

FACULTY OF SCIENCE AND TECHNOLOGY

MASTER'S THESIS

Study programme/specialisation:
Spring / Autumn semester, 20......

Open/Confidential

Author:
…………………………………………

(signature of author)
Programme coordinator:

Supervisor(s):

Title of master's thesis:

Credits:

Keywords:
Number of pages: …………………

+ supplemental material/other: …………

Stavanger,……………………….
date/year

Title page for Master's Thesis
Faculty of Science and Technology

Computer Science

Nicolas Fløysvik

Hein Meling

Hein Meling

Using domain restricted types to improve code correctness

30

19

Domain restrictions, Formal specifications,
symbolic execution, Rolsyn analyzer,

0

15/06/2019

75

Domain Restricted Types for Improved Code

Correctness

Nicolas Fløysvik
University of Stavanger

Supervised by: Professor Hein Meling

University of Stavanger

June 2019

Abstract

ReDi is a new static analysis tool for improving code correctness. It targets the
C# language and is a .NET Roslyn live analyzer providing live analysis feedback
to the developers using it. ReDi uses principles from formal specification and
symbolic execution to implement methods for performing domain restriction on
variables, parameters, and return values. A domain restriction is an invariant
implemented as a check function, that can be applied to variables utilizing an
annotation referring to the check method.

ReDi can also help to prevent runtime exceptions caused by null pointers. ReDi
can prevent null exceptions by integrating nullability into the domain of the
variables, making it feasible for ReDi to statically keep track of null, and de-
tecting variables that may be null when used. ReDi shows promising results
with finding inconsistencies and faults in some programming projects, the open
source CoreWiki project by Jeff Fritz and several web service API projects for
services offered by Innovation Norway. Three main types of faults where found,
input validation, internal API validation, and nullability faults.

i

Acknowledgements

I would like to thank Professor Hein Meling for supervising the thesis and pro-
viding valuable feedback. I would also like to thank Innovation Norway and
Bouvet for allowing me to perform some analysis on their code projects.

ii

Contents

1 Introduction 1
1.1 Contributions and Outline . 3

2 Background 5
2.1 Terminology and Symbols . 5
2.2 Domains and Restrictions . 5
2.3 Methods for Improving Code Correctness 6
2.4 Symbolic Execution . 7

2.4.1 KLEE . 8
2.4.2 Hacker Tools . 9

2.5 Formal Specification . 9
2.5.1 TLA+ . 9

2.6 Design by Contract . 10
2.6.1 Eiffel . 11
2.6.2 Dafny . 11

2.7 C# and .NET . 12
2.7.1 C# Compilation . 12
2.7.2 The .NET Compiler Platform, Roslyn 12
2.7.3 Roslyn Analyzer . 12

3 ReDi use Cases 16
3.1 Accessing an Array Index . 16
3.2 Nullable Object . 18
3.3 Examples from CoreWiki . 21

4 Design 27
4.1 Design Process . 27
4.2 In Code Design (Helper Library) 27
4.3 Code Analysis . 28
4.4 First-Pass Analysis . 28
4.5 Main-Pass . 29

4.5.1 Scopes in General . 29
4.5.2 HandleNode and Return Scope 32
4.5.3 Nullability in C . 32

iii

4.5.4 Passthrough . 34
4.5.5 Only Analyzing Changed Files 35
4.5.6 Not Necessary Checking 35
4.5.7 Query and Response or Atomic Operations 35

4.6 Logic Scope . 36
4.7 If Condition Scopes . 36

4.7.1 AND and OR Scope . 36
4.7.2 Merging of Scopes . 38
4.7.3 NOT Operator . 39
4.7.4 Else Scope Promotion . 39
4.7.5 Execution of an If-Scope Calculation 40

5 Implementation 42
5.1 Helper Library . 42

5.1.1 Attributes . 42
5.1.2 Helper Methods . 43

5.2 Code Implementations . 44
5.2.1 Restriction . 44
5.2.2 Linked Restrictions . 45
5.2.3 VariableScopes . 46
5.2.4 ContextScope . 46
5.2.5 ContextInfo . 46
5.2.6 Nullability Implementation 47
5.2.7 Strict Nullability vs. Floating Nullability 48
5.2.8 Null Scopes are Inverse of Normal Scopes 48

5.3 First-Pass of the Analysis . 48
5.4 Main-Part Analysis . 48

5.4.1 HandleNode . 49
5.4.2 Wrapped scopes . 49

5.5 If Scope Calculations . 50
5.5.1 Rolling If-Scope Calculations 50

6 Evaluation 51
6.1 Code Problem Types . 51
6.2 Problems with Throwing Exceptions 52
6.3 CoreWiki . 52
6.4 Innovation Norway Projects . 54

6.4.1 Removal of Tests . 55

7 Discussion 57
7.1 Differences to Design by Contract Languages 57
7.2 Difference to Symbolic Execution 57
7.3 Where to use ReDi . 58
7.4 Problems with Using the C# Language for ReDi 58
7.5 Restricted Relations . 58
7.6 Problems and Considerations with ReDi 59

iv

7.7 Future Work . 60
7.7.1 Integration with ComponentModel.DataAnnotation . . . 60
7.7.2 View Scopes . 60
7.7.3 Immutability . 61
7.7.4 Require NonNull Field . 61
7.7.5 Advanced Scope Calculations 62

8 Conclusion 63

v

List of Figures

2.1 Execution of a symbolic execution 8
2.2 TLA+ code for defining the invariant for the domain of TypeOK 10
2.3 Simple example code . 13
2.4 Syntax tree for code in Figure 2.3 14
2.5 Code after code transformation 15
2.6 Code if an analyzer removed all trivia 15

3.1 Very simple problematic array access 17
3.2 Safe array access with returning impossible value 17
3.3 Safe array access with returning tuple (int, bool) value 17
3.4 Safe array access with returning nullable value 18
3.5 Code that ReDi throws error do to missing InRange subtype . . 19
3.6 Inlined version of code represented in Figure 3.5 19
3.7 Basic Person class with problematic null exception code 19
3.8 Trimming a object which is nullable 20
3.9 C# alternative to Figure 3.8 . 20
3.10 Person class with ReDi support 21
3.11 Person class with nullable attributes 22
3.12 Problematic code from the CoreWiki project 23
3.13 Original function which used the SlutToTopic described in Fig-

ure 3.14 . 24
3.14 Original SlugToTopic before the removal of the redundant null

check . 24
3.15 The IsHasValue C# check method 25
3.16 Adding subtype and removing redundant null check 25
3.17 Redundant null check . 25
3.18 Adding subtype and removing redundant null check 26

4.1 Simple code for exection . 30
4.2 An analysis of a function of the code in Figure 4.1 31
4.3 Example which describes the location for the different scope levels 32
4.4 The inner workings of the handle node function 33
4.5 How the null coalescing operator functions 34
4.6 Syntax tree for a code snippet . 37

vi

4.7 AND and OR path calculation 39
4.8 Simple C# code snippet for describing if calculations 40
4.9 If scope explanation of Figure 4.8 41

5.1 Vs code snippet . 43
5.2 Rolling if-scope calculation . 50

6.1 Results for throwing an error and adding to list, and only adding
to list . 52

6.2 Code throwing exceptions in a loop, and one loop only adding
exception to list . 53

6.3 Results from CoreWiki . 54
6.4 Results from Innovation Norway 55
6.5 Example check removal from Innovation Norway. (Example is

heavily modified from original code and only show the concept) . 56

7.1 Relation restriction . 59
7.2 NonNullAttribute declaration requiering fiels to not be null . . . 62

vii

List of Tables

4.1 Truth table for AND operator 38
4.2 Truth table for OR operator . 38

viii

Chapter 1

Introduction

There are many techniques and tools which aims to improve code correctness.
The most common tools we have access to are the type system of a programming
language and different kind of analyzers and linters. More advanced forms for
code analysis includes static code analyzers, deadlock and race detection, and
symbolic execution. These tools try to analyze the code and report errors for
problematic code to prevent that the software crashes, deadlocks, or operates
incorrectly at runtime.

An alternative to checking already written code is to create a model first, then
write the code afterward. A model is a specification which describes an object
or a system. It could include properties of the model, but also rules specifying
the legal values for the properties. In most programming languages, the kinds
of rules that a developer can apply to the different properties are quite limited.
Programming languages usually restrict these rules to simple and broadly ap-
plicable types such as strings, integers, booleans, and floating point values or
other structures contained several of the mentioned types.

Software systems increase in complexity since developers add more features to
the system, and it can reach a point where a single person can not easily un-
derstand the entire code-base anymore. Not only large applications but also in
smaller applications can it be hard to remember to test for all the different sce-
narios and edge cases. Researchers and developers have created several methods
to make the software correct and secure by design. Some of these methods are
formal specification methods such as design by contract and formal modeling
languages, and symbolic execution.

There are many tools aimed at improving the correctness of software, which
includes Eiffel, TLA+, Dafny, KLEE, and others, but most of them require the
developers to learn a new language. It also makes it necessary to have two
different implementations, one for modeling the system, and the other for the
implementation. Dafny and Eiffel are exceptions to the rule since they are fully

1

fledged programming languages but requires a separate syntax for defining pre
and post-conditions, and invariants.

Another approach could be to implement the model checkers directly into the
language itself since programming languages usually have many ways to check
variable values. If we combine symbolic execution with model checking, it is
possible to define the model checking rules with using symbolic execution on
if statements and have them verified with a model checker. The thing missing
from mixing the two techniques is a way of linking the variables to the checks,
which we can accomplish by using comments or a language feature such as
annotation. We do not need to add any new syntax when we combine model
checking and symbolic execution and only uses comments or language features
for the analysis. Without the need for new syntax in the host language, we also
avoid needing any pre-compilation steps or specialized software for the analyzer
to function correctly.

In this thesis, we introduce a new static analysis tool, Restricted Domain, ReDi,
and technique such as domain restricting type for model checking of languages
without needing extra syntax. ReDi uses techniques from several code analysis
methods, including symbolic execution, formal specification, and static code
analysis. It requires one extra library for using the new constructs introduced,
but the helper library only contains annotations for ReDi to know what part
of the code to analyze. We also implement type invariants to verify that all
the developer uses the code in a way which the model permits. Developers also
define the model in the source code itself, providing additional documentation
during development and review. The additional documentation provided by the
model would also not be outdated since it directly affects the source code.

The Integrated Development Environment (IDE) can provide better analysis
and code help if the ReDi is active in the IDE. If ReDi is not active in the IDE,
then ReDi cannot enforce the compile-time checks, but the code still uses the
checks at runtime if they are percent.

The thesis also uses parts from symbolic execution to determine the scope and
domain for the different variables, and ReDi uses the calculated domain as the
primary way of defining the models. Developers needs little to no extra time to
understand and use the check code since ReDi only uses built-in programming
language constructs. There will also not be a problem with the model and code
being out of date since the code defines the model.

The same code analysis that ReDi perform in this thesis could also be applied
to other languages since we have based all the principles described on standard
programming language directives. We chose C# as a host language for this
thesis since it has a rich type system, and it is easy to write an extension for
the compiler. It is also a language used in many types of applications and used
in the industry.

The main contribution of this thesis is to add a subtype-system based on formal-
specification and symbolic execution. The subtype system can compensate for

2

language and runtime limitations as well as checking the code against the define
restrictions. Improved type checking allows developers and system architects
to easier write rules for the intended execution of a software package. We
also tested ReDi against a C# open source project called CoreWiki created by
Jeffrey T. Fritz [10], and several web service API projects for services offered
by Innovation Norway, which was created by Bouvet.

The code for the thesis can be found at https://bitbucket.org/Nicro950/

nicroware.analzer.master/src/master/ [9].

1.1 Contributions and Outline

Summary of the contributions:

• Implement a Roslyn analyzer called ReDi for providing support for domain
restrictions

• Developing principles for adding domain analysis for variables in program-
ming languages

• Introduce the basis for a subtype-system which allows a domain restriction
to bind to a variable

• Implement a richer type system for an existing language

Chapter 2 discuss some of the available technologies for improving the cor-
rectness of software. These include formal modeling languages, design by con-
tract languages, and symbolic execution. We also discuss what technologies we
have used in this thesis to perform analysis on code projects.

Chapter 3 looks at some examples which could throw errors at runtime and
some solutions using ReDi for reporting the same errors at compile time.

Chapter 4 describes the overall design of the ReDi and the theory we used
in the implementation of ReDi.

Chapter 5 discusses the different components of ReDi and how they interact
with each other.

Chapter 6 reveals the results and discuss the usefulness of ReDi to find bugs
and problems.

Chapter 7 is about differences to existing technologies and future
work.

3

https://bitbucket.org/Nicro950/nicroware.analzer.master/src/master/
https://bitbucket.org/Nicro950/nicroware.analzer.master/src/master/

Chapter 8 concludes of the thesis.

4

Chapter 2

Background

In this chapter, we discuss the basic principles behind model checking and some
technologies aimed at software correctness. We start by defining syntax and
terminology that we use later on in this thesis. We then move on to discuss the
following principles and technologies: symbolic execution, formal specification,
formal modeling languages, and design by contract languages. At the end of the
chapter, we discuss the chosen technology stack and some reasons for choosing
C# and the .NET platform.

2.1 Terminology and Symbols

In this thesis, we use the following symbols and operations. We write a set
as {item1, item2, item3} with curly braces. We write a range or interval as
[a..b] where [and] are inclusive or with (a..b) where (and) is exclusive. We
can also combine both as [1..5) which result in the set {1, 2, 3, 4}.

2.2 Domains and Restrictions

One of the most fundamental principles in this thesis is the domain of a variable,
a restriction for a variable domain, and a set of restrictions. A set in this context
is a mathematical set which is a list of unique items. The base domain of a
variable is all the values a variable can have which fits inside its memory area.
All variables then that have a base domain defined by their memory allocation.
We also use the concept of a restricted domain, which is a subset of the variables
original domain. Some examples of base domains are, for instance, a boolean
variable that must have a value from the set of {true, false}. A 32-bit signed
integer value, in contrast, has a much larger memory area, and hence a broader

5

domain and the domain can be specified as the range [−231..231]. A restriction of
a 32-bit variable domain could be the range [0..1000) which contains all positive
number with less than 4 digits.

The domain of a string is a little harder to restrict since a string is an arbitrary
length array of characters. Each character in a string has a separate domain,
which depends on the text encoding used for that character. The way we then
restrict the domain of a string is by defining a set of legal lengths for the array,
and the restrictions of each character domain. The easiest way to restrict a string
is by using a regular expression or using a more advanced string parser.

A restriction is an invariant for a variable. An invariant is a rule which the code
always should verify to be valid. We use invariants to define subtypes, which
restricts the domain of variables. For instance, if we have an integer variable,
we can define a subtype or invariant that requires that the variable is between
0 and 100 for the variable to satisfy the invariant. We can use an if statement
to check if the variable satisfies the invariant, and if it does, we can annotate
the variable with that specific subtype. A restriction is just an easy way of
wrapping this concept into a clearly defined type, which ReDi uses throughout
the code.

2.3 Methods for Improving Code Correct-
ness

One method aimed at improving code correctness is using formal specification
modeling languages such as TLA+ or Petri nets. Here a developer must define
all the functionality of the system on an abstract level before the developer later
implements it in code. These languages give a rich set of mathematical opera-
tions to define the different operations for the systems. However, these modeling
languages are quite different from the implementation languages. This difference
could lead to correctness problems when translating the model to the implemen-
tation language. Even if there could be a problem with the implementation,
developers and researchers have shown that this reduces bugs, inconsistencies,
and security problems [15, 18].

Another formal specification method is using design by contract languages such
as Dafny and Eiffel. These languages make it possible to both represent code
and model definitions in the same program code. Combining the model and
code syntax integrates the model checker and compiler of the language more
tightly but also makes it very hard to use the principles in other languages. An-
other problem with design by contract languages is that they, for the most part,
binds the model checking at the function level, with pre and post-conditions.
The pre and post-conditions are different rules which should apply to the in-
put parameters and return value of a function. In contrast, much code today

6

binds the logic to a model instead, making a class or type invariant much more
practical, which these languages also support.

Symbolic execution is a third option for improving code correctness. Symbolic
execution calculates different execution paths through the software and tries
to determine if any path results in an error or exception. The way symbolic
execution accomplishes this is by replacing all variables that may change its
value with symbols that get its domain restricted by conditional checks, such as
if statements and while loops. Symbolic execution then executes the code in a
virtual machine environment, which makes it easy to keep track of what the code
does. If the execution in the virtual machine reaches a point where a symbol
can cause an error, then the system backtracks to see if it can resolve a path of
values to reach that specific point of error. Researchers have used a system such
as KLEE for symbolic execution and have shown promising results when applied
to the GNU Coreutils. A problem with symbolic execution is that it does not
allow simply defining the behavior of a program. Developers can, on the other
hand, use KLEE to find inconsistencies between different implementations in
different code bases for the same program. Developers more often use symbolic
execution for checking that the code does not crash because of problems with
code.

There also exists external frameworks which try to implement the mentioned
methods at runtime. A problem with external libraries is that it is usually too
late to fix problems when the software is already in production. It will also
require extra external libraries to build the code [17, 12].

2.4 Symbolic Execution

Symbolic execution is a software analysis technique which replaces fixed variable
value with a symbol with the domain to the variable type [2]. For a 32-bit signed
integer value, the symbol would have the domain of all integers in the range
[231..−231−1]. Symbolic execution then executes the code in a virtual machine
environment, which has these symbols instead of actual memory locations. The
virtual machine tries to restrict the domain of this symbol when a conditional
branching operation like an if, or a while loop. When the execution comes to
an assertion, it tries to find a value for the variables that would lead to the
assertion in the real software. If this path exists, then an adversary can use the
same path and crash the software. If the virtual machine comes to a point where
a buffer overflow could occur, then the VM tries to determine if the domain of
the index symbol can exceed the bounce of the buffer.

The example code in Figure 2.1 show a very simplified execution through the
virtual machine. First, the code reads an arbitrary integer from somewhere,
with the domain of a 32-bit signed integer. Then on the third line, the code
checks if a value is larger then zero, resulting in the symbol’s domain changing.

7

At line number 9, the symbolic execution reaches a point where the program can
crash and then tries to resolve the values leading to this point. The symbolic
execution backtracks the value of a to the ReadInt and can determine that if a
= 1, then this code crashes.

1 int a = ReadInt();

2 // symbol(a) = [(-2^31)..(2^32-1)]

3 if(a > 0) {
4 // symbol(a) = [1..(2^32-1)]

5 a = a - 10;

6 // symbol(a) = [-9..(2^32-11)]

7 if (a == -9) {
8 // this is part of domain and can happen

9 throw new Exception();

10 // Backtrack values

11 // a = -9

12 // a = a + 10 = 1

13 // If ReadInt returns 1, then crashes on throw

14 }
15 } else {
16 // symbol(a) = [(-2^31)..0]

17 }

Figure 2.1: Execution of a symbolic execution

Symbolic execution is a powerful tool to test if the software has any design flaws
related to the programming language, but it cannot find business logic related
errors. The compiler needs to know the intention of the code to capture the
business logic error, which symbolic execution by itself does not provide.

2.4.1 KLEE

KLEE is a tool used for symbolic execution which uses restricted symbols to
check if the code is valid [2]. KLEE has some similarities with ReDi, but there is
one fundamental difference. KLEE is a tool created to verify existing programs
and does a good job of doing so according to the KLEE paper [2]. The difference
between KLEE and ReDi is that KLEE focuses on not changing the already
defined code and tries to detect errors according to the C runtime. KLEE also
can generate unit tests to achieve high test coverage. KLEE also has support
for cross-validating two programs which should have the same functionality and
detect the inconsistencies between the implementations.

Researchers have shown that symbolic execution is a reliable tool to automati-
cally generating unit tests and checking that the code functions as it should[2].
KLEE is also usually getting a higher coverage score than ordinary developers
written unit tests.

8

2.4.2 Hacker Tools

Security researchers use symbolic execution for finding bugs and logical flaws
in software[5][1]. The software will, in these scenarios find different execution
paths through the software, which could lead to different bugs. Hackers can then
exploit the bugs and problems in several ways. One way could be for a code
injection attack where a buffer overflow could be used to write code into the code
memory block of the software. Denial of service attacks is another attack vector
if a path through the software could lead to the software itself crashing. An
adversary might exploit some of these paths to circumvent security enforcement
and gain access to restricted areas or sensitive information.

2.5 Formal Specification

Formal specification is a technique for defining the intent of a model. These
models can both be high-level models defining how the system function or lower
level models defining how an individual component functions. Formal specifi-
cation usually uses a mathematical language, or a language derived from it to
define the rules.

There are several modeling languages available and classified as two groups. The
first group is graphical languages such as Unified Modeling Language and Petri
nets. These languages often have vertices and edges, such as a graph which
describes the relationship between the different components of the models. For
the text-based languages, there is TLA+ and Boogie.

2.5.1 TLA+

Temporal Logic of Action (TLA) is a formal specification language created by
Leslie Lamport [18]. The TLC run the TLA+ model to calculate the states of
the models and see if any statements violate the invariants. An invariant is a rule
that the software should never violate through the running of a program. There
also exists loop invariant in some languages which only restricts the running of
the loop itself.

One of the main problems with common programming languages is that they are
bad at describing non-determinism. That means that a programming language,
in general, is bad at describing what something returns if the code cannot define
the return value by a type. For instance, a Random function which returns a
random floating-point number between 0 and 1 has no way of describing this
behavior. The only way for anyone to know this behavior would be through the
documentation, even if it is a central part of the function itself.

In TLA+ the engineer would define the restriction of a variable as an invariant.
For instance, if a value should only contain the values between 0 and 100, then

9

the invariant would define the value as part of the set between 0 and 100. The
TLA+ for the invariant is expressed in Figure 2.2.

1 TypeOK == somevalue \in 0..100

Figure 2.2: TLA+ code for defining the invariant for the domain of TypeOK

Here the variable TypeOK would be an invariant for the module which defines
that somevalue should never contain a value outside the set 0..100. Defining
invariants for variables helps with determining if a program invalidates its state
and also helps the model checker to produce the steps that resulted in the inval-
idation of the invariant. The way the checker checks for violation in Figure 2.2
is by tracking the state of the TypeOK variable. If the variable state becomes
violated, then the model is also violated. Finding violated invariants makes it
easier to fix the current model and for creating a correct specification for the
model.

A developer must then implement the defined model in a programming lan-
guage to get the benefit of the model. Implementing the model could be a
source of error if the developer does not implement the model correctly inside
the code, which could lead to incorrect behavior, despite a correct TLA+ spec-
ification.

Writing TLA+ specifications is a complicated and time-consuming task. It gives
benefits in the situations where the model could check a complex component.
However, for other problems, it could be easier to have an ordinary unit test to
check if the developer has implemented the component correctly.

Amazon Web Services is one of several companies which have found the use
of the TLA+ model checking toolkit to improve the code quality [15]. They
have now started to use it for checking parts of their services and has found
inconsistencies in the code and fixed them with the help of TLA+.

One of the most significant benefits of using a TLA+ model is that a model
checker if the state space is manageable, can determine if the definition violates
any of the rules. If the model checker confirms that the model does not violate
the definition, then the model checker proves that the current specification is
correct.

2.6 Design by Contract

Design by contract is a software principle where the different modules of a
program create contracts which the module expects all other code to conform
to [14][6]. Design by contract languages, such as Eiffel and Dafny, enforces
formal specification with the pre- and post-conditions, and invariant. For these
languages, the contract is between a routine such as a function or procedure and

10

the routine invoker. The pre-condition is all the rules which the code must have
verified when the routine starts, and it cannot run without these rules verified.
The post-conditions are rules which the routine itself defines to uphold when
the routine returns. The return conditions make it possible for the caller to
know what to expect from that routine.

Invariants are a set of rules which the code should uphold for the context of the
invariant. For instance, if there is a loop invariant, then these rules should be
true in every step of that loop. There is also class invariant which applies to
the fields of the class.

2.6.1 Eiffel

Eiffel is a programming language first released in 1985 and was the first language
to incorporate design by contract [7]. Eiffel is an object-oriented programming
language which incorporates the principles of pre-condition, post-condition, and
invariant. Some types of invariants are the loop invariant and the class invari-
ant [6][8].

In Eiffel, there are more strict rules for routines. A routine can in Eiffel either
be a function which returns a value but do not change the state, or a procedure
that does not return a value but changes the state. Eiffel calls this distinction
for command query separation where a procedure is a command to change an
object, and a function is a query to ask about the attributes of the object. A
reason for command query separation is to know if there are side effects of a
call. If it is a function, it should change no state, and a developer can call it
safely. A procedure changes the state of the object.

Eiffel calls all the fields in an object for attributes instead of fields since a real-
world object has different attributes related to itself.

2.6.2 Dafny

Dafny is a Microsoft Research language which implements Design by
Contract [4]. Dafny is like Eiffel in that it implements pre-conditions, post-
conditions, and invariants. Dafny is an imperative and sequential language
with support for generic classes, dynamic allocations, inductive datatype, and
built-in specification constructs [3].

The verifier that Dafny utilizes is power by Boogie and Z3, and the verification is
directly integrated into the language itself. A directly integrated verifier results
in that the developer handles the type errors produce by Dafny by changing the
source code. Dafny also compiles against the dotnet infrastructure and to .NET
Common Intermediate Language (CIL). The Dafny team develops the Dafny
compiler in C#.

11

2.7 C# and .NET

We chose C# and the .NET platform for ReDi in this thesis, since the C#
language has a well-defined type system, and it is easy to write plugins for the
compiler. C# is also a mature language, open source, and have good tooling
support.

Visual C# is a programming language created by Microsoft as part of the .NET
family of languages in 2001[11]. The specification of C# has been open source
from the beginning, and the C# compiler was open sourced in April 2014 un-
der Microsoft Build 2014 developer conference. C# is a multi-paradigm pro-
gramming language where some of its features are object-oriented, functional,
generic, strongly typed, and imperative. Dotnet foundation owns C# and the
C# compiler where Microsoft is the primary maintainer of the language.

2.7.1 C# Compilation

There are two steps for running C# code. The first step is using the Roslyn
compiler to parse and compile C# code to Common Intermediate Language
(CIL) code. CIL code is a low-level object-oriented intermediate assembly lan-
guage which is quick to compile to machine code on the desired platform. The
second part requires a Common Language Runtime (CLR) for that specific plat-
form. The CLR loads the code into memory and starts a Just In Time (JIT)
compilation to compile CIL to native machine code. The CLR then executes
the machine code inside the CLR environment with accesses to the .NET Base
Class Library (BCL).

2.7.2 The .NET Compiler Platform, Roslyn

The .NET compiler platform, also known as Roslyn, is the current official com-
piler for the C# and Visual Basic programming language. These compilers
are self-hosted compilers, and Microsoft wrote them to get standard tooling for
supporting analysis and compilation of the mentioned programming languages.
Roslyn has two different parts, where the first is the compiler and the second is
the analyzer part. The analyzer part plugs into the compiler pipeline to allow
analyzing the code according to style guidelines and library rules. The analyzers
should give better support for using libraries with giving help and code fixes to
fix the code at compile time.

2.7.3 Roslyn Analyzer

A Roslyn analyzer is a plugin for the C# compiler which allows a more exten-
sive checking of the code. The way the analyzer works is by getting a callback

12

in the different parts of the parsing process. There are two parts of the pars-
ing processes where the first is converting the code into a syntax tree, and the
other is converting the code into symbols. A symbol in the context of a com-
piler is extra type information related to classes, function, fields, methods, and
properties.

An analyzer can walk through the syntax tree and then ask the compiler to get
the symbols for specific parts. The symbols contain more information about the
code used. For instance, a function symbol contains information about where
the function is defined, and which input parameter return type the function
has.

Figure 2.4 represents the syntax tree for the code in Figure 2.3. The syntax tree
is recursive and contains various types of sub nodes which an analyzer must
handle separately. The Figure 2.4 represents three different kinds of entries.
The first entries are the blue entries, for instance, the CompilationUnit and
NamespaceDeclaration which represents the syntax nodes. Syntax nodes are
the main building block of the syntax tree and contain different high-level infor-
mation such as classes, function, and statements. The next type of node is the
green nodes, for instance, the NamespaceKeyword and OpenBraceToken, which
are the SyntaxTokens. The SyntaxTokens comes from the parsing process of
the compilation and represents the different parts of the syntax nodes. These
parts can be the public keyword, the text representing the name of the function,
or the open and close parenthesis.

Last part of the syntax tree is the red nodes which is the Trail:

EndOfLineTrivia in Figure 2.4 which is the SyntaxTrivia. The syntax
trivia is all other tokens which do not contain any information for the com-
pilation. Some examples of syntax trivia are single and multi-line comments,
spaces, and line breaks. The red entry in Figure 2.4 represents the end of line
character at line 7 in Figure 2.3. The Roslyn compilers preserve the trivia in
the syntax tree since it also has a function called code fixes.

1 namespace TestEnv

2 {
3 class SimpleCode

4 {
5 public void Run()

6 {
7 OtherCode.NeedsInRange(2);

8 }
9 }

10 }

Figure 2.3: Simple example code

Roslyn provides code fixes to give the developer automatic fixes for removing
errors or problems found by an analyzer plugin. An example of a code fix is

13

Figure 2.4: Syntax tree for code in Figure 2.3

14

that a team has decided that all class names should be all capital letters. Then
the team could write a Roslyn analyzer which checks the class name for small
letters and reports an error if it finds one. Then the code fix could take out the
class name and convert it to uppercase and inserting it in the same place. We
show the transformation for the code in Figure 2.3 which will output the code
in Figure 2.5

1 namespace TestEnv

2 {
3 class SIMPLECODE

4 {
5 public void Run()

6 {
7 OtherCode.NeedsInRange(2);

8 }
9 }

10 }

Figure 2.5: Code after code transformation

In the example in Figure 2.3, it is important that the analyzer preserves all
the spaces and comments. If the analyzer changes them, then it also changes
the structure of the document, which could cause the code becoming harder
to read. Figure 2.6 shows the same code as Figure 2.3 with almost no trivia.
The compiler requires some trivia to differentiate between keywords and other
tokens.

1 namespace TestEnv{class SimpleCode{public
2 void Run(){OtherCode.NeedsInRange(2);}}}

Figure 2.6: Code if an analyzer removed all trivia

15

Chapter 3

ReDi use Cases

In this chapter, we inspect some coding problems which could lead to faults.
We present both examples which do not utilize ReDi for domain checking and
a solution example which utilize ReDi. First, we are going to discuss some
examples about simple array access and some solutions to safe array access
with and without ReDi. Afterward, we discuss some problems and solutions
related to null exceptions, and finally, we discuss some problems found the core
wiki project.

The code can both seem slow and unreliable every time the runtime throws a
runtime exception. A runtime exception could also lead to services becoming
unavailable or the loss of data. A more common scenario is that developers
discover the runtime exceptions while testing the software, something which
increases the development time. Every time a software tester finds an exception,
then a developer needs to use time on trying to replicate the error, figuring
out why it happened, and come up with a solution of that scenario. For every
runtime exceptions, a compiler or analyzer can handle on compile time results in
less time being spent solving these exceptions. ReDi also adds more annotation,
making it possible for developers to increase the descriptiveness of the code,
which could result in the code being easier to read and easier to understand the
intent of the code.

3.1 Accessing an Array Index

When accessing an array, it is important to know that the accessed index is
inside the bounce of the array. For instance, in the example in Figure 3.1, we
could get an exception if the index is out of bounce of the GlobalArray. Before
this function can run, then the code needs to check that the input parameter
index is a value inside the bounce of the array.

16

1 public static int GetElementFromArray(int index) {
2 return GlobalArray[index];

3 }

Figure 3.1: Very simple problematic array access

The example in Figure 3.2, 3.3 and 3.4 shows some ways to handle the example in
Figure 3.1. One way would be to throw an error or return an ‘impossible’ value
as in Figure 3.2, but both are flawed methods since one requires the slow try-
catch and the other requires extra non-intuitive checks. If the function returns
a 0 value then, it is impossible to know if the value at that index was 0 or the
index did not exist. The same problem would occur with the int.MinValue. It
could also be a problem when the function returns the value, and no check was
in place to check if it was an ‘impossible’ value.

Figure 3.3 returns a tuple where the last variable decides if the index exists or
not. The problem here is that the code can use the first value without checking
the second.

The last function in the example in Figure 3.4 is nullable value types. A
Problem with nullable value types is that they could be null, resulting in an
InvalidOperationException if accessed, as well as wrapping the value type in
another struct, increasing memory consumption.

1 public static int GetElementFromArray(int index) {
2 if (index >= 0 && index < GlobalArray.Length)

3 return GlobalArray[index];

4

5 // Some alternatives if the index does not exists

6 throw new NullReferenceException(); // Throws exception

7 return 0; // return 0 value

8 return int.MinValue; // return impossible value

9 }

Figure 3.2: Safe array access with returning impossible value

1 public static (int, bool) GetElementFromArray(int index) {
2 if (index >= 0 && index < GlobalArray.Length)

3 return (GlobalArray[index], true);

4 return (0, false);

5 }

Figure 3.3: Safe array access with returning tuple (int, bool) value

Figure 3.5 utilizes ReDi for analysis of the code. ReDi adds the SubType and
CheckMethod attributes for providing domain restrictions and the domain re-
strictor respectively. ReDi links the string inside the attributes together to en-

17

1 public static int? GetElementFromArray(int index) {
2 if (index >= 0 && index < GlobalArray.Length)

3 return GlobalArray[index];

4 return null;

5 }

Figure 3.4: Safe array access with returning nullable value

force that the check method IsInRangeOfArray is used on the variable before
the GetElementFromArray is invoked. In C# there is no easy way to enforce
that one or more methods are invoked before another method is invoked. The
SubType attribute, CheckMethod attribute and helper library are further dis-
cussed in Chapter 4.

As shown in Figure 3.5, ReDi can detect and highlight that the code does not
perform the necessary range check when accessing the array, which the code
explicitly defined that it should do. The parameter on GetElementFromArray

requires that the passed in argument has the InRange attribute, which is checked
for in the if statement. In this example, ReDi can guarantee that inside the if
statement, the code can never throw an exception as long as the developer
implemented the IsInRangeOfArray function correctly.

The example in Figure 3.5 in contrast to the examples in Figure 3.2, 3.3 and
3.4 clearly defines the expectation of the function without adding overhead to
the runtime execution. Furthermore, with the help of compiler optimizations
such as inlining of methods, the example in Figure 3.5 can be reduced to the
example in Figure 3.6 at compile time.

3.2 Nullable Object

Null pointers were first introduced in ALGOL W in 1965 by Tony Hoare [16].
He stated at the QCon conference in 2009 that this was a terrible idea and he
believes that it probably has cost between 1/10 to 10 billion dollar. The problem
with null objects is that they operate on the same principles as the example in
Figure 3.2 where the function returns an ‘impossible’ value. If the code does not
check for null, then it could throw a runtime exception and crash the program
if the variable is null.

In the example in Figure 3.7, it could be problematic since p could be null, as
well as p.Name could also be null. We need to check for null before we can
use this code.

Figure 3.8 and 3.9 demonstrates some solutions to the example in Figure 3.7.
Both examples do the same thing where the example in Figure 3.9 is a C#
specific way of return null or continue the chain if it is not null. Both options
rely on returning null, but the code does not specify nullability anywhere that

18

1 public static int GetElementFromArray([SubType("InRange")]int index) {
2 return GlobalArray[index];

3 }
4

5 [CheckMethod("InRange")]

6 public static bool IsInRangeOfArray(int index) {
7 return index >= 0 && index < GlobalArray.Length;

8 }
9

10 public void Main(){
11 int index = -10;

12 int s = GetElementFromArray(index); // missing the - InRange Attribute

13 if (IsInRangeOfArray(index)){
14 int number = GetElementFromArray(index);

15 } else {
16 Console.WriteLine("Number not in range of array");

17 }
18 }

Figure 3.5: Code that ReDi throws error do to missing InRange subtype

1 public void Main(){
2 int index = -10;

3 int s = GlobalArray[index];

4 if (index >= 0 && index < GlobalArray.Length){
5 int number = GlobalArray[index];

6 } else {
7 Console.WriteLine("Number not in range of array");

8 }
9 }

Figure 3.6: Inlined version of code represented in Figure 3.5

1 public class Person {
2 public string Name { get; set; }
3 }
4

5 public string GetTrimmedName(Person p) {
6 return p.Name.Trim();

7 }

Figure 3.7: Basic Person class with problematic null exception code

19

the type checker in the compiler can check. When a function checks for null
and then return, it only moves the null error around and could lead to more
processing before the code checks for null and return an error.

1 public string GetTrimmedName(Person p) {
2 if (p == null || p.Name == null)

3 return null;

4 return p.Name.Trim();

5 }

Figure 3.8: Trimming a object which is nullable

1 public string GetTrimmedName(Person p) {
2 return p?.Name?.Trim();

3 }

Figure 3.9: C# alternative to Figure 3.8

We demonstrate the use of nullability with ReDi in Figure 3.10 and Figure 3.11.
ReDi provides the Nullable attribute from its helper library for developers to
be able to annotate nullable objects. When ReDi is active in a project, then all
objects are non null by default. The nullability and helper library are further
discussed in Chapter 4.

ReDi threats null as a domain expansion resulting in a normal reference type
cannot be null by default. Non-null by default means that there must be
a specific declaration for a reference type to be null. From the example in
Figure 3.10, p will report a null error since ReDi detects that p can be null.
After the null check, the p value can no longer be null and ReDi does not report
an error.

The big benefit of ReDi being able to detect variables that could be null is the
prevention of null reference exception. Null reference exceptions increase the
development time of the software since they are only discoverable on runtime.
When an exception is only discoverable on runtime means that it either require
manual testing or a unit test to check for nullability. By removing the possibility
for a reference to be null then ReDi are basically freeing up the time required for
checking and development of null errors. It also prevents a null error from being
undetected in development and reaches the production environment. A null
exception that happens in production could result in the software not responding
or operating correctly. A fault in production could have critical consequences
in the worst case scenario depending on the customer and use case.

Figure 3.11 represents another alternative to non-nullable references, by assign-
ing that the properties and return value can be null. The difference here is that
there is both a null check inside the function and a null check for the return
value, doubling the number of required tests. In contrast to normal C# code, the
example in Figure 3.11 explicitly specifies what can be null and what cannot.

20

1 public class Person {
2 public string Name { get; set; }
3 }
4

5 public string GetTrimmedName(Person p) {
6 return p.Name.Trim();

7 }
8

9 public void Main(){
10 Person p = null;

11 string s = GetTrimmedName(p);

12 // p missing restriction -NonNullable

13 if (p != null) {
14 string s2 = GetTrimmedName(p);

15 } else {
16 Console.WriteLine("p is null")

17 }
18 }

Figure 3.10: Person class with ReDi support

The explicit specification makes it easy for ReDi to adjust the different domains
to include null information, for ReDi to provide better nullability reporting. In
the example in Figure 3.11, ReDi will report an error on the s.Spilt(...)

statement. ReDi reports the error since the GetTrimmedName function explicitly
states that it returns a value that can be null and ReDi cannot verify that there
is some code in place that guarantees that s is not null when the code invokes
the Split function. The code, as shown in the figure, results in a potential null
error which ReDi does not allow.

3.3 Examples from CoreWiki

The CoreWiki project is one of the projects we used for testing ReDi against a
code base. Jeffrey T. Fritz created the CoreWiki project as part of his twitch
stream. The project is open source and hosted at GitHub [10]. The CoreWiki
project is a Wiki software which Jeff wrote in .NET core, and which Jeff meant
as a learning project for developers. The code snippet in Figure 3.12 represents
an internal article query. At line number three, the code asks the database for
an article with the given id. If the article exists, then the code return is, else
null is returned. Afterward, at line 5 there is a check to see if article is null
or not, if it is null then return null and if not then return the article converted
to a domain object with the toDomain function.

By using ReDi, we were able to discern that this function could return null

21

1 public class Person {
2 [Nullable]

3 public string Name { get; set; }
4 }
5

6 [Nullable]

7 public string GetTrimmedName([Nullable]Person p) {
8 return p?.Name?.Trim();

9 }
10

11 public void Main() {
12 Person p = new Person();

13 string s = GetTrimmedName(p);

14 string[] parts = s.Split(’ ’);

15 // s missing restriction -NonNullable

16 if (s != null) {
17 string[] parts2 = s.Split(’ ’);

18 }
19 }

Figure 3.11: Person class with nullable attributes

quickly, and we had to add the Nullable attribute on line 1. Since we added the
Nullable attribute, we also got an error on line 12 reporting that thisArticle
does not contain the NonNullable restriction. A null error could result in that
the user of the application got an internal server error from the web server if
the code gives GetArticlesToCreate an articleId which did not exist in the
database. It is highly unlikely that the code can call this function with an
articleId which does not exist from an external user accessible endpoint. What
could happen is a developer trying to use this endpoint and give in an articleId

which did not exist, and then have to debug and troubleshoot the application
when it crashed. Fixing the error would use time which could be spent in
maintenance of the code or adding new features.

Another example from the CoreWiki project is the removal of a null checks.
Figure 3.13 show a method which either creates a new article or edits an existing
article based on a slug received from user input. The code redirects to the
already defined article if the code finds the slug in the database. A slug, in this
case, is a URL friendly string of the topic for the article. The code in Figure 3.13
uses the function defined in Figure 3.14 for converting slug back to the original
topic of the article.

In the example in Figure 3.14 we were able to add a StringCheck.HasValue

subtype to the input parameter to guarantee that the input has a value. The
StringCheck.HasValue subtypes requires that the input is first checked by
the IsHasValue shown in Figure 3.15 before it is used. The IsHasValue in

22

1 [Nullable]

2 public async Task<Article> GetArticleById(int articleId) {
3 var article = await Context.Articles.AsNoTracking()

4 .FirstOrDefaultAsync(a => a.Id == articleId);

5 return article?.ToDomain();

6 }
7

8 public async Task<(string,IList<string>)> GetArticlesToCreate(int articleId) {
9 var articlesToCreate = new List<string>();

10 var thisArticle = await _repository.GetArticleById(articleId);

11

12 if (string.IsNullOrWhiteSpace(thisArticle.Content))

13 { // thisArticle missing restriction - NonNullable

14 return (thisArticle.Slug,articlesToCreate.Distinct().ToList());

15 }
16 }

Figure 3.12: Problematic code from the CoreWiki project

Figure 3.15 returns false if the given string is null, has length equal 0 or only
contains white spaces. From the Figure 3.13 and Figure 3.14 we can see that
the slug attribute is checked twice, first time at line 2 in Figure 3.13 and the
second time at line 3 in Figure 3.14.

When we added the attribute to the parameter in Figure 3.14 as shown in
Figure 3.16 we were also able to remove the string check that was redundant
after the addition of the subtype to the parameter. Since we added the subtype
attribute then we also needed to perform the check in the code depicted in
Figure 3.17. In the code in Figure 3.17 we utilize scope promotion by returning
inside the if statement to remove the !HasValue as a possible restriction from
the slug variable. We then called UrlHelpers.SlugToTopic as normal with the
slug variable. The difference between this and the original code is that it is easy
for ReDi to verify that the code always checks the input variable before the code
calls the SlugToTopic. The ability to always guarantee the correctness of the
input variables also prevents SlugToTopic from returning a null value. It also
prevents the code from doing the same check twice, once before the function
call and one inside the function call.

Since we removed null and an empty string as possible values from the in-
put parameter, we were also able to remove the unit tests as shown in Fig-
ure 3.18.

23

1 public async Task<IActionResult> OnGetAsync(string slug = "") {
2 if (string.IsNullOrEmpty(slug)) {
3 return Page();

4 }
5

6 var request = new GetArticleQuery(slug);

7 var result = await _mediator.Send(request);

8 if (result == null) {
9 Article = new ArticleCreate {

10 Topic = UrlHelpers.SlugToTopic(slug)

11 };
12 } else {
13 return Redirect($"/{slug}/Edit");
14 }
15 return Page();

16 }

Figure 3.13: Original function which used the SlutToTopic described in Fig-
ure 3.14

1 public class UrlHelpers {
2 public static string SlugToTopic(string slug) {
3 if (string.IsNullOrEmpty(slug)) {
4 return "";

5 }
6

7 var textInfo = new CultureInfo("en-US", false).TextInfo;

8 var outValue = textInfo.ToTitleCase(slug);

9

10 return outValue.Replace("-", " ");

11 }
12 }

Figure 3.14: Original SlugToTopic before the removal of the redundant null
check

24

1 public class StringCheck

2 {
3 public const string HasValue = "HasValue";

4

5 [CheckNotNull]

6 [CheckMethod(HasValue)]

7 public static bool IsHasValue(string s)

8 {
9 return !string.IsNullOrWhiteSpace(s);

10 }
11 }

Figure 3.15: The IsHasValue C# check method

1 public class UrlHelpers {
2 public static string SlugToTopic([SubType(StringCheck.HasValue)]string slug) {
3 var textInfo = new CultureInfo("en-US", false).TextInfo;

4 var outValue = textInfo.ToTitleCase(slug);

5

6 return outValue.Replace("-", " ");

7 }
8 }

Figure 3.16: Adding subtype and removing redundant null check

1 public async Task<IActionResult> OnGetAsync(string slug = "") {
2 if (!StringCheck.IsHasValue(slug)) {
3 return Page();

4 }
5

6 var request = new GetArticleQuery(slug);

7 var result = await _mediator.Send(request);

8 if (result == null) {
9 Article = new ArticleCreate {

10 Topic = UrlHelpers.SlugToTopic(slug)

11 };
12 } else {
13 return Redirect($"/{slug}/Edit");
14 }
15

16 return Page();

17 }

Figure 3.17: Redundant null check

25

1 [Theory]

2 // [InlineData(null, "")] // Removed checks since they are

3 // [InlineData("", "")] // now guaranteed by the subtype

4 [InlineData("one-two", "One Two")]

5 [InlineData("home-page", "Home Page")]

6 [InlineData("onetwo", "Onetwo")]

7 [InlineData("one-two-three", "One Two Three")]

8 [InlineData("él-sofá", "Él Sofá")]

9 public void SlugShouldBeATopic(

10 [SubType(StringValidator.HasValue)]string slug,

11 string expected_topic)

12 {
13 var actual_topic = UrlHelpers.SlugToTopic(slug);

14 Assert.Equal(expected_topic, actual_topic);

15 }

Figure 3.18: Adding subtype and removing redundant null check

26

Chapter 4

Design

In this chapter, we discuss the overall design of the application and how the
different parts of the application interact with each other. First, we describe the
helper library and why we needed one. We then explain the code analysis with
the first-pass and main-pass analysis of the code. After the different passes of
the analysis, we describe different kinds of scopes we use in ReDi, as well as how
to calculate the domains and the sets of currently applied restrictions.

ReDi tries to add a new subtype system which can restrict the domain of dif-
ferent variables. ReDi uses some principles from symbolic execution were ReDi
analysis the code line by line to determine the valid domain of the variables.
ReDi also lets the developer annotate the different variables and functions with
the restrictions for ReDi to better understand the intent of the program.

4.1 Design Process

The C# programming language contains a significant amount of syntax, which
limits the number of features that we can build into ReDi in the time avail-
able for this thesis. We used the CoreWiki project and 4 web API and service
projects from Innovation Norway to guide the design process and identify com-
mon fault patterns. With these guidelines, we started an iterative development
cycle to ensure that ReDi supports analysis of the most common code design
patterns.

4.2 In Code Design (Helper Library)

ReDi needs a helper library to provide better type checking since C# does not
contain functionality for defining virtual subtypes or alias for types. Changing

27

external types, like types defined in libraries or built into C#, is not possible
either, without re-compiling the library, or the C# base class library. These
restrictions result in two different infrastructures for adding type information to
types. The first one is the helper library, which developers need for annotating
the project code with attributes to support virtual subtypes. The second is a
method for adding type information to compiled libraries and comes in the form
of a Nullable.txt and Passthrough.txt files. These two files make it possible
to add framework or library functions for ReDi to check for null or perform
passthrough. We discuss these principles later in this chapter.

4.3 Code Analysis

We split ReDi into two different parts, the first-pass and the main-pass analyzer.
C# code needs two-pass analysis since C# allows all members on the class level
to have an arbitrary order, in contrast to C, which requires the developer to order
all members. This result in ReDi needs to analyze all field, property, and method
declarations before ReDi can analyze the content of those members.

4.4 First-Pass Analysis

In the first pass of the analysis, ReDi receives a syntax tree from the com-
piler and extracts all methods, fields, and properties from the classes and
interfaces and stores them in a structure called FileInfoCollection. The
FileInfoCollection holds information for each file that ReDi has analyzed, so
when ReDi analyses a changed file, it does not need to re-analyze all the other
files that have not changed before a developer, or a tool changes them. The
FileInfoCollection structure also functions as a central interface for search-
ing for class information in all the analyzed files.

The FileInfoCollection has the three different substructures ClassInfoStore,
MethodStore, and TypeStore. The ClassInfoStore contains information
about all the different classes and their members found in the project. The
information contains all the member subtype information as well as if a
class member can contain or return a null value. The MethodStore contains
information about check methods annotated with the [CheckMethod(string

name)] or the [CheckNotNull] attributes. Storing the method information
in MethodStore allows for easy checking if an invocation tries to use a check
method, or tries to use a conventional method. The TypeStore only contains
information about the different types found in the [SubType(string name)]

and the [CheckMethod(string name)] attributes.

28

4.5 Main-Pass

When the first-pass has analyzed all the syntax trees, then the main-pass an-
alyzes the content of the methods and constructors found in the same syntax
trees. ReDi starts by finding the code blocks syntax node, which makes up the
method body, and then analyses the syntax nodes in the block. The primary
function for handling node checks is the HandleNode function, whose primary
responsibility is to check the type of the current syntax node. When ReDi has
determined the SyntaxNode type, then ReDi executes one of several handler
methods to handle that part of the syntax. We discussed the SyntaxNode in
Section 2.7.3.

A handler method is a method for handling one type of syntax node
types. For instance, the InvocationExpressionSyntax which is a
function invocation has the HandleInnovation handler method. The
HandleInvocation handler method checks that all the argument has the
correct subtypes as well as no argument violating a non-nullable parame-
ter. Another example is HandleAssignmentExpression which handles the
AssignmentExpressionSyntax which makes sure that all restrictions are cor-
rectly transferer from the right-hand side to the left-hand side of an assignment
statement. If the left-hand side contains any fixed restrictions, then this should
report an error.

Since the C# compiler is recursive, then the handler methods must ask the
HandleNode method again if there is any syntax that is not handled by the
handler method. In Figure 4.2 we show the execution of the code in Figure 4.1.
The HandleNode has been called for each layer of the boxes, demonstrating the
recursiveness of the function.

The handler methods have two main tasks which they need to perform. The
first is calculating the scope of the current syntax and check if all the code is
legal, so it corresponds with the currently defined subtypes and nullability. The
handler methods other functionality is to mutate the current scope and calculate
the returned scope of the current syntax. Return scope means that if there is
an invocation syntax, e.g., a method call, then the function should return the
scope and restrictions of the return type of the function. The return scope, in
this case, should also contain the information about if the returned value could
be null or not.

If-calculations are also a part of the main-pass analysis, but they are described
later in this chapter.

4.5.1 Scopes in General

Scopes in the context of ReDi are recursive and only maintained while the analy-
sis is running. The scopes are also mutable and ReDi mutates them throughout

29

1 public static int GetElementFromArray([SubType("InRange")]int index) {
2 return GlobalArray[index];

3 }
4

5 [CheckMethod("InRange")]

6 public static bool IsInRangeOfArray(int index) {
7 return index >= 0 && index < GlobalArray.Length;

8 }
9

10 public void Main() {
11 int index = -10;

12 int s = GetElementFromArray(index);

13 if (IsInRangeOfArray(index)) {
14 int number = GetElementFromArray(index);

15 } else {
16 Console.WriteLine("Number not in range of array");

17 }
18 }

Figure 4.1: Simple code for exection

the analysis to keep track of the current state. Even if the scopes themselves are
mutable, does not mean that all parts of the scope are. The scope definitions
are recursive, and ReDi usually only mutates the first block scope, meaning that
ReDi leaves the normal scopes as they are. Where the different scope types are
described in Figure 4.3. There are many different scopes instances throughout
the analysis, where each new piece of syntax has its mutable scope, which inher-
its from its parent scope. The scopes are implemented this way since it makes it
easier to prevent code behavior from bleeding from one function over to another
function. It also makes it easier for the outer scopes in the code, like a method
scope to contain more information than an if-scope which is inside that method.
The if scope should have access to the method scope to check restrictions of
variables but should in most cases not change it.

Figure 4.2 demonstrates the recursiveness and mutability of the scopes, where
each nested box is a new scope. The outermost scope is also changed based on
what code is executed to keep track of the new state. ReDi also performs an
argument check in the third box, where GetElementFromArray requires that the
argument has the InRange subtype. None of the parent scopes can guarantee
that the index variable has that restriction, which results in ReDi reporting an
error.

30

Type BlockScope
Syntax: public void Main() { ... }

Type: BlockScope
Syntax: public void Main() { ... }

Type: BlockScope
Syntax: public void Main() { ... }

Type: BlockScope
Syntax: public void Main() { ... }

Type: BlockScope
Syntax: public void Main() { ... }

Type: BlockScope
Syntax: public void Main() { ... }

Type: LocalAssignment
Syntax: int index = -10

Line: 11

-10 will also be analyzed and return an empty scope. Index will be added to parent
scope with null scope

Line: 10

The analyzer start analyzing the children of the function

Type: LocalAssignment
Syntax: int s = GetElementFromArray(index);

Type: Invocation
Syntax: GetElementFromArray(index);

Line: 12

Here the second scope will request the return scope of the invocation. The
invocation checks with the method store to see that
GetElementFromArray(index) requires that its first parameter requires the
InRange attribute, which ReDi cannot guaratee. This will throw an error saying
that index missing the InRange attribute.

The function will also return an empty variable scope and assign it to s in the
method scope.

Type: IfBlockScope
Syntax: if (IsInRangeOfArray(index))

Line: 13

Here the execution reaches an if statement which have the check
IsInRangeOfArrayCheck(index). The if checks does not directly use the same
HandleNode as the rest of the software and hence has its own handling.

The if handling will then check the method store to see if that method guarantees
anything and add that to the ifscope. The if will add the InRange attribute to the if
scope, and the inverted one to the else scope

Type: IfBlockScope
Syntax: if (IsInRangeOfArray(index)) { ... }

Line: 14

When the code call the same function again, then ReDi tries to inspect the parent
scopes to determin if index has the InRange attribute. This time, it is found on the
if block level meaning that ReDi will not throw an error on this call. Since
GetElementFromArray does not have any return scope then the ReDi will only add
an empty variable scope for number to the if block.

This scope is now discarded since the execution of the if part is done.

Type: LocalAssignment
Syntax: int number = GetElementFromArray(index);

Type: Invocation
Syntax: GetElementFromArray(index);

Type: ElseBlockScope
Syntax: else { ... }

Line: 15

Here ReDi starts analysing the else scope and adds the inverted restrictions to the
else scope.

Type: BlockScope
Syntax: public void Main() { ... }

Type: ElseBlockScope
Syntax: else { ... }

Line: 16

In line 16 we only write some output to the console window which does not require
any restrictions.

Type: Invocation
Syntax: Console.WriteLine("...");

Scope: { index: {}, s: {} }

Scope: { index: {!InRange} }

Scope: {}

Scope: { index: {!InRange} }

Scope: { index: {}, s: {} }

Scope: {}

Scope: {}

Scope: {}

Scope: {}

Scope: {}

Scope: {}

Scope: {}

Scope: {}

Scope: { index: {InRange} }

Scope: { index: {}, s: {} }

Scope: { index: {}, s: {} }

Scope: { index: {} }

Figure 4.2: An analysis of a function of the code in Figure 4.1

31

1 public void Main() { // Block scope

2 int index = -10; // Normal scope

3 int s = GetElementFromArray(index); // Normal scope

4 if (IsInRangeOfArray(index)) { // Block scope

5 int number = GetElementFromArray(index); // Normal scope

6 } else { // Block scope

7 Console.WriteLine("..."); // Normal scope

8 }
9 }

Figure 4.3: Example which describes the location for the different scope levels

4.5.2 HandleNode and Return Scope

The current design of the implementation is that the HandleNode function is
the primary resolver which decides which handler function should handle the
current syntax. The handler method should return a return scope containing
information about the resolved subtypes and nullability after the execution of
the handler method. Figure 4.4 describes the flow of how the handlers interact
with the HandleNode function. The figure describes the handle node execu-
tion of line 12 in Figure 4.1. In this execution, the HandleIdentifierName

can determine that the input parameter has the InRange attribute and hence
returns it to HandleNode. HandleNode then returns the variable scope with
the InRange subtype to the HandleInvocation method, which verifies that the
argument matches the requirement of the parameter. The HandleInvocation

does not have any return type information and returns an empty set to the
HandleNode which in turn returns it to HandleLocalDeclarationStatement.
The HandleLocalDeclarationStatement received an empty scope from the
HandleNode method and assigns the empty scope to the variable number as
part of the if-scope.

The HandleNode method also tries to explore child nodes if there is currently
no handler method available. We chose this architecture since it provides a
central resolver for all C# syntax. If a handler method needs to resolve a
scope for a syntax, then it only needs to call the HandleNode function. Another
benefit with this approach is that ReDi analyses all the syntax nodes on the
sub syntax even if there is no handler method for that syntax to providing more
diagnostic.

4.5.3 Nullability in C

Nullability is a central component for providing better information about the
code in conjunction with the subtype system. The problem with nullability in
C# is that all class type variable can be null by default. Thus, two different
approaches are possible, one which is nullable by default and one which is non-

32

HandleNode

HandleLocalDeclarationStatment

HandleNode

HandleInvocation

HandleNode

HandleIdentifierName

Get Initialize scope

Get first parameter
scope

Return Scope: {InRange}

Return Scope: {InRange}

Check if scope contains InRange,
if not, throw error

Return Scope: {}

Return Scope: {}

Return Scope: {}

Assign returned scope to the the variable
number in the current context

Figure 4.4: The inner workings of the handle node function

33

nullable by default. Non-nullable by default is both chosen in TypeScript and
the next version of C#, which is C# version 8. Both C# and TypeScript refers
to non-nullable by default as non-nullable reference types. The benefit of using
non-nullable by default is that most classes are usually not null and if null by
default should be used, then more syntax and code is necessary to annotate
everything as not null. Choosing non-null by default also makes it fit nicely
with nullable value types which already exists in C#. Value types such as int,
long, float, and struct cannot be null since they are stack based. C# has built-in
support for making value types nullable with the ? operator behind the type
name such as int? or bool?.

Even if C# version 8 implements non-nullable reference types, it does not seem
to implement enhancing external libraries, which makes code from external li-
braries more dangerous to use.

C# does also have a couple of different approaches for dealing with nullability,
which also ReDi must handle. The null coalescing operator ?? is one implemen-
tation which checks if the left-hand side is null, and if true, returns the right
side. Figure 4.5 describes the functionality of the ?? operator. Scope checking
for the null coalescing operator would result in an intersection of the two pos-
sible scopes being return. If the right-hand side cannot be null, then the result
can be guaranteed never to be null.

1 function Test(left, right){
2 if (left != null) return left;

3 return right;

4 }

Figure 4.5: How the null coalescing operator functions

Another operator is the Null conditional member access operator ?. which
only continues down the member access path if the left-hand expression results
in not null. In the code, this operator could result in the statement being
nullable if anything on the left-hand side could result in null. Here ReDi resolves
the expression and ensure that the result of the operation results in a nullable
type.

4.5.4 Passthrough

Another feature which ReDi needed to support was the passthrough functional-
ity. The passthrough feature is needed to support the factory pattern, where a
type method returns the this instance. Task<T> is one class which have meth-
ods implementing this pattern, and developers often use Task in asynchronous
workload. The passthrough attribute makes it so that ReDi returns the context
information of the this object as the return-scope.

34

4.5.5 Only Analyzing Changed Files

In the CoreWiki project, there are over 300 files, where a developer only changes
one file at a time. It would waste many resources if ReDi should analyze all the
files each time, which would result in poor performance. To circumvent this,
ReDi only analyzes all the files the first time, and then only the files changed
afterward. All the files need to be analyzed the first round since most of the
logic is defined in other files and would in other cases not be available before
the editor opened that file.

4.5.6 Not Necessary Checking

C# has built-in type-checker which can verify the basic C# syntax and the
defined types. The type-checker simplifies the process of creating subtypes since
they are inherently bound to the C# type using the check function. If there
is a check for if a string contains any characters and then get the subtype
HasValue, then the check and subtype would be bound to a string. ReDi does
not need to keep track of the C# type the restriction is bound to since the code
fundamentally links them in the check method.

If someone should implement the subtype system in another language without
a strict type-implementation, then the basic type-information would need to be
checked as well. Without having a strict type system could result in a check
method accepting the incorrect input type and, either due to a bug or other
error, give the subtype to the incorrect type. Binding the subtype to the wrong
type could lead to more severe faults later in the execution and would defeat the
purpose of having the extra check there in the first place. In languages without
a strict compiler aware type system, the subtype would both need to restrict
the domain of the variable down to a specific type implementation and to the
desired domain of that variable.

4.5.7 Query and Response or Atomic Operations

When using the subtype system, there are two different methods for implement-
ing queries against a data structure. The first method would be first to ask if a
given value exists and then request it in a next statement or ask for it and get an
optional value back. In C#, developers often use the first pattern for Dictionary
access, which is a map type, where the developer first queries if a key exists, and
then ask for the value at that key. This pattern works fine for single-threaded
application but could lead to race conditions if it is multithreaded. The subtype
system supports this scenario with linked restrictions and the possibility to link
a variable restriction to the structure it tries to access. The problem transpires
if another thread deletes the key before the next statement executes resulting
in that the value request would fail because the key no longer exists.

35

The other implementation of this would be to ask for the value and either get the
value back or get an empty value, such as null, back. A problem with this pattern
is that there always needs to be a check after this to see if the value exists or
not. Instead of the operation returning null, it could also return an option type,
which would wrap the value in another structure with information about if the
key exists. The option type would still need to be checked afterward but would
never be null. The options pattern could be supported by linked restrictions,
which links the value exist check if to the value access, requiring the check
before retrieving the value. ReDi also supports the dictionary returning null by
marking the retrieved variable nullable. ReDi then enforces that the developer
checks the value for null before the developer tries to access it. If the code does
not check the value then ReDi reports an error to the developer specifying that
the variable could be null.

4.6 Logic Scope

All the code in the syntax tree is recursively defined and hence needs a re-
cursive checking. We separated the scope-implementation between block-nodes
and normal-nodes. Figure 4.3 demonstrates where these scopes are where block-
nodes have a block-scope and normal-nodes have a normal-scope. Block nodes
are the nodes that contain all the variable restriction information, while normal
nodes are for the different levels of the syntax tree. As can be seen in Figure 4.6
there are many different levels to the syntax tree. Nodes which would be con-
sidered block nodes in the figure is the ClassDeclaration and Block syntax
nodes. C# also uses these two node types for the regular variable scoping rules
in the programming language.

4.7 If Condition Scopes

The domain of variables is changed every time an if-statement check them. This
is the basis for ReDi which exploits this principle to perform an analysis of the
code and provide better type restrictions. The IF-condition can be a series of
chained together commands with the help of logical AND and OR operators. Both
the AND and OR operators mutate the current IF-condition scope. The available
operations in an if-scope calculation are the negate operator !, the Boolean AND

&&, and the Boolean OR || operators.

4.7.1 AND and OR Scope

Different rules apply for the grouping of different variables. We call these scopes
for AND and OR scopes. An AND scope is when checks are grouped inside an if

36

Figure 4.6: Syntax tree for a code snippet

37

condition with an AND operator. The OR scope is similar but is linked with an
OR operator instead. The AND-scopes enforce merging the restrictions of the two
scopes. OR-scopes take the intersection of the two scopes instead. What the if-
calculation also do is taking the inverted scopes for the else clause. This means
that the AND operator intersects the inverted restrictions for the else scope and
OR scopes merges the inverted restrictions. The truth tables for AND and OR
operations are described in Table 4.1 and Table 4.2 respectively.

Table 4.1: Truth table for AND operator

A B O

0 0 0
1 0 0
0 1 0
1 1 1

Table 4.2: Truth table for OR operator

A B O

0 0 0
1 0 1
0 1 1
1 1 1

The tables 4.1 and 4.2 shows that both tables only have one unique output. The
sequence 1 AND 1 = 1 and 0 OR 0 = 0 is the only sequences that we can predict
from the outputs. If we have an AND operation which produces 0, then there
are three different cases which produce that output, and it is not possible to
determine the input scopes. A path can also visualize the calculations through
a graph. The Figure 4.7 represents the two states of A and B on the first line.
These states can be combined to produce the combinations 00, 01, 10, and 11.
When we apply the AND and OR operators to these combinations, we get the
results 0 and 1. In the AND calculation, we only have one path leading to the 1
resulting in that we can predict the input of that calculation. We can predict
the input of the NOT operator any scenario.

4.7.2 Merging of Scopes

If the variable A has two different check functions, for instance, Email and Name,
and both can guarantee that it has a value. The check functions would then
return the set {IsValid, Name} and {IsValid, Email}. If a developer checks
this with an OR expression, then no matter which of them is the true one, we

38

0 1 0 1

00 01 10 11

0 1

0 1 0 1

00 01 10 11

0 1

A B A B

0

1

1

0

AND OR NOT

Predictable
state IF

Predicatable
state Else

Figure 4.7: AND and OR path calculation

can guarantee that the variable A has the restriction IsValid. If a developer
checks this with an AND expression, then we can guarantee both of them. For
the else part, on the other hand, the OR expression can guarantee that none of
the values exists, and merges the two sets {!IsValid, !Name} and {!IsValid,
!Email} together to the set {!IsValid, !Name, !Email}. The AND expression
functions similar but that can only guarantee the set {!IsValid}, since if the
check failed, we do not know if Name, Email or both are false.

4.7.3 NOT Operator

The NOT operator does function a little differently than the OR and AND opera-
tors. The NOT operator switches the IF and ELSE scope with each other. If a
developer uses the NOT operator for only a part of the expression, then only
that part of the IF and ELSE scopes are switched.

4.7.4 Else Scope Promotion

If the IF statement returns or throws an exception, then the else scope could
be promoted up one level since the state would never be recombined with the
if state at the end of the if. Scope promotion allows for code patterns such as
checking if an input parameter is null and return null at the start of the method
and have the state set for the rest of the method.

39

4.7.5 Execution of an If-Scope Calculation

1 string s = ReadInput();

2 string s2 = ReadInput();

3 if (!(IsName(s) && IsName(s2)) || !(IsName(s) && IsEmail(s2)))

4 throw new Exception("Can not handle input");

Figure 4.8: Simple C# code snippet for describing if calculations

Figure 4.9 gives an example if-scope calculation for the code show in Fig-
ure 4.8

Since the example in Figure 4.9 throws inside the if, then an else scope promotion
is performed and ReDi can guarantee that the scope for s is {Name, IsValid}
and s2 is {IsValid}.

40

Calculated scopes for "IsName(s) && IsName(s2)"

If scope

s => {Name, IsValid}

s2 => {Name, IsValid}

Else scope

s => {!Name, !IsValid}

s2 => {!Name, !IsValid}

Calculated scopes for "!(IsName(s) && IsName(s2))"

If scope

s => {!Name, !IsValid}

s2 => {!Name, !IsValid}

Else scope

s => {Name, IsValid}

s2 => {Name, IsValid}

Calculated scopes for "IsName(s) && IsEmail(s2)"

If scope

s => {Name, IsValid}

s2 => {Email, IsValid}

Else scope

s => {!Name, !IsValid}

s2 => {!Email, !IsValid}

Calculated scopes for "!(IsName(s) && IsEmail(s2))"

If scope

s => {!Name, !IsValid}

s2 => {!Email, !IsValid}

Else scope

s => {Name, IsValid}

s2 => {Email, IsValid}

Calculated scopes for "!(IsName(s) && IsName(s2)) || !(IsName(s) && IsEmail(s2))"

If scope

s => {!Name, !IsValid} ∩ {!Name, !IsValid} = {!Name, !IsValid}

s2 => {!Email, !IsValid} ∩ {!Name, !IsValid} = {!IsValid}

Else scope

s => {Name, IsValid} ∩ {Name, IsValid} = {Name, IsValid}

s2 => {Email, IsValid} ∩ {Name, IsValid} = {IsValid}

Figure 4.9: If scope explanation of Figure 4.8

41

Chapter 5

Implementation

In this chapter, we discuss how the implementation of the code works and what
it does, also how some of the key concepts work in the code and why they
work. First, we discuss the helper library and its features. We then discuss
the restrictions system, and the different scopes, such as VariableScopes and
ContextScope. After the different scopes, we discuss the principles behind
nullability and the main flow of scope information through the HandleNode

function

We implemented the analyzer tool, ReDi, as a Roslyn Analyzer which is part of
the .NET compiler platform. ReDi works on the C# syntax, but the principles
behind it can be adapted to other languages as well. ReDi provides real-time
feedback directly in Visual Studio, which makes it very easy to use. Beneath in
Figure 5.1 is a screenshot of how ReDi integrates into Visual Studio to provide
feedback at compile time.

5.1 Helper Library

A helper library was needed, as described in the design chapter. This library
defines some Attributes and Functions for helping with the use of the subtype
system.

5.1.1 Attributes

The helper library adds the following four attributes:

• CheckMethodAttribute
– Used to define a check method which can guarantee that a subtype

contains the correct domain if it returns true.

42

Figure 5.1: Vs code snippet

– The Check Method is used in conjunction with an if statement to
enforce that the SubType is correct inside the if context.

• SubTypeAttribute
– Marks a member to require a specific SubType.

• NullableAttribute
– Marks a member so that it can be null.

• CheckNotNullAttribute
– A function which can guarantee that something is not null if it returns

true

5.1.2 Helper Methods

Scope.Check was added since C# or Visual Studio does not have built-in sup-
port for inspecting a member’s virtual types provided by ReDi, since this infor-
mation is only available for ReDi. To circumvent this issue, Scope.Check takes
in an object value and gives an information box on the current restrictions ap-
plied to the variable. Many of the unit tests for ReDi also uses Scope.Check to
verify that a subtype has the correct subtypes in addition to the error messages
that ReDi returns.

43

5.2 Code Implementations

Here the implementation of the different components of ReDi is discussed. Also,
the interaction between the different components is listed. We start by dis-
cussing the central concept of a restriction. We then discuss the concepts behind
VariableScope, ContextScope and ContextInfo.

5.2.1 Restriction

The restriction struct is one of the most fundamental types in ReDi, which con-
tains information about a single restriction. A restriction contains three fields,
which is Name, Inverted, and LinkedTo. The Name fields contain the name of
the restriction and have to correspond with a check method. The Inverted field
represents if the restriction is inverted, or that a variable is guaranteed not to
contain that restriction. For instance, if a variable A should be in the range of
an array, then it would have a domain like a >= 0 and a < length(array). If
that check does not result in true, then ReDi can state that it can only contain
a value outside that domain a < 0 or a >= length(array). ReDi uses this in
if-scope calculations and gives the normal version to the IF-scope, while ReDi
gives the inverted to the else scope as discussed in Chapter 4.

The LinkedTo field represents if it is a linked restriction. Linked restriction
means that the variables restriction links to another variable. For since like in
the array example, the a variable would be linked to the array it is checked
against, but it is not necessary inside the range of every array in an application.
Another example of a linked restriction is a key in a Map. If a map variable
map contains a key B, then the B has the restriction AKeyOf(map).

The Restrictions also have a standardized string format, making them easy
to serialize and deserialize. The format is [!]Name[(LinkedTo)] where the
parts in [] is optional. The negate symbol from many programming languages
inspired the first part, which represents the inverted field in the restriction. The
second part is the name of the restriction, and the last part in parentheses is a
variable that is linked by the restriction.

Restriction is a struct in C# instead of a class, because they operate by pass-
by-value instead of pass-by-reference. Pass-by-value makes the restrictions more
immutable and harder to change accidentally. The other alternative would be
to use classes and implement a copy function on the restriction. A problem
would be if we did not call the copy function, which could result in there being
two references to the same object, which could lead to problems with restriction
mutations.

44

5.2.2 Linked Restrictions

The restrictions in ReDi can both be unlinked and linked. When it is unlinked,
developers can use it in all places the code requires that specific restriction. If
the restriction is linked, then it can only be used in conjunction with the linked
variable. To be able to link a specific variable to another variable, a check
function with two input parameters is required. The first parameter must be
the variable itself that should have its domain restricted. The second parameter
is the linking variable.

An example of using linked restrictions is the key of a dictionary. The C#
language requires that the developer checks that the key exists before the code
can access the key. To accomplish this, an if statement with a key check must
come before the dictionary access itself. ReDi supports this checking with linked
restriction. The way ReDi does this is by giving the key as the first parameter
and the dictionary as the second parameter to the key check-method. Then it
is up to the check function to check that the key is a part of that dictionary
and returned true if it is. Then ReDi can guarantee that within the scope of
the if statement where the code performed the check, the key must be a part
of the dictionary. The problem with this approach is that it’s not an atomic
operation. Not an atomic operation means that the check pattern only works if it
is a single threaded application or only one thread have access to the dictionary
at the time. Else locks must be used to be able to lock the dictionary before
the access to enforce the code follows proper concurrency patents.

Another use case for linked restriction is the ability to link a value to a range.
For instance, in the C language, there is a problem with the ability to access
indices of an array which is out of bounce. Indices that are out of bounce can
lead to fatal problems where the application tries to read memory that it is
not supposed to read. The C# language handles this a little bit differently
and throws an index out of range exception if the code tries to access an index
which is not in the range of the array. Even if this is a safer approach than
just allowing the program to access whatever is at that memory address, it still
crashes the program. The index check is also always performed at the runtime
to verify that the index is inside the range of the array, which could lead to
performance penalties.

Another approach could be to check that the index is part of the array bounce
before the index is accessed, just like the dictionary example. Checking indices
could use a similar approach as the dictionary example by using an additional
check function. This function would take in the index as the first parameter
and the array as the second. The function then performs a check to see if
the index is in bounce. In a future version of ReDi, it would be possible to
calculate the available domain of a variable before the code tries to access an
array. Domain-calculations could result in the check being removed entirely
making the application even faster.

45

5.2.3 VariableScopes

A VariableScope is two different collections of Restrictions for two different
scenarios. It also contains nullable information as well as an ObjectScope for
sub-variables. ReDi sorts restrictions into two different categories, the mutable
restrictions, and the fixed, immutable restrictions. When the code performs an
IF-check on a variable through a check method, ReDi adds a mutable restriction
to the Restrictions HashSet of the VariableScope. If the variable is assigned
a new value, then the restrictions are overridden with the scope of the assigned
value.

In contrast, assignments cannot override fixed restrictions since those restric-
tions belong to the class level. These restrictions outlive the scope of a single
function, which means that it would not be possible to keep track of the restric-
tion mutations. ReDi forgets all calculated scopes and mutable restrictions from
within the function when it returns, since it would result in a state explosion
if the state should persist through these boundaries. Deleting the scopes also
results in that a developer cannot change the domain information which belongs
to class level.

To assign a value to a variable with a fixed restriction, then it needs to be first
checked with the check functions to verify that the new variable has the correct
restrictions. The required restrictions from the variable could both be fixed or
normal if they are verified and not violated. The nullable field represents if the
variable could be null or if it cannot be null. ReDi only tracks of a variable can
or cannot be null and does not track if the variable is null, or can be null and
are not, since this would require more processing.

5.2.4 ContextScope

A context scope is the collected variable information about a given scope. A
ContextScope instance contains a dictionary or map with variable scopes to
represents all the different variables present in the given code scope that have
subtype information. The context scope also contains functions for merging
scopes with intersections or union. The context scope instance is also the pri-
mary interface for manipulating the information stored in VariableScopes within
the ContextScope.

5.2.5 ContextInfo

The ContextInfo class is a recursive implementation of a wrapper around the
context scope. The recursive implementation means that it also contains a
reference to another ContextInfo, which is its parent, like how folders in a file
system work. ContextInfo needs to be recursive to be able to account for code
scope calculation in C#. For instance, a method would have access to all the

46

different fields and properties declared at class level, but not the other way
around. This means that an inner scope should have access to the information
stored in an outer scope and that the inner scope information should not bleed
out at any given time. This structure is also inspired by how prototype-based
languages such as JavaScript and Lua creates objects and inheritance. The
prototype-based languages do not have classes, but a prototype object which
can contain more information. If the current instance of an object does not
have a given field or method implementation, then the fields of the prototype
are recursively inspected to check if it contains that implementation. If the
prototype has the implementation or one of the prototype’s prototypes has it,
then it is invoked or accessed.

A similar process happens when ReDi requests a variable scope from a
ContextInfo. The ContextInfo first asks its parent for calculating the scope
and then merge in its information afterward. Merging scopes make it simple
for child ContextInfos to provide more information on top of what the parent
already knows.

5.2.6 Nullability Implementation

It was not possible to add features to the C# compiler since live analyzers such
as ReDi can only analyze the code. Changes to the compiler would require
recompiling the compiler and using the new compiler to provide analysis. It
would also require that the C# interactions in Visual Studio were modified to
support the new syntax, which would be outside the scope of the thesis.

The current implementation of ReDi makes use of the same principles as C#
and TypeScript by providing non-nullable references by default. This behavior
requires some additional checking to make sure that a nullable value is not able
to be assigned to something that cannot be null. An example of this is when a
method tries to return null, but the code does not mark the method with the
nullable flag. ReDi then reports an error on the return statement saying that
the method is missing the non-nullable attribute.

One thing about implementing it as non-nullable by default is that it is the
opposite of how the restriction based subtype system functions. We based the
already implemented subtype system on only reducing the available domain of
the variable instead of expanding it. When, in contrast, making a variable nul-
lable means that we increase the scope with an extra value instead of decreasing
it. Since there is no other way of increasing the domain for a variable except
nullability means that it is a special case. Domain expansion also resulted in
that the implementation became a special case with the introduction of the
nullable field in the variable scope.

47

5.2.7 Strict Nullability vs. Floating Nullability

The same problems arise with nullability as with subtypes. If the code defines
a variable at class level, then it should have a strict nullability which cannot
change. If the code defines a variable at a function level instead, then the
variable could change nullability inside that function and ReDi would be able
to track it. ReDi changes the nullability for a variable defined at function level
if it is assigned null or something that can be null, making variables at function
level have a floating nullability.

5.2.8 Null Scopes are Inverse of Normal Scopes

Null scopes are a domain expansion and hence works differently than the normal
domain restriction subtypes. If a function returns a variable with a subtype one
place but without it later in the function, then we cannot annotate the function
with the subtype. On the other hand, if a function returns a nullable value once,
then the entire function must be marked with the nullable attribute.

5.3 First-Pass of the Analysis

The first thing the analyze does when it receives the syntax tree is to locate
all the class and interface declarations. Afterward, it is trying to find all the
members of the interfaces and classes and do further analysis on them. In this
case, both fields and properties are handled in the same way since developers use
them in the same manner. Functions are analyzed a little bit differently since
it has both input and output variables. First, ReDi checks if the function is a
check method or has a subtype. Afterward, the parameters of the function are
checked to see if some of them contain a subtype or nullability attributes. This
information is then recorded in class information structure and store within the
file information superstructure. ReDi also stores the return type information in
the same structure. This information is quick to look up when the rest of the
functions are analyzed. ReDi does not analyze the content of the methods in
the first-pass since much information is still missing from the file information
structure.

5.4 Main-Part Analysis

When the first-pass analysis is complete, the main analysis can start to ana-
lyze the function body. Is accomplished this by calling the HandleNode func-
tion.

48

5.4.1 HandleNode

We split the HandleNode function into 2 different parts. The first part is the
HandleNode function itself, and the second is the HandleNodeInner function.
The HandleNode’s primary function is to execute the HandleNodeInner func-
tion with the input parameters. The HandleNodeInner function is a switch
statement which takes in all the different C# syntax classes and calls the correct
handler method. Then it is the job of the HandleNodeInner function to retrieve
the return-scope of that handler function and return it to the HandleNode func-
tion. Other methods should not call the HandleNodeInner function. The reason
for this is that HandleNode function has a secondary purpose. HandleNodeInner
function or one of its handler methods could return a state that specifies that
it should automatically explore the child nodes. The HandleNode function re-
trieves these results and calls the ExploreChildNodes function if a handler
method has set the flag.

If the HandleNodeInner function does not have a handler for the given syntax,
it returns the HandleNodeState with the ExploreChildren flag set to true.
We implemented it in this manner to have a higher chance of providing more
analysis. If ReDi comes upon syntax that it does have a handler for then it
could still be that the child node is recognizable. Then we still want to try and
perform analysis on the child node to get the best experience with ReDi. In
some cases, we do want to ignore the child nodes, and this can be performed
by just returning an empty HandleNodeState structure. The reason to ignore
some SyntaxNodes is that they have already been analyzed and cannot provide
further information. One instance of this is the InterfaceDeclarationSyntax,
which ReDi analyzed in the first-pass of the analysis. If we allowed the analysis
to analyze the same syntax multiple times, it would also become a problem with
ReDi report the same errors multiple times.

5.4.2 Wrapped scopes

Wrapped scopes is another thing that was necessary to support certain coding
patterns. The most prominent use case is the C# task system. When a function
is async and returns a task, then we are not interested in giving type information
about the task variable itself but the generic type provided by task. We provide
this functionality by detecting that a function returns a task and assigns the
type information in a wrapped scope instead. When the analyzer then reaches
an await operator, we unpack the wrapped scope and return the inner scope
instead.

49

5.5 If Scope Calculations

In Chapter 4 we discussed how the if scope calculation worked and here we are
going to discuss some of the more implementation specific parts of the calcu-
lation. After the HandleNode invokes the handling of the if-statement and the
handler has been given control, it first tries to parse the condition of the vari-
ables. The condition parsing is a recursive operation by starting with the first
SyntaxNode reached. The if-statement handler creates two different scopes for
determining the scopes, one for the if context and one for the else context.

The if handler takes the condition and passes it to a TraverseIfCondition func-
tion which recursively traverses the if condition. The TraverseIfCondition

also keeps track of both the if-scope and the else-scope since the different logical
operators mutate these scopes. These operations function as described in Chap-
ter 4. If the TraverseIfCondition reaches an invocation, then it tries to calcu-
late the scope returned by the function by a CalculateInvocationScope which
does all the necessary checks to see that the function is a check function and what
values it checks. If the CalculateInvocationScope verifies that it is a check
function, then it returns the restriction it guarantees to TraverseIfCondition

which adds it to the proper context. After the calculations, the if-scope and
else-scope are added to the respective context scopes making them available for
the code inside the if statements.

5.5.1 Rolling If-Scope Calculations

When the code uses logical operators, then the if-condition traverses should give
the current if scope should as part of the current known scope to the other part.
This can be seen for instance in Figure 5.2 where the p.FirstName should not
throw an error for the FirstName access.

1 Person p = new Person();

2 if (p != null && p.FirstName != null) // Should not throw error on p.FirstName,

3 { } // since p can no longer be null.

Figure 5.2: Rolling if-scope calculation

50

Chapter 6

Evaluation

In this chapter, we describe the different kinds of problems and how many of
the different problem types we found in the different evaluation projects. We
describe the types of problems we found in the evaluation projects as well as
some problems with try-catch error handling. We then present the results from
the evaluation projects and the different statistics associated with them.

6.1 Code Problem Types

From the analysis of the CoreWiki and Innovation Norway Projects, three dif-
ferent types of faults started to arise. The first one was external validation
errors, such as input model verification errors, where the input data from a
user could result in unexpected behavior or exceptions. These faults could arise
from a model not being validated before the code uses it. These faults are the
once used by adversaries to try and take advantage of undefined behavior in
applications.

The second form for faults is internal validation errors, where changes to the
code could result in an exception, null exceptions, or incorrect behavior based
on incorrectly using the existing code base. These types of faults can increase
the development time since they arise from a lack of knowledge for the entire
codebase. If more than one person is working on a project, or if the project
starts to reach an unmanageable size, then these types of faults can become
relevant.

The third type of faults has similarities with both the previous types of faults,
which is the null errors. Languages like C#, Java, C, C++, Python and many
more do not have facilities for defining if something can be null or not, which
could result in undefined behavior or exception if something is assumed not to
return null and it does. There were many null errors in the CoreWiki project,

51

but it is hard to say how many of them a user could trigger in the current
code base without changes. The problem quickly arises if a developer expands
the codebase and do not include the checks. If developers extend the codebase
without the proper checks, then the code that was not problematic could quickly
become so. ReDi resolves null errors by treating them as domain expansions of
the variables.

6.2 Problems with Throwing Exceptions

There is a couple of problems with code throwing exception. One problem
is that it could crash the software if the code does not handle the exception
properly. Unhandled exceptions could result in loss of service or worst case,
that a third party exploits the application in some way. Another problem with
throwing exceptions is that it is very slow.

Figure 6.1 show the results from a simple test with a loop throwing exception and
catching them, and one loop only adding the error to a list. The code is shown in
Figure 6.2. The output in the figure shows that throwing exceptions is over 4000
times slower than just returning an error message, meaning that every throw
takes 56.4µs in contrast to adding the error to the list taking only 12.7ns. Take
note of the different prefixes used where throw uses microseconds and adding
to list uses nanoseconds. These vast differences could quickly add up if a lot of
the code throws exceptions instead of handling the error appropriately.

1 Testing iterations: 1000000

2 Elapsed time for throw to list: 56402.1647 ms

3 Elapsed time for list: 12.7133 ms

4 throw time / list time: 4436.4693

Figure 6.1: Results for throwing an error and adding to list, and only adding to
list

Where this could be a problem is in a Denial of Service (DOS) attack. If a
third party manages to trigger an exception in the web service, then a lot less
computing power is needed to make the service run slower if the code uses
exceptions.

6.3 CoreWiki

The CoreWiki project is an open source wiki project written in dotnet core
by Jeffrey T. Fritz and the viewers of his streams at twitch.tv. The project is
meant as a learning resource for developers to learn new technologies and APIs.
We rewrote part of this project to include the helper library for better code
analysis.

52

1 const int iterations = 1000000;

2 List<string> errors = new List<string>();

3 List<string> errors2 = new List<string>();

4 for (int i = 0; i < iterations; i++) {
5 try {
6 throw new Exception("An error occurred");

7 } catch(Exception e) {
8 errors.Add(e.ToString());

9 }
10 }
11

12 for (int i = 0; i < iterations; i++) {
13 errors2.Add("An error occurred");

14 }

Figure 6.2: Code throwing exceptions in a loop, and one loop only adding
exception to list

In the CoreWiki project, ReDi helped with fixing both null checks and other
inconsistencies.

One thing which ReDi provided, which is hard to detect otherwise was when
a value has its domain reduced. In one case there is a function which turns a
string into a URL friendly string. This function checked if the input parameter
could be null, and then return null at once if it was. With the introduction
of the HasValue attribute on the parameter, then this check was no longer
necessary since the code should already have checked the value and we could
remove the check from the code. The unit test for this function could also
be modified since it was no longer any point in checking for null or an empty
string. Testing for null and empty was unnecessary since these values are now
impossible with the HasValue attribute. This code is also included in Figure 3.14
in Chapter 3.

We present the results in Figure 6.3 and shows that we found different kind
of faults. The CoreWiki project relays on automatic-mapping of objects which
makes it hard to apply the subtype system to the already defined types, but
we rewrote some of them to show the potential. One of the input validation
faults we found was not able to affect to program directly but had consequences
found the software. The CoreWiki project would allow users to post an empty
comment for an article, but the server did not validate them when received. This
empty comment was sent towards the database and did not fail until it reaches
the database, and it failed since the fields were empty. The input validation
error which the code should have handled when received managed to throw a
database error for that model validation. Error handling first at the database
level is too late in the process since the server has now wasted many resources
for mapping and transporting the message around, including throwing an error

53

which slows down the software further. The code also threw the error as an
exception resulting in the slow down as described in Figure 6.1

0

1

2

3

4

5

6

7

8

9

Input valida�on faults Internal API faults Removed checkes

Fault count

Figure 6.3: Results from CoreWiki

6.4 Innovation Norway Projects

The Innovation Norway projects are a set of projects developed by Bouvet. ReDi
was applied to these projects to see if it was able to find code inconsistencies.
The projects were obtained late in the development process of ReDi, resulting
in not the same amount of attention has been used for analysis.

There were not many errors found in these projects by ReDi because of the
limited time available, but we found some other inconsistencies. The most
normal inconsistency shows one of the weaknesses of the C# language. The C#
language is not easily able to define null checking. When we used ReDi at the
code, it was possible to remove several redundant null checks since they no longer
can be null. While removing redundant null checks would not have a significant
impact on the performance of the application, removing null checks can help
improving readability since there is less code to read. The extra attributes
would also increase the descriptiveness of the code, potentially further increasing
the readability of the code. As stated by Robert C. Martin in his book Clean
Code [13], that the relationship between reading code and writing it is 10:1.
Making the code easier to read could then improve the overall development
time of the software. ReDi is also able to verify that a developer does not
forget any null checks. Pointing out the missing null checks could result in
reducing the development time for new and old code. The results are shown in
Figure 6.4

As reflected in the results we found, the majority of the faults was internal

54

API errors as well as check removal. We found no validation results since these
projects heavily relayed on reflections. Reflections make it hard to reason about
the code since it relays on metaprogramming, and to be able to define rules for
metaprogramming is outside the scope of this thesis.

0

1

2

3

4

5

6

7

Input valida�on faults Internal API faults Removed checkes

Fault count

Figure 6.4: Results from Innovation Norway

6.4.1 Removal of Tests

One thing that ReDi help within the projects is ensuring consistencies. An ex-
ample of this is in Figure 6.5 where there is a null check in the outer function as
well as in the inner one, but not both are needed. In the example, a company is
retrieved on line 2 and checked for null right afterward. ReDi has non-null by de-
fault, which results in the parameters for CheckCompany and BuildDescription

cannot be null. The non-null parameter resulted in the removal of the ? checks
on line 12 and 20.

55

1 public async CheckResponse CheckCompany(int companyId) {
2 var company = await database.GetCompanyById(companyId);

3 if (company == null)

4 return new CheckResponse {Status = CheckStatus.CompanyNotFound};
5

6 return CheckCompany(company);

7 }
8

9 private CheckResponse CheckCompany(Company company) {
10 return new CheckResponse {
11 TimeStamp = company?.Info?.LastUpdate;

12 // New: TimeStamp = company.Info?.LastUpdate;

13 Description = BuildDescription(company),

14 Status = CheckStatus.CompanyFound

15 };
16 }
17

18 private string BuildDescription(Company company) {
19 return $@"{company?.Info?.NameAndAddress?.Name}
20 org id: {company?.Info?.OrganizationId} \n";
21 // New: return £@"{company.Info?.NameAndAddress?.Name}
22 } // org id: {company.Info?.OrganizationId} \n";

Figure 6.5: Example check removal from Innovation Norway. (Example is heav-
ily modified from original code and only show the concept)

56

Chapter 7

Discussion

In this chapter, we discuss what ReDi can do and what differences there are to
the other technologies for improving correctness. We also discuss future work
and what could be possible to achieve with the same principles. Some of the
possibilities are late model verification, view scope, immutability tracking, and
the not null attribute.

7.1 Differences to Design by Contract Lan-
guages

The main differences to design by contrast languages are that C# was not
designed for contracts. Both the mention languages, Eiffel and Dafny, was
specially designed to be design-by-contract languages where C# was designed
to be a general purpose language. In this thesis, we have shown that it is
possible to use some of the same principles like model invariant and applying
them to C# variables with the help of a tool. Dafny and Eiffel also is function
centric meaning that they apply the main restrictions with the help of pre and
post conditions on functions. ReDi, in contrast, to design by contract, only
enforces pre and post conditions by specifying the required subtype of the input
parameters and return type. In ReDi, the check function for the subtype can
also always guarantee that the code fulfills a subtype.

7.2 Difference to Symbolic Execution

The difference between ReDi and symbolic execution tools like KLEE is that
symbolic execution mostly detects paths that could lead to runtime exceptions.

57

Symbolic execution does not require any extra information for providing anal-
ysis. The problem is that developers do not have the option to provide intent
information either, limiting the possible analysis. Having a combination of sym-
bolic execution and the possibility to add extra intent information as well, we
hope that ReDi can provide a richer analysis for the developer. Decisively lim-
iting the scope of variables could also help with the problem of state explosion,
were KLEE needs to explore too many different paths, and domains. In con-
trast, ReDi must limit the amount of analysis it can perform to the mentioned
scope restrictions, because of its nature as a live analyzer. Where a symbolic
execution tool can, in theory, run as long as needed, then ReDi needs to finish
its analysis in a shorter time then the IDE updates the error reporting.

7.3 Where to use ReDi

ReDi has been good at detecting where the code is using null. It is also able
to determine what return null with the help of the Nullable attribute. ReDi is
also great at detecting places where there are unnecessary checks which are not
needed. If developers add subtype attributes to the code, then ReDi can also
help with finding missing checks and inconsistencies in the code, such as two
classes having different expectations for the data.

7.4 Problems with Using the C# Language for
ReDi

The C# programming language has much different syntax, which results in that
it is hard for ReDi to analyze everything. This results in only the discovered
coding patterns are given analysis and analyzed. There also must be written
more analysis code for each new error type, resulting in the development time
for ReDi increasing. We implemented an automatic child node analysis to give
more analysis, even if the analysis of the main node was unsuccessful. C# also
has a very developed reflection and metaprogramming system, which makes it
harder to provide useful analysis for these scenarios. Reflections also make it
possible to make generic implementations that work on more code, resulting in
that it is hard for ReDi to verify the specific rules.

7.5 Restricted Relations

Design by Contract languages are applying restrictions to variables and param-
eters but are not able to create artificial subtypes. For instance, if we introduce
the concept of meter and centimeter in code, then the available domain of them

58

are the same, but they have a relation to each other. The metric units usually do
not restrict the domain of a variable, but the relation restricts the values. A rela-
tion restriction is when the code cannot directly convert between two units. For
instance, meters and centimeters both have domains equal to all the real num-
bers, but a meter equals 100 centimeters, and we cannot directly assign them
to a variable or parameter requiring centimeters before a conversion.

As we show in Figure 7.1 the area calculated would neither be centimeter squared
or meter squared. The unit created by the multiplication would be hard to use
since it is not a standard unit and could easily be misused. The circumference
calculation in the figure, on the other hand, is incorrect since the circumference
calculation requires the same unit. The examples from the figure would not
throw an error in the C# language. With the help of the relation restrictions,
it is possible to have the units of scientific calculations and formulas directly
verified at compile time.

1 void Main() {
2 double length = 1.2/*m*/ ; // Example of how units

3 double width = 52.4/*cm*/ ; // could be applied

4

5 double area = length * width; // area unit would be m*cm

6 // instead of m^2 or cm^2

7

8 double circumference

9 = length * 2 + width * 2; // This does not make sense

10 }

Figure 7.1: Relation restriction

With compiler changes, it would also be possible to transform the units into
a correct unit automatically. For instance, if a calculation tried to use meters
and centimeters together, and the compiler knows of a transformation between
them, then it could be automatically invoked on one of the values.

7.6 Problems and Considerations with ReDi

When using ReDi for a project, it is important that all team members who
contribute code for the project use the tool. The enforcement is important
because the C# compiler does not enforce verification of ReDi’s annotations,
and as such a developer that does not use ReDi could violate the code checking
without being notified by a compiler or live analyzer. Automatic-build systems
should also utilize ReDi when building the code for giving error messages in
continuous integration workloads if a developer does not have the tool. We
also wrote ReDi as a live analyzer, so the developer using ReDi is provides live

59

feedback while programming, which makes it easier and faster to develop the
correct code.

7.7 Future Work

We present some future work which was not feasible to do in the time frame of
the thesis in this section. The missing features include integration with late ver-
ification frameworks and especially the .net ComponentModel.DataAnnotation
framework. The missing features also include the concept of view scopes to re-
duces the number of object mappings as well as immutability and the NonNull
and subtype field requirement for object members. The last taking point is the
advanced scope calculation.

7.7.1 Integration with ComponentModel.DataAnnotation

The dotnet base library contains a namespace called DataAnnotation, which the
dotnet team created for model verification. The difference between DataAnno-
tation and ReDi is that DataAnnotation is late verification where ReDi is early
verification. Early and late verification refers to in this context if verification
happens before or after the code assigns a value to a field. Early requires that
the check happens before the value assignment, while late verification happens
after the assignment. We planned an extension to ReDi which allowed it to
support late verification by assigning a subtype to an object that the code has
verified late. Late verification only guarantees the restrictions on the object
members if the main object has a verified subtype associated with it. It would
also be better to use late verification on user input so that a map between user
input and a verified object is not needed.

7.7.2 View Scopes

A use case for different scopes could be view scopes. A view scope would be a
restriction of the visibility of the members of an object based on the scope. The
scope would determine what members would be available, and what would not
be available. A reason to have view scopes would be to not need to map objects
between different implementations of them. A way to think of these view scopes
would be an interface. An interface controls what on the object is available to
call and what is not. A consideration with view scopes is that they would need
to be mutable with only one thread access, or immutable.

A developer would need to use a transformation method for transferring one
view scope to another view scope, to get access to different fields. The developer
could also merge several objects in the transformation function to create a new
object. View scopes result in the possibility to change the view scope of the

60

same object and expose different fields or members instead of having to create
a new object. The view scopes would save processing since they do not need to
perform the copying of fields.

Another use case of view scopes would be to define what keys exists in a dictio-
nary so that an IDE can give better code completion. The C# dynamic type
could also benefit from the same view scope by defining the available members
on the dynamic type.

7.7.3 Immutability

Immutability, as a domain expansion, could be an interesting concept. The
concept behind immutability restriction is it would be possible for a function
to return an immutable object. The object is restricted from change after the
function returns it, but the function could mutate the object before it returned
it. Immutability would extend on the system with nullability since we would
need to add an extension to the already defined subtype system to support it.
Like nullability, immutability would also be a special case since it would modify
if assignments are allowed or not.

The immutability restriction would allow an object to be locked down on some
point in the code. Object locking could be useful if several functions are con-
figuring an object, but when the functions finish, the object should be locked
down and return to the caller function. C# has some functionality for this with
the readonly modifier, but C# does not allow to arbitrary add the readonly

modifier to a return type of a function. The readonly modifier in C# does
not either support locking down an object and all its children as well. One
problem with the immutability is tracking if one of the objects function tries
to modify the values of the object itself, which would violate the immutability
restriction.

7.7.4 Require NonNull Field

An extension we could make to ReDi could be a NonNull attribute, which
required that some fields of an object were not null. We show an example of
the non-null behavior in Figure 7.2. We could also apply the same principles as
the NonNull attribute to the subtype system by requiring that a member of an
object contained a specific field with a subtype. If ReDi could not guarantee
these cases when analyzing the code, then it would report an error specifying
that the restriction is not meet.

61

1 class Person

2 {
3 [Nullable]

4 public string FirstName {get;set;}
5 }
6

7 public static void Test([NonNull("FirstName")]Person person)

8 {
9 person.FirstName.Trim(); // Should not return error message

10 }

Figure 7.2: NonNullAttribute declaration requiering fiels to not be null

7.7.5 Advanced Scope Calculations

Another extension for ReDi is to apply a more advanced type checking. What
we mean about that is making ReDi able to analyze the different range check
performed in an if-statement to calculate the scope of a variable better. Cur-
rently, ReDi only determines if the variable belongs to a check function or not.
If ReDi was able to understand the proper domain of a variable with a range,
then it could detect overlapping subtypes. If it could detect overlapping sub-
type, then ReDi could detect if a variable already has the required domain or a
more restricted domain and circumvent the if-check entirely.

62

Chapter 8

Conclusion

When the compiler considers the domain of the variables, parameters, fields, and
properties, then the tooling and IDE can provide a more productive developer
experience. It is easier to understand the intent of the code since it has extra
information describing the code and what it is supposed to do. It also makes
it easier for the compiler to check the code more thoroughly and verify that
the code is correct. The results found with ReDi shows that it is possible to
improve the code correctness with the help of reducing and more clearly defining
the domain boundaries. The scenarios where ReDi works best is when verifying
the input values from a user and mapping them to internal types as well as
validating that the code invokes internal API calls correctly. ReDi was also
beneficial in detecting null errors and keeping track of what can be null and
what cannot. The nullability system in ReDi do have some benefits over the
C# version 8 nullability feature, where ReDi allows a method to be marked as
a null check as well as giving the option to mark external library function with
the Nullable attribute.

The restrictions also give the benefit of knowing which type-checks are necessary
and which type-checks are redundant. This feature could improve the perfor-
mance of the code, but also remove the redundant code, reducing the code a
developer needs to read and maintain. The restrictions in ReDi also improve
the consistency for the data values throughout the software from user input,
through proceeding and to the data storage layer. The reason for the improve-
ment is that all the parts operate on the same restrictions instead of the code
only checking the restrictions at user input and data storage levels.

Using built-in check functionality and calculation domain restriction with static
analysis works for keeping track of the variable domains. ReDi also improved
the type checking and code intention with the inclusion of attributes in the
code to describe the subtype to keep track of the calculated domain. The same
principles could be used to implement design-by-contract patterns in existing

63

languages.

Restricting the available values for a variable reduces type related faults and
type ambiguity.

64

Bibliography

[1] A powerful and user-friendly binary analysis platform!: angr/angr.
original-date: 2015-08-06T21:46:55Z. June 5, 2019. url: https :

//github.com/angr/angr (visited on 06/05/2019).
[2] Cristian Cadar, Daniel Dunbar, and Dawson Engler. “KLEE: Unassisted

and Automatic Generation of High-Coverage Tests for Complex Systems
Programs”. In: (), p. 16.

[3] Dafny: A Language and Program Verifier for Functional Correct-
ness. Microsoft Research. url: https : / / www . microsoft . com / en -

us/research/project/dafny-a-language-and-program-verifier-

for-functional-correctness/ (visited on 06/08/2019).
[4] Dafny is a verification-aware programming language: Microsoft/dafny.

original-date: 2016-04-16T20:05:38Z. Mar. 5, 2019. url: https :

//github.com/Microsoft/dafny (visited on 03/05/2019).
[5] DEFCONConference. DEF CON 23 - Shoshitaishvili and Wang - Angry

Hacking: The next gen of binary analysis. url: https://www.youtube.
com/watch?v=oznsT-ptAbk (visited on 06/05/2019).

[6] Documentation. May 21, 2019. url: https : / / www . eiffel . org /

documentation (visited on 06/05/2019).
[7] Eiffel History. url: http://www.berenddeboer.net/eiffel/archive/

halstenbach_eiffel_history.html (visited on 06/05/2019).
[8] Eiffel Programming Language. Eiffel: An Overview. url: https://www.

youtube.com/watch?v=zynTlO-72gc (visited on 03/05/2019).
[9] Nicolas Fløysvik. Dotnet live analyzer for domain restricted types. June 15,

2019. url: https://bitbucket.org/Nicro950/nicroware.analzer.
master/src/master/ (visited on 06/15/2019).

[10] Jeffrey T. Fritz. A simple ASP.NET Core wiki that we are working on
during live coding streams: csharpfritz/CoreWiki. original-date: 2018-03-
27T15:44:33Z. June 10, 2019. url: https://github.com/csharpfritz/
CoreWiki (visited on 06/13/2019).

[11] ecma international. Standard ECMA-334 C# Language Specification. Dec.
2017. url: http://www.ecma- international.org/publications/

standards/Ecma-334.htm (visited on 10/03/2019).

65

https://github.com/angr/angr
https://github.com/angr/angr
https://www.microsoft.com/en-us/research/project/dafny-a-language-and-program-verifier-for-functional-correctness/
https://www.microsoft.com/en-us/research/project/dafny-a-language-and-program-verifier-for-functional-correctness/
https://www.microsoft.com/en-us/research/project/dafny-a-language-and-program-verifier-for-functional-correctness/
https://github.com/Microsoft/dafny
https://github.com/Microsoft/dafny
https://www.youtube.com/watch?v=oznsT-ptAbk
https://www.youtube.com/watch?v=oznsT-ptAbk
https://www.eiffel.org/documentation
https://www.eiffel.org/documentation
http://www.berenddeboer.net/eiffel/archive/halstenbach_eiffel_history.html
http://www.berenddeboer.net/eiffel/archive/halstenbach_eiffel_history.html
https://www.youtube.com/watch?v=zynTlO-72gc
https://www.youtube.com/watch?v=zynTlO-72gc
https://bitbucket.org/Nicro950/nicroware.analzer.master/src/master/
https://bitbucket.org/Nicro950/nicroware.analzer.master/src/master/
https://github.com/csharpfritz/CoreWiki
https://github.com/csharpfritz/CoreWiki
http://www.ecma-international.org/publications/standards/Ecma-334.htm
http://www.ecma-international.org/publications/standards/Ecma-334.htm

[12] mairaw. Code Contracts. url: https://docs.microsoft.com/en-us/
dotnet/framework/debug-trace-profile/code-contracts (visited on
06/07/2019).

[13] Robert C. Martin, ed. Clean code: a handbook of agile software craftsman-
ship. Upper Saddle River, NJ: Prentice Hall, 2009. 431 pp. isbn: 978-0-
13-235088-4.

[14] B. Meyer. “Applying ’design by contract’”. In: Computer 25.10 (Oct.
1992), pp. 40–51. issn: 0018-9162. doi: 10.1109/2.161279. url: http:
//ieeexplore.ieee.org/document/161279/ (visited on 06/05/2019).

[15] Chris Newcombe et al. “How Amazon web services uses formal methods”.
In: Communications of the ACM 58.4 (Mar. 23, 2015), pp. 66–73. issn:
00010782. doi: 10.1145/2699417. url: http://dl.acm.org/citation.
cfm?doid=2749359.2699417 (visited on 01/16/2019).

[16] Null References: The Billion Dollar Mistake. InfoQ. url: https://www.
infoq.com/presentations/Null-References-The-Billion-Dollar-

Mistake-Tony-Hoare (visited on 06/09/2019).
[17] Source code for the CodeContracts tools for .NET. Contribute to mi-

crosoft/CodeContracts development by creating an account on GitHub.
original-date: 2015-01-06T19:48:32Z. June 7, 2019. url: https :

//github.com/microsoft/CodeContracts (visited on 06/07/2019).
[18] TLA+ Video Course. url: https : / / lamport . azurewebsites . net /

video/videos.html (visited on 11/14/2018).

66

https://docs.microsoft.com/en-us/dotnet/framework/debug-trace-profile/code-contracts
https://docs.microsoft.com/en-us/dotnet/framework/debug-trace-profile/code-contracts
https://doi.org/10.1109/2.161279
http://ieeexplore.ieee.org/document/161279/
http://ieeexplore.ieee.org/document/161279/
https://doi.org/10.1145/2699417
http://dl.acm.org/citation.cfm?doid=2749359.2699417
http://dl.acm.org/citation.cfm?doid=2749359.2699417
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare
https://github.com/microsoft/CodeContracts
https://github.com/microsoft/CodeContracts
https://lamport.azurewebsites.net/video/videos.html
https://lamport.azurewebsites.net/video/videos.html

	Introduction
	Contributions and Outline

	Background
	Terminology and Symbols
	Domains and Restrictions
	Methods for Improving Code Correctness
	Symbolic Execution
	KLEE
	Hacker Tools

	Formal Specification
	TLA+

	Design by Contract
	Eiffel
	Dafny

	C# and .NET
	C# Compilation
	The .NET Compiler Platform, Roslyn
	Roslyn Analyzer

	 use Cases
	Accessing an Array Index
	Nullable Object
	Examples from CoreWiki

	Design
	Design Process
	In Code Design (Helper Library)
	Code Analysis
	First-Pass Analysis
	Main-Pass
	Scopes in General
	HandleNode and Return Scope
	Nullability in C
	Passthrough
	Only Analyzing Changed Files
	Not Necessary Checking
	Query and Response or Atomic Operations

	Logic Scope
	If Condition Scopes
	AND and OR Scope
	Merging of Scopes
	NOT Operator
	Else Scope Promotion
	Execution of an If-Scope Calculation

	Implementation
	Helper Library
	Attributes
	Helper Methods

	Code Implementations
	Restriction
	Linked Restrictions
	VariableScopes
	ContextScope
	ContextInfo
	Nullability Implementation
	Strict Nullability vs. Floating Nullability
	Null Scopes are Inverse of Normal Scopes

	First-Pass of the Analysis
	Main-Part Analysis
	HandleNode
	Wrapped scopes

	If Scope Calculations
	Rolling If-Scope Calculations

	Evaluation
	Code Problem Types
	Problems with Throwing Exceptions
	CoreWiki
	Innovation Norway Projects
	Removal of Tests

	Discussion
	Differences to Design by Contract Languages
	Difference to Symbolic Execution
	Where to use
	Problems with Using the C# Language for
	Restricted Relations
	Problems and Considerations with
	Future Work
	Integration with ComponentModel.DataAnnotation
	View Scopes
	Immutability
	Require NonNull Field
	Advanced Scope Calculations

	Conclusion

