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Abstract

Proof-of-Storage (PoS) is a collective term for protocols that allow proving data integrity
and availability. There exist several PoS schemes. While they differ in detailed spec-
ifications, their common primary advantage is eliminating the need for trust between
storage providers and data owners. However, there does not exist a mechanism to provide
self-emerging delivery of requests for proof of storage, commonly known as challenges.

This paper presents a decentralized system for PoS using self-emerging challenges built on
smart contract in the Ethereum platform. Self-emerging challenges provide an automated
mechanism for ensuring integrity and persistence of data at chosen time intervals. The
design employs participating nodes in the Ethereum blockchain, commonly referred to as
peers, to store and route challenges to storage providers. The peers are compensated
for their service by their respective employers. Data owners are enabled to schedule
the time of emergence of a challenge to storage providers. Upon a received challenge,
storage providers prove the integrity and persistence of data by responding correctly to
the challenge. The design builds on the existing work of decentralized self-emerging data
systems over Ethereum blockchain networks. We show that this work can be utilized for
PoS and solve the problems that the incorporation and adaptation of this work raises.

We evaluate the proposed system based on several factors. We investigate the security
of the system based on the different attacks that the participants may execute for
exploitation. Moreover, we evaluate the attractiveness of participating in the system
based on the gained remuneration by peers and the positive reputation gained by storage
providers for proving the integrity of their clients’ data. We also evaluate the expenses
of data owners utilizing the proposed system based on the inherited costs of invoking
smart contract functions in the Ethereum platform. Lastly, through analysis, we find
that to minimize the total costs in the system, the number of employed peers should be
restricted to one in each path. In other words, one peer to deliver a PoS challenge to
the storage service provider. We show that this additionally improves the fairness of
remuneration payout to peers and analyze how security is affected by always utilizing
one peer in each path. We discover that this improves prevention against drop attacks,
while it to some degree decreases the prevention of release-ahead attacks which we deem
less critical. Through these analyses, we recognize that the benefits greatly outweigh the
drawback, and we make a suggestion that data owners should select exactly one peer per
path in their services.
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Chapter 1

Introduction

The advances in networking technology and the rapid increase of digitalization in the
everyday life of both industry and individuals have led to the use of remote storage
solutions. The permanent availability of data is crucial, and ample amounts of data
are produced every day. Therefore the need for storage at off-site locations arises [1].
Today, the amount of cloud storage providers are many, and they offer tailored services
for different customers [2].

Data loss and data corruption are significant challenges and are typical results of
management or hardware failures [3]. Both data loss and corruption can remain unknown
until the data is accessed. This poses a problem since large amounts of data may rarely be
accessed. Proving data integrity by retrieval is a poor method since it will greatly impact
both the network and the local hard drive. Hence, alternative methods of proving data
possession are required. These methods should limit the usage of network bandwidth
and be computationally cheap.

Proof-of-Storage (PoS) describes protocols that allow a party to verify the integrity of
remotely stored data [4]. In principle, a data owner issues a request for proof of storage,
commonly known as a challenge, and the data storer proves data integrity by responding
correctly to the challenge. A simple PoS scheme can be designed by probing. That is,
the data owner stores different segments of their remotely stored data, and requests the
data storer to retrieve the segments. There exist several other PoS schemes with various
advantages and disadvantages using a variety of data structures and algorithms.

1



CHAPTER 1. INTRODUCTION 2

This thesis investigates PoS using self-emerging challenges, which provides an automated
system for ensuring integrity and persistence of data. A promising method of implement-
ing autonomous release of protected data at a certain time, without the need of manual
interaction, is with the use of smart contracts as a trusted third party where the ground
rules of the system are set. Smart contracts are distributed applications that run on
blockchain platforms. This effectively means that they do not rely on a single point of
failure. Therefore, employing such a smart contract implementation for a PoS system will
enable the autonomous release of challenges without a single point of failure. We build
on existing work of decentralized self-emerging data systems over Ethereum blockchain
networks [5], and we show that this work can be utilized for PoS. Furthermore, we solve
the challenges that the incorporation and adaptation of this work raises. We will also
evaluate the security and Ethereum gas costs of the system.

To prove data integrity continuously, the PoS algorithm needs to be executed frequently.
This means that the data owner should issue a challenge, requesting proof of storage
at regular time intervals. By utilizing the PoS scheme using probing, the data owner
needs to calculate and store the hash of the data at different indexes, creating pairs of
challenges and corresponding correct answers before only relying on the services of the
data storer. It can then issue the stored challenges to the data storer. Upon an issued
challenge, the data storer should respond with an answer in order to prove the existence
and integrity of the data.

A PoS system consisting of only a data owner and its data storer is impractical since it
depends on the end user, the data owner, to deliver the challenges itself. Therefore, the
system must be designed such that challenges are delivered to the data storer regardless
of unavailability or failure at the data owner. The system needs to be able to offer both
automatic delivery of challenges with definite time intervals, in addition to reception
and verification of answers by the data storer. This enables the data owner to outsource
the job of delivering challenges to the data storer and verifying the answers given by
the data storer. Furthermore, in the case of trust-less decentralized storage systems
where continuous data integrity needs to be proven, the incorporation of a mechanism
where PoS challenges are frequently delivered to data storers is necessary. Provided that
self-emerging challenges for PoS are offered in the system, data owners can be given the
freedom of going offline and still frequently issuing challenges to their respective data
storers.

It is possible to eliminate single point of failure by using a distributed scheme for this
system. This can be done by employing peers in a distributed system to store and deliver
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the challenges on behalf of the data owner. Attracting peers to partake in the system
can be done by offering remuneration for their services paid by their employer, that is
the data owner. Additionally, the challenges must be verifiable by a trusted third party
since the data owner should be able to issue the challenges and go offline. Therefore a
third party must be able to receive challenges and corresponding answers from the data
owner and deliver the challenges to the data storer at the appropriate time. Furthermore,
the data storer needs to be able to prove the integrity of the data by providing answers
upon the reception of challenges. For this, a third party could also be used to verify if
the answers submitted by the data storer are correct.

The set of requirements of the system is given in the following list.

• Enable automatic delivery of multiple challenges with definite time intervals.

• Delivery of challenges regardless of failure or unavailability at the data owner.

• Correctly verify submitted answers to the challenges without the presence of the
data owner in the process.

• Offer sufficient remuneration to partaking participants in the system for their
service while still limiting the expenses of the data owner to be reasonable.

We build on a protocol proposed in [5] to benefit from the self-emerging data architec-
ture. Additionally, we utilize its idea of employing nodes in the Ethereum platform,
commonly known as peers, and using a smart contract as a trusted third party. However,
incorporating their protocol into our system also raises some challenges.

In [5] the challenges of decentralizing self-emerging data release is solved by their proposed
timed-release service protocol. The protocol utilizes a smart contract, which acts as
a trusted third party, in order to set ground rules for the involved participants in the
system. The addressed challenge in this protocol is mainly decentralizing the data release.
It employs a set of Ethereum peers to form a path through the network in order to send
a cryptographic key.

To build upon this protocol, we address new problems that arise as a consequence.
Our proposed system, that is an extension of the timed-release service protocol for
PoS with autonomous and continuous release of challenges over long periods of time,
requires multiple paths of Ethereum peers for different PoS challenges. However, the
existing protocol form only one path of peers. We redesign the smart contract to
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enable multiple paths while still maintaining the security of the system. Moreover, since
costs in the system are determined by gas costs of function calls in the smart contract
and remuneration to peers, we also discuss and evaluate the costs of the system as it
is imperative to address the challenges related to setting the right remuneration and
minimizing gas costs in order to make the system attractive for both data owners and
peers. One of the most significant differences from the timed-release protocol is the
difference in the roles of the participants. Since data owners and data storers are not
directly comparable to the roles presented in the timed-release protocol, a number of
changes to the designed system are done to account for this. Consequently, we evaluate
the practicality and security related to these changes.

Through evaluation and analysis, we find that to minimize the expenses of a data owner
that utilize our proposed system, the number of peers should be restricted to one in each
path. In other words, one peer to deliver a PoS challenge to the data storer. We show
that this also improves the fairness of remuneration payout to peers. Subsequently, we
analyse how security is affected by always utilizing one peer in each path. We discover
that this improves the prevention of the most critical attack, that is drop attack, while it
weakens the prevention of a less critical attack, that is release-ahead attack. Through
these analyses, we recognize that the benefits greatly outweigh the drawback, and we
make a suggestion that data owners should select exactly one peer per path in their
services.

We show that the smart contract that implements the design is thoroughly tested by cre-
ating a test setup for experiments. This test setup consists of a configuration of a private,
local Ethereum blockchain instance. In this blockchain, we test relevant functionalities
that our design depends on. That includes the module for P2P communication through
the Whisper protocol and various off-chain behaviour. The smart contract is deployed in
this network, and we test each function in different service configurations to obtain gas
costs.

1.1 Use Cases

There is currently substantial ongoing research on decentralized storage and distribution
solutions, and it is increasingly prevalent in terms of popularity and investments [4, 6, 7].
As with their counterpart, centralized storage solutions, these aim for fault-tolerance,
no downtime and resistance from denial-of-service attacks. However, the benefit of
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decentralized storage solutions is that they do not possess the inherent weaknesses of
trust-based models which are employed in current centralized storage solutions. Today,
most of the storage architectures rely on trusting a service provider, such as Microsoft
and Google, on storing and transferring data. In a decentralized storage solution, the
stored data is encrypted and spread out to several independent nodes to both provide
privacy and redundancy. Additionally, PoS is used to maintain data integrity in order to
eliminate the need for trust between storage providers and data owners.

Decentralized storage systems are complex and comprehensive systems, and one of the
most important parts of such systems is PoS. The inspiration for the goal in this paper
is derived from the research of decentralized storage solutions. The contribution done in
this work offers a mechanism that can be integrated into a decentralized storage system
issuing self-emerging PoS challenges.

Our contribution is not limited to be integrated into decentralized storage systems. It
should also be possible to incorporate our proposed system on top of existing storage
infrastructures. A realistic and practical use case for PoS with self-emerging challenges is
in combination with a cloud storage service. The system can be used to prove the integrity
of a client’s data in the cloud. The system would issue challenges to the cloud storage
service provider, and prove that the data still exists without having to retrieve actual
data from the cloud service. Additionally, the agreement between the service provider
and client can be set such that the service provider receives its monthly subscription fee
only if it correctly answers the challenges of the client.

The implementation of this system is relevant for both individual and industry use.
Individuals use cloud storage services for several purposes, e.g. storage of large multimedia
files or data backup of devices. Several service providers offer such solutions for individuals,
where Dropbox and OneDrive are only a few examples. The solution presented in this
thesis is beneficial for individuals since it provides security that the data exists even
though they do not access it.

This solution is also beneficiary for companies that store big data off-site. For instance,
ample amounts of sensor data are produced every day. Storing the data at a remote
location is a common choice. The system that is presented in this paper provides
reassurance of safe storage to companies when they outsource the job of storing.
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1.2 Outline

The remaining chapters of this thesis are structured as follows:

Chapter 2 presents relevant background material about PoS and the Ethereum platform.
It also provides a summary of the timed-release protocol in [5].

Chapter 3 describes the design choices of the system providing self-emerging challenges
using smart contracts. This chapter will highlight our contributions by detail-
ing the modifications and extensions done relative to the timed-release protocol.
Furthermore, this chapter provides a discussion of interesting alternative designs.

Chapter 4 details the test setup used to experiment with relevant parts of the im-
plemented system. The test setup includes a private, local Ethereum blockchain
deployed in a Docker environment to experiment with the Whisper protocol and
off-chain behaviours.

Chapter 5 discusses and evaluates the design based on experiments and analysis. The
evaluation is done based on Ethereum gas costs, remuneration to peers and security.
Lastly, in this chapter, thoughts on future directions are provided.

Chapter 6 concludes this thesis.



Chapter 2

Background

This chapter provides the relevant background material that is used for the design of
the proposed system. We will in the following present an introduction to PoS and the
Ethereum platform. Furthermore, we provide a summary of the timed-release service
protocol in [5].

2.1 Proof-of-Storage

Proof of data integrity by retrieval is a costly operation since this has a negative impact
on both hard drive I/O and network bandwidth. Proof-of-Storage (PoS) schemes allow a
verifier V to send data to a prover P and verify that the integrity of its data is maintained
without the need for retrieval of the entire data [4]. An example of V and P are a client
and a storage provider, respectively. In some PoS schemes, V is not required to be the
data owner. That is, a client may outsource the role of V to a third-party. PoS schemes
are used in cloud storage and decentralized storage networks since clients in both cases
outsource the responsibility of storing data and need to ensure that the integrity of the
data is maintained [8]. Common in PoS schemes is that V calculates and stores a set of
probabilistic challenges and corresponding proofs while it still possesses its data. Then,
V may issue challenges to P . Upon receiving a challenge, P proves that the integrity
of the data by correctly responding to the challenge. P is marked faulty if it does not
respond with a valid proof or fails to respond to a challenge. An example of such a
scheme is the Smash-Proof in the Swarm P2P storage [6].

7
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2.1.1 Public Verification

Public verification is a property within the context of PoS [8]. A PoS scheme is publicly
verifiable if V is a party that can verify the integrity of data without possessing private
data. That is, a scheme that possesses the publicly verifiable property allows a third-party
to verify the integrity of data based on public information. For example, a PoS scheme
with this property may allow third-parties to act as V by using the public key of the
data owner [9]. Without public verifiability, only parties that possess private information
may act as V . Hence, it is possible to prove data integrity and availability, but it does
not allow nodes to gain of reputation from verifying. Schemes that do not offer public
verification are useful in cloud storage systems.

The publicly verifiable property is useful in the context of decentralized storage networks,
such as Filecoin [7]. In Filecoin, storage nodes submit their proofs publicly to the
blockchain, and any node in the network can verify these proofs without the need of
access to the original data. Since the proofs are stored on the blockchain, they can be
verified at any time.

2.2 Ethereum

Ethereum is an open-source blockchain platform that uses a Proof-of-Work consensus
algorithm [10]. Like most other blockchain platforms, the functionalities offered revolves
around its token. This token is called Ether, and it is used for transactions between
accounts and to reward mining nodes for the computational power that they provide to
the network. Unlike several other blockchain platforms, Ethereum provides the possibility
to program and host decentralized applications within the blockchain. This allows
developers that wish to create decentralized applications using blockchain technology to
do so without having to implement the underlying mechanics of a blockchain.

Ethereum has a variety of built-in services. One of these is the Whisper protocol that
is extensively utilized in our proposed system. It is a P2P communication protocol
for decentralized applications as well as nodes in the same Ethereum network. It is
designed for small data transfer and security against traffic analysis. Security against
traffic analysis is offered through total darkness, meaning that the data that is to be
transferred is sent to every listening node, but only the intended recipient can decrypt



CHAPTER 2. BACKGROUND 9

the data. The drawback of this protocol is the unpredictable latency, which consequently
means that communication does not happen in real time.

2.2.1 Smart Contracts

Smart contracts are user-defined digital protocols for the execution of transactions.
Since smart contracts are run by miners in the Ethereum network, they are resistant to
downtime and interference from third-parties. The smart contract system in Ethereum
implements a Turing complete language. This makes the Ethereum platform a preferred
environment for the development of smart contracts. The applications of smart contracts
are relevant in many sectors. These can be from voting polls in governments to health
records in the health care sections. The possibilities are endless since any traditional
contract can be ported to a smart contract.

The execution of smart contracts is done in the Ethereum Virtual Machine (EVM).
While there exist languages for defining a smart contract, the code compiles to a set
of instructions, called opcodes. The opcodes are again encoded to bytecode, which is
what the EVM can interpret. Since the numerous unique opcodes combined results
in Turing-completeness, this means that the EVM is able to compute most tasks with
enough resources.

Smart contracts define a set of functions that peers in the blockchain can invoke to
interact with them. Interactions which include operations that modify the state of the
contract cost gas. Examples of interactions are transactions of data or currency. In
contrast, all read operations are free.

2.2.2 Gas

Gas is what drives Ethereum. It is a unit of cost that represents the computational effort
needed to execute a variety of operations [10]. Besides acting as a mechanism to make
the execution of denial-of-service attacks infeasible, gas acts as compensation to miners
that provide their computational power. A transaction includes gas price and gas limit.
The gas price is a value of Ether that is paid per gas unit for the computation costs
that arises from executing the transaction. The gas price for a transaction is chosen by
its executor. Since the computational effort of execution of the transaction is provided
by miners in the network, the miners decide to execute transactions that yield higher
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compensations, i.e. gas price. Therefore it is essential that the gas price is set high
enough so that the transaction is picked up by miners. For this, there exists functionality
in Ethereum, where the network suggests a gas price based on recent gas prices in the
network. The amount of required gas for the execution of a transaction cannot always
be predicted. Therefore, a gas limit is determined by the client, which is the maximum
amount of gas the client is willing to pay for. This mechanism is implemented so that
operations are finite and costs approximately predictable. The gas limit is paid before
the transaction takes place, and cannot be changed at a later point in time.

In distributed systems, the performance of an application is often measured in throughput
and latency. Although measurements of such properties of a smart contract may yield
meaningful results, in the case of decentralized applications built on blockchain technology,
these properties are mainly controlled by the blockchain platform. The smart contract
is run in the EVM. Therefore, the underlying technology of Ethereum restricts the
performance of smart contracts. Both latency and throughput are dependent on block
time and by how fast miners select and execute transactions. Block time in the Ethereum
network is typically between 10-20 seconds [11], and miners select to mine the transactions
with the highest gas prices. Therefore, the performance, measured in terms of throughput
and latency, of an application that utilizes smart contracts is often rendered by the
properties of the underlying blockchain platform.

2.3 Timed-Release Protocol

The paper [5] proposes a timed-release service protocol for self-emerging data using smart
contracts in Ethereum networks. The proposed protocol allows any pairs of data sender
and receiver to set up a service for timed-release data and employs Ethereum peers to
partake in the system formed by the smart contract by offering remuneration for their
service. The remuneration and compensation for invoking smart contract functions are
paid by the sender and receiver of the data.

Protection against various types of attacks that are relevant for the timed-release protocol
is shown by modelling the protocol as an extensive-form game with imperfect information
[12]. Extensive-form game is used to model and analyze the participants’ possible
strategies. The attacks that are discussed are post-facto attacks, drop attacks and
release-ahead attacks. Post-facto attacks are attacks where peers target to partake in
and obstruct the process of a known data sender. This type of attack is avoided since
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it is assumed that peers register to partake in the protocol before the data sender has
announced its participation in the protocol. Drop attacks are any attack where the data
fails to reach the recipient. In release-ahead attacks, the data is released before the
intended release time. Through modelling the system as an extensive-form game, both
drop attacks and release-ahead attacks are shown to be the least rewarding strategy
of a participant in the protocol when rewards and sanctions are used to prevent such
behaviours.

There are several use cases of the timed-release protocol. An example is secure auction
systems where it is crucial that bidding information is kept secret from the auction
participants until all bids arrive. A similar application is secure voting mechanisms where
votes should not be accessed until the end of the polling process, since revealing the votes
could affect the result of the poll. Another use case is copyrights-aware data publishing
where data can automatically be released when copyright expires.

The timed-release service protocol involves three different participants to enable self-
emerging data. The following describes the roles of the participants in the timed-release
protocol.
Data sender (S): The private data is encrypted using a secret cryptographic key and
sent to a cloud storage service by S. Furthermore, S sends the encrypted secret key into
the blockchain infrastructure, which is only released to R at the release time.
Data recipient (R): The encrypted data is available to R at any point in time. How-
ever, the data can only be decrypted when it has received the secret key at the release
time, which is determined by S.
Peer (P ): The secret key is routed through multiple P s. The role of the P is to store
the encrypted secret key for a certain amount of time, determined by its working window
and S, and route it to the next participant.

The timed-release protocol consists of four protocol components. The following presents
a summary of the various components.
Peer registration: A new P can register at any time by paying a security deposit to
the smart contract. It will then be added into a pool of P s. After registration, the
properties, including the address and working window, of every P is public knowledge to
the network.
Service setup: This component serves the purpose of allowing any pair of S and R
to register and establish a timed-release service by paying remuneration up front and
submitting the selected P s from the common pool of P s.
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Service enforcement: After the set up of the service, every participant needs to follow
the ground rules of this protocol component in order to successfully release the data at
the correct time. Any malicious behaviour results in confiscated deposits of the faulty
participants.
Reporting mechanism: This component offers functionality to report malicious be-
haviour by the innocent participants. To be able to detect every misbehaviour, the
protocol relies on rewarding participants that report such incidents.



Chapter 3

Design

In this chapter, we describe the design of the decentralized system for PoS using self-
emerging challenges built on blockchain technology. Although the system is implemented
to utilize Ethereum, its design is applicable for any blockchain platform that supports
smart contracts and transaction of currency. First, we present an overview of the
architecture. Then, we will look at the different components of the system, namely
the smart contract components and the various local behaviours and modules of the
participants in the system.

We focus on the design of a scheme of a decentralized system for PoS using self-emerging
challenges. We assume that the data storers have a storage service outside of our proposed
system and that the data owners pay a fee for the services of their respective data storers
through an already established agreement. With these assumptions, we focus the design
on the PoS aspect and remove payments between the data owner and data storer in
the design. Although, incorporating the payment of data owners to data storers is
uncomplicated by utilizing smart contracts, not including this is a calculated choice since
it allows data storers to partake in the system without the need to adapt their already
implemented and well-established infrastructures for storage and payments.

The design of our proposed system is based on the timed-release protocol in [5] since we
use its idea of self-emerging data using smart contracts for PoS challenges. Therefore,
there are several similarities. Although the contents of the protocol components differ,
we have kept the names of the protocol components since they correctly describe their
purpose. Also, the participants can be compared to each other. Peers have the same
name and role in both the timed-release protocol and our proposed system. However, the

13
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data sender can be compared to the data owner, and the data receiver can be compared
to the data storer. The names of these two participants are changed since their roles serve
different purposes and have different behaviours in our system. Furthermore, the design
of each protocol component and algorithms in our proposed system and the timed-release
protocol differ to varying degrees. To provide a comprehensive and coherent presentation
of our proposed system, we choose to present it from the bottom up, and at the end of
each relevant section emphasize the differences between our system and the timed-release
protocol.

3.1 Design Overview

The design of this system is heavily based on the use of a smart contract, which is
a trusted intermediary between the participants that are involved. It acts as a hub
for public communication. This includes the organization of the peers that wish to
participate in the process, submission of challenges, and submission of answers to the
challenges. In addition to the smart contract, the design includes operations that are
done locally by various participants and also secure P2P communication. Both the design
of the smart contract and the different local behaviours of the involved participants will
be described in the following sections. We will first present the design overview of the
system and then proceed to describe each component in detail.

The system consists of three types of entities. These are data owner, peers and data
storer. PoS challenges are sent from the data owner and are kept secret from the data
storer for fixed periods of time by a set of peers in a path. The number of peers in a
path depends on the available peers and their available working periods, which is used
by the peer selection algorithm that will be discussed in Section 3.4.2. In addition, the
total amount of paths are not set by the system but are rather decided by the number of
challenges that the data owner wishes to issue. Each path consisting of peers represents a
unique PoS challenge that is to be delivered to the data storer at a specific time decided
by the data owner. Upon reception of a challenge, the data storer has to calculate an
answer and deliver it to the smart contract within a deadline. If it either does not
answer a challenge correctly or does not to meet the deadline, it will fail to prove the
integrity of the data. Most of the interactions by the participants are done with the
smart contract; however, the challenges are sent through a path consisting of peers by
the utilization of the P2P protocol, Whisper, to limit the gas cost required from the
execution of transactions.
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The structure of the system with the different entities is illustrated in Figure 3.1. It
visualizes a scenario where three self-emerging challenges are issued from the data owner.
In this case, the data owner has chosen that each challenge is to be delivered to the data
storer with a constant time interval t apart from the service setup time.

P
P

Contract

O SP

P P
P

c1
c2

c3

c1	:	delivered	1t	>	ts

c3	:	delivered	3t	>	ts
c2	:	delivered	2t	>	ts

Figure 3.1: The general architecture of the system. This particular setup consists of
data owner O, data storer S and a different amount of peers P in each path. Each path

is used to send a challenge c, where each c has a particular release time.

3.2 Roles in the System

This section will provide an introduction to the roles of the different participants in
the system by describing their motivation and off-chain behaviour. To provide a brief
overview of the roles, some technical descriptions are omitted but will be discussed in
further detail in the following sections.

3.2.1 Data Owner

The data owner is a participant that has the interest of receiving proof of data integrity
for their remotely stored data. The data owner employs our system to carry out a set of
PoS challenges to ensure that data integrity is maintained, assuming that its data storer
offers to participate in our proposed system. Since we assume that this participant pays
for the storage service of its data storer in another system, it is interested in keeping the
expenses by employing this system at a minimum. The following describes the behaviour
of the data owner and its interaction with the other participants.
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The data owner calculates and stores a set of PoS challenges and answers using the
PoS algorithm, which will be described in Section 3.4.3, prior to only relying on the
remote storage service of the data storer. Furthermore, it registers to the system by
signing the smart contract. In order to set up the service, it has to run the peer selection
and remuneration calculation algorithms that are presented in Sections 3.4.1 and 3.4.2.
When its data storer also has agreed on participating in the system, it is allowed to set
up the service by submitting a set of required data. That is, the selected peers for its
service, pay remuneration to selected peers upfront, and pay a deposit for prevention
from misbehaviour. After the setup and before the working window, i.e. service period,
of the first peer in a path, the data owner calculates a set of certificates for all peers and
the data storer. As described in Section 3.3.3, these certificates are used for a security
mechanism and are concatenated and encrypted using onion encryption. Furthermore, it
submits the hashes of the certificates, the hashes of the answers to the challenges, and
Whisper keys encrypted with the public key of the next peer in the paths. A Whisper
key is a symmetric encryption key that is used to send challenges directly to the next
participant in a path using the P2P Whisper protocol. This behaviour is detailed in
Section 3.4.4. After transferring the challenge to the first peer in a path, the protocol
does not require any further actions from the data owner for that particular path. The
data owner may go offline after transferring the challenges into all of its paths.

3.2.2 Data Storer

Like the data owner, the data storer has the interest of participating in the proposed
system to prove data integrity. Since the system does not require any payments from
the data storer, there will be no expenses related to participating in this system except
computing power and some gas cost related to invoking smart contract functions. However,
given that the data storer is one of multiple data storers in the system, it will gain trust
and a positive reputation among clients that it correctly and safely stores data if it
manages to correctly answer the challenges of the data owners. Therefore, the computing
power and gas cost can be compensated for with a positive reputation and consequently,
new clients. The following describes the behaviour of the data storer and the interaction
with other participants in the system.

The data storer signs the smart contract to form a pair with the data owner. It then waits
until a Whisper key encrypted with its public key is submitted by the last peer in a path.
Upon submission of the Whisper key, the data storer decrypts this key with its private
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key and starts to listen to the network for the incoming challenge. After reception of the
challenge, it disjoins the certificate that is concatenated to the challenge and submits
the certificate to the smart contract. If the verification of the certificate is successful,
it verifies the behaviour of itself and the previous peer. Furthermore, it calculates the
answer to the challenge using the PoS algorithm that is presented in Section 3.4.3, and
submits it to the smart contract. If the smart contract verifies that the answer is correct,
the data storer has successfully proved data possession and integrity at the release time
of the PoS challenge. The data storer needs to repeat this process for all paths.

3.2.3 Peers

The peer is a participant that offers its service for payment. Unlike the data owner and
storer, its primary interest is not proving data integrity, but rather receiving a return on
its deposit. The following describes the behaviour of the peer and the interaction with
other participants in the system.

The peer announces its interest in participating in services by registering to the smart
contract. Since the data storer has not set up the service at this point in time, the peer
has no knowledge of the identity of neither the data owner nor storer. It registers to the
system by paying a desired deposit and submitting its public key and working window.
If the peer does not get selected for any service, it can change all of its attributes at any
time. After it has been selected as a peer in a service, it can go offline until the start of
its working window. At the beginning of its working window, it waits until a Whisper key
is submitted from the previous participant in the path. Upon reception of the Whisper
key, the peer decrypts this key with its private key and starts to listen to the network for
the incoming challenge. After reception of the challenge, it disjoins the certificate that
is concatenated to the challenge and submits the certificate to the smart contract. It
also submits a new encrypted Whisper key for communication with the next participant
in the path. If the verification of the certificate is successful and it has submitted the
Whisper key successfully, it verifies the behaviour of itself and the previous peer. Lastly,
using the Whisper key created for communication with the next participant, it transfers
the decrypted challenge to the next participant before its working window is over. After
a successful service, it receives remuneration for its service, and it can either withdraw
its deposit or keep it in the smart contract for a new service.
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3.3 Smart Contract

The smart contract implemented in this system builds upon the protocols that are
presented in [5]. However, since the implementation of the protocols was not included in
the paper, we have built a smart contract from the ground up. The following subsections
describe the various protocols that make up our proposed smart contract. Each protocol
consists of several functions. Table 3.1 shows the most significant functions in each
protocol with their respective callers. Furthermore, we assume that the native Ethereum
environment variables are accessible for every function. These include the address of
a function invoker, known through the variable msg.sender, and the payment to a
function, if any, known through msg.value. We also assume that function modifiers
allow invocations of functions only accessible by participants that exist in the system.
These modifiers will be marked as a comment in the algorithms next to the function
declarations.

Protocol Function Caller

Register

newPeer Peer
updatePubKey Peer
updateBalance Peer
updateWindow Peer

Setup
ownerSign Owner
storerSign Storer

setup Owner

Enforce

setProps Owner
verifyCert Peer, Storer

setWhisperKey Peer
verification Peer
answer Storer

Report releaseReport All
dropReport Peer, Storer

Table 3.1: The main functions of the smart contract and their callers.

3.3.1 Peer Registration Protocol

The peer registration protocol allows nodes in the Ethereum blockchain, commonly
referred to as peers, to participate in the system. Algorithm 3.1 details the functions with
their respective pseudo code. Peers register through the newPeer function by submitting
a set of attributes. These are public key pubKey and working window window = [tb, te]
that is their offered service period. In addition, peers need to pay a deposit ds through
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this function. This deposit is used to prevent misbehaviour. The smart contract adds and
initializes other attributes to the peer that are used in other protocol components. These
are hasFrozenDeposit to determine if the peer is part of a service and consequently has
its deposit frozen, the hash of its certificate sh and its Whisper key kw. Furthermore, a set
of update functions are provided for a peer that wishes to change its respective attributes
after registration, namely updateBalance, updateWindow and updatePubKey. While the
algorithms for updating working window and updating public key are self-explanatory,
the function updating balance is used to both add more funds to a peers deposit and to
withdraw the entire deposit in its account by passing zero to the function.

When registering to the smart contract, the peer is added to a pool of peers. Data
owners use this pool to choose which peers to include in their process based on the peers’
working windows and deposits, which are used by the system for penalizing misbehaviour.
Since a challenge needs to be stored in the blockchain network for a certain amount of
time before it is delivered to the data storer, the working windows of peers are used to
decide which peers that are chosen to participate in a path. A path in which a challenge
is routed can be divided into multiple peers if no peer in the pool can service the period
as requested by the data owner. The system has been designed such that a peer cannot
participate in multiple paths or processes. Although this could have been implemented, it
has been a calculated choice to not including this in the design for the sake of simplicity.
Section 3.5 discusses what accommodations that are needed in order to implement this
feature.

A high-level overview of the system is shown in Figure 3.2, where several data owners may
use the pool of peers to form paths in order to send their challenges to their respective
storers.

Pool of peers

S

S

S

O
O

O O

O

Figure 3.2: A high-level overview of the smart contract. Several data owners O use the
pool of peers to form paths for their services. Through their paths, they send challenges

to their respective data storers S.
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Algorithm 3.1 Peer Registration Protocol

1: p̂← ∅; . Initialize set of peers.

2: function newPeer(pubKey, window)
3: if peerExists(msg.sender) then
4: revert("Peer is already registered.");
5: end if
6: p̂[msg.sender]← {ds : msg.value,

hasF rozenDeposit : false,
kpub : pubKey,
sh : ⊥,
certV erified : false,
passedV erification : false,
kw : ⊥,
T w : window};

7: end function

8: function updateBalance() . Caller is a registered peer.
9: require(¬p[msg.sender].hasF rozenDeposit, "Peer is partaking in an ongoing process.");

10: if msg.value = 0 then . Allows peer to withdraw its deposit.
11: msg.sender.transfer(p[msg.sender].ds);
12: p[msg.sender].ds ← 0;
13: else
14: p̂[msg.sender].ds ← p̂[msg.sender].ds + msg.value;
15: end if
16: end function

17: function updateWindow(window) . Caller is a registered peer.
18: require(¬p[msg.sender].hasF rozenDeposit, "Peer is partaking in an ongoing process.");
19: if window.tb < now ∨ window.te < now ∨ window.te < window.tb then
20: revert("Start and end times must be later than the current time, and end time after start.");
21: end if
22: p̂[msg.sender].T w ← window;
23: end function

24: function updatePubKey(pubKey) . Caller is a registered peer.
25: require(¬p[msg.sender].hasF rozenDeposit, "Peer is partaking in an ongoing process.”);
26: p̂[msg.sender].kpub ← pubKey;
27: end function

This protocol differs little from the corresponding peer registration component in the
timed-release protocol. In [5], an overview description is given for the peer registration
process; however, no implementation or pseudo code is provided. Therefore, Algorithm
3.1 and its data structures are built from the bottom up for our proposed system. This
is also the case for all protocols presented in Section 3.3.
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3.3.2 Service Setup Protocol

The service setup protocol allows data owners and storers to register in the system.
When both are registered correctly and have become a pair, the data owner may set up
a service with one or more challenges. For this, the smart contract requires the data
owner to submit selected peers for its paths, pay the rewards and gas compensations of
peers up front, and pay a deposit that is the same deposit required by peers multiplied
with the number of paths. As discussed in Section 3.3.4, the data owner, like the other
participants in the system, may execute attacks. Therefore, the system is designed such
that it requires a deposit from the data owner for each challenge to prevent misbehaviour.
The smart contract calculates if the payment is sufficient based on the number of selected
peers and their working windows. Furthermore, it checks if the selected peers fulfill
the requirements, that is, that they have sufficient deposits and that their deposits are
unfrozen. If the payment of the data owner is correct, and the selected peers fulfill
the requirements, the smart contract freezes the peers’ entire deposits and accepts
the payment of the data owner. The remuneration calculation and the peer selection
algorithm are presented and discussed in detail in Sections 3.4.1 and 3.4.2. Peers’ deposits
are frozen upon service setup to insure that peers follow the protocol correctly.

Algorithm 3.2 shows the functions that make up the service enforcement protocol. The
data owner signs up to the system by using the function ownerSign. The function inputs
the address of the data owner’s storer and marks the owner as signed up to the system.
The data storer signs up to the system by invoking the storerSign function. This
function checks if the address of the storer is the same that the data owner registered.
It also lets the data storer submit its public key pubKey that is used in the service
enforcement protocol. The data owner sets up the system using the setup function that
inputs paths which is a set of selected peers for each path, the integer remuneration for
how much the data owner has paid for remuneration to all peers in all paths, and the
integer deposit for the deposit that is required from the selected peers. This function
requires that both the data owner and data storer have signed up to the system beforehand.
It further checks that the payment by the data storer is equal or greater than the sum
of remuneration and deposit multiplied with the number of paths. If this yields true,
it calculates and checks if the remuneration paid by the data owner is sufficient based
on the working windows of the peers in all paths. It also checks that the selected peers
have sufficient deposits as required by the data owner and that they do not partake in
other processes, i.e. that their deposit account is unfrozen. Additionally, it checks that
the submitted peers contain no other addresses than the registered peers in the system.
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These operations are done using the helper functions isOwnerPaymentSufficient and
peersMeetReq. If the conditions are met, the smart contract accepts the setup by freezing
the deposits of the selected peers.

Algorithm 3.2 Service Setup Protocol

1: owner ← ⊥;
2: storer ← ⊥;
3: r̂ ← ⊥;
4: P̃ ← ∅; . Initialize set of paths. P̃ [i] represents path. P̃ [i][j] represents peer in path.
5: ds ← ⊥;
6: terminated← ∅; . Initialize set for logging if a path is terminated.

7: function ownerSign(storerAddr)
8: owner ← {addr : msg.sender,

k̂w : ∅
hasSigned : true};

9: storer.addr ← storerAddr;
10: end function

11: function storerSign(pubKey)
12: if msg.sender = storer.addr then
13: storer ← {addr : msg.sender,

kpub : pubKey,
ŝh : ∅,
hasSigned : true
certsV erified : ∅;
hasP roved : ∅;

14: end if
15: end function

16: function setup(paths, remuneration, deposit) . Caller is owner.
17: require(owner.hasSigned ∧ storer.hasSigned, "Both owner and storer must sign.");
18: require(msg.value ≥ remuneration + deposit× count(paths),

"Payment is insufficient relative to inputted values.");
19: P̃ ← paths;
20: ds ← deposit;
21: r̂ ← remuneration;
22: terminated← [false]× count(paths); . Mark all paths as not terminated.
23: if ¬isOwnerP aymentSufficient(P̃ , r̂) ∨ ¬peersMeetReq(P̃ , ds) then
24: revert("Setup request does not fulfill requirements.");
25: end if
26: freezeDeposits(P̃ ); . Freezes the deposits of each selected peer in all paths.
27: end function

As with the peer registration protocol, Algorithm 3.2 is based on the timed-release
protocol. However, the functionality presented for the service setup in our proposed
system differs to a greater extent from the timed-release protocol. The design choice
of pairing the data owner to the data storer is made independently for this system
as the timed-release protocol does not detail any description, nor present an obvious
explanation on how pairing is done. Furthermore, since this system allows issuing
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multiple challenges, the setup process requires submission of selected peers for several
paths. This involves the creation and management of more complex data structures.
An example of this is the more extensive remuneration calculation, as it is different for
varying timelines of challenges and consequently has to be done for each path. Moreover,
since the roles and motivations of the participants in this system differ significantly from
the participants in the timed-release protocol, this system is designed such that the
receiver of the self-emerging data, the data storer, does not pay any deposit, nor receives
any remuneration.

3.3.3 Service Enforcement Protocol

The service enforcement protocol provides a set of functions that are needed in order to
establish communication between participants in a path, as well as functions that are
needed by the participants to verify their behaviour. Successful delivery of a self-emerged
challenge can be achieved if the involved participants in the process follow this protocol
correctly.

The challenge that is sent through a path is onion encrypted with the public keys of
the peers and the data storer in reversed order. Figure 3.3 illustrates the encryption
scheme for a path consisting of three peers. To decrypt the challenge, the first peer has
to decrypt a layer, then second peer, then third peer and lastly the data storer. With this
encryption scheme, the order of reception is enforced. In our design, the certificates are
sequences of fixed-length, random bits created by the data owner. They are introduced
to let participants prove that they have successfully received and decrypted a layer of
the routed challenge. The certificates are appended to the challenge for each public
key encryption layer, which consequently makes them accessible by decryption by the
intended participant using their private key. The challenge and certificates are sent
between participants in a path using the Whisper protocol. In order to create a channel
between two participants, the sender should create a symmetrical Whisper key, encrypt
it using the public key of the receiver, and submit it to the contract. Subsequently, the
receiver may download the encrypted Whisper key from the smart contract, decrypt
it using its private key, and use it to listen to the Whisper channel. Figure 3.1 shows
an example of Whisper channels, represented by arrows, that are established between
participants in paths in order to route the challenges to the data storer.
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Figure 3.3: Onion encrypted challenge for a path consisting of peers P1− P3 and data
storer S. A unique certificate s is appended to each message m and encrypted with the

public key kpub of the intended receiver for each layer.

Subsequent to executing the service setup protocol, the service enforcement protocol lets
the data owner submit the necessary data to the smart contract. These are hashes of the
certificates, hashes of the answers and challenges, and its Whisper key encrypted by the
public key of the next participant in the path. Furthermore, the data owner needs to send
the onion encrypted challenge with the certificates to the next peer in the path using the
Whisper protocol. All of these operations have to be done before the working window
of the next peer in the path. Before its working window is finished, each peer has to
decrypt a layer of the received data in the Whisper protocol module, submit the obtained
certificate to the smart contract, submit the encrypted Whisper key, and verify its own
behaviour and consequently the behaviour of the previous participants. Lastly, it needs
to transfer the encrypted challenge to the next participant in the path using the Whisper
protocol module. Upon reception of the encrypted challenge and certificate, the data
storer has to decrypt the last layer, submit the obtained certificate to the smart contract,
verify its own behaviour and consequently the behaviour of the previous participants in
the path by answering correctly to the received challenge. If the verification done by all
peers and the data storer passes, the contract unfreezes the deposits of the peers and
pays remuneration to every peer that has finished their job correctly. However, if the
verification done by peers or data storer does not pass, the smart contract terminates the
process in that path and marks the last participant that failed to pass the verification
as guilty. Furthermore, the smart contract pays remuneration to the innocent peers,
unfreezes the innocent peers’ deposits, and pays the confiscated deposit and unused
remuneration to the data owner.
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Multiple invocations of the verification function in a path are done to be able to
unfreeze the deposits of innocent peers as soon as possible. In [5], it is shown that any
rational participant in this system will always choose to submit the Whisper key and
certificate within its working window. Since their protocol is designed as an extensive-
form game with imperfect information, by utilizing game theory, they prove that the
most rewarding strategy of any participant in the system is to correctly follow protocol
without misbehaving. Their proof is based on reaching the Nash equilibrium [13]. Their
proof is applicable for peers in our system as well since we use the same penalize and
reward scheme. However, since our system does not require the data storer to pay for
partaking in the system, we cannot entirely base our system on this analysis. We discuss
this issue in Section 5.4.

Algorithm 3.3 lists the functions that make up the service enforcement protocol. The
data owner submits the hashes of the certificates for each participant in all paths, the
hashes of the certificates of the data storer for each challenge, the hashes of all challenges,
the hashes of corresponding answers to the challenges and its Whisper key by inputting
certHashes, storerCertHashes, challengeHashes, answerHashes and whisperKey to
the setProps function. The function adds the certHashes to all selected peers in each
path, storerCertHashes to the data storer and the Whisper key to the data owner. It
furthermore registers both hashes of the challenges and answers. Peers and the data
storer verify their obtained certificate by submitting the plain text certificate cert and the
path that it is a part of, represented as an integer, using the function verifyCert. This
function calculates the hash of the submitted certificate and compares it to the hash of the
certificate submitted by the data owner. If the hashes are equal, it registers that the peer
has correctly verified the certificate. Peers submit their Whisper keys using the function
setWhisperKey. The verification process by a peer is done by invoking the verification

function after submission of the certificate and the encrypted Whisper key. The function
inputs an integer path which represents the path of which the invoker is a part. If both of
these are submitted and if the path is not already terminated, the verification will pass.
However, if these are not submitted within the working window of the peer, it will not
pass, and a drop attack is detected. Failure of verification and consequently termination
of the service in a path is handled by unfreezing the deposits of innocent peers and
data owner, and paying the remuneration to innocent peers using the utility functions
unfreezeDeposits and remunerationPayout respectively. The confiscated deposit and
remuneration are then transferred to the data owner. If a participant has followed the
ground rules of the system honestly but still cannot verify its certificate correctly, this
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means that a drop attack has been executed by another participant. Therefore, the
participant may report the drop attack, as described in the reporting protocol in 3.3.4,
without invoking verification. The verification process by the data storer is done by
invoking the answer function after submission of its certificate. This function inputs the
integer variable path that represents the path of which the challenge is a part, and the
plain text challenge answer answer. The function calculates the hash of answer and
compares it to the hash of the answer submitted by the data owner ah. The verification,
whether failure or success, is registered by the function. Lastly, the function unfreezes
deposits of all peers and data owner and pays out remuneration to all peers in the path
using the utility functions.
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Algorithm 3.3 Service Enforcement Protocol

1: ĉh ← ∅; . Initialize variable for hashes of certificates.
2: âh ← ∅; . Initialize variable for hashes of answers.

3: function setProps(certHashes, storerCertHashes, challengeHashes, answerHashes,
whisperKeys) . Caller is owner.

4: for i← 0, certHashes.length do
5: for j ← 0, certHashes[i] do
6: p̂[P̃ [i][j]].sh = certHashes[i][j];
7: end for
8: end for
9: storer.ŝh ← storerCertHashes; ĉh ← challengeHashes; âh ← answerHashes;

10: owner.k̂w ← whisperKeys;
11: end function

12: function verifyCert(path, cert) . Caller is selected peer or storer.
13: certHash← keccak256(cert);
14: if p̂[msg.sender].sh = certHash then
15: p̂[msg.sender].certV erified← true;
16: else if msg.sender = storer.addr ∧ storer.ŝh[path] = certHash then
17: storer.certsV erified[path]← true;
18: end if
19: end function

20: function setWhisperKey(whisperKey) . Caller is selected peer.
21: p̂[msg.sender].kw ← whisperKey;
22: end function

23: function verification(path) . Caller is selected peer.
24: require(¬terminated[path], "Path is already terminated");
25: if p̂[msg.sender].certV erified ∧ p̂[msg.sender].kw 6= ⊥ then
26: p̂[msg.sender].passedV erification← true;
27: end if

. Incorrect behavior is detected. Service is terminated.
28: unfreezeDeposits(P̃ [path] \msg.sender);
29: remain← remunerationP ayout(P̃ [path] \msg.sender);
30: owner.addr.transfer(2× ds + remain); . Transfer remaining r̂ and ds to owner.
31: terminated[path]← true;
32: end function

33: function answer(path, answer) . Caller is storer.
34: require(¬terminated[path], "Path is already terminated.");
35: if storer.certsV erified[path] ∧ keccak256(answer) = âh[path] then
36: storer.hasP roved[path]← true; . Proven data integrity for the challenge.
37: else
38: storer.hasP roved[path]← false; . Failed to proved data integrity for the challenge.
39: end if
40: unfreezeDeposits(P̃ [path])
41: remunerationP ayout(P̃ [path]);
42: owner.addr.transfer(ds)
43: terminated[path]← true;
44: end function
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Although inspiration is derived from the timed-release protocol, the design choices
of Algorithm 3.3 deviate significantly. As the service setup protocol, this protocol
depends on and pursue the more complex data structures than the ones that are required
for the timed-release protocol since it allows the self-emerging data in multiple paths.
Consequently, a management mechanism for multiple paths in which the participants
invoke functions for verification is created by requiring participants to submit in which
path they are performing their service. Moreover, the design choices differ considering
the verification of behaviour done by the receiver of the data, i.e. the data storer. Instead
of verifying its behaviour by executing the same functions as the peers, the system is
extended so it can verify its behaviour and terminate the process of the self-emerging
challenge in a path by responding to the challenge.

3.3.4 Reporting Protocol

The reporting protocol offers a set of functions for handling release-ahead attacks and
dispute of drop attacks. A release-ahead attack is a type of attack where a peer chooses
to release the challenge that is being routed in the path before the release time set by
the data owner. A challenge is routed in a path using multiple Whisper channels. The
routing of a challenge is, therefore, independent of the smart contract. Hence, it is
hard to detect release-ahead attacks. The reporting protocol addresses this problem by
providing a function so that the data storer can report this behaviour. Furthermore,
since the service enforcement protocol only detects drop attacks and cannot deduce which
peer has executed the drop attack between the two peers where the drop took place, this
protocol also offers a function for reporting drop attacks in order to resolve a dispute
between two peers.

As discussed, release-ahead attacks are hard to detect since the challenges are transferred
between participants in a path through the Whisper protocol, which uses end to end
encryption. In the system where several data storers participate, it is useful to enable
honest data storers to report a release-ahead attack. The report needs to contain a proof
that the challenge is received before its time. For that, the challenge only encrypted
by the data storer’s public key needs to be submitted to the contract before the actual
release time. This proof can then be verified by the smart contract, which compares the
hash of the submitted proof with the hash of the challenge submitted by the data owner
at the setup time. Upon receiving a valid proof, it is shown that the participant that is
located before the reporter has released the challenge too early. By enabling the data
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storer to report such incidents, every participant in the system is informed of the guilty
peer since this will remain as public, permanent information in the blockchain. The data
owners that wish to set up new processes then have the possibility of excluding peers
that are proven to be dishonest from their processes. The data storers that report such
incidents are awarded since the system benefits of honest participants. The system is
designed so that a rational participant will not carry out a release ahead attack since it
will be penalized. A release ahead attack can be caused by a data storer that bribes a
peer to execute the attack on its behalf. Although a release ahead attack in principle can
origin from any participant, in this system, the beneficiary from such an attack is the
data storer. In this system, the amount of penalization is set to be ds, and this is used
as an award a = ds to the reporter. This means that the executor of the attack will lose
its deposit and potential remuneration, and the reporter will gain the executor’s deposit
if it reports the incident. Therefore, a malicious data storer must be willing to bribe an
amount larger than ds + r to motivate a peer to execute such an attack on its behalf.
We will give a more in-depth evaluation about release-ahead attacks in Section 5.4.

It is stated in [5] that a drop attack can be executed in three different ways. We use
Figure 3.4 that shows a path consisting of two peers to explain how a drop attack can
be executed. The first peer P1 can execute a drop attack by not sending the correct
challenge to the second peer P2. P2 can also execute a drop attack by denying that it
has received the challenge from P1. Lastly, it is also considered a drop attack if the data
owner O submits fake hashes of certificates to the contract. In all of these types of drop
attacks, a dispute between the participants will arise. The mechanism in solving this
dispute depends on P2 reporting the incident, and it assumes that ds > v and ds > v+ a,
where v is the value of the challenge and a is the award to the reporter. Upon reporting
a drop attack, the smart contract confiscates the deposits of the three participants and
awards P2. It is shown by the game induced by the protocol that this effectively prevents
drop attacks for rational players. By reporting the incident, P2 will lose ds−a, but it will
lose ds if it does not report it. Moreover, in the case where P1 has followed the protocol
correctly, the P2 will lose ds − a upon falsely reporting a drop attack. With this logic,
the second peer will never launch a drop attack. Furthermore, since the data owner and
the first peer will lose their entire deposit upon a report of a drop attack, their rational
behaviour is never to launch a drop attack. Following the protocol honestly will result in
the highest monetary outcome for all participants. Thus, the Nash equilibrium is reached
in the game where all participants are rational. It is important to notice that this does
not apply in a scenario where the data storer executes a drop attack by denying that
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O P1 SP2
Figure 3.4: Simple path consisting of two peers.

it has received the challenge since it does not pay any deposit which can be used for
penalization. We will further discuss and evaluate this issue in Section 5.4.

In the following example, we illustrate that rational participants will not execute drop
attacks. Let ds = 6, a = ds/2 and v = 2, where v is the motivation and gain for a peer to
execute such an attack. If P1 executes a drop attack by not sending the correct challenge
to P2, it will lose its entire deposit ds = 6 and only gain v = 2. P2 will lose ds − a = 3 if
it does report the incident, but it will lose ds = 6 if it abstains from reporting. Therefore
the rational behaviour of P1 is never to launch a drop attack, and the rational behaviour
of P2 is to report the incident if P1 has executed a drop attack. The same logic is also
applicable in a case where O executes a drop attack by submitting incorrect hashes
of certificates to the smart contract. The motivation of O for executing this attack
is, however, not obtaining v since it already possesses this, but its motivation can be
external, e.g. spoiling the reputation of the data storer. O will lose its entire deposit
ds = 6 upon a drop attack, while P1 will lose ds − a = 3 by reporting the incident. If
P1 abstains from reporting the incident it will however lose its entire deposit ds = 6. If
P2 executes a drop attack by denying the reception of the challenge from P1 and falsely
reports a drop attack, it will lose ds − a = 3. If it does execute a drop attack and does
not report it, it will lose ds = 6. However, if it follows the protocol correctly, it will not
lose any of its deposit and receive remuneration. In any way, if P2 executes a drop attack,
P1 and O will lose their entire deposits. Therefore, it is in the common interest for all
peers and O that a drop attack is not executed.

Algorithm 3.4 lists two functions for reporting an attack. Function releaseReport allows
the data storer to report a release-ahead attack by taking input parameters path which is
an integer representing the path where the attack has taken place, and challenge which
is the challenge for that path only encrypted with the public key of the data storer.
If the hash of the challenge is the same as the one submitted by the data owner and
this has been reported before the release time of the challenge, a release-ahead attack
is proven. The function will then unfreeze the deposits of innocent peers and the data
owner, and pay remuneration to all innocent peers in the path using the utility functions
unfreezeDeposits and remunerationPayout. The innocent peers are all peers except
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the peer that executed the release-ahead attack, that is, the last peer in the path before
the reporter. Lastly, the reporter gains an award equal to the deposit of the guilty peer.

Function dropReport allows participants to report a drop attack to solve the dispute of
the attack by inputting the path where the attack has taken place. It is required that
the data owner is not the caller of the function since it is the first participant in the
path. The function checks if the working window of the last peer in the path before the
reporter is finished in order to avoid false reports at times where the reporter should not
be able to report drop attacks. If the reporter is not the data owner and the reporter
exists as a participant in the path, the deposits of all participants in the path except the
reporter, the participant before the reporter and the data owner are unfrozen. Moreover,
remuneration is paid to all participants except the reporter and the participant before
the reporter. Lastly, an award equal to half of a deposit transferred to the reporter. The
award is only paid to the reporter if it is not the data storer. Since the data storer does
not pay any deposit, it would always gain ds/2 for falsely reporting drop attacks without
having anything to lose.
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Algorithm 3.4 Reporting Protocol

1: function releaseReport(path, challenge) . Challenge only encrypted with the storer’s pubKey.
2: require(¬terminated[path], "Path is already terminated.");
3: lastP eer ← P̃ [path][count(P̃ [path])− 1]; . Address of the last peer in the path.
4: require(p̂[lastP eer].T w.te > now, "Proof not delivered before challenge release time.");
5: if keccak256(challenge) = ĉh[path] ∧msg.sender = storer.addr then
6: unfreezeDeposits(P̃ [path] \ lastP eer)
7: remain← remunerationP ayout(P̃ [path] \ lastP eer);
8: msg.sender.transfer(ds); . Award reporter with confiscated ds of faulty peer.
9: owner.addr.transfer(remain + ds); . Transfer remaining r̂ to owner and unlock its ds.

10: terminated[path]← true;
11: end if
12: end function

13: function dropReport(path) . Caller is selected peer or storer.
14: require(¬terminated[path], "Path is already terminated.");
15: require(msg.sender 6= owner.addr, Invalid caller);
16: faulties← ∅; . Initialize set for adding penalized peers.
17: if msg.sender 6= storer.addr then . Penalize peer and peer before reporter.
18: require(p̂[msg.sender].T w.tb > now, "Invalid invocation time.");
19: i← indexOf(msg.sender, P̃ [path]); . Index of invoker in P̃ [path].
20: if i > 0 then
21: require(p̂[P̃ [path][i− 1]].T w.te < now, "Invalid invocation time.");
22: end if
23: faulties← faulties ∪ P̃ [path][i− 1];
24: faulties← faulties ∪msg.sender;
25: msg.sender.transfer(ds/2); . Award reporter with a = ds/2.
26: else . Penalize last peer in path.
27: lastP eer ← P̃ [path][count(P̃ [path])− 1]; . Address of the last peer in the path.
28: require(p̂[lastP eer].T w.te < now, "Invalid invocation time.");
29: faulties← faulties ∪ P̃ [path][count(P̃ [path])− 1];
30: end if
31: unfreezeDeposits(P̃ [path] \ faulties)
32: remunerationP ayout(P̃ [path] \ faulties);
33: terminated[path]← true;
34: end function

The design of Algorithm 3.4 possess inspiration from the timed release protocol. The
design of the reporting protocol differs from its corresponding counterpart in the timed-
release protocol in that it offers the same mechanism for managing multiple paths as
in Algorithm 3.3. Furthermore, since the description of the timed-release protocol does
not include the amount of the award of the reporters, the design choice for the system is
set such that an award for correctly reporting a release-ahead attack is the amount of a
deposit, and the award for reporting a drop attack is the amount of half a deposit. This is
a calculated choice since the awards are large enough to encourage participants to report
incidents but small enough to avoid false reports. Another significant difference from
the timed-release protocol is that the system does not offer a mechanism for prevention
from attacks by the data receiver, i.e. data storer, to the same extent. This is because
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the system assumes that service payment to the data storer by the data owner is made
externally, and therefore, it does not require a deposit from the data storer. As will
be discussed in further detail in Section 5.4, this is accounted for since it is assumed
that the data storer has an external motivation to behave honestly. Moreover, another
security issue is raised from the design difference of not including deposits for the data
storer. The security issue is that the data owner could execute drop attacks by falsely
reporting a dispute of a drop attack whilst gaining awards, without having any deposit
at stake. For this issue, the design of the system introduces a security mechanism where
it allows the data storer to report an attack but does not incentivize the data storer with
an award. Lastly, in the timed-release protocol, the reporting mechanism and receiving a
reward for correct reporting is separated into two different functions. In our design, we
have merged the two mechanisms in one function to save gas costs.

3.4 Off-Chain Behaviour

The smart contract lays the ground rules of our proposed system. It acts as a trusted
third party and as a hub for public communication. Off-chain behaviour is code that
runs locally on the nodes in a blockchain network. In this section, we will present the
most significant algorithms and modules that are used by the off-chain behaviour of the
different participants in the system, that is, the data owner, data storer and peers. These
are the Whisper protocol module and the algorithms for peer selection, remuneration
calculation, and PoS.

3.4.1 Remuneration Calculation Algorithm

The system is designed such that it relies on the service of Ethereum peers. In order
to attract peers to contribute to the system, they must be incentivized by the data
sender for their service. The total remuneration r̂ paid by the data sender to the peers
consists of two components which serve their own purpose. The first component r̂s is
paid by the data sender to reward the peers for storing and routing a PoS challenge
through the network, while r̂c is paid to the peers as compensation for invoking smart
contract functions as part of their service. The timed-release protocol in [5] employs
a remuneration calculation where it lets the r̂c component be subject to change for
different monetary values of the data that is handled by the peers. However, the rc
should only be charged as gas compensation for invocation of smart contract functions,
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which consequently requires it to be constant. Furthermore, we assume that the monetary
value of challenges are constant in contrast to the timed-release protocol, where stored
self-emerging data may be valued differently. In addition, as the timed-release protocol
allows the formation of only one path, we present a formula for remuneration calculation
exclusive for our proposed system.

The r̂c component is calculated by retrieving the gas costs of the functions in the
smart contract, therefore, for k selected peers in a path, r̂c = krc, where the rc is the
remuneration corresponding to the gas spent by a single peer. The r̂s component is
considered to be the motivation of the peers to partake in the system. Therefore, it
must be sufficient to make the system as an attractive venture. It also has to be higher
for longer working windows; that is, peers should be rewarded for every storage hour.
Furthermore, since the system benefits from stable and longstanding service, rs should
be larger for a service time closer to the release time tr than the setup time ts.

We segment the service times in the calculation in hours. Let4ris be the remuneration of a
peer for the ith service hour, and4r1

s be the first hour remuneration. Furthermore, let α be
the per hour increment of 4ris. That effectively makes 4ris = 4ri−1

s +α = 4r1
s +α(i−1).

Therefore, we can derive r̂s =
∑|T s|
i=1 (4r1

s +α(i− 1)) = |T s|(24r1
s+α(|T s|−1)

2 ) for the whole
storage period |T s| of a challenge. In total, the expenses of the data storer can be
summed up by r̂ = krc + |T s|(24r1

s+α(|T s|−1)
2 ), and the remuneration gained by any peer

that serves in the working window [tb, te] in |T s| is given by r = rc + te(24r1
s+α(te−1)

2 )−
tb(24r1

s+α(tb−1)
2 ).

Since we assume that the monetary values of PoS challenges do not differ, the system
sets constant values for 4r1

s and α. Therefore, these parameters are set in the smart
contract, which consequently means that data owners cannot decide their values. This
design choice is made to provide fair remunerations to peers. In Section 5.2, we provide
a discussion on what the values of these parameters should be in order to attract peers
to partake in the system.
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Figure 3.5: Remuneration calculation for 4r1
s = 100 and α = 5.

Figure 3.5 shows a plot of the remuneration calculation of r̂s where 4r1
s = 100 and α = 5.

It is shown that for the 0th to 10th storage hour the remuneration is 1225, while for the
40th to 50th storage hour the remuneration is 3225. Hence, it is shown that peers are
encouraged to serve for long-term storage of challenges. Further analysis and evaluation
of remuneration will be given in Section 5.2.

The formulas for calculations of remuneration are similar to the ones presented in [5].
However, we have done the following modifications to make them relevant for our system.
Since the compensation for invoking smart contract functions that cost gas should be
constant, our formulas, in contrast to the ones presented for the timed-release protocol,
do not make rc subject to change for different values of the routed data in a path.
Furthermore, since we assume that PoS challenges do not vary in value, the formulas
do not input any variable for the different monetary value of the routed data in a path.
In our formulas, the remuneration paid out to the peers is only dependent on 4r1

s , α

and |T s|, while rc is constant. Lastly, since our proposed system allows multiple paths
in order to send multiple challenges with different timelines between the data owner
and data storer, the remuneration calculation is done separately for each path using the
derived formulas.

In addition to our modifications to the remuneration formulas presented in the timed-
release protocol, it is of significance to discuss a mathematical error that we have
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discovered in [5]. Through experimentations with the remuneration formulas of the
timed-release protocol, we find that the relationship between the formula for the total
remuneration expenses of the data owner and the formula for remuneration gained by
peers is wrong. For ease of description of this error, we name the former formula F1 and
the latter formula F2. If there is one peer in path, the working window is [tb, te] = |T s|.
If there are more than one peer, |T s| is segmented in as many different working windows
as there are peers, and each peer receives a remuneration x = F2. The remuneration x is
based on the size of peers’ working windows and which part of T s that they cover. Let i
represent a peer and let n be the number of peers in a path. The sum of remunerations
to all peers in a path,

∑n
i=1 xi, should equal the result of F1, but using the formula F2

derived from F1 in [5] always gives
∑n
i=1 xi < F1. To solve this error, our F2 that is

presented in this section, is constructed such that, for any amount of peers, the sum of
the different F2s is equal to the result of F1.

3.4.2 Peer Selection Algorithm

The peer selection algorithm used by the data owner effectively selects the most suited
peers for a service from the common pool of available peers. In our proposed system, this
algorithm is based on the one presented in [5]. However, since we have a system where
multiple paths should be allowed for a pair of data owner and storer, the algorithm is
modified to account for this. In this section, we give a summary of the algorithm as it is
designed for the timed-release protocol, and further present the modifications that are
needed to incorporate it to our system.

In [5], it is claimed that the peer selection algorithm should have two objectives, namely
minimizing remunerations paid by data owners, and maximizing the expected profit
made by peers. Since the remuneration rs is a fixed amount as discussed in Section 3.4.1,
minimizing remuneration paid by data owners could be solved by reducing the number of
peers that participates in a path. Furthermore, maximizing the expected profit made by
peers can be solved by having a mechanism for reducing the amount of time that their
deposit is frozen by unfreezing their deposits as soon as possible. Hence, allowing the
peers to reinvest their deposits in new services rapidly. Since the deposit of a peer must
be frozen from the start of the service until the end of its working window, it is possible
to reduce the amount of time that its deposit is frozen by selecting a working hour closer
to the setup time in the case where only parts of its working window is needed for the
service. This effectively means that if a peer has a working window of three hours and
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its service is only needed for one hour; the algorithm should aim to select the first hour
rather than the later hours. In [5], the problem that should be solved by this algorithm
is segmented into multiple sub-problems, where each sub-problem is defined as follows.

“Given all peer working windows covering an input time point, output the working window
that makes the total number of selected peers minimum.”

Upon choosing a peer with the right working hour, its end time is used as the input time
point for the next sub-problem. This is applied until there are chosen enough working
hours from peers to cover the required service time.

Since our proposed system employs multiple paths in contrast to the timed-release
protocol, the peer selection algorithm must be modified to account for this. Algorithm
3.5 shows the peer selection algorithm for a single path (line 12-29) similar to the one
presented in [5] with the additional modifications that are done in order to incorporate
it to our system (line 3-11). The algorithm takes in two main parameters, a set of peer
working windows T̂w, and another set of challenge storage windows T̂ s that consists of
several T s = [ts, tr], representing the paths. It outputs a set of working windows of the
selected peers ̂̃

Tw for the inputted paths T̂ s. The function selectPeers loops the set of
peer working windows T̂w to find the working window Tw that covers the largest interval
of T s possible. That is, it continuously searches for a Tw that has the earliest start time
tb while still covering the current time point that is covered by another working window
tcur. This process is repeated until there is a Tw covering the interval T s. The algorithm
traverses T̂ s and runs the selectPeers function for every instance. Then, it subtracts
the selected working windows T̃w from the common pool of working windows T̂w to
prevent that selected peers get selected for multiple paths, and adds T̃w to the set of
working windows of the selected peers ̂̃

Tw. The result of this algorithm, ̂̃
Tw, contains

the optimum combination of working windows of peers for the requested service periods.
The complexity of this algorithm is O(|T̂ s||T̂w||T̃w|).

In addition to the extension of the peer selection algorithm to support multiple paths,
we have done a refinement to the selectPeers algorithm presented in the timed-release
protocol for a single path. Originally, this algorithm contained an additional condition
for controlling that a peer was not previously selected before it was added to the set of
selected peers. We find that this condition is redundant and unnecessary. If a working
window spanning a time period [tb, te] is selected for a subproblem without tb covering tr,
the next subproblem requires another peer’s te to be before the tb of the selected peer.



CHAPTER 3. DESIGN 38

We have in our algorithm removed this condition since we empirically prove that this is
an unnecessary condition.

Algorithm 3.5 Peer Selection Algorithm.

1: Input: Set of registered peer working windows T̂ w, requested challenge storage windows T̂ s consisting
of several T s = [ts, tr] (representing paths), transfer time period |Tt|.

2: Output: List of working windows of selected peers for all inputted paths ̂̃
T w.

3: ̂̃
T w ← ∅;

4: for all T s ∈ T̂ s do
5: T̃ w ← selectP eers(T̂ w, T s, |Tt|);
6: if T̃ w = false then
7: throw;
8: end if
9: T̂ w = T̂ w \ T̃ w;

10: ̂̃
T w = ̂̃

T w ∪ T̃ w;
11: end for

12: function selectPeers(T̂ w, T s, |Tt|)
13: tcur ← tr; tpre ← tr; T w

sel ← ⊥;
14: while tpre > ts do
15: for all T w ∈ T̂ w do
16: if T w.tb < tcur + |Tt| ∧ T w.te > tcur + |Tt| ∧ T w.tb < tpre + |Tt| then
17: T w

sel ← T w;
18: tpre ← T w.tb;
19: end if
20: end for
21: if T w

sel 6= ⊥ then
22: T̃ w ← T̃ w ∪ T w

sel;
23: tcur ← tpre;
24: T w

sel = ⊥;
25: else
26: return false;
27: end if
28: end while
29: end function

3.4.3 Proof-of-Storage Algorithm

PoS describes protocols that allow a party to verify the integrity of remotely stored data.
In principle, a data owner issues a request for proof of storage, commonly known as
a challenge, and the data storer proves data integrity by responding correctly to the
challenge. Since we have designed a proof of concept system for PoS using self emerging
challenges, the implementation of an advanced PoS algorithm is out of the scope of
this system design. Therefore, a simple PoS scheme using probing has been designed
and utilized. That is, the data owner stores different segments of their remotely stored
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data and requests the data storer to retrieve the segments. Figure 3.6 shows the simple
probing algorithm of our proposed system. The data is segmented in i bytes. Therefore
it is possible to retrieve the ith byte of the data using a simple algorithm. A data owner
utilizes this scheme to pick random is, representing challenges and runs the algorithm
for every i to obtain the answers, as. The different challenges are then issued to the
data storer, which again uses the algorithm to obtain the a for every i. It proves data
integrity by correctly submitting the corresponding as and is to the data owner.

a1

1 2 i

. . .a2 ai

Figure 3.6: Proof-of-Storage using probing.

3.4.4 Whisper Protocol Module

The approach of direct transfer challenges between the participants using the Whisper
protocol is chosen since it limits the data transfer between the participants and smart
contract, thereby reducing gas costs as discussed in Section 3.5. We have designed an
off-chain module that inputs the cryptographic key for the communication session and
continuously listens to the network on incoming messages. This module is made such
that it is compatible with any of the off-chain modules.

Algorithm 3.6 shows the behaviour of this module. It offers a set of functions that use
the API of the Whisper protocol to enable direct transfer of data between participants.
The function newWhisperSender generates a symmetric Whisper key which the invoker
can use to encrypt using the public key of the intended receiver and submit to the
smart contract for the receiver to download. Function sendMessage inputs a symmetric
Whisper key symKey and the data to be transferred msg. It allows the invoker to
send data to the intended receiver that possesses the same symmetric Whisper key. A
topic for the communication is set by w.setTopic since the API requires that a topic
for the communication set. We assume that for all communication using the Whisper
protocol in this system, there is a consensus between all participants about the value
of the topic. Furthermore, the function creates a client using w.connect, creates an
encrypted message using msg, symKey and topic as input parameters to w.newMessage,
and lastly transfers the message into the network using the created client. A receiver can
create a channel for incoming messages using the newWhisperReceiver. This function
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requires the symmetric Whisper key symKey for the communication session. It sets the
topic of the communication the same as the sender and creates a channel for incoming
data using w.subscribe.

Algorithm 3.6 Whisper Module

1: Uses: Whisper API, w;
2: sender ←⊥;
3: posT opic← "Proof of Storage";

4: function newWhisperSender
5: symKey ← generateSymmetricKey()
6: return symKey
7: end function

8: function SendMessage(msg, symKey)
9: topic← w.setT opic(posT opic);

10: client← w.connect();
11: message← w.newMessage(msg, symKey, topic);
12: client.P ost(message);
13: end function

14: function newWhisperReceiver(symKey)
15: topic← w.setT opic(posT opic);
16: listener ← w.subscribe(symKey, topic);
17: return listener;
18: end function

In the timed-release protocol, it is stated that Whisper protocol is used for P2P commu-
nication between the participants in a path. However, there is no description provided
in what way this off-chain behaviour is conducted. Therefore, the module for direct
communication between the participants is created exclusively for the system proposed
in this thesis using the Whisper API.

3.5 Alternative Designs

This section selects some elements of the system’s design and presents and discusses
alternative approaches. The alternative designs are not necessarily improvements in all
cases, but rather interesting approaches that could be used if other assumptions or new
requirements are set to the system.

The current design of the system allows peers to be selected only in a single path.
Moreover, it does not allow peers to be selected to serve in paths of multiple data owners.



CHAPTER 3. DESIGN 41

This could have been implemented into the design by allowing a peer to register multiple
deposit accounts. This could also have been solved by only freezing parts of the deposit
as requested by a data owner. Although this is a fairly simple design concern, for the
sake of simplicity, it is not included in the design of the proposed system.

Another alternative design could be to explicitly protect the system against drop attacks
from data storers. The current design assumes that data storers are externally motivated
to honestly follow the guidelines of the system, and correctly answer the received
challenges. Moreover, the design does not incorporate payment of deposit from data
storers since the goal is to allow data storers to partake in the system without the need
to adapt their already implemented and well-established infrastructures for storage and
payments. If deposits were required, data storers would have to account for additional
expenses related to participating in this PoS system. In an alternative system where
this does not apply, or explicit protection is needed, the system could require a deposit
from the data storer that is the same deposit that is paid by peers multiplied with the
number of paths in the service. This way, the same protection against drop attacks as in
the timed-release protocol is offered.

The design of the system is such that the transfer of the encrypted PoS challenges
between the participants is done through the P2P communication protocol, Whisper.
An alternative approach of transferring the challenges would be to let each participant
submit the challenge to the smart contract. However, such an approach would result in
participants later in the path having access to the challenges. Although the challenges
are encrypted with public keys of the peers and data storer, in an extreme case where one
or more private keys are compromised, the later participants could potentially decrypt
a challenge and execute a release-ahead attack. Another drawback of this alternative
approach is that the amount of data that would be transferred in a process would be
considerably larger than the current design. For each time a participant decrypts a
challenge to obtain the certificate, it would have to submit the challenge concatenated
with the remaining certificates of the future participants in the path. For a challenge c
concatenated with n certificates d, this would result in n submissions of the challenge,
and

∑n
i=0 (n− i) submissions of certificates d where i represents the ith participant in the

path. This results in a total of
∑n
i=0 c+ d(n− i). However, using the Whisper protocol

restricts the submission of data transfer to only be n× d since the challenge c does not
get submitted to the smart contract, and each peer only submits its own certificate d.

Throughout the description and discussion of the design, it is assumed that the system
is implemented on top of the Ethereum platform. However, any blockchain platform



CHAPTER 3. DESIGN 42

that supports smart contracts and transactions could be used by the proposed system.
It would be interesting to deploy a blockchain only for the purpose of decentralized
storage. For this, our proposed system could be employed, or even integrated into the
platform, for self-emerging PoS challenges. In addition, it is conceivable that the payment
to data storers in such a decentralized storage system would be incorporated into the
system. Therefore, it would also be possible to enforce explicit protection of drop attacks
from data owners by requiring them to pay a deposit, as previously discussed in this
section. In fact, this would be a more natural approach in this case compared to the
current design since the payment for the subscription could indirectly be used as data
storers’ deposit. That is, the data storers would not get paid for their services from
data owners if they cannot prove the integrity of the owners’ data by honestly following
the ground rules of the system and correctly responding to PoS challenges. Lastly, if a
P2P communication service equivalent to the Whisper protocol were not offered by the
blockchain platform, as previously discussed in this section, the design could be altered
so that each participant would submit the challenge to the smart contract.



Chapter 4

Test Setup

This chapter presents a test setup that was created for the purpose of experimenting
with the relevant functionality that our design employs. The off-chain behaviour of the
participants was not fully developed due to the time constraint of this thesis. Therefore,
the test setup was not used for experimental evaluation. However, the test setup
facilitates this. The purpose of this chapter is to support our work by providing credibility
that the different functionalities have been properly tested. Both the module for P2P
communication through the Whisper protocol and various, relevant off-chain behaviours
have been tested in an instance of the Ethereum blockchain platform. Furthermore, the
implemented smart contract that employs our design has been deployed in this network,
and we have tested each function in different service configurations to obtain gas costs. In
this chapter, we present the various test environments that were assessed. Additionally,
we describe how a private, local Ethereum blockchain was created using Docker for
comprehensive testing and experimentation of the implemented smart contract.

The Ether needed for execution of transactions on the main Ethereum network needs
to be bought with real currency. Therefore, several alternative systems for deploying
and testing smart contracts exist for experimentation. These include both local and
public solutions. An example of a promising local solution is Ganache [14] which allows
for fast setup of a personal Ethereum blockchain that can be used to run tests, execute
commands and easily inspect the state of the blockchain. There also exists some official
Ethereum public test networks. Although the Ether is already mined in many of the test
networks and can be gained for free using Faucets, the level of control of the blockchain
is not comparable with a private, local blockchain as offered by Ganache.
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For experiments of our proposed system, both local and public test networks were
considered. A popular public test network, Rinkeby [15], was attempted to be used in
the early stages of this project. However, the chain data of this blockchain is large, and
therefore, it was excluded as an option since it requires a considerable amount of storage
space. The choice of setup was therefore restricted to a local Ethereum network. For
this, Ganache was used for development and testing of this system’s smart contract.

In this project, the secret information, the challenges, are sent through the Whisper
protocol which is a P2P communication protocol for Ethereum nodes. Since the proposed
solution makes extensive use of the Whisper protocol, it was essential to create a network
of separate nodes that ran and participated in an Ethereum network. In the process of
implementing the functionality of the system, it was discovered that Ganache did not
support the Whisper protocol [16]. Therefore, an alternative setup for experimentation
was necessary. For this, we used Geth [17] on separate nodes to form a blockchain
network. Geth is the official Golang implementation of the Ethereum protocol. In the
following section, we present how this was achieved.

4.1 Setup of Local, Private Ethereum Network Using Docker

The final setup for experiments was done on a local, private Ethereum network using
Geth and Docker [18]. Although many of the smart contract functions could be tested
as their own unit, it was necessary that the Whisper protocol was included in the testing
so that the system could be tested as a whole. The most realistic setup would have
been to deploy the system on a public test network, but because of the aforementioned
drawback of this setup and the limited resources available, this setup posed a challenge.
Another realistic setup would have been to deploy a testbed of separate nodes, each on a
dedicated machine, running Geth to form an Ethereum network. However, this setup
would also have posed the challenge of high costs due to significant resource demands.
Since Docker allows for several containers running on the same machine, it was possible
to create an Ethereum testbed with several nodes running on a single machine. Although
there exist some Docker setups for running a private Ethereum network, at the time of
developing this system, there were none found that were satisfactory and additionally
ran the Whisper protocol.

Prior to entering the details of the setup for the experiments, it is necessary to comprehend
some of the features of Docker that has been extensively used for this project. Therefore,
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we will present an overview of the features that are relevant for the setup of the private
Ethereum network used for experimentation of the system. To create containers in
Docker, a Docker image must be specified. Images are modular, which means that
images can build upon each other. In one image, it is possible to specify that it should
inherit another image, called a base image. This functionality allows to place common
configurations that are needed for different images in one base image. Thereby increasing
efficiency and avoiding mistakes that are difficult to detect. Figure 4.1 shows the structure
of a Docker setup where an image inherits a base image of common configurations which
again inherits another base image containing the operating system, Arch Linux. After
the configuration of an image, it is possible to use it to create a virtual machine, called
a container. The container will then possess configurations and installations that are
specified in the image.

Kernel : bootfs

Base Image : Arch

Base Image : Config

Image

Docker Container
private

shared

writable

read-only

read-only

read-only

read-only

Figure 4.1: The connection of Docker images and containers.

For the experimental setup, a base image was created to specify all of the necessary,
common configurations for the nodes in the network. This included specifying the
operating system, installing the needed tools, and adding a user to run the Ethereum
node. Furthermore, the private Ethereum network was initialized using Geth. The
main attributes of the network were configured by creating a genesis block. While new
blocks in the blockchain are continuously generated in an established blockchain network,
the first block, called the genesis block, needs to be specified. Listing 4.1 shows the
genesis block with its attributes that were created for the Ethereum network used for
the experiments in this project. The most noteworthy attributes in the context of the
test setup are the difficulty and allocation attributes. The difficulty is set low to save
computing resources for the miner node. The allocation attribute is used to set an initial
balance for some of the nodes partaking in the Ethereum network.

" config ": {

" chainId ": 13,

" homesteadBlock ": 0,

" eip155Block ": 0,
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" eip158Block ": 0

},

" coinbase ": "0 x0",

" difficulty ": "0 x2",

" nonce ": "0 x0000000000000097 ",

" mixhash ": "0 x0",

" parentHash ": "0 x0",

" extraData ": "0x",

" gasLimit ": "0 x8000000 ",

" timestamp ": "0 x0",

" alloc ": {

" ec6a4e03bedaaac4c6070e8a96f19de71fb874e2 ": {" balance ": "30000000000000000"} ,

"8090726167 de701826cf63fdb560bda7ae652be4 ": {" balance ": "30000000000000000"} ,

"2828 a8f260baa874625b3b794ed6509225f48b40 ": {" balance ": "30000000000000000"} ,

" ef8383c0ef7a45eb1b956b087e7dc59d0706b274 ": {" balance ": "30000000000000000"} ,

"4 bccda700fd05bfcf553fdaafcaaaee5e772a27e ": {" balance ": "30000000000000000"} ,

" f71195df0eb8438dd9eaf839d3abb47859f2175f ": {" balance ": "30000000000000000"}

}

Listing 4.1: Genesis block configuration

Subsequent of creating the base image, specific images for different types of nodes with
their respective configurations were created. These included bootstrap, miner, explorer
and several regular nodes. The bootstrap node is a node that is selected to stay connected
to the Ethereum network. Its role is to act as a gateway for new nodes to connect and
partake in the network. The role of the miner node is to allocate its resources for mining,
that is processing transactions, in the Ethereum network. The explorer node opens an
HTTP port in order to host a web site that shows a continuously updated overview of
the Ethereum network including recent blocks and transactions [19]. The regular nodes
are nodes that only partake in the Ethereum network. These were used to run and test
the off-chain code of data owner, data storer and peer.

To configure the nodes collectively, Docker Compose was utilized. This is a tool that
enables the creation and execution of multiple Docker containers. There were several
properties of the network that was specified in the configuration of Docker Compose.
These included IP addresses, ports, and input data for each container. To enable
communication between the nodes, the definition of a network and allocation of IP
addresses need to be specified in the configuration. The ports that needed to be open for
communication and the mapping between inbound and outbound ports also needed to
be specified. Furthermore, there were a set of input data for each container that was
required to make the network function properly. These mainly included the bootnode IP
and ID, node key and key-store files.
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In the development process, it is useful that the Ethereum address of the nodes are
deterministic. Since the address of a node is used in every aspect of interaction with
the Ethereum network, such as communication with smart contracts and transferring
Ether, the development process would be cumbersome if the address was not static for
every time a node is booted up. Therefore, a set of accounts were created using the Geth
tool and set into the configuration of each node. The accounts are given as key-store
files. Listing 4.2 shows an example of a key-store file of an account. Here the most
noteworthy attributes that are generated are the Ethereum address and the cipher related
attributes. Furthermore, the private key of that address will be static when the cipher
related attributes of an address are statically defined. This is useful since the private
key is required for authentication in any transaction with a smart contract that involves
the transaction of data. The web3.js library, which allows interaction with Ethereum
nodes, can be utilized to obtain the private key from the key-store file together with the
password that was used upon creating the file.

" address ":"8090726167 de701826cf63fdb560bda7ae652be4 ",

" crypto ":{

" cipher ":" aes -128 - ctr",

" ciphertext ":"03936 c7cd882e97fe72431af1b89077601d1a8de242534adad05133eb931fb69 ",

" cipherparams ":{ "iv ":"2 c29f7446b18715961c1c1022ae163c0 " },

"kdf ":" scrypt ",

" kdfparams ":{

" dklen ":32 ,

"n":262144 ,

"p":1 ,

"r":8 ,

"salt ":" c3b1c08e49564acaf9576dcafb00f4bf0a3a7a48190a1df8483e6284cdbb3ebf "

},

"mac ":"5 b9549f0e43b97e4aa6cf7dde163b20ca472b9f1b7651148f75c2be81034b0df "},

"id ":"8494 c847 -247a -4b25 -8fee -9 f14bfd38d88 ",

" version ":3

Listing 4.2: Key-store file of an Ethereum account.

Establishment of P2P connection between nodes does not happen automatically. In
the Ethereum network, each node has an ID, called a node key. Connecting to other
nodes can be done manually by adding their IDs through the Geth console. The ID
of the node is created and stored in a file by connecting to the network, and therefore,
it is deterministic as long as the file does not change when connecting to the network
again. However, spinning down the Docker cluster of nodes erases all data, which poses
a problem. To solve this, the node keys was given as an input to Geth when connecting
to the network, which always makes the ID of the node deterministic. Furthermore,
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interconnecting the nodes can be done by adding a file called "static-nodes.json" in the
Geth data folder. By default, Geth derives the IDs of the nodes that are specified in
the file and establishes a P2P connection with them when connecting to the Ethereum
network.

4.2 Implementations

A smart contract that employs the proposed design was fully developed and tested in
multiple platforms, including the local Ethereum network. However, due to the time
constraint of this project, the off-chain code, that is the local behaviour of the different
participants in the system, was not fully developed. However, relevant parts of this
off-chain code were developed using the Go programming language and tested in a local
Ethereum network. This included peer registration, data owner sign up and the Whisper
protocol module. The Whisper protocol module, together with the configuration of the
local Ethereum network, can be found in Appendix A.

4.3 Testing Smart Contract Code

In the development of this system’s smart contract, testing was essential. For this, the
Truffle suite [20], which offers an automated testing framework, was used. While Truffle
offers the possibility of writing unit tests in both Javascript/Typescript and Solidity, the
system’s unit tests were written in the latter language. This is because the implemented
smart contract that employs the design has been written in this language. Continuous
unit testing was the preferred methodology as it increases efficiency while developing and
debugging the smart contract since the set of tests can easily be executed upon changes
in the smart contract. The unit tests also eliminate the need of deploying the contract
to the network and executing client code which makes it very useful in the early stages
of the project where the contract is written prior to implementing any client code.



Chapter 5

Evaluation and Analysis

In this chapter, we provide evaluation and analysis of the implemented smart contract
that employs our design for self-emerging PoS challenges. First, we evaluate the gas costs
of the implemented smart contract based on experimental results. Then, we provide a
discussion and evaluation of the remuneration paid to partaking peers in the system where
we compare their gain here with other alternatives. Further, we analyze the different
security aspects of the system. Lastly, we present a set of possible future directions.

As discussed in Section 2.2.2, the performance of a smart contract is governed by the
performance of the underlying blockchain platform. In the Ethereum platform, the block
time varies between 10-20 seconds [11]. Therefore, measurements such as throughput
and latency to evaluate the performance of the system yield results that mostly portray
the performance of the blockchain platform. As a consequence, we do not evaluate
the proposed system based on these measurements, but rather base our evaluation on
gas costs. The gas costs are obtained from our experimental results, where we have
implemented and tested a smart contract that employs our proposed design. This smart
contract will be referred to as the self-emerging challenges (SEC) contract in the following
sections.

5.1 Gas Cost

In Ethereum, gas is required to pay for the execution of smart contract code inside the
Ethereum Virtual Machine. Therefore, it is essential that the gas cost is considered when
designing a smart contract. The experimental results in Appendix B show the gas costs
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of the main functions of the SEC contract for different configuration setups. The gas
costs that are presented were obtained by setting up various scenarios with different
amounts of PoS challenges and different amounts of peers in paths.

Gas costs are subject to change. Several factors can affect the outcome of the costs. In
the Ethereum yellow paper [10] it is described that gas usage increase by the number of
operations and the amount of data that is sent to the smart contract. Therefore, the
functions in the SEC contract with high gas usage are either subject to high storage
utilization, many operations or both. As an example, the update functions are all
functions that take input parameters and update an attribute of the function caller.
Since the input data and consequently, the size of data varies, the gas usage is different
from each update function. Furthermore, the gas usage of a single function may also
vary. In cases where the input parameter of a function is a datatype where the size is
inconstant, e.g. string, bytes or arrays, the gas cost can drastically vary. For example,
the gas usage of function newPeer for an RSA public key with a key size of 512 has
been tested to be 178 325 units of gas. However, for a public key with key size 2048, the
function requires 325 062 units of gas. These numbers are derived from experimental
results (see Appendix B).

The gas cost of executing a smart contract code is a product of gas units and gas price.
Upon construction of a transaction, the caller sets the gas price of the transaction, that
is, how much Ether the caller is willing to pay per gas unit. The gas price is what
determines how fast a transaction will be mined. This is because a miner is more eager
to mine a transaction that is better paid. As of date, 2019-04-29, the average gas price
in the Ethereum main network is 1.035× 10−8 Ether [21] and the Ether price is $157.49
[22].

5.1.1 Gas Costs Analysis of the Smart Contract’s Functions

Figure 5.1 shows a plot of the monetary cost of each function for a configuration with
one peer in one path. As is evident from the plot, most functions cost under $0.2. The
exceptions are newPeer, storerSign, setup and setProps. We will in the following
analyze the gas costs of the functions.

It is tested that the newPeer and storerSign functions do not change drastically for
different setups. This is because the costs of these functions are mostly dependent on
the data transfer, not varying number of operations. Although the same applies to the
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Figure 5.1: Monetary cost of each function. Calculated from gas measurements of a
setup with one peer in one path and 2048 bits public keys (Table B.1). Calculations
are based on gas price 1.035× 10−8 [21] and Ether value US$157.49 [22]. For functions
verifyCert and dropReport that can be invoked by both peers and storers, the highest

gas measurements between the two are chosen.

cost of the setProps function, it is important to note that the cost of this function is
dependent on the number of selected peers and paths. That is, for larger amounts of
paths and peers, the system requires the data owner to submit more data through this
function.

The setup function is subject to many operations. For example, this function traverses
the selected peers to check if they fulfill the requirements and freezing each peer’s deposit.
It also checks if the data owner has transferred sufficient amount of remuneration by
executing the remuneration calculation for each peer. In the SEC contract, this function
requires the addresses of the selected peers, information about the formations of paths,
and information about payment. The largest amount of data is the addresses of peers.
However, each address is small compared to a public key that is submitted, for example,
in newPeer. Therefore, most of the cost related to this function is due to computations.
Moreover, since the number of computations is dependent on the input parameters, the
costs increase as the size of the input parameters increase. This can be seen for different
configurations in Appendix B.
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The sum of the monetary costs of the peer functions is $0.96. This includes all four
functions in the peer registration protocol and the three functions in the service enforce-
ment protocol that are invokable by peers. The update functions in the peer registration
protocol are not mandatory to invoke, and therefore, we exclude their cost from the
evaluation. This reduces the overall gas cost the peer to $0.73.

The data owner functions are only called once, and they sum up to $0.96 for this setup.
However, it is important to note that its functions are dependent on the number of paths
and peers. An increase in the number of paths and peers results in high data transfer,
which then results in higher gas costs.

The sum of the monetary cost of the data storer functions is $0.59 for this setup.
However, if there are multiple paths in the system, i.e. more than one challenge, then
both verifyCert and answer need to be invoked in each path. Therefore, this sum
will increase for more challenges. The verifyCert function seem to be approximately
constant and independent of the number of paths and peers for a single invocation (see
Appendix B). In contrast, the function answer traverses every peer in a path to pay
out remuneration and unlocking deposits. Its cost should, therefore, increase with the
number of peers in a path. However, from the test results, this does not seem to affect
its cost significantly.

5.1.2 Gas Costs Analysis of Configurations with Multiple Paths and Peers

In the following, we use the plot Figure 5.2 as an example to another service with three
paths where each path contains three peers. This example is used to discuss the overall
gas expenses of the data owner, which includes compensation to the gas used by the
other participants. We assume that there will not be any misbehaviour. That is, the
functions in the reporting protocol are not invoked and verifications are successful. For
this setup, the total gas expenses of functions invoked by the data owner are $2.49. The
cost related to compensate all nine peers for invoking gas functions is $6.57. If we assume
that the expenses of the data storer need to be paid by the data owner, either directly or
indirectly through an increase in the storage service fee, the expenses of the data storer
need to be added to the total expenses of the data owner. For this setup, the monetary
value of all invocations of the required function by the data storer equals to $0.8. In
summary, the total monetary expenses of the data owner for setting up a service with
the described configuration yields $2.49 + $6.57 + $0.8 = $9.86.
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Figure 5.2: Monetary gas expenses of different participants for a setup with three paths
where each path contains three peers. Calculated from gas measurements in Table
B.3 and B.6. The tables are combined since the number of paths does not affect the
gas costs of the missing functions in Table B.6. Calculations are based on gas price
1.035× 10−8 [21] and Ether value US$157.49 [22]. The reporting and update functions

are not included.

It is evident that the greatest cost is due to the number of peers in each path. Figure 5.3
shows the monetary gas cost related to the functions that the participants have to invoke
in a setup with three paths where each path contains one peer. We use this setup to
show that reducing the number of peers while still issuing the same amount of challenges
as in the previous example significantly reduces the total monetary expense. This setup
yields $2.15 for the expenses of all peers, $0.8 for the expenses of the data storer and
$1.59 for the expenses by the data owner itself. If a data owner should compensate the
data storer in addition to the peers, this setup costs the data owner $4.54 in total. This
is less than half of what it would cost if all paths contained three peers instead of one.
Therefore, we can conclude that it is crucial to minimize the number of selected peers to
reduce gas costs.
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Figure 5.3: Monetary gas expenses of different participants for a setup with three paths
where each path contains one peer. Calculated from gas measurements in Table B.5.
Calculations are based on gas price 1.035× 10−8 [21] and Ether value US$157.49 [22].

The reporting and update functions are not included.
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Besides striving to include the least amount of peers in a path, a reduction in gas costs
can be achieved by limiting the data sent to the contract and reducing the number of
operations and calculations by the smart contract. Previously, it was discussed that there
is a significant gain in reducing public key sizes from 2048 bits to 1024 bits. Although
this reduces the security of the RSA public key encryption, this is a possible method of
reducing the amount of data sent to the smart contract. Another method to achieve this
is by assigning peers a short ID upon registration and only inputting their IDs upon peer
selection rather than their longer Ethereum addresses. The reduction in the number of
operations and calculations by the smart contract can be achieved by developing more
efficient code.

The SEC contract allows a data owner to issue multiple challenges by allowing to set
up multiple paths between the data owner and data storer. In the following, we explore
the reduced cost of establishing three paths versus establishing three separate services
for delivering three challenges. This is a critical evaluation since we have done extensive
additions and modifications to the timed-release protocol, which the design is built on,
to allow multiple paths between the data owner and data storer. In Section 5.1.1, it is
shown that the monetary gas costs of setting up a service with one path containing one
peer are $2.28 in total for all participants. Therefore, the cost is $6.84 for three separate
services. The plot in Figure 5.3 shows that the monetary gas cost of a setup with three
paths where each path contains one peer. For all participants, this cost is given as $4.58,
which is 33% cheaper than setting up three separate services. Hence, we show that our
proposed design greatly reduces the total costs in the system by allowing the setup of
multiple paths.

In the following, we present a comparison of the gas costs in the SEC contract and
the gas costs in the timed-release protocol [5]. Although the design of our proposed
system is based on the timed-release protocol, we have done extensive changes to allow
self-emerging PoS challenges and submission of proof of data integrity by data storers.
Furthermore, since [5] does not contain any detailed description of the implementation
of the timed-release protocol, we have built our system from the bottom up. Therefore,
even for functions that are similar and effectively have the same tasks, their approaches
may be different. Hence, the two systems are not directly comparable. Nevertheless, we
provide some insight and comparison of the gas costs of these two systems for two of the
functions that should be directly comparable. The most notable difference in function
gas cost is the updatePubKey. We have in our design chosen the public key size to be
2048 bits, which costs 81307 units of gas for this function. The corresponding function
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in the timed-release protocol costs 31785. Since the purpose of this function is only to
assign a public key to a peer, this difference in gas cost can be explained with a different
choice of key size.

5.2 Remuneration

Deposits are needed in order to prevent misbehaviour in our proposed system. It is just as
important to reward peers for their service in order to attract Ethereum peers to register
to the protocol. In this section, we will discuss the remuneration given to Ethereum peers
that partake in our proposed system. Based on the remuneration formulas from Section
3.4.1, we create an example and evaluate it against interest rates in stock investments.
Since peers are attracted to the system due to the remuneration received after correctly
completing their service, the remuneration should mirror the amount of return that they
would get by placing their deposit in stocks. Moreover, since we assume that data owners
pay a fee to their respective data storers for their service, the assurance of data integrity
that our proposed system offers will be added to their total expenses. Therefore, it is in
the best interest of the data owners that the total amount of remuneration of peers is held
as small as possible. A middle-ground between the two aforementioned considerations
should be found in order to make the system attractive for both data storers and peers.

In Section 3.4.1, we derived formulas for calculation of remuneration. Equation 5.1 shows
the derived formula for calculation of the total remuneration expenses of the data owner,
while Equation 5.2 shows the reward paid to a single peer for its working window. In
Equation 5.2 we have excluded the rc component which is paid to each participating peer.
This is because it only acts as compensation for invoking smart contract functions that
require gas. However, this component is a considerable part of the total remuneration
expenses of the data owner, and therefore, it will be included in Equation 5.1. From
Section 5.1 we know that this component is tested to be approximately $0.73 for any
setup.

r̂ = krc + |T s|(24r1
s + α(|T s| − 1)

2 ) (5.1)

rs = te(
24r1

s + α(te − 1)
2 )− tb(

24r1
s + α(tb − 1)

2 ) (5.2)

In [5], the deposit that is needed to be paid by peers in order to prevent misbehaviour in
the system is set to reflect the value of the self-emerging data. In our proposed system,
the transferred data are PoS challenges. In our proposed system, the data owners should
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set the required deposit to reflect the data owner’s gas expenses of setting up a service.
Hence, if a peer misbehaves, its deposit will be transferred back to the data owner as
coverage for the failed service. In Section 5.1.1, the gas costs of a data owner were found
to be $2.28 for a setup with one path where the path included one peer. In the following
example, we will use a deposit of $3 for simplicity.

We continue our discussion of the reward to peers with its analogy of placing the deposit
in stocks. Furthermore, we use the interest rate of the American stock market index,
S&P 500 Index, as a basis for the following example. The average annual interest rate for
the S&P 500 Index is roughly 8% [23]. Therefore, for a peer to participate in the system,
the remuneration rs should be competitive to stock returns with the same deposit and
this interest rate over the same course of a period. Equation 5.3 shows a formula for
the built up interest on a deposit ds with an interest rate i over the course of Tmonths
months. Figure 5.4 plots Equation 5.2 with set values of 4r1

s and α, and Equation 5.3
with deposit ds = $3. In the figure, it is shown that when the first-hour pay and the
per hour increment are chosen to be 4r1

s = $3× 10−5 and α = 10−8 respectively, stock
returns are smaller than the remuneration paid by the system in the case of 8% interest
rate. Nevertheless, this is not the case for any values of ds and i. For other cases, 4r1

s

and α should be chosen so that the rs yields a competitive remuneration for given values
of ds and i at any point in time. This effectively means that if the data owner chooses
the required deposit of peers differently, or the chosen interest rate is not considered
competitive, then both 4r1

s and α need to be adjusted.

r = ds(1 + i/12)Tmonths − ds (5.3)

The plot in Figure 5.4 shows that for the chosen values ds, 4r1
s and α, the remuneration

to a peer is $0.127 for partaking in a service for four months. Moreover, the bonus that is
paid to encourage peers to serve for long-term periods, that is α, affects the remuneration
greatly in this case. In contrast, if the peer would place the same deposit in stocks, its
deposit would have grown by $0.081 given 8% interest rate.

In the following, we make an example of the total remuneration that needs to be paid to
peers for a setup of twelve paths where each path contains one peer. The number of paths
is chosen so that the data storer can receive a challenge once every month for a year. Given
the same 4r1

s and α as the above example, the total expenses related to remuneration
to peers, as given by Equation 5.1, yields

∑12
T s=1 $0.73 + |T s|(24r1

s+α(|T s|−1)
2 ) = $12.1.

Let Dropbox be a data storer in the system. Dropbox’s Plus storage plan has an annual
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Figure 5.4: Plots of Equations 5.2 and 5.3.

fee of 99$ [24]. In comparison, the total peer remuneration expenses, including the
compensation factor, of the data owner are significant to the annual storage fee at
Dropbox. For this setup, given that a data owner uses Dropbox as its storage service
provider, the expenses of remuneration to peers gives an increase of 12.2% relative to the
annual fee the Dropbox’s Plus storage plan. In Section 5.3, we give an example of the
total expenses of the data owner including its gas costs, compensation of used gas costs
by other participants and remuneration.

The Ether value is subject to change. In a period of two years, April 2017 to April 2019,
the minimum Ether value in U.S. dollars was 141$, while the maximum reached 1100$
[25]. This level of fluctuation is not atypical for cryptocurrencies [26]. Since the level of
fluctuation can be high, the profitability in participating in the network may vary for
peers. Furthermore, since peers freeze their deposit from setup time to release time of a
challenge, they cannot trade their Ether if its value is decreasing during a service. By the
time the smart contract unfreezes a peer’s deposit and pays remuneration, this amount of
cryptocurrency may be worth severely less than what the peer anticipated. More secure
participation by a peer, in terms of risk, is offering its service for short periods of time.
To prevent this, the remuneration formulas offer more remuneration for service hours
closer to the release time of a challenge, than the setup time. Therefore, a data owner
should aim to set up services that have limited release time of challenges. If release
time over longer periods is necessary, the ds,4r1 and α must be set to account for this.
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That is, peers should receive a remuneration that makes up for the risk of freezing their
deposit over longer periods.

In Section 5.1, we concluded that utilizing exactly one peer in each path significantly
reduced the total gas costs in the system. In this section, we support this conclusion
by showing that the utilization of only one peer in a path additionally provides a more
fair remuneration payout to peers. Let a path consist of two peers where a self-emerging
challenge has a release time two months after the setup time. The first peer provides its
service the first month, while the second peer serves the last month. Using Equation 5.2,
we calculate the remuneration of the first peer to be $0.0242, and the last peer to be
0.0294. The last peer’s remuneration is over 21.5% larger in order to encourage peers for
long-term service. However, the design freezes the deposits all peers until a challenge is
delivered to the data storer, and it is proved that the peers have not misbehaved. Since
both peers in this example have their deposits frozen for the same amount of time, it is
unfair that the last peer receives more remuneration than the first peer. Therefore, we
conclude that the utilization of exactly one peer per path will optimize the fairness of
remuneration payout.

5.3 Summary of the Total Expenses of the Data Owner

In Sections 5.1 and 5.2 the different expenses of data owners were evaluated. The total
expenses of data owners are the sum of remuneration and gas compensation to selected
peers and the gas used by data owners themselves. If we assume that the data storers
adjust their service fee to include the gas used in this system, the expenses of the data
owners have to include the gas used by data storers. We will, in the following, give an
example of the total expenses of a data owner with a realistic scenario using a setup
of three paths where each path contains one peer. In this scenario, each challenge is
delivered ten days apart. This consequently means that the first peer holding the first
challenge needs to serve for ten days, the second for twenty days and the third for thirty
days. In the data owner’s total expenses, we include gas usage by the data storer and
the data owner itself, and gas compensation and remuneration to peers. In Section 5.1
for the same setup, the gas compensation for all peers were found to be $2.15, while we
calculate their remuneration to be $0.0075 + $0.0155 + $0.0242 = $0.0472 using the same
ds, 4r1

s and α as in Section 5.2. The gas used by the data owners and data storers were
$1.59 and $0.8 respectively for the same setup. Therefore, the total expenses of the data
owner for this setup are $4.59. Compared to Dropbox’s monthly fee, which is $8.25 [24],
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this yields 55.6% in additional expenses for data owners given that they issue three PoS
challenges a month. Of course, each data owner has the possibility to issue more or fewer
challenges, thereby affecting the cost related to utilizing this system.

5.4 Security

This section details a security evaluation of the system. We will discuss the different
types of attack that can be performed and show that the design of the system makes
it disadvantageous for rational participants to perform these attacks. Furthermore, we
evaluate the affected security of only utilizing and allowing one peer per path.

False Challenges
The design assumes that the challenges and the corresponding answers submitted by the
data owner are correct. Meaning that the data owner has not submitted fake challenges
for the stored data. This assumption is made to focus on the objective of this thesis;
making a system for self-emerging PoS challenges. Therefore, the design assumes that
public verification of data integrity is available. As presented in Chapter 2, public
verification is a property of a PoS scheme where it allows a third party auditor to verify
the integrity of data. A solution for this could be done by having the data owner and
data storer to agree on the hash of the data before the PoS process. Then, if there is a
dispute between the two parties, the data storer could escalate the situation to publishing
the data to a third-party auditor. This is certainly a costly operation, but it serves its
purpose. There exist several designs for public verification even without the third-party
auditor accessing the original data. Although this could be implemented into the design,
it is out of scope since our objective is self-emerging PoS challenges where its design
could be incorporated into a more complex and complete system.

Release-Ahead Attacks
The system is designed so that peers can register to the protocol at any time. Once
they have registered, they can be selected to participate in a service for self-emerging
PoS challenges by data owners. This means that peers cannot register to the system to
participate in the service of a data owner after the data owner has set up the service.
Consequently, no peer can target a specific data owner for an attack. This analysis is
only valid in the case where several data owners and data storers utilize the system.
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In a system where there only exists a single data storer, it could be beneficial for the
data storer to control the peers in order to gain challenges before their release time.
Controlling the majority of peers could be done by creating several new accounts and
using them to register to the system as a peer. If a data storer is the only data storer
in the system, and it controls the majority of the peers, it will be effortless to execute
release-ahead attacks that cannot be detected. The gain of these attacks is, however, only
to receive challenges before their release time. In a system where there exist several data
storers, the likelihood that a data storer’s controlled peers get selected for self-emerging
challenges targeted to itself is small. To execute a release-attack successfully, the data
storer would need to either control the last peer in a path or all. Even if it controls all
peers in a path of a data owner’s service, it still will not control the other potential paths
in the service. Additionally, the reception of challenges before their release time is to
little use to a malicious or faulty data storer that has not maintained the integrity of its
clients’ data. This is because the data storer still needs to prove the integrity of data
by responding to the challenge. Based on the arguments presented, in a system where
several data owners and data storers participate, it will be infeasible for a data storer to
execute a release-ahead attack by controlling the peers.

Since controlling a service’s selected peers in a path is infeasible given an ample system
with multiple partaking data storers, the better choice of executing a release-ahead attack
by a data storer is to bribe the last peer in a path to execute the attack on its behalf.
However, the question of how much value this is to a data storer arises again. We have
introduced that the reporter of a release-ahead attack is rewarded with a = ds. This
means that the data storer is awarded if it receives a challenge before its release time
and reports the incident. Therefore, a bribed peer cannot be sure that the briber will
not report it for executing a release-ahead attack.

Drop Attacks
Another interesting evaluation to expound around data storers is drop attacks. There
is a value in receiving and correctly responding to a challenge. For a data owner, this
value is ensuring its data integrity. For a data storer, this value is the gain of reputation
that it gains for proving the integrity of the data. A data storer may, however, execute a
drop attack if it possesses the knowledge that the integrity of data is not intact. The
question is if not receiving a challenge has the same value to the data storer as correctly
responding to a challenge. In the design, it is assumed that these do not have the same
value. The basis of this assumption is that a data storer, in a system among several data
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storers, which constantly does not receive challenges earns a reputation just as negative
compared to if it does not respond correctly to challenges. This especially applies when
other data storers are constantly correctly answering challenges. Therefore, the most
rewarding strategy of a rational data storer is always correctly respond to challenges
without executing drop attacks.

Utilization of One Peer per Path
In Section 5.1 and 5.2, we showed that total gas costs in the system are reduced and that
remuneration becomes more fair when only one peer is utilized per path. In this section,
we will evaluate how the security of the system is affected by constantly allowing only
one peer to deliver a challenge.

Peers pose a danger for the possibility of drop attacks. That is, each peer in a path has
the possibility of executing a drop attack and render the service in that particular path
useless. In the case where paths only contain one peer, the likelihood of drop attacks
happening in a path is reduced since the number of peers is held at an absolute minimum.
However, this increases the danger of a malicious data storer to control the paths in a
system. This is because controlling a path requires less effort as controlling one peer
equals to controlling the entire path. However, as discussed previously, a data storer
that acquires a challenge before its release time has limited benefit as the data storer
still needs to provide a correct response to the challenge in order to prove data integrity.
Therefore, we conclude that the gain of fair remuneration, reduced gas costs and less
likelihood of drop attacks outweigh the partially reduced security against release-ahead
attacks and recommend that all paths should each contain one peer.

5.5 Future Direction

In this section, we present future directions related to our design that can be interesting
to investigate. In addition, we provide some improvements that can be done to the
existing solution.

Gas Optimization
One of the most important parts of evaluating an Ethereum smart contract is measuring
the gas costs of functions that include the transfer of data or currency. Therefore, as a
future work, it would be advantageous to analyze the design of the contract and optimize



CHAPTER 5. EVALUATION AND ANALYSIS 62

potential parts in order to reduce gas costs. Doing this results in a cheaper system for
the data owners to issue self-emerging PoS challenges to their storage service providers.

Multiple Pairs of Data Owners and Data Storers in SEC Contract
As previously discussed, the design of the system assumes for security reasons that
multiple data owners and data storers may form pairs. However, since the purpose of
implementation has been to do an experimental evaluation of the proposed design, only
the essential parts of the design are implemented in the SEC contract. The implemented
solution only supports one pair of data owner and data storer. However, in Figure 5.5, we
show how the system could be implemented to support multiple pairs. A smart contract
can be made for peer registration and keeping multiple instances of child contracts. This
contract contains a pool of registered peers. Data owners may set up a new service by
sending a request to the contract. The contract creates a new instance of a child contract
upon receiving such a request. Every operation related to a service will be executed in
its own child contract, while still allowing data owners and data storers to be part of
other child contracts as well. Thus, the logic of peer registration is separated from single
services, and multiple pairs of data owners and data storers select peers from the same
pool. We expect that creating such a parent contract to extract the peer registration
logic into it does not increase the costs of the system. This is because the same amount
of data is transferred and stored to the blockchain as with the current implementation.
Therefore, we expect that no negative impact on costs will occur.

C

C

C

Pool of available
peers

Peer registration
protocol

Service setup
protocol

Service enforcement
protocol

Reporting protocol
Parent contract

Child contract

Figure 5.5: Structure of smart contracts for allowing multiple pairs of data owners and
data storers as required by the design.
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Establishing New Paths After Setup of Service
It is conceivable that a data owner may wish to issue new challenges to its data storer
after setup of a service. The proposed design does not allow data owners to set up new
paths for self-emerging challenges after the setup of a service. Allowing to do this requires
extensive changes to the design. Currently, this can be done by creating a new service.
That is, signing up for a new service which effectively is the same as creating new paths
after the setup. However, as discussed in Section 5.1, setting up a new service is costly.
Therefore, it could be advantageous to develop the design to include setup of new paths
after the setup of the service and evaluate if gas costs could be reduced by having such a
functionality instead of the current solution to the problem.

Incorporation of the Design into a Decentralized Storage System
The design of our proposed system is based on the use of smart contracts. Therefore,
directly porting our design to a decentralized storage system for autonomous delivery
of challenges and verification of proofs is not a trivial task if the system does not build
on smart contracts. It would be interesting to investigate how the design could be
incorporated into a decentralized storage system as a built-in part of a PoS protocol.
Whether this decentralized storage system would be built on blockchain technology, or
as its own platform would also affect how the transaction of currency would function. In
case transactions could not be part of the system, the design would have to account for
the security differently than the reward and penalty scheme that it currently possesses.

Addresses and Identities
The current design assumes that the identity of the data owner and data storer is known
by each other when signing and pairing up to the system. The identity is given by the
Ethereum account address. If the design is used as an extension of centralized storage
services, the Ethereum addresses of data storers could be published on their respective
web sites in plain text or as scannable QR-code. Furthermore, data owners would need
to couple their Ethereum identity to their accounts in the data storers’ systems. This
could be done by submitting their Ethereum account addresses to their respective data
storers. In a scenario where the system is used as an extension of centralized storage
systems, algorithms for extracting the data storers that have the best ratio of correctly
answered challenges and received challenges could be implemented since that data is
publicly available in the blockchain. However, this may not be directly applicable in the
case the proposed design is incorporated into a decentralized storage system. In such
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a system, the stored data is distributed amongst several nodes. If the data owners do
not choose which nodes that store their data, they cannot not choose the data storers
that have the best ratio of correctly answered challenges. Therefore, extensive changes
to the proposed design need to be done to be able to achieve this. For example, a rating
mechanism can be built into the decentralized storage system to avoid data storers that
have a low ratio of correctly answered challenges.



Chapter 6

Conclusion

In this thesis, we presented a design for the automatic delivery of multiple challenges with
definite time intervals using smart contracts. The proposed design offers functionality for
self-emerging challenges at the data storer, and automatically verifies the data storers
response to the challenges. The design is built on existing related work, namely the
timed-release protocol and we solved the challenges related to incorporating this work
into our design. The challenges were mainly related to changing the purpose of the
self-emerging data scheme and changing the roles of the participants in the system.
We showed that the differences required us to redesign vital parts of the timed-release
protocol and extend it with additional functionality. Moreover, since the specifications
of the timed-release protocol contained no detailed description of the smart contract in
neither actual implementation nor pseudo code, we implemented the system from the
bottom up and presented this work as a set of algorithms. Aside from the design of the
smart contract, we presented a design for a module for utilizing the Whisper protocol
as P2P communication through this protocol is a vital part of our design. Lastly, we
introduced the peer selection algorithm and remuneration calculation that is a part of
the timed-release protocol with the improvements and extensions in order to utilize them
in our design.

We created a test setup for experimentation of the implemented system. This included
the configuration of a private, local Ethereum blockchain network that enabled the
Whisper protocol. Various, relevant parts of the system were tested, including the
Whisper protocol module for P2P communication. Furthermore, the implemented smart
contract that employs our design was deployed, and we tested each function in different
service configurations to obtain gas costs.
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We did an in-depth evaluation of the gas usage of the implemented Ethereum smart
contract that employs our proposed design. Moreover, we analyzed in detail the security
of the design and proposed mechanisms to prevent rational participants in the system
from performing attacks. We also presented a comparison of the remuneration paid
to participating peers for their service and acquired risk versus alternative methods
of investing their deposits. By comparison, we showed that the system rewards peers
for their service and acquired risk accordingly. Lastly, we discussed future directions
regarding the total expenses of the data owner, the expansion to the architecture and
design of the smart contract.

Through evaluations, we showed that total gas costs in the system are reduced and that
fairness of remuneration is increased when exactly one peer is utilized in each path. By
analyzing the affected security of always selecting one peer in each path, we discussed that
the security against drop attacks are increased, while the security against release-ahead
attacks are to some degree decreased. Since the benefits of utilizing exactly one peer per
path outweigh the disadvantages, we conclude that data owners should always choose
this approach when selecting peers for their services.
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Appendix A

Implementation and Test Input Data

The implementation of the smart contract, local Ethereum network configuration, Whisper
module and the raw test input data that has been used for obtaining the gas costs
of the system is published in the following Github repository: https://github.com/

danielbarati/sec.

A private, local Ethereum network can be deployed by running the configuration with a
working installation of Docker.

The implemented smart contract can be deployed on an Ethereum network, using Remix
IDE [27] or using Ganache [14].
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Appendix B

Complete Experimental Data

This appendix contains tables of gas costs of the implemented smart contract. The test
results are presented for different configurations of the system. Both the number of paths
and the number of peers in each path is varied. Cells marked with ’-’ denote the function
irrelevant for the particular participant. E.g. since the newPeer function is only relevant
for peers; it is marked with ’-’ in the cell for the data owner. Furthermore, for cases
where the system contains multiple paths, the gas cost for the actions that the data
storer needs to perform are divided into multiple columns. Cells marked with ’*’ in these
columns denotes that the particular function is only invoked once and therefore is not
relevant for multiple paths. The gas costs of functions that are only invoked once are
stated in the column for the first path of the data storer.

The measurements of gas costs given in the following tables can be obtained by deploying
the implemented smart contract and invoking the functions using the test input data. In-
structions of this are given in Appendix A. The test results are obtained by using deployed
contract compiled with Solidity compiler (0.5.1+commit.c8a2cb62.Emscripten.clang) and
the Javascript VM in Remix [27]. In all tests, the public keys have a 2048 bits key size
and all plain text challenges, answers and certificates are 16 bits.
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Ethereum Gas Cost

Function Owner Peer Storer

newPeer - 324 998 -
updatePubKey - 81 307 -
updateBalance - 27 580 -
updateWindow - 32 779 -

ownerSign 85 473 - -
storerSign - - 241 922
setup 279 358 - -

setProps 219 686 - -
verifyCert - 44 633 25 583
setWhisperKey - 44 805 -
verification - 29 749 -
answer - - 75 959

releaseReport - - 85 938
dropReport - 98 217 91 264

Table B.1: Gas cost of each function in the smart contract. Configuration with one
peer in one path.

Ethereum Gas Cost

Function Owner Peer 1 Peer 2 Storer

newPeer - 325 062 311 014 -

ownerSign 85 473 - - -
storerSign - - - 241 922
setup 369 334 - - -

setProps 221 368 - - -
verifyCert - 44 633 45 520 25 919
setWhisperKey - 44 805 45 628 -
verification - 29 749 30 572 -
answer - - - 75 184

releaseReport - - - 85 623
dropReport - 97 904 125 633 91 750

Table B.2: Gas cost of functions in the smart contract except peers’ update functions.
Configuration with two peers in one path.
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Ethereum Gas Cost

Function Owner Peer 1 Peer 2 Peer 3 Storer

newPeer - 325 062 311 014 311 838 -

ownerSign 85 473 - - - -
storerSign - - - - 241 922
setup 459 374 - - - -

setProps 244 366 - - - -
verifyCert - 44 633 45 520 46 078 26 742
setWhisperKey - 44 805 45 628 46 451 -
verification - 29 749 30 572 31 395 -
answer - - - - 74 409

releaseReport - - - - 85 286
dropReport - 97 567 125 734 127 536 92 236

Table B.3: Gas cost of functions in the smart contract except peers’ update functions.
Configuration with three peers in one path.

Ethereum Gas Cost

Function Owner Peer 1 Peer 2 Storer
path 1

Storer
path 2

newPeer - 325 062 311 014 - -

ownerSign 85 473 - - - -
storerSign - - - 241 922 *
setup 412 447 - - - -

setProps 331 628 - - - -
verifyCert - 44 633 45 520 26406 26470
setWhisperKey - 44 805 45 628 - -
verification - 29 749 30 686 - -
answer - - - 75 959 46 223

releaseReport - - - 85 938 57 560
dropReport - 98 219 70 664 94 234 67 314

Table B.4: Gas cost of functions in the smart contract except peers’ update functions.
Configuration with two paths, each containing one peer.
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Ethereum Gas Cost

Function Owner Peer 1 Peer 2 Peer 3 Storer
path 1

Storer
path 2

Storer
path 3

newPeer - 325 062 311 014 311 838 - - -

ownerSign 85 473 - - - - - -
storerSign - - - - 241 922 * *
setup 442 693 - - - - - -

setProps 443 571 - - - - - -
verifyCert - 44 633 45 520 46 343 27229 27293 27293
setWhisperKey - 44 805 45 628 46 451 - - -
verification - 29 749 30 686 31 509 - - -
answer - - - - 75959 46223 46223

releaseReport - - - - 85938 57560 59018
dropReport - 98 219 70 664 74 215 92910 64532 65990

Table B.5: Gas cost of functions in the smart contract except peers’ update functions.
Configuration with three paths, each containing one peer.

Ethereum Gas Cost

Function Owner

setup 855 655

setProps 581 047

Table B.6: Gas cost of data owner setup for a configuration with three paths, each
containing three peers.

Ethereum Gas Cost

Function 512 bit
public key

1024 bit
public key

2048 bit
public key

newPeer 178 325 222 005 325 062

Table B.7: Comparison of peer registration gas cost using different sized public keys.
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