

FACULTY OF SCIENCE AND TECHNOLOGY

MASTER'S THESIS

Study programme/specialisation:
Computer Science

Spring semester, 2019

 Open

Author: Ferdinand Rødne Tvedt

 (signature of author)

Programme coordinator: Leander Jehl

Supervisor(s): Leander Jehl

Title of master's thesis:

 Strict ordering guarantees for event-source systems

Credits: 30 ECTS

Keywords:

Distributed Systems • Atomic Multicast •
Micro-Services • Apache Kafka • Event-
Source System • Topics • Partitions

Number of pages: 73

+ supplemental material/other: 5

Stavanger, June 15, 2019

Title page for Master's Thesis

Faculty of Science and Technology

UNIVERSITY OF STAVANGER

MASTER THESIS

Strict Ordering Guarantees for
Event-Source Systems

Author:
Ferdinand R. TVEDT

Supervisor:
Leander JEHL

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Department of Electrical Engineering and Computer Science

June 14, 2019

https://www.uis.no/
https://www.uis.no/faculty-of-science-and-technology/electrical-engineering-and-computer-science/

iii

UNIVERSITY OF STAVANGER

Abstract
Faculty of Science and Technology

Department of Electrical Engineering and Computer Science

Master of Science

Strict Ordering Guarantees for Event-Source Systems

by Ferdinand R. TVEDT

The digital world is constantly developing globally, more people are con-
necting to the internet every day and companies that used to be national
businesses are developing into international businesses. The constant stream
of new users being able to use the internet increases the demand for both old
and new service providers. To cope with the potential millions of users com-
panies relies on breaking their services up into micro-services, on multiple
different servers providing the users with high availability, low latency, and
disaster tolerance(i.e data center failure). Micro-services does provide many
benefits for the providers, but it introduces a difficult challenge, how to send
messages to multiple replicas in a strict order.

Many service providers such as Facebook, Netflix, and SoundCloud rely
on event-source systems such as Apache Kafka, allowing micro-services to
subscribe to topics and let them be decoupled from each other. If strict or-
dering was possible with Kafka many providers would not have to develop
complex atomic multicast systems to preserve message ordering.

This thesis describes how it is possible to achieve atomic multicast by
using Kafka and demonstrates the capabilities by an implementation we call
AtomicKafka. AtomicKafka is a content based strict ordering event-source
system that implements an atomic multicast algorithm. We also present an
optimized algorithm specifically for Kafka to utilize the way Kafka partitions
topics to increase performance. The results of the evaluation show that when
sending 40.000 messages we got an baseline average of 83.6 deliveries per
second. For the evaluation we were able to reach an average of 26.6 deliveries
per second with 10% AMCast messages, and 15.25 deliveries per second for
50% AMCast messages.

HTTPS://WWW.UIS.NO/
https://www.uis.no/faculty-of-science-and-technology/
https://www.uis.no/faculty-of-science-and-technology/electrical-engineering-and-computer-science/

v

Acknowledgements
I would like to thank my family and for all their support and patience during
my Master’s degree.

I would also like to thank Leander Jehl for supervising the thesis and for
his dedication to my work. The weekly meetings and discussions provided
me with invaluable feedback and have been very helpful pointing me in the
right direction.

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

2 Background 5
2.1 System Model . 5
2.2 Atomic Broadcast . 5
2.3 Atomic Multicast . 7

Non genuine vs genuine atomic multicast 8
2.4 Apache Kafka . 9

Topics . 10
Partitioner . 10
Producer . 11
Consumer . 11
Messages . 12

2.5 Earlier work . 12

3 Design and Method 15
3.1 Design . 15

System components . 15
Messages . 16
Data structures . 18

3.1.1 Algorithm: Proof of Concept 21
Simple Example . 26
Detailed Example . 27

3.1.2 Optimization . 31
Simple Example . 32

3.1.3 Enabling partitions for AtomicKafka 34
Merger . 37

3.2 Failure handling discussion . 39

viii

3.2.1 Rebuilding the local message state map 39
Rebuilding LSMS: reading from beginning-to-end of topic 40
Rebuilding LSMS: reading from end-to-beginning of topic 40

3.2.2 Client takeover . 40

4 Implementation 43
4.1 AtomicKafka . 43

4.1.1 System Architecture . 43
4.1.2 Consumer . 45
4.1.3 Producer . 46

Configuration . 47
Custom partitioning scheme 47

4.1.4 Messages . 47
4.1.5 Message Format . 48

4.2 AtomicKafka Client . 49

5 Evaluation 51
5.1 Hardware setup . 51
5.2 Evaluation setup . 52
5.3 Results . 53

5.3.1 Baseline . 53
5.3.2 90-10 Evaluation . 55
5.3.3 80-20 Evaluation . 57
5.3.4 70-30 Evaluation . 59
5.3.5 60-40 Evaluation . 61
5.3.6 50-50 Evaluation . 63

6 Discussion and further work 67
6.1 Discussion . 67

6.1.1 Performance . 68
6.1.2 Further work . 70

7 Conclusion 73

A Program Code 75

B Kafka Broker Configuration 77

Bibliography 81

ix

List of Figures

2.1 Atomic Broadcast Properties . 6
2.2 Atomic Multicast Properties . 7
2.3 Atomic Multicast phases.[16] 7
2.4 AtomicKafka architecture . 9
2.5 Topic partitions . 10

3.1 AtomicKafka interaction . 16
3.2 Priority-Queue with conflicting timestamp 21
3.3 First design message propagation 27
3.4 Example of phases and messages 30
3.5 AMCast optimized message propagation 31
3.6 Topic Layering . 35
3.7 Partitioned AtomicKafka . 36

4.1 AtomicKafka Architecture . 44
4.2 AtomicKafka Client Architecture 49

5.1 Baseline: Incoming messages per second 53
5.2 Baseline: Outgoing messages per second 54
5.3 Baseline: Deliveries per second 54
5.4 10% AMCast: Incoming messages per second 55
5.5 10% AMCast: Outgoing per second 56
5.6 10% AMCast: Deliveries per second 56
5.7 20% AMCast: Incoming messages per second 57
5.8 20% AMCast: Outgoing messages per second 58
5.9 20% AMCast: Deliveries per second 58
5.10 30% AMCast: Incoming messages per second 59
5.11 30% AMCast: Outgoing messages per second 60
5.12 30% AMCast: Deliveries per second 60
5.13 40% AMCast: Incoming messages per second 61
5.14 40% AMCast: Outgoing messages per second 62
5.15 40% AMCast: Deliveries per second 62
5.16 50% AMCast: Incoming messages per second 63

x

5.17 50% AMCast: Outgoing messages per second 64
5.18 50% AMCast: Deliveries per second 64

xi

Listings

3.1 Message Definition . 18
3.2 Message composition . 20
3.3 LMSM composition . 29
3.4 Message composition for partitions 37
4.1 Consumer Configuration . 46
4.2 Producer Configuration . 47
4.3 AtomicKafka Client message example 48
4.4 Control message example . 49

xiii

List of Abbreviations

PoC Proof Of Concept
AMCast Atomic Multicast
Msg Message
Msg/s Messages Per Second
API Application Programming Interface
LSMS local Message State Map

xv

List of Symbols

Π AtomicKafka System
Ω Kafka System
pi Single Process in Π
| p | Number of Processes
T Collection of Kafka topic
tpi Topic Partition
| tp | Number of Total Partitions
| topic | Number of Kafka topics

1

Chapter 1

Introduction

The digital world is becoming more globalized by every day that goes
by, and the demand for distributed systems grows as more services on the
market creates more data that needs to be produced, stored and consumed
by users. In less than two decades there has been a significant increase in
services relying on storing and serving vast amounts of data, services such
as SoundCloud, Uber, Netflix, Amazon, eBay and other similar providers.
While all of them is providing users with a different type of content or ser-
vices, they offer their content or services on the internet for users. One of the
challenges creating such systems is to remain responsive, available and keep-
ing the data consistent regardless of how many users is generating a load on
their services.

To overcome this challenge and handle thousands if not hundreds of thou-
sands of users simultaneously they depend on micro-service architecture[7,
30, 31, 37] and not monolithic architecture for their systems. The micro-
service architecture allows SoundCloud, Uber, Netflix, Amazon and eBay
to develop loosely coupled, independently deployable applications[35] that
can focus on one task, instead of having a complex monolithic application
that has to be able to handle everything.

By using micro-services Netflix and the other providers can handle all
the users simultaneously by scaling their micro-services horizontally[5], dis-
tributing their micro-services across multiple servers increasing the relia-
bility and availability of their systems. The challenge by distributing their
micro-services across multiple servers is ensuring that the data is strongly
consistent across the servers in the case of server failure or ongoing main-
tenance. Distributed systems today rely on micro-services to hide the fact
that some micro-services fails, distribute incoming loads over all the micro-
services and keeping response times low for users. Though micro-services
can increase reliability and availability, it makes keeping strong consistency

2 Chapter 1. Introduction

across micro-services a challenging problem, which is a problem that has
been a challenge among researches at least since 1989[34].

When Amazon implemented Dynamo their goal was to create a distributed
key-value storage system with an "always-on" experience, making it highly
available for their users. To achieve this kind of availability Amazon decided
to weaken the consistency guarantee of the system[10]. By weakening the
consistency guarantee the services are placing the responsibility of coping
with inconsistent service behavior, making the application decide on the cor-
rectness of the data received from the services.

Netflix has also stated that they wish to use Kafka to collect test results
and be able to replay the events similar to a state machine[8], but they do not
say anything about how they intend to achieve this. We this as an excellent
reason to research the possibility to implement atomic multicast in Kafka and
to see how an atomic multicast enabled Kafka performs.

There are multiple proposals[9, 15, 18, 28, 25] and implementations[29]
that solves the strong consistency challenges by using atomic multicast (AM-
Cast). Some of the proposals[18, 28] are static, meaning that if one needs to
add or remove a multicast group one would have to shut down the entire dis-
tributed system before the reconfiguration. By shutting down the system we
break the user’s illusion of "always-on". It is also tough to implement these
proposals as they are very complex and it is easy to make mistakes. Benz et
al. proposed a dynamic atomic multicast[4] where groups can subscribe and
unsubscribe to data streams without having to shut down for reconfigura-
tion. The downside of this proposal is that the groups are tightly coupled,
meaning that messages being sent to a stream will always reach the group
members, even though the data might not always be of use for a process in
the group. What we want to find out is if it is possible to develop an atomic
multicast system using preexisting systems that the industry is currently us-
ing, such as event source system as Kafka. Moreover, if it is possible what is
the cost of introducing atomic multicast to such a system.

To overcome these challenges we introduce AtomicKafka, a system that
uses Kafka as a foundation to achieve genuine atomic multicast for the content-
based event-source system. Kafka is a popular event-source system used by
many providers such as Microsoft, Airbnb and Netflix[36], where Kafka han-
dles approximately around 700 billion messages per day for Netflix[6]. To be
able to handle this amount of data Netflix are using approximately around
150 clusters consisting of 3500 instances.

Chapter 1. Introduction 3

The current version of Kafka(2.2) preserves the order of messages within a
single partition as long as the producer sends them in a specific order, mean-
ing that if multiple partitions/topics exist it is not able to keep the strict or-
dering guarantee[24]. So our challenge was to find out if it was possible to
achieve AMCast by using Kafka, and what the performance cost of intro-
ducing AMCast on Kafka. Our intention with AtomicKafka is that it should
become a system that is more flexible than Kafka and the proposed atomic
multicast systems[9, 15, 18, 28]. We want AtomicKafka to be able to have both
strict and weak consistency depending on the need of the users and dynam-
ically adding and removing of multicast groups without downtime. We also
want it to make it easier for developers as they do not have to develop com-
plex systems by a widely used event-source system which removes much of
the complexity.

As previously mentioned some of the proposed systems[18, 28] cannot
reconfigure their multicast groups without having to shut down the systems.
The other proposals[4, 25] can reconfigure the multicast groups without hav-
ing to shut down the system, but the multicast groups themselves are not
dynamic, making them tightly coupled. A tightly coupled multicast group
has the disadvantage that if a message needs to reach two services which are
not apart of a group by themselves the message would have to be atomic
multicast to a service which does not involve the message. This behavior of
tightly coupled multicast groups resolves in partially genuine atomic multi-
cast system[25]. For AtomicKafka there are no predefined multicast groups,
in AtomicKafka a multicast group is created dynamically based on the mes-
sages intended receivers. By doing this AtomicKafka can AMCast a message
regardless of intended receivers, meaning that atomic multicast messages are
only handled by processes they are intended for. Since the messages de-
cide which topics are the receivers AtomicKafka can dynamically add or re-
move topics in runtime, allowing AtomicKafka to be smoothly integrated
with Kafka.

Our contribution is an implementation of AtomicKafka based on the Al-
gorithm 3. We were able to evaluate the system and estimate the cost of
performance when introducing AMCast to Kafka. With a baseline of 83.6
deliveries per second we were able to have an average of 26.6 deliveries per
second with 10% of the messages being atomic multicast messages. When
we increased the number of atomic multicast messages to 50% we achieved
a delivery rate of 15.25 per second.

5

Chapter 2

Background

This chapter will give the reader an introduction to the theory, terminology,
and technology used to solve the problems explained in chapter 1.

2.1 System Model

Normally a distributed system[4, 9, 15, 18] Π is considered to consist of inter-
connected processes Π = p1, p2 . . . pn which communicates through broad-
casting messages between each other through a reliable broadcast. In this
thesis we assume that the distributed system Π consist of decoupled pro-
cesses Π = p1, p2 . . . pn where they communicate using a intermediate sys-
tem Ω to communicate with each other. We assume that Ω does not exhibit
any failures.

A process may experience a failure, but do not exhibit any Byzantine fail-
ures. If a process fails it is because the process has crashed and could recover
from this.

Processes are considered either correct or faulty. A correct process could
eventually be operational forever, and can reliably send and receive messages
from Ω as long it is correct, which means that the process is correct for long
enough to terminate an instance of consensus.

2.2 Atomic Broadcast

In distributed system broadcast communication is a fundamental problem
that is reaching consensus among multiple different processes[11].

Abstractions are used to propagate messages to different processes. There
exist many different communication abstractions that can guarantee different
properties for the abstractions such as varying degree of consistency, reliabil-
ity and availability. Abstractions such as Regular Reliable Broadcast, FIFO

6 Chapter 2. Background

Broadcast and Causal Broadcast, which are all similar to each other but has
different applications and tries to solve different problems.

Atomic Broadcast is another broadcast abstraction that is similar to both
FIFO and causal Broadcast as all three enforce a specific delivery behavior
based on the order of messages. Where FIFO ensures when a process π1

broadcasts messages they will be delivered in the same order as they were
broadcasted, but only for p1, if p2 also broadcasts messages it does not en-
sures an order between the two processes.

Causal Broadcast works similarly as it ensures a global ordering for all
messages that causally depends on each other. Meaning that if m2 has been
delivered and both m1 and m2 has a dependency on each other then m1 has
been delivered before m2. The issue here is that if two messages are unrelated
it will not ensure a global order on the unrelated messages.

Atomic broadcast unlike Causal and FIFO broadcast enforces a global or-
der regardless of which processes sent the messages and the causality of the
messages. Atomic broadcast ensures that every process Π = {p1, ..., pn} in
the system will deliver the same messages {m1, m2, ..., mn} in an global order,
meaning that every process will have the exact same ordering of the mes-
sages {m1, m2, ..., mn} locally.

• Validity: If a correct process p broadcasts a message m, then p eventu-
ally delivers m.

• No duplication: No message is delivered more than once.

• No creation: If a process delivers a message m with sender s, then m
was previously broadcast by process s.

• Agreement: If a message m is delivered by some correct process, then
m is eventually delivered by every correct process.

• Total order: Let m1 and m2 be any two messages and suppose p and q
are any two correct processes that deliver m1 and m2. If p delivers m1
before m2, then q delivers m1 before m2.algorithm we will be using.

FIGURE 2.1: Atomic Broadcast Properties

2.3. Atomic Multicast 7

2.3 Atomic Multicast

Atomic Multicast is a communication abstraction very similar to Atomic Broad-
cast in that both abstractions ensure global sequence ordering on messages.
The most significant difference between the multicast version and broad-
cast version is where Atomic Broadcast will propagate the message to all
processes in the system Π atomic multicast can select a group of processes
Gi ⊂ {p1, p2} to propagate the message instead of all processes.

To achieve Atomic Multicast a system has to adhere to the Atomic Multi-
cast properties 2.2 defined below.

• Validity: if a correct process p multicast a message m, then eventually
all correct processes g ⊂ m.dst deliver m.

• Agreement: if a correct process p delivers a message m, then eventually
all processes q ⊂ g, deliver m.

• Integrity: For any process p and any message m, p delivers m at most
once(no duplicates), and only if p ⊂ g, g ⊂ m.dist, and m was previ-
ously proposed.

• total order: For any two message m and m’ and any two processes p
and q such that p ⊂ g, q ⊂ h and g, h ⊆ m.dst ∪m′.dst, if p delivers m
and q delivers m’, then either p delivers m’ before m or q delivers m
before m’.

FIGURE 2.2: Atomic Multicast Properties

sender

group1

group2

group3

phases:

consensus consensus

consensus consensus

consensus consensus

deliver

deliver

deliver

〈BCAST〉 〈ALLTOALL〉〈CONS1〉 〈CONS2〉

FIGURE 2.3: Atomic Multicast phases.[16]

8 Chapter 2. Background

The figure 2.3 above taken from the article ’Decoupling atomic multi-
cast’[16] shows the different atomic multicast phases. Typically it requires
four phases where the first message is sent to every receiving group. When
this message is received each group will add a timestamp on the message
and agree on a timestamp. Then each group will inform every other group
about their decision in the All to All phase. In the last consensus round they
all will agree to the largest timestamp among the groups and all groups end
up delivering the same message order.

When comparing Atomic Multicast to the Atomic Broadcast they are very
similar, though Atomic Multicast has two properties that are defined in a
more detailed way. Both the integrity and total order properties are given
more details regarding groups of processes receiving a message instead of the
whole system. Comparing the Atomic Multicast Properties 2.2 and Atomic
Broadcast Properties 2.1

Non genuine vs genuine atomic multicast

As explained in Chapter 2.2 atomic broadcast enables a message to be sent to
all processes in a system along with the guarantees that all correct processes
agree on a specific sequence on the messages they deliver.

The opposite of atomic broadcast is atomic multicast, which can target a
subset of processes which agrees on a specific sequence on the messages they
deliver.

This is why it is possible to use atomic multicast to implement atomic
broadcast, by only atomic multicast messages to all processes[15]. It is also
possible to achieve atomic multicast by implementing atomic broadcast if the
processes drop messages not intended for themselves.

Though by using atomic broadcast to implement atomic multicast would
violate the minimality property. The minimality property states that only the
sender and the addressed receivers of a message should be involved in the
protocol that is needed to be able to deliver the message[15]. It is evident
that an atomic multicast algorithm using atomic broadcast does not satisfy
this property, as every process would have to process the message even those
who are not intended to process it.

2.4. Apache Kafka 9

2.4 Apache Kafka

Kafka is a distributed event-source system, which we are using to enable us
to simplify our process to implement the Atomic Multicast algorithm we will
be using. Kafka is a distributed, replicated, log service created by LinkedIn
and open-sourced in 2011 [27]. Kafka was created to enable tracking of events
created from LinkedIn websites such as page-views, keywords, and ad views
so that LinkedIn could monitor their user’s engagement towards the site.
Kafka differs from other Publish-Subscribe system as Kafka is not an imple-
mentation of the MQTT or AMQ protocols. LinkedIn created its own Kafka
protocol[12] that is designed explicitly for Kafka usage.

Since we will be using Kafka as our foundation an explanation how the
system works is necessary to get the fundamental understanding of how our
algorithm is going to work and how by using Kafka we can ensure many of
the properties of Atomic Multicast without having to develop a complex so-
lution of our own, and since Kafka is widely used in the industry it might be
helpful for other developers to understand how they could achieve Atomic
Multicast using either Kafka or their already established systems.

Kafka is usually run as a distributed cluster, illustrated by Figure 2.4
where each node is called a broker, illustrated by the white rectangles in Fig-
ure 2.4. Brokers are nodes which can contain multiple topics, illustrated by
red, green, and blue rectangles, where each topic can act as a leader for the
topic which provides fault tolerance for topics and high availability. A Kafka
producer is illustrated by an orange circle in Figure 2.4. The producer is re-
sponsible for creating and sending messages into a topic or multiple topics
residing inside the Kafka cluster so that Kafka consumer can fetch those mas-
sages. The red circles represent the Kafka consumers. A consumer in Kafka is
responsible for consuming Kafka messages from a topic it is subscribed too,
explained in Chapter 2.4.

FIGURE 2.4: AtomicKafka architecture

10 Chapter 2. Background

Topics

In an event-source system like Kafka messages will always have a designated
address called Topics. In Kafka a topic is defined as T = {tp1, tp2, ..., tpn},
meaning there can exist multiple partitions [24]. This is visualized in the
Figure 2.5, where it shows that a client produces a message to Kafka, it is
assigned a partition in Kafka and eventually it is consumed by a client again.
The functionality of how it is partitioned is explained below in Chapter 2.4.

FIGURE 2.5: Topic partitions

When a producer is sending a message to Kafka it will have what is called
a topic leader, a partition with the designated responsibility of coordinating
new messages, if partitioning is enabled. When the leader has accepted the
new message it will update any existing replicas with the new message.

A replica is a backup of a topic residing in another broker, with the new
data, and if the leader fails one of the replicas will take over the responsibility
and become the new leader for that topic.

In a Publish-Subscriber system, a collection of messages is sorted into des-
ignated locations called topics. Both the publishers and subscribers choose
which topics they want to either send or receive messages from. Since Kafka
is a distributed system, the topics can also be distributed by using either par-
tition, replications, or both.

“More Partitions Lead to Higher Throughput.[26]”
Partitions are mainly used to increase the throughput of Kafka system

as it allows the Kafka brokers to handle multiple producers producing mes-
sages to multiple partitions, instead of a single topic.

The replications is a copy of the topic or partition residing on another
broker in case of broker failure.

Partitioner

The partitioner is a schema that is provided to a Kafka producer, defining
how messages should be partitioned. As explained above in Chapter 2.4,

2.4. Apache Kafka 11

partitions are essential if one wants to increase performance. In Kafka the
default partitioner has two ways to decide which partition a message belongs
too.

If a message is assigned a key the partitioner will calculate a hash value
of that key and use that to decide the partition it belongs too. If no key is
defined it will then assign the partitions in a round-robin fashion.

It is also possible to create a custom partitioner as we explain in Chapter
4.1.3.

Producer

A client that produces a message that is sent into a Kafka cluster is known as
a producer. A producer can be thought of as a data source which subscribes
to a topic it will send messages to.

The producer can send messages to the broker which is the leader of the
topics directly.

The producer can directly communicate with the broker since it is allowed
to send a request for information about which brokers is alive and which
broker is the leader for the desired topic to any of the Kafka nodes at any
time [13].

The producer also includes support for idempotent[13] delivery. Idem-
potent delivery means that the messages sent using this option is delivered
exactly once to a single topic during the producers lifetime. Producers also
support transactional[13] delivery which allows the user to send messages to
multiple topics such that all the messages are delivered or none of them are,
which is an atomic operation.

Together these two capabilities enable the producer to use the exactly
once semantics[13] for Kafka.

Consumer

A client that consumes messages from a Kafka cluster is known as a Con-
sumer. If a consumer wants to consume messages from certain topics it has to
notify the brokers about subscribing to the single or multiple topics it wants
to consume from. Each consumer when subscribing to a topic will notify the
broker about an identity called group identification. This ID enables the bro-
kers to keep track of which messages it retains has been received and read
from the specific consumer, and in the case of a disconnect the consumer is

12 Chapter 2. Background

not needed to reread every message and instead start reading from where it
disconnected.

Messages

The messages used by Kafka is simple in design. A Kafka message is com-
posed of a Key and a value where both can be of any object as long as a
serialization method is defined. If a key is defined for the value the key will
be used by the partitioner, explained in Chapter 2.4, deciding the partition it
belongs to.

2.5 Earlier work

Before we started working on this thesis we conducted an project[32] to fa-
miliarize ourselves with Kafka and atomic multicast. The architecture of the
framework from that project is the one used as the basis in this thesis. The
architecture is explained in details in Chapter 4.1.1.

We attempted to implement an atomic multicast algorithm in that project
and concluded it was possible, though while working on this thesis we found
that the conclusions from that project needed to be discarded. The atomic
multicast implementation in that project was faulty, and we had assumed
that the timestamp generated by Kafka was synchronized timestamp shared
between the brokers. That assumption was wrong[13], and while working on
this thesis we spent much of our efforts solving this issue, further details in
Chapter 6.1.1. The implementation in the project ended up working because
of the servers internal clock was synchronized at the time of evaluation, and
when we started working on this thesis the internal clocks were no longer
synchronized.

In this thesis we have rebuilt the entire consumer implementation to work
with logical clocks, optimized the message ordering by using a binary heap,
making delivery checking easier as we do not have to iterate over every mes-
sage in the local state map, explained in Chapter 3.1, for ordering deliver-
able messages. We have also moved away from the inefficient transactional
producer, that promises atomicity operation, ACID atomic and not Lamport
Atomic when sending messages to multiple topics. We also found that the
algorithm in itself had issues while using multiple producers, to compensate
for this the Algorithm 3.1.1 was redesigned to function with multiple pro-
ducers.

2.5. Earlier work 13

Because of these issues, we discard the results of that project as invalid,
though we gained useful insights in Kafka, the Kafka API and atomic multi-
cast theory.

15

Chapter 3

Design and Method

3.1 Design

This chapter introduces three different designs to enable atomic multicast for
Kafka. We present a Proof of Concept(PoC) design which enables atomic
multicast for any event-source System. After reviewing the PoC we investi-
gate the potential optimization of the PoC algorithm resulting in the second
design. The third design is a Kafka specific algorithm that adheres more to
Kafka design principles than the previous two designs. Lastly, we explain
how to recover from a node failure by discussing multiple strategies such as
rebuilding the state of the node.

System components

As mentioned in Chapter 2 Kafka is an open-source project, and the code is
hosted on GitHub[2]. That means we could have forked the project and used
that for our implementation of AMCast. That approach has two significant
disadvantages, maintainability and complexity. To be able to maintain the
AMCast feature one would have to keep merging newly implemented fea-
tures from Kafka into AtomicKafka. The chance of breaking AMCast func-
tionality is more prominent, making maintainability harder. We would also
have to make sure that we do not break any other functionality of Kafka,
making it more complex to implement. The other hindrance for this ap-
proach is the size of the Kafka project. At the time of writing the current
commit in the repository consist of 384 669[1] lines of code, making it im-
practical to implement AMCast directly into Kafka.

Our solution is to design a system that is decoupled and interacts with
Kafka both as a consumer and a producer client. In Figure 3.1 we provide
an overview of what the system looks like from a top-level view. The two

16 Chapter 3. Design and Method

orange circles are regular Kafka producers and the two red circles are regular
Kafka consumers, as explained in Chapter2.

The AtomicKafka cluster in Figure 3.1 has three nodes which are sub-
scribed to topics 1, 2, and 3. This means that any AMCast message sent to
either of those topics will use atomic multicast, if not it will be ignored.

There are three more topics marked yellow, and these are topics where
atomic multicast is never needed but was included to show that it is possible
to have regular topics too.

The AtomicKafka client is very similar to a regular Kafka consumer, the
issues of using a regular Kafka consumer on topics that AtomicKafka nodes
are subscribed too is the amount of control messages are consumed. The
AtomicKafka client can filter out all the control messages and only give the
end user the delivered messages instead.

FIGURE 3.1: AtomicKafka interaction

For the design we assume there will exist one node per Kafka topic that
requires AMCast functionality. Meaning there will exists | pi |<=| topici |
number of AtomicKafka nodes. To simplify we will assume from here on
that our system requires that all topics require AMCast, meaning we will
need | pi |==| topici | number of nodes.

Messages

We used a specific message format when using AMCast with AtomicKAfka,
that includes both message content and metadata, as can be seen in Listing
3.1. Many fields have to be populated in a message, but a client only needs

3.1. Design 17

to populate messageID, senderID, value, topic and type. Though a client is
required only to send a message of type ClientMessage. There is a possibility
of misusing this by sending malformed client messages, but in our current
design, we assume that every client is honoring this requirement and vali-
dating this is left to the implementation. All other message types are used by
AtomicKafka internally. Those messages are used to determine the message
state and how AtomicKafka should proceed to process the message. To do
this the system implements the five different message types as listed below
in 3.1.

18 Chapter 3. Design and Method

LISTING 3.1: Message Definition

MessageID
The ID is used as a unique identifier during the AMCast.

Timestamp
A Lamport clock used to decide in what order the message was received.

SenderID
The sender ID is mostly used as a identifying field for debugging purposes.

Value
The data or message intended to be sent.

Topic
The recipients of the message. This field can contain one or more recipients.

MessageType
There are multiple message types used by AtomicKafka:

Client Message
This is a message sent from an AtomicKafka client to Kafka

topic, and is the only type AtomicKafka client is able to send.

Notify Message
This is a control message used to forward a single message

to other nodes that are marked as recipients.

Acknowledge Message
This is a control message used to acknowledge that a

node has received an notify message.

Decided Message
This is a control message used in the optimized algorithm.

This is a message sent from the node that decides on

the lamport timestamp.

Delivery Message
This is the final message that a client can consume,

this message will be in total order across the topics

marked as recipients.

Because AtomicKafka uses control messages like a regular consumer would
consume every message possible from a topic, because of this we have de-
signed a custom client called AtomicKafka Client, as seen in Figure 3.1. This
client is capable of sending ClientMessages into Kafka and read the delivered
messages, filtering out the control messages.

Data structures

To enable AMCast for AtomicKafka we need a mechanism to ensure the cor-
rect sequence of deliveries. To keep track on the sequence messages should

3.1. Design 19

be delivered and in what order we create hashmap, that we call a local mes-
sage state map (LMSM). This LMSM uses the messageID as a key and for
the value it creates a new hashmap so < key, hashmap > pair. The hashmap
stored in the value is a collection of every message that is related to mes-
sageID. This hashmap is using the senderID as key and the message itself as
a value, < int, String >. LMSM maps all messages with the same messageID
into a new map, so it has a message state for every node with the messageID.

For example, if we have a message formatted as

< senderID, messageID, timestamp, [topics], messageType, value >

and a topic topic1 receive the message

< sender1, messageID1, timestamp2, [topic1, topic2], ClientMessage, ”hello” >

p1 will create a new entry on key 1. This results in creating a new hashmap
< 1,< int, message >>, and store the nodes own message state as

< messageID1 ,

[< senderID1,

(senderID1, messageID1, timestamp2, [topic1, topic2], AckMessage, ”hello”) >

] >

p1 will also create a notify message and send it to topic2 where p2 process
the notify message in the same manner as p1 handled the client message.
After a local state has been created for p2 it will reply with the message

< sender2, messageID1, timestamp5, [topic1, topic2], AckMessage, ”hello” >

resulting in p1 updating the LMSM to

< messageID1 ,

[< senderID1,

(senderID1, messageID1, timestamp1, [topic1, topic2], AckMessage, ”hello”) > ,

< senderID2,

(senderID2, messageID1, timestamp2, [topic1, topic2], AckMessage, ”hello”) > ,

] >

20 Chapter 3. Design and Method

By using the LSMS a node can check if it has received all the acknowledg-
ments needed to decide when a message is deliverable. Choosing a times-
tamp is done by iterating over all messages under messageID, and the times-
tamp with the largest value is chosen. To do this a timestamp is created from
a logical clock every time a topic receives a ClientMessage or NotifyMessage.
The Lamport clock of a node can be updated choosing the highest value be-
tween the message timestamp and local clock, otherwise the Lamport clock
is increased linearly for Client-, Notify-. and AckMessages, creating a local
ordering of when a message was received.

As the LSMS only keeps track of message state a priority-queue is used to
keep track of the order in which a message is to be delivered. The priority-
queue contains each messageID only once, so we have a reference to the
message location in LSMS. As messages are received by a nodei the mes-
sage is added into the priority-queue using the timestamp as the key and
the message object reference as value. To keep the messages in order the
priority queue automatically orders the messages based on their timestamp,
the lower the timestamp value is the higher priority the message gets in
the queue. In the case of two different messages has the same timestamp
a tiebreaker is made on the messageID, where the lowest messageID value
has a higher priority.

LISTING 3.2: Message composition

m1 :=< senderID2, messageid1, timestamp1, [topic1, topic2], ACKNOWLEDGE, ”one” >

m2 :=< senderID2, messageid2, timestamp1, [topic1, topic2, topic3], ACKNOWLEDGE, ”two” >

m3 :=< senderID2, messageid3, timestamp4, [topic1, topic2, topic3], ACKNOWLEDGE, ”three” >

m4 :=< senderID2, messageid4, timestamp9, [topic1, topic2, topic3], ACKNOWLEDGE, ” f our” >

If a process p2 is pushing the message above into a priority-queue it will
end up having the structure as the Figure 3.2.

3.1. Design 21

FIGURE 3.2: Priority-Queue with conflicting timestamp

As messages have been processed, a method should execute to check if
the first message in the priority queue is annotated as Delivery. If every node
has acknowledged the message a decision can be made and the message will
then be deliverable. As the message is deliverable and the message position
in the queue is at the top every nodei will pop the the message from their
priority-queue and send it to the topic nodei is subscribed to. After the mes-
sage has been delivered to topici each nodei will then remove all the messages
placed in the messageID key from the LMSM.

Looking at Figure 3.2 if each message was annotated as deliverable the
queue send the messages in the order m1, m2, m3, m4 to the topic pi is sub-
scribed too.

3.1.1 Algorithm: Proof of Concept

The PoC design is similar and behaves just like other AMCast algorithms[18,
9, 16] designed from before. However, since we are creating a system that re-
lies on Kafka as an Event-Source System, much of the complexity regarding
atomic multicast is handled. Specifically validity, no creation and agreement
[18, 9, 16] is already taken care of. Allowing us to focus on the AMCast algo-
rithm.
The first design of AtomicKafka is designed as a PoC without considering
any optimizations. The design is to ensure that a decoupled event-source
system such as Kafka is capable of using AMCast and of evaluating the sys-
tem design.

The Algorithm 1 outlines how we attain AMCast for an Event-Source Sys-
tem, in our case Kafka. Two figures also accompany this algorithm. Figure
3.3 shows the different phases that a message has to go through before it can

22 Chapter 3. Design and Method

be delivered. Figure 3.4 shows an example on how AMCast works step by
step.

When an AtomicKafka process is starting up it will have a reference to
both a normal Kafka consumer and Kafka producer service as seen from Line
1. The first method to run in Algorithm 1 is the Initialization on Line 5. The
first variable to be initialized is the map variable. The map variable is the
LMSM that consists of a Hashmap with the data-structure detailed in Chap-
ter 3.1. The ID is used to uniquely identify different AtomicKafka nodes
when a message is sent from an AtomicKafka node the ID is added to the
sender field. The ID has to be globally unique, as it is also used as a key for
retrieving messages from the LMSM.

The priority-queue is a Binary heap structure also known as a priority-
queue. The priority queue is used to arrange a message order as explained
in 3.1.

The timestamp is a Lamport Clock[17] also known as a logical clock. We
use this timestamp to register when a message has arrived in an AtomicKafka
node.

When the node has finished initializing it will wait for a message to be
received by the topic it is subscribed too. The method on Line 11 handles all
the messages that are being sent from a client to AtomicKafka. As a message
is handled by the Received-ClientMessage method it is given a timestamp
and the timestamp counter is increased on Line 12 and 13. The message is
added to the LMSM on Line 14. If this is the first time the node has seen this
message before it will create a new hashmap creating the data structure that
was explained above in Chapter 3.1. Once the message state has been set a
reference to the message is also added to the priority-queue on Line 15. After
the message has been assigned a timestamp and added to the hashmap and
binary heap it is inspected to see if the node is the only receiver or if there
are multiple receivers on Line 17. If the node is the only receiver it does not
have made an agreement with the other nodes to deliver the message and
is marked as type delivery on Line 17, and the reference is updated in the
priority queue on Line 18.

If the message has multiple receivers the node will iterate over each topic
listed as a receiver on Line 20 to notify other nodes about the message. Line
21 checks if the current topic in the iteration is a topic the node is subscribed
too. If the test is true it updates the message type on Line 22 and update
message state map on Line 23. Since this message is intended for the node
itself it does not need to waste bandwidth or Kafka processing power to send

3.1. Design 23

the message. If the test on Line 21 is false it will update the message type to
a Notify message on Line 26. Line 28 triggers the Kafka producer to send the
message to the current topic in the iteration.

The method on Line 28 is responsible for handling every Notify messages
sent from other nodes. As this is the very first time the node has seen the
message it will process it similarly as Line 29 and 30 adds a timestamp to
the message. Line 32 puts the message into the LMSM, of an entry does not
already exist the node creates a new entry for the message.

Line 32 check if the node is the only receive. As in the Received-ClientMessage
method on Line 11 there is a check in place to see if the node is the only
receiver of the message, reducing the number of messages sent. The unin-
tended effect of having checks on Line 32 is that it allows the nodes to relay
messages between topics, increasing the flexibility of the system. Relaying
messages allows users to send messages to arbitrary topics and the Atom-
icKafka node subscribed to those topics will relay the messages to intended
topics.

Line 33 and 34 updates both message type and adds the message to the
delivery queue.

If the message contains multiple receivers it will skip Line 32 and continue
from Line 36. The message type is updated to Acknowledge on Line 31 to let
other nodes know it has received the message. Line 37 adds the message to
the queue and Line 38 iterates all the receiving topics. Line 40 triggers the
Kafka producer to send out the message to the current topic in the iteration.

The method on Line 5 is invoked when every intended receiver of a mes-
sage has replied with an Acknowledge to each other. It starts with having an
empty message variable on Line 6. The empty variable is intended to hold a
reference to a message that will be decided as the delivery message. Line 7
iterates through every Acknowledge message received, using the messageID
to retrieve the messages. While iterating through every acknowledge mes-
sage Line 8 checks if a message has a higher timestamp than the previous
message. If this is true the message will be stored in the empty message vari-
able on Line 6. When the message with the biggest timestamp has been found
the message type is updated to Delivery on Line 7, and the message inside
the delivery queue is also updated. At this point the delivery queue will up-
date the ordering of the stored messages in the same manner as explained in
Chapter 3.1 with Figure 3.2.

When a message is marked as Delivery the method in Algorithm 2 is in-
voked to check if there is any message that can be delivered to a topic or not.

24 Chapter 3. Design and Method

The while loop on Line 16 conditions will prevent the loop from delivering
any messages that do not meet the right condition. To be able to loop the
first element in the queue has to be a deliverable message if this is true the
message is pulled from the queue on Line 17 into a temporary variable. Line
18 triggers the producer to send the message to the topic the nodes is sub-
scribed to. Since the message now has been delivered there is no more need
to keep track of the message and Line 19 and 20 removes all the messages
that belong to the messageID that was just delivered.

3.1. Design 25

Algorithm 1 AtomicKafka: Proof of Concept part I
1: Uses:
2: Kafka-Producer instance p
3: Kafka-Consumer instance c
4:
5: on 〈INIT〉 do
6: map := Π . Init message soft state map
7: id := IR . The unique ID of the node
8: priority-queue := Π . Binary Heap used to sort deliverable messages
9: timestamp := 0 . Lamport clock

10:
11: on event 〈RECEIVED-CLIENTMESSAGE, msg〉 do
12: msg.timestamp = timestamp . Add Lamport clock to message
13: timestamp = timestamp +1 . Increase Lamport clock
14: map = map ∪msg
15: priority-queue = priority-queue ∪msg
16: if Σm.topics == 1∧m.topics.contains(self.topic) then
17: msg.type = Delivery
18: priority-queue = priority-queue ∪msg . Message is deliverable
19: else . Find designated topics
20: for topic← msg.Topics do
21: if topic == self.Topic then
22: msg.type = Acknowledge
23: priority-queue = priority-queue ∪msg
24: else
25: msg.type := Notify
26: Trigger <p, topic, Notify, msg> . Send to topics
27:
28: on event 〈RECEIVED-NOTIFY, msg〉 do
29: msg.timestamp = timestamp
30: timestamp = timestamp + 1
31: map = map ∪msg
32: if Σm.topics == 1∧m.topics.contains(self.topic) then
33: msg.type = Delivery
34: priority-queue = priority-queue ∪msg . Message is deliverable
35: else
36: msg.type = Acknowledge
37: priority-queue = priority-queue ∪msg
38: for topic← msg.Topics do
39: if topic != self.Topic then
40: Trigger <p, topic, Acknowledge, msg> . Send ACKs
41:

26 Chapter 3. Design and Method

Algorithm 2 AtomicKafka: Proof of Concept part II
1: Uses:
2: Kafka-Producer instance p
3: Kafka-Consumer instance c
4:
5: on event 〈RECEIVED-ACKNOWLEDGE, msg〉 All acks received for mes-

sageID do
6: latestmsg := newMessage()
7: for storedMsg← map[msg.id] do
8: if storedMsg.ts > latestmsg.ts then . Find biggest ts
9: latestmsg = storedMsg

10: latestmsg.type = Delivery
11: priority-queue = priority-queue ∪ latestmsg
12: if timestamp < latestmsg.ts then
13: timestamp = lastestmsg.ts
14:
15: on event 〈DELIVERY, msg〉 deliver-heap contains delivery do
16: While(priority-queue.peak() == Type.Delivery) then
17: msg := priority-queue.Pull() . Fetch first message sorted by ts
18: Trigger<p, self.topic, Deliver, msg>
19: map = map /msg . Remove msg
20: priority-queue = priority-queue /msg . Remove msg

Algorithm 1 makes atomic multicast possible for any event-source sys-
tem. We have also proven that it is possible to implement a genuine Atomic
Multicast system using an event-source system.

Simple Example

We assume there are 3 topics {topic1, topic2, topic3} denoted as Topic 1, Topic
2 and Topic 3 in Figure 3.3. We also assume there are three AtomicKafka
nodes {node1, node2, node3}, where each node subscribes to the correspond-
ing topic number. When the message is sent to topic 1, we assume that the
message is supposed to be AMCast to all three topics.

When AMCast is needed the process is always initiated by sending a
ClientMessage to the Kafka cluster, this is the blue square in Figure 3.3. After
the message has been handled by the AtomicKafka node the message will be
forwarded as a NotifyMessage to the other two topics. This is shown as the
red squares in Figure 3.3. The NotifyMessage is not sent to every topic as
topic1 does not notify itself, this happens because topic1 was the receiver of
the ClientMessage and already knows about it and immediately Acknowl-
edges the message.

3.1. Design 27

FIGURE 3.3: First design message propagation

When topic2 and topic3 receives the NotifyMessage they will process it
according to the Algorithm 1 and reply with a response to the other topics.
The topic that receives the ClientMessage topic1 does not have to Acknowl-
edge the message to the other nodes, as the NotifyMessage contains the in-
formation a Acknowledge message would contain, thus NotifyMessage and
Acknowledge message is treated similarly.

After each node has received the Acknowledge messages they need they
will do the last thing and decide on a message they will have to deliver which
is shown as the green square in Figure 3.3.

Detailed Example

This example will give a more detailed insight into how the process works
by using Figure 3.4. To simplify the example the empty spaces between the
squares on the topic 1, 2, and 3 lines are assumed to be messages that do not
belong to the AMCast between topic 1, 2, and 3.

We assume there are 3 topics {topic1, topic2, topic3} denoted as Topic 1,
Topic 2 and Topic 3 in Figure 3.4. We also assume there are three Atom-
icKafka nodes {node1, node2, node3}, where each node subscribes to the cor-
responding topic number. Two messages are sent to topic1, message c and
message b. Both messages are AMCasted from an AtomicKafka client. Us-
ing the Figure 3.4 we will go through the different phases and look at the
messages being sent from each other, and how a latency issue will impact a
topic.

In the top left corner of Figure 3.4 there are four rectangles with different
colors, there are also three arrows with different colors. Each rectangle repre-
sents a different event in the Algorithm 1. The square represents the state the

28 Chapter 3. Design and Method

message is currently in, and the arrows represent the control message being
sent to the AtomicKafka nodes.

The light blue square named Message Proposed indicated that AtomicK-
afka node has received a ClientMessage from an AtomicKafka client, this is
the method on Line method on Line 11. After a ClientMessage has been re-
ceived it will then send NotifyMessages to the other nodes, represented by
the blue arrow. When the nodes receive this NotifyMessage it will be repre-
sented as the red squares, named Notify Received, which is handled on Line
28. After the notification message has been processed it will respond with an
AckMessage, represented by the purple arrow.

The dark blue square represents when a node has received all the AckMes-
sages needed to make a decision, which is handled by the method on Line 5.
This results in a message being able to be delivered, which is represented by
the green square called Message Delivery.

We have simplified the data shown in the figure so information such as
messageID and receivers has been removed. We kept the value information
for the Message Proposed square but left out all other information. For the
control messages, we have added a m(x, y) where x is the value being AM-
Casted and y is the timestamp given to the message.

In figure 3.4 the first message proposed from a Atomickafka client is a
message that contains the value "c" intended for topic1, topic2, topic3. This is
the first Step in the Figure 3.3.

As seen in the Algorithm 1 when a ClientMessage is sent to topic1 and
processed by node1 the first thing the algorithm does is to assign the message
a logical timestamp of 0, and then increases the timestamp by one in Line 12
and 13.

The Line 14 and 15 is used to build the state of AtomicKafka and a de-
livery order. In our example this map belonging to node1 will eventually
create a local message state overview of both map := node2, node3 for the
AMCasted messages, where node2 will have map := node1, node3 and node3

has map := node1, node2.
Line 16 through 18 check if a message only has a single receiver, if yes it

does not need to be sent to other nodes and can be delivered by the receiv-
ing node. In our example since there are two other receivers topic2, topic3 so
node1 has to send out a NotifyMessage to topic1, topic2. When node1 is sup-
posed to send the message to topic1 it will instead update the message type
to ACKNOWLEDGE and update the message state in the map, rather send-
ing a message to the topic node1 subscribes too. This can be seen in Figure 3.3

3.1. Design 29

as the second communication step.
In Figure 3.4 when the message arrives in topic2, topic3 the node node2,

assuming there have been two message that is not shown, assigns 3 as the
timestamp and node3 has assigned the message 2 as the timestamp. This is
done by the method on Line 28.

The LMSM of node2, node3 will look similar to this.

< 1, [{2,< Acknowledge, ”c” >}, {1,< Acknowledge, ”c” >}] >

.
After the NotifyMessage has been processed by node2, node3 both nodes

will send an ACKNOWLEDGE message to each other. The particular case
here is the AcknowledgeMessage from node2 to topic topic3 is delayed by
some ∆ time. The acknowledge phase is annotated as the second communi-
cation step in Figure 3.3.

At this moment topic1 receives a new ClientMessage with value "a" and
node1 starts the notify phase again, giving the message a timestamp of 3.
node2, node3 both receives the NotifyMessage and assigns timestamps of 5
and 7.

After node1, node2 has sent out the AcknowledgeMessage for the second
message "a" both nodes have received all the AckMessage for message "c"
to decide for delivery. As they compare the timestamps in their LMSM they
both end up in this instance that "c" message has the highest timestamp of
3. As the message type is updated to a DeliveryMessage it is also reordered
in the priority-queue and now the Delivery method in Algorithm 2 will run.
Only node1, node2 will deliver the message with value "c" at this time to their
own topics. This is the green square in Figure 3.3.

For node3 the LMSM will look like

LISTING 3.3: LMSM composition

< messageID1 ,

[

{ senderID1 , timestamp0 , [topic1, topic2, topic3] , Acknowledge , " c " >} ,

{ senderID3 , timestamp2 , [topic1, topic2, topic3] , Acknowledge , " c " }

] ,

messageID2 ,

[

{ senderID1 , timestamp3 , [topic1, topic2, topic3] , Acknowledge , " a " } ,

{ senderID2 , timestamp5 , [topic1, topic2, topic3] , Acknowledge , " a " } ,

30 Chapter 3. Design and Method

{ senderID3 , timestamp7 , [topic1, topic2, topic3] , Acknowledge , " a " }

]

>

At this point node3 has enough acknowledgments to make a decision and
deliver the message "a" but is still missing an acknowledge from node2 for
message "c", meaning node3 is not able to deliver the message "a" yet. While
node1, node2 is deciding on the message "c" node3 has received all the Ac-
knowledgeMessages it needs to decide for the second message "a". This is
handled by the RECEIVED-ACKNOWLEDGE method on Line 5 node3 which
decided the timestamp of the message should be 7 and is ready to be deliv-
ered. Since the message "a" is ready to be delivered the Delivery method
in Algorithm 2 will decide that message "a" is not the message to be deliv-
ered first. This is because message "c" is already in the priority queue with a
timestamp of 2 which has a higher priority as stated in Chapter 3.1.

After ∆ time the last AcknowledgeMessage sent from node2 arrives in
topic topic3 making it possible to make a decision on message "c". When
the message "c" is updated with timestamp 3 both messages are ready to
deliver. Meanwhile as both topic1, topic2 already contains the needed Ac-
knowledgeMessages from node1, node2, node3 both node1, node2 has decided
to deliver the second message "a".

When the final message has been delivered all of the topics topic1, topic2, topic3

will have the following message order c, b across the topics keeping the strict-
ordering guarantee which we wanted to achieve.

FIGURE 3.4: Example of phases and messages

3.1. Design 31

3.1.2 Optimization

In the last chapter we discussed how we designed an algorithm solving the
AMCast problem. We also explained the algorithm using an example prov-
ing that genuine Atomic Broadcast is possible when using an event-source
system. As the algorithm was a Proof of Concept, we used a classical ap-
proach where every topic sends all messages between each other. By doing
this we create O(n2) number of messages, and each node has to compute
each message equally. The drawback by handling messages in this way is
that if one topic receives more messages than others this node will delay the
other nodes.

So in this chapter we will introduce an optimized AMCast suited for
event-source systems. Where a single node is responsible for deciding if
a message is deliverable or not. By doing this, we create a one-to-many
and many-to-one communication rather than have many-to-many. Sending
fewer messages overall.

FIGURE 3.5: AMCast optimized message propagation

The Figure 3.5 shows how the optimized algorithm handles message prop-
agation between the different topics. We have introduced a new communi-
cation step and a new message type decided. This allows a single node to be
responsible for the messages it receives from a client and handle all the de-
cision computation on a single node instead of every node. This design also
adheres to the decoupled strategy we want to achieve, making each node
more independent.

32 Chapter 3. Design and Method

Simple Example

For this example we will be using Figure 3.5 to show how messages propa-
gate through the system.

When topic 1 in Figure 3.3 when topic1 receives a client message {node1}
relays the message to {topic2, topic3} intended receivers topic2, topic3. In the
previous design both {node2, node3}would send acknowledgment to the two
other topics, in Figure 3.3 {node2, node3} only needs to send back an acknowl-
edge to {node1} instead. To enable this functionality only a single line of code
was changed on line 38 in the Algorithm 3.

When t1 has received all the acknowledge messages from the other topics
the received-acknowledge on Line 5 method is invoked. This method is only
invoked by the nodes that received the first message from a client, shown in
Figure 3.5. This method decides on a message in the same way as the pre-
vious PoC Algorithm 1. The difference between the methods in Algorithm 1
and 3 is that the latter algorithm is choosing a message which all of the nodes
will agree on.

When {node2, node3} receives the decided message the method in 4 on
Line 18 will update the message state and the message reference in the heap
queue.

After the heap queue has been updated it will trigger the method on Line
1 is invoked, which functions in the same way as the PoC algorithm 2 on Line
15.

3.1. Design 33

Algorithm 3 AtomicKafka: Optimized part I
1: Uses:
2: Kafka-Producer instance p
3: Kafka-Consumer instance c
4:
5: on 〈INIT〉 do
6: map := Π . Init message soft state map
7: id := IR . The unique ID of the node
8: priority-queue := Π . Binary Heap used to sort deliverable messages
9: timestamp := 0 . Lamport clock

10:
11: on event 〈RECEIVED-CLIENTMESSAGE, msg〉 do
12: msg.timestamp = timestamp . Add Lamport clock to message
13: timestamp = timestamp +1 . Increase Lamport clock
14: map = map ∪msg .
15: priority-queue = priority-queue ∪msg
16: if Σm.topics == 1∧m.topics.contains(self.topic) then
17: msg.type = Delivery
18: priority-queue = priority-queue ∪msg . Message is deliverable
19: else . Find designated topics
20: for topic← msg.Topics do
21: if topic == self.Topic then
22: msg.type = Acknowledge
23: priority-queue = priority-queue ∪msg . Message is

deliverable
24: else
25: msg.type = Notify
26: Trigger <p, topic, Notify, msg> . Send to topics
27:
28: on event 〈RECEIVED-NOTIFY, msg〉 do
29: msg.timestamp = timestamp
30: timestamp = timestamp + 1
31: map = map ∪msg
32: if Σm.topics == 1∧m.topics.contains(self.topic) then
33: msg.type = Delivery
34: priority-queue = priority-queue ∪msg . Message is deliverable
35: else
36: msg.type = Acknowledge
37: priority-queue = priority-queue ∪msg
38: Trigger <p, msg.senderTopic, Acknowledge, msg> . Send ACKs
39:

34 Chapter 3. Design and Method

Algorithm 4 AtomicKafka: Optimized part II
1: Uses:
2: Kafka-Producer instance p
3: Kafka-Consumer instance c
4:
5: on event 〈RECEIVED-ACKNOWLEDGE, msg〉 acknowledge from all do
6: latestmsg := Π
7: for storedMsg← map[msg.id] do
8: if storedMsg.ts > latestmsg.ts then . Finding biggest Timestamp
9: latestmsg = storedMsg

10: for topic← msg.Topics do
11: if topic != self.topic then . No need to send to self
12: Trigger <p, topic, Decided, latestmsg> . Send Decided to

topics
13: latestmsg.type = Delivery
14: priority-queue = priority-queue ∪ latestmsg . Update heap
15: if timestamp < latestmsg.ts then
16: timestamp = lastestmsg.ts
17:
18: on event 〈DECIDED, msg〉 do
19: msg.type = Delivery
20: priority-queue = priority-queue ∪msg . insert decided msg into

heap
21: if timestamp < latestmsg.ts then
22: timestamp = lastestmsg.ts
23:
24: on event 〈DELIVERY〉 inserted into priority-queue do
25: While(priority-queue.peak() == Type.Delivery) then
26: msg := priority-queue.Pull() . Fetch first message sorted by ts
27: Trigger<p, self.topic, Delivery, msg>
28: map = map /msg . Remove msg
29: priority-queue = priority-queue /msg . Remove msg

3.1.3 Enabling partitions for AtomicKafka

The previous Algorithm 1 and 3 are very generic in their design. Both algo-
rithms would work with any event-source systems, and they only interact
with messages and not the system itself. The algorithms allow us to enable
AMCast on simple event-source systems, but is not optimal for advanced
systems such as Kafka, as it does not fully utilize Kafka’s potential by not
being able to handle partitions. As explained in Chapter 2.4 Kafka is using
partitions to increase the performance of the system. To fully utilize Kafka

3.1. Design 35

we need to adapt our algorithm to conform to Kafka design by proposing a
third design which utilizes partitions.

This third design is inspired by how Multi-Ring Paxos[18] handles mul-
tiple clustered Paxos instances similarly to how Kafka partitions the topics.
Multi-Ring Paxos is an AMCast algorithm that is designed for scalability. The
idea behind Multi-Ring Paxos is straightforward, by using what P. J. Marand
et. al named Ring Paxos[19] one can initiate a consensus round. By using
multiple rings they increase the throughput of Ring Paxos, but they have to
be able to guarantee a total order. To guarantee total order Multi-Ring Paxos
uses a merging function that can be solved deterministic, by combining the
multiple individual rings into a single output at the end.

The merging can be very simplistic by using a round-robin fashion of
taking the decided values from the first ring, then the second ring continuing
onwards to the last ring before starting over at the first ring again.

As the Kafka partitions can be seen as rings in the sense of how P. J.
Marand et al. defines a ring, we will create a merger like the one in Multi-
Ring Paxos that can handle AMCast across topics. We already have devel-
oped an algorithm for AMcast across different topics we now have to design
the system to keep strict ordering when a topic has been partitioned.

FIGURE 3.6: Topic Layering

Figure 3.6 show how a topic can be split into multiple partitions and re-
side in different brokers. In the figure all the topics are partitioned three
times, though for end users it seems like a single topic, this is because the
partitions together form a whole topic. In Figure 3.6 the topic partitions
are group together by their partition number, this is what we call a parti-
tion layer. The grouped partition will never send control message or make

36 Chapter 3. Design and Method

decisions for other partitions that do not have the same ID. The nodes that
subscribe to the partitions in a partition layer belongs to a node layer.

If we assume that the topic 1 consist of topic1 := tp11, tp12, tp13 and
topic2 := tp21, tp22, tp23 where tp is the partitions. When a node layer has
decided on a message it will pass this to a merger which has the responsi-
bility to deliver the messages in a sequence agreed on the partition layers,
keeping the strict ordering. A partition layer consists of multiple partitions
with identical partitionID, but not part of the same topic, this can be seen in
Figure 3.6.

When a node layer has decided on a message, the decision is sent to the
merger. The merger responsibility is then to ensure that the messages are
delivered in the correct order based on the decision messages made by the
partition layer nodes. 6 merges the individual partitions together.

This design does require more hardware if we use a single machine for
each AtomicKafka process. This design will have | tp | + | topics |machines
running in the AtomicKafka cluster, where | tp | is the total amount of par-
titions. Figure 3.7 shows how the setup is for a Cluster with | topics |= 3
where each topic is partitioned into three different partitions. This results in
| tp | + | topics |−→ 9 + 3 = 12 machines.

FIGURE 3.7: Partitioned AtomicKafka

To use the same example from Chapter 3.1, we need to add a new field
called partitionID. The partitionID informs the nodes about what partition
layer it belongs to, and can be seen in Listing 3.4. After the AMCast is done
for the messages a snapshot of the priority-queue in the Merger algorithm

3.1. Design 37

will look like Figure 3.7. The figure ends up looking the same because in
the Merger the priority is as follows timestamp <= partitionID. If two mes-
sages have the identical timestamps AtomicKafka will use the partitionID as
a tiebreaker. AtomicKafka uses partitionID and messageID as a tiebreaker
since both will have some say in which messages were received first in corre-
lation with the timestamp. Where the lowest msg with both partitionID and
messageID will be prioritized.

We also have to introduce two new messages, the PartitionedClientMes-
sage and Received-Partitioned-Delivery message.

LISTING 3.4: Message composition for partitions

msg1 := < senderID2, messageid1, timestamp1, partition1, [topic1, topic2], ACKNOWLEDGE, ”one” >

msg2 := < senderID2, messageid2, timestamp1, partition2, [topic1, topic2, topic3], ACKNOWLEDGE, ”two” >

msg3 := < senderID2, messageid3, timestamp4, partition3, [topic1, topic2, topic3], ACKNOWLEDGE, ”three” >

msg4 := < senderID2, messageid4, timestamp9, partition1, [topic1, topic2, topic3], ACKNOWLEDGE, ” f our” >

Merger

To prevent node layers from delivering DeliveryMessages directly to a user
we have to modify the Delivery method in Algorithm 4. We need to define
a new control message which allows the merges to know when a message is
ready to be delivered. This modification is done in the algorithm below on
Line 4.

Algorithm 5 AtomicKafka: Merger

1: on event 〈DELIVERY〉 inserted into priority-queue do
2: While(priority-queue.peak() == Type.Delivery) then
3: msg := priority-queue.Pull() . Fetch first message sorted by ts
4: Trigger<p, self.topic, PartitionDelivery, msg>
5: map = map /msg . Remove msg
6: priority-queue = priority-queue /msg . Remove msg

The merger process is initialized in Algorithm 6 on Line 5. In the ini-
tialization the merger is given an ID, the priority-queue which is the same
kind of priority-queue mentioned in Chapter 3.1 with the modification of the
prioritization mentioned above.

The hashmap which we refer to as LMSM does not exist in the merger, as
it does not need to keep track of other merger nodes status and fully decou-
pled from other mergers.

38 Chapter 3. Design and Method

In the initialization method on Line 5 the merger initial values are set up.
Line 6 initialize the ID of the merger. Line 7 initialize the priority-queue, the
priority-queue functions in the same way as the priority-queue in Algorithm
3. Line 8 initialize the lamport clock, and Line 9 initialize the lastDelivered
variable that will contain the timestamp for the last delivered message.

When an AtomicKafka client sends a ClientMessage into the topic the
merger registers the message on Line 11, as we explained in Chapter 2.4 the
producer chooses the partition, and the merger does not need to worry about
partitions. Line 12 creates a timestamp for the message, which will be used
to position the message in priority-queue. After the message has received an
timestamp, the lamport clock is increased by one on Line 13 and added to the
priority-queue on Line 13.

When the merger is done with the Received-ClientMessage method it will
wait for either for a new ClientMessage or that the node layer has made a
decision returned by a PartitionDelivery message. When a PartitionDeliery
message is sent into a topic the merger consumes and hands it to the method
on Line 16. When the method is handed a message it will update the the
message position in the queue based on the decision made by the node layer.
The priority-queue will sort the messages based on the given timestamp, if
there are two messages with the same timestamp the tiebreaker will be the
one with the lowest partition as messages are delivered to the partitions in a
round-robin style.

After the priority-queue has been updated the merger will see if there is
any deliverable messages on Line 18. If there are any deliverable messages
the algorithm will send a DeliveryMessage to the topic, remove the messages
from the priority-queue and finally update the timestamps if the current de-
livered message has a higher timestamp than the local Lamport clock.

3.2. Failure handling discussion 39

Algorithm 6 AtomicKafka: Merger
1: Uses:
2: Kafka-Producer instance p
3: Kafka-Consumer instance c
4:
5: on 〈INIT〉 do
6: id := IR
7: priority-queue := Π
8: timestamp := 0
9: latestDelivered := 0

10:
11: on event 〈RECEIVED-CLIENTMESSAGE, msg〉 do
12: msg.timestamp = timestamp . Add Lamport clock to message
13: timestamp = timestamp +1 . Increase Lamport clock
14: priority-queue.add(msg)
15:
16: on event 〈RECEIVED-PARTITIONDELIVERY, msg〉 do
17: priority-queue.update(msg)
18: While(priority-queue.peak() == Type.PartitionDelivery) then
19: msg := priority-queue.Pull() . Fetch first message sorted by ts
20: Trigger<p, p.topic, Deliver, msg>
21: latestDelivered := msg.ts
22: if latestDelivered > timestamp then
23: timestamp = lastDelivered + 1

3.2 Failure handling discussion

Failure handling is an essential aspect of a distributed system. If a process
fails it could potentially halt the entire system and lose valuable information.
To prevent this from happening to AtomicKafka it needs to have a failure-
recovery strategy in place. This chapter we will discuss the possibility of
rebuilding the LSMS and allowing the client to take over for failed nodes.

3.2.1 Rebuilding the local message state map

As AtomicKafka does not persist any information to a physical device, there
is a possibility to retrieve all messages that have been previously processed
by a node from Kafka. As mentioned in Chapter 2.4 a topic will retain a
message for a certain period allowing us to do a replay of all the messages
that have been processed by AtomicKafka.

Rebuilding the LMSM for an AtomicKafka node might be the simplest
solution, though not without a cost.

40 Chapter 3. Design and Method

Rebuilding LSMS: reading from beginning-to-end of topic

If one decides to rebuild the state by reading every message from beginning
to the end, processing every control messages that exist in the subscribed
topic, while rebuilding it should not be able to resend the messages, as it
would end up violating the no duplication property. When every message
has been processed it should rebroadcast the control messages missing a re-
sponse. This is needed to ensure that the integrity property and total order
property listed in Chapter 2.2 is kept.

Rebuilding LSMS: reading from end-to-beginning of topic

Reading from end to beginning is a more efficient approach as one could
stop the reading process when all messages between the last DeliveryMes-
sage, ClientMessage pair is consumed, minimizing the number of messages
sent over the network. Stopping is possible as we know every timestamp
preceding the last delivery is already delivered.

When all the messages have been added to the LSMS a scan for messages
that already have been delivered can be initiated. If a delivered message is
found all the control messages associated with that delivery can be deleted.
After the scan, LSMS is ready and would be resending the control messages
missing a response.

To do this the recovered process needs to consume the messages from
Kafka from the end until it finds two delivery messages. Since a delivery
message is the earliest to be delivered at that moment, meaning when we find
the second last delivery message we know that every message that the node
missed is being covered. The node can now safely start to replay messages
from that point.

3.2.2 Client takeover

In a client takeover scenario a client would be a stateful client that also pro-
cess the control messages to the topic it is subscribed too, without any in-
fluence in the decision making. This means that the node contains an LMSM
and a priority-queue, and in the event of a node failure it could instantly take
over for the failed node.

A stateful client would consist of the same modules as an AtomicKafka
node, but would not actively engage in the decision making as there is al-
ready an AtomicKafka node in charge of the topic a stateful client would
subscribe to.

3.2. Failure handling discussion 41

In the event of a node becomes unresponsive a stateful client could take
over from where the node left off after a specified timeout period. In the case
of a stateful client take over the system would behave normally and not end
up deadlocked.

When the failed node either becomes stable or comes back online it needs
the ability to take back control over the topic from the client. There is also
the issue if there are multiple clients, then we would have to implement a
leader-election system and elect a leader between the clients.

The stateful client is not compatible with AtomicKafka if partitions are
enabled, as a client treats the topic as a single topic and does not have any in-
formation about the partitions. To solve this issue we would have to resolve
back to rebuilding the LSMS.

The issue with relying on only rebuilding a state is that if a node goes
down, the system will have to wait until the state has been rebuilt. To over-
come the issue of halting the system we propose to introduce a method of
keeping states in clients, so in the event an AtomicKafka node fails a client
could take over responsibility until either a new node has been introduced to
the system or the node has recovered from the failure.

This functionality would complicate our algorithm but would allow f <

n− 1 nodes to fail in theory, though with a high cost of throughput.

43

Chapter 4

Implementation

In this chapter we will explain how AtomicKafka was implemented in detail
and discuss the architecture decisions we made. We will present the config-
urations we used for the Kafka producer and consumer in AtomicKafka so
that the results of this thesis can be reproduced.

4.1 AtomicKafka

To confirm that atomic multicast is possible using Kafka we implemented Al-
gorithm 1, and to evaluate the capabilities of AtomicKafka we implemented
Algorithm 3. Our intention was to implement Algorithm 6, but because time
constraints and issues described in Chapter 6.1.1 we had to drop the imple-
mentation of Algorithm 6.

The implementation of Algorithm 1 and Algorithm 3, hosted on GitHub[33],
was implemented by using Java 8 and Kafka framework 2.0.0[23]. We also
used other frameworks such as GSON 2.8.5[20] for JSON encoding/decod-
ing, Metrics[21] for measuring performance and Apache Commons[22] for
the priority queue implementation.

4.1.1 System Architecture

As building a distributed system can be complicated, we want to give some
insight into the composition of AtomicKafka. First, we will write about the
different classes and their relations, and then we will discuss how the Kafka
consumer and Kafka producer was configured, as there are multiple config-
urations possible. Finally, we will discuss how we designed the messages
used by AtomicKafka.

Figure 4.1 show a simplified class diagram of what has been implemented
in AtomicKafka and the relation between the different classes.

44 Chapter 4. Implementation

FIGURE 4.1: AtomicKafka Architecture

The main class has relation to three other classes; two of the classes are
used to configure AtomicKafka at startup. The Constant class contains de-
fault information about broker addresses, topic name to subscribe too and
ClientID, in case a user does not supply the application with startup argu-
ments, while Args class is responsible for parsing arguments passed from
console to the application. Each association (the edge line) is numbered by
how many references a class can hold so that the main class can have one
reference for Constant and one reference for the Arg class. The IConsumer
interface reference in the main class states that main can have multiple in-
stances of AtomicKafkaConsumer. This allows the main class to have multi-
ple threaded instances of the AtomicKafkaConsumer class.

The intention of designing main to have multiple instances was to make
it easier to implement the failure handling technique discussed in Chapter
3.2 in the future.

The AtomicKafkaConsumer class is responsible for consuming messages
in a subscribed topic from the Kafka cluster, and then decode the consumed
messages resulting in an AtomicKafkaConsumer object. To decode messages
a JsonUtility instance is used, which is also referenced by the KafkaProducer
class. When a message has been successfully decoded AtomicKafkaCon-
sumer will identify what kind of message it is, as described in Chapter 4.1.4,
by using the MessageType instance in KafkaMessage.

When AtomicKafkaConsumer has identified the message it will invoke a

4.1. AtomicKafka 45

method from the AtomicMulticast instance corresponding to the type. Atom-
icMulticast is the implementation of Algorithm 3. When AtomicMulticast
has processed the message the result is then passed back to AtomicKafka-
Consumer. If the result has to be sent back to the Kafka cluster, a method
from AtomicKafka Producer is invoked.

There are two other classes AtomicMulticast has reference to, Timestam-
pDecending and TimestampAscending, and the AtomicMulticast priority-
queue uses these two classes. These two classes are used to define how ele-
ments being inserted into the queue are sorted.

The AtomicKafkaProducer is a wrapper for the Kafka frameworks pro-
ducer class, and it is implemented as a singleton class, which multiple threads
can use. It has been designed as a singleton class because the Kafka docu-
mentation states the following.

"The producer is thread safe and sharing a single producer instance across
threads will generally be faster than having multiple instances[14]."

The usage of AtomicKafkaProducer is to send a message from AtomicK-
afka to a specified topic residing inside the Kafka cluster. When sending a
message AtomicKafkaProducer encodes it to the JSON format by using the
JsonUltity class. AtomicKafkaProducer has a reference to PartitionScheme
class for future implementation. The functionality of this class is described
in Chapter 4.1.3.

4.1.2 Consumer

The Consumer client from the Kafka framework contains multiple differ-
ent configurable parameters[13], some optional and some mandatory. The
mandatory configurations have no default settings, meaning we have to sup-
ply information about broker address, what deserializer should be used for
key and the value, and consumer ID. Changes we made to the optional con-
figuration are shown in the Listing 4.1.

While we were researching how to optimize the algorithm, we thought of
a use case that allows for better load balancing between the different nodes.

Enabling message forwarding to other topics, meaning that if an Atom-
icKafka client sends a message m to topic topic1, but the message was in-
tended for topic2 the AtomicKafka node will forward the message to topic2

instead of having the client resend the message itself. This allows a client to

46 Chapter 4. Implementation

use any topic it wants to send a message. Forwarding also enables devel-
opers to distribute the load more evenly across AtomicKafka in the case of
fewer topics receives more traffic than others. The Algorithm 3 is designed
to balance the load more evenly between the AtomicKafka nodes, by using
nodes that have lesser load than others. Though this requires a load analysis
on the Kafka topics to achieve maximum performance, which is out of the
scope for this thesis.

LISTING 4.1: Consumer Configuration

"MAX_POLL_RECORDS_CONFIG" : "2000",
"ENABLE_AUTO_COMMIT_CONFIG : "true",

"BOOTSTRAP_SERVERS_CONFIG" : "host1:9092,host2:9092",
"KEY_SERIALIZER_CLASS_CONFIG" : LongSerializer.class.getName(),
"VALUE_SERIALIZER_CLASS_CONFIG" : StringSerializer.class.getName()

The bootstrap servers configuration is where we feed the broker addresses
to the Kafka consumer. Having multiple addresses allows the consumer to
connect to another broker in the list if a connection to the first broker cannot
be established.

The max poll records configuration limits how many messages the con-
sumer can consume from Kafka per pull request, meaning that if AtomicK-
afka has consumed 2000 messages it has to finish processing all the consumed
messages before a new pull happens.

The auto-commit configuration allows the consumer to automatically tell
Kafka that consumption has finished, allowing Kafka to know which mes-
sages have been consumed and which are to be consumed in the event of
consumer failure.

The two serializers are used by Kafka to encode the information. The key
serializer is set to the standard LongSerializer as we do not use the key for
sending a message to Kafka, and the value serializer is set to StringSerializer
as we encode our messages into JSON resulting in a string value.

4.1.3 Producer

The producer client from the Kafka framework also has configurable param-
eters, just like the Consumer client in Chapter 4.1.2. Just as we did with the

4.1. AtomicKafka 47

consumer client we decided to try and have as many default options as pos-
sible. The changes we made for the kafka producer is listed below in the
Listing 4.2.

Configuration

LISTING 4.2: Producer Configuration

"BATCH_SIZE_CONFIG" : 0
"LINGER_MS_CONFIG" : 5

"ENABLE_IDEMPOTENCE_CONFIG" : "true"
"REQUEST_TIMEOUT_MS_CONFIG" : 30000

"BOOTSTRAP_SERVERS_CONFIG" : "host1:9092,host2:9092",
"KEY_SERIALIZER_CLASS_CONFIG" : LongSerializer.class.getName()
"VALUE_SERIALIZER_CLASS_CONFIG" : StringSerializer.class.getName()

When a producer is sending a message to Kafka, it can be either sent asyn-
chronous or synchronous. Asynchronous send is a non-blocking method that
offers better performance, while the synchronous send is a blocking opera-
tion. We discuss the challenges we faced with the asynchronous producer in
Chapter 6.1.1.

Custom partitioning scheme

For enabling AtomicKafka partitions, as discussed in Chapter 3.1.3, we im-
plemented a custom partitioner for the producer. The custom partitioner
behaves similarly to the default one, explained in Chapter 2.4, meaning they
both work in a round-robin[3] fashion when assigning a ClientMessage a par-
tition. The issues are that AtomicKafka needs to be able to send the control
messages to the same partitions, ensuring that the intended nodes receive
each message.

Our partitioner works in a round-robin fashion when receiving a ClientMes-
sage, assigning a different partition for each ClientMessage. When the Atom-
icKafka node needs to send a control message to the other topics it will read
the partitionID from the message and set that ID as the partition target.

4.1.4 Messages

An AtomicKafka message, either control or delivery messages, differs from a
normal Kafka message. Kafka messages is a key-value structure, where both

48 Chapter 4. Implementation

the key and value can be any Java Object defined by the developer[14]. For
our purposes, the value section of the message will consist of an AtomicK-
afka message that is encoded as a JSON string. Chapter 3.1.3 will explain the
details about how the key will be used to enable parallelism for AtomicK-
afka.

As seen in Listing 4.3, a message is transmitted by using JSON format. By
using JSON format regular Kafka producer and Kafka consumer can be used.
Regular consumers have a drawback as it would receive every message sent
to a topic, including control messages meant for internal communication be-
tween AtomicKafka nodes. Either the regular consumer could filter out the
messages not annotated as Delivery, or AtomicKafka could be configured to
use two topics per intended topic, one for AtomicKafka internal communi-
cation and one topic for delivery messages. We have designed our system to
use a single topic for all communication, though it would be trivial to change
this.

4.1.5 Message Format

An AtomicKafka is defined as the listing 4.3. This listing shows an example
of a message sent from a Client to the AtomicKafka cluster, where the only
fields it manipulates is the MessageID, Topic and the value. The client will
ignore all other fields as they are set and used by the AtomicKafka nodes.

1 {

2 "messageID": 1,

3 "senderID": 0,

4 "messageType": "ClientMessage",

5 "value": "Hello Kafka World",

6 "topic": ["T1","T2","T3","T4","T5"],

7 }

LISTING 4.3: AtomicKafka Client message example

Listing 4.4 shows an control message created as NotifyMessage in re-
sponse to the incoming ClientMessage in Listing 4.3. This message used to
notify the other topics about the ClientMessage. There is some added meta-
data on this message, such as which topic the message originated from, the
nodeID of the sender and a timestamp. Message types are explained in chap-
ter 2.4. The only fields that are changing in control messages are the times-
tamp, messageType, and SenderID.

4.2. AtomicKafka Client 49

1 {

2 "messageID":1,

3 "senderID":1,

4 "sentFromTopic":"T1",

5 "messageType":"NotifyMessage",

6 "value":"Hello Kafka World",

7 "topic":["T1","T2","T3","T4","T5"],

8 "timeStamp":1

9 }

LISTING 4.4: Control message example

4.2 AtomicKafka Client

The AtomicKafka client was developed so that it filters out the control mes-
sages sent to a topic. Since we decided that DeliveryMessage and Client-,
Notify-, Acknowledge- and DecidedMessage should all be sent to the same
topic, we needed a client to filter out the delivered messages.

FIGURE 4.2: AtomicKafka Client Architecture

The Figure 4.2 resembles the AtomicKafka node architecture in Figure 4.1.
This is because they are both based on the same framework, and we changed
out the Consumer class with a simplified consumer, as explained above. The
reason they are both built on the same framework is to make it possible to

50 Chapter 4. Implementation

implement the failure handling we discussed in Chapter 3.2, by replacing
the consumer at runtime with an AtomicKafka node consumer.

51

Chapter 5

Evaluation

In this Chapter we will discuss the evaluation of AtomicKafka and what kind
of hardware we used. We will present our final result of the evaluation. Af-
ter presenting the result we will discuss the challenges we faced, potential
improvements for future work and finally conclude our findings.

5.1 Hardware setup

The hardware we used to evaluate AtomicKafka we used the specified hard-
ware in listing 5.1.

• Scientific linux 7.6 Kernel Version 3.10.0

• CPU 2.13 GHz Intel Xeon quad-core E5606

• RAM 16 GB

• Network Gigabit LAN environment

• Java SE Runtime Environment 1.8.3

The testing environment consists of twelve physically separated machines
using the hardware listed above. These machines are not used exclusively by
us and can be accessed by multiple people at the same time. To reduce the
risks of outside influence on the test results we made sure that the evalu-
ations ran at nighttime. At nighttime, there is less of a chance that people
were using the machines. We also tried to make sure that no other demand-
ing processes were running on the machine at the start of an evaluation. In
the event someone would start a process while we were running the evalua-
tions we had the processes distributed to separate machines, but we cannot
guarantee how the network congestion was at the event of evaluation.

52 Chapter 5. Evaluation

For the Kafka cluster, we use four machines, three of the machines were
dedicated to three Kafka brokers, and the fourth is used as a Zookeeper node.
Both broker nodes and the zookeeper node uses the default configuration,
with some modification for the message retention period. The configurations
are listed in the appendix.

For AtomicKafka, we use five machines, one for each topic, and we used
two clients to produce the testing data. Lastly, we used a single regular Kafka
consumer to read all messages going across one of the topics, and this was
to ensure progress and to capture every message being sent to a topic and
writes it to a file. In the event of failed evaluation run the stored file will
allow us to analyze the evaluation run and see where the failure happened.

5.2 Evaluation setup

To evaluate AtomicKafka, we created five different topics inside the Kafka
cluster, where each topic will have an AtomicKafka node subscribed to it. We
will also use two AtomicKafka clients to send messages into the Kafka cluster
and retrieve the delivered messages from AtomicKafka. Each AtomicKafka
client will produce 20.000 messages each into Kafka, totaling 40.000 messages
per evaluation scenario, where each AMCast message is formatted as shown
in the Listing 4.3. As we had some issues with the Kafka producers, described
in Chapter 6.1.1, we decided that the AtomicKafka clients should wait for
5ms after sending a message.

We have a total of five different testing scenarios where we try to simulate
different load scenarios on AtomicKafka. We started by having a small load
where 10% of the 20.000 messages sent from the producers are AMCast mes-
sages while the rest is only directed to the topic the producer is subscribed
too. Each scenario increases this percentage by 10% until we reach approx-
imately 50-50 mix of AMCast messages and messages being sent to a single
topic.

To measure the performance we decided to measure three different pa-
rameters, how many incoming messages per second there are, outgoing sec-
ond per minute and how many deliveries are happening per second. The
two first measurements show us the throughput of the system, meaning each
time a message is received or sent from an AtomicKafka node it is marked,
then for each fifth second we calculate the mean value. The same mean value
calculation is done for the delivery measurement, calculating how many De-
liveryMessage a client receives per second.

5.3. Results 53

To calculate the mean we are measuring how many messages have been
registered per second, plotting each fifteen second into the graph.

5.3 Results

The results below are sectioned into six different sections with three different
graphs and a table showing the average numbers. The graphs use two axes
where the x-axis represents seconds, while the y-axis represents the number
of messages.

5.3.1 Baseline

FIGURE 5.1: Baseline: Incoming messages per second

54 Chapter 5. Evaluation

FIGURE 5.2: Baseline: Outgoing messages per second

FIGURE 5.3: Baseline: Deliveries per second

TABLE 5.1: Baseline Averages

Node Subscription Incoming Outgoing Deliveries
Node 1 Topic 1 180.8 msg/s 90.7 msg/s 90.9 msg/s
Node 2 Topic 2 198.3 msg/s 99.4 msg/s 99.1 msg/s
Node 3 Topic 3 156.5 msg/s 78.3 msg/s 78.1 msg/s
Node 4 Topic 4 166.6 msg/s 83.3 msg/s 83.0 msg/s
Node 5 Topic 5 201.0 msg/s 93.5 msg/s 93.4 msg/s

The baseline evaluation shows us that some nodes are performing better
than others. The Table 5.1 shows that node 2 has the best performance in the

5.3. Results 55

evaluation, averaging ~198 messages per second for incoming, ~99 messages
per second for outgoing and the client receiving on average ~99 delivered
messages per second.

The worst performing node is node 3, having an average incoming rate of
~156 messages per second, ~78 outgoing per second, and the client receiving
on average ~78 delivered messages per second.

The Figures 5.1, 5.2 and 5.3 displays that there is some startup latency
when starting to congest messages, but stabilizes after a while. For the topic
3 we can see that it is performing worse than the other topics, indicating that
the machine might struggle for resources.

The evaluation completed after 270 seconds. Sending and receiving 300000
messages in total.

5.3.2 90-10 Evaluation

FIGURE 5.4: 10% AMCast: Incoming messages per second

56 Chapter 5. Evaluation

FIGURE 5.5: 10% AMCast: Outgoing per second

FIGURE 5.6: 10% AMCast: Deliveries per second

TABLE 5.2: 10% AMcast Averages

Node Subscription Incoming Outgoing Deliveries
Node 1 Topic 1 57.6 msg/s 42.9 msg/s 18.0 msg/s
Node 2 Topic 2 15.5 msg/s 11.7 msg/s 3.7 msg/s
Node 3 Topic 3 65.6 msg/s 44.6 msg/s 17.6 msg/s
Node 4 Topic 4 15.7 msg/s 11.9 msg/s 3.8 msg/s
Node 5 Topic 5 15.9 msg/s 12.1 msg/s 3.9 msg/s

From the Figure 5.4 it could seem like the node subscribed to topic 3 is
performing better than every other node, but looking at Figure 5.5 and Fig-
ure 5.6 indicates that node 1 is busy delivering messages. The reason for topic

5.3. Results 57

3 higher incoming messages rate, because node 3 has to wait for acknowl-
edge messages from the other nodes, while topic 1 is delivering messages
addressed to a single topic.

Table 5.2 shows a more accurate view of how each node was performing.
As shown it node 1 and node 3 had the same performance numbers, and
topic 2, 3, and 5 also had similar performance number. This is a good indica-
tion that there is no system falling behind on processing, though the graphs
show that node 3 does need some time to catch up with node 1 as it received
multiple single topic messages in the beginning.

Comparing to the baseline we see a large decrease in performance by a
factor of ~5.05 for node 1 and ~4.43 for node 3, when comparing the Table 5.3
and Table 5.1.

We did not compare node 2,4, and 5 as their numbers would naturally
increase with the amount of AMCast messages being sent to topic 2, 4, and 5.

The total run time was 810 seconds, using 310 seconds more than the
baseline, sending and receiving 260883 messages in total.

5.3.3 80-20 Evaluation

FIGURE 5.7: 20% AMCast: Incoming messages per second

58 Chapter 5. Evaluation

FIGURE 5.8: 20% AMCast: Outgoing messages per second

FIGURE 5.9: 20% AMCast: Deliveries per second

TABLE 5.3: 20% AMcast Averages

Node Subscription Incoming Outgoing Deliveries
Node 1 Topic 1 62.3 msg/s 52.9 msg/s 13.3 msg/s
Node 2 Topic 2 19.2 msg/s 15.0 msg/s 3.7 msg/s
Node 3 Topic 3 39.0 msg/s 37.3 msg/s 7.7 msg/s
Node 4 Topic 4 19.4 msg/s 15.3 msg/s 3.8 msg/s
Node 5 Topic 5 19.5 msg/s 15.3 msg/s 3.8 msg/s

The 20% AMCast evaluation sees a sudden drop in node 3 performance.
Figure 5.7 shows that node 1 can consume more messages and send more

5.3. Results 59

messages than node 3, which indicates the existence of a bottleneck. Because
of this bottleneck, it is possible to assume that the other nodes are affected by
this. Comparing the numbers between node 1 and node 3 in Table 5.3 shows
a reduction in performance, while the other nodes have similar performance
numbers.

Node 1 performances decreases by an factor of ~1.35, and node 3 decrease
by an factor of ~2.28 for deliveries per second, when comparing the Table 5.3
and Table 5.2.

Comparing to the baseline we see a large decrease in performance by a
factor of ~6.83 for node 1 and ~10.14 for node 3, when comparing the Table
5.3 and Table 5.1.

The total run time was 1185 and took 915 seconds more than the baseline.
During the evaluation 361769 messages were sent and received in total.

5.3.4 70-30 Evaluation

FIGURE 5.10: 30% AMCast: Incoming messages per second

60 Chapter 5. Evaluation

FIGURE 5.11: 30% AMCast: Outgoing messages per second

FIGURE 5.12: 30% AMCast: Deliveries per second

TABLE 5.4: 30% AMcast Averages

Node Subscription Incoming Outgoing Deliveries
Node 1 Topic 1 50.9 msg/s 53.5 msg/s 9.4 msg/s
Node 2 Topic 2 23.8 msg/s 18.8 msg/s 4.8 msg/s
Node 3 Topic 3 45.4 msg/s 49.6 msg/s 8.5 msg/s
Node 4 Topic 4 23.9 msg/s 18.9 msg/s 4.8 msg/s
Node 5 Topic 5 24.0 msg/s 19.0 msg/s 4.8 msg/s

For the 30% AMCast evaluation the Figure 5.10 and Figure 5.11 shows us
node 3 still is underperforming compared to node 1, also confirmed by the

5.3. Results 61

Table 5.4, though not as drastic as the graphs make it seem. Node 3 has 1
message less per second delivered on average than node 1, and this shows
how vulnerable the system is to a bottleneck in a single node.

Figure 5.12 shows that when node 1 is starting to deliver more messages
per second, topic 2, 3, 4 and 5 also start to deliver more messages, showing a
correlation between message deliveries between the different nodes.

Node 1 performances decreases by an factor of ~1.41, and node 3 increases
by an factor of ~0.90 for deliveries per second, when comparing the Table 5.4
and Table 5.3. Though the average differences seem small, they result in 180
seconds longer run time than the 30% AMCast evaluation.

Comparing to the baseline we see a large decrease in performance by a
factor of ~6.71 for node 1 and ~10.14 for node 3, when comparing the Table
5.4 and Table 5.1.

Total run time was 1215 seconds, 945 seconds more than baseline. During
the evaluation 515680 messages were sent and received in total.

5.3.5 60-40 Evaluation

FIGURE 5.13: 40% AMCast: Incoming messages per second

62 Chapter 5. Evaluation

FIGURE 5.14: 40% AMCast: Outgoing messages per second

FIGURE 5.15: 40% AMCast: Deliveries per second

TABLE 5.5: 40% AMcast Averages

Node Subscription Incoming Outgoing Deliveries
Node 1 Topic 1 59.3 msg/s 69.7 msg/s 9.0 msg/s
Node 2 Topic 2 31.6 msg/s 25.5 msg/s 5.8 msg/s
Node 3 Topic 3 51.1 msg/s 62.4 msg/s 7.9 msg/s
Node 4 Topic 4 31.8 msg/s 25.8 msg/s 5.8 msg/s
Node 5 Topic 5 32.2 msg/s 26.1 msg/s 5.9 msg/s

The 40% AMCast evaluation averages in Table 5.5 shows that there is a
slight decrease in delivered message per second for both node 1 and node

5.3. Results 63

3, while node 2,4, and 5 has an increase, when comparing the averages to
the 30% evaluation averages in Table 5.4. Node 1 performances decrease by
a factor of 1.04, and node 3 decreases by a factor of 1.07 for deliveries per
second, when comparing the Table 5.5 and Table 5.4 . Though the average
differences seem small, they result in 180 seconds longer run time than the
30% AMCast evaluation.

Comparing to the baseline we see a large cost in performance by a factor
of ~10 for node 1 and node 3, when comparing the Table 5.5 and Table 5.1.

The total run time was 1395 seconds, 1125 seconds more than the baseline.
During the evaluation 644928 messages were sent and received in total.

5.3.6 50-50 Evaluation

FIGURE 5.16: 50% AMCast: Incoming messages per second

64 Chapter 5. Evaluation

FIGURE 5.17: 50% AMCast: Outgoing messages per second

FIGURE 5.18: 50% AMCast: Deliveries per second

TABLE 5.6: 50% AMcast Averages

Node Subscription Incoming Outgoing Deliveries
Node 1 Topic 1 65.7 msg/s 76.5 msg/s 10.1 msg/s
Node 2 Topic 2 30.7 msg/s 24.3 msg/s 5.4 msg/s
Node 3 Topic 3 35.3 msg/s 51.6 msg/s 5.3 msg/s
Node 4 Topic 4 30.9 msg/s 24.9 msg/s 5.5 msg/s
Node 5 Topic 5 31.0 msg/s 24.6 msg/s 5.4 msg/s

For the 50% AMCast we see that node 1 performs significantly better than
all the other nodes. According to Figure 5.16 node 1 can consume more mes-
sages than all other nodes, while node 3 performs worse than node 2, 4, and 5

5.3. Results 65

at the start of the evaluation. This can also be seen in the deliveries in Figure
5.18 where node 3 bottlenecks the process, this assumption is also confirmed
by looking at the averages from Table 5.6. The table indicates that node 3 is
not able to keep up with the other nodes, and the Figures 5.16, 5.17, and 5.18
tells us that node 3 uses more time to finish delivering all the messages.

Node 1 performances increases by a factor of ~0.89, and node 3 decreases
by a factor of ~1.49 for deliveries per second, when comparing the Table 5.6
and Table 5.5.

Comparing to the baseline we see a decrease in performance by a factor of
9.0 for node 1 and a decrease of ~14.73 for node 3 when comparing the Table
5.6 and Table 5.1.

Total run time was 1980 seconds, 1710 seconds more than the baseline,
sending and receiving 771776 messages in total.

67

Chapter 6

Discussion and further work

In this chapter we discuss the evaluation results produced by AtomicKafka.
We are also d

6.1 Discussion

The evaluations above indicate that there is a significant initial cost of intro-
ducing atomic multicast into Kafka. When we introduce 10% AMCast mes-
sages we see a significant decrease in throughput for both node 1 and node 3
in Figure 5.4 and Figure 5.5, the deliveries per second has the most significant
reduction where node 1 is reduced from 90.9 messages per second down to
18.0 and node 3 goes from 78.1 messages per second down to 17.6.

Only looking at the rate of messages per second does not give us the
whole picture of performance, time is also an important measurement. As
with the decrease of end to end latency for the end client we see that the time
spent to finish the evaluations also increases.

In the baseline evaluation the worst node took 270 seconds to complete,
and when we introduced 10% AMCast messages the run time slowed down
significantly by adding 310 seconds to the run time. That is an increase of
200% in time spent running the evaluation compared to the baseline run
time. We knew that AtomicKafka would spend more time negotiating on
the order of messages, but the drastic cost in time and the decrease of mes-
sage throughput and the decrease in the number of messages delivered per
second was not excepted to be so significant. We discuss the reason for the
low performance and how it could be mitigated in Chapter 6.1.1.

The second round of evaluation with 20% AMCast messages ended up
spending 46.2% more seconds than the 10% AMCast evaluation. That would
indicate that each run time after 10% AMCast would increase by 46.2%, spend-
ing 375 seconds more to complete. We explained the reason for this in Chap-
ter 5.3.3. While running the evaluation we were a significant performance

68 Chapter 6. Discussion and further work

reduction on topic 3 that created a bottleneck slowing down the entire sys-
tem. This is also confirmed by looking at the time spent when evaluating
the 30% AMCast. In this case, the increase between 20% AMCast and 30%
AMCast was only 2.5%. The 30% AMCast evaluation took 30 seconds more
than the 20% AMCast evaluation. The suspected reason for this performance
reduction for the 20% AMCast evaluation is part of the discussion in Chapter
6.1.1.

The 40% AMCast evaluation increases by 14.8%, spending 180 more sec-
onds in time spent when comparing it to 30% AMCast runtime, which we
think is a reasonable increase as we are increasing the AMCast messages by
10% and there is an additional cost as we are also increasing the number of
control messages being sent through the system.

Finally, the 50% evaluation had an increase of 41.9%, 585 seconds more
for the runtime when compared to the 40% evaluation, which is another sig-
nificant increase in time.

What is promising about the differences in evaluation is that the differ-
ences between 30% AMCast and 40% AMCast shows an acceptable cost in-
crease, and if it would be possible to replicate the 14.8% increase between
every test it will show that the cost of increasing the amount of AMCast mes-
sages correlates with the time spent processing them making AtomicKafka
cost efficient.

6.1.1 Performance

There are six obvious reasons for the performance reduction for throughput
and end-to-end latency. The first reason is that we are using synchronized
Kafka producers and not asynchronous producers. What this means is that
for each message a producer sends a message it will block the thread until
it receives an acknowledge from the broker that the message has been re-
ceived, or it will retry to send the message after a timeout period. The reason
we chose to use the synchronous was because of an issue with Kafka losing
messages while using the asynchronous producer. Due to time constraints
and already having spent much of our time problem solving this issue we
decided to use instead synchronous producers which did not lose any mes-
sages.

The second reason is that we are not batching the messages together when
we are sending, we are sending each message individually. According to
the documentation[12] batching small messages together is encouraged as it

6.1. Discussion 69

boosts the performance of Kafka significantly. The reasons for not batching
was to simplify the debugging process while developing.

The third reason is how the Kafka consumer pulls messages from the
Kafka cluster. Currently, the consumer will block processing the messages
until it has either waited for one second or when the Kafka consumer has
pulled 500 messages. These parameters could be tweaked to allow faster
consumption increasing the incoming throughput, allowing for a faster con-
sensus as more messages are consumed, and the nodes will not have to wait
for too long for the control messages needed to deliver a message.

The fourth reason is using the same topic for control messages and deliv-
eries, polluting the topic. Since AtomicKafka needs control messages to be
able to make a decision on when to deliver new messages, reading already
delivered messages slow this process down. Currently, if we are sending x
messages we know that there will be at least 2x messages consumed. This
is somewhat a waste of resources as each delivered message has to be con-
sumed from the Kafka cluster then parsed and finally be discarded. The rea-
son we chose to use a single topic for both control messages and delivery
messages is because of AtomicKafka ability to be integrated with existing
Kafka clusters. By using a single topic we know we get lower throughput
and end to end latency, but using a single topic for both kinds of messages
creates a better picture if one wants to integrate instead for creating a new
cluster, as the performance will increase.

The fifth reason is unstable machines. By looking at the Figures 5.1, 5.2,
and 5.1 there is a discrepancy between the different nodes even though they
are on the same type of hardware and the same network as each other and
the Kafka clusters. A potential reason for this discrepancy could be because
of the shared machines, as mentioned in Chapter 5.1. The shared machines
might be one of the reasons we see a performance drop for the 20% evalua-
tion.

The five issues above only solve performance issues for AtomicKafka it-
self; there is also the possibility to increase the Kafka clusters performance.
As we stated in Chapter 5.1 the default settings for the Kafka cluster was
used, as optimization for the Kafka cluster is out of scope for this thesis.

The sixth reason is how often we check for deliverable messages. Cur-
rently, the AtomicKafka implementation checks for deliverable messages af-
ter all messages have been processed, this was chosen to make debugging
easier when implementing the algorithms.

If one would be able to overcome these issues discussed above there is

70 Chapter 6. Discussion and further work

potentially a significant increase in performance for AtomicKafka, making
AtomicKafka desirable for service providers such as Netflix, as we men-
tioned in Chapter 1.

Our biggest challenge during the implementation was finding the prob-
lem with missing messages, because of the complexity of Kafka and our
implementation there could be many reasons for missing messages. After
spending multiple days of debugging we found that the synchronous pro-
ducer did not exhibit these issues. Because of the time spent trying to find
and solve the issue with missing messages we were not able to implement
the partitioning of AtomicKafka.

6.1.2 Further work

As we mentioned in Chapter 6.1.1 there are many changes to both AtomicK-
afka and Kafka itself to increase the performances.

• Asynchronous Producer: There is a significant cost of using the syn-
chronous producer, as it has to wait for an acknowledge from the bro-
ker that a message has been received. Solving this issue could increase
the throughput for the whole system and thus increase the overall per-
formance of the system.

• Batching: Implementing batching could reduce congestion of the net-
work, but increase in bandwidth, also allowing for more messages to
pass through Kafka at once. As we stated above in Chapter 6.1.1 batch-
ing is recommended by the Kafka documentation.

• Compression: If batching is enabled there could also be a benefit of
using compression[13] on the batch, this is also recommended by the
Kafka documentation.

• Separation of control messages and deliveries: The possibility of through-
put suffering from having delivered messages in the same topic as all
the other control messages should be evaluated, and considered to im-
plement a mechanism that allows the existence of both mechanisms.

• Delivery check mechanism: An evaluation should be conducted to see
how often AtomicKafka should check for deliverable messages, should
it be triggered to see if there are any deliveries, should it be checked
based on a timed function or checked for every message received.

6.1. Discussion 71

• Enabling partitioning for AtomicKafka: Enabling partitioning for Atom-
icKafka would allow it to interact with Kafka clusters using partitions
already, and could potentially increase the throughput for the whole
system as it would adapt to Kafka’s design.

• Failure handling: As we stated in Chapter 3.2, failure handling was out
of scope for this thesis, but to be able to be used in a real-world scenario
one would need to implement failure handling.

73

Chapter 7

Conclusion

This thesis has explored the possibility of introducing atomic multicast to
an event-source system called Kafka. We have presented a proof of concept
algorithm that shows atomic multicast is possible on a event-source system.
We also present an optimized algorithm based on the proof of concept and an
algorithm that can handle topics that are partitioned. We have also presented
an implementation of the optimized algorithm in a system called AtomicK-
afka, which is a modular extension to Kafka.

Our results show that using atomic multicast with Kafka has good poten-
tial to be used in the industry if the implementation is done correctly. The
evaluation was conducted by sending a total of 40.000 messages from two
producers, and we achieved a baseline where the client was able to consume
messages at a max average rate of 93.4 messages per second. The first evalu-
ation atomic multicast %10 of those 40.000 messages and was able to achieve
max average rate of 18.0 messages per second. However, because of per-
formance deviations in the result, it is hard to conclude that this is the best
performance we can achieve, as the implementation could be optimized and
the test systems could be stabler. The results shows that atomic multicast is
possible on event-source system, and with some optimization it can also be
cost efficient.

75

Appendix A

Program Code

The full program code for the implementation is under a version controlled
repository that was used in the development process.

Repository: https://github.com/destidom/atomickafka.

77

Appendix B

Kafka Broker Configuration

Server Basics

The id of the broker. This must be set to a unique

↪→ integer for each broker.

broker.id=1

listeners=PLAINTEXT ://:9001

log.dirs=/home/stud/<username >/kafka/kafka_2 .11 -2.0.0/

↪→ tmp/kafka -logs -0

Socket Server Settings

advertised.listeners=PLAINTEXT ://<URL >:9001

The number of threads that the server uses for

↪→ receiving requests from the network and sending

↪→ responses to the network

num.network.threads =3

The number of threads that the server uses for

↪→ processing requests , which may include disk I/O

num.io.threads =8

The send buffer (SO_SNDBUF) used by the socket

↪→ server

socket.send.buffer.bytes =102400

The receive buffer (SORCVBUF) used by the socket

↪→ server

socket.receive.buffer.bytes =102400

The maximum size of a request that the socket server

↪→ will accept (protection against OOM)

78 Appendix B. Kafka Broker Configuration

socket.request.max.bytes =104857600

Log Basics

A comma separated list of directories under which to

↪→ store log files

log.dirs=/home/stud/<username >/kafka/kafka_2 .11 -2.0.0/

↪→ tmp/kafka1

The default number of log partitions per topic. More

↪→ partitions allow greater

parallelism for consumption , but this will also

↪→ result in more files across

the brokers.

num.partitions =1

The number of threads per data directory to be used

↪→ for log recovery at startup and flushing at

↪→ shutdown.

This value is recommended to be increased for

↪→ installations with data dirs located in RAID

↪→ array.

num.recovery.threads.per.data.dir=1

Internal Topic Settings

The replication factor for the group metadata

↪→ internal topics "__consumer_offsets" and "

↪→ __transaction_state"

For anything other than development testing , a value

↪→ greater than 1 is recommended for to ensure

↪→ availability such as 3.

offsets.topic.replication.factor =1

transaction.state.log.replication.factor =1

transaction.state.log.min.isr=1

Log Flush Policy

Appendix B. Kafka Broker Configuration 79

The number of messages to accept before forcing a

↪→ flush of data to disk

log.flush.interval.messages =300000

The maximum amount of time a message can sit in a

↪→ log before we force a flush

#log.flush.interval.ms=1000

Log Retention Policy

The following configurations control the disposal of

↪→ log segments. The policy can

be set to delete segments after a period of time , or

↪→ after a given size has accumulated.

A segment will be deleted whenever *either* of these

↪→ criteria are met. Deletion always happens

from the end of the log.

The minimum age of a log file to be eligible for

↪→ deletion due to age

log.retention.hours =24

A size -based retention policy for logs. Segments are

↪→ pruned from the log unless the remaining

segments drop below log.retention.bytes. Functions

↪→ independently of log.retention.hours.

#log.retention.bytes =1073741824

The maximum size of a log segment file. When this

↪→ size is reached a new log segment will be created

↪→ .

log.segment.bytes =1073741824

The interval at which log segments are checked to

↪→ see if they can be deleted according

to the retention policies

log.retention.check.interval.ms =300000

80 Appendix B. Kafka Broker Configuration

Zookeeper

Zookeeper connection string (see zookeeper docs for

↪→ details).

zookeeper.connect=<URL >:2181

Timeout in ms for connecting to zookeeper

zookeeper.connection.timeout.ms =6000

Group Coordinator Settings

group.initial.rebalance.delay.ms=0

other

delete.topic.enable=true

log.cleanup.policy=delete

81

Bibliography

[1] Apache. Apache Kafka current version. 2019. URL: https://github.com/
apache/kafka/tree/407bcdf78e06f83f2b358d2cbd96aed348a5c28f.

[2] Apache. Apache Kafka repository. 2019. URL: https : / / github . com /
apache/kafka.

[3] Apache. apache/kafka/DefaultPartitioner.java. URL: https://github.com/
apache/kafka/blob/trunk/clients/src/main/java/org/apache/

kafka/clients/producer/internals/DefaultPartitioner.java.

[4] S. Benz and F. Pedone. “Elastic Paxos: A Dynamic Atomic Multicast
Protocol”. In: Distributed Computing Systems (ICDCS), 2017 IEEE 37th
International Conference on. IEEE. 2017, pp. 2157–2164.

[5] N. T. Blog and N. T. Blog. Auto Scaling Production Services on Titus.
2018. URL: https://medium.com/netflix-techblog/auto-scaling-
production-services-on-titus-1f3cd49f5cd7.

[6] N. T. Blog and N. T. Blog. Kafka Inside Keystone Pipeline. 2016. URL:
https://medium.com/netflix-techblog/kafka-inside-keystone-

pipeline-dd5aeabaf6bb.

[7] N. T. Blog and N. T. Blog. Netflix Conductor: A microservices orchestra-
tor. 2016. URL: https://medium.com/netflix- techblog/netflix-
conductor-a-microservices-orchestrator-2e8d4771bf40.

[8] N. T. Blog and N. T. Blog. NTS: Real-time Streaming for Test Automation.
2015. URL: https://medium.com/netflix-techblog/nts-real-time-
streaming-for-test-automation-7cb000e933a1.

[9] P. R. Coelho, N. Schiper, and F. Pedone. “Fast Atomic Multicast”. In:
2017 47th Annual IEEE/IFIP International Conference on Dependable Sys-
tems and Networks (DSN). 2017, pp. 37–48. DOI: 10.1109/DSN.2017.15.

[10] G. DeCandia et al. “Dynamo: amazon’s highly available key-value store”.
In: ACM SIGOPS operating systems review. Vol. 41. 6. ACM. 2007, pp. 205–
220.

https://github.com/apache/kafka/tree/407bcdf78e06f83f2b358d2cbd96aed348a5c28f
https://github.com/apache/kafka/tree/407bcdf78e06f83f2b358d2cbd96aed348a5c28f
https://github.com/apache/kafka
https://github.com/apache/kafka
https://github.com/apache/kafka/blob/trunk/clients/src/main/java/org/apache/kafka/clients/producer/internals/DefaultPartitioner.java
https://github.com/apache/kafka/blob/trunk/clients/src/main/java/org/apache/kafka/clients/producer/internals/DefaultPartitioner.java
https://github.com/apache/kafka/blob/trunk/clients/src/main/java/org/apache/kafka/clients/producer/internals/DefaultPartitioner.java
https://medium.com/netflix-techblog/auto-scaling-production-services-on-titus-1f3cd49f5cd7
https://medium.com/netflix-techblog/auto-scaling-production-services-on-titus-1f3cd49f5cd7
https://medium.com/netflix-techblog/kafka-inside-keystone-pipeline-dd5aeabaf6bb
https://medium.com/netflix-techblog/kafka-inside-keystone-pipeline-dd5aeabaf6bb
https://medium.com/netflix-techblog/netflix-conductor-a-microservices-orchestrator-2e8d4771bf40
https://medium.com/netflix-techblog/netflix-conductor-a-microservices-orchestrator-2e8d4771bf40
https://medium.com/netflix-techblog/nts-real-time-streaming-for-test-automation-7cb000e933a1
https://medium.com/netflix-techblog/nts-real-time-streaming-for-test-automation-7cb000e933a1
http://dx.doi.org/10.1109/DSN.2017.15

82 BIBLIOGRAPHY

[11] M. J. Fischer. “The consensus problem in unreliable distributed systems
(a brief survey)”. In: International conference on fundamentals of computa-
tion theory. Springer. 1983, pp. 127–140.

[12] A. S. Foundation. A Guide to the Kafka Protocol. 2018. URL: https://
kafka.apache.org/protocol.html.

[13] A. S. Foundation. Apache Kafka Documentation. 2018. URL: https : / /
kafka.apache.org/documentation/.

[14] A. S. Foundation. Apache Kafka KafkaProducer. 2018. URL: https : / /
kafka.apache.org/090/javadoc/index.html?org/apache/kafka/

clients/producer/KafkaProducer.html.

[15] R. Guerraoui and A. Schiper. “Genuine atomic multicast in asynchronous
distributed systems”. In: Theoretical Computer Science 254.1-2 (2001), pp. 297–
316.

[16] L. Jehl. “Decoupling atomic multicast”. In: University of Stavanger.
2018.

[17] L. Lamport. “Time, clocks, and the ordering of events in a distributed
system”. In: Communications of the ACM 21.7 (1978), pp. 558–565.

[18] P. J. Marandi, M. Primi, and F. Pedone. “Multi-Ring Paxos”. In: IEEE/I-
FIP International Conference on Dependable Systems and Networks (DSN
2012). 2012, pp. 1–12. DOI: 10.1109/DSN.2012.6263916.

[19] P. J. Marandi et al. “Ring Paxos: A high-throughput atomic broadcast
protocol”. In: 2010 IEEE/IFIP International Conference on Dependable Sys-
tems & Networks (DSN). IEEE. 2010, pp. 527–536.

[20] Maven Repository: com.google.code.gson » gson » 2.8.5. URL: https : / /
mvnrepository.com/artifact/com.google.code.gson/gson/2.8.5.

[21] Maven Repository: io.dropwizard.metrics » metrics-jmx » 4.1.0. URL: https:
//mvnrepository.com/artifact/io.dropwizard.metrics/metrics-

jmx/4.1.0.

[22] Maven Repository: org.apache.commons » commons-lang3 » 3.0. URL: https:
//mvnrepository.com/artifact/org.apache.commons/commons-

lang3/3.0.

[23] Maven Repository: org.apache.kafka » kafka-clients » 2.0.0. URL: https://
mvnrepository.com/artifact/org.apache.kafka/kafka-clients/2.

0.0.

https://kafka.apache.org/protocol.html
https://kafka.apache.org/protocol.html
https://kafka.apache.org/documentation/
https://kafka.apache.org/documentation/
https://kafka.apache.org/090/javadoc/index.html?org/apache/kafka/clients/producer/KafkaProducer.html
https://kafka.apache.org/090/javadoc/index.html?org/apache/kafka/clients/producer/KafkaProducer.html
https://kafka.apache.org/090/javadoc/index.html?org/apache/kafka/clients/producer/KafkaProducer.html
http://dx.doi.org/10.1109/DSN.2012.6263916
https://mvnrepository.com/artifact/com.google.code.gson/gson/2.8.5
https://mvnrepository.com/artifact/com.google.code.gson/gson/2.8.5
https://mvnrepository.com/artifact/io.dropwizard.metrics/metrics-jmx/4.1.0
https://mvnrepository.com/artifact/io.dropwizard.metrics/metrics-jmx/4.1.0
https://mvnrepository.com/artifact/io.dropwizard.metrics/metrics-jmx/4.1.0
https://mvnrepository.com/artifact/org.apache.commons/commons-lang3/3.0
https://mvnrepository.com/artifact/org.apache.commons/commons-lang3/3.0
https://mvnrepository.com/artifact/org.apache.commons/commons-lang3/3.0
https://mvnrepository.com/artifact/org.apache.kafka/kafka-clients/2.0.0
https://mvnrepository.com/artifact/org.apache.kafka/kafka-clients/2.0.0
https://mvnrepository.com/artifact/org.apache.kafka/kafka-clients/2.0.0

BIBLIOGRAPHY 83

[24] N. Narkhede, G. Shapira, and T. Palino. Kafka: The Definitive Guide Real-
Time Data and Stream Processing at Scale. 1st. O’Reilly Media, Inc., 2017.
ISBN: 1491936169, 9781491936160.

[25] A. B.F.D.F. P. Paulo Coelho Tarcisio Ceolin Junior. “Byzantine Fault-
Tolerant Atomic Multicast”. In: 2018. URL: http://www.di.fc.ul.pt/
~bessani/publications/dsn18-byzcast.pdf.

[26] J. Rao. How to choose the number of topics/partitions in a Kafka cluster?
2018. URL: https://www.confluent.io/blog/how-choose-number-
topics-partitions-kafka-cluster.

[27] J. Rao. Open-sourcing Kafka, LinkedIn’s distributed message queue. 2011.
URL: https : / / blog . linkedin . com / 2011 / 01 / 11 / open - source -
linkedin-kafka.

[28] L. Rodrigues, R. Guerraoui, and A. Schiper. “Scalable atomic multi-
cast”. In: Proceedings 7th International Conference on Computer Communi-
cations and Networks (Cat. No. 98EX226). IEEE. 1998, pp. 840–847.

[29] Sambenz. URingPaxos. 2019. URL: https : / / github . com / sambenz /
URingPaxos/.

[30] Service-Oriented Architecture: Scaling the Uber Engineering Codebase As
We Grow. 2018. URL: https://eng.uber.com/soa/.

[31] SoundCloud for Developers. 2018. URL: https://developers.soundcloud.
com/blog/building-products-at-soundcloud-part-2-breaking-

the-monolith.

[32] F. R. Tvedt. “Publish Subscriber for Atomic Multicast: A Content Based
PubSub System using Kafka”. In: UiS. 2018.

[33] F. R. Tvedt. Github - AtomicKafka. URL: https://github.com/Destidom/
AtomicKafka.

[34] P. Verissimo, L. Rodrigues, and M. Baptista. “Amp: A highly parallel
atomic multicast protocol”. In: ACM SIGCOMM Computer Communica-
tion Review. Vol. 19. 4. ACM. 1989, pp. 83–93.

[35] What are microservices? 2018. URL: https://microservices.io/index.
html.

[36] What is Apache Kafka? URL: https://www.confluent.io/what- is-
apache-kafka/.

[37] Who is using microservices? 2018. URL: https://microservices.io/
articles/whoisusingmicroservices.html.

http://www.di.fc.ul.pt/~bessani/publications/dsn18-byzcast.pdf
http://www.di.fc.ul.pt/~bessani/publications/dsn18-byzcast.pdf
https://www.confluent.io/blog/how-choose-number-topics-partitions-kafka-cluster
https://www.confluent.io/blog/how-choose-number-topics-partitions-kafka-cluster
https://blog.linkedin.com/2011/01/11/open-source-linkedin-kafka
https://blog.linkedin.com/2011/01/11/open-source-linkedin-kafka
https://github.com/sambenz/URingPaxos/
https://github.com/sambenz/URingPaxos/
https://eng.uber.com/soa/
https://developers.soundcloud.com/blog/building-products-at-soundcloud-part-2-breaking-the-monolith
https://developers.soundcloud.com/blog/building-products-at-soundcloud-part-2-breaking-the-monolith
https://developers.soundcloud.com/blog/building-products-at-soundcloud-part-2-breaking-the-monolith
https://github.com/Destidom/AtomicKafka
https://github.com/Destidom/AtomicKafka
https://microservices.io/index.html
https://microservices.io/index.html
https://www.confluent.io/what-is-apache-kafka/
https://www.confluent.io/what-is-apache-kafka/
https://microservices.io/articles/whoisusingmicroservices.html
https://microservices.io/articles/whoisusingmicroservices.html

	Abstract
	Acknowledgements
	Introduction
	Background
	System Model
	Atomic Broadcast
	Atomic Multicast
	Non genuine vs genuine atomic multicast

	Apache Kafka
	Topics
	Partitioner
	Producer
	Consumer
	Messages

	Earlier work

	Design and Method
	Design
	System components
	Messages
	Data structures

	Algorithm: Proof of Concept
	Simple Example
	Detailed Example

	Optimization
	Simple Example

	Enabling partitions for AtomicKafka
	Merger

	Failure handling discussion
	Rebuilding the local message state map
	Rebuilding LSMS: reading from beginning-to-end of topic
	Rebuilding LSMS: reading from end-to-beginning of topic

	Client takeover

	Implementation
	AtomicKafka
	System Architecture
	Consumer
	Producer
	Configuration
	Custom partitioning scheme

	Messages
	Message Format

	AtomicKafka Client

	Evaluation
	Hardware setup
	Evaluation setup
	Results
	Baseline
	90-10 Evaluation
	80-20 Evaluation
	70-30 Evaluation
	60-40 Evaluation
	50-50 Evaluation

	Discussion and further work
	Discussion
	Performance
	Further work

	Conclusion
	Program Code
	Kafka Broker Configuration
	Bibliography

