
Visualization and comparison of geospatial data
Using modern game development tools

Tom Kristian Tjemsland

ABSTRACT
Every second, a mind-numbing amount of data concerning the real
world is gathered worldwide. Everything from the speed of cars
through a road junction, to the geographical position of African
lions, are registered and stored on enormous servers. This data
have been collected to serve many different needs and purposes
and so, the possible formats for the representation of the data vary
greatly. Some data represents a single point on a road section, such
as accidents and locations of zebra crossings, while another set
of data could represent directional geospatial data, such as force
and direction of wind or ocean currents. Often, a simple data regis-
tration also contains multiple properties. Weather data collected
from a single location could for example include properties such as
humidity, temperature, precipitation and dew point temperature.

This paper will explore how to reliably visualize and compare
arbitrary properties from different data collections belonging to
the municipality of Stavanger. Easy integration of new sources
will be possible, but for the scope of this paper, the source will
exclusively be open data made available by Statens Vegvesen. How
to properly visualize different data sets using virtual reality will
also be discussed, meaning that both user experience and GUI will
be considered. The goal will be to make a program that is both
user-friendly and delivers intuitive functionality.

KEYWORDS
Data Visualization, Virtual Reality, Game Engine, Unity

1 INTRODUCTION
Human population, internet speeds, and storage capacities are

all rapidly increasing, and naturally, the amount of data generated
follows this trend tightly. An industry insight released by IBM in
2013 estimated that 2.5 million terabytes of data were generated
every day. They also estimated that 90% of the world’s data had
been generated in the last two years [3]. It’s clear that the amount of
data being produced yearly is growing exponentially and it shows
no sign of slowing down. For more modern statistics, the American
computer software company DOMO releases a yearly report on
data generation called data never sleeps [1]. The 6th edition covers
the year 2018 and an excerpt from the presented results is shown in
Figure 1. We can see that data comes from widely different sources

Supervisor: Erlend Tøssebro.
External Supervisors: Morten Forsberg Aasbak and Sindre Tøsse.

Master Thesis, IDE, UiS
2019.

Figure 1: Data generated per minute in 2018 as presented by
the report data never sleeps 6.0.

and in many different shapes, with data pertaining to both physical
and virtual events.

Scientia potentia est, or knowledge is power, is a famous Latin
phrase often attributed Sir Francis Bacon and it absolutely holds
true for today’s world. As more data is being generated, it be-
comes much more important to collect and research this data. For
privately owned companies such as Lyse, Ebay or Amazon, this
research could provide invaluable results that could help steer the
company towards a more profitable path. This could be achieved by
increasing profits or by decreasing losses and expenses. But because
this research contain so much value, it’s often kept private and im-
possible to access. With the increase in data gathering, there is
also an increase in publicly available data. Norwegian Public Roads
Administration, or Statens Vegvesen, is an example of a source that
has recently made huge amounts of data publicly available. Open
data like this carries significant value by itself and enables us to
read and process all kinds of information. However, instead of treat-
ing the data sets strictly as independently collections, it would be
extremely valuable to be able to compare them across sources. Data

Master Thesis, IDE, UiS Tom Kristian Tjemsland

that can be pinpointed to some specific location, be it country, city
or geographical coordinates, are especially interesting since data
with overlapping locations can easily be compared. By taking it
one step further and allowing users to explore the data in Virtual
Reality, the value of the data sets would be enhanced as distribution,
outliers and potential patterns would be much simpler to observe.

Related Work. Despite the value it could provide, there is little
information to find about generically comparing geospatial data
across different sources. There has been far more research regard-
ing geospatial data in general. For instance, an article released in
the journal Big Data Research discusses the challenges and oppor-
tunities that are linked to geospatial big data [5]. Another article
explains a tool developed for visualising simple data by using the
Quake 3 game engine [4]. While the latter shares some similarities
with this paper it does not explore the possibilities for comparing
data.

• We visualize a map over Stavanger, Norway in the game
engine Unity.

• We visualize different data types as a three dimensional
overlay to the map.

• We construct a graphical user interface allowing the com-
parison of arbitrary properties.

2 BACKGROUND
In this section, we will be introducing both Unity and Mapbox, as
well as giving details on the source that we will be using throughout
this paper, Statens Vegvesen. We will also briefly explain the content
of the data made available.

The game industry is a multi-million dollar business, and the
U.S. alone has more than 2400 companies operating within this
sector [8]. A handful of commercially available game engines clearly
dominate the marked, with some of the more popular alternatives
being Unity, Unreal Engine and Game Maker. Game Maker focuses
primarily on the development of two-dimensional games, whereas
both Unreal and Unity have a clear focus on the development of
three-dimensional games. Unity was initially released in 2005 and
the intention was to offer a more affordable game development
tool to the public. A few years later, in 2009, at a conference in
San Francisco, it was announced that Unity would become freely
available [10]. This resulted in amassive surge in popularity that can
be seen in Figure 2. Coupled with well documented functionalities,
this have resulted in Unity becoming the most wide-spread and
popular tool for creating games.

Mapbox is a company providing online maps that was founded
in 2010. The available data comes from open data sources, such
as OpenStreetMap. Although many map providers exist, Mapbox
is of interest as it can easily be integrated into Unity through a
free SDK. Beside providing standard map visuals, Mapbox also
supports visualization of three-dimensional map geometry and
buildings. The visualization of the various objects is divided into
smaller sections, known as chunks. By providing Mapbox with
a geographical coordinate, we can reliably visualize all chunks
within some specified radius. The SDK also comes with caching as
an out-of-the-box feature. This means that the program will save
time whenever the user tries to load a chunk that has been visited
previously.

Figure 2: Relative interest in the search terms "Unity", "Un-
real Engine" and "GameMaker" since 2004. Data found using
Google Trends [9] and plotted in excel.

All the data that we will be working with is distributed by Statens
Vegvesen. The various data collections can be retrieved as either
XML or JSON formatted lists. This source supports complex queries,
which means that very specific collections of data can be requested.
Being a public roads administration, all the data that can be accessed
is related to Norwegian roads or events occurring on the roads. An
example of available data collections provided by Statens Vegvesen
can be seen below.

• Manholes
• Speed Limits
• Accidents
• Tunnel Sections
• Bridges
• Speed Bumps
• Traffic Amount

Although this source introduces a fair amount of data, they
always fall into one out of two categories. The real-world location
of data can be given as either a single point or a linear section of
some road. Accidents and Speed Bumps are examples of the former,
while Tunnel Sections and Bridges are examples of linear data.

Each entry in a data collection contains a great amount of in-
formation. Among this information there is a list of properties. As
an example, entries of Manholes contains properties such as Depth,
Diameter andMaterial Type. It is primarily these properties that will
be the focus of all comparisons. There is also information regarding
which road the data belongs to, and the geometry of the data. For
point data, this geometry is simply given as a single geographical
point. Line data is instead given as a list of geographical points.
This list is usually extremely long due to the density of the points.

Lastly, it would be absolutely meaningless to compare the prop-
erties of data collections at one specific instance of time. This is
because the data provided by Statens Vegvesen is updated infre-
quently and irregularly. Some of the recorded values are months
old, while others are older than a decade. However, this does not
mean that comparisons will be irrelevant altogether. This simply

2 / 25

Visualization and comparison of geospatial data Master Thesis, IDE, UiS

means that all the properties will have to be treated as either rela-
tive or constant. There is a clear overweight of constant properties,
with some examples being the diameter of manholes and the length
of bridges. Traffic Amount is an example of a data set with some
relative properties. It cannot tell us how much traffic there is on
some road at a given time, but it can tell us which road has the
highest traffic load relatively.

3 METHOD
In this section, we will elaborate on how the program was made
using the game engine, Unity. Because we need the support for
both visualization and comparison from the same software, we will
have to design a more complex structure.

Point Data: Data covering a single point on a road.
Line Data: Data covering a section of some road.

For simplicity, we will from here on, refer to the two data cate-
gories as Point Data, and Line Data. As seen in the table above, they
refer to points on a road and sections of a road, respectively.

3.1 Defining comparable data
Before looking into the design of the program, we have to assign
a definition to the term, comparable data. With two different cat-
egories of data, there are three unique types of comparisons that
would be technically possible. These comparisons consists of com-
paring point and point data, point and line data, and line and line
data. However, in our specific situation, only one of these com-
parisons would actually provide valuable results. Considering two
different collections of point data, we would immediately encounter
an issue with overlapping data entries or rather lacks thereof. Re-
gardless of the amount of data entries, very few will share the same
identical geographical space. Road data can only be used to describe
their exact location, unlike other types of data such as temperature,
wind and precipitation, which also describes their surroundings.
This introduce complications when performing generic compar-
isons, as it would be difficult to determine the direct relationship
between the data collections. As a result, the only cross-data com-
parison that we will be considering is between point and line data.
These two data types can easily be compared as long as the section
covered by the line data also contains the point. The results of these
comparisons can then be used to create co-occurrence matrices or
scatter plots, depending on the specific property types involved.

As mentioned before, comparing properties across different data
collections does not produce meaningful results. However, we are
still interested in allowing users to compare two different properties
belonging to the same data collection. Since comparisons like this
only occur internally in a data set, property overlapping can be
ignored as it’s no longer of concern. An example of a comparison
like this would be to compare the depth of manholes with the di-
ameter of manholes. The results of an internal comparison can be
presented in the exact same manner as a cross-data comparison.

Because Unity operates with three-dimensional scenes, it would
also be of interest to plot three different properties against one-
another in three-dimensional plots. Not only could this be used to
show pattern between more than two properties, but it could also
be used to evaluate the value of a 3D environment.

Figure 3: General structure of the finished program.

3.2 Property types
The number of available comparisons rises exponentially with the
number of allowed property types. We have selected two proper-
ties, numerical and text-based, to maintain focus on the design of
new features, rather than implementing support for an increasing
number of comparisons. Other properties such as date and geome-
try will be ignored, which means that we need to consider three
different possible comparisons, as seen below.

• Numerical and Numerical comparison.
• Numerical and Text comparison.
• Text and Text comparison.

When both properties are numerical, we will show the results
of the comparisons as a scatter plot. The X and Y coordinates of
each point will correspond to the numerical values on overlapping
properties. Similarly, when comparing numerical and text proper-
ties, the X coordinate will correspond to the various text values.
The result will be a plot with scattered “lines” over each text value,
which gives a visual insight on data density. If both properties are
text-based, the result will be shown in a co-occurrence matrix. The
rows and columns will correspond to the possible text values of
the two properties. The number within each cell will be the result
of how many times the different text values occur together. The
produced co-occurrence matrix shows density, as well as which
text values are more likely to overlap.

3.3 Design
The final program needs to fulfill many requirements. It needs to
be able to render multiple data types simultaneously and compare
arbitrary properties. These operations need to occur so that the
program does not slow down or stutter significantly. Furthermore,
the graphical user interface, or GUI, has to be intuitive enough
to require minimal explanation. Meeting these requirements have
been the main focus when designing the program. This has led to a
general structure as shown in Figure 3.

Game Manager denotes the primary script and follows the stan-
dard Unity naming convention. This is the component responsible
for start-up procedures and general management of the program.

3 / 25

Master Thesis, IDE, UiS Tom Kristian Tjemsland

Figure 4: The structure of each individual data packet.

For this particular project, its primary function is to handle user
input and relay information to the rest of the system. Both button
presses and drop-down menu selections within the GUI main menu
will be handled by this component. Other functions of the Game
Manager is to inform the Data Manager whenever new data needs
to be cached and update the content of the Render Manager.

The Map Manager provide a static instance of itself and is ac-
cessible from any script. This component mainly functions as a
connection to the functions and variables belonging to Mapbox.
Many important variables have been set within the map object even
before run time, such as tile-size and radius of the rendered region.
One of the most important variables is the current position of the
player. The Map Manager makes it easy to retrieve this position
clamped to the center of the closest tile. It also functions as a transla-
tor between geographical coordinates and world-space coordinates.
This is important because all data returned from Statens Vegvesen
has its location expressed as latitude and longitude.

The Render Manager handles everything related to data visual-
ization and comparison. Whenever new tiles should be rendered,
the Render Manager queries the Data Manager and uses the results
to draw data within a bounded region around the player. It can
simultaneously render two different data types, primary and sec-
ondary. Primary and secondary has to be set by the Game Manager
before the respective data can be rendered. Different data types also
have to be considered, with line data rendering as lines, and point
data rendering as pointers. Because this component has control
over all the data visuals, it is also responsible for generating the
various plots. Having a strong connection between rendered and
visualized data makes it possible to give the user feedback regarding
the relations between them.

Data Manager. Most of the design requirements rely on well-
structured data management. This makes the Data Manager the
most important component of the general structure. It also makes
this component the most complex of them all, with many internal
classes and structures. To better explain the Data Manager, we will
be elaborating on the design in a bottom-up fashion. Every single

Figure 5: The structure of each data collection.

data point from Statens Vegvesen is represented as a data packet as
seen in Figure 4.

fromPos and toPos is where each measurement starts and ends
relative to some road. They are normalized, and so they both range
between zero and one. For Point Data, these fields have been as-
signed the same value. The geometry is given as an array of vectors.
Each 2-dimensional vector has a latitude and longitude pair stored
in their x and y variables. For Line Data this array could potentially
become very long, but for Point Data there will always be only one
element. Each Data Packet also contains a set of properties. The
properties within this set can be either numeric, textual or related
to dates. If we know the property-type at each index, the original
values can be retrieved by type casting.

Data Collection, as the name indicates, represents an entire data
collection from the municipality of Stavanger. These are complete
collections such as Manholes and Speed Limits. The structure of a
Data Collection can be seen in Figure 5. The field roadOccurrences
contains a list of unique road IDs. The data field is a collection of
all individual data packets. propertyDefinitions holds a dictionary,
which connects property IDs with single property definitions. Each
definition contains data regarding the type and range of its respec-
tive data. It also provides an index, which expresses the position
this property type has in the properties collection of individual data
packets.

All the different data collections come together to create a big
set of entries. The structure of this set can be seen below.

In the figure we are referring to the various entries with indices
ranging from µ1 to µn. This is because the key to these indices will
be used within the Data Manager on multiple occasions. We will
be referring to these as the data indices.

4 / 25

Visualization and comparison of geospatial data Master Thesis, IDE, UiS

Figure 6: The structure of a look-up dictionary.

As mentioned earlier, Data Collection contains an array with
all data belonging to a certain category. The problem with this
structure is that it’s not optimized for either data visualization or
data comparison. To visualize data around the player, the program
would have to iterate over the full collection of available data and
calculate distances. This is not a viable solution, as it is slow and
provides insufficient scalability. Our solution is to create two look-
up dictionaries that can be used to find all data sources belonging
to specific roads and tiles. Line Data is assigned to tiles based on
the center of their geometry. Both dictionaries follows a similar
structure, as seen in Figure 6.

For visualization the keys are clamped tile coordinates calculated
by the Map Manager. For comparisons the keys are IDs of different
sections of road. Similar for both occasions, is that the values consist
of jagged arrays. The data indices, used when finding data entries,
will also be used here to extract appropriate sub-arrays. Each of
these arrays contains a collection of measurement indices located

Figure 7: Returning properties for a given data type using
the Data Manager.

Figure 8: Returning all geometry for a specified data type on
a given tile using the Data Manager.

on the given road or tile. The indices point to a specific Data Packet
within the data field of a Data Collection.

The last important component of the Data Manager is the entry
dictionary. This dictionary takes in a data ID and returns a data
index, starting from zero. It also contains information regarding the
data category, and can be used to evaluate whether a given data
type is Point Data or Line Data.

Flowchart. In order to better explain the design of the Data Man-
ager, we will now look at flowcharts for two possible situations.
This will help show how all the different sub-components are in-
terconnected, and how they can be used to produce certain output
data. The situations are as given below.

• Game Manager requests full list of properties for a data type.
• Render Manager requests all data geometry for a specific
data type on a given tile.

The first situation can be seen in Figure 7. As long as the data is
already cached, this system is mostly closed, with only one input
variable being needed, Data ID. The dictionary propertyDefinitions
is often short since it only contains one entry per unique property
available on a given data type. As a result, getting all properties
belonging to a certain data type is a very simple operation.

Getting all data from a given tile is slightly more complex, given
all the sub-components required for performing the operation. The
flowchart for this particular situation can be seen in Figure 8. This
operation starts similar to the previous one, but after retrieving the
data index, it also needs to refer to a look-up dictionary. The data
index works as a key to find the correct sequence of measurement
indices belonging to the tile. By using these indices, the geometry
can be accessed on all relevant measurements in a data collection.

5 / 25

Master Thesis, IDE, UiS Tom Kristian Tjemsland

3.4 JSON structure
This section explains the general structures of the JSON responses
received from Statens Vegvesen. Because there are different data
categories and property types, many variations exists within the
original structure. All significant variables on the various levels of
the JSON will be briefly explained. The top-level structure of the
JSON can be seen below.

id: ID of the data entry.
href: Link to request all data regarding entry.

egenskaper: A set of properties.
segmentering: A set of municipalities that the data belong to.

geometri: Information regarding physical geometry.
vegsegmenter: Information regarding road segmentation.

These names have been given in Norwegian and are the same
as the ones encountered within the JSON. The structure of a sin-
gle property vary slightly depending on whether it is Numeric or
Textual, as seen below.

Common
id: ID of the property.

navn: Name of the property.
datatype: An integer denoting type of data.

datatype_tekst: The name of the data type.
verdi: The value of the measurement.

Numeric Exclusive
enhet: Information regarding unit.

As presented in the table, the field enhet is exclusively given
numeric values. This field is very important for understanding the
context of the correlated value. It is, for example, absolutely vital
that users can see whether a value regards meters or kilometers.
The enhet layer can be seen below.

id: ID of the unit.
navn: Name of the unit.

kortnavn: Short version of unit name.

Most of the properties encountered have a datatype of either 2
or 30. These are numeric and textual properties, respectively. A real
property entry of each datatype can be seen below. These properties
belong to a manhole situated at Øvre Stokka, Stavanger.

id: 1586 id: 1411
navn: Dybde navn: Materialtype

datatype: 2 datatype: 30
datatype_tekst: Tall datatype_tekst: Tekst*

verdi: 0.6 verdi: Betong
enhet→id: 1

enhet→navn: Meter
enhet→kortnavn: m

* Truncated to avoid overflow. Real value is FlerverdiAttributt, Tekst.

The geometry field of the upper layer only have a single field
of significant interest for this paper, wkt. This is an abbreviation

for well-known text, which is a standardized way of representing
geometry through text. The geometry returned by Statens Vegvesen
is mostly on the format POINT Z or LINESTRING Z. These represent
point geometry and line geometry, respectively. The Z denotes that
there is also height information available within the position vector.
The structure of these geometry strings can be seen below.

POINT Z: POINT Z (X Y Z)
LINESTRING Z: LINESTRING Z (X1 Y1 Z1, · · · ,XN YN ZN)

Depending on the resolution of the geometry, LINESTRING Z can
potentially become very large. Realistically, there are often more
than 20 positions making up every individual line. Although every
position includes a Z-coordinate, we will be completely ignoring
this value throughout the project. We can do this because Mapbox
already translates any latitude and longitude to its correlated height
on the provided map.

The last field, vegsementer, contains information regarding the
road where the data entry is located. This field is very important
when performing cross-data comparisons, as it can be used to evalu-
ate whether data overlap or not. If Point Data and Line Data overlap
on a section of road, it becomes more meaningful to compare prop-
erties between these data entries. The vegsementer layer found
within the JSON can be seen below.

stedfesting: Location relative to road.
kommune: Municipality of road section.

fylke: County of road section.
region: Region of road section.

strekningslengde: Length of road section.

In this particular case: municipality, county, and the region are
predetermined by the data request, so the only field of interest
is stedfestning. The content of this field vary depending on the
category of the data, as seen below.

Common
veglenkeid: ID of road.
kortform: Compressed road info.
retning: Direction with or against road vector.

felt: Amount of lanes on road.

Line Data Exclusive
fra_posisjon: Start position of data entry.
til_posisjon: End position of data entry.

Point Data Exclusive
posisjon: Position of data entry.

sideposisjon: Side of road of data entry.

The fields fra_posisjon, til_posisjon and posisjon all regards rel-
ative positioning. This means that the correlated values span the
unit interval, or [0, 1]. Despite being a common field, the structure
of kortform varies between the data categories. For Point Data its
on the format posisjon@veglenkeid, while for Line Data its on the
format fra_posisjon-til_posisjon@veglenkeid.

6 / 25

Visualization and comparison of geospatial data Master Thesis, IDE, UiS

The content of a stedfestning field from both categories can be
seen below.

Point Data Line Data
veglenkeid: 319606 veglenkeid: 320581

posisjon: 0.64 fra_posisjon: 0.93
— til_posisjon: 0.95

kortform: 0.64@319606 kortform: 0.93-0.95@320581
retning: MED retning: MED

sideposisjon: H felt: 2

Position values have been rounded off to nearest two decimals
to avoid overflow. The left side of the table is the same Manhole
entry that was used to present real properties, while the right side is
from a Speed Limit entry covering a small section of the motorway
passing through Forus, Stavanger.

3.5 Analysis
There is absolutely no lack of tools that already visualize data. The
sheer amount of data that can be visualized through online sources
is staggering. This data can vary immensely, with some examples
shown below.

LightningMaps.org: Displays real-time lighting occurrences.
Murdermap.co.uk: Tracks homicides in London, UK.
MarineTraffic.com: Displays positions of marine vessels.

Kolumbus.no: Real-time tracking of Norwegian buses.
Worldometers.info: Displays worldwide changes in population.

BirdCast.info: Tracks migration of birds over America.

Despite being very different in how they operate and what data
is provided, all sources have a very limited scope. BirdCast.info,
for instance, only provides data that is considered relevant for the
migration of birds. This is usually the case with online data visu-
alisation services. They are often tailored to certain uses, which
makes it difficult to adopt the data for other purposes. For example,
if an individual would like to analyze the connection between pop-
ulation growth and the increase of marine traffic, they would have
to perform manual cross-checking.

The program being developed as a part of this project has a
very different approach to data visualization, with no predefined
properties. As a result, it is possible to integrate new data provides to
meet different demands. This makes it possible for users to perform
any desirable comparison, regardless of the originally intended
scope.

The use of game development tools is another reason why this
project is very different from the more common web-based ap-
proach. Through the use of virtual reality, it becomes possible to
observe the data in new and interesting ways. For example, instead
of zooming, the users can instead lean closer physically. This is a
more intuitive way of exploring data. Additionally, the use of 3D
to visualize data opens up for the possibility of producing more
complex plots. However, plots of higher dimensions will not be
relevant for this project as we are only comparing two properties
at a time.

3.6 Optimization
The majority of the optimizations have been aimed at increasing
the speed of visualizations and comparisons. The most central
component for performing these operations is theData Manager. As
a result, this component has been the major focus for optimizations.
While the design was elaborated in Chapter 3.3, there are also many
optimizations that does not concern structural aspects. With one
of the more important ones being the caching logic.

Caching of data. When the user first requests a new data type,
the response from the server will be stored locally. This is a process
known as caching and makes successive requests much faster. Since
the data we will be operating with belongs to the municipality of
Stavanger, the program caches all data of a given type in a single
operation. For larger cities, such as Oslo, it could have been nec-
essary to divide the region into smaller subsections to maintain
acceptable operation speeds. However, this could create other prob-
lems such as Line Data entries crossing boundaries, which again
would result in data existing on multiple tiles. Besides increasing
cache size, this could cause multiple instances of a data entry to be
rendered simultaneously, which would result in unnecessary draw
calls.

For certain operations, the program needs to know the mini-
mum and maximum values found within a set of numeric proper-
ties. These values are stored together in each properties’ respective
Property Definition. Getting the minimum and maximum values for
a single property requires an iteration through all data entries in
a set. This is of concern as the number of entries and properties
could cause a slowdown if the programwere to calculate everything
while caching data. The way the program handle this issue is by
calculating these values on-demand. Just like for entire data sets,
these values are also cached to operate faster on successive requests.
This is a much more logical approach, as most properties will not be
of interest to a single user. At most occasions only a small number
of properties will actually be visualized and compared.

There will always be a trade-off between storage requirements
and performance. By introducing caching and look-up dictionaries,
we effectively increase the speed of operations, at the cost of need-
ing to store more data locally. The best way to combat this issue is
by limiting the size of the locally cached data. As seen previously
in Figure 4, this program stores numeric properties by their actual
type, rather than as pure text. This help reduce the size of the final
cache as float variables only require 4 bytes, rather than 1 byte per
character. The different storage requirements for a small section of
pi can be seen below.

π : 3.1415927
Float: 4 bytes
String: 9 characters = 9 bytes

As the program receives new data from Statens Vegvesen, it has
to perform some heavy processing before the result can eventually
be stored locally. Part of this processing involves parsing pure text
into the enormous JSON structure described earlier. By default,
this causes the entire program to stop for multiple seconds, which

7 / 25

Master Thesis, IDE, UiS Tom Kristian Tjemsland

negatively impacts the VR experience. To avoid this issue, an op-
timization was made where most of the heavy processing occurs
in a separate thread. This works well as long as the user is given
visual feedback regarding the current progress.

3.7 Implementation
The program was in its entirety programmed in C# using the pow-
erful game engine, Unity. In this section, we will highlight central
concepts of the various components, how they function, and how
they operate together. We will also elaborate set-up and operation
of the Graphical User Interface.

One of the features that makes Unity so useful is a feature called
the Inspector. The Inspector makes it possible to view and interact
with the different components of a game object directly in the Unity
IDE. This feature is especially useful when operating with custom
scripts. Any variable that have been declared public will be exposed
in the Inspector. This makes it possible to see and adjust variables
at run-time. It also makes it simple to change initial values without
having to open the script and locate correct variables.

Mapbox is an important external framework used throughout
this project. Besides providing map visuals and building geometry,
it also comes bundled with a series of other frameworks. The most
significant of them being Json.NET [6]. This framework simplifies
working with JSON files, and is particularly useful when handling
the response from Statens Vegvesen.

Before looking into the core modules of the program, we will be
taking a closer look at how Mapbox is set-up to function as desired.
After being successfully imported to the project, Mapbox supplies
a pre-made game object, called Map, that can be included in the
scene. This game object has an Abstract Map script component
that handles all general functionality provided by Mapbox. Figure 9
shows this component as it appears exposed in the Inspector.

The General settings are used to define the extent, scale and
location of the map. Longitude Latitude is used to position the center
of the map, with given coordinates corresponding to the center of
Stavanger, as seen in Figure 10. Zoom defines the zoom-level of the
map view and will for all purposes be kept constant throughout
the program. A zoom level of 14 was chosen as it significantly
reduces the amount of building geometry that has to be rendered.
How detailed this specific zoom-level is can be seen in Chapter 4.2,
where a set of sample scenarios are explained. The Extent Options
have been set to only render the map around a specific Transform.
By setting the player as the target transform, we can easily render
map geometry exclusively around the player within some specified
radius. Having a Visual Buffer of 3 results in a visible region of 3 by
3 tiles, centered around the player. A Disposable Buffer of 4 denotes
that a maximum of 4 · 4 = 16 tiles can be rendered simultaneously.
When the current amount of rendered tiles exceed this amount, old
tiles will be unloaded. When Snap Map To Zero is toggled, it causes
the center of the map to align with Unity’s coordinate system. This
means that the geographical coordinate with latitude 58.968 and
longitude 5.7325 corresponds to the position (0, 0, 0) in Unity. Unity
Tile Size determines the scale of each tile in Unity. With a value
of 5, this means that the side of each tile have a length of 5 units
within Unity’s coordinate system.

Figure 9:AbstractMap as it appears exposed in the Inspector.

The Image settings controls the visual style of the rendered map.
Satellite images are available, but for this project, we have decided
to use a minimalist dark theme, which results in fewer distractions
when observing the data.

The Terrain settings can be used to add 3-dimensional geometry
to the terrain of the map. However, flat terrain will be used, as 3D
terrain occasionally causes clipping issues when placing Line Data
geometry.

TheMap Layers settings determines the data sources that will be
used when rendering the map. Preferably the Data Source should be
set to Mapbox Streets With Building Ids. This would have assigned
each building a unique ID, which would have made it possible to
replace and remove specific buildings. The problem with this data
source is that very few building in Stavanger actually have an ID
assigned. As a result, data source have to be set to Mapbox Terrain
in order to get expected building geometries.

The Features settings are used to render special objects beside
standard map visuals. This is where we can define how buildings
should be visualized. Any building of type cathedral have been
filtered out. For Stavanger, this only affects Stavanger Domkirke,
which will be replaced by a custom 3D model.

A weird problem encountered with Mapbox was that the cen-
tral lake in Stavanger, Breiavatnet, was missing. This could cause
confusion among users, as it is a well-known landmark. A custom

8 / 25

Visualization and comparison of geospatial data Master Thesis, IDE, UiS

Figure 10: Center of map as shown in Google Maps.

script was made to handle this issue, with exposed parameters in
the Inspector as seen below.

This script spawns and maintains the position for a set of custom
objects according to some geographical coordinates. Both Breia-
vatnet and Stavanger Domkirke was made in the 3D modeling tool
known as Blender [2].

Map Manager. The Map Manager works as a bridge between the
Abstract Map script, provided byMapbox, and the rest of the system.
It also houses a custom class called Vector2Int, which represents a
2-dimensional vector where both coordinates have integer values.
Unity and Mapbox already provides Vector2 and Vector2d, which
operates with float and double values, respectively. However, inte-
ger vectors are necessary since floating-point numbers are unsafe
as dictionary and hashmap keys.

Retrieving clamped player position
1 static Vector2d clampVal = new Vector2d (100, 50);
2
3 public Vector2Int GetTargetPositionClamped ()
4 {
5 Vector3 pos = targetTransform.position;
6 Vector2d geoPos = map.WorldToGeoPosition(pos);
7 int x = Mathd.RoundToInt(
8 100 * Mathd.Round(geoPos.x * clampVal.x) /
9 clampVal.x
10);
11 int y = Mathd.RoundToInt(
12 100 * Mathd.Round(geoPos.y * clampVal.y) /
13 clampVal.y
14);
15 return new Vector2Int(x, y);
16 }

The most important function of the Map Manager is to calculate
the center of the tile the player currently occupies. This makes
it possible to divide the data into sections based on tile location.
The function that performs this operation can be seen above. This
function should return latitude rounded off to the closest 0.01 and
longitude rounded off to the closest 0.02. Latitude and longitude
need to have different values for the data regions to appear as
perfect squares. This is caused by Mapbox having different scaling
on its latitude/longitude axes. The clamping calculation performed
for the coordinates of Stavanger can be seen below.

Latitude: 58.968 · 100 ≈ 5897 ⇒ 5897/100 = 58.97
Longitude: 5.7325 · 50 ≈ 287 ⇒ 287/50 = 5.74

For all possible situations, these two values will only have two
significant decimals. By multiplying both values with 100, we can
avoid floating-point numbers, and work with integer values instead.
The position of surrounding tiles can then easily be calculated by
using the equation below.

(lat , lonд) = (baseLat ,baseLonд) + [x , 2y]

Where x and y is the distance in tiles along the latitude and
longitude axis, respectively. This makes it easy to calculate the keys
for tiles surrounding the player, and only render a small subset of
the data at any given time. Keys for the tiles adjacent to the center
of Stavanger can be seen below.

. . .
...

...
...

...

· · · (5896, 576) (5897, 576) (5898, 576) · · ·

· · · (5896, 574) (5897, 574) (5898, 574) · · ·

· · · (5896, 572) (5897, 572) (5898, 572) · · ·

...
...

...
...

. . .

9 / 25

Master Thesis, IDE, UiS Tom Kristian Tjemsland

Figure 11: The coordination between the Game Manager,
Vegvesen Loader and Data Manager during a data caching
event.

Data Manager. The implementation of this component revolves
around its unique design, which has been thoroughly described in
a previous chapter. Most of its functions are for retrieving specific
subsets of the stored data. There is also a function for caching data
that takes a JSON object as an input parameter. However, retrieving
and caching the data from Statens Vegvesen takes too much time for
it to be a single operation. It would be difficult for users to determine
whether something went wrong, or if the data is still being loaded.
The script VegvesenLoader was written for this specific purpose. It
defines a series of asynchronous methods for caching the data and
functions as an intermediary between the Game Manager and the
Data Manager. The coordination between these components during
the caching of a single data set can be seen in Figure 11.

As seen in the figure, the Game Manager sequentially calls the
methods defined within the Vegvesen Loader. Since these methods
are asynchronous, the Game Manager await for each method to
complete before continuing. This way, theGameManager can simul-
taneously present the progress of the ongoing caching operation in
the GUI. Feedback provided the user during the caching operation
can be seen in the column GUI feedback. This entire operation can
be divided into three sections, as shown by the colors: requesting
data, reading the response and caching the data.

When caching a data set, two separate data requests have to be
sent. One for receiving information regarding the data collection
in general, and one for receiving all data of the given type. The
response from the former request is, among other things, used when
determining data category, Line Data or Point Data. Both requests
can be seen below, in the order they were mentioned.

• https://www.vegvesen.no/nvdb/api/v2/vegobjekttyper/{ID}
• https://www.vegvesen.no/nvdb/api/v2/vegobjekter/{ID}?
kommune=1103&inkluder=egenskaper,vegsegmenter,
geometri&srid=4326&antall=5000

The second request is slightly more complex, because more spec-
ifications are needed to receive the expected data. kommune is the
municipality we want to get data from, with 1103 being the mu-
nicipality of Stavanger. inkluder is the additional data we want to
have returned from the server. If this field is left empty: properties,
road segmentation and geometry will not be contained within the
response. An srid value of 4326 makes sure the coordinates are
given on the format of WGS 84, orWorld Geodetic System. This is
the expected coordinate system where locations are defined using
latitude and longitude. antall decides how many entries should
be contained within the returned response. By setting a signifi-
cantly large value, we can be certain to always collect every entry
belonging to Stavanger. The common variable for both requests,
{ID}, denotes the ID of the desired data collection. This ID differ for
each instance of the Vegvesen Loader. The IDs for some of the data
collections can be seen below.

Data Collection ID
Manholes 83
Speed Limits 105
Accidents 570
Tunnel Sections 60
Bridges 67

The responses from Statens Vegvesen are received as long se-
quences of bytes. On this format, the data is not very valuable. To
make use of the data, the bytes first has to be interpreted as UTF8
strings. Depending on the size of the response, this operation could
take a significant amount of time. However, it is always the fastest
of the three sections.

Caching data
1 public IEnumerator CacheData ()
2 {
3 bool done = false;
4 Thread _thread = new Thread (() => {
5 JObject info = JObject.Parse(infoString);
6 JObject dataRoot = JObject.Parse(dataString);
7 roadDataManager.RegisterData(
8 ID, info , dataRoot
9);
10 done = true;
11 });
12 _thread.Start();
13
14 // Wait for thread to finish
15 while (!done) {
16 yield return new WaitForSeconds (.1f);
17 }
18 }

Before caching the data, we have to transform the UTF8 strings
over to JSON objects. The problem is that themethods defined by the
JSON library are not asynchronous, and so the entire game freezes
until the operation finishes. This is unacceptable as it impairs the
feeling of immersion using VR. To avoid this issue, most of the slow
operations occur on a separate thread, as seen in the code excerpt
above. A Boolean, done, handed over by the main thread ensures
that progress does not continue until the data have been cached
successfully.

10 / 25

Visualization and comparison of geospatial data Master Thesis, IDE, UiS

Game Manager. The Game Manager operates on the programs
presentation layer, or front end. User input, as well as GUI updates,
are handled within this component. Unity handles GUI presenta-
tions and interactions through a Canvas game object. Children of
this object assign screen boundaries to GUI exclusive text or graph-
ics components. For the Game Manager to be able to locate all GUI
elements, it have been given a reference to the root of this Canvas.
The Canvas hierarchy, from layer four and up, can be seen below.

The grayed out entries are currently disabled, but can be enabled
through code whenever needed. This canvas can be divided into
two sections: a primary panel and a secondary panel. The primary
panel is more important, as it handles the selection and render-
ing of the primary data collection. It’s also the only panel needed
when performing comparisons between properties of a single data
collection. The secondary panel is only active while performing
cross-data comparisons. From the root of this hierarchy, the Game
Manager can easily locate either of these panels. Two important
functions provided by Unity, can be seen below.

transform.GetChild(N)
transform.Find("...")

The former function allows us to get any child-transform at a
given index, while the latter can be used to find a child-transform
by name. And so, to get the primary panel from the Canvas root,
we can use the code below.

root.GetChild(0).Find("PrimaryPanel");

Only one of the sub-panels Selection, Loading and Default are
active, at any given time, depending on the current situation. The
Selection panel is the first GUI component presented. This is where
the player can choosewhich data collection theywant to beworking
with. If the collection have yet to be cached, the Loading panel will
be displayed temporarily. The most important sub-panel is Default,
where rendering and comparisons can be initiated. All sub-panels
can be seen in Figure 13, as they appear in the GUI.

Both the selection and default panel presents a drop-down list
to the user. For the Selection panel, the content of the drop-down
is a list of available data collections. While for the Property panel,
this list contains all properties available on the currently selected
data collection. The text entries for the drop-down options come
from widely different data structures. In the case of the Selection
panel, the options comes from the variable name found within the
custom class DataDefinition. The property drop-down options are,
on the other hand, retrieved from a string array. A generic option

(a) Selection

(b) Loading

(c) Default

Figure 12: Primary sub-panels as displayed in the GUI.

generator function was made to support both situations, as seen
below.

Generate options for dropdown
1 public List <Dropdown.OptionData >
2 CreateDropDownOptions <T>(
3 T[] array , Func <T, string > GetVariable
4)
5 {
6 /* Create a set of option */
7 List <Dropdown.OptionData > options =
8 new List <Dropdown.OptionData >
9 {
10 new Dropdown.OptionData("None␣Selected")
11 };
12
13 foreach (T temp in array) options.Add(
14 new Dropdown.OptionData(GetVariable(temp))
15);
16 return options;
17 }

The function CreateDropDownOptions defines a generic variable
type locally named T. As input variables it takes an array of T ele-
ments, but also another function. The supplied function is expected
to accept a single T element and return a string. Both situations
mentioned earlier can now be supported as seen below.

CreateDropDownOptions(dataCollections, c => c.name);
CreateDropDownOptions(properties, c => c);

11 / 25

Master Thesis, IDE, UiS Tom Kristian Tjemsland

The Loading panel is an intermediate panel that is shown be-
tween the Selection and Default panel. Besides showing info regard-
ing the current status, it also displays a loading icon to ensure the
user that progress is being made. This icon does not actually rotate.
It’s instead animated using custom graphics and shaders. The most
important texture can be seen below.

This image consists of ten smaller circles following the outline
of one larger circle. The gray scale values in the image represents
the alpha-values in the original texture. Each small circle in the
sequence slowly increase in visibility. If we imagine this alpha value
to start over at 0 after passing 1, there would be an equal differ-
ence in alpha values between lateral circles. In this particular case
where there are ten circles, the difference can be calculated to be
1/10 = 0.1.

Shader excerpt for loading texture
1 fixed4 frag(v2f V) : SV_Target
2 {
3 fixed4 c = SampleSpriteTexture(V.texcoord);
4 c.rgb *= c.a;
5
6 fixed back = _Time.y % 1;
7
8 if (back > .5 && c.a < .5) back -= 1;
9
10 if (c.a < back || c.a > back + .5) discard;
11
12 fixed rel = (c.a - back) * 2; // 0 - 1
13
14 return V.color * 3 * rel;
15 }

An excerpt from the shader used to animate the loading texture
can be seen above. As a product of the current time, we define a
back variable. This makes up the posterior of the visible alpha-space.
If any pixel from the texture have an alpha value within the range
back < alpha < back + 0.5, then it should be rendered.

The figure above shows the visible alpha range with back located
in the lower half. If the alpha value of a pixel resides in the lower
half of the scale, while back is currently located the upper half,

potential issues could arise. For these situations, the location of
back is recalculated as if it has wrapped around, as seen below.

Any pixel outside the visible range is discard, i.e. not rendered to
the loading icon. If a pixel have been determined to lie within the
visible range, its relative visibility is calculated. This is a unit alpha
value, where pixels closer to the location of back is less visible. As
a result, the icon seems to be rotating, while in reality, we’re only
altering the alpha values of the individual circles. This gives a crisp
animation with the need for only a single texture.

Another job handled by the Game Manager is making sure the
user does not have problems locating the GUI. Unlike traditional
computer programs, Virtual Reality does not go well with screen-
space menus and interfaces. In fact, menu-panels with fixed posi-
tions within the user’s viewport could be felt as uncomfortable, or
even claustrophobic. The result is that GUI elements have to be
placed in world-space instead. Moving the GUI around would only
confuse the user, so the best option is to guide the user towards the
intended view.

The approach for this project is to guide the user through arrows
moving along the inside of a cylinder. Texture for a single arrow
can be seen in Figure 13a. To get multiple horizontal replications
of the arrow texture, the UV mapping is as seen in Figure 13b. The
red and green values of the UV points towards a relative x and y

(a) Texture

(b) UV Mapping

(c) Result

Figure 13: Arrows guiding the user’s view.

12 / 25

Visualization and comparison of geospatial data Master Thesis, IDE, UiS

Figure 14: Calculating the alpha of arrows using camera ro-
tation.

coordinate within the given texture, respectively. For both halves
of the cylinder, the red values increase towards the GUI, but jump
back to zero after passing a value of one. Figure 13c shows how the
arrows render in world-space. To better guide the user, the arrows
have been animated to slowly move towards the direction they are
pointing. This has been accomplished by making the shader read
texture coordinates with an increasingly negative displacement
along the x-axis.

It is in our interest to only display the arrows whenever the
player loses track of the GUI. Having the arrows animate while
users maneuvers the menu would be distracting. To solve this issue,
we have to calculate where the player is currently looking, as seen
in Figure 14. The symbol β denotes the angle between the camera’s
forward vector, and a vector pointing directly towards the intended
view.While β is smaller than a certain threshold, angleα , the arrows
remains invisible. This gives the user some degrees of freedom,
where they can look around without being guided towards the
correct view. For any angle greater than α , we calculate an alpha
value as seen below.

alpha =
β − α

180 − α

For this calculation, we want to work with vectors that exclu-
sively belongs to the XZ-plane. The player should be able to look
up or down without influencing the visibility of the guiding arrows.
We can achieve this by ignoring any y-component of the vectors
before calculating the β-angle, as seen below.

v2 = [vx , 0,vz]

By default, the increase of the alpha value is linear. This means
that the user has to look more than 90 degrees away from the
GUI before the arrows can reach half visibility. It would be much
better if the arrows became visible quickly after passing the α-
angle threshold. The constant speed of which alpha increase is also
not desirable, as it makes the critical angles, alpha and 180, very
apparent. We want the alpha to change less in value close to these
critical angles. A much smoother function can be achieved by using
properties of the cosine function, as seen below.

y =
cos(x ∗ π + π) + 1

2

For the specified region of the x-axis, this function closely resem-
bles the sigmoid function. As we can see in this figure, the change
in alpha values is much less significant towards the extremities. A
more smooth transition has been achieved, but alpha value still
stays below 0.5 until halfway through. This can be solved by using
properties of exponentiation. When operating within the space
∈ [0, 1], an exponent below one will “expand” the duration of larger
values. The full transformation can be seen below.

y =

(
cos(x ∗ π + π) + 1

2

)0.6
Figure 15 shows how the transformation looks like compared

to the original linear increase in alpha. When the β-angle is now
α+(180−α)/2, the alpha value is at 66 percent, instead of 50 percent.
The curving at the ends of the function has also been retained.

3.8 Render Manager Implementation
The Render Manager is the most complex of all the components. It
handles rendering, plotting and the display of legends belonging
to the data collections. As a result, it will be explained in its own
separate subsection.

Tominimize the number of re-calculations required by the Render
Manager, it needs to keep track of its currently rendered region and
player position. As long as the player remains within a single tile,
there is no need to perform an update. By default, we render a 3x3
tile region around the user, and should the user move to another
tile, data need to be re-drawn. However, as long as the player only
move two tiles or less, there will be no need to perform a full update.
Among the new and old tiles to render there will be overlapping
entries, as seen in Figure 16.

13 / 25

Master Thesis, IDE, UiS Tom Kristian Tjemsland

Figure 15: Increase in alpha value before and after transfor-
mation.

From the figure, we can see that the previous region was cen-
tered around (5897, 574). All currently rendered tiles have their
position stored in a dictionary, which should never have more than
nine elements. When rendering a new region, any old tiles that do
not overlap are first unloaded. For this particular case, this means
that the remaining tiles are (5897, 574), (5898, 574), (5897, 572) and
(5898, 572). The new tiles can then be rendered and have their posi-
tion added to the dictionary. In best case scenarios, only a single
new row/column need to be rendered.

Figure 16: Tile overlap among old and new tiles.

Figure 17: Content of the inspector for prefab shared by
Point Data and Line Data.

Whenever a tile is unloaded, all objects associated with that
particular tile is added to a “pool”. We have represented this in
Unity as a queue of game objects. These objects were either point-
ers or lines on the map and were deactivated before being pooled.
Whenever drawing new pointers or lines, the Render Manager first
consults this queue. As long as the pool is not empty, game objects
are drawn from there, rather than being instantiated. This speeds
up the rendering of new tiles, as spawning new game objects is a
relatively heavy process.

Point Data and Line Data are based on the same prefabricated
game object. These game objects are referred to as prefabs in Unity.
The only difference is the particular mesh being rendered. Figure 17
shows the content of the Inspector for this shared prefab. The Trans-
form component is required for all game objects and is used to
position an object within Unity’s coordinate system. Any infor-
mation on how to render the game object, such as material and
lighting, is handled by the Mesh Renderer. Mesh Filter is the only
component that differs depending on the data category. The Mesh
field is initially left empty but is assigned an appropriate mesh at
run time.

Since the geometry of Point Data entries are identical, i.e. one
single point, constructing their mesh is simple. Blender has been
used to create a custom 3D model of a gem, as seen below.

This model is particularly good for representing single points
because of its low triangle count, of only eight triangles. Even with
hundreds of data entries rendering simultaneously, there would

14 / 25

Visualization and comparison of geospatial data Master Thesis, IDE, UiS

not be a noticeable impact on the performance of the program. The
mesh information of this 3D model is stored in the Render Manager
and inserted into Mesh Filter→Mesh when placing new data on the
map of type Point Data.

Line geometry is more complex to visualize as all entries are
unique. They are made up of a series of non-linear points, rather
than single geographical locations. This means that meshes need
to be procedurally generated at run time. To take full advantage
of the 3D environment, we will be representing this data category
as arched lines. This will make the lines easier to observe from far
away, as seen below.

They mesh generation for these lines have been handled in a sep-
arate script called Line Renderer. All information this script is given
to construct the mesh is an array of coordinates. The construction
of the lines’ extremities are special cases, so we will focus on the
procedure throughout coordinate 2 to n − 1. For this range, every
coordinate lies between two other coordinates. The first step is to
decide the relative direction of the line passing through the current
point. This is to avoid artifacts where the line follows a 90-degree
turn. A simple, but effective approach, is to use the vector passing
from previous coordinate to next coordinate as seen below.

Next, we need to find the perpendicular vector (blue), which
can be found by calculating the cross product of the local forward
vector (green) and the global up vector. This vector point towards
the first vertex in the arc, going counter-clockwise. The “fan out”
of vertices can be seen below.

The length of the blue vector determines the radius of the line
mesh and can be configuredwithin the script. Location of all vertices
can be calculated by rotating the blue vector around the forward
vector. To obtain a full semicircle, we always rotate the blue vector
by 180/(ω − 1) degrees, where ω is number of vertices along the arc.

A higher ω-value will make the line smoother, but could impact
performance.

All vertices are placed into an array in the order they are calcu-
lated. Knowing this, we can easily retrieve vertices of previous arcs,
as seen below.

n denotes the array index for first vertex of previous arc. After
each section of the line have been constructed, this value is in-
creased by ω. Vertices by themselves do not produce a visible mesh,
so we also need to define a set of triangular faces connecting them.
For this particular case, each line-section can be divided into ω − 1
rectangles, which can again be divided into two triangles. One such
rectangle is the region formed by n, n + 1, n +ω and n +ω + 1. The
rectangle is split into two triangles by introducing a diagonal from
n to n +ω + 1. To ensure that the triangles are facing outwards, we
also need to consider “winding order”. The three vertices making up
each triangle need to be given in clockwise order. For the specified
region, the triangles can be defined as seen below.

Trianдle1 = (n,n + 1,n + ω + 1)
Trianдle2 = (n,n + ω + 1,n + ω)

What makes the endpoints of the line different, is that they have
access to either Previous or Next, but not both. This slightly changes
the approach for calculating the forward vector. For the first point
on the line, it’s defined as Next - Current, while the last point on
the line defines it as Current - Previous.

The full geometry retrieved from Statens Vegvesen is too dense.
All points on the line do not need to be consulted to construct
an appropriate mesh for the Line Data. For all road generations,
the program intentionally skips every second point to increase the
speed of computations. Examples of generated meshes can be seen
in Figure 18. These are all real examples generated when visualizing
the Speed Limit throughout Stavanger.

Just rendering lines and points would not convey a lot of in-
formation, except for the existence of data. By coloring objects
depending on the value of their property, the data visualization
becomes much more meaningful. Before we can do this, we first
need to know the range of numeric properties. There also need
to be a way to assign interpolated colors to textual data. The only
way we can find the range of numeric properties is by iterating
over all cached entries and find the minimum and maximum values.
This could potentially be a heavy operation, and is only performed
on-demand. The textual values are discrete, which means that we
need a very different approach for defining an appropriate range.

15 / 25

Master Thesis, IDE, UiS Tom Kristian Tjemsland

(a) Straight (b) Curvy

(c) Very curvy (d) Roundabout

Figure 18: Example meshes generated by the Line Renderer.

Since all possible occurrences are known beforehand, we set each
entry as keys to a dictionary. The respective values range from
zero to one and are assigned incrementally. An example range for
numeric and textual values can be seen below.

To increase the value of the data colorization, we need to show a
legend. This is important as users need to be informed of the scale
and range of data colors. Because of the big difference between
property types, two separate types of legends need to be created:
one for numeric properties and one for textual properties. Since
one property type operates in a continuous range, and one operates
in a discrete range, both layout and initialization differ.

An example of a numeric legend can be seen in Figure 19a. This
is from the property Speed Limit of the data collection Accidents.
Aside from the legend title, there is a gradient rectangle and a
display of minimum, middle and maximum values. These values
were retrieved from the range calculated before visualization. The
unit displayed with the value comes from the short-form cached
unit for the specific property. For the gradient rectangle, a custom

shaderwasmade, interpolated between two colors depending on the
vertical position within the figure. This is a much better approach
than using textures, as there is no theoretical limit to the resolution.
There will be no apparent pixelation, regardless of viewing distance,
as seen below.

This is the middle of the numeric legend, as seen very close.
The gradient still follows the exact same resolution as the display,
while smoothed pixels can be seen around the edges of the text.
This kind of shading is ideal for VR environments where the users
view should not be obstructed, leaving them able to watch objects
arbitrarily close. Not allowing free movement of the view would
impacting the feeling of immersion.

Figure 19b shows an example of a legend generated from a textual
property. Similarly to the numeric legend, this property,Weekday,
is from the data collection Accidents. For each entry in the legend,
there is a colored tile and a corresponding label. From the bottom,
these all follows the order they appear in the cache. The color of
the tiles have been interpolated to have a similar gradient as the
numeric legend.

Plotting is the most complex operation performed by the Render
Manager, with three different permutations of property categories
to consider and many data entries to consult. There is also a need
for a different approach depending on whether we want to perform
internal or cross-data comparisons. To evaluate the value of a 3D
visualization environment, as opposed to the more common 2D
environments, we also want to perform a three dimensional internal
scatter plot. The graphical appearance of plots is the same for both
internal or cross-data comparisons, so we will start by explaining
how the plots are drawn before elaborating how the values are
calculated. 3D plotting is very different to the 2D plotting approach
and will be mentioned last.

Figure 20a shows an example of a scatter plot as it appears
in the application. This plot displays a comparison between the
depth and diameter of Manholes found in Stavanger. The min and
max values along the axes are retrieved the same way as when
creating a numeric legend. Both the scatter plot and line plot is
based on a similar plotting technique, where coordinates of points
are determined based on the respective values of each property.
For instance, a one meter deep manhole with a diameter of 2 meter
will be drawn at [2, 1]. It would be impossible to determine if two
points overlap, so instead, we resize the existing point relative to
the number of overlapping entries. This is a very intuitive way
to display clustering. For the data from Statens Vegvesen, this is
absolutely necessary, as actual values of properties have very little
spread, despite technically being continuous. This can be seen
clearly in the scatter plot, where all diameters are registered as
either 0, 1 or 2 meters. For comparisons between numeric properties,
the data collection associated with each axis is determined by which

16 / 25

Visualization and comparison of geospatial data Master Thesis, IDE, UiS

(a) Numeric (b) Textual

Figure 19: Examples of legends taken from visualizations of
Accidents.

order theywere selected by the user. In this particular case,Diameter
was the primary property, while Depth was the secondary property.

Figure 20b shows the line plot resulting from a cross-data com-
parison. The comparison is between speed limits, from Speed Limits,
and material from Speed Bumps. In other words, this plot shows
if there is any connection between speed limits and the preferred
material used to make speed bumps. Despite being similar to the
scatter plot, there is one feature that makes the line plot quite dif-
ferent. The x-axis has been assigned a set of labels, rather than
a continuous range. This effectively makes the order of property
selections irrelevant, as textual properties are always assigned the
x-axis, and numeric properties the y-axis. The y-coordinate of each
point is still derived directly from the value of the numeric property,
while the x-coordinate is calculated using the equation below.

x =
i + 0.5

n
Where n is the total amount of labels, and i is the index of a

specific label, starting from zero. By adding 0.5 to the label index,
we can ensure that x-coordinates is centered as expected. The result
of this equation is a unit value, which can be multiplied with the
width of the plotting region to properly place each data-point.

Figure 20c shows the plot resulting from the comparison of two
textual properties. These properties are weekdays and accident
categories from the data collection called Accidents. The approach
for constructing this plot is quite different then the two previous
ones. Before plotting, the program evaluates the numbers of labels
belonging to each property. Rows are assigned to the property with
the most entries. This improves readability as wider tiles are better
at displaying text properly. The amount of labels belonging to each
property is also used to calculate the size of each tile. For example,
the width of the tiles in the given matrix plot was calculated as
seen below.

width =
w

n + 1

Where w is the total width of the plotting region, and n is the
number of labels belonging to Uhell kategori. We have to add one to
the number of labels to take into account the empty slot in the upper
left corner. After performing the calculations, width and height are

(a) Scatter plot (b) Line plot

(c) Matrix plot

Figure 20: Examples of plots from both internal and cross-
comparisons.

put into a grid component, which ensures that child game objects
are resized to follow an exact grid. This grid component governs
the content of the plotting region, where each tile is considered a
separate game object. New children to the plotting region are added
left to right, top to bottom. Using this knowledge, we can construct
the first row by adding an empty game object, followed by tiles
with each possible value from Uhell Kategori. The next rows of the
plot have to be added using a double loop. For each possible values
from Ukedag, we want to re-iterate over each possible value from
Uhell Kategori, to retrieve the total number of incidents where these
two property values coincide. Since both properties are textual,
plotting the data cannot tell us anything about clustering, but it
can display trends. For instance, using the plot, we can see that
significantly less accidents happen in Stavanger on Saturdays and
Sundays, regardless of the accident category.

17 / 25

Master Thesis, IDE, UiS Tom Kristian Tjemsland

The approach for comparing internal and cross-data properties
has some similarities. For both situations, we want to compare
two properties found on overlapping geographical locations. When
working with cross-data comparisons, these two properties have
to be found through a series of computations, making the process
more complex than internal comparisons. With three possible per-
mutations of property categories for both cross-data and internal
comparisons, we’re required to construct six unique functions. To
avoid having to add huge amounts of extra code, we want to define
a unique function for both internal and cross-data comparisons that
can perform as much of the common operations as possible. We
also want to avoid retrieving an array from this function, before
iterating over the values, as it would require the program to iterate
over all overlapping properties twice. The best approach comes in
the form ofActions, which is a zero input delegate defined in Unity’s
API. Using this, we can define a handle for the generic function to
treat each pair of properties differently. The generic function for
performing internal comparisons can be seen at the start of the
next page.

Retrieve internal properties
1 private void GenericCompSelf(
2 int dataID , int propIdx1 , int propIdx2 ,
3 Action <Pair <Property >> GetPoint
4)
5 {
6 int idx = entryDict[dataID]. entryIndex;
7 DataPacket [] data = entries[idx].data;
8
9 foreach (DataPacket dp in data)
10 {
11 Property [] props = dp.properties;
12 Property p1 = props[propIdx1];
13 Property p2 = props[propIdx2];
14
15 if (p1 == null || p2 == null) continue;
16
17 GetPoint(new Pair <Property >(p1, p2));
18 }
19 }

A custom class called Pair was created for bundling two variables
of the same generic type. This is necessary, as Action can only take a
single datatype. And so, one of the input parameters of this function
is another function that takes a pair of properties. For each data
packet where both requested properties are defined, the supplied
function is executed by calling GetPoint. How GenericCompSelf is
called in the case of two numeric properties can be seen below.

Get points for scatter plot
1 public List <Vector2 > GetScatterPointsSelf(
2 int dataID , int propIdx1 , int propIdx2
3)
4 {
5 List <Vector2 > points = new List <Vector2 >();
6 GenericCompSelf(dataID , propIdx1 , propIdx2 , p =>
7 {
8 float val1 = ((NumericProperty)p.p1).value;
9 float val2 = ((NumericProperty)p.p2).value;
10 points.Add(new Vector2(val1 , val2));
11 });
12 return points;
13 }

GetPoint is given as an anonymous function. This allows us
to easily add each computed data point to a list within the same
function that called GenericCompSelf. The only difference for line
plots is that p.p1 is cast to a text property instead of a numeric
property.

Getting data for the matrix plot requires a slightly different
approach. Throughout the entire computation, the program needs
to keep a count for each possible property overlap. A special class,
called DataMatrix, was developed to make this process faster and
more robust. One of the main aims of this class is to avoid utilizing
loops when counting occurrences. To keep track of each possible
overlap, we use a simple array of integers. The length of this array
is computed by multiplying the number of labels belonging to each
property. For the situation seen in Figure 20c, the length of the
array would have been calculated as seen below.

lenдth = [Uhell kateдori labels] ∗ [Ukedaд labels] = 4 ∗ 7 = 28

To properly index into this array, we can use the equation given
below.

x + y ∗width

Where x and y is the numeric index of a given x and y-label, and
width is the total amount of x-labels. Finally, two dictionaries, called
xLabel and yLabel, are made to assign an index to each individual
label. Retrieving the current count, and counting a single entry, can
then easily be performed as seen below.

Important DataMatrix functions
1 public int GetCount(string x, string y)
2 { return occurences[xLabel[x] + yLabel[y] * width]; }
3
4 public void Count(string x, string y)
5 { occurences[xLabel[x] + yLabel[y] * width]++; }

If we again refer to the matrix plot, we can verify the correctness
of this design by performing an example. Bilulykke and Tirsdag
would have been assigned the indices 2 and 1, giving the overlap
an index within the occurences array of 2 + 1 ∗ 4 = 6. Counting left
to right, top to bottom, starting from zero, we can see that index 6
indeed cover the expected overlap. The number of overlapping label
between two arbitrary internal properties can then be computed
using the function below.

Counting overlap for matrix plot
1 public void GetMatrixSelf(
2 int dataID , int propIdx1 , int propIdx2 ,
3 DataMatrix matrix
4)
5 {
6 GenericCompSelf(dataID , propIdx1 , propIdx2 , p =>
7 {
8 TextProperty tp1 = (TextProperty)p.p1;
9 TextProperty tp2 = (TextProperty)p.p2;
10
11 matrix.Count(tp1.value , tp2.value);
12 });
13 }

18 / 25

Visualization and comparison of geospatial data Master Thesis, IDE, UiS

Figure 21: Visualization of overlapping Point Data and Line
Data.

As before, p is the pair of overlapping properties sent as input
parameter to the GetPoint function. By casting both properties to
text, we can call the Count function of the DataMatrix.

GenericComparisonCross aims to perform a similar operation as
GenericComparisonSelf, but because of the different data categories,
this process is more complex. The function signature can be seen
below.

Generic cross comparison
1 public void GenericComparisonCross(
2 int dataID1 , int dataID2 , int propIdx1 ,
3 int propIdx2 , bool reverse ,
4 Action <Pair <Property >> GetPoint
5)
6 { ... }

Since the comparison regards two different data types, two sets
of data IDs and property indices are required. A boolean reverse is
also passed over to the function, which is only true if dataID1 is
not of type Line Data. This is used to make sure that the first data
ID always belong to the Line Data. For each of the data IDs, we
retrieve the full collection of Data Packets and all road occurrences.
If the same road occurrence exists in both sets, this means that
there is a chance of overlapping entries.

Figure 21 shows how the spread of point and line data on a
single road could look. In this figure, there are two point data
entries, but only one of them overlap the line data. We can also see
from this figure that line data does not necessarily cover the entire
road section. For each point, we first verify that they contain data
regarding the expected property. If this is the case, the program
checks to see if the point is covered by the line. As with internal
comparisons, the overlapping properties are paired together before
being sent to the GetPoint function.

3D plotting. All 2D plotting occurred on a plane in GUI space.
This approach is no longer sufficientwhen plotting three-dimensional
data, as there is a need for an additional dimension. The way data
is loaded before creating this plot is very similar to how data was
loaded for internal comparison of two properties, and so primary
focus will be on graphical design and challenges.

Figure 22: Three-dimensional scatter plot.

Figure 22 shows how a 3D plot appears in the developed software.
Similarly to 2D plots, this plot also has labels and min/max values,
but they are now assigned to three unique axes. The data points
within this plot could have been represented by primitive spherical
3D models, but to introduce a more smooth clustering of data, a
pure shader based approach was chosen.

A shader is a script that, as the name implies, defines the shading
and colors of in-game objects. However, it can also be used to
achieve post-processing effects, distortion and complex volumetric
effects, such as fog and god rays. Everything in Unity has been
assigned a shader that determines how each pixel they occupy
should be drawn to the screen. An example of a simple geometry
shader would be to return a single color with respect to lighting
and surface normal. The entire domain seen in Figure 22 is actually
a geometric cube, and with a shader as mentioned before, it would
have rendered as a single red box. This is far from what is expected
from this kind of plot. In order to achieve the final look, we utilize
a technique known as ray tracing.

Ray tracing follows a quite different approach from standard
shading. Instead of returning a color from the surface of the box
domain, a ray tracing shader proceeds deeper into the volume of
the mesh. This can be achieved by calculating world position and
view direction at each respective pixel, as seen below.

Fragment shader component
1 fixed4 frag (v2f i) : SV_Target
2 {
3 float3 worldPosition = i.worldPos;
4
5 float3 viewDirection =
6 normalize(i.worldPos - _WorldSpaceCameraPos);
7
8 return raymarch(worldPosition , viewDirection);
9 }

19 / 25

Master Thesis, IDE, UiS Tom Kristian Tjemsland

Figure 23: Illustration of ray tracing.

Figure 23 illustrates how world position and viewing direction
could appear for a single pixel. Any three-dimensional geometry
can now be defined mathematically within the boundaries of this
domain. In a similar manner as for 2D scatter plot, this shader is
supplied with an array of point data based on property values, as
seen below.

Data array
1 int _PointsLength = 3;
2 float4 _Points [1000];

Data for this array is provided by another script. This script is
also responsible for setting the value of _PointsLength. One of the
limitations of arrays in shaders is that three-dimensional values,
such as float3, is not available. As a result, float4 has to be used as
the data type. However, that is ideal for this situation as the forth
value for each data point can be used to provide the radius of each
sphere. Different radii on different spheres represent the presence
of overlapping data points. To correspond with the world position
calculated within the shader, the position of each data point also
has to be given in world space.

Ray marching function
1 fixed4 raymarch(float3 position , float3 direction)
2 {
3 for (int i = 0; i < STEP_COUNT; i++)
4 {
5 float distance = map(position);
6 if (distance < .01) {
7 return renderSurface(position);
8 }
9
10 position += STEP_SIZE * direction;
11 }
12 return fixed4(1, 1, 1, 0); // Clear
13 }

The function within the shader that handles the logic of the
ray marching can be seen above. STEP_COUNT defines how many
iterations each ray should have within the volume before returning
an alpha value of 0. For each iteration where the ray is insufficiently
close to the surface of a data sphere, the position of the ray is
moved deeper into the volume with respect to STEP_SIZE. The map
function calculates the distance between the current position of
the ray and the closest surface of a sphere. This is made possible
through the mathematical theory of signed distance functions. These

functions can become quite complex, but remain relatively constant
across rendering software. The two SDF methods seen below have
been adapted from a post by Inigo Quilez [7].

SDF methods
1 float smoothUnion(float d1, float d2, float k = 0.1)
2 {
3 float h = clamp (0.5 + 0.5*(d2 - d1) / k, 0, 1);
4 return lerp(d2, d1, h) - k * h*(1.0 - h);
5 }
6
7 float sdf_sphere(float3 p, float4 data)
8 {
9 return distance(p, data.xyz) - data.w;
10 }

The function smoothUnion makes it possible to blend together
two different signed distance fields with a givenweight k. Sdf_sphere
returns the distance to the surface of a sphere, and as mentioned
earlier, the data variable represents a single data point, with data.xyz
being the coordinates and data.w being the radius. Both these SDF
methods make up most of the mapping function seen below.

Mapping function
1 float map(float3 p)
2 {
3 float smooth = sdf_sphere(p, _Points [0]);
4
5 // Smooth successive spheres
6 for (int i = 1; i < _PointsLength; i++) {
7 smooth = opSmoothUnion(
8 smooth ,
9 sdf_sphere(p, _Points[i])
10);
11 }
12
13 return smooth;
14 }

If there is only a single data point available, the function simply
returns the distance to the surface of that point. For successive
point data, their signed distance functions are smoothed together
using the smoothUnion method. When the marching ray eventually
approaches sufficiently close to amathematical surface, here defined
as 0.01, a color is calculated using the renderSurface function seen
below.

Rendering of the surface
1 fixed4 renderSurface(float3 p)
2 {
3 float3 n = normal(p);
4 return simpleLambert(n);
5 }

Proper shading is necessary to better show details of the plotted
data. Simply returning a pre-defined color would have made it diffi-
cult to distinguish convex and concave curves. However, before any
shading can proceed, the normal vector of each surface first need to
be calculated. This calculation turns out to be quite complex as there
is no way to easily extract the normal vector from the mapping
function. The mapping function can only express how far away
from any surface a point is, not the actual direction towards that

20 / 25

Visualization and comparison of geospatial data Master Thesis, IDE, UiS

specific surface. A simple solution is to utilize a three-dimensional
gradient descent, as seen below.

Calculating surface normal
1 float3 normal(float3 p)
2 {
3 const float eps = 0.01;
4
5 float x_delta = map(p + float3(eps , 0, 0))
6 - map(p - float3(eps , 0, 0));
7
8 float y_delta = map(p + float3(0, eps , 0))
9 - map(p - float3(0, eps , 0));
10
11 float z_delta = map(p + float3(0, 0, eps))
12 - map(p - float3(0, 0, eps));
13
14 return normalize(
15 float3(x_delta , y_delta , z_delta)
16);
17 }

This gradient decent maps positions a little bit before and be-
hind each three-dimensional axis: X, Y, and Z. The gap between the
positions is determined by a very small eps value. A normal vector
can then finally be calculated using the differences in values along
each axis. For this approach to work as intended, it is important
that there are no sharp edges throughout the geometry. This is no
problem for this particular situation as all data points are repre-
sented as spheres. Because the mapping function has to be executed
a total of six times, the normal method can become very intensive.
The best way to combat this issue is by reducing the amount of
supplied data points. One way this has been achieved is by merging
together overlapping data points and instead increasing the radius
of a single sphere. With the normal successfully calculated, lighting
can be applied to the pixel using the function below.

Lambert lighting
1 #include "Lighting.cginc"
2 fixed4 wrapLambert(fixed3 normal) {
3 fixed3 lightDir = _WorldSpaceLightPos0.xyz;
4 half NdotL = dot(normal , lightDir);
5 half diff = NdotL * 0.5 + 0.5;
6 half4 c;
7 c.rgb = _MeshColor * _LightColor0.rgb * diff;
8 c.a = 1;
9 return c;
10 }

Including Lighting.cginc in the shader gives access to a series
of lighting related variables supplied by Unity. One such variable
is _WorldSpaceLightPos0, which represents the position of the pri-
mary light source in world space. The calculated NdotL expresses
the cosine of the angle between the normal of each pixel and the
light direction. A normal directly towards the light gets a value of
one, and at 90 degrees off it gets a value of zero. If we calculate
c.rgb using this value instead of diff, it would correspond with stan-
dard Lambertian lighting models. However, this often results in
extremely dark shadows as unlit normals would return completely
black pixels. By modifying the NdotL value to range from 0.5 to 1,
even unlit surfaces will have some degree of lighting. The result
is that lighting seems to wrap around the surface of the geometry.

This is a good way to simulate ambient lighting and gives the final
scatter plot a much softer look.

4 EXPERIMENTAL EVALUATION
In this section, we will try out the finished software on three sam-
ple scenarios and evaluate the produced results. Images from the
process will be taken from the perspective of the user. Focus will
primarily be on showing and explaining the significant steps of each
scenario, which is when new menus or objects are being drawn
to the scene. We will also be discussing the computed results, and
evaluate if they seem to be as expected.

4.1 Experimental Setup
The Unity project is used to construct a Windows 10 executable
build, which is run on a display with resolution 2560x1600. First
scenario can be seen below.

1. User selects Tunnel Sections.
2. First property is set to Åpningsår.
3. User selects self comparison.
4. Second property is set to Bredde.

This will test rendering of line data, numeric legends, internal
comparisons and plotting of numeric properties.

The second scenario is more complex, to cover more features,
and can be seen below.

1. User selects Manholes.
2. Property is set to Bruksområde.
3. User selects cross comparison.
4. User selects Speed Bumps as second property.
5. User is informed that Point Data cannot overlap.
6. User selects a new second property, Speed Limits.
7. Second property is set to Fartsgrense.
8. User compares the two different data collections.

This will test the functionality of cross-comparisons, legends of
text properties and rendering of point data. It will also show the
plot produced when comparing Point Data and Line Data. By inten-
tionally selecting two data categories that do not overlap, we also
get to test out the error message displayed when cross comparing
is impossible. When two properties are successfully selected from
different data sets, we will also be able to test out simultaneous
rendering. The third and final scenario can be seen below.

1. User selects Accidents.
2. First property is set to Antall lettere skadet.
3. User selects 3D scatter.
4. Second property is set to Antall kjørefelt.
5. Third property is set to Temperatur.
6. User move across the map to see rendering update.

Not much attention will be given the first few steps as they are
similar to the ones in the previous scenarios. The main function-
ality that will be tested in this scenario is the 3D scattering plot.

21 / 25

Master Thesis, IDE, UiS Tom Kristian Tjemsland

Figure 24: Initial menu, as seen by the user.

Figure 25: After selecting Tunnel Sections.

Data should be plotted as intended in a three-dimensional domain.
Pictures will be shown from different angles of the plot to show
how different it look when moving around in 3D space. We also
want to test that the rendered region follows the user as intended.

4.2 Results
Figure 24 shows the menu initially displayed at the start of every
scenario. To give the user an idea of their currently selected ge-
ographical location, the map already shows a section of central
Stavanger. The aesthetics of the program follows a minimalist style,
which also holds true for the skybox. We will start by following the
steps of our first scenario.

After selecting Tunnel Sections, the user is eventually presented
with another menu, as seen in Figure 25. Notice how no data is
currently being rendered to the scene. Since no property is selected,
there is no way to properly interpolate colors on the various data
points/lines. Rendering data at this point would only be able to
visualize the presence of data or lack thereof.

Figure 26 shows how the scene change after setting first property
to Åpningsår. The menu titled Tunnel Sections is still there, but there
are now two buttons visible, Self compare and Cross compare. To the
right of this menu, a numeric legend have appeared. This legend

informs us that the values of this property spans from 1971 to 2013,
for the region of Stavanger. In other words, Statens Vegvesen does
not have any data on new tunnels opening in Stavanger prior to
the year 1971. No data can still be seen towards the north, which
is caused by the scarcity of this particular data collection. A look
towards the east, as seen in Figure 26b, can confirm that there are
in fact data being rendered to the scene. The longest tunnel, called
Bergelandstunnelen, opened in 1989. This year corresponds well
with the interpolated color given this particular section.

When the user interacts with the Self compare button, the menu
introduces a secondary drop-down, as seen in Figure 27. This is
where the user can select which secondary property to compare
against. The property Åpningsår still exists within this list to keep
indices functioning as intended, however, no plot is shown unless
properties are unique.

Setting the second property to Bredde produces a plot as seen
in Figure 28. This plot shows a clear trend regarding the width of
tunnel tubes. There could be many explanations for this, almost
linear, decrease in width of newly constructed tunnels, one being
the unfortunate lack of data. Since there are only nine entries with
both properties defined, the plot is quite scarce. However, the most
likely source for this result is a mixture of new technology and

(a) North

(b) East

Figure 26: After setting first property to Åpningsår.

22 / 25

Visualization and comparison of geospatial data Master Thesis, IDE, UiS

Figure 27: Update to menu after pressing Self compare.

Figure 28: Comparison of Åpningsår and Bredde.

economy. Keeping the width of tunnels at a minimum is extremely
favorable from an economic perspective. The smaller the cross sec-
tion of the tunnel tube is, the fewer explosives are needed.

For the second scenario, the first two steps are very similar to
previous ones. Figure 29a shows the player view immediately after
interacting with the Cross Compare button. As seen in the figure, a
second data selection panel appears right under the initial one. This
is where the player can select which data and property to compare
against. The legend in this situation is slightly different from the
one seen in the first scenario. One color is assigned to each possible
value of the property Bruksområde, instead of a gradient between
minimum and maximum values. Since this data type is covering
manholes in the municipality of Stavanger, there is much more
data than for tunnel sections. Figure 29b shows an overview of the
data points located at the center of Stavanger. Many manholes in
Stavanger, specifically from smaller roads, does not appear on this
data visualization. These have not been truncated, they are simply
not provided by Statens Vegvesen. Even with this much data, there
is no impact on performance as only a small section around the
user is being visualized at any given time.

(a) Front

(b) From above

Figure 29: After clicking cross comparison.

The second panel operates in a very similar fashion to the first
one. A dropdown menu lets the user select another data type that
they want to visualize over the map. This list of data collections is
not filtered, so it’s fully possible for the user to select two incom-
parable data categories, such as Point Data and Point Data. If the
selected data collection have not been cached, the loading screen
will show until data have been loaded properly.

After selecting Speed Bumps as secondary data collection and
Materiale/belegning as secondary property, the view is as seen in
Figure 30. A red notification informing the user of incomparable
data collections can be seen on the secondary panel. However, this
does not stop the user from visualizing two different collections of
Point Data simultaneously. Beside the original points, ranging from
green to red, a new set of points, ranging from blue to purple, can
also be seen on the map. The color of these points follows the same
interpolation technique as the primary data points. This feature can

23 / 25

Master Thesis, IDE, UiS Tom Kristian Tjemsland

Figure 30: Cross comparison between Manholes and Speed
Bumps.

be utilized by the user to cross-analyze two different collections of
data despite them difficult to compare.

SinceManholes and Speed Bumps cannot be compared, the second
data collection is changed to Speed Limits. The targeted property
is set to be Fartsgrense. Figure 31 shows the scene after the user
have clicked the button Compare that appears at the very bottom
of the secondary panel. Also when cross-comparing with compati-
ble data collections, both collections are visualized over the map
simultaneously, as seen by the dense network of blue-purple lines.
The produced plot attempts to compare usage of manholes with the
speed limit on the road where they are located. This plot shows that
the primary function for manholes on roads with higher speeds
is to prevent unwanted pooling of water. We can also see that the
majority of manholes in the municipality Stavanger is used for
drainage.

Figure 31: Cross comparison between Manholes and Speed
Limits.

Figure 32: After clicking 3D scatter.

Step one and two of the final scenario follows a very similar
process as earlier scenarios. Figure 32 shows the user’s view im-
mediately after selecting 3D scatter on step three. For limiting the
scope of this project, 3D scatter is only available among numeric
properties, and so the specific button only appears when primary
property is numeric. The two new drop-down menus underneath
the buttons are used to select other properties to compare against.
Unless they all have unique numeric properties selected, no plot
will be generated.

Setting second and third property to Antall kjørefelt and Temper-
atur, respectively, generates the plot seen in Figure 33. Each axis
properly displays the property label as well as minimum and maxi-
mum values. From each angle, it’s very clear which correlation the

(a) Front (b) Side

(c) Back (d) Top

Figure 33: 3D scatterplot from third scenario.

24 / 25

Visualization and comparison of geospatial data Master Thesis, IDE, UiS

Figure 34: Accidents near Mariero.

different properties have with one another. Figure 33a shows that
more people are lightly hurt when accidents occur on roads with
fewer lanes. This could be the result of insufficient data, but it does
not seem too unrealistic as more lanes generally are considered
safer. Figure 33b shows how the amount of lanes and temperature
during and accident in Stavanger is related. As expected, there does
not seem to be any connection between these two properties. The
data points appear to be distributed evenly from this angle, with
more data at the bottom caused by a higher frequency of roads
with fewer lanes. Figure 33c and Figure 33d shows how the plot
looks like from the back and top, respectively. Different angles help
visualize different connections between the involved properties,
and the shading makes is easier to make out the shape of the plot.

The final step of the third scenario is to test that the map updates
the rendered region around the user as intended. Figure 34 shows
which data is available as the user approach Mariero. This area
is far enough away from the center of Stavanger to be outside of
the initially rendered region. However, as seen in the figure, the
rendered region have moved to cover the new area around the
player.

5 CONCLUSION
We believe that the use of game engines to visualize and compare
data, as explained in this paper, is a satisfactory and very powerful
tool. The use of three dimensions opens up for more complex plots
than its two-dimensional alternatives. The fundamental structure
of the program was specifically designed to allow for easy inte-
gration of additional property types and data sources. This would
make it possible to compare any kind of property across many
different sources. Such cross-source comparisons could provide
extremely valuable information that would be time-consuming, if
not necessarily difficult, to collect otherwise.

Three-dimensional visualization could initially seem more com-
plex than 2D, but Virtual Reality provides numerous advantages.
One of them being better GUI management. With virtual reality,
it becomes possible to manage menus and legends in 3D space,

which creates less clutter. These menus can remain out of view, so
more focus can be given to the observation of data. Virtual reality
is also arguably more intuitive. Allowing users to lean closer/away,
instead of scrolling, and physically look around, instead of panning.

Next step. As a result of time constraints, only data from Statens
Vegvesen was implemented. Next step could be to introduce more
varied data from completely different sources. Additional property
categories, such as Date and Geometry, could also be implemented
but would have to be supported with many new types of plots. An-
other relevant feature that could be implemented is better filtering
of data. For instance, the possibility to exclusively visualize data
within a given span of time could provide valuable feedback.

REFERENCES
[1] DOMO. 2018. Data Never Sleeps 6.0. https://www.domo.com/learn/

data-never-sleeps-6
[2] Blender Foundation. 2018. Blender.org - Home of the Blender project - Free and

Open 3D Creation Software. https://www.blender.org/
[3] Ralph Jacobson. 2013. 2.5 quintillion bytes of data created

every day. How does CPG Retail manage it? https:
//www.ibm.com/blogs/insights-on-business/consumer-products/
2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/

[4] Blazej Kot, Burkhard Wuensche, John Grundy, and John Hosking. 2005. Informa-
tion visualisation utilising 3D computer game engines case study: a source code
comprehension tool. Proceedings of the 6th ACM SIGCHI New Zealand chapter’s
international conference on Computer-human interaction: making CHI natural
(2005). https://doi.org/10.1145/1073943.1073954

[5] Jae-Gil Lee and Minseo Kang. 2015. Geospatial Big Data: Challenges and Oppor-
tunities. Big Data Research (2015). https://doi.org/10.1016/j.bdr.2015.01.003

[6] Newtonsoft. 2018. Json.NET. https://www.newtonsoft.com/json
[7] Inigo Quilez. 2018. Inigo Quilez :: fractals, computer graphics, mathematics,

shaders, demoscene and more. https://www.iquilezles.org/www/articles/
distfunctions/distfunctions.htm

[8] Dean Takahashi. 2017. The U.S. game industry has 2,457 compa-
nies supporting 220,000 jobs. https://venturebeat.com/2017/02/14/
the-u-s-game-industry-has-2457-companies-supporting-220000-jobs/

[9] Google Trends. 2018. https://trends.google.com/trends/explore?date=all&geo=
US&q=%2Fm%2F0dmyvh,%2Fm%2F025wnp,%2Fm%2F02ph70

[10] Unity. 2009. Unity Technologies Renames Unity Indie to Unity andMakes It Freely
Available. https://unity3d.com/company/public-relations/news/unity2.6-press

25 / 25

https://www.domo.com/learn/data-never-sleeps-6
https://www.domo.com/learn/data-never-sleeps-6
https://www.blender.org/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
https://doi.org/10.1145/1073943.1073954
https://doi.org/10.1016/j.bdr.2015.01.003
https://www.newtonsoft.com/json
https://www.iquilezles.org/www/articles/distfunctions/distfunctions.htm
https://www.iquilezles.org/www/articles/distfunctions/distfunctions.htm
https://venturebeat.com/2017/02/14/the-u-s-game-industry-has-2457-companies-supporting-220000-jobs/
https://venturebeat.com/2017/02/14/the-u-s-game-industry-has-2457-companies-supporting-220000-jobs/
https://trends.google.com/trends/explore?date=all&geo=US&q=%2Fm%2F0dmyvh,%2Fm%2F025wnp,%2Fm%2F02ph70
https://trends.google.com/trends/explore?date=all&geo=US&q=%2Fm%2F0dmyvh,%2Fm%2F025wnp,%2Fm%2F02ph70
https://unity3d.com/company/public-relations/news/unity2.6-press

	Abstract
	1 Introduction
	2 Background
	3 Method
	3.1 Defining comparable data
	3.2 Property types
	3.3 Design
	3.4 JSON structure
	3.5 Analysis
	3.6 Optimization
	3.7 Implementation
	3.8 Render Manager Implementation

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Results

	5 Conclusion
	References

