66.66666412 64.91228485

6 0.847598903 0.855287593 59.64912415 59.64912415

Mean 0.786085439 0.796638669 64.08007304 63.78767649

SD 0.050105925 0.068152329 3.926560029 4.39687365

Figure 4.1: Learning curves for initial testing

Experiments and Results 48

As expected, initial testing resulted in substantial overfitting, indicated by the

difference in accuracy between the training and validation curves in Figure 4.1.

This high variance problem was also verified by the significant standard devi-

ations reported in Table 4.1, showing a performance highly dependent on the

training/validation split of each fold.

4.1.1 Experimental layout

It became apparent, after initial testing, that the use of CV would be necessary in

order to get performance measures consistent enough for hyperparameter tuning.

Splitting the data into six folds was chosen as this allowed for a good trade-

off between the generality of the average results and execution time. The folds

contained 115 subjects each, resulting in the dataset being split into 83.3% training

and 16.7% validation. One model was trained for each split, saving the model

with best-recorded accuracy. During training, each model was validated after every

passed epoch. Training data was shuffled between each epoch to avoid a constant

pattern in the parameter updates, hopefully improving generalization. Accuracy

was chosen as the main performance measure during experimentation as the dataset

was class-balanced, as well as age- and gender-matched.

The cross-entropy loss function and the Adam optimization algorithm was used

for model optimization. The Adam optimizer was chosen for its robustness and

efficiency, while the cross-entropy loss function was chosen for its persistent opti-

mization characteristics.

To reduce unnecessary time consumption, training was stopped after a given number

of epochs had passed without improved validation performance. This number of

epochs is often referred to as patience. The patience was reset by an improved

running average of either loss or accuracy over the last five epochs. Training

progression was logged every tenth iteration. The system configuration for all the

following experiments is presented in Table 4.2.

Experiments and Results 49

Table 4.2: System configuration used during experiments
Batch size Optimizer Loss function Patient Cross-validation folds Log interval Shuffle data

14 Adam Cross-Entropy 15 6 10 Yes

4.1.2 Experiment - Learning rate

In order to get a sense of the hyperparameter space, different learning rates were

tested without any form of regularization.

Figure 4.2: Result from the learning rate experiment

Figure 4.2 indicates a pretty clear peak in performance at a learning rate of about

1 · 10−4. These results were used to determine a reasonable span for the learning

rates used in the experiments following.

4.1.3 Experiment - Dropout

The results from the initial testing indicated significant amounts of overfitting, and

regularization was thus deemed necessary. As the use of dropout might alter the

Experiments and Results 50

efficacy of training, different combinations of dropout probabilities and learning

rates were tested using random search. The initial range of the dropout values was

set up to 0.9 to verify that using a high dropout probability indeed result in lower

performance, as indicated by [47] and especially when combined with BN[48]. The

search was also tuned in towards both lower learning and dropout rates, to check

performance when looking at a smaller span. For this first part of the experiment,

dropout was implemented only in the FC layers of the network.

For the second part of the experiment, dropout was implemented in the convolu-

tional layers as well. [47] indicated that dropout should be implemented with a

lower probability in lower-level layers. The probability of dropping a feature map

was on this basis set to be half of that for the linear layers. Results from both

experiments are shown in Figures 4.3 and 4.4, where decreasing bubble diameter

indicates decreasing loss, and brighter yellow bubbles indicate increasing accuracy.

Results

Figure 4.3: Results implementing
dropout in only FC layers

Figure 4.4: Results implementing
dropout in all layers

The results shown in Figure 4.3 indicates that larger dropout probabilities generally

decrease validation performance. Overall comparison of Figures 4.3 and 4.4 suggest

that implementing dropout layers in both convolutional and FC layers might be

favorable during further experimentation.

Experiments and Results 51

4.1.4 Experiment - Bayesian optimization

Hyperparameter tuning is a major part of any DNN design process. As hyperpa-

rameters might be more or less correlated, comparing different setups should thus

be conducted by searching over a reasonable span of relevant hyperparameters.

Searching the hyperparameter space using techniques like grid search or random

search might be quite time consuming, especially when using CV. In the case of

the linear-layer dropout experiment, the average elapsed time for each execution

was 8 hours and 53 minutes when running on one Nvidia V100 GPU.

A Bayesian hyperparameter technique provided by SciKit-learn was therefore

utilized to hopefully increase the efficiency of the hyperparameter search. This

algorithm was used with a Gaussian prior distribution. The hyperparameters

chosen for tuning was the L2 regularization parameter, the learning rate, and the

dropout probability. Dropout was utilized in all layers. Data augmentation was

implemented as well, with images being smoothing with a 3x3x3 Gaussian kernel

and a sigma of one. Each image was given a probability of being smoothed which

was tuned by the Bayesian tuning algorithm as well, allowing for a continuous

scale. Used span for all mentioned hyperparameters is presented in Table 4.3.

Table 4.3: Hyperparameter space used for Bayesian optimization experiments
Learning rate Dropout probability L2 regularisering Smoothing probability

1 · 10−5 - 1 · 10−3 0 - 0.5 0 - 0.4 0 - 1

Experiments and Results 52

Results

Table 4.4: Results from Bayesian optimization experiments

Iteration
Learning

Rate

Dropout

probability
L2

Smoothing

probability
Accuracy[%] Loss

5 2.97e-05 0.20 0.155 0.67 73.2 0.729

8 8.47e-05 0.40 0.062 0.11 70.0 0.732

3 8.21e-05 0.22 0.376 0.78 68.7 0.746

2 7.71e-05 0.11 0.214 0.91 68.4 0.802

6 1.51e-05 0.43 0.177 0.13 66.7 0.762

7 0.000493 0.45 0.094 0.01 48.9 1.036

1 0.000253 0.37 0.255 0.78 48.6 1.037

4 0.000743 0.42 0.125 0.52 45.9 1.063

0 0.000987 0.47 0.051 1.00 45.8 1.052

Table 4.4 presents the results of all iterations from the Bayesian optimization

experiment.

4.1.5 Experiment - Augmentaion

A major challenge when training DNNs on neuroimages is the lack of available data.

An experiment using additional data augmentation was therefore conductedet.

The biomarkers presented in section 2.1.1 are all based on atrophy of different parts

of the brain. With all images being fit to the same template during preprocessing,

this would mean that most of these markers probably appear in approximately

the same location and with roughly the same orientation throughout the dataset.

The choice of augmentation technique was based on the idea that keeping relevant

features as similar as possible between images would make them more likely to be

learned by the model. For this reason, experiments using techniques like rotation,

flipping, and cropping were not pursued.

Experiments and Results 53

With at least two important biomarkers, the hippocampus and the ventricles, being

somewhat symmetrical about the sagittal plane, each scan was split in two along

this exact plane. The different sectional planes of the human brain are shown in

Figure 4.5. With the mentioned symmetry in mind, half of the resulting images

were flipped along the transverse axis to hopefully increase the similarity between

the features found in each half. The experiment was otherwise conducted in the

same fashion as the Bayesian experiment.

Figure 4.5: Sectional planes of the human brain1

1cbThis work is licensed under a Creative Commons Attribution 3.0 Unported License.
Author: Bruce Blaus Blausen.com staff (2014). "Medical gallery of Blausen Medical 2014".
WikiJournal of Medicine 1 (2).DOI:10.15347/wjm/2014.010. ISSN 2002-4436

Experiments and Results 54

Results

Table 4.5: Results from augmentation experiment

Iteration
Learning

Rate

Dropout

probability
L2

Smoothing

probability
Accuracy[%] Loss

4 1.31e-05 0.34 0.237 0.67 69.2 0.718

1 7.71e-05 0.11 0.214 0.91 68.9 0.765

5 2.97e-05 0.20 0.155 0.67 68.5 0.761

2 0.000270 0.40 0.037 0.52 68.0 0.741

3 8.21e-05 0.22 0.376 0.78 66.4 0.763

8 0.000253 0.37 0.255 0.78 55.2 0.960

0 0.000494 0.45 0.094 0.01 54.8 0.963

6 0.000987 0.47 0.051 1.00 51.6 0.996

9 0.000743 0.42 0.125 0.52 50.1 1.023

7 0.000537 0.41 0.332 0.27 48.7 1.031

Table 4.5 presents average CV results from the augmentation experiment. The

best accuracy of the augmentation experiment was 69.2%.

Table 4.6: CV results from the fourth iteration of the augmentation experiment

Model Accuracy[%] Loss

1 70.9 0.685

2 66.2 0.775

3 68.0 0.724

4 72.4 0.672

5 68.9 0.759

6 68.9 0.694

Mean 69.2 0.718

SD 2.17 0.042

Experiments and Results 55

4.2 Final evaluation

The six models which reported the best average CV validation performance during

the previous experiments were chosen for final evaluation on the test set. These

models were found during the Bayesian experiment. The models were all trained

on different combinations of the same training samples, but none were evaluated on

the same validation set. With an intuition similar to that of dropout, combining

all these models could thus potentially increase performance. An ensemble model

was therefore created using a majority voting rule. This meant that the predictions

of all six models were compared for each subject, and the diagnosis which was

predicted by most models was chosen for that given subject. Ties were broken with

an equal probability game of chance.

Table 4.7: Confusion matrix for final results

Table 4.8: Performance of
final model
NC DLB AD Mean

Precision 0.732 0.681 0.767 0.727

Recall 0.719 0.860 0.579 0.719

F1 0.726 0.760 0.660 0.715

The final model diagnosed subjects with an overall accuracy of 71.9%. Table 4.8

and Figure 4.7 further describes the performance of the final classifier.

With the final model determined, the test performance for each of the six models

could be establish. The validation and test results for each fold are displayed in

Tables 4.9 and Table 4.10 respectively.

Experiments and Results 56

Table 4.9: Final model CV valida-
tion results

Model Accuracy[%] Loss

1 67.5 1.000

2 77.8 0.571

3 76.3 0.652

4 71.1 0.838

5 72.8 0.796

6 73.7 0.790

Mean 73.2 0.729

SD 3.69 0.150

Table 4.10: Final model CV test
results

Model Accuracy[%] Loss

1 69.6 0.842

2 69.6 0.795

3 66.1 0.972

4 66.7 0.764

5 60.2 0.923

6 70.8 0.744

Mean 67.2 0.840

SD 3.85 0.091

Chapter 5

Discussion

This chapter will discuss the results presented in chapter four, the final model’s per-

formance in regard to similar work, and the challenges and limitations encountered

during this thesis.

5.1 Dementia classification

The proposed model of this thesis delivered an accuracy of 71.9%, and an average

precision and recall of 0.73 and 0.72, respectively. Further analysis of Table 4.8

shows that the model reports a quite stable precision over the three classes, but

struggles to recall AD subjects. Figure 4.7 indicates that the model confuses

subjects suffering from AD with those diagnosed with DLB. Confusion of AD

and DLB subjects could be expected with the possible presence of comorbidity

and similarity between biomarkers. It does, however, in this case, seem to be a

one-way street, with only one DLB subject being predicted as having AD. This

might suggest that some features common for both AD and DLB are perceived

as belonging to DLB. It is not obvious what would cause this, but one possibility

is that the DLB subjects of the training set, for some reason, hold some general

markers of dementia more prominently than the AD subjects. It could also be a

pattern of noise in either the training or test set.

57

Discussion 58

As shown by Tables 4.9 and 4.10, the test performance is generally lower than for

the validation performance for the CV models, indicating that the models are able

to overfit the validation set during training. The SD of the accuracy is, however,

about the same for both the validation and the test results. This, together with

the fact that the different models’ relative performance on the validation set does

not seem to relate to that reported on the test set might suggest that each model

picks up some of the same, but also different features of the general distribution.

The fact that the model ensemble performed substantially better than the average

of the CV models further strengthens this hypothesis.

The average accuracy of the augmentation experiments did not live up to those of

the Bayesian and was thus not chosen for the final evaluation. Table 4.6 shows,

however, that the SD of the best augmentation CV experiment is significantly

smaller than that of the chosen Bayesian experiment. This indicates that more

data, or potentially, harder regularization might result in better generalization.

Both the observations of this and the previous paragraph indicates that there might

be unused potential in the presented setup.

As mentioned earlier, little effort has been directed towards MRI-based differential

diagnosis of different types of dementia, and there are thus not many reports on

the classification of these diseases. The two earlier mentioned studies[27, 29] have,

however, reported results for the same three class problem as investigated in this

thesis. The reported results and dataset characteristics of these reports, as well as

those of this thesis, can be seen in Table 5.1.

Table 5.1: Results of this thesis and related work

Accuracy[%] Avg. precision Avg. recall Size of dataset

This thesis 72 0.73 0.72 861

[27] 73 0.78 0.73 48

[29] 87 0.88 0.87 109

Comparing studies of this sort is not a straight forward task as they often use

different models, different datasets, and different preprocessing. As the two earlier

Discussion 59

mentioned papers used approaches and datasets different from the one of this

thesis, a direct comparison of results should be made with reservations. The overall

performance reported in this thesis looks, nevertheless, to be almost on par with

the performance reported by Wada et al.[27] and below that of Oppedal[29] et al.

It is also worth mentioning that these studies report average CV-results, which

might further weaken the comparison.

5.2 Limitations

This section will cover some limitations of this study.

5.2.1 Dataset

The use of a cross-center dataset could be considered a strength of this study as

it, with its lower likelihood of consistent noise-specific patterns, might improve

generalization. The fact that all data labeled as DLB were from the E-DLB

consortium could, however, bias the model as all subjects provided by E-DLB

are from Europe and all ADNI subjects are from North-America. The differences

between scans from these two demographics are, however, probably not substantial.

There is also no good way to check if this affects the model without access to a

demographically balanced dataset.

During supervised training, a classifier is optimized to model the relationship

between the input data and the corresponding labels. For dementia classification,

this means that the optimal model would classify subjects with the same accuracy

as the procedures of the clinics represented in the dataset. As clinical diagnosis is

imperfect and comorbidity not uncommon, there is a high probability of multiple

images in the used dataset containing biomarkers from both AD and DLB or

even worse, having an altogether wrong diagnosis. If the relative amount of such

compromised data is substantial, the generalization of a model could be significantly

reduced as these samples would weaken the patterns of the general distribution in

Discussion 60

the dataset. There is, however, no viable way of knowing how much of a problem

this is. Expert assessments could be used to correct labels and discard uncertain

images, but comorbidity might still be a problem as it could be hard to determine

clinically.

5.2.2 Preprocessing

Both training and test scans used for the experiments conducted in this thesis were

preprocessed in order to reduce the amount of unwanted information. Random

inspection of some preprocessed images showed brains that appeared to be of

similar size, rotation, translation, and crop. There is, nonetheless, a chance

of inconsistencies in the preprocessing affecting the final results. The spatial

normalization, e.g., might have caused a somewhat volumetric stretching and

warping as it fits brains of different sizes and shapes into a fixed template. Manual

inspection of all images could potentially be used to verify the consistency of the

preprocessed dataset and remove possible outlier. This type of manual inspection

was, unfortunately, not an option with the limited time available while writing

this thesis. There is also a probability of some unfortunate effects of the spatial

normalization being hard to perceive by an untrained eye.

5.2.3 Classifier

The classifier proposed in this thesis was inspired by a conventional CNN setup.

The presented structure was determined and then set for all experiments conducted.

As this model indicated a high variance problem, it was, as common practice in

DL, attempted regularized by multiple means. This is, however, not the only

way to combat overfitting. The structure itself was never altered, and this could

potentially have limited the final result.

Any ANN design procedure can be considered an optimization problem, and with

close to infinitely many possible combinations of network structures, hyperparam-

eters, augmentation techniques, etc. to choose from, time becomes an essential

Discussion 61

factor. With the use of time-consuming techniques like 3D convolution and CV,

the experiments conducted during the course of this thesis came to be of a limited

scope. The Bayesian and augmentation experiments, in particular, could potentially

yield significantly better models with more time, as their Bayesian optimization

algorithms were allowed only a minimal amount of iterations.

Chapter 6

Conclusion and future directions

This chapter will conclude this thesis and suggest directions for future work.

6.1 Conclusion

In this thesis, the potential of DL-based systems for reliable differential diagnosis

of AD and DLB was explored. The proposed CNN model consisted of six 3D

convolutional layers with corresponding max pooling layer, all followed by three

FC layers. The model was trained on a class-balanced dataset of 690 T1 weighted

sMRI scans. All samples were both gender- and age-matched to further balance

the dataset. Preprocessing, in the form of skull-stripping and spatial normalization,

was conducted to reduce the amount of undesired information or noise in the

dataset.

A set of experiments was conducted in the search for an optimal classifier, including

experiments with regularization, data augmentation, and hyperparameter optimiza-

tion. With overfitting being the main challenge, all experiments were executed

using six-fold CV.

The resulting ensemble model was evaluated on a separate, unseen, and balanced

test set of 171 scans. A majority voting rule was used to combine the test results

62

Conclusion and future directions 63

of the six models that yielded the best average validation performance. A 71.9%

overall accuracy, a 0.73 average precision, and a 0.73 average recall was reported.

The results of this thesis indicate that there indeed is a potential in the use of

DL-based CAD systems for differential diagnosis of dementia.

6.2 Future directions

The limited amount of data is a central challenge for most DL-based neuroimaging

research. Using some form of a pre-trained model has shown promising results[59,

62] and should be investigated further.

An approach that might be worth exploring is to initially pre-train a model to

predict age, before fine-tuning the model to dementia classification using datasets

like the one presented in this thesis. With age being a significant risk factor

associated with dementia, a model pre-trained to predict age on a large dataset

could learn relevant features for dementia classification. As most studies register

the subject’s age when performing an MRI scan, a relatively large dataset could

possibly be obtained.

Another challenge of dementia classification is the quality of the labeled data

currently available. Even with large-scale studies like ADNI, OASIS1, AILB2, and

E-DLB providing large amounts of high-quality images will the performance of

CAD systems still be limited to mimicking that of current day clinical procedures.

Using scans of subjects with an autopsy-confirmed diagnosis would most likely

improve the quality of such datasets substantially. With the currently increasing

amount of available data, creating such datasets could eventually be feasible, and

would hold great promise.

1Open Access Series of Imaging Studies
2The Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing

List of Figures

1.1 Plaque and tangles associated with AD 2
1.2 Intraneural Lewy-body . 3

2.1 Brain of a healthy subject . 9
2.2 Brain of a subject with AD diagnosis 9
2.3 Brain of a subject with DLB diagnosis 9
2.4 Brains of subjects belonging to NC, AD or DLB 9
2.5 Healthy and AD affected brain . 10
2.6 Parts indicated on coronal slice of the brain 11
2.7 Illustration of a biological neuron 14
2.8 Multi-layer perceptron . 15
2.9 3D convolution operation . 17
2.10 Loss landscape . 21
2.11 Plot of sigmoid function . 23
2.12 Plot of ReLU and ReLU6 . 24
2.13 Model over- and underfitting on regression problem 25
2.14 Bias/Variance trade-off . 27
2.15 5-fold cross-validation . 28
2.16 Dropout implemented in a MLP . 30
2.17 Example of a confusion matrix . 35

3.1 Age distribution in dataset . 40
3.2 Nipype workflow for image preprocessing 42
3.3 Proposed network structure . 44

4.1 Learning curves during initial testing 47
4.2 Result of learning rate experiment 49
4.3 Dropout experiment result. Dropout only in FC layers 50
4.4 Dropout experiment result. Including dropout in convolutional layers 50
4.5 Sectional planes of the human brain 53

64

List of Tables

3.1 Characteristics of the final dataset 41

4.1 Results of initial testing . 47
4.2 Experiment system configuration 49
4.3 Hyperparameter space for Bayesian optimization experiment 51
4.4 Results from Bayesian optimization experiment 52
4.5 Results from augmentation experiment 54
4.6 CV results from the fourth iteration of the augmentation experiment 54
4.7 Confusion matrix for final results 55
4.8 Performance of final model . 55
4.9 Final model CV validation results 56
4.10 Final model CV test results . 56

5.1 Results of this thesis and related work 58

65

Appendix A

Python code

The Python scripts used over the course of this thesis.

A.1 fit.py

This file contains the main setup for executing a model evaluation. A model is

trained until the best validation performance is achieved. The file contains a single

function, model_fit, which takes a python dictionary as input. The dictionary

should contain a certain set of parameters describing the given execution. The

main characteristics of the function are listed below.

• Allows for the training of a single test/validation split or the use of CV

• Supports the use of Nvidia GPUs

• Can automatically create a compatible dataset on Numpy format

• Can be set to perform classification of two or three classes

• Saves all results systematically to a given path

Supported hyperparameters:

66

data_resources.py

import os
import pandas as pd
from shutil import copy
import numpy as np
from torch.utils.data import DataLoader, Dataset
import random
import torch.nn as nn

def match_classes_sex_gender(pd_data_set, template_pd_dataset, sort_gender=True, forced=False, mean_correct=False, std_correct=False):
 # Function for matcing data by statistics

 print("Matching data by statistics..")
 # Not possible to match if less data than in template
 if len(pd_data_set) < len(template_pd_dataset):
 print("Not enough data to match")
 return

 # Instantiating final data set
 matched_data = pd.DataFrame(columns=list(template_pd_dataset))

 # Remove outliers
 Z = pd_data_set["ageatbaseline"].std()
 mean = pd_data_set["ageatbaseline"].mean()
 pd_data_set = pd_data_set.loc[abs(pd_data_set['ageatbaseline'] - mean) < 3 * Z]

 # Statistical properties
 mean = template_pd_dataset['ageatbaseline'].mean()
 std = template_pd_dataset['ageatbaseline'].std()

 # Gender characteristics
 share_male = len(template_pd_dataset[template_pd_dataset['gender0M1F'] == 0])
 share_female = len(template_pd_dataset[template_pd_dataset['gender0M1F'] == 1])
 males = 0
 females = 0
 sex_dist = share_male/share_female

 # Initialize parameters
 rem_list_N = pd_data_set
 target = mean
 print("Template:")
 print("Length:{}, Mean:{:.3f}, Std:{:.3f}, Males:{}, Females:{}, Males/Female:{:.3f}"
 .format(len(template_pd_dataset), mean, std, share_male, share_female, sex_dist))

 while len(matched_data) < len(template_pd_dataset):
 if sort_gender:
 if males + females == 0:
 gender = 1
 elif males/females >= sex_dist and len(rem_list_N[(rem_list_N['gender0M1F'] == 1)]) > 0:
 gender = 1
 elif len(rem_list_N[(rem_list_N['gender0M1F'] == 0)]) > 0:
 gender = 0
 elif len(rem_list_N[(rem_list_N['gender0M1F'] == 1)]) > 0:
 gender = 1
 else:
 print("Not enough data to use force data like this")
 else:
 gender = rem_list_N.loc[abs(rem_list_N['ageatbaseline'] - target).idxmin()]['gender0M1F']

 if matched_data['ageatbaseline'].mean() < mean and len(rem_list_N[(rem_list_N['ageatbaseline'] >= target) & (rem_list_N['gender0M1F'] == gender)]) > 0 and forced:
 sub = rem_list_N.loc[abs(rem_list_N[(rem_list_N['ageatbaseline'] >= target) & (rem_list_N['gender0M1F'] == gender)]['ageatbaseline'] - target).idxmin()]
 elif len(rem_list_N[(rem_list_N['ageatbaseline'] <= target) & (rem_list_N['gender0M1F'] == gender)]) > 0 and forced:
 sub = rem_list_N.loc[abs(rem_list_N[(rem_list_N['ageatbaseline'] <= target) & (rem_list_N['gender0M1F'] == gender)]['ageatbaseline'] - target).idxmin()]
 else:
 sub = rem_list_N.loc[abs(rem_list_N[(rem_list_N['gender0M1F'] == gender)]['ageatbaseline'] - target).idxmin()]
 if sub['gender0M1F'] == 0:
 males += 1
 else:
 females += 1

 matched_data = matched_data.append(sub)
 rem_list_N = rem_list_N.drop(pd_data_set[pd_data_set["MRCODE"] == sub["MRCODE"]].index)

 if mean_correct:
 mean_off_set = (mean - matched_data['ageatbaseline'].mean()) * len(matched_data)
 else:
 mean_off_set = 0

 if matched_data['ageatbaseline'].var() > 0 and std_correct:
 sign = min(1, max(-1, mean - matched_data['ageatbaseline'].mean()))
 std_off_set = sign * abs((std**2 - matched_data['ageatbaseline'].var())*len(matched_data))**(1/2)
 # std_off_set = sign * abs(std - matched_data['ageatbaseline'].std()) # Optional way of correction, not compensating
 else:
 std_off_set = 0

 correction = mean_off_set + std_off_set
 target = mean + correction

 print("Matched class:")
 print("Length:{}, Mean:{:.3f}, Std:{:.3f}, Males:{}, Females:{}, Males/Female:{:.3f}, Original data size:{}"
 .format(len(matched_data), matched_data['ageatbaseline'].mean(), matched_data['ageatbaseline'].std(),
 len(matched_data[matched_data['gender0M1F'] == 0]), len(matched_data[matched_data['gender0M1F'] == 1]),
 len(matched_data[matched_data['gender0M1F'] == 0])/len(matched_data[matched_data['gender0M1F'] == 1]), len(pd_data_set)))

 return matched_data, rem_list_N

def subject_matching(pd_data_NC, pd_data_AD, template_pd_dataset, number_of_subjects):
 # Function for matching data to a template dataset

 # Keeping only data within 3 standard deviations of the template mean
 template_mean = template_pd_dataset['ageatbaseline'].mean()
 template_std = template_pd_dataset['ageatbaseline'].std()
 template_pd_dataset = template_pd_dataset.loc[abs(template_pd_dataset['ageatbaseline'] - template_mean) < 3 * template_std]
 template_mean = template_pd_dataset['ageatbaseline'].mean()
 template_std = template_pd_dataset['ageatbaseline'].std()
 # template_pd_dataset = template_pd_dataset.reindex(abs(template_pd_dataset['ageatbaseline'] - template_mean).sort_values(ascending=True).index)

 pd_data_NC = pd_data_NC.loc[abs(pd_data_NC['ageatbaseline'] - template_mean) < 3 * template_std]
 pd_data_AD = pd_data_AD.loc[abs(pd_data_AD['ageatbaseline'] - template_mean) < 3 * template_std]

 print("\nMatching data by subjects..")
 matched_data_NC = pd.DataFrame(columns=list(template_pd_dataset))
 matched_template = pd.DataFrame(columns=list(template_pd_dataset))
 matched_data_AD = pd.DataFrame(columns=list(template_pd_dataset))
 matched_rem_NC = pd.DataFrame(columns=list(template_pd_dataset))
 matched_rem_AD = pd.DataFrame(columns=list(template_pd_dataset))
 rem_list_AD = pd_data_AD
 rem_list_NC = pd_data_NC
 rem_template = template_pd_dataset

 # Matching datapoint by age and sex
 for code in template_pd_dataset["MRCODE"].to_numpy():
 gender = template_pd_dataset[template_pd_dataset["MRCODE"] == code]["gender0M1F"].item()
 age = template_pd_dataset[template_pd_dataset["MRCODE"] == code]['ageatbaseline'].item()
 if abs(age - rem_list_AD.loc[abs(rem_list_AD[(rem_list_AD['gender0M1F'] == gender)]['ageatbaseline'] - age).idxmin()]['ageatbaseline'].item()) <= 0.5\
 and abs(age - rem_list_NC.loc[abs(rem_list_NC[(rem_list_NC['gender0M1F'] == gender)]['ageatbaseline'] - age).idxmin()]['ageatbaseline'].item()) <= 0.5:
 sub_AD = rem_list_AD.loc[abs(rem_list_AD[(rem_list_AD['gender0M1F'] == gender)]['ageatbaseline'] - age).idxmin()]
 sub_NC = rem_list_NC.loc[abs(rem_list_NC[(rem_list_NC['gender0M1F'] == gender)]['ageatbaseline'] - age).idxmin()]

 matched_data_AD = matched_data_AD.append(sub_AD)
 rem_list_AD = rem_list_AD.drop(rem_list_AD.loc[rem_list_AD["Subject_ID"] == sub_AD["Subject_ID"]].index)

 matched_data_NC = matched_data_NC.append(sub_NC)
 rem_list_NC = rem_list_NC.drop(rem_list_NC.loc[rem_list_NC["Subject_ID"] == sub_NC["Subject_ID"]].index)

 matched_template = matched_template.append(template_pd_dataset[template_pd_dataset["MRCODE"] == code])
 rem_template = rem_template.drop(rem_template[rem_template["MRCODE"] == code].index)

 if len(matched_data_NC) >= number_of_subjects and len(matched_template) >= number_of_subjects and len(matched_data_AD) >= number_of_subjects:
 break

 print(len(rem_list_NC), len(rem_template), len(rem_list_AD))
 for code in rem_template["MRCODE"].to_numpy():
 rem_gender = template_pd_dataset[template_pd_dataset["MRCODE"] == code]["gender0M1F"].item()
 rem_age = template_pd_dataset[template_pd_dataset["MRCODE"] == code]['ageatbaseline'].item()
 if abs(rem_age - rem_list_AD.loc[abs(rem_list_AD[(rem_list_AD['gender0M1F'] == rem_gender)]['ageatbaseline'] - rem_age).idxmin()]['ageatbaseline'].item()) <= 26\
 and abs(rem_age - rem_list_NC.loc[abs(rem_list_NC[(rem_list_NC['gender0M1F'] == rem_gender)]['ageatbaseline'] - rem_age).idxmin()]['ageatbaseline'].item()) <= 26:

 sub_AD = rem_list_AD.loc[abs(rem_list_AD[(rem_list_AD['gender0M1F'] == rem_gender)]['ageatbaseline'] - rem_age).idxmin()]
 sub_NC = rem_list_NC.loc[abs(rem_list_NC[(rem_list_NC['gender0M1F'] == rem_gender)]['ageatbaseline'] - rem_age).idxmin()]

 matched_rem_NC = matched_rem_NC.append(sub_NC)
 rem_list_NC = rem_list_NC.drop(rem_list_NC.loc[rem_list_NC["Subject_ID"] == sub_NC["Subject_ID"]].index)

 matched_rem_AD = matched_rem_AD.append(sub_AD)
 rem_list_AD = rem_list_AD.drop(rem_list_AD.loc[rem_list_AD["Subject_ID"] == sub_AD["Subject_ID"]].index)

 print("Data matched")
 print("Statistics:")
 print("Matched Template: Length: {}, Mean: {:.2f}, Std:{:.2f}, Males: {}, Females: {}, Original data size: {}".
 format(len(matched_template["MRCODE"].unique()), matched_template['ageatbaseline'].mean(), matched_template['ageatbaseline'].std(),
 len(matched_template[(matched_template['gender0M1F'] == 0)]),
 len(matched_template[(matched_template['gender0M1F'] == 1)]), len(template_pd_dataset)))

 print("Matched AD data: Length: {}, Mean: {:.2f}, Std:{:.2f}, Males: {}, Females: {}, Original data size: {}".
 format(len(matched_data_AD["MRCODE"].unique()), matched_data_AD['ageatbaseline'].mean(), matched_data_AD['ageatbaseline'].std(),
 len(matched_data_AD[(matched_data_AD['gender0M1F'] == 0)]),
 len(matched_data_AD[(matched_data_AD['gender0M1F'] == 1)]), len(pd_data_AD)))

 print("Matched NC data: Length: {}, Mean: {:.2f}, Std:{:.2f}, Males: {}, Females: {}, Original data size: {}".
 format(len(matched_data_NC["MRCODE"].unique()), matched_data_NC['ageatbaseline'].mean(), matched_data_NC['ageatbaseline'].std(),
 len(matched_data_NC[(matched_data_NC['gender0M1F'] == 0)]),
 len(matched_data_NC[(matched_data_NC['gender0M1F'] == 1)]), len(pd_data_NC)))

 print("Remaining template: Length: {}, Mean: {:.2f}, Std:{:.2f}, Males: {}, Females: {}, Original data size: {}".
 format(len(rem_template["MRCODE"].unique()), rem_template['ageatbaseline'].mean(), rem_template['ageatbaseline'].std(),
 len(rem_template[(rem_template['gender0M1F'] == 0)]),
 len(rem_template[(rem_template['gender0M1F'] == 1)]), len(template_pd_dataset)))

 print("Remaining AD data: Length: {}, Mean: {:.2f}, Std:{:.2f}, Males: {}, Females: {}, Original data size: {}".
 format(len(matched_rem_AD["MRCODE"].unique()), matched_rem_AD['ageatbaseline'].mean(), matched_rem_AD['ageatbaseline'].std(),
 len(matched_rem_AD[(matched_rem_AD['gender0M1F'] == 0)]),
 len(matched_rem_AD[(matched_rem_AD['gender0M1F'] == 1)]), len(pd_data_AD)))

 print("Remaining NC data: Length: {}, Mean: {:.2f}, Std:{:.2f}, Males: {}, Females: {}, Original data size: {}".
 format(len(matched_rem_NC["MRCODE"].unique()), matched_rem_NC['ageatbaseline'].mean(), matched_rem_NC['ageatbaseline'].std(),
 len(matched_rem_NC[(matched_rem_NC['gender0M1F'] == 0)]),
 len(matched_rem_NC[(matched_rem_NC['gender0M1F'] == 1)]), len(pd_data_NC)))

 matched_train_samples = pd.concat([matched_data_NC, matched_template, matched_data_AD])
 matched_train_samples["data_set_type"] = "train"

 matched_test_samples = pd.concat([matched_rem_NC, rem_template, matched_rem_AD])
 matched_test_samples["data_set_type"] = "test"

 matched_samples = pd.concat([matched_train_samples, matched_test_samples])
 matched_samples.to_csv("data/matched_samples.csv")

 return matched_data_NC, matched_template, matched_data_AD, matched_rem_NC, rem_template, matched_rem_AD

fit.py

from system_resources.py import *
import torch.optim as optim
import torch
import pandas as pd
import time
from notify_run import Notify
from torchvision import transforms

def fit_model(params): # Function for creating a model, takes a dictionary with system parameters as input
 # Timestamp to tag files
 start_time = time.time()
 timestamp = time.strftime("%Y-%m-%d_%H-%M")
 Notify().send("Run started: {}".format(timestamp))

 # Setting up device
 params["device"], numb_devices = device_setup(params["cuda_devices"])
 params["numb_workers"] = numb_devices * 10

 # Create data set
 if params["create_dataset"]:
 create_dataset(params["data_path"], params["csv_file"], params["split"], params["numpy_data_path"])

 # Load mean and std image
 mean_image = torch.from_numpy(np.load(os.path.join(params["numpy_data_path"], "mean_image.npy")))
 mean_image = mean_image.unsqueeze(0)
 # std_image = torch.from_numpy(np.load(os.path.join(params["numpy_data_path"], "std_image.npy")))
 # std_image = std_image.unsqueeze(0)

 # Chosing data tranformations
 data_transform = transforms.Compose([
 transforms.Lambda(lambda x: torch.from_numpy(x)),

 # transforms.RandomApply([
 # transforms.Lambda(lambda x: x.unsqueeze(0)),
 # transforms.Lambda(lambda x: x.unsqueeze(0)),
 # transforms.Lambda(lambda x: F.conv3d(x, kernel, padding=1)),
 # transforms.Lambda(lambda x: x[0, :, :, :, :])
 #], p=params["smooth"]),

 transforms.Lambda(lambda x: torch.Tensor.sub(x, mean_image))
 # transforms.Lambda(lambda x: np.divide(x, std_image, where=std_image > 0)),,
])

 # Instantiating model
 model = Simen_net(len(params["classes"]), params["dropout"])
 print(model)
 params["model_name"] = model.__class__.__name__

 # Informing of training parameters
 print("\nModel will be trained with following parameters:")
 print(" Batch normalization: {}".format(params["bn"]))
 print(" Dropout: {}".format(params["dropout"]))
 print(" Log interval: {}".format(params["log_interval"]))
 print(" Shuffle: {}".format(params["shuffle"]))

 # Create folder to save files in
 params["report_path"] = os.path.join(params["report_path"], "LR_{:.7f}_L2_{:.4f}_DO_{:.2f}_SM_{:.2f}_".format(params["lr"], params["L2"], params["dropout"], params["smooth"]) + timestamp)

 if not os.path.exists(params["report_path"]):
 os.makedirs(params["report_path"])
 print("\nFiles will be saved to: " + params["report_path"])

 print("\nSetting up criterion function and optimizer..")
 criterion = nn.CrossEntropyLoss()
 optimizer = optim.Adam(model.parameters(), lr=params["lr"], weight_decay=params["L2"])
 print("Criterion function: {}\nOptimizer: {}".format(criterion.__class__.__name__, optimizer))

 # Save parameters
 params_df = pd.DataFrame.from_dict(params)
 params_df.to_csv(os.path.join(params["report_path"], "parameters.csv"))
 print("Parameters saved: parameters.csv")

 if params["cv_folds"] > 1:
 # Saving model so that it can be loaded from scratch for each fold
 torch.save({
 'model': model,
 'optimizer_state_dict': optimizer.state_dict(),
 'lr': params["lr"],
 'L2': params["L2"]
 }, os.path.join(params["report_path"], "clean_setup"))

 # Train model
 params["classes"], lowest_loss, highest_acc \
 = cross_validation(params["cv_folds"], params["epochs"], params["tensor_data_path"], data_transform,
 params["bs_train"], params["bs_val"], numb_devices, params["numb_workers"],
 params["shuffle"], criterion, params["log_interval"], params["device"],
 params["report_path"], params["patient"], params["random_seed"], params["smooth"])

 # Adding the average acc and loss to last row
 final_loss = lowest_loss.mean()
 final_acc = highest_acc.mean()
 lowest_loss = np.append(lowest_loss, final_loss)
 highest_acc = np.append(highest_acc, final_acc)
 print("Average lowest loss: {}".format(lowest_loss[-1]))
 print("Average highest accuracy: {}".format(highest_acc[-1]))

 # Saving best of each fold performance + average performance
 cv_performance = np.stack([lowest_loss, highest_acc], axis=1)
 cv_performance_pd = pd.DataFrame(cv_performance, columns=["Loss", "Acc"])
 cv_performance_pd.to_csv(r'{}/CV_performance.csv'.format(params["report_path"]))

 elif params["cv_folds"] <= 1:

 if numb_devices > 1:
 model = nn.DataParallel(model)
 print("Model set up to run in parallel")

 model.to(params["device"])

 # Loading data
 train_loader, val_loader, params["classes"] = load_data_folders(params["tensor_data_path"], data_transform,
 params["bs_train"], params["bs_val"],
 params["shuffle"], params["numb_workers"],
 params["val_size"])

 if params["cv_folds"] > 0:
 # Train model
 train_stat, val_stat, model = train(model, criterion, optimizer, train_loader, val_loader, params["epochs"],
 params["log_interval"], params["device"], params["report_path"],
 params["patient"], params["classes"], params["smooth"])

 # Gathering final validation data from best performing model during training
 model = Simen_net(len(params["classes"]), params["dropout"])

 best_model = torch.load(os.path.join(params["report_path"], "best_model"))

 if best_model["model_paralell"]:
 model = nn.DataParallel(model)
 print("\nModel set up to run in parallel")

 # Load network parameters
 model.load_state_dict(best_model['model_state_dict'])
 model.cuda()

 # Validate model
 validation_stat, targets, predictions = validation(model, criterion, val_loader, params["device"], params["bn"])
 final_loss, final_acc = validation_stat

 # Saving training log
 train_stat_pd = pd.DataFrame(train_stat, columns=['T_epoch', 'T_batch', 'T_loss', 'T_acc'])
 val_stat_pd = pd.DataFrame(val_stat, columns=['V_loss', 'V_acc'])

 comp_stat = pd.concat([train_stat_pd, val_stat_pd], axis=1)
 comp_stat.to_csv(r'{}/final_log.csv'.format(params["report_path"]), header=model)
 print("\nFinal training log saved to: final_log.csv")

 # Model evaluation
 training_plot(train_stat, val_stat, params["report_path"])
 evaluation(validation_stat, targets, predictions, params["classes"], params["report_path"])

 # Save system parameters
 params["criterion"] = criterion.__class__.__name__
 params["optimizer"] = optimizer.__class__.__name__
 params["Time_elapsed"] = str(datetime.timedelta(seconds=time.time() - start_time))

 params_df = pd.DataFrame.from_dict(params)
 params_df.to_csv(os.path.join(params["report_path"], "parameters.csv"))
 print("Parameters saved: parameters.csv")

 # Send update
 print("\nRun started {} complete.".format(timestamp))
 print("Time elapsed:{}".format(params["Time_elapsed"]))
 Notify().send("Loss: {}, Acc: {}.".format(final_loss, final_acc))

 return final_loss, final_acc

main_setup.py

from system_resources.py import *

import torch

from fit import fit_model

from skopt import gp_minimize, dump

from skopt.space import Real, Integer

from skopt.plots import plot_convergence

import sys

'''______________________ Parameters ____________________________'''

params = {

 # Paths

 "data_path": "", # Folder to localize preprocessed data

 "numpy_data_path": "", # Path to already split and sorted data on numpy format

 "csv_file": "", # Path for file containing mathced metadata

 "report_path": "", # Where to save results

 # Data

 "classes": ["NC", "DLB", "AD"], # Chose which data to use. Only viable options are combinations of NC, DLB and AD

 "shuffle": True, # To shuffle or not to shuffle the data

 "val_size": 0.166, # % of data in validation set

 "bs_train": 14, # Batch size training set

 "bs_val": 14, # Batch size validation set

 "create_dataset": False, # Choose to create data set from data saved in "data_path" confirmed by the metadata "csv_file"

 "split": None, # Choose which plane to split the images across, None keeps the original image.

 "cv_folds": 6, # Choose number of CV folds, 1 = no CV, 0 = validation of best model found so far

 "smooth": 0, # probability of an image being smoothed

 # System configurations

 "cuda_devices": '2', # Which GPUs to run on. Can be set to "CPU"

 "CuDNN": True, # Use CuDNN or not

 # Network parameters

 "bn": True, # Chose to use batch normalization

 "lr": 1e-6, # Learning rate

 "epochs": 200, # Maximum number of epochs

 "L2": 0, # Weight decay in optimizer

 "dropout": 0, # Probability for a node to be zeroed

 "log_interval": 10, # Batches between logging of statistics while training

 "patience": 15, # Number of epochs run after best performance before quitting

 "random_seed": 22, # Parameter for choosing random seed

}

np.random.seed(params["random_seed"])

torch.backends.cudnn.enable = params["CuDNN"]

torch.manual_seed(params["random_seed"])

classes = params["classes"][0]

for cls in params["classes"][1:]:

 classes = classes + "_" + cls

params["tensor_data_path"] = os.path.join(params["numpy_data_path"], "train", classes)

'''______________________ Run ___________________________________'''

Set prior knowledge

prior_var = None

prior_results = None

space = [Real(1e-5, 1e-3, "log-uniform", name='lr'),

 Real(0, 0.5, name='dropout'),

 Real(0, 0.4, name='L2'),

 Real(0, 1, name='smooth')]

def objective(override): # Function which is optimized by Bayesian algorithm

 if not np.loadtxt(os.path.join(params["report_path"], "continue.txt")):

 sys.exit("Run stopped by file")

 for i, param in enumerate(space):

 params[param.name] = override[i]

 print(param.name, override[i])

 loss, acc = fit_model(params)

 return (100 - acc)

def main():

 hyper_opt_gp = gp_minimize(objective, space, n_calls=20, x0=prior_var, y0=prior_results, random_state=1)

 dump(hyper_opt_gp, os.path.join(params["report_path"], "skopt_result.pkl"))

 plot_convergence(hyper_opt_gp)

if __name__ == '__main__':

 main()

NormalizeSkullStripPipeline.py

import os
from nipype.interfaces import io, fsl, spm
from nipype.interfaces.io import DataFinder, DataSink
from nipype import Node, Workflow, SelectFiles, IdentityInterface, DataGrabber

data_path = ''
workspace = ''
output_path = ''

subject_list = os.listdir(data_path)

infosource = Node(IdentityInterface(fields=['subject_id']),name="infosource")
infosource.iterables = [('subject_id', subject_list)]

datagrabber = Node(DataGrabber(infields=['subject_id'], outfields=["out_file"]), name='datagrabber')
datagrabber.inputs.base_directory = data_path
datagrabber.inputs.template = '%s/*.nii'
datagrabber.inputs.sort_filelist = True

Normalize - normalizes functional and structural images to the MNI template
normalize = Node(spm.Normalize12(jobtype='estwrite', write_voxel_sizes=[1, 1, 1]), name="normalize")

Skullstrip process
skullstrip = Node(fsl.BET(mask=True), name="skullstrip")

Mask process
mask = Node(fsl.ApplyMask(), name="mask")

Save data
datasink = Node(io.DataSink(), name='sinker')
datasink.inputs.base_directory = output_path

Initiation of a workflow
wf = Workflow(name="workflow", base_dir=workspace)

Now the more complicated method
wf.connect([(infosource, datagrabber, [("subject_id", "subject_id")]),
 (datagrabber, normalize, [("out_file", "image_to_align")]),
 (datagrabber, normalize, [("out_file", "apply_to_files")]),
 (normalize, skullstrip, [("normalized_image", "in_file")]),
 (normalize, mask, [("normalized_image", "in_file")]),
 (skullstrip, mask, [("mask_file", "mask_file")]),
 (mask, datasink, [("out_file", "output_files")])
])

wf.write_graph("workflow_graph.dot")

wf.run("MultiProc", plugin_args={'n_procs': 1})

system_resources.py

import torch
import torch.nn as nn
from torch.utils.data import DataLoader, Dataset
import torch.nn.functional as F
from sklearn.model_selection import train_test_split
import time
import datetime
import csv
from sklearn.model_selection import StratifiedKFold
from torchvision.datasets import DatasetFolder
import torch.optim as optim
from notify_run import Notify
from PIL import Image
from scipy.ndimage import gaussian_filter
import random
import matplotlib
from matplotlib import pyplot as plt
import os
import nibabel as nib
import numpy as np
from sklearn.metrics import confusion_matrix, precision_recall_fscore_support
import pandas as pd
from scipy.ndimage.filters import gaussian_filter1d
import seaborn as sns

matplotlib.use('Agg')

kernel = np.zeros([3, 3, 3])
kernel[1, 1, 1] = 1
kernel = torch.from_numpy(gaussian_filter(kernel, sigma=1))
kernel = kernel.unsqueeze(0)
kernel = kernel.unsqueeze(0).float()

'''______________________ Network structures _____________________'''

class Simen_net(nn.Module):
 def __init__(self, numb_classes, dropout):
 super(Simen_net, self).__init__()
 print("\nInstantiating {} model..".format(self.__class__.__name__))

 self.pool = nn.MaxPool3d(3, 2)

 self.drop_conv = nn.Dropout3d(p=dropout*0.5)
 self.drop_lin = nn.Dropout(p=dropout)

 self.kernel = kernel.cuda()

 self.activation = nn.ReLU6()

 self.conv1 = nn.Conv3d(1, 32, 3, stride=1, bias=False, padding=1) # (1 * 5*5*5 + 1) * 32 = 896
 self.bn1 = nn.BatchNorm3d(32)

 self.conv2 = nn.Conv3d(32, 64, 3, stride=1, bias=False, padding=1) # (32 * 3*3*3 + 1) * 64 = 55360
 self.bn2 = nn.BatchNorm3d(64)

 self.conv3 = nn.Conv3d(64, 64, 3, stride=1, bias=False, padding=1) # (64 * 3*3*3 + 1) *128 = 221312
 self.bn3 = nn.BatchNorm3d(64)

 self.conv4 = nn.Conv3d(64, 128, 3, stride=1, bias=False, padding=1)
 self.bn4 = nn.BatchNorm3d(128)

 self.conv5 = nn.Conv3d(128, 256, 3, stride=1, bias=False, padding=1)
 self.bn5 = nn.BatchNorm3d(256)

 self.fc1 = nn.Linear(256 * 3 * 4 * 3, 2048)
 self.lin_bn1 = nn.BatchNorm1d(2048)

 self.fc2 = nn.Linear(2048, 1024)
 self.lin_bn2 = nn.BatchNorm1d(1024)

 self.out = nn.Linear(1024, numb_classes)

 def forward(self, x, smooth, bn=True):

 if smooth:
 x = F.conv3d(x, self.kernel, padding=1)

 # print(x.shape)

 # Verify that this actually is a picture of a brain
 # img = Image.fromarray(x[0][0][70].cpu().numpy() * 255)
 # img.show()

 x = self.activation(self.pool(self.conv1(x)))
 if bn: x = self.bn1(x)
 x = self.drop_conv(x)
 # print(x.shape)

 x = self.activation(self.pool(self.conv2(x)))
 if bn: x = self.bn2(x)
 x = self.drop_conv(x)

 # print(x.shape)

 x = self.activation(self.pool(self.conv3(x)))
 if bn: x = self.bn3(x)
 x = self.drop_conv(x)
 # print(x.shape)

 x = self.activation(self.pool(self.conv4(x)))
 if bn: x = self.bn4(x)
 x = self.drop_conv(x)
 # print(x.shape)

 x = self.activation(self.pool(self.conv5(x)))
 if bn: x = self.bn5(x)
 x = self.drop_conv(x)
 # print(x.shape)

 x = x.view(-1, 256 * 3 * 4 * 3)

 x = self.activation(self.fc1(x))
 if bn: x = self.lin_bn1(x)
 x = self.drop_lin(x)

 x = self.activation(self.fc2(x))
 if bn: x = self.lin_bn2(x)
 x = self.drop_lin(x)

 x = self.out(x) # (2000, 3)

 return x

class Split_net(nn.Module): # Identical to Simen_net, but has a changed size of the fist FC layer as the images are smaller
 def __init__(self, numb_classes, dropout):
 super(Split_net, self).__init__()
 print("\nInstantiating {} model..".format(self.__class__.__name__))

 self.pool = nn.MaxPool3d(3, 2)

 self.drop_conv = nn.Dropout3d(p=dropout * 0.5)
 self.drop_lin = nn.Dropout(p=dropout)

 self.kernel = kernel.cuda()

 self.activation = nn.ReLU6()

 self.conv1 = nn.Conv3d(1, 32, 3, stride=1, bias=False, padding=1) # (1 * 5*5*5 + 1) * 32 = 896
 self.bn1 = nn.BatchNorm3d(32)

 self.conv2 = nn.Conv3d(32, 64, 3, stride=1, bias=False, padding=1) # (32 * 3*3*3 + 1) * 64 = 55360
 self.bn2 = nn.BatchNorm3d(64)

 self.conv3 = nn.Conv3d(64, 64, 3, stride=1, bias=False, padding=1) # (64 * 3*3*3 + 1) *128 = 221312
 self.bn3 = nn.BatchNorm3d(64)

 self.conv4 = nn.Conv3d(64, 128, 3, stride=1, bias=False, padding=1)
 self.bn4 = nn.BatchNorm3d(128)

 self.conv5 = nn.Conv3d(128, 256, 3, stride=1, bias=False, padding=1)
 self.bn5 = nn.BatchNorm3d(256)

 self.fc1 = nn.Linear(256 * 1 * 4 * 3, 2048)
 self.lin_bn1 = nn.BatchNorm1d(2048)

 self.fc2 = nn.Linear(2048, 1024)
 self.lin_bn2 = nn.BatchNorm1d(1024)

 self.out = nn.Linear(1024, numb_classes)

 def forward(self, x, bn=True, smooth=False):

 if smooth:
 x = F.conv3d(x, self.kernel, padding=1)

 # print(x.shape)

 # Verify that this actually is a picture of a brain
 # img = Image.fromarray(x[0][0][70].cpu().numpy() * 255)
 # img.show()

 x = self.activation(self.pool(self.conv1(x)))
 if bn: x = self.bn1(x)
 x = self.drop_conv(x)
 # print(x.shape)

 x = self.activation(self.pool(self.conv2(x)))
 if bn: x = self.bn2(x)
 x = self.drop_conv(x)

 # print(x.shape)

 x = self.activation(self.pool(self.conv3(x)))
 if bn: x = self.bn3(x)
 x = self.drop_conv(x)
 # print(x.shape)

 x = self.activation(self.pool(self.conv4(x)))
 if bn: x = self.bn4(x)
 x = self.drop_conv(x)
 # print(x.shape)

 x = self.activation(self.pool(self.conv5(x)))
 if bn: x = self.bn5(x)
 x = self.drop_conv(x)
 # print(x.shape)

 x = x.view(-1, 256 * 1 * 4 * 3)

 x = self.activation(self.fc1(x))
 if bn: x = self.lin_bn1(x)
 x = self.drop_lin(x)

 x = self.activation(self.fc2(x))
 if bn: x = self.lin_bn2(x)
 x = self.drop_lin(x)

 x = self.out(x) # (2000, 3)

 return x

'''______________________ Training _______________________________'''

def train(model, criterion, optimizer, train_loader, val_loader, epochs, log_interval, device, report_path, patient, classes, smooth_prob):

 print("\nTraining model for {} epochs with a batch size of {} and patients of {}..\n".format(epochs, train_loader.batch_size, patient))
 start_time = time.time()

 current_best_val_loss = 1.5 # Variable to keep track of currently best validation accuracy
 current_best_val_acc = 30

 train_stat = np.empty([4])
 val_stat = np.empty([2])

 patient_count = 0

 for epoch in range(epochs):
 model.train()
 epoch_time = time.time()

 # Variables for epoch statistics
 epoch_loss = 0.0
 epoch_corrects = 0

 # Variables for batch statistics
 running_loss = 0.0
 running_corrects = 0

 # Keeping track if current model is saved or not
 saved = False

 for batch_nr, (data, target) in enumerate(train_loader):
 inputs, labels = data.to(device, dtype=torch.float), target.to(device, dtype=torch.long)

 # zero the parameter gradients
 optimizer.zero_grad()

 if random.random() < smooth_prob:
 smooth = True
 else:
 smooth = False

 # Forward pass
 outputs = model(inputs, smooth)#, bn)
 _, preds = torch.max(outputs, 1)

 # Calculate loss by use of the chosen criterion function
 loss = criterion(outputs, labels)

 # Update gradients
 loss.backward()

 # Update weights
 optimizer.step()

 # Gather statistics
 running_loss += loss.item()
 running_corrects += torch.sum(preds == labels).float()

 epoch_loss += loss.item()
 epoch_corrects += torch.sum(preds == labels).float()

 # Print status
 if batch_nr % log_interval == log_interval - 1: # print every X batches
 train_stat = np.vstack([train_stat,
 [epoch + 1, batch_nr + 1, running_loss / log_interval,
 100 * running_corrects.item() / (log_interval * train_loader.batch_size)]])
 print("[{} {}] Ave. Loss: {:.4f}, Acc:{:.2f}%".format(train_stat[-1, 0], train_stat[-1, 1],
 train_stat[-1, 2], train_stat[-1, 3]))
 running_loss = 0
 running_corrects = 0

 # Epoch:
 print('\nEpoch:{} Ave. loss:{:.4f} Acc:{:.2f}%'.format(epoch + 1, epoch_loss / len(train_loader),
 100 * epoch_corrects / len(train_loader.dataset)))
 print("Labels: {}\nPreds: {}".format(labels, preds))

 validation_stat, targets, predictions = validation(model, criterion, val_loader, device)
 val_stat = np.vstack([val_stat, validation_stat])

 if len(val_stat) <= 5:
 current_best_val_loss_mean = val_stat[:, 0].mean()
 current_best_val_acc_mean = val_stat[:, 1].mean()
 elif round(val_stat[-5:, 0].mean(), 3) < current_best_val_loss_mean:
 current_best_val_loss_mean = round(val_stat[-5:, 0].mean(), 3)
 patient_count = 0
 elif round(val_stat[-5:, 1].mean(), 2) > current_best_val_acc_mean:
 current_best_val_acc_mean = round(val_stat[-5:, 1].mean(), 2)
 patient_count = 0
 else:
 patient_count += 1

 # Saving best performing model by loss
 if validation_stat[0] < current_best_val_loss:

 patient_count = 0
 current_best_val_loss = validation_stat[0]
 print("New lowest loss: {:.4f}\n".format(current_best_val_loss))

 if os.path.exists(os.path.join(report_path, "best_model_loss")):

 best_model_loss = torch.load(os.path.join(report_path, "best_model_loss"))
 if best_model_loss['loss'] > current_best_val_loss:
 evaluation(validation_stat, targets, predictions, classes, os.path.join(report_path, "best_loss_eval"))

 torch.save({
 'model_state_dict': model.state_dict(),
 'model_paralell': str(model.__class__).__contains__("DataParallel"),
 'optimizer_state_dict': optimizer.state_dict(),
 'loss': validation_stat[0],
 'acc': validation_stat[1]
 }, os.path.join(report_path, "best_model_loss"))
 print("Loss model saved.\n")
 saved = True
 else:
 evaluation(validation_stat, targets, predictions, classes, os.path.join(report_path, "best_loss_eval"))

 torch.save({
 'model_state_dict': model.state_dict(),
 'model_paralell': str(model.__class__).__contains__("DataParallel"),
 'optimizer_state_dict': optimizer.state_dict(),
 'loss': validation_stat[0],
 'acc': validation_stat[1]
 }, os.path.join(report_path, "best_model_loss"))
 print("Loss model saved.\n")
 saved = True

 # Check if model is better then currently best ever found model
 best_ever_loss = np.loadtxt("/home/stud/simennl/Data/reports/best_model_ever_loss/best_loss.txt")
 if best_ever_loss > current_best_val_loss:
 print("Previous best ever model loss: {:.4f}".format(best_ever_loss))
 np.savetxt("/home/stud/simennl/Data/reports/best_model_ever_loss/best_loss.txt", np.asarray([current_best_val_loss]))
 torch.save({
 'model_state_dict': model.state_dict(),
 'model_paralell': str(model.__class__).__contains__("DataParallel"),
 'optimizer_state_dict': optimizer.state_dict(),
 'loss': validation_stat[0],
 'acc': validation_stat[1]
 }, "/home/stud/simennl/Data/reports/best_model_ever_loss/best_model")
 print("New best loss model ever saved.\n")
 Notify().send("New best loss model: {:.4f}".format(current_best_val_loss))
 else:
 print("Current lowest loss: {:.4f}, Patient:{}\n".format(current_best_val_loss, patient_count))

 # Saving best performing model by accuracy
 if validation_stat[1] > current_best_val_acc:

 patient_count = 0
 current_best_val_acc = validation_stat[1]
 print("New highest acc: {:.2f}%\n".format(current_best_val_acc))

 if os.path.exists(os.path.join(report_path, "best_model_acc")) and not saved:

 best_model_acc = torch.load(os.path.join(report_path, "best_model_acc"))
 if best_model_acc['acc'] < current_best_val_acc:

 evaluation(validation_stat, targets, predictions, classes, os.path.join(report_path, "best_acc_eval"))

 torch.save({
 'model_state_dict': model.state_dict(),
 'model_paralell': str(model.__class__).__contains__("DataParallel"),
 'optimizer_state_dict': optimizer.state_dict(),
 'loss': validation_stat[0],
 'acc': validation_stat[1]
 }, os.path.join(report_path, "best_model_acc"))
 print("Best acc model saved.\n")

 elif not saved:

 evaluation(validation_stat, targets, predictions, classes, os.path.join(report_path, "best_acc_eval"))

 torch.save({
 'model_state_dict': model.state_dict(),
 'model_paralell': str(model.__class__).__contains__("DataParallel"),
 'optimizer_state_dict': optimizer.state_dict(),
 'loss': validation_stat[0],
 'acc': validation_stat[1]
 }, os.path.join(report_path, "best_model_acc"))
 print("Acc model saved.\n")

 # Check if model is better then currently best ever found model
 best_ever_acc = np.loadtxt("/home/stud/simennl/Data/reports/best_model_ever_acc/best_acc.txt")

 if best_ever_acc < current_best_val_acc:
 print("Previous best ever model acc: {:2f}%".format(best_ever_acc))
 np.savetxt("/home/stud/simennl/Data/reports/best_model_ever_acc/best_acc.txt", np.asarray([current_best_val_acc]))
 torch.save({
 'model_state_dict': model.state_dict(),
 'model_paralell': str(model.__class__).__contains__("DataParallel"),
 'optimizer_state_dict': optimizer.state_dict(),
 'loss': validation_stat[0],
 'acc': validation_stat[1]
 }, "/home/stud/simennl/Data/reports/best_model_ever_acc/best_model")
 print("New best acc model ever saved.\n")
 Notify().send("New best acc model: {:.2f}%".format(current_best_val_acc))

 else:
 print("Current highest acc: {:.2f}%, Patient:{}\n".format(current_best_val_acc, patient_count))

 if epoch % 10 == 9 or epoch == 0 or patient_count >= patient:
 if epoch == 0:
 train_stat = np.delete(train_stat, 0, axis=0)
 val_stat = np.delete(val_stat, 0, axis=0)

 training_plot(train_stat, val_stat, report_path)

 print("\nTime elapsed:{}".format(str(datetime.timedelta(seconds=(time.time() - start_time)))))
 print("Epoch time:{}".format(str(datetime.timedelta(seconds=(time.time() - epoch_time)))))
 print("Estimated remaining time:{}\n".format(
 str(datetime.timedelta(seconds=((time.time() - epoch_time) * (epochs - epoch - 1))))))

 np.savetxt(os.path.join(report_path, "training_stat.csv"), train_stat, delimiter=",")
 print("Saved file: training_stat.csv")

 np.savetxt(os.path.join(report_path, "validation_stat.csv"), val_stat, delimiter=",")
 print("Saved file: validation_stat.csv\n")

 if patient_count >= patient:
 print("\nOut of patient. Terminating\n")
 break

 print("\nFinished training")
 print("Time elapsed:{}\n".format(str(datetime.timedelta(seconds=(time.time() - start_time)))))

 np.savetxt(os.path.join(report_path, "training_stat.csv"), np.asarray(train_stat), delimiter=",")
 print("\nSaved file: training_stat.csv")

 np.savetxt(os.path.join(report_path, "validation_stat.csv"), val_stat, delimiter=",")
 print("Saved file: validation_stat.csv\n")

 return train_stat, val_stat, model, current_best_val_loss, current_best_val_acc

def cross_validation(cv_folds, epochs, train_data_path, transforms, bs_train, bs_val, numb_devices, numb_workers, shuffle, criterion,
 log_interval, device, report_path, patient, random_seed, smooth_prob):
 print("\nRunning {}-fold CV with {} epochs for each fold..".format(cv_folds, epochs))
 skf = StratifiedKFold(n_splits=cv_folds, random_state=random_seed)
 fold_numb = 1

 training_data_set = DatasetFolder(root=train_data_path, extensions=['npy'], loader=np.load, transform=transforms)
 print("\nData set established. Number of data points: {}".format(len(training_data_set)))
 print("Classes and corresponding index: {}".format(training_data_set.class_to_idx))

 temp_classes = [None] * len(training_data_set.class_to_idx)
 for cls, cls_numb in training_data_set.class_to_idx.items():
 temp_classes[cls_numb] = cls
 classes = temp_classes

 train_data = [row[0] for row in training_data_set.samples]
 train_targets = [row[1] for row in training_data_set.samples]

 per_sub = len(train_data) / len(np.unique([x[:-6] for x in train_data]))

 if not per_sub.is_integer():
 per_sub = 1

 print("Images per subject: {}".format(per_sub))

 training_index = np.arange(start=0, stop=len(train_data), step=per_sub, dtype=int)

 np.random.shuffle(training_index)

 train_targets2 = np.take(train_targets, training_index)
 train_data2 = np.take(train_data, training_index)

 for train_index, val_index in skf.split(train_data2, train_targets2):
 # Converting index to shuffeled data
 train_index = np.take(training_index, train_index)
 val_index = np.take(training_index, val_index)

 if per_sub != 1:
 for i in range(1, int(per_sub)):
 for train_sub_index in train_index:
 train_index = np.append(train_index, train_sub_index + i)
 for val_sub_index in val_index:
 val_index = np.append(val_index, val_sub_index + i)

 print("\nStarting {}. fold".format(fold_numb))

 # Loading clean model
 clean_setup = torch.load(os.path.join(report_path, "clean_setup"))
 model = clean_setup['model']

 optimizer = optim.Adam(model.parameters(), lr=clean_setup["lr"], weight_decay=clean_setup["L2"])
 optimizer.load_state_dict(clean_setup['optimizer_state_dict'])

 print("Clean model loaded.")

 if numb_devices > 1:
 model = nn.DataParallel(model)
 print("\nModel set up to run in parallel")

 model.to(device)

 training_set = torch.utils.data.Subset(training_data_set, train_index)
 validation_set = torch.utils.data.Subset(training_data_set, np.sort(val_index))

 train_loader = DataLoader(training_set, batch_size=bs_train, num_workers=numb_workers,
 shuffle=shuffle, drop_last=True)
 val_loader = DataLoader(validation_set, batch_size=bs_val, num_workers=numb_workers,
 shuffle=False, drop_last=True)

 # Folder for fold data
 fold_path = os.path.join(report_path, "fold_{}".format(fold_numb))
 os.makedirs(fold_path)
 print("\nFolder for fold number {} created.".format(fold_numb))
 print("Training data: {}. Validation: {}".format(len(train_loader.dataset), len(val_loader.dataset)))

 temp_train_stat, temp_val_stat, _, temp_min_val_loss, temp_max_val_acc =\
 train(model, criterion, optimizer, train_loader, val_loader, epochs, log_interval, device, fold_path,
 patient, classes, smooth_prob)

 training_plot(temp_train_stat, temp_val_stat, fold_path)

 if fold_numb == 1:
 lowest_loss = temp_min_val_loss
 highest_acc = temp_max_val_acc
 else:
 lowest_loss = np.append(lowest_loss, temp_min_val_loss)
 highest_acc = np.append(highest_acc, temp_max_val_acc)

 fold_numb += 1

 # Remove unnecessary data
 os.remove(os.path.join(report_path, "clean_setup"))

 return classes, lowest_loss, highest_acc

'''______________________ validation ________________________________'''

def validation(model, criterion, val_loader, device):

 print("\nValidating..")
 model.eval()

 # Variables for statistics
 val_loss = 0.0
 val_corrects = 0

 targets = torch.Tensor()
 predictions = torch.Tensor()

 with torch.no_grad():
 for batch_nr, (data, target) in enumerate(val_loader):
 inputs, labels = data.to(device, dtype=torch.float), target.to(device, dtype=torch.long)
 # Forward pass
 outputs = model(inputs, smooth=False)
 _, preds = torch.max(outputs, 1)

 # Calculate loss by use of the chosen criterion function
 loss = criterion(outputs, labels)

 # Gather statistics
 targets = torch.cat((targets, labels.to("cpu", dtype=torch.float)), 0)
 predictions = torch.cat((predictions, preds.to("cpu", dtype=torch.float)), 0)

 val_loss += loss.item()
 val_corrects += torch.sum(preds == labels).float()

 stat = np.array([val_loss / len(val_loader), 100 * val_corrects / len(val_loader.dataset)], dtype=float)
 print("Validation report: Ave. Loss: {:.4f}, Acc:{:.2f}%".format(stat[0], stat[1]))
 print("Labels: {}\nPreds: {}\n".format(labels, preds))

 return stat, targets.numpy(), predictions.numpy()

'''______________________ Device setup ___________________________'''

def device_setup(cuda_devices):

 print("\nSetting up device..")

 os.environ['CUDA_VISIBLE_DEVICES'] = cuda_devices

 if torch.cuda.is_available():
 numb_devices = torch.cuda.device_count()
 device = torch.device("cuda:0")
 print("Network will run on {} GPU(s): {}".format(numb_devices, cuda_devices))
 else:
 device = torch.device("cpu")
 numb_devices = 1
 print("Network will be run on CPU")

 return device, numb_devices

'''______________________ Data ___________________________________'''

def create_dataset(data_path, csv_file, split=None, tensor_data_path="data"):
 # Loads data from specified source, splits and shuffles data before it returns test and validation dataloaders.
 # If data collected from directories the data will be saved in tensor files at the given location. If none is specified it will be saved in a
 # data folder in the current directory

 # Match data in CSV-file with data in folder
 print("\nLoading data from {}..".format(data_path))

 pd_metadata = pd.read_excel(csv_file)
 folder_subjects = os.listdir(data_path)

 confirmed_subjects = pd.DataFrame(columns=list(pd_metadata))
 missing_subjects = []

 for subject in folder_subjects:
 if subject.__contains__("_subject_id_"):
 os.rename(os.path.join(data_path, subject), os.path.join(data_path, subject[len("_subject_id_"):]))
 subject = subject[len("_subject_id_"):]

 if subject in pd_metadata["MRCODE"].to_numpy():
 confirmed_subjects = confirmed_subjects.append(pd_metadata.loc[pd_metadata["MRCODE"] == subject])
 else:
 missing_subjects.append(subject)

 if len(missing_subjects) > 0:
 with open(os.path.join(tensor_data_path, "data_not_included.txt"), 'w', newline='') as myfile:
 wr = csv.writer(myfile, quoting=csv.QUOTE_ALL)
 wr.writerow(missing_subjects)
 myfile.close()

 print("Subjects in folder not found in metadata saved as data/missing_subjects.csv")

 NC_metadata = confirmed_subjects.loc[confirmed_subjects["Diagnosis"] == 0]
 DLB_metadata = confirmed_subjects.loc[confirmed_subjects["Diagnosis"] == 1]
 AD_metadata = confirmed_subjects.loc[confirmed_subjects["Diagnosis"] == 3]

 print("Total amount of data in each class: NC: {}, DLB: {}, AD: {}"
 .format(len(NC_metadata), len(DLB_metadata), len(AD_metadata)))
 number_of_train = round(len(DLB_metadata) * (1 - 0.2))
 print("Size of training/test set {}/{}, {}% training"
 .format(number_of_train, len(DLB_metadata) - number_of_train, (1 - 0.2)*100))

 # Save csv file with metadata for current data set
 confirmed_metadata = pd.concat([NC_metadata, DLB_metadata, AD_metadata])
 confirmed_metadata.to_csv(os.path.join(tensor_data_path, "confirmed_metadata.csv"))
 print("\nConfirmed metadata metadata saved to {}".format(tensor_data_path))

 train_NC_data = NC_metadata[NC_metadata["data_set_type"] == "train"]
 train_DLB_data = DLB_metadata[DLB_metadata["data_set_type"] == "train"]
 train_AD_data = AD_metadata[AD_metadata["data_set_type"] == "train"]
 test_NC_data = NC_metadata[NC_metadata["data_set_type"] == "test"]
 test_DLB_data = DLB_metadata[DLB_metadata["data_set_type"] == "test"]
 test_AD_data = AD_metadata[AD_metadata["data_set_type"] == "test"]

 print("\nDataset statistics:")
 print("Matched Template: Length: {}, Mean: {:.2f}, Std:{:.2f}, Males: {}, Females: {}".
 format(len(train_DLB_data["MRCODE"].unique()), train_DLB_data['ageatbaseline'].mean(),
 train_DLB_data['ageatbaseline'].std(), len(train_DLB_data[(train_DLB_data['gender0M1F'] == 0)]),
 len(train_DLB_data[(train_DLB_data['gender0M1F'] == 1)])))

 print("Matched AD data: Length: {}, Mean: {:.2f}, Std:{:.2f}, Males: {}, Females: {}".
 format(len(train_AD_data["MRCODE"].unique()), train_AD_data['ageatbaseline'].mean(),
 train_AD_data['ageatbaseline'].std(), len(train_AD_data[(train_AD_data['gender0M1F'] == 0)]),
 len(train_AD_data[(train_AD_data['gender0M1F'] == 1)])))

 print("Matched NC data: Length: {}, Mean: {:.2f}, Std:{:.2f}, Males: {}, Females: {}".
 format(len(train_NC_data["MRCODE"].unique()), train_NC_data['ageatbaseline'].mean(),
 train_NC_data['ageatbaseline'].std(), len(train_NC_data[(train_NC_data['gender0M1F'] == 0)]),
 len(train_NC_data[(train_NC_data['gender0M1F'] == 1)])))

 print("Remaining template: Length: {}, Mean: {:.2f}, Std:{:.2f}, Males: {}, Females: {}".
 format(len(test_DLB_data["MRCODE"].unique()), test_DLB_data['ageatbaseline'].mean(),
 test_DLB_data['ageatbaseline'].std(), len(test_DLB_data[(test_DLB_data['gender0M1F'] == 0)]),
 len(test_DLB_data[(test_DLB_data['gender0M1F'] == 1)])))

 print("Remaining AD data: Length: {}, Mean: {:.2f}, Std:{:.2f}, Males: {}, Females: {}".
 format(len(test_AD_data["MRCODE"].unique()), test_AD_data['ageatbaseline'].mean(),
 test_AD_data['ageatbaseline'].std(), len(test_AD_data[(test_AD_data['gender0M1F'] == 0)]),
 len(test_AD_data[(test_AD_data['gender0M1F'] == 1)])))

 print("Remaining NC data: Length: {}, Mean: {:.2f}, Std:{:.2f}, Males: {}, Females: {}".
 format(len(test_NC_data["MRCODE"].unique()), test_NC_data['ageatbaseline'].mean(),
 test_NC_data['ageatbaseline'].std(), len(test_NC_data[(test_NC_data['gender0M1F'] == 0)]),
 len(test_NC_data[(test_NC_data['gender0M1F'] == 1)])))

 print("\nSaving tensor files to {}..".format(tensor_data_path))
 matched_NC_files, train_NC_mean_image, train_NC_std_image =\
 nii_to_numpy(data_path, train_NC_data, os.path.join(tensor_data_path, "NC_train"), split)
 # np.save(os.path.join(tensor_data_path, "NC_train_numpy.npy"), matched_NC_files, allow_pickle=True)
 print("NC training numpy saved")

 matched_DLB_files, train_DLB_mean_image, train_DLB_mean_std =\
 nii_to_numpy(data_path, train_DLB_data, os.path.join(tensor_data_path, "DLB_train"), split)
 # np.save(os.path.join(tensor_data_path, "DLB_train_numpy.npy"), matched_DLB_files, allow_pickle=True)
 print("DLB training numpy saved")

 matched_AD_files, train_AD_mean_image, train_AD_mean_std =\
 nii_to_numpy(data_path, train_AD_data, os.path.join(tensor_data_path, "AD_train"), split)
 # np.save(os.path.join(tensor_data_path, "AD_train_numpy.npy"), matched_AD_files, allow_pickle=True)
 print("AD training numpy saved")

 test_NC_files, test_NC_mean_image, test_NC_mean_std =\
 nii_to_numpy(data_path, test_NC_data, os.path.join(tensor_data_path, "NC_test"), split)
 # np.save(os.path.join(tensor_data_path, "NC_test_numpy.npy"), test_NC_files, allow_pickle=True)
 print("NC test numpy saved")

 test_DLB_files, test_DLB_mean_image, test_DLB_mean_std =\
 nii_to_numpy(data_path, test_DLB_data, os.path.join(tensor_data_path, "DLB_test"), split)
 # np.save(os.path.join(tensor_data_path, "DLB_test_numpy.npy"), test_DLB_files, allow_pickle=True)
 print("DLB test numpy saved")

 test_AD_files, test_AD_mean_image, test_AD_mean_std =\
 nii_to_numpy(data_path, test_AD_data, os.path.join(tensor_data_path, "AD_test"), split)
 # np.save(os.path.join(tensor_data_path, "AD_test_numpy.npyt"), test_AD_files, allow_pickle=True)
 print("AD test Numpy saved")
 print("\nAll files saved")

 mean_image_dataset = np.array([train_NC_mean_image, train_DLB_mean_image, train_AD_mean_image, test_NC_mean_image, test_DLB_mean_image, test_AD_mean_image])
 std_image_dataset = np.array([train_NC_mean_image, train_DLB_mean_image, train_AD_mean_image, test_NC_mean_image, test_DLB_mean_image, test_AD_mean_image])

 mean_image = mean_image_dataset.mean(axis=0)
 std_image = std_image_dataset.mean(axis=0)

 np.save(os.path.join(tensor_data_path, "mean_image.npy"), mean_image, allow_pickle=True)
 np.save(os.path.join(tensor_data_path, "std_image.npy"), std_image, allow_pickle=True)
 print("Estimated dataset mean and std images saved")

 return

def load_data_folders(train_data_path, data_transform, bs_train, bs_val, shuffle, numb_workers, val_size):

 training_data_set = DatasetFolder(root=train_data_path, extensions=['npy'],
 loader=np.load, transform=data_transform)
 print("\nData set established. Number of data points: {}".format(len(training_data_set)))
 print("Classes and corresponding index: {}\n".format(training_data_set.class_to_idx))

 train_val_data = [row[0] for row in training_data_set.samples]
 train_val_targets = [row[1] for row in training_data_set.samples]

 per_sub = len(train_val_data) / len(np.unique([x[:-6] for x in train_val_data]))
 if not per_sub.is_integer():
 per_sub = 1

 print("Images per subject: {}".format(per_sub))
 training_index = np.arange(start=0, stop=len(train_val_data), step=per_sub, dtype=int)

 train_index, val_index, _, _ = train_test_split(training_index, train_val_targets, shuffle=shuffle,
 test_size=val_size, stratify=train_val_targets)

 if per_sub != 1 and per_sub.is_integer():
 for i in range(1, int(per_sub)):
 for train_sub_index in train_index:
 train_index = np.append(train_index, train_sub_index + i)
 for val_sub_index in val_index:
 val_index = np.append(val_index, val_sub_index + i)

 training_set = torch.utils.data.Subset(training_data_set, train_index)
 validation_set = torch.utils.data.Subset(training_data_set, np.sort(val_index))

 train_loader = DataLoader(training_set, batch_size=bs_train, num_workers=numb_workers,
 shuffle=shuffle, drop_last=True)
 val_loader = DataLoader(validation_set, batch_size=bs_val, num_workers=numb_workers,
 shuffle=False, drop_last=True)

 print("Training data: {}. Validation: {}".format(len(train_loader.dataset), len(val_loader.dataset)))

 return train_loader, val_loader, training_data_set.class_to_idx

def nii_to_numpy(data_path, subjects, save_path, split=None, data_count="10000000", dec=17):
 # Collects all NIfTI files from data path, checks size, normalizes the intensity between 0 and 1 saves data as numpy
 # Returns:
 # - list of subjects, found, converted and saved
 # - Mean and std image of the loaded data
 subs = []
 sub_images = []
 misses = []
 data_shape = None
 print('\nCollecting images form "{}"..'.format(data_path))
 print("Saving them to {}".format(save_path))

 if not split == None:
 print("Splitting data by {} plane".format(split))

 for path, subdirs, files in os.walk(data_path):
 for name in files:
 subject = path[(len(data_path) + 1):].split("/")[0]
 if name.__contains__(".nii") and subject in subjects["MRCODE"].to_numpy():
 sub_path = os.path.join(path, name)
 nii_subject = nib.load(sub_path)
 if data_shape is None:
 data_shape = nii_subject.shape
 print("Shape of data in set determined as: {}".format(data_shape))

 if nii_subject.shape == data_shape:
 np_sub = np.array(nii_subject.dataobj).astype(float)

 # Moving image to positive domain
 if np_sub.min() < 0:
 np_sub = np_sub - np_sub.min()

 # Normalize data
 np_sub = np.true_divide(np_sub, np_sub.max())

 if dec < 17:
 np_sub = np.around(np_sub, 10)

 if not os.path.exists(save_path):
 os.makedirs(save_path)

 if split == "sagittal":
 np_sub_a, np_sub_b = np.array_split(np_sub, 2, axis=0) # Sagittal split
 np_sub_a = np.flip(np_sub_a[1:, :, :], axis=0)
 np.save(os.path.join(save_path, "{}_a.npy".format(subject)), np_sub_a, allow_pickle=True)
 np.save(os.path.join(save_path, "{}_b.npy".format(subject)), np_sub_b, allow_pickle=True)
 sub_images.append([np_sub_a, np_sub_b])

 elif split == "coronal":
 np_sub_a, np_sub_b = np.array_split(np_sub, 2, axis=1) # Coronal split
 np_sub_a = np_sub_a[:, 1:, :]
 np.save(os.path.join(save_path, "{}_a.npy".format(subject)), np_sub_a, allow_pickle=True)
 np.save(os.path.join(save_path, "{}_b.npy".format(subject)), np_sub_b, allow_pickle=True)
 sub_images.append([np_sub_a, np_sub_b])

 elif split == "transverse":
 np_sub_a, np_sub_b = np.array_split(np_sub, 2, axis=2) # Transverse split
 np.save(os.path.join(save_path, "{}_a.npy".format(subject)), np_sub_a, allow_pickle=True)
 np.save(os.path.join(save_path, "{}_b.npy".format(subject)), np_sub_b, allow_pickle=True)
 sub_images.append([np_sub_a, np_sub_b])

 else:
 np.save(os.path.join(save_path, "{}.npy".format(subject)), np_sub, allow_pickle=True)
 sub_images.append(np_sub)

 subs.append(subject)

 else:
 print("{} of size {} does not match the registered size: {}"
 .format(subject, nii_subject.shape, data_shape))
 misses.append([sub_path, nii_subject.shape])

 if len(subs) == data_count:
 break

 if len(subs) == data_count:
 break

 np_sub_images = np.array(sub_images)
 mean_image = np_sub_images.mean(axis=0)
 std_image = np_sub_images.std(axis=0)

 print("Data at {} collected. \nNumber of data points found: {}. Number of data points not retrieved: {}"
 .format(data_path, len(subs), len(misses)))

 return subs, mean_image, std_image

def evaluation(validation_stat, targets, predictions, classes, report_path):
 # Evaluets a models performance, plots the confusion matrix and saves all the mentioned to path

 if not os.path.exists(report_path):
 os.makedirs(report_path)

 print("Model evaluation:")
 loss, acc = validation_stat
 print("\nValidation results:\nLoss:{}, Acc:{}%".format(loss, acc))

 # Calculate performance metrics
 precision, recall, f_beta, support = precision_recall_fscore_support(targets, predictions)
 print("Precision:{}\nRecall:{}\nF_beat:{}\nSupport:{}".format(precision, recall, f_beta, support))

 # Creating and plotting normalized confusion matrix
 conf_matrix = confusion_matrix(targets, predictions)
 conf_df = pd.DataFrame(conf_matrix, index=classes, columns=classes)
 print("Confusion matrix:\n", conf_df)

 conf_plot = sns.heatmap(conf_df, annot=True).get_figure()
 conf_plot.suptitle('Confusion plot')
 plt.xlabel("Predicted label")
 plt.ylabel("True label")

 conf_plot.savefig(os.path.join(report_path, "confusion_plot.png"), format='png', dpi=300)
 print("\nNormalized confusion matrix saved: " + "confusion_plot.png")
 plt.close()

 # Saving predictions and targets
 points_pd = pd.DataFrame([targets, predictions], index=["Targets", "Predictions"])
 points_pd.to_csv(r'{}/targets_preds.csv'.format(report_path))
 print("Targets and predictions saved: targets_preds.csv")

 # Creating final evaluation file
 stat = np.array([precision, recall, f_beta, support])
 stat_df = pd.DataFrame(stat, index=["Precision", "Recall", "F_beta", "Support"], columns=classes)

 validation_stat_df = pd.DataFrame(np.transpose([validation_stat, [None, None], [None, None]]),
 index=["Loss", "Acc"], columns=classes)

 eval_df = pd.concat((conf_df, stat_df, validation_stat_df))
 eval_df.to_csv(r'{}/evaluation.csv'.format(report_path))
 print("Evaluation report saved: evaluation.csv")

 return

def training_plot(train_stat, val_stat, report_path): # Plots training and validation data
 # Plot settings
 alpha = 0.15

 # Computing smoothed plots
 train_loss_smooth = gaussian_filter1d(train_stat[:, 2], sigma=len(train_stat[:, 2]) / 60)
 train_acc_smooth = gaussian_filter1d(train_stat[:, 3], sigma=len(train_stat[:, 3]) / 60)
 val_loss_smooth = gaussian_filter1d(val_stat[:, 0], sigma=1 + len(val_stat[:, 0]) / 75)
 val_acc_smooth = gaussian_filter1d(val_stat[:, 1], sigma=1 + len(val_stat[:, 1]) / 75)

 # Computing max acc and min loss
 x_loss_min = np.argmin(val_stat[:, 0])
 y_loss_min = val_stat[:, 0][x_loss_min]
 x_loss_min = x_loss_min * len(train_stat[:, 2]) / len(val_stat[:, 0])
 loss_span = val_stat[:, 0].max() - val_stat[:, 0].min()

 x_acc_max = np.argmax(val_stat[:, 1])
 y_acc_max = val_stat[:, 1][x_acc_max]
 x_acc_max = x_acc_max * len(train_stat[:, 2]) / len(val_stat[:, 0])

 batches_per_epoch = round(len(train_stat[:, 2]) / len(val_stat[:, 0]))
 t_epoch = np.arange(batches_per_epoch, len(train_stat[:, 2]) + batches_per_epoch, batches_per_epoch)

 # Saving plot og training statistics
 plt.clf()

 fig, ax = plt.subplots()

 ax.plot(train_stat[:, 2], 'b', alpha=alpha)
 ax.plot(train_loss_smooth, 'b', label="Train")
 ax.plot(t_epoch, val_stat[:, 0], 'g', alpha=alpha)
 ax.plot(t_epoch, val_loss_smooth, 'g--', label="Validation")
 ax.set_title("Loss")
 ax.set_xlabel('Batch')
 ax.legend()
 ax.grid(linestyle='--', linewidth=1, alpha=0.3)
 ax.set_ylabel('Loss')
 ax.annotate("{:.3f}".format(y_loss_min), xy=(x_loss_min, y_loss_min),
 xytext=(x_loss_min, y_loss_min + 0.1 * (loss_span)), color='g')
 ax.spines['top'].set_visible(False)
 ax.spines['right'].set_visible(False)
 ax.spines['bottom'].set_visible(False)
 ax.spines['left'].set_visible(False)

 fig.tight_layout()

 plt.savefig(os.path.join(report_path, "loss_plot.png"), format='png', dpi=300)
 print("Loss plot saved: loss_plot.png")
 plt.clf()

 # Saving plot og training statistics
 fig, ax = plt.subplots()

 ax.plot(train_stat[:, 3], 'b', alpha=alpha)
 ax.plot(train_acc_smooth, 'b', label="Train")
 ax.plot(t_epoch, val_stat[:, 1], 'g', alpha=alpha)
 ax.plot(t_epoch, val_acc_smooth, 'g--', label="Validation")
 ax.set_title("Accuracy")
 ax.set_xlabel('Batch')
 ax.legend()
 ax.grid(linestyle='--', linewidth=1, alpha=0.3)
 ax.set_ylabel('Acc[%]')
 ax.annotate("{:.1f}%".format(y_acc_max), xy=(x_acc_max, y_acc_max), xytext=(x_acc_max, y_acc_max), color='g')
 ax.spines['top'].set_visible(False)
 ax.spines['right'].set_visible(False)
 ax.spines['bottom'].set_visible(False)
 ax.spines['left'].set_visible(False)

 fig.tight_layout()

 plt.savefig(os.path.join(report_path, "accuracy_plot.png"), format='png', dpi=300)
 print("Accuracy plot saved: accuracy_plot.png")

 plt.close('all')
 return

def cv_results(report_path): # Gathers, saves and returns the overall performance of a CV run
 numb_points = 0

 if len(os.listdir(report_path)) < 5:
 print("Not enough data found at: {}".format(report_path))
 return

 for subdir in os.listdir(report_path):
 sub_path = os.path.join(report_path, subdir)
 try:
 performance_pd = pd.read_csv(os.path.join(sub_path, "CV_performance.csv"))
 parameters_pd = pd.read_csv(os.path.join(sub_path, "parameters.csv"))

 data = pd.concat(
 [parameters_pd[["lr", "dropout", "report_path"]].iloc[-1], performance_pd[["Loss", "Acc"]].iloc[-1]],
 axis=0)
 if numb_points > 0:
 report = pd.concat([report, data], axis=1)
 else:
 report = data

 numb_points += 1
 except:
 continue

 try:
 report = report.T.sort_values(by=['Acc'], ascending=False).reset_index(drop=True)
 except:
 print("No viable data found at: {}".format(report_path))
 return

 print("Data:")
 print(report)

 report.to_csv(os.path.join(report_path, "CV_total_performance.csv"))

 return report

test.py

from NiiNetSetup import *
from NiiNetResources import *
import torch.optim as optim
import pandas as pd
import time
from notify_run import Notify
from torchvision import transforms
import torch

'''______________________ Parameters ____________________________'''

params = {
 # Paths
 "numpy_data_path": "", # Path to already split and sorted data on tensor form
 "report_path": "/home/stud/simennl/Data/reports/GP_optim_Simen_net",

 # Data
 "classes": ["NC", "DLB", "AD"], # Data will be labeled according to index
 "shuffle": True, # To shuffle or not to shuffle the data
 "val_size": 0.166, # % of data in validation set
 "bs_val": 14, # Batch size validation set
 "cv_folds": 6, # Choose number of CV folds, 1 = no CV, 0 = validation of best model found so far
 "smooth": 0, # probability of an image being smoothed

 # System configurations
 "cuda_devices": '1', # Which GPUs to run on
 "CuDNN": True, # Use CuDNN or not

 # Network parameters
 "bn": True, # Chose to use batch normalization
 "lr": 1e-6, # Learning rate
 "epochs": 200, # Maximum number of epochs
 "L2": 0, # Weight decay in optimizer
 "dropout": 0, # Probability for a node to be zeroed
 "log_interval": 10, # Batches between logging of statistics while training
 "patience": 15, # Number of epochs run after best performance before quitting

 "random_seed": 22, # Parameter for choosing random seed
}

np.random.seed(params["random_seed"])

torch.backends.cudnn.enable = params["CuDNN"]
torch.manual_seed(params["random_seed"])

classes = params["classes"][0]
for cls in params["classes"][1:]:
 classes = classes + "_" + cls

params["tensor_data_path"] = os.path.join(params["numpy_data_path"], "test", classes)

'''______________________ Run ___________________________________'''

def main(model_path):
 # Setting up device
 params["device"], numb_devices = device_setup(params["cuda_devices"])
 params["numb_workers"] = numb_devices * 10

 # Load mean and std image
 mean_image = torch.from_numpy(np.load(os.path.join(params["numpy_data_path"], "mean_image.npy")))
 mean_image = mean_image.unsqueeze(0)
 # std_image = torch.from_numpy(np.load(os.path.join(params["numpy_data_path"], "std_image.npy")))
 # std_image = std_image.unsqueeze(0)

 # Chosing data tranformations
 data_transform = transforms.Compose([
 transforms.Lambda(lambda x: torch.from_numpy(x)),

 # transforms.RandomApply([
 # transforms.Lambda(lambda x: x.unsqueeze(0)),
 # transforms.Lambda(lambda x: x.unsqueeze(0)),
 # transforms.Lambda(lambda x: F.conv3d(x, kernel, padding=1)),
 # transforms.Lambda(lambda x: x[0, :, :, :, :])
 #], p=params["smooth"]),

 transforms.Lambda(lambda x: torch.Tensor.sub(x, mean_image))
 # transforms.Lambda(lambda x: np.divide(x, std_image, where=std_image > 0)),,
])

 # Instantiating model
 model = Simen_net(len(params["classes"]), params["dropout"])
 print(model)
 params["model_name"] = model.__class__.__name__

 best_model = torch.load(model_path)

 model.load_state_dict(best_model['model_state_dict'])

 model.to(params["device"])

 print("\nSetting up criterion function and optimizer..")
 criterion = nn.CrossEntropyLoss()

 # Informing of training parameters
 print("\nModel will be trained with following parameters:")
 print(" Batch normalization: {}".format(params["bn"]))
 print(" Dropout: {}".format(params["dropout"]))
 print(" Log interval: {}".format(params["log_interval"]))
 print(" Shuffle: {}".format(params["shuffle"]))

 testing_data_set = DatasetFolder(root=params["tensor_data_path"], extensions=['npy'], loader=np.load, transform=data_transform)
 print("\nData set established. Number of data points: {}".format(len(testing_data_set)))
 print("Classes and corresponding index: {}\n".format(testing_data_set.class_to_idx))

 test_loader = DataLoader(testing_data_set, batch_size=params["bs_train"], num_workers=params["numb_workers"], shuffle=False, drop_last=False)
 params["classes"] = testing_data_set.class_to_idx

 test_stat, targets, predictions = validation(model, criterion, test_loader, params["device"])

 evaluation(test_stat, targets, predictions, params["classes"], os.path.join(params["report_path"], "test"))

if __name__ == '__main__':
 main()

simen
File Attachment
Scripts.7z

Appendix A. Python code 67

• Batch size for training and validation

• Shuffle of data during training

• Number of CV folds

• Probability of smoothing the input

• Whether to use BN in the model structure or not

• Maximum number of epochs

• Learning rate

• L2 regularization

• Patience

• Dropout probability

• Patience

A.2 main_setup.py

File for executing experiments. Setup to accommodate the use of the model_fit

function. Includes a predefined dictionary setup for all parameters compatible with

the model_fit function.

A.3 system_resources.py

This file contains the functionality used by fit.py and fit.py. The model proposed

in this thesis implemented in this file. The different functions and classes found in

this file are listed below with a short description.

• Simen_net:

The proposed model

Appendix A. Python code 68

• Split_net:

A copy of Simen_net which accommodates the used of split images

• train:

Trains a given model with set up with the provided parameters

• cross_validation:

Shuffels and splits dataset, trains and evaluates models

• validaton:

Validates a given model on a given dataset

• device_setup:

Sets up connection with Nvidia GPUs

• create_dataset:

Constructs a compatible numpy dataset

• nii_to_numpy:

Collects and converts images on the NIfTI format before saving them

• load_data_folders:

Loads data for a single random split excecution

• evaluation: Computes and saves model performance from targets and

predictions

• training_plot:

Saves plots of training statistics

• cv_results:

Computes the performance of a CV execution

A.4 test.py

File containing a setup for testing a given model. Contains functions from sys-

tem_resources.py.

Appendix A. Python code 69

A.5 data_resources.py

A file containing code for creating a file containing the specific metadata needed

for the create_dataset function. The file contains two functions, one for matching

subjects by optimizing for a given mean and SD, and one for matching subjects

individually.

A.6 NormalizeSkullStripPipeline.py

The code for running the NiPype pipeline used during preprocessing is found in

this file. The file is set up to preprocess data from a single folder. The given folder

should contain one subfolder for each subject.

Bibliography

[1] About dementia | alzheimer’s disease international. https://www.alz.co.

uk/about-dementia. (Accessed on 06/17/2019).

[2] Life expectancy - our world in data. https://ourworldindata.org/

life-expectancy. (Accessed on 06/17/2019).

[3] Dementia. https://www.who.int/en/news-room/fact-sheets/detail/

dementia. (Accessed on 06/17/2019).

[4] Martin James Prince. World Alzheimer Report 2015: the global impact of

dementia: an analysis of prevalence, incidence, cost and trends. Alzheimer’s

Disease International, 2015.

[5] Alzheimer’s disease | alzheimer’s disease international. https://www.alz.co.

uk/info/alzheimers-disease, . (Accessed on 06/17/2019).

[6] Alzheimers sykdom - store medisinske leksikon. https://sml.snl.no/

Alzheimers_sykdom, . (Accessed on 06/17/2019).

[7] Alzheimer’s disease fact sheet. https://www.nia.nih.gov/health/

alzheimers-disease-fact-sheet, . (Accessed on 06/17/2019).

[8] What is alzheimer’s | alzheimer’s association. https://www.alz.org/

alzheimers-dementia/what-is-alzheimers, . (Accessed on 06/17/2019).

[9] Lewy body dementia (lbd) | symptoms & treatments. https://www.

alz.org/alzheimers-dementia/what-is-dementia/types-of-dementia/

lewy-body-dementia, . (Accessed on 06/17/2019).

70

https://www.alz.co.uk/about-dementia
https://www.alz.co.uk/about-dementia
https://ourworldindata.org/life-expectancy
https://ourworldindata.org/life-expectancy
https://www.who.int/en/news-room/fact-sheets/detail/dementia
https://www.who.int/en/news-room/fact-sheets/detail/dementia
https://www.alz.co.uk/info/alzheimers-disease
https://www.alz.co.uk/info/alzheimers-disease
https://sml.snl.no/Alzheimers_sykdom
https://sml.snl.no/Alzheimers_sykdom
https://www.nia.nih.gov/health/alzheimers-disease-fact-sheet
https://www.nia.nih.gov/health/alzheimers-disease-fact-sheet
https://www.alz.org/alzheimers-dementia/what-is-alzheimers
https://www.alz.org/alzheimers-dementia/what-is-alzheimers
https://www.alz.org/alzheimers-dementia/what-is-dementia/types-of-dementia/lewy-body-dementia
https://www.alz.org/alzheimers-dementia/what-is-dementia/types-of-dementia/lewy-body-dementia
https://www.alz.org/alzheimers-dementia/what-is-dementia/types-of-dementia/lewy-body-dementia

Bibliography 71

[10] What is lewy body dementia? https://www.nia.nih.gov/health/

what-lewy-body-dementia, . (Accessed on 06/17/2019).

[11] Demens med lewylegemer - store medisinske leksikon. https://sml.snl.no/

demens_med_lewylegemer. (Accessed on 06/17/2019).

[12] Lewy body dementia - symptoms and causes - mayo clinic. https:

//www.mayoclinic.org/diseases-conditions/lewy-body-dementia/

symptoms-causes/syc-20352025, . (Accessed on 06/17/2019).

[13] Parkinson’s disease - symptoms and causes - mayo clinic. https:

//www.mayoclinic.org/diseases-conditions/parkinsons-disease/

symptoms-causes/syc-20376055. (Accessed on 06/24/2019).

[14] Thien Kieu Thi Phung, Birgitte Bo Andersen, Lars Vedel Kessing, Preben Bo

Mortensen, and Gunhild Waldemar. Diagnostic evaluation of dementia in the

secondary health care sector. Dementia and geriatric cognitive disorders, 27

(6):534–542, 2009.

[15] Thomas G Beach, Sarah E Monsell, Leslie E Phillips, and Walter Kukull.

Accuracy of the clinical diagnosis of alzheimer disease at national institute on

aging alzheimer disease centers, 2005–2010. Journal of neuropathology and

experimental neurology, 71(4):266–273, 2012.

[16] Craig A Hunter, Noam Y Kirson, Urvi Desai, Alice Kate G Cummings,

Douglas E Faries, and Howard G Birnbaum. Medical costs of alzheimer’s

disease misdiagnosis among us medicare beneficiaries. Alzheimer’s & Dementia,

11(8):887–895, 2015.

[17] Oludare Isaac Abiodun, Aman Jantan, Abiodun Esther Omolara, Kemi Victo-

ria Dada, Nachaat AbdElatif Mohamed, and Humaira Arshad. State-of-the-art

in artificial neural network applications: A survey. Heliyon, 4(11):e00938,

2018.

https://www.nia.nih.gov/health/what-lewy-body-dementia
https://www.nia.nih.gov/health/what-lewy-body-dementia
https://sml.snl.no/demens_med_lewylegemer
https://sml.snl.no/demens_med_lewylegemer
https://www.mayoclinic.org/diseases-conditions/lewy-body-dementia/symptoms-causes/syc-20352025
https://www.mayoclinic.org/diseases-conditions/lewy-body-dementia/symptoms-causes/syc-20352025
https://www.mayoclinic.org/diseases-conditions/lewy-body-dementia/symptoms-causes/syc-20352025
https://www.mayoclinic.org/diseases-conditions/parkinsons-disease/symptoms-causes/syc-20376055
https://www.mayoclinic.org/diseases-conditions/parkinsons-disease/symptoms-causes/syc-20376055
https://www.mayoclinic.org/diseases-conditions/parkinsons-disease/symptoms-causes/syc-20376055

Bibliography 72

[18] G Zaharchuk, E Gong, M Wintermark, D Rubin, and CP Langlotz. Deep

learning in neuroradiology. American Journal of Neuroradiology, 39(10):1776–

1784, 2018.

[19] Md Rishad Ahmed, Yuan Zhang, Zhiquan Feng, Benny Lo, Omer T Inan,

and Hongen Liao. Neuroimaging and machine learning for dementia diagnosis:

Recent advancements and future prospects. IEEE reviews in biomedical

engineering, 12:19–33, 2018.

[20] Stefan Klöppel, Cynthia M Stonnington, Carlton Chu, Bogdan Draganski,

Rachael I Scahill, Jonathan D Rohrer, Nick C Fox, Clifford R Jack Jr, John

Ashburner, and Richard SJ Frackowiak. Automatic classification of mr scans

in alzheimer’s disease. Brain, 131(3):681–689, 2008.

[21] Emilie Gerardin, Gaël Chételat, Marie Chupin, Rémi Cuingnet, Béatrice Des-

granges, Ho-Sung Kim, Marc Niethammer, Bruno Dubois, Stéphane Lehéricy,

Line Garnero, et al. Multidimensional classification of hippocampal shape

features discriminates alzheimer’s disease and mild cognitive impairment from

normal aging. Neuroimage, 47(4):1476–1486, 2009.

[22] Jongin Kim and Boreom Lee. Automated discrimination of dementia spectrum

disorders using extreme learning machine and structural t1 mri features.

In 2017 39th Annual International Conference of the IEEE Engineering in

Medicine and Biology Society (EMBC), pages 1990–1993. IEEE, 2017.

[23] Lauge Sørensen, Mads Nielsen, Alzheimer’s Disease Neuroimaging Initiative,

et al. Ensemble support vector machine classification of dementia using

structural mri and mini-mental state examination. Journal of neuroscience

methods, 302:66–74, 2018.

[24] Lauge Sørensen, Christian Igel, Akshay Pai, Ioana Balas, Cecilie Anker, Martin

Lillholm, Mads Nielsen, Alzheimer’s Disease Neuroimaging Initiative, et al.

Differential diagnosis of mild cognitive impairment and alzheimer’s disease

using structural mri cortical thickness, hippocampal shape, hippocampal

texture, and volumetry. NeuroImage: Clinical, 13:470–482, 2017.

Bibliography 73

[25] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification

with deep convolutional neural networks. In Advances in neural information

processing systems, pages 1097–1105, 2012.

[26] Sandra Vieira, Walter HL Pinaya, and Andrea Mechelli. Using deep learning

to investigate the neuroimaging correlates of psychiatric and neurological

disorders: Methods and applications. Neuroscience & Biobehavioral Reviews,

74:58–75, 2017.

[27] Akihiko Wada, Kohei Tsuruta, Ryusuke Irie, Koji Kamagata, Tomoko

Maekawa, Shohei Fujita, Saori Koshino, Kanako Kumamaru, Michimasa

Suzuki, Atsushi Nakanishi, et al. Differentiating alzheimer’s disease from

dementia with lewy bodies using a deep learning technique based on structural

brain connectivity. Magnetic Resonance in Medical Sciences, pages mp–2018,

2018.

[28] Teng Xie and Yong He. Mapping the alzheimer’s brain with connectomics.

Frontiers in psychiatry, 2:77, 2012.

[29] Ketil Oppedal, Trygve Eftestøl, Kjersti Engan, Mona K Beyer, and Dag

Aarsland. Classifying dementia using local binary patterns from different

regions in magnetic resonance images. Journal of Biomedical Imaging, 2015:5,

2015.

[30] Mr-undersøkelse - store medisinske leksikon. https://sml.snl.no/

MR-unders%C3%B8kelse. (Accessed on 06/17/2019).

[31] Peter mansfield - store norske leksikon. https://snl.no/Peter_Mansfield.

(Accessed on 06/17/2019).

[32] Abi Berger. Magnetic resonance imaging. BMJ, 324(7328):35, 2002. ISSN 0959-

8138. doi: 10.1136/bmj.324.7328.35. URL https://www.bmj.com/content/

324/7328/35.

[33] IG McKeith, Dennis W Dickson, J Lowe, M Emre, JT O’brien, H Feldman,

J Cummings, JE Duda, C Lippa, EK Perry, et al. Diagnosis and management

https://sml.snl.no/MR-unders%C3%B8kelse
https://sml.snl.no/MR-unders%C3%B8kelse
https://snl.no/Peter_Mansfield
https://www.bmj.com/content/324/7328/35
https://www.bmj.com/content/324/7328/35

Bibliography 74

of dementia with lewy bodies: third report of the dlb consortium. Neurology,

65(12):1863–1872, 2005.

[34] Marilyn S Albert, Steven T DeKosky, Dennis Dickson, Bruno Dubois,

Howard H Feldman, Nick C Fox, Anthony Gamst, David M Holtzman,

William J Jagust, Ronald C Petersen, et al. The diagnosis of mild cog-

nitive impairment due to alzheimer’s disease: Recommendations from the

national institute on aging-alzheimer’s association workgroups on diagnostic

guidelines for alzheimer’s disease. Alzheimer’s & dementia, 7(3):270–279, 2011.

[35] Cerebral atrophy information page | national institute of neurological disor-

ders and stroke. https://www.ninds.nih.gov/Disorders/All-Disorders/

Cerebral-atrophy-Information-Page. (Accessed on 06/17/2019).

[36] Federica Agosta, Sebastiano Galantucci, and Massimo Filippi. Advanced mag-

netic resonance imaging of neurodegenerative diseases. Neurological Sciences,

38(1):41–51, 2017.

[37] KM Gosche, JA Mortimer, CD Smith, WR Markesbery, and DA Snowdon.

Hippocampal volume as an index of alzheimer neuropathology: findings from

the nun study. Neurology, 58(10):1476–1482, 2002.

[38] Pierrick Coupé, José Vicente Manjón, Enrique Lanuza, and Gwenaelle Cathe-

line. Lifespan changes of the human brain in alzheimer’s disease. Scientific

reports, 9(1):3998, 2019.

[39] EJ Burton, R Barber, EB Mukaetova-Ladinska, J Robson, RH Perry, E Jaros,

RN Kalaria, and JT O’brien. Medial temporal lobe atrophy on mri differenti-

ates alzheimer’s disease from dementia with lewy bodies and vascular cognitive

impairment: a prospective study with pathological verification of diagnosis.

Brain, 132(1):195–203, 2008.

[40] R. Barber, A. Gholkar, P. Scheltens, C. Ballard, I.G. McKeith, and J.T.

O’Brien. Medial temporal lobe atrophy on mri in dementia with lewy bodies.

Neurology, 52(6):1153–1153, 1999. ISSN 0028-3878. doi: 10.1212/WNL.52.6.

1153. URL https://n.neurology.org/content/52/6/1153.

https://www.ninds.nih.gov/Disorders/All-Disorders/Cerebral-atrophy-Information-Page
https://www.ninds.nih.gov/Disorders/All-Disorders/Cerebral-atrophy-Information-Page
https://n.neurology.org/content/52/6/1153

Bibliography 75

[41] Elijah Mak, Li Su, Guy B Williams, Rosie Watson, Michael Firbank, Andrew

Blamire, and John O’Brien. Differential atrophy of hippocampal subfields: a

comparative study of dementia with lewy bodies and alzheimer disease. The

American Journal of Geriatric Psychiatry, 24(2):136–143, 2016.

[42] Prashanthi Vemuri, Gyorgy Simon, Kejal Kantarci, Jennifer L Whitwell,

Matthew L Senjem, Scott A Przybelski, Jeffrey L Gunter, Keith A Josephs,

David S Knopman, Bradley F Boeve, et al. Antemortem differential diagnosis

of dementia pathology using structural mri: Differential-stand. Neuroimage,

55(2):522–531, 2011.

[43] Michael J Firbank, Rosie Watson, Elijah Mak, Benjamin Aribisala, Robert

Barber, Sean J Colloby, Jiabao He, Andrew M Blamire, and John T O’Brien.

Longitudinal diffusion tensor imaging in dementia with lewy bodies and

alzheimer’s disease. Parkinsonism & related disorders, 24:76–80, 2016.

[44] Simon Wiesler and Hermann Ney. A convergence analysis of log-linear training.

pages 657–665, 12 2011.

[45] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-

tion. arXiv preprint arXiv:1412.6980, 2014.

[46] Alex Krizhevsky and Geoff Hinton. Convolutional deep belief networks on

cifar-10. Unpublished manuscript, 40(7), 2010.

[47] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and

Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks

from overfitting. The Journal of Machine Learning Research, 15(1):1929–1958,

2014.

[48] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. arXiv preprint

arXiv:1502.03167, 2015.

[49] James Bergstra and Yoshua Bengio. Random search for hyper-parameter

optimization. Journal of Machine Learning Research, 13(Feb):281–305, 2012.

Bibliography 76

[50] James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algo-

rithms for hyper-parameter optimization. In Advances in neural information

processing systems, pages 2546–2554, 2011.

[51] Jorge Samper-Gonzalez, Ninon Burgos, Sabrina Fontanella, Hugo Bertin,

Marie-Odile Habert, Stanley Durrleman, Theodoros Evgeniou, Olivier Colliot,

Alzheimer’s Disease Neuroimaging Initiative, et al. Yet another adni machine

learning paper? paving the way towards fully-reproducible research on classifi-

cation of alzheimer’s disease. In International Workshop on Machine Learning

in Medical Imaging, pages 53–60. Springer, 2017.

[52] Eli Gibson, Wenqi Li, Carole Sudre, Lucas Fidon, Dzhoshkun I Shakir, Guotai

Wang, Zach Eaton-Rosen, Robert Gray, Tom Doel, Yipeng Hu, et al. Niftynet:

a deep-learning platform for medical imaging. Computer methods and programs

in biomedicine, 158:113–122, 2018.

[53] Andrew Beers, James Brown, Ken Chang, Katharina Hoebel, Elizabeth Gerst-

ner, Bruce Rosen, and Jayashree Kalpathy-Cramer. Deepneuro: an open-source

deep learning toolbox for neuroimaging. arXiv preprint arXiv:1808.04589,

2018.

[54] Krzysztof Gorgolewski, Christopher D Burns, Cindee Madison, Dav Clark,

Yaroslav O Halchenko, Michael L Waskom, and Satrajit S Ghosh. Nipype: a

flexible, lightweight and extensible neuroimaging data processing framework

in python. Frontiers in neuroinformatics, 5:13, 2011.

[55] Mark W Woolrich, Saad Jbabdi, Brian Patenaude, Michael Chappell, Sal-

ima Makni, Timothy Behrens, Christian Beckmann, Mark Jenkinson, and

Stephen M Smith. Bayesian analysis of neuroimaging data in fsl. Neuroimage,

45(1):S173–S186, 2009.

[56] John Ashburner and Karl J Friston. Unified segmentation. Neuroimage, 26

(3):839–851, 2005.

[57] Gary D Knott. Interpolating cubic splines, volume 18. Springer Science &

Business Media, 2012.

Bibliography 77

[58] Stephen M Smith. Fast robust automated brain extraction. Human brain

mapping, 17(3):143–155, 2002.

[59] Ehsan Hosseini-Asl, Georgy Gimel’farb, and Ayman El-Baz. Alzheimer’s

disease diagnostics by a deeply supervised adaptable 3d convolutional network.

arXiv preprint arXiv:1607.00556, 2016.

[60] Silvia Basaia, Federica Agosta, Luca Wagner, Elisa Canu, Giuseppe Magnani,

Roberto Santangelo, Massimo Filippi, Alzheimer’s Disease Neuroimaging

Initiative, et al. Automated classification of alzheimer’s disease and mild

cognitive impairment using a single mri and deep neural networks. NeuroImage:

Clinical, 21:101645, 2019.

[61] Adrien Payan and Giovanni Montana. Predicting alzheimer’s disease: a

neuroimaging study with 3d convolutional neural networks. arXiv preprint

arXiv:1502.02506, 2015.

[62] Marcia Hon and Naimul Mefraz Khan. Towards alzheimer’s disease classifi-

cation through transfer learning. In 2017 IEEE International Conference on

Bioinformatics and Biomedicine (BIBM), pages 1166–1169. IEEE, 2017.

	Abstract
	Acknowledgements
	Abbreviations
	1 Introduction
	1.1 Dementia
	1.2 Alzheimer's disease
	1.3 Dementia with Lewy bodies
	1.4 Motivation
	1.5 Thesis objective
	1.6 Deep learning and neuroimaging
	1.7 Thesis outline

	2 Background
	2.1 Magnetic resonance imaging
	2.1.1 MRI markers

	2.2 Preprocessing
	2.2.1 Spatial normalization
	2.2.2 Brain extraction
	2.2.3 Data normalization

	2.3 Artificial neural networks
	2.3.1 Multi-layer perceptron
	2.3.2 Feedforward neural networks
	2.3.3 Convolutional neural networks
	2.3.4 Pooling
	2.3.5 Loss functions
	2.3.6 Backpropagation
	2.3.7 Optimizers
	2.3.8 Activation functions
	2.3.9 Overfitting
	2.3.10 Regularization
	2.3.11 Data augmentation
	2.3.12 Batch normalization
	2.3.13 Hyperparameter tuning
	2.3.14 Evaluation metrics

	2.4 Software
	2.4.1 Pytorch
	2.4.2 SciKit-learn
	2.4.3 Docker
	2.4.4 NiPype

	3 Materials and method
	3.1 Dataset construction
	3.2 Preprocessing implementation
	3.3 Model design

	4 Experiments and Results
	4.1 Experiments
	4.1.1 Experimental layout
	4.1.2 Experiment - Learning rate
	4.1.3 Experiment - Dropout
	4.1.4 Experiment - Bayesian optimization
	4.1.5 Experiment - Augmentaion

	4.2 Final evaluation

	5 Discussion
	5.1 Dementia classification
	5.2 Limitations
	5.2.1 Dataset
	5.2.2 Preprocessing
	5.2.3 Classifier

	6 Conclusion and future directions
	6.1 Conclusion
	6.2 Future directions

	List of Figures
	List of Tables
	A Python code
	A.1 fit.py
	A.2 main_setup.py
	A.3 system_resources.py
	A.4 test.py
	A.5 data_resources.py
	A.6 NormalizeSkullStripPipeline.py

	Bibliography

