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Abstract

Bladder cancer is the tenth most common cancer type, where urothelial carcinoma is the

most common type of bladder cancer. Bladder cancer has been classi�ed as the most

expensive type of cancer per patient, as the need for post-treatment monitoring often

lasts the rest of the patient's life. A pathologist needs to diagnose and evaluate the risk

of progression and relapse from analyzing histological images.

Recent research shows a correlation between the number of regulatory T-cells and which

patients that get progression to a higher cancer grade. Today a computer randomly picks

out a sub-set of cells, that is to be manually counted and classi�ed; this will serve as an

estimation for regulatory T-cells compared to other cells. This paper proposes a more

automated solution to aid in analyzing histological images for the number of regulatory

T-cells and other cells present.

The two proposed systems are using classical image processing to �nd and classify the

cells based on color and using a convolutional neural network to detect and classify

smaller parts of the images. Both systems will attempt to estimate the number of

regulatory T-cells compared to other cells.

The classical image processing had an underestimation of 4.7% for regulatory T-cells

while having a 4.5% overestimation of other cells. The convolutional neural network

showed a correlation between the number of classi�cations and the actual amount of cells

but requires further work to be usable.
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Chapter 1

Introduction

This chapter consists of the motivation for this thesis, related and previous work, the
objective of this thesis and lastly the outline of the entire thesis.

1.1 Motivation

According to International Agency for Research on Cancer (IARC), there were estimated
549 393 new cases of bladder cancer (BC) worldwide in 2018, placing it at the tenth most
common cancer type for both sexes combined [1]. In the same year, the estimated deaths
caused by BC, for both genders was just below 200 000. Statistically, males have a four
times higher likelihood of getting BC compared to women. In 2018 it was the sixth most
common cancer type for males with 424 082 new cases [1]. Urothelial carcinoma makes
up approximately 90% of BC, making it the most common type of BC [2]. By comparing
incidence data in Norway from 2008 to the incidence estimate for 2018, it can be seen
that the number of incidences has not been reduced [1, 3]. The last four decades indicate
that there has been an increase of 70% in BC incidences for Norwegian men and similar
40% for women [4]. A study found that statically one in 40 men and one in 130 females
will get BC [4]

Since the recurrence rate of urothelial BC is relatively high, the patient needs to be
regularly monitored to check for recurrence or progression. When BC is diagnosed in
Norway, the average age group is 70-75 and is likely to be with them for the rest of their
lives [3]. BC is considered the overall most expensive cancer type per patient, because of
the extensive post-treatment monitoring [5].

1



Chapter 1. Introduction 2

The monitoring process can be particularly strenuous on the patient, because of the age.
Having a cancer type that needs to be monitored for the rest of their lives is also a heavy
psychological burden and can affect the quality of life [6].

Today the tissue images, called histological images, are a valuable asset for pathologists
to diagnose different types of cancer and diseases[7]. These histological images are the
digitization form for studying the tissue under microscopes and is called whole-slide
images (WSI). The tissue is derived from a thin slice from a biopsy and is placed on a
glass plate for scanning. Different biomarkers can be added to the tissue, to enhance
different cells in the tissue.

The digitization of the microscopic images have opened up for several opportunities, such
as WSI computer analysis. This led to the computer assisted diagnosis (CAD) tools,
which can assist with making faster and more objective diagnoses [8]. Since the recurrence
and the progression rate in BC are still high, and constant monitoring is needed to ensure
the patients best welfare, it is clearly a better solution is desired. A study indicates that
the use of different biomarkers on the WSI can help predict the progression of BC [9].
This is done with the different immune stains, which are called biomarkers. These will
attach themselves to a certain type of cell and make it easier to find different cells, for
example, different types of immune cells. One immune stain, CD25+ stood especially out,
as it had a sufficient discriminative ability to predict progression in non-muscle-invasive
bladder cancer (NMIBC) [9]. This was found from a counting estimate of cells marked
with the biomarker in different patients and compared with those who had a recurrence
or progression [9]. Being able to better predict progression and recurrence with an
automated system based on different biomarkers can reduce the diagnose time and total
monitoring needed for each patient.

Currently, the diagnosis and analyzing of WSI are mostly done manually with the
assistance of a program, this process is slow and costly, as well as the accuracy can vary
with the expertise of each pathologist. With the improvements in image processing and
deep neural networks (DNN) within the classification aspect, a better system can be made
for analyzing the tissue images. A possible fully or semi-automated system can be faster,
cheaper, more accurate in diagnosis and better at predicting progression or recurrence in
more frequent incidences of BC. With less time spent on common occurrences of BC,
more time can be spent on more advanced or rare cases of BC.
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1.2 Previous Work

Using DNN and classical image processing to classify and analyze different types of cancer
is being researched in an increasing number of fields, this also applies to histological
images which contain information about different types of cells [10, 11].

Currently, research is conducted with similar data material, but on different types of
cancer. One of these is the CAMELYON challenge organized by Diagnostic Image
Analysis Group (DIAG) and the Department of Pathology of the Radboud University
Medical Center (Radboudumc), whose goal is to find and classify breast cancer in WSI
of histological lymph node section [12].

Analyzing tissue in WSI are topics that have been given in previous master theses earlier,
but each with a different goal and data set compared to this thesis. The previous master
theses worked with: Predicting recurrence in BC, classifying different tissues, and creating
a quantitative measurement for tumor-infiltrating lymphocytes [13–15]. The latter is
the most interesting in regard to this thesis as it has the most similarities; finding cells
center and classifying two classes with support vector machine.

1.3 Thesis Objective

In this thesis, the objective is to use classical image processing and DNN to analyze WSI
from urinary BC patients. The goal is to estimate the number of cells present in an
area and how many of these are marked with the biomarker CD25+. The thesis will be
divided into two parts: Part one will be an unlabeled data approach, and part two will
be a labeled data approach. The unlabeled approach will use classical image processing
to locate, count, and classify cells that will be used as a foundation for training a DNN;
this will be used to estimate the number of cells and whether the biomarker CD25+ has
stained them or not. Part two will apply a more DNN oriented approach to estimation,
using labeled data as a measure of quality.

The cells in the histological images used for this thesis will only be considered as positive
CD25+ marked cells or not marked.

1.4 Thesis Outline

Chapter two will contain the background theory for BC and methods used in the thesis.
The data material format will also be introduced here.
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Chapter three will give information about the data set used in this thesis.

Chapter four will contain the methods, experiments, and results in an unlabeled approach
to the data material.

Chapter five will look at a labeled approach to the data material, containing methods,
experiments, and results.

In Chapter six the solution approach, methods, and results will be discussed.

Chapter seven will draw a conclusion based on the result of the thesis as a whole.



Chapter 2

Background Theory

This chapter will give background information around both the technical and the medical
aspects of this thesis.

2.1 Medical Background

This section will cover the medical background information used in this thesis.

2.1.1 Urothelial Carcinoma

Carcinoma is a collective term for cancer types that are made from epithelial cells [16].
The Urothelial carcinoma starts inside the lining of the bladder, the urothelial lining;
however, it can be found anywhere inside the bladder.

5
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Figure 2.1: Illustration of the bladder with different the tumor stages of BC. The figure
is reprinted in an unaltered form from Wikimedia commons File: Diagram showing the
T stages of BC CRUK 372.svg, created by Cancer Research Uk, CRUK. Licenesed under

CC BY-SA 4.0.

According to the Tumor, Node, Metastases (TNM) classification system, urothelial
carcinoma is divided into different stages, seen in Figure 2.1. The different letters
in TNM are often accompanied by an alphanumeric code, which provides additional
information. The T in TNM describes the tumor size, and if it has been spread to
other tissues. N describes the lymph nodes which are included, and M gives information
about cancer spread from one place to another. There are several tumor stages, but for
simplicity, they can be divided into two groups, muscle-invasive and non-muscle invasive.
Approximately 70% of patients at the initial presentation, are diagnosed with non-muscle
invasive stages, pTa or pT1, [17].

https://creativecommons.org/licenses/by-sa/4.0/legalcode
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BC is diagnosed according to the World Health Organization (WHO) grading systems,
WHO04 and WHO73. Both systems are in use today to diagnose BC as the classifications
system have some correlations, but are not directly interchangeable. WHO04 has three
classifications, high grade, low grade and papillary urothelial neoplasm of low malignant
potential (PUNPLM), while WHO73 has a grading system that ranges from one to three.
For example, grade two in WHO73 can in different cases, be classified into any of the
three classifications in WHO04 [4].

Treatment

To provide the optimal treatment, which is a necessity to lessen the effect cancer has
on a patient’s quality of life, an expert needs to make a judgment regarding the cancer
grade and stage. The decision is based on the medical data, samples acquired from an
invasive procedure, patients age and expected lifespan, as well as cancer stage and grade.
There are several options for treatment. Some of these treatments are chemotherapy,
immunotherapy, targeted therapy drugs and transurethral resection of the bladder
(TURB). Cancer cells often hide or camouflage themselves so that the immune system
does not recognize them as a threat. Immunotherapy is used to activate the patients
own immune system to attack the cancer cells, this is done by using medicine to help
the body to identify and attack the cancer cells. Bacillus Calmette Guérin (BCG) is a
bacteria that can be injected in fluid form into the bladder to help trigger an immune
response, that will then attack the cancers cells [18].

The most common treatment for non-muscle invasive bladder cancer (NIMBC) is TURB,
which is suggested to be followed up by a single chemotherapy instillation [19]. For
high-risk patients BCG immunotherapy is given along with TURB, this has shown to
reduce the recurrence rate with 56% compared to TURB alone, this uses the immune
system present in the bladder to attack the tumor [20].

2.1.2 CD25+ Staining

biomarkers are used in diagnosing cancer, and it is a valuable asset in creating reproducible
diagnoses [9]. The CD25+ biomarker attaches itself to T-cells and give them a distinct
color, giving a prognostic value. This marking last a longer on regulatory T-cells and
can therefor be used together with other biormarkers. The CD25+ marked images are
different from the Hematoxylin and Eosin (HE) stained images, which is used for the
diagnosis of cancer. In the CD25+ images, the cells have a blue color and positive CD25+
marked cells will have a brown color around it. The difference between CD25+ stained
images and HE stained images can be seen in Figure 2.2 and 2.3. CD25+ is used to
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identify regulatory T-cells, which are related to suppression of immune response and
cancer diagnosis [4, 9].

Figure 2.2: WSI marked with CD25 immuno stain. The left image is a WSI viewed at
a neutral zoom, and the right images is zoomed in on a specific spot marked by the red

lines on the left image.

Figure 2.3: WSI marked with HE stain, often used in diagnosing cancer in histological
images. The left image is a WSI viewed at a neutral zoom, and the right images are

zoomed in on a specific spot marked by the red lines on the left image.

Digital Pathology

When scanning the glass slide with the tissue, called a histological slide, it will give a WSI,
which has zooming capabilities similar to a microscope, but is easier to use. The WSI is
structured so that it has a high-resolution histological image in the bottom and several
downsampled versions over it, as seen in Figure 2.4, these downsampled versions are saved
into the image format to avoid the downsampling process each time the image viewed.
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This structure makes it easy to navigate at a higher level quickly and then smoothly
zoom into the desired area by going through several images. In the high-resolution image,
each pixel has a height and width equal to 0.25 micrometers, resulting in one image
having approximately 3 · 1010 pixels. The amount of pixels along with the 8-bit color bit
depth gives each WSI an enormous size. Having this pyramid-like structure means it is
possible to visually navigate at lower resolutions, without having to load an entire image
at a max resolution into the computer memory or applying interpolations or filtering.
Digitization of histological slides opened up various opportunities for pathology, such
as image processing, more automated analyzes, machine learning, online sharing, and
storage.

Figure 2.4: Pyramid image visualization

VIPS

To be able to handle this kind of image, special methods for viewing and processing
were made. One of them was the VASARI project, which was intended to measure the
color and texture changes in old master paintings. The demand for this was 20 pixels
per millimeter, the resolution along with the multiple color channels produced an image
too large to be handled by computers at the time. The solution was to build a c-library
which uses memory-mapped files, and this library was called VIPS [21, 22]. Using this
method meant that the large images did not need to be loaded as one whole image into



Chapter 2. Background Theory 10

memory, but only the region of interest alone was required to be loaded into the memory.
This file structure became known as the Tag Image File Format (TIFF).

The library VIPS has since been further developed to handle larger files. With other
advancements in technology, the resolution could also be further improved to represent
information at the cellular level. TIFF had the limitation of only be able to handle a
file with a maximum size of 4 GB because it uses a 32-bit offset; this is not enough for
modern WSI used in histopathology. This storage limitation was solved by basing a new
file format, which was based on the existing TIFF, called BigTIFF. BigTIFF uses 64-bit
offsets instead of 32-bit offset, making it able to handle files larger than TIFF. Using
64-bit offset resulted in the maximum storage capacity of 16-ExaBytes (16 · 109GB) for
one single BigTIFF image [23].

2.2 Image Processing

Image processing is a term that collects all types of processing of an image; this can be
classical image processing methods, neural networks (NN), or DNN.

When talking about classical image processing it is often, but not always, referred to less
complex operations to do various tasks; to mention some of the numerous tasks: Filtering,
segmentation, feature enhancing, simple object detection, and denoising. Classical
image processing is used in analyzing various images looking for features based on, but
not limited to, shapes, edges, texture, color, or luminance. Most images also contain
additional information that is not part of the visual image; this data is called metadata.
Metadata can be any information, from patient data to longitude and latitude. For
hospitals, this means that one image format can have all the information regarding
patients gender, age, time stamps when the image was taken, cancer grade or similar.
This data is often confidential and can not be shared.

DNN is often used for more sophisticated image processing tasks such as classifications
or recognition tasks, while classical image processing is often used as a way to prepare
the images for the DNN so that DNN can perform better than without pre-processing.
DNN outperformed classical image processing in an image processing challenge called
Imagenet [24], in the year 2012. The following years most top contenders used DNN to
achieve even better results. DNNs require a large amount of data to be able to achieve a
good result when classifying objects; the Imagenet challenge has a few categories, where
the category image classification and localization had over one million labeled images to
use in the challenge 2012 [25]. DNN is therefore not always easily implemented in cases
where it is hard to acquire labeled data, such as medical images. Hence image processing
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is often used for simple detection when the labeled data is not sufficient for training, or
used in conjunction with DNNs as a form of pre-processing and post-processing. This
chapter will cover the theory of pre-processing techniques used.

Pre-processing can be divided into three steps, load the image, analyze/enhance the
image and output/results. Loading the images can be accomplished by utilizing one of
the many libraries that already exist, and depending on which parameters used in the
method for loading the image, it can be loaded differently. Similarly to the loading of
the image, the output can be saved or used in other applications with existing libraries.
By analyzing or enhancing different features in the image, it is possible to make an
object detector, remove noise, or make color variation different images less significant.
By analyzing the features, it is possible to decide whether the image contains the right
information or if it should be ignored. When processing an image and the processed image
or output is to be used in further steps, a possible consequence is loss of information,
if done incorrectly. Some prior knowledge about the purpose of the process is often
necessary for good results.

2.2.1 Morphology

Mathematical morphology is used for analyzing and processing geometrical structures.
In image processing, it provides several methods for handling shapes and features; some
of the usages include removing unwanted objects, enhancing or diminish edges or image
segmentation. These morphological operations are based on shapes within the image,
which is binary or a luminance image.

Dilation and Erosion

Two of the most basic morphological methods are dilation and erosion. The usage of
dilation and erosion on a binary image, the white pixels indicate foreground, while black
pixels are considered as background. The morphological operation erode works as the
name implies, it erodes the edges on the objects, making them smaller, in some cases
removes them entirely. The opposite operation to erosion is dilation, this operation also
as the name implies, dilates the objects making them grow. The effect of the dilate and
erode operations can be seen in Figures 2.5 and 2.6.
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Figure 2.5: Morphological erosion per-
formed on the figure above. It can be
seen that the black area (which is con-
sidered background) is thicker than be-
fore as the foreground has been eroded

away.

Figure 2.6: Here the morphological op-
eration dilation has been performed on
the figure above. Here it can be seen
that the white area has replaced some
of the black areas. The results from di-
lation can be seen on the smallest black

dot as it has almost vanished.

Dilation and erosion are both used together with a structuring element, often called
kernel, which slides across the image. Depending on the pixels inside the kernel and
implementation, the center cell of the kernel is set to either black or white, seen in Figure
2.7. The two concepts for setting a pixel to either a one or a zero, are hit and fit. Fit
is when all values match the one values (similar to an AND-operator) in the structure
element, and a hit is when one or more of the elements match the ones in the structure
element (similar to OR-operator). In Figure 2.7, the hit concepts have been used in a
dilation operation. The mathematical equation for dilation and erosion can respectively
be seen in Equation 2.1 and 2.2.

g(x, y) = (f ⊕ s)(x) =

1 if s hits f,

0 otherwise.
(2.1)

g(x, y) = (f 	 s) =

1 if s fits f,

0 otherwise.
(2.2)
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Figure 2.7: Numerical visualization of dilation. Here the structure element marked
green in the middle is a three by three matrix and covers an area equal to its size on
the input image. The position inside the structure element on the input image is the
output position. Here it can be seen that the structure elements match one value and

therefore is a hit, resulting in a one on the output image.

The combination of these two operations is in image processing called morphological
opening and closing. Morphological closing is when a dilation operation is used and
followed directly by an erosion operation, seen in 2.3, filling small holes inside objects
while not making the object grow, resulting in less false negatives inside objects. With
the morphological opening, the order is switched, and a dilation operation follows the
erosion operation, as seen in 2.4. The erosion will remove small objects which are often
considered noise while retaining the larger objects, if used correctly, this can remove false
positives in an image.

f • s = (f ⊕ s)	 s (2.3)

f ◦ s = (f 	 s)⊕ s (2.4)

Distance Transform

A distance transform is used on a binary image to create a distance map. A distance
map is most commonly focused on the white foreground objects and gives a distance
value to each pixel depending on the length to the closest background pixel. Depending
on which metrics used with this transformation, the results will vary. Two metrics that
are often used are euclidean distance and rectilinear distance. For a two dimensional
case, euclidean and rectilinear are calculated respectively 2.5 and 2.6. Euclidean distance
will measure the length of a straight line towards the background, while rectilinear will
measure the distance along one axis followed by the next axis, the result of this can be
seen in Figure 2.9 and Figure 2.10.
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DistanceEuclidean =
√

(x1 − x2)2 + (y1 − y2)2) (2.5)

DistanceRectilinear = |x1 − x2|+ |y1 − y2| (2.6)

Figure 2.8: Two circles with overlap.

Figure 2.9: Euclidean distance trans-
form performed on Figure 2.8. It can
be seen here that the distance from the
center of one circle smoothly fades out

towards the background.

Figure 2.10: Distance transform with
rectilinear, performed on Figure 2.8.
Here it can be seen that there are some
lines from the center of the circle going
outwards, this is the result of measuring

distance along one axis at a time.

2.2.2 Image Histogram

An image histogram is a graphical representation of the color values in images and is
used in analyzing the content of the image; this can be interpreted as a probability
density function. Histograms plots the number of pixels that shares the same value range
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into bins, shown in 2.7. These bins can represent a collection of pixels within a given
value range and are usually of equal size. The horizontal axis represents the number of
bins, while the vertical axis represents the number of pixels in the different bins. These
histograms enable a user to determine the distribution of the pixel values in the picture
with one glance, as seen in 2.12

[t1i, t2i] = [mini,maxi] i =[1, ..., number of bins]

Bini =
∑

x

∑
y

(t1i < image(x, y) < t2i) i =[1, ..., number of bins] (2.7)

Figure 2.11: Histological image

Figure 2.12: Corresponding histogram
to the image on the left, 2.11. The color
of each line represents the probability
density function for that given color.

2.2.3 Thresholding

Thresholds are often used to make a decision and usually follows the general approach:

Algorithm 2.1 General thresholding

initialization: initialize threshold, T forall x do
if x <= t then

set x = value
else

set x = 0
end

end
Result: Image or object with two values, True or False
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When thresholding an image with a single threshold, the output will be a binary image.
Thresholds are often useful when detecting certain objects in an image, but are susceptible
to being too inflexible. One common usage for thresholding is its separate foreground
from background for easier processing or object detection. Since it is not desirable to
manually set a threshold each time the need for differentiating between foreground and
background, adaptive algorithms have been made. One adaptive thresholding technique
for separating background and foreground is Otsu’s method. The results of this method
are achieved by iterating through thresholds and searching for the best threshold that
minimizes the intraclass variance; this was found to be the same as maximizing the
inter-class variance [26]. Otsu’s algorithm is described in algorithm 2.2:

Algorithm 2.2 Otsu’s algorithm [26]
Initialization:
1: Compute the histogram, and the probabilities for each bin denoted
2: Initial class probabilities denoted wi(t) and class mean denoted µi(t) for t = 0
while t >= max threshold do

1: update wi(t) and µi(t)
2: compute σ2

b (t) = w0(t) · w1(t) · (µ0(t)− µ1(t))2)
3: increase t

end
Result: Best threshold is the maximum value of σ2

b (t)

2.2.4 Color Format

Hue, Saturation, and Value (HSV) is a color format made to better mimic how the
human vision perceives colors. As seen in Figure 2.13, the hue is represented as rotation
in degrees around a circle for defining the color mix. This circle has primary red, green,
blue at respectively at 0, 120, and 240 degrees. Saturation is the length of a vector from
the center to the edge, giving the amount of brightness in the color mix, with white at
the center. Lastly, the value gives a mix of black to the color, starting with black at
zero and decreases as the value increases. HSV is an alternative color representation to
red, green, and blue (RGB) representation which represents a color with three numerical
values, one for each color channel red, green, and blue.
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Figure 2.13: HSV representation in a cylinder. Figure reprinted unaltered form from
Wikimedia commons,file:HSV color solid cylinder.png, created by Datumizer, licencsed

under CC BY-SA 3.0

2.3 Neural Networks

Artificial neural networks originated from the idea to mimic a biological neural network;
recreating the learning process of a biological neural network. The first step to accomplish
this was to understand how a neuron works and afterward create a whole network of
them, giving the NN. The first analogy between neuroscience and computer were made
by W. McCulloch and W. Pitts, in a paper 1943 [27]. Figure 2.14 visualize the inputs
on dendrites to the left, which travels through a tunnel-like structure called myelinated
axon, towards the outputs called axon terminal. Depending on if the requirements are
met or not, the neuron will fire on an output. The process from left to right in Figure
2.14 is the basis for the artificial neuron. The inputs (dendrites) on the left are connected
to an activation function (axon terminal), explained in section 2.3.1, that will decide the
output value.

https://commons.wikimedia.org/wiki/User:Datumizer
https://creativecommons.org/licenses/by-sa/3.0/deed.en
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Figure 2.14: A biological neuron. Here the general idea for recreating an artifical
neuron, can be seen with input(s) on the the left and outputs on the right. Figure is
reprinted in an unaltered form from Wikimedia commons, File:Neuron3.png by Prof.

Loc Vu-Quoc, licensed under CC BY-SA 3.0

Despite NN being a hot topic several times in history, it never got solid traction because
of the lack of hardware to support the computational need. With the invention of the
Graphics Processing Unit (GPU), NNs gained a considerable increase in computation
speed. Steinkrau et al. in 2005 implemented a two-layer dense network on a GPU and
resulted in a three-time speed up compared to the central processing unit (CPU) baseline
[28]. Chellapilla et al. got similar results with a convolutional neural network (CNN) the
following year [29]. In the early years of GPUs, they were mostly used for playing games
that required heavy computations caused by both graphics and background tasks, to be
done fast. Since the video game market has been popular, there are large corporations
that are competing to make the best and cheapest GPU [30]. This has driven the
development of GPUs, as well as it has reduced the prices of GPUs, making decent GPUs
more available at an affordable price.

A DNN is a NN with more depth than a two-layer NN, meaning it can have several
layers between the input layer and output layer; these layers are often called hidden
layers. DNNs are more complex and can find similarities in data that regular NNs or
even researchers could not find, leading to better results. Therefore, DNN has become
more and more popular in several research fields.

2.3.1 Activation Function

An activation function sum the inputs, which have been multiplied with their respective
weights, to one node outputs a value for that node. The output can be used for either
classification or input in the next layer. Activation functions in NNs create non-linear
properties enabling them to learn more complex patterns than a linear model.

https://creativecommons.org/licenses/by-sa/3.0/deed.en
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Activation functions decides how and when the neuron fires. There are several activation
functions most known ones are Rectified Linear Unit (ReLU), Tanh, and sigmoid. ReLU
is the most used, since it does not have the same vanishing gradient problem as the other
two have, it has also been shown that ReLU converge six times faster than Tanh on a
similar networks structure [31]. ReLU is described by the following equation 2.8:

f(x) =

x for x >= 0
0 for x < 0

(2.8)

ReLU is often used as the default activation function, with a softmax activation function
at the end of the network that outputs values between zero and one, making it a valid
probability distribution. The softmax probabilities are given with the following Equation
2.9

Softmax(Z)i = σ(Z)i = ezi∑N
j=1 e

zj
for i = 1, ...., N and Z ∈ RN (2.9)

2.3.2 Fully Connected

The last layers in a classification network are often called dense layers or fully connected.
In these layers, all the previous outputs are taken as input in the current layer, as seen
in 2.15. For images, this means that the dense layer can gather information from the
entire image instead of smaller parts of it. These layers often have more parameters than
the rest and require more computation.

Figure 2.15: NN with fully connected layers
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2.3.3 Learning

A network can learn from its mistakes by inspecting how far from its prediction it
was. The learning is done by minimizing the loss function or cost function, and these
represent the error in the output of the network. Reducing the loss functions is done
by an optimizer which updates the weights, to find better features to match the desired
output. The optimizers are used to adjust how much the weights need to be changed
for each iteration. A network will typically have two measurements of how well it has
performed, accuracy and loss. The accuracy of the model tells how many of correctly
classified examples there were, divided by the total amount given, while loss provides
information about distance from the correct class, how sure it is when classifying. These
two are both important, but as accuracy goes up to 100%, loss often goes down to zero
when the model is entirely sure of its prediction and will stop learning anything new.

2.3.4 Pooling Layers

Pooling functions are a way of downsampling the number of activation values in a given
region. Convolutions networks have major benefits of using pooling operations; some of
them are the reduction in the number of parameters that greatly reduce the computations
needed for the network, enabling it to learn faster. It can also be used to ensure that
varying image sizes can be used in the same network. Pooling layers in convolutional
networks makes the model invariant to translation, and if used over separate convolutions
parameters, the model can become transformation invariant, meaning it can learn to
ignore some transformation filters [29].

There are different ways of combining neighboring values; some of the more common
ones are max pooling and average-pooling. Max pooling selects the maximum value in
the given area to represents that section, while average pooling takes the average value
as the representative for that region, it is possible to use a weighted average based on
the center pixel as well [29].
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Figure 2.16: Visualization of the max pooling operation. The highest value in each
color to the right is the given output to the left. Figure is reprinted in an unaltered
form from Wikimedia commons, File:Max pooling.png, by Aphex34, licensed under CC

BY-SA 4.0

2.3.5 Structure

DNNs can be generalized to have at least three layers of nodes, an input layer, at least
one hidden layer, and an output layer. Each layer consists of neurons which are also
called nodes, and these will send a signal if the right conditions are met. The inputs to
each layer are regarded as features and will be processed and sent as input to the next
layer. The process repeats itself until it reaches the last layer, where a classification is
made. Layers can also have a bias that will make some neurons more prone to fire than
others. Between each connection in the network layers, a weight is multiplied to each
feature, giving them more or less significance. The purpose of this weight is to make
the network learn the best combination of features for achieving the best result. Some
layers can be pooling layers, described in 2.3.4. The classification layer has the number
of nodes equal to the classes decided on before training.

2.3.6 Convolutional Neural Networks

CNNs are a more specific form of DNNs mostly used for data with a matrix-like structure;
this can be time-series data which can be thought of one-dimensional data or images,
which is two dimensional. Just as the name implies, the usage of the mathematical
convolution operator is used in this network. The operator needs two parameters, for a

https://commons.wikimedia.org/w/index.php?title=User:Aphex34&action=edit&redlink=1
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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two-dimensional case, it needs the input data and a kernel to slide over the image. The
formula for this operation is shown in 2.10 where the asterisk represents the convolution
operator. The convolutional layer consists of several learnable filters or kernels from the
input; these combined covers the entire input. Each convolution layer has in general
three steps, convolution operator, activation function and pooling function[29]. The
structure of a typical convolution network can be seen in 2.17

S(i, j) = (Im ∗K)(i, j) =
∑
m

∑
n

(Im(i, j) ·K(i−m, j − n))) (2.10)

Figure 2.17: Typical CNN structure

2.3.7 Transfer Learning

When dealing with data sets with a low amount of data available, it is common to use
other networks that have been trained on a large data set. The networks that are often
used are the ones that have been trained on well-known challenges, such as ImageNet.
One of these networks is the VGG-16 network, which has a total of 134 million parameters
[32]. When using a pre-trained network as a base for a new network, it is common to
remove the last fully connected layer, freeze all parameters and add a new fully-connected
layer which will be trained with the given data set. The layers which will not be trained
can be considered a good feature extraction to give to the new layer. This way, it is only
needed to update the weight to the last layer while keeping the other layers as is.

2.3.8 Performance Validation

Evaluating the performance of different models is essential to describe how well the
model did overall and in specific areas. In this section, different tools and approaches for
measuring performance will be explained.
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Confusion Matrix

A confusion matrix is used to visualize the overall performance of a classification method
easily, this can be seen in Figure 2.18. On the diagonal of the confusion matrix, it can
be seen the correctly classified classes, the rest of the confusion matrix consists of falsely
classified classes. For each class one have true positives (TP), true negative (TN), false
negative (FN) and false positive (FP), these are used to describe how the model work for
each given class, the terms are explained in 2.1. TP for a non-binary classification can
be interpreted as: is the given point inside an area or not; this is also called hit. From
the values in a confusion matrix, it is possible to calculate precision, sensitivity, and
accuracy.

Precision for a class is the percentage of all predictions of that class correctly predicted.
The calculation can be seen in equation 2.11.

Sensitivity for a class is the percentage of TP for that class divided by all whose original
label belongs to that class. The calculation can be seen in equation 2.12.

Accuracy is the overall performance of the model, the calculation can be seen in equation
2.13.

True Positive for class A Class A Correctly predicted as class A
False Positive for class A Wrong class predicted as class A
True Negative for class A Class B predicted as class B
False Negative for class A Class A predicted as class B

Table 2.1: Overview of terms used in evaluation performance

PrecisionClassA = PCA = TPA

TPA +
∑

(FN) (2.11)

SensitivityClassA = SCA = TPA

TPA +
∑

(FP ) (2.12)

Accuracy =
∑
all TP

Total population
(2.13)
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Figure 2.18: Confusion matrix with two classes. Specificity and precision are calculated
from values in the confusion matrix



Chapter 3

Data Material

This chapter will give an overview of the data material available for this thesis.

3.1 Data Set

The data set consists of 95 patients with the earliest tissue sample from 2011. Each
patient has several WSI available with different biomarkers; in this thesis, the CD25+
marked histological images are used.

The Department of Pathology at Stavanger University Hospital has done the digitization
of the tissue samples. The scanner used to create the digitized histological images was
SCN400. This scanner according to Leica uses a custom-designed optics and focusing
methods to be able to scan with different magnifications 5X, 10X, 20X and 40X, where
the last one has a resolution of 0.25µm/pixel and takes only 4 minutes to scan [33].

The labeled data set made available mid-may contains 183 512x512 images labeled by an
expert pathologist, with only positive markings for CD25+; the rest of the cells have been
manually marked as non-positive CD25+ by the author of this thesis. Out of the 183
marked by the expert pathologist, only 98 images were marked with both positive and
non-positive CD25+ markings. The total amount of markings consisted of 114 positive
CD25+ markings and 5542 non-positive markings; an example of this can be seen in 3.1.

The labeling process for the thesis was done with Labelbox. Labelbox was used with
a local server on a private laptop to avoid uploading images to an external server, the
labels were outputted in a .csv file.

25
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Figure 3.1: Labeled data, the red colored dots signifies positive CD25+ markings
and have been confirmed by a pathologist, the blue colored ones have been placed
as non-positive marking. The coordinates for each dots have been saved in a comma

separated value (.CSV) file format.
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Unlabeled Data Approach

This chapter will cover an approach to use the provided unlabeled data to analyze and
enhance features in the WSI to get an estimate of the content in the WSI.

4.1 Methods

This section will give an overview of the tools used, the proposed system, and the
implementations of different methods. The first part will be about pre-processing data
material, followed by the estimation and creation of labeled data using classical image
processing; this labeled data will be the baseline for DNNs.

Hardware Setup

Since the WSIs are classified as confidential information because of its metadata regarding
time stamps and some patient data, therefore all data is kept on the UiS server, Gorina4.
Gorina4 is a GPU-server which consists of six high-end GPUs; four of them being Tesla
P100-PCIE-12GB and the last two being Tesla P100-PCIE-16GB. As the data material
was located on this server, all computation was also done on the server, even the ones
that used the CPU, such as classical image processing. Since this is a GPU server, the
CPU is not as high end as the GPUs. Running large CPU operations on the GPU server
is not ideal, but was needed for processing the WSIs.

Software

For viewing the WSI images, the open-source software QuPath was used together with
the remote desktop software NoMachine [34]. Making it possible to examine the whole

27
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WSI, without breaching the confidentiality contract; having the full WSIs on a personal
computer would be a breach of contract.

4.1.1 Methods

An overview of the unlabeled approach can be seen in Figure 4.1. This system has three
different outputs: first, a region of interest that will be future work, the second output is
cell localization and classification with the use of classical image processing and lastly an
output from the DNN model.
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Figure 4.1: Overview of the process for unlabeled approach. Each number represents a
more detailed system that will be explained in the following sections.

4.1.2 Pre-Processing Whole Slide Images

The WSI is used as described in 2.1.2; to prevent system crashes only a small part of
the image will be processed at a time. The WSI size can be reduced by removing the
border area around the tissue scan part. When the WSI has loaded, this area is pure
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white and does not contain any vital information regarding the cells. This white area
can be filtered out by looking for the RGB color value [255, 255, 255] from each side of
the image. Looking at each pixel is too time-consuming and gives an excessive amount
of computations. Consequently, when removing the border, the step size will change
accordingly to distance towards the middle. The program starts at the edge of the border
and has a significant initial step size which will become smaller when getting closer to
the middle point of the WSI until it converges at the edge of the histological image. The
pyvips library has in the later versions added a method for removing this quicker than
looking from each side towards the middle.

This section will go over steps used in the process marked with the number one in Figure
4.1, a more in-depth overview can be seen in Figure 4.2

Figure 4.2: Step by step process for pre-processing the image. Images with no in-
formational value will be ignored, while the ones with informational value will be

saved.

This process receives a relatively large image of roughly the size 100 000 by 90 000 pixels
(varying with each WSI) in the .scn format; this is the maximum resolution available.
This resolution was selected as it contains the most information available in the WSI,
giving the model the best possible starting point. Using this resolution gives an image
that is too large to be loaded into memory, and only looking at smaller parts of the
image is still necessary. The goal of this process is to split the large WSI into smaller
images of size 512x512 pixels while ignoring the images which contain mostly background.
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Separating regions into either containing useful information or not, is decided by the
amount of non-tissue area captured in the region. By using a histogram to determine if
an image majorly contain non-tissue area or tissue area, it was possible to separate the
two by setting a threshold.

The 512x512 size was chosen at an early stage as it seemed reasonable large and could
be split into smaller if needed; also, it was easy to evaluate the performance of different
methods used. The smaller image of size 512x512 pixels is used in the rest of the thesis
to avoid loading pre-processing multiple times.

4.1.3 Interesting Areas

This section will cover the number two marked in Figure 4.1, this is shown in more detail
in Figure 4.3. Interesting areas will be regarded as the first output of the proposed
system and the methods used be explained here.

Figure 4.3: Process overview for finding a region of interest
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This section will look at the WSI at a lower resolution which will fit into the memory,
without having to split the image, but the border was removed as it contains no valuable
information. Using a lower resolution has several advantages, such as fewer computations,
giving a faster process. Processing the WSI is done by utilizing a series of thresholds to
separate the color left by the CD25+ biomarker, clusters of cells (hot spots) and tissue
area without cells. For separating the different colors, the different RGB color values have
been analyzed, and the color red was observed to be higher in the brown area compared
to the blue value; the threshold for brown is based on this observation. The non-tissue
area was observed to have a higher value in all three color channels and was thresholded
out based on that observation. Lastly, the blue cells are intuitively thresholded on the
blue value being larger than the other two colors. The process for finding a region of
interest is also shown in Algorithm 4.1.

Algorithm 4.1 Creating a map of highlighted areas
Initialization:
1: Image = downsampled WSI
2: Set threshold t1 and t2
forall Pixel in Image do

value1 = pixelred − pixelblue

if pixel < t1 then
1: Keep original pixel

else if value1 > t2 then
Set pixel to red

else
Set pixel to blue

end
end
Result: Highlighted image

4.1.4 Classical image processing

This section will explain how classical image processing techniques were used to label
the different cells and estimate the number of cells in a given image. These labels will be
used as both training and validation data in a DNN.
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Figure 4.4: Step by step process for classical image processing used

The images were smoothed using a Gaussian smoothing, with a kernel of size 3x3 and
sigma of 0.5; this smoothing leads to less FP in the image, after the thresholding step
has been applied, as seen in 4.5. Since the color contains information regarding a
positive CD25+ marking or not, converting to grayscale can lead to a loss of information.
Therefore ideally, the threshold should cover two different color values, blue and brown;
creating two different masks. Using a threshold for the color blue will give the position of
the cells, as most cells are blue in the center even if the CD25+ biomarker has positively
marked them. The blue color depends on where the slice cut the cell and the cell type.
The brown mask will be used to find the positive CD25+ markings. Finding a threshold
that covers a range of intensity for both blue and brown, is less intuitive using the RGB
color format, especially with a mixed color such as brown. Using the HSV color format
2.2.4 it is more intuitive and has therefore been used instead of RGB. The thresholding
process with HSV consists of selecting an upper and lower value for hue, saturation,
and value and removing everything that is outside these two values. One focus here
was testing several threshold ranges and choose the one that performed best. For quick
testing, a python graphical user interface was used to test different parameters.
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Figure 4.5: Original image that is to be thresholded is shown at the top. The bottom
left is the thresholded image without smoothing. The bottom right image is with
Gaussian smoothing, with a kernel size of three by three and sigma of 0,5. The bottom

right image has less false positives compared to the left image.

Since some images differed from the rest in terms of color range, the thresholds did
not get equal results every time, in some cases, the amount of FP in the blue mask
and FN inside the cells was a problem when locating cells. Using the morphological
operation opening it was possible to remove the false positives in the general image and
morphological closing filled the holes inside the cells, making the mask better to use
further processing. To find the center of the cells distance transform was used on the
blue mask to create local maxima in the center of the cells. By using distance transform
some overlapping cells created two maxima indicating two or more cells depending on
how many are overlapping and how much they are overlapping.
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Algorithm 4.2 Locating cells with classical image processing
Initialization:
Get all 512x512 images
forall Images do

1: Change color format to HSV
2: Gaussian smooth image
3: Set thresholds upper and lower limit for blue and brown
4: MaskBlue = ThresholdBlue(imageHSV )
5: MaskBrown = ThresholdBrown(imageHSV )
6: MaskBlue = MorphClose(MorphOpen(MaskBlue))
7: Dist = DistanceTransform(MaskBlue)
8: cells = Find all localmax(Dist)

end
Result: List of cells found

Locating different cells and cell center was done by finding the local maxima in matrix
output from the distance transform. A method for locating the local maxima was to
compare each element to the neighbors and tell if its value was larger or not. This way,
the matrix would be left with only the center of each found cell. A better way is to use
the library OpenCV to locate maxima with the help of two functions, one for creating
labels based on connectivity with a structuring element and the other method for locating
objects in those labels. This method returns some additional cells centers inside the same
cell and was removed by looking at the distance to the already located cells, as seen in
Algorithm 4.3
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Algorithm 4.3 Removing duplicates inside same cell
Initialization:
1: Get all cell centers from 4.2
2: Set threshold x
forall new_cell in cells do

x, y = position(new_cell)
forall already_checked_cell in checked_list do

xold, yold = position(already_checked_cell)
if abs(x− xold) < x �and abs(y − yold) < x then

1: Remove cell
2: Break

else
1: Add cell to checked_list

end
end

end
Result: List of cells

After all cell centers have been located, the labeling process will begin. This labeling
process consists of looking at each cell center and the amount of the brown mask pixels
that are inside a given area around the cell, see algorithm 4.4. Mirror padding was
applied if the cell were to close to the edge of the image; this padding had the same
size as the area used to classify the cells. These weak labels are used as a basis for deep
learning.

Algorithm 4.4 Labeling cells.
Initialization:
1: Get cell centers from checked_cells 4.3
2: Get mask for brown colour
3: set threshold T foreach cell in cells do

1: Create a box around cell
if

∑
pixels (brown mask inside box) > T then

give CD25+ label
else

Set all cell as not CD25 marked
end

end
Result: labeled list of cells
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Figure 4.6: Overview of unlabeled approach to segmentation network

4.1.5 Deep Learning with Weak Labeled Data

Given the unlabeled data, classical image processing could be used to create weakly
labeled data. A segmentation network seemed like a good choice since the classical image
processing had already created some masks that could be used towards weak labeling
the data. To create the weakly labeled data used in training and validation of the
segmentation network, three different masks (brown, blue, and background) are combined
into one weak labeled image. The segmentation network will create a segmentation map
with three classes, and this map would need to be post-processed to get an estimation of
the content in the original image. The general overview is shown in 4.6.

4.1.6 U-net

The segmentation network, U-Net was explored because it has gotten much attention for
its capabilities within different medical applications [35, 36]. U-net is given a regular image
and tries to create a segmentation map of the different classes given. The architecture of
U-net can be seen in Figure 4.7, it can be seen here that the U-net has layers that skip
the max pooling operations and go straight to the adjacent layer, this is seen in Figure
4.7. This way the segmentation network can have more information when creating the
segmented image. The image can have a smaller size than the input image depending
on the implementation of the U-net; if this is the case, then the information in the skip
layers will be cropped to fit the adjacent layers. The general approach is shown in the
algorithm 4.6.
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Algorithm 4.5 U-net approach with unlabeled data
Initialization:
Get all images
forall images do

1: Get cell MaskBlue and MaskBrown from algorithm 4.2
2: Find MaskBG by setting all zero-values in MaskBlue and MaskBrown to one.
3: Combine MaskBG, MaskBlue and MaskBrown to create weakly labeled image
4: Save labeled image with same name as the original image in folder "labeled_Image"

end
1: Distribute the labeled images into Training data and validation data
2: Train U-net with three classes: Cells, CD25+ marker and background
3: Get segmentation image for raw data using the trained U-net

Result: U-net model trained on weakly labeled data

Figure 4.7: The architecture of U-net. Here it can be seen that the U-net outputs a
segmentation map of the input image.

The idea was to use the U-net to create a segmentation map of cells and the CD25+
marking. If a U-net trained on weakly labeled data can manage to segment out cells
and CD25+ markings, then post-processing will be used to find, count and classify cells
similar to the way it was done in classical image processing. The reason for using a
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segmentation network to do the segmentation is to find better features, apart from just
colors, to find and estimate the distribution of cells.

Algorithm 4.6 Post processing for U-net
Initialization:
1: Get all trained U-net
2: Send in raw data to U-net and get segmentation map forall Segmentation maps do

1: Apply distance transform to class cells
2: Find local maxima in distance transform
3: classify cells with the CD25+ class
4: Count all cells with classification either positive CD25+ or non-positive

end
Result: Estimate of cell distribution

4.1.7 Implementation

When looking through thousands of images, it is preferred to use existing libraries such as
Numpy, OpenCV, ndimage and similar, to do the computations; these are often optimized
and runs faster than most self-written code that has not had optimal optimization as the
goal. Therefore using embedded or external code has been implemented where it was
possible. Some methods marked as self-made in 4.1 consists of several external methods
combined to create the desired result. The U-net implemented was based on a U-net
used for grayscale images, but changes were made to take in colored images instead of
grayscale images [36].

Method Embedded External Self made
Gaussian smoothing x
Threshold HSV x
Histogram x
Morphological transforms x
Local maxima x x
Labeling cells x
U-net x x

Table 4.1: Implementation for unlabeled data approach
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4.2 Experiments and Results

4.2.1 Pre-Processing

The process of splitting and removing non-tissue was run on the CPU at Gorina4; time
usage, amount of image saved and ignored is listed in 4.2.

Patients deleted saved time used
ID1 12891 4139 0:38
ID2 24900 4108 0:47
ID3 28910 10502 0:47
ID4 17873 5722 1:06
ID5 25114 16481 0:31
ID6 21271 7737 1:46

Table 4.2: Number of images saved and deleted for a subset of patients, as well as time
used on each WSI.

4.2.2 Finding Region of Interest

The result for of the process for finding areas marked by the CD25+ biomarker and other
hot spots of cells is shown in the image 4.8. The method managed to find areas with
high amounts of CD25+ positive markings and areas with a high density of non-marked
cells (hot spots), an expert pathologist has not evaluated this for prognostic value. This
output can have several usages, and these will be discussed in the chapter discussion 6
and future work 7.2.
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Figure 4.8: The green arrows from left to right indicates where the right images
originates from. The red color is areas that have large amount of CD25+ markings

while the blue areas are hot spots with other cells

4.2.3 Cell center

The localization of cells have been visually inspected at random samples; some of the
results can be seen in the figures 4.9. The method places a dot in the center of each
cell and counted these, to get an estimation. From visual inspection it can be seen that
some of the markings are in between two cells that are close to each other; this is a
by-product of the smoothing and thresholding, but in general, most cells were marked in
the center. Using the detection of cell center as a way to count the number of cells found
gave promising results, this can be seen in the images in Figure 4.9, and is summed in
4.3.
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Figure 4.9: Classical image processing used to mark cells in four different images.
The cells found have been marked with blue or red dots, depending on class they
were classified to. These dots are only used for visualization of the localization and

classification method

Image
Image processing
found

Visually
counting

Difference

Top left 52 54 2
Top right 90 99 9
Lower left 54 56 2
Lower right 118 133 15

Table 4.3: Manually counted cells by the author of this thesis, compared to the cell
count found with image processing
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4.2.4 Classification

By visual inspection, the classification managed to classify which cells were surrounded
by the CD25+ marker and cells that were not. In Figure 4.9, the red dots signify CD25+
positive markings while the rest of the cells are marked with blue dots. In the upper
left image in Figure 4.9, a clear positive CD25+ marking can be seen in the upper right
section. While the other images have the CD25+ marking color, it is considered as
leftovers of the biomarker and considered as a background color instead of a positive
marking. In some images, this causes misclassifications as it surrounds a cell and the
entirety of the area around.

4.2.5 U-net

With the given weak labeled masks from the classical image processing, the U-net
implemented in this thesis was unable to learn the features needed to segment the three
different classes, positive CD25+, other cells, and background, in the images. The U-net
ran for 240 epochs and showed no improvements, that were visually checked on the
validation images every five epochs. The lack of results was believed to be caused by the
lack of proper training data for positive CD25+ markings.



Chapter 5

Labeled Data Approach

With a set of labeled data being made available mid-May, it was possible to explore some
different approaches in evaluating and testing different methods. The previous chapter
explained how the images were pre-processed and how weakly labeled data was created;
this will still be useful as the size of the labeled data is not large enough to support
training, validation, and testing, the pre-processing steps will still be the same.

5.1 Methods

This section will explain which network that was used, how it was trained, and tested.
The proposed system, as a whole, is similar to the previous chapter with slight changes
seen in 5.1. Since the new labeled data received was marked with dots, the U-net will
not be used as it requires masks. This chapter will propose a classification network to
see if it is possible to get an estimation of the different marked cells. Since the labeled
data contains only positive and non-positive CD25+ markings, another classification is
needed for classifying none of the other classes. The last class is a non-cell class which
has been made with image processing.

44
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Figure 5.1: Overview of the proposed system
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5.1.1 Classical Image Processing

Figure 5.2: Modified classical image processing

The pre-processing shown with the number one in 5.1 remains unchanged, but the
classical image processing has been changed to provide labeled tiles for a CNN network,
this can be seen in 5.2. Therefore the code for extracting classes in the classical image
processing is changed to finding areas with no cells; this is used as third class. Finding
the empty area is done by using the blue mask from the previous chapter to perform
the opposite task it was made for, finding areas that have no cells. The results from the
labeling and location process in the previous chapter will be used to crop an area around
each cell, attempting to make tiles with a cell in the center each time. For the third,
non-cell class, an area with the complete absence of the blue mask in the center area is
cropped.

Deep Neural Network

The usage of a classification network to estimate the amount of cells, a CNN called
VGG-16 is used. The process for training and using the VGG-16 is seen in Figure 5.3
will.
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Figure 5.3: The VGG-16 network is trained with weakly labeled tiles from classical
image processing. The trained model receives images that are cropped into tiles that
will be classified into the different classes (positive CD25+, other-cells, and background).
The output will be compared with ground truth images from the labeled data set.

VGG-16 was chosen because it is a network that consistently performs well on the
Imagenet challenges [25] and a study on histology in breast cancer found it was one of
the two networks that received the best results in patch-based classification [37, 38]; it
has also been well documented. VGG-16 architecture requires heavy computations to
be trained to achieve the good results it has in the Imagenet challenge, but this is not
needed as transfer learning will be used as described in 2.3.7. Utilizing transfer learning
allows removing the last layer and insert a new one, with three outputs instead of the
original 1000 outputs. Since the original network architecture had 1000 outputs in the
last fully connected layer, it had 409 7000 parameters connected to the last layer alone,
with only three outputs the model will have 3003 parameters to update.

The VGG-16 network receives approximately 8400 weakly labeled tiles to be trained and
validated on. These images are from the classical image processing step and have been
cropped with a cell in the center for class CD25+ marked and other cells, the non-cell
tiles are placed in the third class. The test data have been cropped similar, but the cells
have been picked out by an expert pathologist. The background class has been picked
out by the classical image processing, based on the lack of cells. The background class
was visually confirmed to not contain a cell in the middle, some of them contain part of
cells at the edge, but only a minor part of a cell.
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Algorithm 5.1 VGG-16 transfer learning
Initialization:

1: Get tiles for positive CD25+ marking, other cells and non-cell tiles from
image processing
2: Divide into training and validation 3: Load pre-trained VGG-16 model
4: Freeze all parameters in the VGG-16 model 4: Replace the last layer with a
new dense layer with three outputs.
5: Train VGG-16 model (update weights for the new layer) with weakly labeled
tiles.
Result: VGG-16 model trained on weakly labeled tiles

After training the classifier has been given a set off test images that have been marked
by an expert pathologist. These images are initially 512 by 512 images but are split
into smaller tiles. Splitting the image is done with a sliding window starting top left
of the image and using a step size equal to the tile size; this is done without any prior
knowledge about the positions of the cells, as seen in Figure 5.4.

Figure 5.4: 512 by 512 image evenly split into different sized tiles

These are also cropped to create training and labeled data for a CNN. The amount of
positive marked cells and other cells, as well as their location, is compared to the ground
truth.

5.1.2 Implementation

In Table 5.1, the implementations of the different methods used in the labeled approach
can be seen. The pre-processing or classical image processing used in Chapter 4 is not
taken into account here, but can be seen in 4.1. The methods that are marked with more
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than one "x" is a combination of all "x" marked. Some of the PyTorch embedded methods
are a collection of several PyTorch methods to create a whole method. An example of
this is the updating weights; this method contains several sub-methods connected to
update the weights.

Method
Embedded
pytorch

External Self made

Padding x
Cropping tiles x
Labling tiles x
Distribute data x
Data transforms x
Load training,
Validation and Test data

x

Load pretrained x
Updating weights x x
Hit and miss
evaluation

x

Storing results x x

Table 5.1: Implementation of used methods in the labeled data approach

5.2 Experiments and Results

This section will explain how each model is tested and how well it performed compared
to the ground truth.

5.2.1 VGG-16 Trained on Weak Labels

A network model trained on weakly labeled data, and tested against professional labeled
data, will indicate if the trained model managed to learn the needed features to be able
to discern the different classes correctly. The best model achieved an accuracy of 99
percent on the validation set and an accuracy of 95 percent on the test data. In the
Figure 5.5 and Figure 5.6 trained models’ performance can be seen.
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Figure 5.5: Performance of the VGG-16 model
used trained on weak labeled data (using 32x32
tiles), tested on test data labeled by an expert

pathologist

Figure 5.6: Performance of the VGG-16 model
used trained on weak labeled data (using 64x64
tiles), tested on test data labeled by an expert

pathologist

For a more realistic approach, the images were randomly cropped without any prior
knowledge and fed to the model, the results from this can be seen in Figure.
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Figure 5.7: This graph shows the estimation of non-positive CD25+ marked cells with
the use of VGG-16 model, trained on weak labeled data. The blue line indicate the

correct number of cells.

Figure 5.8: This graph showed the estimation of positive CD25+ marked cells with
the use of VGG-16 model, trained on weak labeled data. The yellow line indicate the

correct number of cells.

5.2.2 Classical Image Processing Methods

With labeled data made available, the methods from the previous chapter can also be
tested in new ways for more qualitative results. With an expert pathologist classifying
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the cells, the classical image processing will be split into two parts for testing: Locate
and classification.

Cell Detection

The classical image processing chapter stated that even if the total estimate of cells was
similar, some of the cells did not match the cell centers. A hit and miss approach was
used to validate the localization results from classical image processing. Since the image
localization method removes duplicates of cells within a given range of each other, a
radius of equal size minus one pixel will be used to check if the mark is inside the cell or
not.

Figure 5.9: Correct amount of non-positive CD25+ marked cells (orange line) compared
image processing results
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Figure 5.10: Correct amount of positive CD25+ marked cells (orange line) compared
image processing results

Figure 5.11: Amount of non-positive CD25+ that were close enough to ground truth to
be considered a TP. The cells are from the image processing detection and the distance

to the actual cell is calculated from the ground truth.
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Figure 5.12: Amount of non-positive CD25+ that were close enough to ground truth
to be considered a TP. The cells are from the image processing and the distance to the

actual cell is calculated from the annotated data.

Cell Classification with Classical Image Processing

The classification part in the classical image processing step has been given a ground truth
data to be classified and compared to the actual value. The classical image processing
classification results are shown in Figure 5.13.

Figure 5.13: Confusion matrix for classical image processing classification.
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Discussion

This chapter will give short review and discuss the results from Chapter 4 and Chapter
5. Possible improvements and weaknesses will be the focus of the discussion.

6.1 Approach

The approach to get an estimation of cells using DNN without ground truth, was broken
into steps. These steps were pre-processing the image, finding cells, classifying cells, and
create a weakly labeled data set for training a DNN. Each step is discussed below.

6.1.1 Classical Image Processing

Pre-Processing

In the pre-processing step, a choice of size was made for convenience reasons; this size
might not be the optimal size as it contains a limited field of view and results in a
large number of images needed to be saved for later use. The size could be increased to
1024x1024, giving a larger field of view and fewer files needed to be stored. Using larger
images would increase the time spent for each image in the following steps, but would
reduce the total amount of time, as the number of images needed to load would be one
quarter, and the total number of pixels to be processed would be the same. Different
resolutions could also yield different results; the highest resolution available might have
similar results as the second-highest resolution. If it is possible to lower the resolution
and achieve similar results, fewer computations would be needed.
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Locating Cells

In the process of locating cells, random WSI was tested for finding a threshold range
that fits most WSI. However, some WSI deviates from the rest in terms of color intensity.
Creating an adaptive threshold or applying histogram equalization to the images could
give different and possibly better results. Using the blue mask seemed to give consistent
results and is a good way to find the center of the cells, but in some cases where the
biomarker CD25+ was on top of the cell, giving it a mix of brown and blue, and not
found by the thresholds.

Using the morphological opening and closing could end up removing some cells or make
adjacent cells merge in the blue mask, used for detection. Removing noise in the blue
mask was necessary for the distance transform to locate the correct cells. The distance
transform gave good overall results but struggled with overlapping cells to some extent

Classifying Cell

Using color to classify if the CD25+ marker positively marks the cell or not, seemed to
yield good results, but can also misclassifying cells if leftovers of the biomarker surround
them. As cells have different shapes and sizes, looking at a fixed area around them could
make the classification pick up the brown CD25+ from adjacent cells. Different color
ranges for brown, make the method work in most cases, but can struggle with images
that deviate from the usual color intensities.

6.1.2 Convolutional Neural Network

Utilizing transfer learning with VGG-16 has some limitations. With an image of size,
512x512 being is split into tiles with size 64x64 the maximum amount of classifications
available is 64, one for each tile. With the smaller tiles 32x32, the amount of classified
tiles increases but is still not high enough to cover all scenarios. The smaller the tiles,
the less information can be used when classifying cells, therefor going lower did not seem
reasonable.

Since the VGG-16 network was trained on weak labels, it might not learn the optimal
features needed for a better result. As the labeled data did contain a significant amount
of class non-positive CD25+ marked, some of these were used for training.
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6.2 Analyzing the Results

The first output from Chapter 4, provides a quick overview of the tissue, making it
easier to know the location or if an area has a large amount of positive CD25+ markings.
This quick overview could help experts in quickly finding an area of interest in the WSI
image. As no expert has evaluated this, the prognostic value of this output has not been
confirmed. Regardless of this output alone having a prognostic value, it could be used
in other applications to find regions of interest to be inspected, the results from such
applications could also possibly have a prognostic value. A slightly higher resolution
could have more information to provide better-highlighted areas but would need more
computations.

The results from classical image processing are a bit conflicting as the total estimate
for cells is 97%, while the total hit percentage is 70%. These results can be interpreted
as the estimation of cells were just a coincidence, but achieving similar results on 98
different images, acquired from 19 different patients is unlikely. The logical explanation
for these results is that the filtering method for avoiding duplicates have picked an area
that is outside the radius for the hit measurement.

Looking at the results from the VGG-16 network it can be seen that even if the results
are overestimated and underestimated respectively for tiles sizes 32 and 64, it follows
the original cell amount to some degree, indicating a correlation. This correlation was
better for non-positive CD25+ cells than CD25+ marked cells. As the test images were
randomly cropped, some cells were split between two to four tiles, making it affect the
overall estimation; overlapping tiles and post-processing could solve this.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

This thesis proposed two approaches in estimating the amount of positive and non-positive
CD25+ marked cells, one unlabeled approach utilizing classical image processing and
second a labeled approach using a CNN network. The CD25+ marked histological images
contain positive marked cells and other cells, and the positive marked ones are surrounded
with a brown color which is used for classifying the cells. The use of Classical image
processing to locate and classify cells based on color had a total estimation accuracy for
positive and non-positive CD25+ marked cells, respectively underestimation of 4.7% and
an overestimation of 4,5%, compared to the ground truth. Given the objective of this
thesis to estimating cells, this is an acceptable result. Filtering out duplicate cells given
by the distance transform local maxima resulted in less accurate localization of the cells,
with a total hit rate of 70%.

Using transfer learning with a VGG-16 trained on the weakly labeled tiles from the
classical image processing, it managed to learn sufficient features to get a 95% accuracy
on the test data. The test data was created by an expert pathologist and had a cell
in the center of the tile, for the classes with cells. The result after sending an image
in, and randomly splitting it into tiles, gave promising results. These results showed a
connection between the number of tiles classified as non-positive CD25+ cells and the
correct number of cells, this was true for positive CD25+ markings as well, but it was
not as clear as non-positive CD25+ cells. More extensive testing on a broader data set is
needed to confirm the results.
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7.2 Future Work

Finding highlighted areas at a lower resolution could be explored for several applications.
For weak labeling, it could be used to find areas with a high amount of positive CD25+
markings to better provide labeled tiles for a given class. Having an automated system
that highlights areas could help with quicker diagnosis and lead to a more automated
system in total. The highlighted area could also give important areas that the previous
system could focus on.

The methods in this thesis had some flaws in locating the exact position of a cell and
separating overlapping cells. Improving this section could yield better results and possibly
better prognostic value for pathologists.

Using overlapping 64x64 tiles followed by post-processing for estimation could remove
the possibility of under-estimation caused by counting tiles. Using overlapping tiles could
help with cells being split at the edge of the crop giving a half cell in neighboring tile, at
the same time provide more information for the area that is to be classified. Introducing
other classes that contain one or more cells could also help with the underestimation.
creating new classes would require a new labeling process for existing classes as well as
new ones. Exploring different CNNs could yield different and possibly better results,
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Appendix A

Supplementary Material

The attached zip files contains the code used in this thesis.

The zipped file contains two folders, one for VGG-16 and one for classical image processing.
Each folder has a readme.txt that explains the purpose of each file.

The zipped file also contains a Readme.txt file for setting up a local server on a laptop,
for usage of on premiss data.
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Appendix B

Table of Results

B.1 Image Processing

ID
Image

processing
CD25+

Correct
amount
CD25+

Image
processing
Other cells

Correct
Other cells

Image
process
total

Annotated
total

ID1 0 0 309 356 309 356
ID2 6 0 309 293 315 293
ID3 13 15 162 149 175 164
ID4 4 0 73 62 77 62
ID5 1 1 88 75 89 76
ID6 3 1 81 66 84 67
ID7 10 6 321 310 331 316
ID8 11 11 249 224 260 235
ID9 0 0 21 50 21 50
ID10 9 14 285 397 294 411
ID11 14 22 473 426 487 448
ID12 11 4 244 208 255 212
ID13 3 4 220 198 223 202
ID14 19 16 552 817 571 833
ID15 0 0 108 96 108 96
ID16 0 0 297 299 297 299
ID17 4 0 360 298 364 298
ID18 5 12 546 610 551 622
ID19 5 8 646 611 651 619

total: 118 114 5344 5545 5462 5659

Table B.1: Results from classical image processing for localization and classification
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B.2 VGG-16

Name CD25 Other
VGG16
CD25

VGG16
Other

VGG16
background

Number of
Images

ID1 0 356 0 95 97 3
ID2 0 293 17 112 319 7
ID3 15 149 24 47 121 3
ID4 0 62 23 13 92 2
ID5 1 75 0 23 41 1
ID6 1 66 2 28 34 1
ID7 6 310 49 119 344 8
ID8 11 224 28 49 115 3
ID9 0 50 0 19 45 1
ID10 14 397 5 6 117 2
ID11 22 426 29 104 379 8
ID12 4 208 12 31 277 5
ID13 4 198 0 64 256 5
ID14 16 817 37 258 153 7
ID15 0 96 1 27 356 6
ID16 0 299 15 55 378 7
ID17 0 298 35 95 382 8
ID18 12 610 11 198 431 10
ID19 8 611 10 139 555 11

Total 114 5545 298 1482 4492 98

Table B.2: Result from VGG-16 network trained on 64x64 tiles
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Name CD25 Other
VGG16
CD25

VGG16
Other

VGG16
Background

Number of
images

ID1 0 356 0 382 386 3
ID2 0 293 48 475 1269 7
ID3 15 149 66 230 472 3
ID4 0 62 69 76 367 2
ID5 1 75 3 119 134 1
ID6 1 66 3 105 148 1
ID7 6 310 142 441 1465 8
ID8 11 224 67 334 367 3
ID9 0 50 0 60 196 1
ID10 14 397 27 189 296 2
ID11 22 426 94 539 1415 8
ID12 4 208 48 280 952 5
ID13 4 198 15 289 976 5
ID14 16 817 82 1119 591 7
ID15 0 96 1 132 1403 6
ID16 0 299 22 309 1461 7
ID17 0 298 101 394 1553 8
ID18 12 610 37 855 1668 10
ID19 8 611 35 725 2056 11

Total 114 5545 860 7053 17175 98

Table B.3: Result from VGG-16 network trained on 32x32 tiles
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Images Used in Tests
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code/im_process/class_nothing.py

import cv2
import os
from shutil import copy
import shutil
from notify_run import Notify
import matplotlib.pyplot as plt
import numpy as np
from my_functions import *

notify = Notify()
notify.endpoint = "https://notify.run/8aJj68rNqXHIeNPF"

tilesize = 64


def main():
    out_name = "../data/class_nothing_{}".format(tilesize)
    if os.path.exists(out_name):
        shutil.rmtree(out_name)
    os.mkdir(out_name)
    print("created", out_name, flush=True)
    for root, dir, files in os.walk("../data/dataset{}_even_cut".format(tilesize)):
        print(os.path.split(root)[1])
        for file in files:
            if file.__contains__(".png"):
                tmp__im = cv2.imread(os.path.join(root, file))
                _, R, B = make_brown_image2(tmp__im)

                B = np.asarray(B)
                B = B[B.shape[0] // 8:B.shape[0] * 7 // 8, B.shape[1] // 8:B.shape[1] * 7 // 8]

                test = sum(B.flatten()) / 255
                if test < 20:
                    copy(os.path.join(root, file), os.path.join(out_name, file))


def insepct_hist(hist, tmp_im, threshold=1000):
    plt.clf()
    plt.plot(hist)
    plt.pause(0.1)
    cv2.imshow("tmp_img", tmp_im[:, :, 0])
    cv2.moveWindow("tmp_img", 1000, 200)
    cv2.imshow("colour_img", tmp_im)
    cv2.moveWindow("colour_img", 1000, 400)
    cv2.waitKey(0)


if __name__ == '__main__':
    main()
    notify.send("finnished {}".format(os.path.basename(__file__)))







code/im_process/compare.py

import csv
import os
from my_functions import *
from extract_64x64_imges_from_csv import *
import cv2
import glob
import time
from notify_run import Notify

notify = Notify()
# notify.register()
tilesize = 32
# path_data = "../data/fasit_data/"
path_data = "../data/fasit_data_{}".format(tilesize)
notify.endpoint = "https://notify.run/8aJj68rNqXHIeNPF"


def main():
    file_list = glob.glob(path_data + "*.png")
    print(len(file_list))
    list = []
    tot_process = 0
    tot_annotated = 0
    tot_miss_CD25 = 0
    tot_an_CD25 = 0
    tot_im_CD25 = 0
    tot_im = 0
    tot_an = 0
    tot_hit_CD25 = 0
    tot_hit = 0
    with open(path_data + "fasit_info.csv", "r") as csv_file:
        reader = csv.DictReader(csv_file, delimiter=',')
        for row in reader:
            # print(row)
            list.append(row)
    test_dict = np.zeros((20, 15))
    with open("../data/results.csv", 'w') as results_csv:
        fieldnames = ["img_name", "ID", "img_process_CD25", "annotated_CD25", "img_process_other", "annotated_other",
                      "img_process_total", "annotated_total", "estimate%", "hits", "hits_cd25", "hit%",
                      "hit_cd25%", "total_hit%", "total_miss%"]
        writer = csv.DictWriter(results_csv, fieldnames=fieldnames)
        writer.writeheader()
        for index, file in enumerate(file_list):
            print("image number {}/{}, pastent: {}".format(index + 1, len(file_list), os.path.split(file)[1])[:-4])
            im_marked, class_1, class_2, num_objects = im_process(file)
            name = os.path.split(file)[1]
            dict_row = lookup_name(list, name)
            xy_immune = eval(dict_row.get("immune_cells"))
            xy_other = eval(dict_row.get("cell_other"))

            hit, miss = position2(class_1, xy_other)
            hit_CD25, miss_CD25 = position2(class_2, xy_immune)

            tot = len(xy_other) + len(xy_immune)
            tot_improcess = len(class_1) + len(class_2)
            estmate_percentage = tot_improcess / (tot + 1 if tot == 0 else tot)

            tot_process += tot_improcess
            tot_annotated += tot
            tot_an_CD25 += len(xy_immune)
            tot_im_CD25 += len(class_2)
            tot_im += len(class_1)
            tot_an += len(xy_other)
            tot_hit_CD25 += len(hit_CD25)
            tot_hit += len(hit)
            #        fieldnames = ["img_name", "ID", "img_process_CD25", "annotated_CD25", "img_process_other", "annotated_other",
            #           "img_process_total", "annotated_total", "estimate%", "hits", "hits_cd25", "hit%",
            #           "hit_cd25%", "total_hit%", "total_miss%"]
            test_dict[int(dict_row.get("ID_anonym")[2:]), 0] = int(dict_row.get("ID_anonym")[2:])
            test_dict[int(dict_row.get("ID_anonym")[2:]), 1] += len(class_2)
            test_dict[int(dict_row.get("ID_anonym")[2:]), 2] += len(xy_immune)
            test_dict[int(dict_row.get("ID_anonym")[2:]), 3] += len(class_1)
            test_dict[int(dict_row.get("ID_anonym")[2:]), 4] += len(xy_other)

            test_dict[int(dict_row.get("ID_anonym")[2:]), 5] += tot_improcess
            test_dict[int(dict_row.get("ID_anonym")[2:]), 6] += tot
            test_dict[int(dict_row.get("ID_anonym")[2:]), 7] = round(
                test_dict[int(dict_row.get("ID_anonym")[2:]), 5] / test_dict[int(dict_row.get("ID_anonym")[2:]), 6], 3)
            test_dict[int(dict_row.get("ID_anonym")[2:]), 8] += len(hit)
            test_dict[int(dict_row.get("ID_anonym")[2:]), 9] += len(hit_CD25)

            test_dict[int(dict_row.get("ID_anonym")[2:]), 10] = round(  # hit% = hit_other / im_process_count
                test_dict[int(dict_row.get("ID_anonym")[2:]), 8] / test_dict[int(dict_row.get("ID_anonym")[2:]), 3], 3)
            tmp = test_dict[int(dict_row.get("ID_anonym")[2:]), 1]
            test_dict[int(dict_row.get("ID_anonym")[2:]), 11] = round(  # git_cd25% = hit_cd25 / im_process_count
                (test_dict[int(dict_row.get("ID_anonym")[2:]), 9] / tmp if tmp > 0 else tmp + 1), 3)

            test_dict[int(dict_row.get("ID_anonym")[2:]), 12] = round(  # hit% both= hits / im_process_count
                (test_dict[int(dict_row.get("ID_anonym")[2:]), 9] + test_dict[
                    int(dict_row.get("ID_anonym")[2:]), 8]) / (
                        test_dict[int(dict_row.get("ID_anonym")[2:]), 1] + test_dict[
                    int(dict_row.get("ID_anonym")[2:]), 3]), 3)
            out_dict = {"img_name": name, "ID": dict_row.get("ID_anonym"), "img_process_CD25": len(class_2),
                        "annotated_CD25": len(xy_immune), "img_process_other": len(class_1),
                        "annotated_other": len(xy_other),
                        "img_process_total": tot_improcess,
                        "annotated_total": tot,
                        "estimate%": estmate_percentage,
                        "hits": len(hit),
                        "hit%": len(hit) / (len(xy_other) + 1 if len(xy_other) == 0 else len(xy_other)),
                        "hits_cd25": len(hit_CD25), "hit_cd25%": len(hit_CD25) / (
                    len(xy_immune) + 1 if len(xy_immune) == 0 else len(xy_immune)),
                        "total_hit%": (len(hit) + len(hit_CD25)) / (tot + 1 if tot == 0 else tot)}
            writer.writerow(out_dict)
        final_results = {"img_name": "final_results", "img_process_CD25": tot_im_CD25,
                         "annotated_CD25": tot_an_CD25, "img_process_other": tot_im,
                         "annotated_other": tot_an,
                         "img_process_total": tot_process,
                         "annotated_total": tot_annotated,
                         "estimate%": tot_process / (tot_annotated + 1 if tot_annotated == 0 else tot_annotated),
                         "hits": tot_hit,
                         "hit%": tot_hit / (tot_im + 1 if tot_im == 0 else tot_im),
                         "hits_cd25": tot_hit_CD25,
                         "hit_cd25%": tot_hit_CD25 / (tot_im_CD25 + 1 if tot_im_CD25 == 0 else tot_im_CD25),
                         "total_hit%": (tot_hit + tot_hit_CD25) / (
                             tot_process + 1 if tot_process == 0 else tot_process),
                         "total_miss%": (1 - (tot_hit + tot_hit_CD25) / (
                             tot_process + 1 if tot_process == 0 else tot_process))}
        with open("../data/pat_res.csv", 'w') as f:
            fieldnames_pat = ["ID", "img_process_CD25", "annotated_CD25", "img_process_other", "annotated_other",
                              "img_process_total", "annotated_total", "estimate%", "hits_other", "hits_CD25",
                              "hit_other%",
                              "hit_CD25%", "hit_both%"]
            writer2 = csv.DictWriter(f, fieldnames=fieldnames_pat)
            writer2.writeheader()
            for i in range(test_dict.shape[0]):
                out_dict_pat = {"ID": "ID{}".format(int(test_dict[i, 0])), "img_process_CD25": test_dict[i, 1],
                                "annotated_CD25": test_dict[i, 2], "img_process_other": test_dict[i, 3],
                                "annotated_other": test_dict[i, 4],
                                "img_process_total": test_dict[i, 5],
                                "annotated_total": test_dict[i, 6],
                                "estimate%": test_dict[i, 7],
                                "hits_other": test_dict[i, 8],
                                "hits_CD25": test_dict[i, 9],
                                "hit_other%": test_dict[i, 10],
                                "hit_CD25%": test_dict[i, 11],
                                "hit_both%": test_dict[i, 12]}
                writer2.writerow(out_dict_pat)
            writer2.writerow({"ID": ""})
            out_dict_pat = {"ID": "{}".format("total:"), "img_process_CD25": sum(test_dict[:, 1]),
                            "annotated_CD25": sum(test_dict[:, 2]), "img_process_other": sum(test_dict[:, 3]),
                            "annotated_other": sum(test_dict[:, 4]),
                            "img_process_total": sum(test_dict[:, 5]),
                            "annotated_total": sum(test_dict[:, 6]),
                            "estimate%": sum(test_dict[:, 7]) / max(test_dict[:, 0]),
                            "hits_other": sum(test_dict[:, 8]),
                            "hits_CD25": sum(test_dict[:, 9]),
                            "hit_other%": sum(test_dict[:, 10]) / max(test_dict[:, 0]),
                            "hit_CD25%": sum(test_dict[:, 11]) / max(test_dict[:, 0]),
                            "hit_both%": sum(test_dict[:, 12]) / max(test_dict[:, 0])}
            writer2.writerow(out_dict_pat)
        writer.writerow({"img_name": ""})

        writer.writerow(final_results)
    print("-" * 50)
    print("total cells found by proccessing vs annotated: {} vs {}".format(tot_process, tot_annotated))
    print("estimate percentage total: {}".format(tot_process / tot_annotated))
    print("done")


def patientwise(path="../data/results.csv"):
    with open(path, 'r') as csvinput:
        with open("{}{}.csv".format(path[:-4], "patient"), 'w') as csvoutput:
            writer = csv.writer(csvoutput, lineterminator='\n')
            reader = csv.reader(csvinput)

            all = []
            row = next(reader)

            row.append()
            all.append(row)

            for row in reader:
                row.append(row[0])
                all.append(row)

            writer.writerows(all)


def position(im_process, annotated, radius=15):
    '''
    compares the position of each annotated to the im_process position
    :param im_process: list of xy coordinatess from image processing
    :param annotated: list of xy coordinatess from annotated images
    :param radius: threshold for distance to count as hit or miss
    :return: list of hit or miss
    '''
    # print(type(annotated))
    hit_miss = np.zeros((1, (len(annotated))))
    hit = []
    miss = []
    for index, (ax, ay) in enumerate(annotated):
        hit_miss[0, index] = 0
        hitted = False
        for x, y in im_process:
            if x - radius < ax < x + radius and (y - radius < ay < y + radius):
                hit.append((ax, ay))
                # print("{}/{}".format((x,y),(ax,ay)))
                hit_miss[0, index] = 1
                hitted = True
                break
        if not hitted:
            miss.append((ax, ay))
    # print("hit: {}, miss = {}, annotated: {}".format(sum(hit_miss[0,:]),len(hit_miss[0,:])-sum(hit_miss[0,:]),len(annotated)))
    # print("hit: {}, miss = {}, annotated: {}".format(len(hit),len(miss),len(annotated)))

    return hit, miss


def position2(im_process, annotated, radius=15):
    '''
    compares the position of each annotated to the im_process position
    :param im_process: list of xy coordinatess from image processing
    :param annotated: list of xy coordinatess from annotated images
    :param radius: threshold for distance to count as hit or miss
    :return: list of hit or miss
    '''
    hit_miss = np.zeros((1, (len(im_process))))
    hit = []
    miss = []
    for index, (x, y) in enumerate(im_process):
        hit_miss[0, index] = 0
        hitted = False
        for i, (ax, ay) in enumerate(annotated):
            if x - radius < ax < x + radius and (y - radius < ay < y + radius):
                hit.append((x, y))
                hit_miss[0, index] = 1
                hitted = True
                break
        if not hitted:
            miss.append((x, y))

    return hit, miss


def im_process(file):
    im_pwd = file  # os.path.join(root,file)
    # img = Image.open(im_pwd)
    img = cv2.imread(im_pwd)
    img_np = np.asarray(img)
    new_img, R_mask, B_mask = make_brown_image2(img_np)  # see function for values
    dist, markers1 = dist_mask(B_mask)
    dist[dist < 3] = 0
    dist = dist.astype("uint8")
    im_marked, num_objects, markers, class_1, class_2 = localmax_scipy(dist, img_np, R_mask)
    img[im_marked == 2] = (0, 0, 255)
    img[im_marked == 1] = (255, 0, 0)
    return img, class_1, class_2, num_objects


if __name__ == '__main__':
    main()
    notify.send("Done with comparing")







code/im_process/extract_64x64_imges_from_csv.py

import numpy
import cv2
import os
import glob
import sys
import csv
from collections import defaultdict
import ast
import time
from shutil import copyfile, copy
from notify_run import Notify

notify = Notify()
tilesize = 64
notify.endpoint = "https://notify.run/8aJj68rNqXHIeNPF"
save_path = "../data/fasit_data_{}".format(tilesize)
save_path_annotated = "../data/fasit_data"
data_location = "../data/labelbox_test_data"
if not os.path.exists(save_path):
    os.mkdir(save_path)
    print("created folder", save_path)


def main():
    # im_paths = glob.glob(save_path + "/*png")
    different_pat = []
    pat_id=0
    print("started", end='\r')
    with open("export-2019-06-07T10_32_13.006Z.csv", mode='r') as csv_file:  # export-2019-05-23T14_15_19.638Z old
        not_skipped = 0
        skipped = 0
        reader = csv.DictReader(csv_file, delimiter=',')
        if os.path.isfile(save_path_annotated + "/fasit_info.csv"):
            os.remove(save_path_annotated + "/fasit_info.csv")
        with open(save_path_annotated + "/fasit_info.csv", mode="w") as new_csv_file:
            fieldnames = ['image_name', 'ID_anonym', 'immune_cells', 'cell_other']
            writer = csv.DictWriter(new_csv_file, fieldnames=fieldnames)
            writer.writeheader()
            for i, row in enumerate(reader):
                if "Skip" in row.get("Label"):
                    skipped += 1
                    continue
                try:
                    a = ast.literal_eval(row.get("Label"))
                except:
                    print(row)
                    time.sleep(2)
                not_skipped += 1
                img_name = row.get("External ID")[1:]
                if not img_name[0:img_name.index("CD25")] in different_pat:
                    different_pat.append(img_name[0:img_name.index("CD25")] )
                    pat_id +=1
                immune_cell = a.get("CD25_marked")
                Cell_other = a.get("Cell_other")
                xy_immune_cell = get_xy(immune_cell, cell_type="immune cells", img_name=img_name)
                xy_Cell_other = get_xy(Cell_other, cell_type="other cells")

                prepare_for_comparision(img_name, xy_Cell_other, xy_immune_cell, writer, pat_id,
                                        copy_path=data_location, save_path=save_path_annotated)
                extract_im64(data_location, img_name, xy_immune_cell, "CD25", square=tilesize // 2,
                             save_folder=save_path) if len(xy_immune_cell) > 0 else ()
                extract_im64(data_location, img_name, xy_Cell_other, "cell_other", square=tilesize // 2,
                             save_folder=save_path) if len(xy_Cell_other) > 0 else ()

    print("done")


def prepare_for_comparision(img_name, xy_Cell_other, xy_immune_cell, writer, not_skipped,
                            copy_path="../data/data_location", save_path="../data/fasit_data"):
    '''
    :param img_name: image name (*.png)
    :param xy_Cell_other: list with not immune cells
    :param xy_immune_cell: list with immunce cells
    :param save_path: where images will be copied to and csv file saved
    '''
    if not os.path.exists(save_path):
        os.mkdir(save_path)
        print("created folder {}".format(save_path))
    copy_path_img = "{}/{}".format(copy_path, img_name)
    save_file_path = os.path.join(save_path, img_name)
    if not os.path.isfile(save_file_path):
        copy(copy_path_img, save_file_path)
    pat_id = not_skipped
    new_dict = {"image_name": img_name, "ID_anonym": "ID{}".format(pat_id), "immune_cells": xy_immune_cell,
                "cell_other": xy_Cell_other}
    writer.writerow(new_dict)


def lookup_name(list, name):
    '''
    :param list: list containing dictionaries
    :param name: image name to find
    :return: dictionary containg name
    '''
    for row in list:
        row_name = row.get("image_name")
        if row_name == name:
            return row
    print("name {} not found".format(name))
    return []


def extract_im64(folder_path, img_name, xy_lst, cell_class, square=32, save_folder="../data/test_data_crop"):
    '''
    saves cropped images into folder
    :param im_path: path to image
    :param xy_lst: list of points
    :param square: padding and crop size. crop size 2xsquare, example square=32 gives a img of size 64x64
    '''
    assert os.path.join(folder_path, img_name)
    im_full = cv2.imread(os.path.join(folder_path, img_name))
    im_pad = cv2.copyMakeBorder(im_full, square, square, square, square, cv2.BORDER_REFLECT101)
    # cv2.imshow("padded", im_pad)
    # cv2.imshow("org", im_full)
    # cv2.waitKey(0)
    # save_folder = "{}_{}".format(save_folder, 2 * square)
    class_save_path = os.path.join(save_folder, cell_class)
    if not os.path.exists(save_folder):
        os.mkdir(save_folder)
        print("created folder: " + save_folder)
    if not os.path.exists(class_save_path):
        os.mkdir(class_save_path)
        print("created folder: " + class_save_path)
    for index, (y, x) in enumerate(xy_lst):
        # print(x, y)
        x += square
        y += square
        sliced_im = im_pad[x - square:x + square, y - square:y + square]
        save_name = os.path.join(class_save_path, "{}--{}x{}.png".format(img_name[:-4], x, y))
        cv2.imwrite(save_name, sliced_im)

        # cv2.imshow("part_im", sliced_im)
        # cv2.waitKey(0)


def get_xy(dict_xy, cell_type=None, img_name="Not_Given"):
    '''
    :param dict_xy: dictionary which looks like: [{'geometry': {'y': 143, 'x': 182}}, ... ]
    :return: list containing [x,y]
    '''
    xy = []
    if dict_xy == None:
        # print("cell type {} empty in image {}".format(cell_type,img_name))
        return xy
    try:
        [xy.append((g_row.get('geometry').get('x'), g_row.get('geometry').get('y'))) for g_row in dict_xy]
    except:
        print("error, printing dict", dict_xy)
        # time.sleep(2)
    return xy


def iteratedict(d):
    for k, v in d.items():
        if isinstance(v, dict):
            iteratedict(v)
        else:
            if k == "Label":
                # print(k,":",v)
                test_point = v[2:v.index("}}]") + 2]
                cell_center = v[v.index("centercell"):v.rindex("}}]") + 2]
                print(test_point)


if __name__ == '__main__':
    print("starting")
    main()
    notify.send("done extracting from csv")
    sys.exit()







code/im_process/fasit_data_split.py

import os
import glob
import cv2
from my_functions import *
import sys

tilesize = 64
path = "../data/fasit_data"
out_path = "../data/Test_data_{}_folders".format(tilesize)
check_folder(out_path)


def main():
    assert os.path.exists(path)
    for i, (root, dirs, files) in enumerate(os.walk(path)):
        for index, file in enumerate(files):
            if file.__contains__(".png"):
                # print(file)
                out_folder_parent = "{}/{}".format(out_path, file[0:file.index("_CD25")])
                check_folder(out_folder_parent)
                out_folder = "{}/{}".format(out_folder_parent, file[0:file.index(".png")])
                print(out_folder)
                check_folder(out_folder)
                out_tmp = os.path.join(out_folder, file)
                # print(out_tmp)
                im_to_split = cv2.imread(os.path.join(root, file))
                for x in range(0, im_to_split.shape[0], tilesize):  # range(im_to_split.shape[1]//64-1):
                    for y in range(0, im_to_split.shape[1], tilesize):  # for y in range(im_to_split.shape[0]//64-1):
                        tmp_im = im_to_split[x:x + tilesize, y:y + tilesize]
                        name = "{}--{}-{}.png".format(out_tmp[:-4], x, y)
                        cv2.imwrite(name, tmp_im)

    print("done")
    sys.exit()
    pass


if __name__ == '__main__':
    main()







code/im_process/get_exact_area.py

import time
import os
# vipshome = "C:\\Users\\rik_1\\Documents\\master_filer\\vips-dev-8.6\\bin"
# os.environ['PATH'] = vipshome + ';' + os.environ['PATH']
import pyvips
import numpy as np
import cv2
import matplotlib.pyplot as plt
import inspect

Path_parent_folder = '../../../../../home/prosjekt/Histology/UROCD25/'
tile_size = 512
dir_root = os.path.dirname(os.path.abspath(__file__))


def main():
    folder_name = "../data/dataset_small_2"
    check_folder(os.path.join(dir_root, folder_name + str(tile_size)))
    check_folder(os.path.join(dir_root, folder_name + str(tile_size), "delete_image"))
    check_folder(os.path.join(dir_root, folder_name + str(tile_size), "save_image"))
    # check_folder("delete_image")
    saved_image_folder_parent = os.path.join(dir_root, folder_name + str(tile_size), "save_image")
    # folders = os.listdir(saved_image_folder_parent)
    image_paths = "{}{}".format(Path_parent_folder, "3919_03_F - bra")  # specify name
    tmp_path = find_all_images(image_paths)
    i = 1
    time_1 = time.time()
    out = tmp_path[tmp_path.index('UROCD25/') + len('UROCD25/'):len(tmp_path)]
    try:
        print("loop number: {}".format(i))
        x1, y1 = 69175, 89015
        x2, y2 = 71662, 92359
        tmp_im = pyvips.Image.new_from_file(tmp_path).extract_area(x1, y1, x2 - x1,
                                                                   y2 - y1)  # , level=0)#, autocrop=True)
        print(tmp_im.width)
        print(tmp_im.height)
        tmp_im = tmp_im.flatten()
        process_split(tmp_im, out, folder_name, True)

    except Exception as e:
        print(e)
        print("\ncurrent path: {}".format(tmp_path))

    print(" eta: {}".format(round((time.time() - time_1)
                                  * (len(image_paths) - i) / i), 1), end='\r')
    i += 1
    check_folder("save_image")


def check_folder(path):
    if not os.path.exists(path):
        if not os.path.isdir(path):
            print("folder: {}, did not exist. Trying to create".format(path))
            os.mkdir(path)
    else:
        pass


def process_split(im, current_path, folder_name, save_images=False):
    x = 0
    y = 0
    index = 0
    while (y <= im.height - (tile_size + 1)):
        im_tmp = im.extract_area(x, y, tile_size, tile_size)
        precent = im_tmp.percent(10)
        # print(precent)

        if precent < 200 and precent > 2 and save_images:
            path = "{}{}/{}".format(folder_name, str(tile_size), "save_image")
            # print(os.path.splitext(current_path)[0].split('/')[1])
            check_folder(os.path.join(path, os.path.splitext(current_path)[0].split('/')[0]))
            save_path = '{}/{}-{}-{}.png'.format(path, os.path.splitext(current_path)[0], x, y)
            # im_tmp = im_tmp.colourspace("b-w")
            im_tmp.pngsave(save_path)
            index += 1
            print(index)
        else:  # images that is ignored
            pass
            # print(os.path.splitext(current_path)[0].split('/')[1])
            # path = "{}{}/{}".format("dataset_small",str(tile_size),"delete_image")
            # check_folder(os.path.join(path,os.path.splitext(current_path)[0].split('/')[0]))
            # save_path = '{}/{}-{}-{}.png'.format(path, os.path.splitext(current_path)[0], x, y)
            # # print(os.path.join(path,current_path[:-4],"image_{}x{}.png".format(x,y)))
            # # print(save_path)
            # im_tmp.pngsave(save_path)
            # print_progress(x, y)
        if x <= (im.width - (tile_size + 1)):
            x += tile_size
        else:
            x = 0
            y += tile_size

        if index == 630:
            break


def find_all_images(Path_parent_folder):
    i = 0
    empty = []
    image_paths = []
    loop = 0
    for directory, folder, files in os.walk(Path_parent_folder):  # folder
        loop += 1
        # folder_path = os.path.join(Path_parent_folder, directory)
        CD25_file = ""
        for tmp_file in files:
            if "CD25" in tmp_file:
                CD25_file = tmp_file
                image_paths.append(os.path.join(directory, CD25_file))
            else:
                pass
        if CD25_file == "":
            empty.append(directory)
            continue
        else:
            i += 1
    return image_paths


if __name__ == "__main__":
    main()







code/im_process/Get_images_from_scn.py

import time
import os
# vipshome = "C:\\Users\\rik_1\\Documents\\master_filer\\vips-dev-8.6\\bin" # for Windows
# os.environ['PATH'] = vipshome + ';' + os.environ['PATH']
import pyvips
import numpy as np
import cv2
import matplotlib.pyplot as plt
import inspect
import argparse
import csv

Path_parent_folder = '../../../../../home/prosjekt/Histology/UROCD25/'
import datetime
import glob
import shutil

tile_size = 512
dir_root = os.path.dirname(os.path.abspath(__file__))
print(dir_root)


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--num-patients", type=int, default=90,
                        help="number of patients the program will go over (default 90)", metavar="N")
    parser.add_argument("--images-each", type=int, default=630,
                        help="number of images to extract from each patient, -1 for all (default 630)", metavar="N")
    args = parser.parse_args()
    print(args)
    print("program will run over {} patients".format(args.num_patients))
    print("program will extract {} each".format(args.images_each))
    target_path = "../data/dataset_small_delete" + str(tile_size)
    target_path = target_path + "_full" if args.images_each < 0 else target_path
    print("target path: {}".format(target_path))
    # print("DELETING")
    # shutil.rmtree(os.path.join(dir_root, target_path))
    # print("done deleting")
    # return
    check_folder(os.path.join(dir_root, target_path))
    check_folder(os.path.join(dir_root, target_path, "delete_image"))
    check_folder(os.path.join(dir_root, target_path, "save_image"))
    saved_image_folder_parent = os.path.join(dir_root, target_path, "save_image")
    folders = os.listdir(saved_image_folder_parent)
    image_paths = find_all_images(Path_parent_folder)
    time_1 = time.time()
    print(folders)
    for index, tmp_path in enumerate(image_paths):
        if index == args.num_patients or index == len(image_paths):
            print("finnished splitting {} leica images".format(index))
            break
        out = tmp_path[tmp_path.index('UROCD25/') + len('UROCD25/'):len(tmp_path)]
        try:
            print("loop number: {}".format(index + 1))
            tmp_im = pyvips.Image.new_from_file(tmp_path, level=0, autocrop=True)
            tmp_im = tmp_im.flatten()
            # print("width: {}, height: {}".format(tmp_im.width, tmp_im.height))
            # tmp_im = remove_white_borders(tmp_im.flatten())
            # print("NEW width: {}, NEW height: {}".format(tmp_im.width, tmp_im.height))
            process_split(tmp_im, out, args, save_images=True, target_path=target_path)
            remove_folder_name = "{}/{}/{}".format(target_path, "save_image", os.path.splitext(out)[0].split('/')[0])
            if os.path.exists(remove_folder_name):
                shutil.rmtree(remove_folder_name)
                print("deleted folder", remove_folder_name)
            else:
                print("fodler did not exist", remove_folder_name)

        except Exception as e:
            print(e)
            print("\ncurrent path: {}".format(tmp_path))

        print(" eta: {}".format(round((time.time() - time_1) *
                                      (len(image_paths) - (index + 1)) /
                                      (index + 1)), 1), end="\r")

    print("program finnished")


def check_folder(path):
    if not os.path.exists(path):
        if not os.path.isdir(path):
            print("folder: {}, did not exist. Trying to create".format(path))
            os.mkdir(path)
    else:
        pass


def find_all_images(Path_parent_folder):
    i = 0
    empty = []
    image_paths = []
    loop = 0
    for directory, folder, files in os.walk(Path_parent_folder):  # folder

        loop += 1
        # print("current i: {}, current loop {}\t".format(i,loop),end='\r')
        # folder_path = os.path.join(Path_parent_folder, directory)
        CD25_file = ""
        for tmp_file in files:
            if "CD25" in tmp_file:
                CD25_file = tmp_file
                image_paths.append(os.path.join(directory, CD25_file))
            else:
                pass
        if CD25_file == "":
            empty.append(directory)
            continue
        else:
            i += 1
    # print("\nno images found in {}".format(empty))
    # print(" images found in {}".format(image_paths--))
    return image_paths


def process_split(im, current_path, args, save_images=False, target_path="../data/dataset_512"):
    x = 0
    y = 0
    index = 0
    t1 = datetime.datetime.now()
    saved = 0
    deleted = 0
    num_each = np.inf if args.images_each < 1 else args.images_each
    path_Test = "{}/{}/{}".format(target_path, "save_image", os.path.splitext(current_path)[0].split('/')[0])
    if os.path.exists(path_Test) and len(glob.glob(path_Test + "/*png")) >= num_each:
        print("{} number of picture already exists for {}".format(args.images_each, os.path.splitext(current_path)[0]))
        return
    else:
        print(os.path.splitext(current_path)[0].split('/')[0])
        # time.sleep(5)

    print("num of images each = {}".format(num_each))
    path_savefolder = "{}/{}".format(target_path, "save_image")
    path_deletefolder = "{}/{}".format(target_path, "delete_image")
    check_folder(os.path.join(path_savefolder, os.path.splitext(current_path)[0].split('/')[0]))
    check_folder(os.path.join(path_deletefolder, os.path.splitext(current_path)[0].split('/')[0]))
    while (y <= im.height - (tile_size * 2)):
        im_tmp = im.extract_area(x, y, tile_size, tile_size)
        precent = im_tmp.percent(10)
        # print(precent)

        if 5 < precent < 200 and save_images:
            save_path = '{}/{}-{}-{}.png'.format(path_savefolder, os.path.splitext(current_path)[0], x, y)
            index += 1
            saved += 1
            if os.path.isfile(save_path):
                pass
            else:
                # im_tmp = im_tmp.colourspace("b-w")
                im_tmp.pngsave(save_path)

        elif save_images:  # images that is ignored
            save_path = '{}/{}-{}-{}.png'.format(path_deletefolder, os.path.splitext(current_path)[0], x, y)
            deleted += 1
            if os.path.isfile(save_path):
                pass
            else:
                im_tmp.pngsave(save_path)
                pass

        if x <= (im.width - (tile_size * 2)):
            x += tile_size
        else:
            x = 0
            y += tile_size

        print_progress(index, args.images_each) if num_each > 0 else print_progress(index)
        # print_progress(100*y/im.height, 100*x/im.width)
        if index == num_each:
            break
    time_used = datetime.datetime.now() - t1
    print("deleted images: {}, saved images: {}, time used {}".format(deleted, saved, time_used))
    dict = {"Patient": os.path.splitext(current_path)[0], "deleted": deleted, "saved": saved, "time_used": time_used}
    fieldnames = ['Patient', 'deleted', 'saved', 'time_used']
    if not os.path.isfile("stats.csv"):
        with open("stats.csv", 'w+') as f:
            writer = csv.DictWriter(f, fieldnames=fieldnames)
            writer.writeheader()
            writer.writerow(dict)
    else:
        with open("stats.csv", 'a') as f:
            writer = csv.DictWriter(f, fieldnames=fieldnames)
            writer.writerow(dict)


def print_progress(x, y=None):
    stri = "Current: {} x {}".format(x, y)
    print(stri, end='\r')


# remove white
#
#
#
# def remove_white_borders(im):
#     rad_top_down = 0  # 86708
#     rad_down_top = 0
#     rad_right_left = 0
#     rad_left_right = 0
#     middle_height = im.height // 2
#     middle_width = im.width // 2
#     step = 1000
#     # print(im(middle_width, middle_height)[1])
#     while (im(middle_width, middle_height)[1] == 255):
#         if middle_height+10000>im.height and step>0:
#             step *= -1
#         middle_height += step
#     middle_width = (im.width // 2) #- 10000
#     # while (im(middle_width, middle_height)[1] == 255):
#     #     if middle_width+10000>im.height and step>0:
#     #         step *= -1
#     #     middle_width += step
#     # print(im(middle_width, middle_height)[1])
#
#
#     # top down
#     if (im(im.width // 2, 0)[1] == 255): # top of image == white
#         start = 0
#         end = im.height//2  # max value
#         while(start <= end):
#             # faster convergance
#             rad_top_down = (start + end) // 2
#             if im(middle_width, rad_top_down)[2] == 255:
#                 start = rad_top_down + 1
#             else:
#                 end = rad_top_down - 1
#             # print("current operation top_down", end='\r')
#         # minus 1 to make sure we don't remove a part of the image.
#         rad_top_down -= 1
#         # print("done with top dow/n, resulting in {}".format(rad_top_down))
#
#     # bottom and up
#     if im(middle_width, im.height - 1)[1] == 255:
#         start = im.height - 1
#         end = im.height // 2
#         while start >= end:
#             rad_down_top = (start + end) // 2
#             if im(middle_width, rad_down_top)[1] == 255:
#                 start = rad_down_top - 1
#             else:
#                 end = rad_down_top + 1
#             # print("current operation down_top start: {}, end: {}, rad_down_top: {}".format(start, end,rad_down_top), end='\r')
#         # print("done with down_top, resulting in {}".format(rad_down_top))
#
#     # right towards left
#     if im(im.width - 1, middle_height)[1] == 255:
#         start = im.width - 1
#         end = im.width//2
#         while start >= end:
#             rad_right_left = (start + end) // 2
#             if im(rad_right_left, middle_height)[1] == 255:
#                 start = rad_right_left - 1
#             else:
#                 end = rad_right_left + 1
#         rad_right_left +=1
#             # print("current operation right_left start: {}, end: {}, rad_down_top: {}".format(start, end,rad_right_left), end='\r')
#         # rad_right_left -= 1
#
#     # left towards right
#     if im(0, middle_height) == [255, 255, 255]:
#         start = 0
#         end = im.width//2
#         while start <= end:
#             rad_left_right = (start + end) // 2
#             if im(rad_left_right, middle_height)[1] == 255:
#                 start = rad_left_right + 1
#             else:
#                 end = rad_left_right - 1
#             # print("current operation left_right", end='\r')
#         # rad_left_right
#
#     x = rad_left_right
#     y = rad_top_down
#     x_width = rad_right_left - x
#     y_height = rad_down_top - y
#     # if x_width < 6000:
#     #     im.pngsave("im_{}X{}.png".format(x_width,y_height))
#     # making it an even number
#     if x_width % 2 != 0:
#         x_width += 1
#     if y_height % 2 != 0:
#         y_height += 1
#     # print("x: {} y: {} x_width: {} y_width: {}".format(x, y, x_width, y_height))
#     # time.sleep(2)
#     return im.extract_area(x, y, x_width, y_height)
#


if __name__ == "__main__":
    main()







code/im_process/my_functions.py

import time
import numpy as np
import cv2
import PIL.Image as Image
import matplotlib.pyplot as plt
import scipy.ndimage as ndimage
import scipy
import os


def debug(text=None, close=False):
    np.set_printoptions(threshold=np.inf)
    with open('out.txt', 'w') as f:
        print(text, file=f)


def background(im, a=7, b=3, c=5, d=8, e=2):
    img = im
    kernel = np.ones((b, b), np.uint8)
    thresh = cv2.threshold(cv2.cvtColor(img, cv2.COLOR_RGB2GRAY), 0, 1, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
    close = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=a)
    thresh = cv2.erode(close, kernel, iterations=e)
    # thresh = cv2.erode(thresh,None,iterations=3)
    # thresh = cv2.dilate(thresh,None,iterations=3)
    opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=c)
    thresh = cv2.dilate(opening, kernel, iterations=d)
    # thresh = cv2.dilate(opening, kernel, iterations=1)
    # thresh = cv2.dilate(thresh,kernel,iterations=3)

    im_png = img
    im_png *= thresh[..., None]
    return im_png


def combine_org_mask(im_org, im_mask):
    '''

    :param im_org:
    orignial RGB image
    :param im_mask:
    2D-array, binary same size as original image
    background is calssified as 0
    :return:
    red colour on top of a copy of original image
    '''
    out = np.asarray(im_org.copy(), dtype=np.int)
    mask = np.asarray(im_mask.copy(), dtype=np.int)
    mask_inv = np.asarray(im_mask.copy(), dtype=np.int)
    if len(mask.shape) == 3:
        mask = np.asarray(im_mask.copy(), dtype=np.int)
        mask_inv = np.asarray(im_mask.copy(), dtype=np.int)
        mask[im_mask >= 1] = 255
        mask[im_mask == 0] = 0
        out += mask
    else:
        mask_inv[im_mask == 0] = 1
        mask_inv[im_mask >= 1] = 0
        mask[im_mask >= 1] = 255
        mask[im_mask == 0] = 1
        out[:, :, 0] *= mask
        out[:, :, 1] *= mask_inv
        out[:, :, 2] *= mask_inv
    # out = im_org.copy() * (im_mask[..., None].astype("uint8"))

    return out.astype("uint8")


def dist_mask(mask_org):
    '''
    :param mask_org: binary or only 0 and 255
    :return: distance transform
    can return background or foreground
    '''
    kernel1 = np.ones((3, 3), np.uint8)

    mask = (mask_org.copy() * 255).astype("uint8")
    mask[mask_org >= 1] = 0
    mask[mask_org == 0] = 255
    # remove noise
    connectivity = 0
    closing = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel1, iterations=2)
    # closing = cv2.morphologyEx(closing, cv2.MORPH_CLOSE, kernel1, iterations=1)
    # nlabels, labels, stats, centroids = cv2.connectedComponentsWithStats(closing, connectivity, cv2.CV_32S)

    # make clear distinction of the background
    sure_bg = cv2.dilate(closing, kernel1, iterations=0)

    dist_transform = cv2.distanceTransform(cv2.bitwise_not(closing), cv2.DIST_L2, 5)  # *255).astype("uint8")

    # print(type(dist_transform[0,0]))
    _, sure_fg = cv2.threshold(dist_transform, 0.2 * dist_transform.max(), 255, 0)

    sure_fg = np.uint8(sure_fg)
    unknown = cv2.subtract(sure_bg, sure_fg)
    _, markers = cv2.connectedComponents(sure_fg)

    # Add one to all labels so that sure_background is not 0, but 1
    markers = markers + 1

    # Mark the region of unknown with zero
    markers[unknown == 255] = 0

    return dist_transform, markers


def localmax_scipy(im_mask, im_org, R):
    '''
    :param im_mask: distance transform of a mask
    :param im_org:
    :return:
    '''
    # img_label = np.zeros(im_org.copy().shape).astype("uint8")
    labeled, num_objects = ndimage.label(im_mask.astype("uint8"))
    slices = ndimage.find_objects(labeled)  # im_mask.astype("uint8"))
    img_label = np.zeros(im_mask.shape).astype("uint8")
    printed = []
    # R_pad = np.zeros([R.shape[0]+60,R.shape[1]+60]).astype("uint8")
    # R_pad[30:542,30:542] = np.copy(R).astype("uint8")#np.zeros(im_mask.shape).astype("uint8")
    square = 32
    R_pad = cv2.copyMakeBorder(R, square, square, square, square, cv2.BORDER_REFLECT101)

    class_1 = []
    class_2 = []
    for dy, dx in slices:
        x_center = (dx.start + dx.stop - 1) // 2
        y_center = (dy.start + dy.stop - 1) // 2
        #     coords.append((x_center, y_center))
        C1 = (x_center, y_center)
        exist = False
        for C2 in printed:
            if is_closer_than(C1, C2, 16):
                exist = True
                break
        if not exist:
            # try:
            printed.append(C1)
            hw = 16
            R_crop = R_pad[y_center + 30 - hw:y_center + 30 + hw, x_center + 30 - hw: x_center + 30 + hw]
            # hist = cv2.calcHist([R_crop], [0], None, [255], [0, 256],accumulate=0)
            test_value = sum(np.ravel(R_crop[R_crop >= 1])) / 255

            # if sum(hist[230:])[0] > 200:
            if (test_value > 20 and test_value < 300):
                colour = 2  # positive cd25
                class_2.append(C1)
                # colour = (0, 0, 255)

            else:
                class_1.append(C1)
                colour = 1  # non-positive
                # colour = (0, 0, 255)
            # cv2.rectangle(img_label,(x_center-30,y_center-30),(x_center+30,y_center+30), colour, thickness=2)
            cv2.circle(img_label, C1, 2, colour, thickness=2)

    # im_mark = combine_org_mask(im_org.copy(),im_mark)
    return img_label, num_objects, printed, class_1, class_2


def is_closer_than(C1, C2, dist):
    return abs(C1[0] - C2[0]) < dist and abs(C1[1] - C2[1]) < dist


def mask_eq(im, smooth=0.5):
    im_out = im.copy()
    img = background(im.copy())
    img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
    img = cv2.equalizeHist(img)
    img = cv2.GaussianBlur(img, (3, 3), smooth)
    mask = cv2.inRange(img, 1, 60)
    mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, np.ones((3, 3)), iterations=2)
    mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, np.ones((3, 3)), iterations=3)
    im_out = combine_org_mask(im_out, mask)
    return im_out, mask


def make_brown_image2(im, smooth=0.5, erode=True, morph=True):
    '''
    :param im: image
    :param smooth: param for guassion smoothing
    :param erode: True or False
    :param morph: True or False
    :return: im_out currently same as image in, R_mask, B_mask
    '''
    im_out = im.copy()
    img = im.copy()
    img = cv2.GaussianBlur(img, (3, 3), smooth)
    # img = background(img,**kvargs)
    hb_min, hb_max = 95, 150
    sb_min, sb_max = 14, 255
    vb_min, vb_max = 0, 230

    # hr_min, hr_max = 10,60
    # sr_min, sr_max = 30,230
    # vr_min, vr_max = 30,230

    # hr_min, hr_max = 0, 45 # old numbers for brown
    # sr_min, sr_max = 37, 100
    # vr_min, vr_max = 69, 193
    hr_min, hr_max = 0, 45
    sr_min, sr_max = 67, 122
    vr_min, vr_max = 30, 130
    R, _ = create_mask_hsv(img.copy(), Hmin=hr_min, Hmax=hr_max, Vmin=vr_min, Vmax=vr_max, Smin=sr_min, Smax=sr_max)
    B, _ = create_mask_hsv(img.copy(), Hmin=hb_min, Hmax=hb_max, Vmin=vb_min, Vmax=vb_max, Smin=sb_min, Smax=sb_max)
    B1, _ = create_mask_hsv(im.copy(), Hmin=hb_min, Hmax=hb_max, Vmin=vb_min, Vmax=vb_max, Smin=sb_min, Smax=sb_max)

    # im_out[B == 255] = (0, 0, 255)
    # im_out[R == 255] = (255, 0, 0)
    kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
    if morph:
        B = cv2.morphologyEx(B, cv2.MORPH_OPEN, kernel, iterations=1)  # np.ones((3, 3))
        kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
        B = cv2.morphologyEx(B, cv2.MORPH_CLOSE, kernel, iterations=1)  # np.ones((3, 3))
    if erode:
        k = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
        B = cv2.morphologyEx(B, cv2.MORPH_ERODE, k, iterations=1)

    return im_out, R, B


def create_mask_hsv(img, Hmin=0, Hmax=0, Vmin=0, Vmax=0, Smin=0, Smax=0):
    img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
    low_background = np.array([Hmin, Smin, Vmin])
    high_background = np.array([Hmax, Smax, Vmax])
    mask = cv2.inRange(img_hsv, low_background, high_background)
    result = cv2.bitwise_and(img, img, mask=mask)  # removed background, kept original image
    return mask, result


def check_folder(path):
    if not os.path.exists(path):
        if not os.path.isdir(path):
            print("folder: {}, did not exist. Trying to create".format(path))
            os.mkdir(path)
    else:
        pass


##arkiv

def make_brown_image(im, terskel_red=-28, terskel_blue=18, smooth=0.5, **kvargs):
    im_out = im.copy()
    img = im.copy()
    img = cv2.GaussianBlur(img, (3, 3), smooth)
    img = background(img, **kvargs)
    img_gray = cv2.cvtColor(img.copy(), cv2.COLOR_RGB2GRAY)

    R = np.zeros(img_gray.shape)
    B = np.zeros(img_gray.shape)
    Back = np.zeros(img_gray.shape)
    red_count = 0
    blue_count = 0
    stepsize = 1
    oldx, oldy = 0, 0
    for x in range(0, img.shape[0] - 1, stepsize):
        for y in range(0, img.shape[1] - 1, stepsize):
            try:
                oldx = x
                oldy = y
                if img[x, y][2] != 0:
                    val1 = np.float(img[x, y][0] / img[x, y][2])  # blue / red
                else:
                    val1 = 1
                    # raise(Exception)
                blue = np.int(img[x, y][0])
                red = np.int(img[x, y][2])
                val2 = -blue + red
                # print(val2)
                if img_gray[x, y] >= 240:  # background img_gray[x,y] <= 7 or
                    pass
                    # img[x,y] = [0, 0, 0]
                elif val2 >= terskel_blue and img_gray[x, y] < 230:  # val > terskel: # blue / red
                    red_count += 1
                    B[x, y] = 255
                    im_out[x, y] = [255, 0, 0]
                elif val2 < terskel_red:  # and img_gray[x,y]<210: # blue # al1>terskel and
                    R[x, y] = 255
                    im_out[x, y] = [0, 0, 255]
                    blue_count += 1
                else:
                    pass
                    # imgg[x,y] =[0, 0, 0]
            except Exception as e:
                print(e)
                print("problem: {}x{}, image shape: {}".format(oldx, oldy, img.shape[0:1]))
    im_out[img <= 3] = 0
    B = cv2.morphologyEx(B, cv2.MORPH_OPEN, np.ones((5, 5)), iterations=1)
    B = cv2.morphologyEx(B, cv2.MORPH_CLOSE, np.ones((5, 5)), iterations=1)
    return im_out, B, R, [blue_count, red_count]


def blob(org_im, im_mask):
    # Set up the detector with default parameters.
    params = cv2.SimpleBlobDetector_Params()
    params.filterByArea = False  # False
    params.minArea = 100  # The dot in 20pt font has area of about 30
    params.maxArea = 700  # The dot in 20pt font has area of about 30
    params.filterByCircularity = False
    params.minCircularity = 0.5
    params.filterByConvexity = False
    # params.minConvexity = 0.8
    params.filterByInertia = False
    # params.minInertiaRatio = 0.4
    detector = cv2.SimpleBlobDetector_create(params)

    # Detect blobs.
    keypoints = detector.detect(im_mask)

    # Draw detected blobs as red circles.
    # cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS ensures the size of the circle corresponds to the size of blob
    print(keypoints)
    im_with_keypoints = np.array([])
    im_with_keypoints = cv2.drawKeypoints(im_mask, keypoints, im_with_keypoints, (0, 0, 255),
                                          cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
    print(type(im_with_keypoints))
    print(im_with_keypoints.shape)

    # Show keypoints
    new = np.hstack((im_with_keypoints, org_im))
    cv2.imshow("Keypoints", new)
    cv2.waitKey(1)


def imshow_components(labels):
    # Map component labels to hue val
    label_hue = np.uint8(179 * labels / np.max(labels))
    blank_ch = 255 * np.ones_like(label_hue)
    labeled_img = cv2.merge([label_hue, blank_ch, blank_ch])

    # cvt to BGR for display
    labeled_img = cv2.cvtColor(labeled_img, cv2.COLOR_HSV2BGR)

    # set bg label to black
    labeled_img[label_hue == 0] = 0

    cv2.imshow('labeled.png', labeled_img)
    cv2.waitKey(400)







code/im_process/pixel_classify.py

import time
import os

if os.name == 'nt':
    print("current opperating system: windows")
    vipshome = "C:/Users/Fredrik/Desktop/vips-dev-8.6/bin"
    os.environ['PATH'] = vipshome + ';' + os.environ['PATH']
else:
    print("current opperating system: Linux")
from Get_images_from_scn import find_all_images, check_folder
import pyvips
import numpy as np
import cv2

Path_parent_folder = '../../../../../home/prosjekt/Histology/UROCD25/'
assert (os.path.exists(Path_parent_folder))

dir_root = os.path.dirname(os.path.abspath(__file__))


def main():
    # for cur in range(20, 40):
    cur=2
    t = time.time()

    im_path = ""
    if not os.path.exists(os.path.join(dir_root, "pixel_result")):
        os.mkdir(os.path.join(dir_root, "pixel_result"))
    if os.name == 'nt':
        "C:/Users/Fredrik/Desktop/3919_03_F - bra"
        im_path = os.path.join("C:/Users/Fredrik/Desktop/3919_03_F - bra",
                               "3919_03_F_CD25_2016-08-09 13_40_41.scn")
    else:
        # lst = find_all_images(Path_parent_folder)
        # im_path = lst[cur]
        im_path = os.path.join(Path_parent_folder, "3919_03_F - bra", "3919_03_F_CD25_2016-08-09 13_40_41.scn")
    print(im_path)
    assert(os.path.exists(im_path))
    im = pyvips.Image.new_from_file(im_path, level=4, autocrop=True)
    im_png = "pixel_result/3919_03_F - bra {}_{}.png".format(im.get('slide-level'), cur)
    if not os.path.exists(im_png):
        im.pngsave(im_png)
    img = cv2.imread(im_png)
    new_img = make_brown_image(img)
    if os.name == 'nt':
        # img_back = background(img)
        save_path = "pixel_result/3919_03_F_pixlewise4.png"

    else:
        save_path = "{}/{}{}{}".format(os.path.join(dir_root, "pixel_result"), 'pixelWise_', cur, ".png")
        save_path_org = "{}/{}{}".format(os.path.join(dir_root, "pixel_result"),
                                         '3919_03_F_CD25_2016-08-09 13_40_41', ".png")
        print(save_path)
    cv2.imwrite(save_path, new_img)

    # small = cv2.resize(new_img, (0, 0), fx=0.5, fy=0.5)

    print("time spent: {} sec".format(time.time() - t))


def make_brown_image(im, terskel=1.02, smooth=None):
    img = cv2.GaussianBlur(im.copy(), (3, 3), 0.6)
    img = background(img)
    img_gray = cv2.cvtColor(img.copy(), cv2.COLOR_RGB2GRAY)
    red_count = 0
    blue_count = 0
    stepsize = 1
    oldx, oldy = 0, 0
    for x in range(0, img.shape[0] - 1, stepsize):
        for y in range(0, img.shape[1] - 1, stepsize):
            try:
                oldx = x
                oldy = y
                if img[x, y][2] != 0:
                    val1 = np.float(img[x, y][0] / img[x, y][2])  # blue / red
                else:
                    val1 = 1
                blue = np.int(img[x, y][0])
                red = np.int(img[x, y][2])
                val2 = red - blue
                # print(val2)
                if img_gray[x, y] <= 7 or img_gray[x, y] >= 220:  # background
                    # print("gray: {}".format(img_gray[x, y]))
                    pass
                    img[x, y] = [0, 0, 0]
                elif val2 > 18 and img_gray[x, y] < 200:  # val > terskel: # blue / red
                    red_count += 1
                    img[x, y] = [0, 0, 255]
                elif val2 < (-2):  # and img_gray[x,y]<210: # blue # al1>terskel and
                    img[x, y] = [255, 0, 0]
                    blue_count += 1
                else:
                    pass
                    # imgg[x,y] =[0, 0, 0]
            except Exception as e:
                print(e)
                print("problem: {}x{}, image shape: {}".format(oldx, oldy, img.shape[0:1]))
    print("red: {}, Blue: {}".format(red_count, blue_count))

    return img


def background(im, a=7, b=3, c=5, d=8, e=2):
    img = im
    kernel = np.ones((b, b), np.uint8)
    thresh = cv2.threshold(cv2.cvtColor(img, cv2.COLOR_RGB2GRAY), 0, 1, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
    close = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel, iterations=a)
    thresh = cv2.erode(close, kernel, iterations=e)
    opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=c)
    thresh = cv2.dilate(opening, kernel, iterations=d)

    im_png = img
    im_png *= thresh[..., None]
    return im_png


if __name__ == "__main__":
    main()







code/im_process/pixel_classify_dots.py

import time
import numpy as np
import cv2
import PIL.Image as Image
import matplotlib.pyplot as plt
import scipy.ndimage as ndimage
import scipy.ndimage.filters as filters
from scipy.ndimage import label
import scipy
import os
from datetime import datetime
from my_functions import *
import shutil

if os.name == 'nt':
    print("current opperating system: windows")
    vipshome = "C:\\Users\\rik_1\\Documents\\master_filer\\vips-dev-8.6\\bin"
    os.environ['PATH'] = vipshome + ';' + os.environ['PATH']
else:
    print("current opperating system: Linux")

crop_size = 64
Save_split = True


# sudo_fasit= [32, 75, 79, 55, 105, 128, 114]
# iter_fasit = iter(sudo_fasit)

def main():
    t = datetime.now()
    im_path = ""

    # if os.name == 'nt':
    im_path = os.path.join("../data/dataset_small512/save_image/")
    # im_path = os.path.join("../data/Test_Data/")

    # im_path = os.path.join("../PycharmProjects/master_output/src/dataset_small_2512/save_image")
    assert os.path.exists(im_path)
    vgg16_folder = "../data/data_vgg16_{}".format(crop_size)
    # if os.path.exists(vgg16_folder):
    #     shutil.rmtree(vgg16_folder)
    #     os.mkdir(vgg16_folder)
    #     pass
    # else:
    #     os.mkdir(vgg16_folder)
    #     print("created folrder: {}".format(vgg16_folder))
    folder_path1 = os.path.join(vgg16_folder, "class1")
    os.mkdir(folder_path1) if not os.path.exists(folder_path1) else ()
    folder_path2 = os.path.join(vgg16_folder, "class2")
    os.mkdir(folder_path2) if not os.path.exists(folder_path2) else ()
    folder_path3 = os.path.join(vgg16_folder, "class3")
    os.mkdir(folder_path3) if not os.path.exists(folder_path3) else ()
    print(im_path)
    num_patients = 0
    for teller, (root, dir, files) in enumerate(os.walk(im_path)):
        t1 = datetime.now()
        num_patients = len(dir) if num_patients < len(dir) else num_patients

        for index, file in enumerate(files):
            print("image number {}/{}, patient_num: {}/{}".format(index, len(files), teller,
                                                                  num_patients))  # os.path.split(file)[1][:-4],
            im_pwd = os.path.join(root, file)
            # img = Image.open(im_pwd)
            img = cv2.imread(im_pwd)
            img_np = np.asarray(img)
            new_img, R_mask, B_mask = make_brown_image2(img_np)  # see function for values

            # new_img, mask = mask_eq(img_np)

            dist, markers1 = dist_mask(B_mask)
            dist[dist < 3] = 0
            dist = dist.astype("uint8")
            # im_marked, num_objects,markers = peaks(dist,img_np)

            im_marked, num_objects, markers, class_1, class_2 = localmax_scipy(dist, img_np, R_mask)

            marker = np.zeros((img_np.shape[0], img_np.shape[1]))

            img1, marker = split_differnt_cells(img, class_1, folder_path1, marker, folder_path3, file, class_nr=1,
                                                crop_size=crop_size // 2, colour=(255, 0, 0),
                                                save_split=True)  # )Save_split)
            cv2.imwrite()
            img2, marker = split_differnt_cells(img, class_2, folder_path2, marker, folder_path3, file, class_nr=2,
                                                crop_size=crop_size // 2, colour=(0, 0, 255), save_split=Save_split)
            # cv2.imshow("dotted",img)
            # cv2.imshow("blue_mask",B_mask)
            # cv2.waitKey(0)

            # temp_im = sepperate_cells(dist,img_np,B_mask,marker.astype(np.int32))

            # mask_and_org = combine_org_mask(img_np,B_mask)
            # mask_and_org= img_np*(B_mask[...,None].astype("uint8")
            # )
            # img_cv2_stack = np.flip(np.hstack((im_marked,img_np,mask_and_org)))
            # img_cv2_stack = Image.fromarray(img_cv2_stack)
            # cv2.colorChange(img_cv2_stack, cv2.COLOR_BGR2RGB)

            # cv2.imshow("local max",(img_cv2_stack))
            # cv2.waitKey(1)

            # dots
            # out_folder = "boutput_mask_train"
            # save_in_folder(out_folder,file,im_marked)

            # combined mask and cells
            # out_folder = "aoutput_correct"
            # new_img = Image.fromarray(np.flip(img_cv2_stack))
            # save_in_folder(out_folder,file,mask_and_org)

            # mask for cells
            # out_folder = "Blue_mask_train"
            # B_save_mask  = np.zeros(new_img.shape)
            # B_save_mask[:,:,0]= B_mask
            # B_save_mask = B_save_mask.astype("uint8")
            # # print(type(B_save_mask[0,0,0]))
            # save_in_folder(out_folder,file,B_save_mask)

            # if not os.path.exists(out_folder):
            #    os.mkdir(out_folder)
            # new_img.save(os.path.join(out_folder,file))
            # avg_time = (datetime.now() - t1) / (index + 1)
            # print("average time per image: {}, expected time until done: {}".format(avg_time, avg_time * len(
            #     files) - avg_time * index))
    print("time spent: {} sec".format(datetime.now() - t))


def split_differnt_cells(img, xy_coords, folder_path, marker, folder_path3, file, class_nr=2, crop_size=32,
                         colour=(0, 0, 255), save_split=False):
    for i, (x, y) in enumerate(xy_coords):
        marker[x, y] = class_nr
        img_np = np.asarray(img)

        if (crop_size <= x <= img_np.shape[1] - crop_size) and \
                (y >= crop_size and y <= img_np.shape[1] - crop_size):
            # rect = cv2.rectangle(img_np.copy(),(x-crop_size,y-crop_size),(x+crop_size,y+crop_size),(255,0,0),thickness=2)
            part_im = img_np[y - crop_size:y + crop_size, x - crop_size:x + crop_size]
            im_name = "{}{}".format(i, file)
            if save_split:
                np_hist, _ = np.histogram(part_im[:, :, 1].flatten(), 256, [0, 256])
                if (sum(np_hist[215:]) < 600):  #
                    cv2.imwrite(os.path.join(folder_path, im_name), part_im)
                    # pass
                else:
                    pass
                    # cv2.imwrite(os.path.join(folder_path3,im_name),part_im)
    return img, marker


def contains_cell(x_center, y_center, mask, part_im):
    # test =sum(np.ravel(part_im[part_im>=terskel]))/255
    crop = part_im.shape[0] // 4
    R_crop = mask[x_center - crop:x_center + crop, y_center - crop:y_center + crop]

    div = mask.max() if mask.max() > 0 else 1
    test = sum(np.ravel(R_crop[R_crop >= 1])) / div
    return False if test < 300 else True  # False if sum(np.histogram(part_im[:,:,2].flatten(),256,[0,256])[220:])>1024 else True


def save_in_folder(out_folder, name_format, file):
    # if type(file) == np.ndarray:
    #     file = Image.fromarray(file)
    if not os.path.exists(out_folder):
        os.mkdir(out_folder)
    cv2.imwrite(os.path.join(out_folder, name_format), file)


def peaks(im_mask_org, im_org):
    im_out = im_org.copy()
    local_max = []
    local_max.append([0, 0])
    im_mask = im_mask_org.copy()
    for x in range(1, im_mask.shape[0] - 1, 1):
        for y in range(1, im_mask.shape[1] - 1, 1):
            if im_mask[x, y] > im_mask[x + 1, y] and im_mask[x, y] > im_mask[x, y + 1]:  # and \
                # im_mask[x,y]>im_mask[x-1,y] and im_mask[x,y]>im_mask[x,y-1]:
                if abs(local_max[-1][0] - x) <= 6 or abs(local_max[-1][1] - y) <= 6:
                    pass
                else:
                    local_max.append([x, y])
            else:
                pass

    for dy, dx in local_max:
        cv2.circle(im_out, (dx, dy), 2, (255, 0, 0), thickness=2)
    return im_out, len(local_max), local_max


if __name__ == "__main__":
    main()







code/im_process/readme.txt

Class_nothing.py will find non-tissue tiles among a dataset of tiles

compare.py will compare the results with the annotations done by an expert pathologist

extract_64x64_imges_from_csv.py will extract information from a .csv file from Labelbox and create a new file that is more manageable.
This file will also crop the given points into tiles.

Get_images_from_scn.py will split the WSI into smaller images while removing images with no information 

Get_exact_area.py picks a specific area from a WSI.

pixel_classify.py will highlight areas from an WSI image. This file contains some hardcoded section that needs to be changed.

pixel_classify_dots.py will locate and classify cells in unlabeled data.

split_even.py will randomly split an image into tiles of x by x shape

tester.py is used to check the classifier to the actual class, create confusion matri.

my_functions.py is collection of functions used in several python programs.






code/im_process/split_even.py

import os
import glob
import cv2
import numpy as np
from my_functions import *
import sys
path = "../data/dataset_small512/save_image"
tilesize=32
out_path = "../data/dataset{}_even_cut".format(tilesize)

def main():
    assert os.path.exists(path)
    check_folder(out_path)

    for i, (root, dirs, files) in enumerate(os.walk(path)):
        if i== 16:
            break
        for index, file in enumerate(files):
            if index == 10:
                break
            out_tmp = os.path.join(out_path,os.path.split(root)[1])
            check_folder(out_tmp)
            im_to_split = cv2.imread(os.path.join(root,file))
            for x in range(0,im_to_split.shape[0],tilesize):#range(im_to_split.shape[1]//64-1):
                for y in range(0,im_to_split.shape[1],tilesize): #for y in range(im_to_split.shape[0]//64-1):
                    tmp_im = im_to_split[x:x+tilesize,y:y+tilesize]
                    name = "{}/{}--{}-{}.png".format(out_tmp,os.path.split(file)[1][:-4],x,y)
                    # print(name)
                    cv2.imwrite(name,tmp_im)

        print("finished with patient {}".format(os.path.split(root)[1]))
    print("done")
    sys.exit()
    pass


if __name__ == '__main__':
    main()







code/im_process/Tester.py

import cv2
from my_functions import *
import os
import csv
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix, classification_report

np.set_printoptions(precision=2)


def main():
    print(__doc__)

    # cm_64 = np.array([[110, 3, 2],  # 64_test
    #                   [8, 108, 0],
    #                   [0, 1, 118]])
    # cm = np.array([[110, 3, 2],
    #                   [9, 107, 0],
    #                   [0, 4, 115]])
    cm = cell_class()
    cm = cm.astype(np.int)
    print("-" * 20, flush=True)
    print(type(cm))
    print(cm, flush=True)
    # Plot non-normalized confusion matrix
    class_names = ["positive CD25+", "Other_cells"]
    plot_confusion_matrix(cm, classes=class_names,
                          title='Confusion matrix, without normalization', titleadd="im")
    plot_confusion_matrix(cm,
                          classes=class_names, normalize=True,
                          title='Normalized confusion matrix', titleadd="im")
    # plot_confusion_matrix(cm_32, classes=class_names,
    #                       title='Confusion matrix, without normalization', titleadd="tilesize_32")
    # plot_confusion_matrix(cm_32,
    #                       classes=class_names, normalize=True,
    #                       title='Normalized confusion matrix', titleadd="tilesize_32")

    plt.show()


def plot_confusion_matrix(cm, classes,
                          normalize=False,
                          title=None,
                          cmap=plt.cm.Blues, titleadd="tilesize=32"):
    """
    This function prints and plots the confusion matrix.
    Normalization can be applied by setting `normalize=True`.
    """
    if not title:
        if normalize:
            title = 'Normalized confusion matrix'
        else:
            title = 'Confusion matrix, without normalization'

    # Compute confusion matrix
    # Only use the labels that appear in the data
    if normalize:
        cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
        print("Normalized confusion matrix")
    else:
        print('Confusion matrix, without normalization')

    print(cm)

    fig, ax = plt.subplots()
    im = ax.imshow(cm, interpolation='nearest', cmap=cmap)
    ax.figure.colorbar(im, ax=ax)
    # We want to show all ticks...
    ax.set(xticks=np.arange(cm.shape[1]),
           yticks=np.arange(cm.shape[0]),
           # ... and label them with the respective list entries
           xticklabels=classes, yticklabels=classes,
           title=title,
           ylabel='True label',
           xlabel='Predicted label')

    # Rotate the tick labels and set their alignment.
    plt.setp(ax.get_xticklabels(), rotation=45, ha="right",
             rotation_mode="anchor")

    # Loop over data dimensions and create text annotations.
    fmt = '.2f' if normalize else 'd'
    thresh = cm.max() / 2.
    for i in range(cm.shape[0]):
        for j in range(cm.shape[1]):
            ax.text(j, i, format(cm[i, j], fmt),
                    ha="center", va="center",
                    color="white" if cm[i, j] > thresh else "black")
    fig.tight_layout()
    fig.savefig("{}_{}.png".format(title, titleadd))
    return ax


def cell_class():
    path_64 = "../data/fasit_data_64"
    # path_64 = "../data/fasit_data"
    conf = np.zeros((2, 2))
    print(conf)
    with open("../im_classification_test.csv", "w") as f:
        fieldnames = ["correct_class", "CD25_classified", "other_classified", "TP", "FN"]
        writer = csv.DictWriter(f, fieldnames=fieldnames)
        # writer.writeheader()

        for index, (root, dir, files) in enumerate(os.walk(path_64)):
            c1 = 0
            c2 = 0
            actual_class = os.path.split(root)[1]
            print(actual_class)
            for file in files:
                if file.__contains__(".png"):
                    im_tmp = cv2.imread(os.path.join(root, file))
                    img_np = np.asarray(im_tmp)
                    new_img, R_mask, B_mask = make_brown_image2(img_np)  # see function for values
                    dist, markers1 = dist_mask(B_mask)
                    dist[dist < 3] = 0
                    dist = dist.astype("uint8")
                    im_marked, markers, class_1, class_2 = localmax_scipy2(dist, img_np, R_mask)
                    # if os.path.split(root)[1] == "CD25" and len(class_1) > len(class_2):
                    if len(class_1) > len(class_2):
                        c1 += 1
                    else:
                        c2 += 1
            if index == 0:
                continue
            if actual_class == "CD25":
                tp_fp = [c2, c1]
                print(tp_fp)
                conf[0, :] = tp_fp
            else:
                tp_fp = [c2, c1]
                conf[1, :] = tp_fp
            dict_res = {"correct_class": actual_class, "CD25_classified": c2, "other_classified": c1,
                        "TP": tp_fp[0], "FN": tp_fp[1]}
            # writer.writerow(dict_res)
            # print("class1 {}, class2: {}, actual classtile: {}".format(c1, c2, actual_class))
    print(conf, flush=True)
    return conf


def localmax_scipy2(im_mask, im_org, R):
    '''
    :param im_mask: distance transform of a mask
    :param im_org:
    :return:
    '''
    img_label = im_org  # np.zeros(im_mask.shape).astype("uint8")
    printed = []
    class_1 = []
    class_2 = []
    x_center = 64 // 2
    y_center = 64 // 2
    C1 = (x_center, y_center)
    exist = False
    if not exist:
        hw = 16

        R_crop = R[y_center - hw:y_center + hw, x_center - hw: x_center + hw]

        test = sum(np.ravel(R_crop[R_crop >= 1])) / 255
        if (test > 20 and test < 500):
            class_2.append(C1)
            colour = (0, 0, 255)


        else:
            class_1.append(C1)
            colour = (0, 0, 255)
        cv2.circle(img_label, C1, 2, colour, thickness=2)

    return img_label, printed, class_1, class_2


def marked_images():
    '''
    :return:
    '''
    path = "../data/dataset_small512/save_image"  # /#3919_03_F - bra"
    assert (os.path.exists(path))
    for root, dir, files in os.walk(path):
        print("in: {}, there is {} files".format(root, len(files)))
        for file in files:
            # img = cv2.imread(os.path.join(root, file))
            img = cv2.imread(os.path.join(path, file))
            img_np = np.asarray(img.copy())
            # new_img, R_mask, B_mask,[blue_count,red_count] = make_brown_image(img_np)
            new_img, R_mask, B_mask, B2_mask = make_brown_image2(img.copy())

            dist_transform, markers = dist_mask(B_mask)
            dist_transform[dist_transform < 4] = 0
            img_label, num_objects, printed, class_1, class_2 = localmax_scipy(dist_transform.copy(), img.copy(),
                                                                               R_mask)

            # _, markers = cv2.connectedComponents(img_label)
            tmp_arr = np.zeros(B_mask.shape).astype("int32")
            for i, (x, y) in enumerate(class_1):
                cv2.circle(img, (x, y), 2, (255, 0, 0), thickness=3)
            for i, (x, y) in enumerate(class_2):
                tmp_arr[x, y] = i
                cv2.circle(img, (x, y), 2, (0, 0, 255), thickness=3)

            print(file)
            print(len(class_1))
            print(len(class_2))
            name = "pixel_result/dots_{}".format(os.path.split(file)[1])
            # cv2.imwrite(name,img)
            cv2.imshow("bmask", B_mask)
            cv2.imshow("b_mask_no Blur", B2_mask)
            cv2.moveWindow("bmask", 10, 20)
            # cv2.imshow("rmask", R_mask)
            # cv2.moveWindow("rmask", 560, 20)
            cv2.imshow("img", img)
            cv2.moveWindow("img", 1120, 20)
            cv2.waitKey(0)


if __name__ == "__main__":
    main()
    # marked_images()







code/network VGG16/disttribute.py

import os
from shutil import copyfile, copy
import glob
import numpy as np
import cv2

tilesize = 64
data_dir_C1 = '../../../data/data_vgg16_{}/class1'.format(tilesize)
data_dir_C2 = '../../../data/data_vgg16_{}/class2'.format(tilesize)
data_dir_C3 = '../../../data/class_nothing_{}'.format(tilesize)

train = 'train'


def main():
    assert os.path.exists(data_dir_C1)
    assert os.path.exists(data_dir_C2)
    assert os.path.exists(data_dir_C3)

    dataset = "../../../data/dataset_{}_distributed".format(tilesize)
    check_folder(dataset)
    immunce_cells = "class_immune"
    cells = "class_other"
    nothing = "nothing"

    # setup1(dataset,immunce_cells,cells,nothing)

    setup2(dataset, immunce_cells, cells, nothing)

    # find files in smalles folder
    path = data_dir_C2

    in_folders = [data_dir_C1, data_dir_C2, data_dir_C3]
    print("Starting distribution")
    distribute2(in_folders, dataset, classes=[cells, immunce_cells, nothing])
    # files = glob.glob(path + str("/*png"))#,recursive = True)]#os.path.join+"/*.png",

    # distribute(data_dir_C1, os.path.join('..',dataset, immunce_cells))#,files_train,files_test,files_val)
    #
    # distribute(data_dir_C2, os.path.join('..',dataset, cells))#,files_train,files_test,files_val)
    #
    # distribute(data_dir_C3, os.path.join('..',dataset, nothing))#,files_train,files_test,files_val)



def setup1(dataset, C1, C2, C3):
    check_folder(os.path.join('..', dataset, C1))
    check_folder(os.path.join('..', dataset, C1, "train"))
    check_folder(os.path.join('..', dataset, C1, "test"))
    check_folder(os.path.join('..', dataset, C1, "val"))
    check_folder(os.path.join('..', dataset, C2))
    check_folder(os.path.join('..', dataset, C2, "train"))
    check_folder(os.path.join('..', dataset, C2, "test"))
    check_folder(os.path.join('..', dataset, C2, "val"))
    check_folder(os.path.join('..', dataset, C3))
    check_folder(os.path.join('..', dataset, C3, "train"))
    check_folder(os.path.join('..', dataset, C3, "test"))
    check_folder(os.path.join('..', dataset, C3, "val"))


def setup2(dst_root, C1, C2, C3):
    for x in ["train", "test", "val"]:
        check_folder(os.path.join(dst_root, x))
        check_folder(os.path.join(dst_root, x, C1))
        check_folder(os.path.join(dst_root, x, C2))
        check_folder(os.path.join(dst_root, x, C3))


def distribute(in_folder, out_folder, files_train=8000, files_test=100, files_val=900):
    # pwd = os.path.join(in_dir,in_folder)
    pwd = in_folder
    files = sorted(glob.glob(pwd + "/*png"))
    print(len(files))
    train_done, test_done, val_done = False, False, False
    for i, file in enumerate(files):
        if i == 11000:
            break
        file = os.path.split(file)[1]
        assert os.path.exists(os.path.join(out_folder, "train"))

        if i < files_train and not train_done:
            copy(os.path.join(in_folder, file), os.path.join(out_folder, "train/"))
            # train_done = True
        elif (i - files_train) < files_val and not val_done:
            copy(os.path.join(in_folder, file), os.path.join(out_folder, "val/"))
            # val_done = True
        elif (i - files_train - files_val < files_test) and not test_done:
            copy(os.path.join(in_folder, file), os.path.join(out_folder, "test/"))
            # test_done = True

        else:
            break
    print("done with {}".format(out_folder))


def distribute2(in_folders, out_folder_parent, files_train=0.80, files_test=0.5, files_val=0.15,
                classes=("c1", "c2", "c3")):
    # pwd = os.path.join(in_dir,in_folder)
    print("destination folder: {}".format(out_folder_parent))
    length_min = len(glob.glob(in_folders[0] + "/*png"))
    length_max = 0
    for pwd in in_folders:
        length_max = len(glob.glob(pwd + "/*png")) if length_max < len(glob.glob(pwd + "/*png")) else (length_max)
        length_min = length_min if length_min < len(glob.glob(pwd + "/*png")) else (len(glob.glob(pwd + "/*png")))
    print(length_max)
    print(length_min)
    for pwd, out_folder in zip(in_folders, classes):
        # out_folder = os.path.split(pwd)[1]
        files = sorted(glob.glob(pwd + "/*png"))

        train_done, test_done, val_done = False, False, False
        for i, file in enumerate(files):
            if i == length_min:
                break
            file = os.path.split(file)[1]
            assert os.path.exists(os.path.join(out_folder_parent, "train", out_folder))
            assert os.path.exists(os.path.join(out_folder_parent, "test", out_folder))
            assert os.path.exists(os.path.join(out_folder_parent, "val", out_folder))

            if i < length_min * files_train and not train_done:
                copy(os.path.join(pwd, file), os.path.join(out_folder_parent, "train", out_folder))
                # train_done = True
            elif (i - length_min * files_train) < length_min * files_val and not val_done:
                copy(os.path.join(pwd, file), os.path.join(out_folder_parent, "val", out_folder))
                # val_done = True
            elif (
                    i - length_min * files_train - length_min * files_val < length_min * files_test) and not test_done and pwd == data_dir_C3:
                copy(os.path.join(pwd, file), os.path.join(out_folder_parent, "test", out_folder))
                # test_done = True
            else:
                break
    test_folder = "../../../data/test_data_crop_{}".format(tilesize)
    for file in glob.glob(os.path.join(test_folder, "CD25") + "/*png"):
        copy(os.path.join(test_folder, "CD25", file), os.path.join(out_folder_parent, "test", classes[1]))
    for index, file in enumerate(glob.glob(os.path.join(test_folder, "cell_other") + "/*png")):
        copy(os.path.join(test_folder, "cell_other", file), os.path.join(out_folder_parent, "test", classes[0]))
        if index >= len(glob.glob(os.path.join(out_folder_parent, "test", classes[1]) + "/*png")):
            break

        print("done with class: {}".format(out_folder))
    print("done with {}".format("all"))


def check_folder(path):
    if not os.path.exists(path):
        if not os.path.isdir(path):
            print("folder: {}, did not exist. Trying to create".format(path))
            os.mkdir(path)
    else:
        pass


if __name__ == '__main__':
    main()
    print("all done")







code/network VGG16/Estimation.py

from __future__ import print_function, division

import torch
import torch.nn as nn
from torch.autograd import Variable
import numpy as np
from torchvision import datasets, models, transforms
import time
import os
import sys
import csv
from PIL import Image
from notify_run import Notify
import argparse
import cv2
from sklearn.metrics import confusion_matrix

notify = Notify()

imsize = 224
loader = transforms.Compose([transforms.Resize(imsize), transforms.ToTensor()])

use_gpu = torch.cuda.is_available()
if use_gpu:
    print("Using CUDA")
device = torch.device("cuda:4" if use_gpu else "cpu")
print("using device: {}".format(device))
class_names = ["class_immune", "class_other", "nothing"]

parser = argparse.ArgumentParser()
parser.add_argument("--tilesize", type=int, default=64,
                    help="tile size to estimate from, must be same as the trained model (default 64)", metavar="N")
parser.add_argument("--momentum", type=float, default=0.7,
                    help="momentum used in trainin, used to load model (default 0.7)", metavar="N")
args = parser.parse_args()
tilesize = args.tilesize
momentukm = args.momentum
tilesize = 32
momentum = 0.4

# name64 = 'VGG16_64_0.6.pt'
# tilesize = 64
# momentum = 0.6

name = 'VGG16_{}_{}.pt'.format(tilesize,momentum)

path_data_csv = "../../../data/fasit_data/"
PATHTOIMAGE = "../../../data/Test_data_{}_folders".format(tilesize)  # ../../../data/Test_data_64_folders


def main():
    print(os.getcwd())
    print(PATHTOIMAGE)
    print(os.path.exists(path_data_csv))
    assert os.path.exists(path_data_csv)
    assert os.path.exists(PATHTOIMAGE)
    


    
    # VGG16 = load_net('VGG16_{}_{}.pt'.format(args.tilesize,args.momentum))
    VGG16 = load_net(name)
    # VGG16 = load_net(name32)
    list = []
    test_dict = np.zeros((20, 15))
    with open(path_data_csv + "fasit_info.csv", "r") as csv_file:
        reader = csv.DictReader(csv_file, delimiter=',')
        for row in reader:
            list.append(row)

    with open("vgg16_final_results{}_momentum-{}.csv".format(tilesize,momentum), 'w+') as vgg16_csv:
        fieldnames = ["name", "CD25", "other", "vgg16_CD25", "vgg16_Other", "VGG16 background"]
        writer = csv.DictWriter(vgg16_csv, fieldnames=fieldnames)
        writer.writeheader()
        for index, (root, dir, files) in enumerate(os.walk(PATHTOIMAGE)):
            if len(files) < 20:
                print(files)
                continue
            classes_count = [0, 0, 0]
            dict_name = "{}{}".format(os.path.split(root)[1], ".png")
            print(dict_name)
            tmp_dict = lookup_name(list, dict_name)
            xy_immune = eval(tmp_dict.get("immune_cells"))
            xy_other = eval(tmp_dict.get("cell_other"))
            test_dict[int(tmp_dict.get("ID_anonym")[2:]), 0] = int(tmp_dict.get("ID_anonym")[2:])
            test_dict[int(tmp_dict.get("ID_anonym")[2:]), 1] += len(xy_immune)
            test_dict[int(tmp_dict.get("ID_anonym")[2:]), 2] += len(xy_other)
            test_dict[int(tmp_dict.get("ID_anonym")[2:]), 6] += 1
            for file in files:
                if file.__contains__(".png"):
                    assert os.path.exists(os.path.join(root, file))
                    image = image_loader(os.path.join(root, file))
                    outputs = VGG16(image)
                    # print(outputs)
                    _, preds = torch.max(outputs.data, 1)
                    # class_number = "class {}".format(preds.item())
                    # im = cv2.imread(os.path.join(root,file))
                    classes_count[preds.item()] += 1

            test_dict[int(tmp_dict.get("ID_anonym")[2:]), 3] += classes_count[0]
            test_dict[int(tmp_dict.get("ID_anonym")[2:]), 4] += classes_count[1]
            test_dict[int(tmp_dict.get("ID_anonym")[2:]), 5] += classes_count[2]
            vgg_dict = {"name": dict_name, "CD25": len(xy_immune), "other": len(xy_other),
                        "vgg16_CD25": classes_count[0],
                        "vgg16_Other": classes_count[1], "VGG16 background": classes_count[2]}
            writer.writerow(vgg_dict)
            print("correct: CD25: {}, other: {}".format(len(xy_immune), len(xy_other)), "VGG16", classes_count)

            with open("../pat_res_tilesize-{}.csv".format(tilesize), 'w') as f:
                fieldnames = ["name", "CD25", "other", "vgg16_CD25", "vgg16_Other", "VGG16 background", "images"]
                writer2 = csv.DictWriter(f, fieldnames=fieldnames)
                writer2.writeheader()
                for i in range(test_dict.shape[0]):
                    out_dict_pat = {"name": test_dict[i, 0], "CD25": test_dict[i, 1], "other": test_dict[i, 2],
                                    "vgg16_CD25": test_dict[i, 3],
                                    "vgg16_Other": test_dict[i, 4], "VGG16 background": test_dict[i, 5],
                                    "images": test_dict[i, 6]}
                    writer2.writerow(out_dict_pat)
                writer2.writerow({"name": ""})

                out_dict_pat = {"name": "total", "CD25": sum(test_dict[:, 1]), "other": sum(test_dict[:, 2]),
                                "vgg16_CD25": sum(test_dict[:, 3]),
                                "vgg16_Other": sum(test_dict[:, 4]), "VGG16 background": sum(test_dict[:, 5])}
                writer2.writerow(out_dict_pat)


def image_loader(image_name):
    """load image"""
    image = Image.open(image_name)
    image = loader(image).float()
    image = Variable(image, requires_grad=True)
    image = image.unsqueeze(0)
    return image.to(device) if use_gpu else image


def load_net(model_name):
    vgg16 = models.vgg16(pretrained=True)
    print(vgg16.classifier[6].out_features)
    for param in vgg16.features.parameters():
        param.require_grad = False

    num_features = vgg16.classifier[6].in_features
    features = list(vgg16.classifier.children())[:-1]  # Remove last layer
    features.extend([nn.Linear(num_features, len(class_names))])  # Add layer with 3 outputs
    vgg16.classifier = nn.Sequential(*features)  # Replace the model classifier
    if use_gpu:
        vgg16.to(device)
    print("Loading pretrained model..")
    vgg16.load_state_dict(torch.load(model_name))
    print("Loaded!")
    vgg16.train(False)
    # vgg16.eval()
    return vgg16


def lookup_name(list, name):
    '''
    :param list: list containing dictionaries
    :param name: image name to find
    :return: dictionary containg name
    '''
    for row in list:
        row_name = row.get("image_name")
        if row_name == name:
            return row
    print("name {} not found".format(name))
    return []


if __name__ == '__main__':
    main()
    notify.send(__file__, " is done")
    sys.exit()







code/network VGG16/ReadMe.txt

Distribute.py will distribute the files into training, validation and test data

VGG16.py will utilize transfer learning to train a model based on the distributed files from distribute.py

Estimation.py will test the trained model against images randomly split into tiles of size x by x.








code/network VGG16/VGG16.py

from __future__ import print_function, division

import torch
import torch.nn as nn
import torch.functional as F
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.autograd import Variable
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy
import sys
import csv
from notify_run import Notify
import argparse
import datetime
from sklearn.metrics import confusion_matrix, classification_report
import pandas as pd
start_time = datetime.datetime.now()
notify = Notify()
notify.endpoint = "https://notify.run/8aJj68rNqXHIeNPF"

plt.ion()
parser = argparse.ArgumentParser()
tilesiz = 32
parser.add_argument("--tilesize", type=int, default=tilesiz,
                    help="number of patients the program will go over (default {})".format(tilesiz),
                    metavar="N")
args = parser.parse_args()

# parser.add_argument("--images-each",type=int, default=6, help="number of images to extract from each patient, -1 for all (default 630)",metavar="N")
use_gpu = torch.cuda.is_available()
# os.environ["CUDA_VISIBLE_DEVICES"] = "5"
if use_gpu:
    print("Using CUDA")
tilesize = args.tilesize
data_dir = "../../../data/dataset_{}_distributed".format(tilesize)
TRAIN = 'train'
VAL = 'val'
TEST = 'test'

num_epochs = 20
lr = 0.0001
momentum = 0.9
batch_size = 64

# VGG-16 Takes 224x224 images as input, so we resize all of them
# Normalize as suggested by pytorch site for vgg16
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                 std=[0.229, 0.224, 0.225])
data_transforms = {
    TRAIN: transforms.Compose([
        # Data augmentation is a good practice for the train set
        # randomly flip it horizontally.
        torchvision.transforms.Resize((224, 224)),  # needed cause pytorch model vgg16
        transforms.ToTensor(),
        # normalize,
    ]),
    VAL: transforms.Compose([
        torchvision.transforms.Resize((224, 224)),
        transforms.ToTensor(),
        # normalize,
    ]),
    TEST: transforms.Compose([
        torchvision.transforms.Resize((224, 224)),
        transforms.ToTensor(),
        # normalize,
    ])
}

image_datasets = {
    x: datasets.ImageFolder(
        os.path.join(data_dir, x),
        transform=data_transforms[x]
    )
    for x in [TRAIN, VAL, TEST]
}

dataloaders = {
    x: torch.utils.data.DataLoader(
        image_datasets[x], batch_size=batch_size,
        shuffle=True, num_workers=2,  # if x == TRAIN else False,

    )
    for x in [TRAIN, VAL, TEST]
}

dataset_sizes = {x: len(image_datasets[x]) for x in [TRAIN, VAL, TEST]}
class_names = image_datasets[TRAIN].classes

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print("using device: {}".format(device))
print("tilesize: {}".format(tilesize))


def main():
    for x in [TRAIN, VAL, TEST]:
        print("Loaded {} images under {}".format(dataset_sizes[x], x))

    print("Classes: {}".format(image_datasets[TRAIN].classes))

    # Load the pretrained model from pytorch
    vgg16 = models.vgg16(pretrained=True)
    # vgg16.load_state_dict(torch.load("../input/vgg16bn/vgg16_bn.pth"))

    for param in vgg16.features.parameters():
        param.require_grad = False

    num_features = vgg16.classifier[6].in_features
    features = list(vgg16.classifier.children())[:-1]  # Remove last layer
    features.extend([nn.Linear(num_features, len(class_names))])  # Add layer with 3 outputs
    vgg16.classifier = nn.Sequential(*features)  # Replace the model classifier
    # print(vgg16)
    # input()

    if use_gpu:
        vgg16.to(device)
    criterion = nn.CrossEntropyLoss()
    optimizer_ft = optim.SGD(vgg16.parameters(), lr=lr, momentum=momentum)

    exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
    resume_training = False

    visualize_model(vgg16)  # test before training
    inputs, classes = next(iter(dataloaders[TRAIN]))
    # show_databatch(inputs, classes)
    if resume_training:
        print("Loading pretrained model..")
        vgg16.load_state_dict(
            torch.load('VGG16_tile{}_moment{}_lr{}_batch{}.pt'.format(tilesize, momentum, lr, batch_size)))
        print("Loaded!")
    vgg16, nan_value = train_model(vgg16, criterion, optimizer_ft, exp_lr_scheduler, num_epochs=num_epochs)
    if nan_value:
        return

    torch.save(vgg16.state_dict(), 'VGG16_{}_{}.pt'.format(tilesize, momentum, lr))

    eval_model(vgg16, criterion)
    visualize_model(vgg16, num_images=6)


def return_lr(optimizer):
    for param in optimizer.param_groups:
        return (param['lr'])


def imshow(inp, title=None):
    inp = inp.numpy().transpose((1, 2, 0))
    inp *= 255 / np.amax([inp[:, :, 0], inp[:, :, 1], inp[:, :, 2]])
    inp = inp.astype("uint8")

    plt.axis('off')
    plt.imshow(inp)
    if title is not None:
        plt.title(title)
    plt.pause(0.2)


def show_databatch(inputs, classes):
    out = torchvision.utils.make_grid(inputs)
    imshow(out, title=[class_names[x] for x in classes])


def visualize_model(vgg, imshow=False, num_images=6):
    was_training = vgg.training

    vgg.train(False)
    vgg.eval()

    images_so_far = 0

    for i, data in enumerate(dataloaders[TEST]):
        inputs, labels = data
        size = inputs.size()[0]
        with torch.no_grad():
            if use_gpu:
                inputs, labels = Variable(inputs.to(device)), Variable(labels.to(device))
            else:
                inputs, labels = Variable(inputs), Variable(labels)

            outputs = vgg(inputs.to(device))

            _, preds = torch.max(outputs.data, 1)
            predicted_labels = [preds[j] for j in range(inputs.size()[0])]

            print("Ground truth: {}".format(labels.data.cpu()))
            # show_databatch(inputs.data.cpu(), labels.data.cpu()) if imshow else ()
            print("Prediction: {}".format(preds))
            # show_databatch(inputs.data.cpu(), predicted_labels) if imshow else ()
            # input("...")
            del inputs, labels, outputs, preds, predicted_labels
            # torch.cuda.empty_cache()
            images_so_far += size
            if images_so_far >= num_images:
                break

    vgg.train(mode=was_training)  # Revert model back to original training state


def eval_model(vgg, criterion):
    since = time.time()
    loss_test = 0
    acc_test = 0
    confusion_test = np.zeros((3, 3))
    class_rep = np.zeros((3, 4))
    test_batches = len(dataloaders[TEST])
    print("Evaluating model")
    print('-' * 10)
    # lable_store = np.array()
    for i, data in enumerate(dataloaders[TEST]):
        if i % (test_batches // 4) == 0:
            print("\rTest batch {}/{}".format(i, test_batches), end='', flush=True)

        vgg.train(False)
        vgg.eval()
        inputs, labels = data
        with torch.no_grad():
            if use_gpu:
                inputs, labels = Variable(inputs.to(device)), Variable(labels.to(device))
            else:
                inputs, labels = Variable(inputs), Variable(labels)
            outputs = vgg(inputs)

            _, preds = torch.max(outputs.data, 1)
            loss = criterion(outputs, labels)

            loss_test += loss.data.item()

            acc_test += torch.sum(preds == labels.data)
            if i == 0:
                lable_store = np.asarray(labels.data.cpu())
                preds_store = np.asarray(preds.cpu())
            else:
                lable_store=np.append(lable_store,np.asarray(labels.data.cpu()),axis=0)
                preds_store=np.append(preds_store,np.asarray(preds.cpu()),axis=0)
                # print(len(lable_store))
                # print(len(preds_store))
            # print(confusion_test)
            del inputs, labels, outputs, preds
            # torch.cuda.empty_cache()

    confusion_test = confusion_matrix(lable_store, preds_store)
    class_rep = classification_report(lable_store, preds_store, target_names=image_datasets[TRAIN].classes)#, output_dict=True)

    print(class_rep)
    print(confusion_test)
    if dataset_sizes[TEST] < 1:
        print("dataset size test {}".format(dataset_sizes[TEST]))
    avg_loss = loss_test / dataset_sizes[TEST]
    avg_acc = acc_test.double() / dataset_sizes[TEST]
    elapsed_time = time.time() - since
    fieldnames = ['Epoch', 'lr', 'avg loss (Train)', 'Avg acc (train)', "Avg loss (val)", "Avg acc (val)",
                  "Avg loss (test)", "Avg acc (test)", "time_used"]
    dict = {"Epoch": num_epochs, "Avg loss (test)": "{:.4f}".format(avg_loss),
            "Avg acc (test)": "{:.4f}".format(avg_acc),
            "time_used": datetime.datetime.now() - start_time}
    write_csv(dict, fieldnames)

    classification_report_csv(class_rep,confusion_test)
    # df = pd.DataFrame(class_rep).transpose()
    # df.to_csv('classification_report.csv', index = False)
    print()
    print("Evaluation completed in {:.0f}m {:.0f}s".format(elapsed_time // 60, elapsed_time % 60))
    print("Avg loss (test): {:.4f}".format(avg_loss))
    print("Avg acc (test): {:.4f}".format(avg_acc))
    print('-' * 10)


def train_model(vgg, criterion, optimizer, scheduler, num_epochs=10):
    since = time.time()
    best_model_wts = copy.deepcopy(vgg.state_dict())
    best_acc = 0.0
    best_loss = 1

    avg_loss = 0
    avg_acc = 0
    avg_loss_val = 0
    avg_acc_val = 0

    train_batches = len(dataloaders[TRAIN])
    val_batches = len(dataloaders[VAL])
    print(val_batches)

    for epoch in range(num_epochs):
        print("Epoch {}/{}".format(epoch, num_epochs))
        print('-' * 10)

        loss_train = 0
        loss_val = 0
        acc_train = 0
        acc_val = 0

        vgg.train(True)

        for i, data in enumerate(dataloaders[TRAIN]):
            if i % 50 == 0:
                print("\rTraining batch {}/{}".format(i, train_batches), end='\r', flush=True)

            inputs, labels = data

            if use_gpu:
                inputs, labels = Variable(inputs.to(device)), Variable(labels.to(device))
            else:
                inputs, labels = Variable(inputs), Variable(labels)

            optimizer.zero_grad()

            outputs = vgg(inputs)

            _, preds = torch.max(outputs.data, 1)
            loss = criterion(outputs, labels)

            loss.backward()
            # torch.nn.utils.clip_grad_norm_(vgg.parameters(), 1, 2)
            optimizer.step()

            loss_train += loss.data.item()
            acc_train += torch.sum(preds == labels.data)
            if loss_train != loss_train:
                print("\nnan value loss")
                return vgg.load_state_dict(best_model_wts), True
            del inputs, labels, outputs, preds
            # torch.cuda.empty_cache()

        avg_loss = loss_train / dataset_sizes[TRAIN]
        avg_acc = acc_train.double() / dataset_sizes[TRAIN]

        vgg.train(False)
        vgg.eval()
        for i, data in enumerate(dataloaders[VAL]):
            with torch.no_grad():
                if i % 100 == 0:
                    print("\rValidation batch {}/{}".format(i, val_batches), end='', flush=True)

                inputs, labels = data

                if use_gpu:
                    inputs, labels = Variable(inputs.to(device)), Variable(labels.to(device))
                else:
                    inputs, labels = Variable(inputs), Variable(labels)

                optimizer.zero_grad()

                outputs = vgg(inputs)

                _, preds = torch.max(outputs.data, 1)
                loss = criterion(outputs, labels)

                loss_val += loss.data.item()
                acc_val += torch.sum(preds == labels.data)

                del inputs, labels, outputs, preds
                # torch.cuda.empty_cache()
        if dataset_sizes[TEST] < 1:
            print("dataset size test {}".format(dataset_sizes[VAL]))

        avg_loss_val = loss_val / dataset_sizes[VAL]

        avg_acc_val = acc_val.double() / dataset_sizes[VAL]

        print()
        print("Epoch {} result: ".format(epoch))
        print("Avg loss (train): {:.4f}".format(avg_loss))
        print("Avg acc (train): {:.4f}".format(avg_acc))
        print("Avg loss (val): {:.4f}".format(avg_loss_val))
        print("Avg acc (val): {:.4f}".format(avg_acc_val))
        print('-' * 10)
        print()

        lr = return_lr(optimizer)
        fieldnames = ['Epoch', 'lr', 'avg loss (Train)', 'Avg acc (train)', "Avg loss (val)", "Avg acc (val)",
                      "Avg loss (test)", "Avg acc (test)", "time_used"]
        dict = {"Epoch": epoch, "lr": lr, "avg loss (Train)": "{:.4f}".format(avg_loss),
                "Avg acc (train)": "{:.4f}".format(avg_acc),
                "Avg loss (val)": "{:.4f}".format(avg_loss_val), "Avg acc (val)": "{:.4f}".format(avg_acc_val)}
        write_csv(dict, fieldnames)

        # if avg_acc_val > best_acc:
        if best_loss > avg_loss_val:
            best_acc = avg_acc_val
            best_loss = avg_loss_val
            best_model_wts = copy.deepcopy(vgg.state_dict())

    elapsed_time = time.time() - since
    print()
    print("Training completed in {:.0f}m {:.0f}s".format(elapsed_time // 60, elapsed_time % 60))
    print("Best acc: {:.4f}".format(best_acc))

    vgg.load_state_dict(best_model_wts)
    return vgg, False


def write_report(dict, fieldnames,name_csv="report"):
    if not os.path.isfile("{}.csv".format(name_csv)):
        with open("{}.csv".format(name_csv), 'w+') as f:
            writer = csv.DictWriter(f, fieldnames=fieldnames)
            writer.writeheader()
            writer.writerow(dict)
    else:
        with open("{}.csv".format(name_csv), 'a') as f:
            writer = csv.DictWriter(f, fieldnames=fieldnames)
            writer.writerow(dict)

def write_csv(dict, fieldnames,name_csv=None):
    if not os.path.isfile("{}.csv".format(csv_name)):
        with open("{}.csv".format(csv_name), 'w+') as f:
            writer = csv.DictWriter(f, fieldnames=fieldnames)
            writer.writeheader()
            writer.writerow(dict)
    else:
        with open("{}.csv".format(csv_name), 'a') as f:
            writer = csv.DictWriter(f, fieldnames=fieldnames)
            writer.writerow(dict)
def classification_report_csv(report,conf):
    report_data = []
    lines = report.split('\n')
    for line in lines[2:-3]:
        row = {}
        row_data = line.split('      ')
        print(row_data)
        if len(row_data)<4:
            continue
        row['class'] = row_data[0]
        row['precision'] = (row_data[1])
        row['recall'] = (row_data[2])
        row['f1_score'] = (row_data[3])
        row['support'] = (row_data[4])
        report_data.append(row)
    dataframe = pd.DataFrame.from_dict(report_data)
    name = 'classification_report_tile_size{}_m{}.csv'.format(tilesize,momentum)
    dataframe.to_csv(name, index = False)
    with open(name, 'a') as f:
            f.write(np.array2string(conf, separator=', '))
if __name__ == '__main__':
    num_epochs = 15
    lrs = [0.001]
    tilesizes = [32, 64]
    batch_sizes = [64]
    momentums = [0.2, 0.4, 0.6]
    lr = 0.001
    if not os.path.exists("../vgg_res"):
        os.mkdir("../vgg_res")
    csv_name = "../vgg_res/VGG16_epochs-{}_batch-{}_lr-{}_momentum-{}_tilesize-{}".format(num_epochs, batch_size, lr,
                                                                                          momentum,
                                                                                          tilesize)
    print("Vgg16 results will be saved in {}".format("../vgg_res" if os.path.exists("../vgg_res") else []))
    # start_time =datetime.datetime.now()
    # main()
    # try:
    for tiles in tilesizes:
        tilesize = tiles
        for l in lrs:
            lr = l
            for i in batch_sizes:
                batch_size = i
                for m in momentums:
                    momentum = float(m)
                    print("momentum {}, batch_size: {}, lr: {}. num_epochs: {}".format(m, i, lr, num_epochs))
                    # momentum = m / 10
                    csv_name = "../vgg_res/VGG16_epochs-{}_batch-{}_lr-{}_momentum-{}_tilesize-{}".format(num_epochs,
                                                                                                          batch_size,
                                                                                                          lr, m,
                                                                                                          tilesize)
                    start_time = datetime.datetime.now()
                    if os.path.isfile("{}.csv".format(csv_name)):
                        print("file exists, appending to it")
                    main()
    # except Exception as e:
    #     print(e)
    #     notify.send("program {} crashed".format(__file__))
    notify.send(__file__, "Starting next program")
    # os.system('python Estimation.py --tilesize {} --momentum {}'.format(tilesize, momentum))
    sys.exit()
s







code/Readme_On_premiss.txt

This is from the Labelbox github page: https://github.com/Labelbox/Labelbox/blob/master/docs/on-premise-data.md

Using ubuntu:

Put all the files you want to label into a single folder and start a server in that folder. 
You can start a local server via the command line. "python -m SimpleHTTPServer" or 
"npm install -g http-server; http-server -p 8000". Note in this example 8000 is the port we serving from.


IP_ADDRESS=$(ifconfig | grep inet | grep -v inet6 | awk '{print $2}' | sed -n '1p')
IFS=$'\n'
CSV=$(echo "Data URL", "External ID"; for fileName in $(ls); do echo http://$IP_ADDRESS:8000/$fileName, $fileName; done)
echo "$CSV" > data.csv









