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‘Never trust anything that can think for itself if you can’t see where it keeps its brain.”

J.K. Rowling





Abstract

Physical activity is essential for humans for maintaining a healthy and comfortable
lifestyle. With science and technological advancements, there comes various guidelines
for the amount of physical activity a person should perform. Monitoring the physical
activity enables us to follow those guidelines and be aware of own activity.

Wearable computing is allowing us to track and monitor our own performed physical
activities by mostly intrinsic (minimal) interaction.

Physical activity monitoring is an emerging research area in wearable computing. Our
thesis is about identifying and classifying which activity is being performed.

We have used various classifiers and evaluation metrics to validate our classifier models.
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Chapter 1

Introduction

Technology. . . the knack of so arranging the world

that we don’t have to experience it.

— Max Frisch

"The most profound technologies are those that disappear. They weave themselves into

the fabric of everyday life until they are indistinguishable from it." [1]

Mark Weiser in 1998 coined the term ubiquitous computing. He had a theory that

computers in the future were going to become so pervasive in our lives that they will

work non-intrusively in the background, to improve human experience and quality of

life. Fast forward to today and his vision is well on its way to becoming reality. From

computers in our bags and pockets to rooms, buildings and cities, they are truly well

integrated and out of sight that we don’t even think about it. Smart phones and watches,

home automation systems, self-driving cars, various sensors embedded in everything -

they are practically everyware (another name for ubiquitous or pervasive computing).

An important part of the pervasive computing is that it works in background without

being intrusive. That is possible by making the interaction with the computers implicit

rather than explicit - meaning that a user doesn’t have to explicitly turn a switch on,

it should detect the action of the user and perform the required task by itself. Sensors

are a great resource for that - sensing the context of the user interaction and triggering

1
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action. Interpreting the user’s action correctly depending on his environment is what

context-aware computing is all about. Context aware computing is a intrinsic part of the

ubiquitous computing. By being aware of the surrounding and anticipating the user’s

need and performing that task seamlessly and proactively is what will make computers

disappear.

"In essence, that only when things disappear in this way are we freed to use them without

thinking." [1]

Wearable computers and gadgets are making it possible for a common person to monitor

his own physical activity, which was not possible in recent past. Monitoring physical

activity is an emerging interesting field attracting new research.

Our thesis is about analyzing the data we get from these wearables and detecting the

actions being performed by the user by the help of machine learning. In the next section

we will explore the motivation for monitoring an individual’s physical activity and the

potential for future applications. Next we also delve into the challenges faced in activity

recognition.

1.1 Motivation

According to study, most of the world’s population live in countries where overweight

and obesity kills more people than underweight. [2] But according to the same study, it

is preventable with the help of balanced diet and regular physical activity (60 minutes a

day for children and 150 minutes spread through the week for adults).

There are numerous benefits of engaging in regular physical activity; some of them

according to [3, 4] are:

• It strengthens the heart and reduces your risk of a heart attack by helping keep

arteries and veins clear.

• It strengthens the lungs.

• It controls and helps manage your weight better.

• It reduces blood sugar levels and lower the risk of type 2 diabetes and some cancers.
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• It strengthens bones, muscles and joints and lower risk of developing osteoporosis.

• It regulates blood pressure.

• It lower your risk of falls.

• It helps you recover better from periods of hospitalization or bed rest.

• It helps you feel better - with more energy, a better mood, feel more relaxed and

sleep better.

According to a NIH (National Institute of Health) study, even low level leisure time

physical activity can increase the life expectancy as much as 4.5 healthy years. [5]

Supporting this, another study states that small bouts of activity can increase lifespan

in older men. [6]

Physical activity has also proven to be a great help with people dealing with depression

and anxiety. It releases endorphins that enhances the good mood. It also helps with the

sleep problems, for mood boosting, energy levels, confidence and all round feeling good.

[7]

From the above mentioned examples we can see that physical activity is crucial in

human lifestyle. Now comes the need to monitor the level of physical activity a person is

performing in order to measure if it meets the recommended requirements for health, or,

in case of other fields, correctly recognizing the activity to log into the system.

Besides the health field we also use activity recognition and monitoring in various other

fields of businesses. In entertainment industry - from games to mobile applications, in

sports field and various other industrial sectors physical activity monitoring has a huge

scope. We will further expand on these applications in Chapter 2.

In our thesis, this is our focus: to correctly recognize the physical activity being performed

by the user. Wearable computing has made it possible to realize this goal.
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1.2 Challenges

Physical activity monitoring is a realizable goal and it is being met by various up and

coming researches and applications, but it has its limitations on data acquisition and

accuracy. There are many challenges that researches face in activity recognition. We will

discuss a few of them below:

Privacy and Data Security With ubicomp applications everywhere and expanding and

collecting data - the people are rightfully conscious of privacy and data security issues.

It has already being manipulated in these times by hacking of cloud networks being so

common, that users are rightfully worried. It is important that applications which are

collecting data have the user’s consent and a heavy encryption and data security features.

Unsupervised Learning Most of the work done in activity recognition field depends

on supervised learning from datasets complete with annotations. But obtaining such a

dataset is not easy. Due to this the datasets available are based on data collected from a

few individuals and not many activities which does not help with reliable estimation.

We have a lot of data being collected from ubicomp devices, which is not completely

annotated, which can be useful if unsupervised or semi-supervised learning methods took

hold in activity recognition field. A study [8] shows that the interest in semi supervised

learning is gaining more popularity as a solution method.

High-Level Activities High level activities are accumulation of many low-level activities.

Chapter 2 discusses this in detail. Most of the work done in activity recognition area is on

the recognition of low-level activities. High-level or long time activities still pose challenge

to the researchers in the sense of defining them and modeling learning algorithms.

Hardware Sensors are a great and vital resource for activity recognition, but they have

limitations in respect to their size and battery life. As they are becoming smaller and

less intrusive, they cannot hold a very large battery power. Thus, compromise must be

made between high accuracy and performance and less power or less accuracy and more

power.
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It also is a challenge that one sensor cannot be dedicated to recognizing a multitude of

activities performed by a person. There are inertial sensors for the physical activities,

psychological sensors for other activities, heart rate sensor for detecting the effort and

intensity, etc.

1.3 Contributions

• This thesis focuses on the various methods used for recognition of physical activity

recognition and deciding which of them are better and what conclusions they reach.

• We will use multiple metrics to evaluate our models.

• Three different methodologies are used for validation purposes. We will also look

at the research gap which needs to be filled and the future work that needs to be

done.

1.4 Used Software

Following are the open source software used in this thesis:

Software For Writing Thesis Report

• Overleaf: online LaTeX editor

• Notepad++

Programming Language and Tools

• Python 3.6

• Anaconda Jupyter Notebook

• JetBrains PyCharm IDE

Libraries used

• Pandas
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• Scikit-learn

• Numpy

• Matplotlib

1.5 Thesis Outline

This thesis is structured in the following manner:

Chapter 1 defines the field of ubiquitous computing and its sub-branch of physical

activity recognition. We emphasize on the need for physical activity in daily life of

humans and the importance of monitoring the physical activity for use in different fields.

Chapter 2 discusses the related work done in other studies and by researchers and we

look at the various methods used by them.

Chapter 3 will introduce the dataset being used for our study: the PAMAP2 dataset.

It is a open-source dataset with reasonable participants. We will explore the dataset in

its properties in this chapter. We will also look at the pre-processing of the given data.

Chapter 4 will focus on the data processing chain and feature extraction and analysis.

Here, we present the experimental work done by us on different classifiers and machine

learning techniques.

Chapter 5 provides details about the evaluation process and presents the results of the

study and discusses them.

Chapter 6 will present a conclusion and discuss the future work that needs to be done

to fulfill the gaps that are present today.
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Related Work

If it keeps up, man will atrophy all his limbs

but the push-button finger.

— Frank Lloyd Wright

Human activity recognition (HAR) is an up and coming field of science being studied

diligently for its uses in various fields like health, physical therapy, sports, fitness coaching,

elderly assistance, homecare systems, prisoner monitoring, security, and so much more.

The goal of activity monitoring is to recognize the activity being performed and the

intensity with which it is performed with. With the advancement in hardware technology,

especially in wearable computers, it is being made possible to do so with increasing

accuracy. With so many applications of the topic the interest and research has leaped

over the years. For example Figure 2.1 shows the interest in the topic ‘activity tracker’

has increased with time.

Figure 2.1: Interest over time on topic ‘Activity tracker’ [2004 - present] [9]

7



Chapter 2 Related Work

There used be a time when computers could not be ‘worn’. It was in the 1990’s that

wearable computing was made possible. And with it opened a whole world of possibilities,

research and inventions.

2.1 Applications

In this section we explore different areas of application for the wearable computing and

activity recognition. There are a lot of applications of activity recognition. Its not

possible to mention all. We will mention a few below.

Healthcare and Lifestyle Ranging from elderly assisted living to daily monitoring of

vital signs, the uses of activity recognition in the field of healthcare are immense. From

1980’s it has been the focus of medical community to recognize the human physical

activity for the purpose of measuring oxygen consumption or energy expended [10] [11].

In the 1700’s life expectancy was much lower and need for assisted living was not a

necessity. But with time life expectancy is increasing and fertility rate is declining -

i.e. more older population, which sets a need for the elderly assisted living. Activity

recognition can help with that by:

• recognizing major impacts such as fall detection [12–16],

• monitoring daily activities to prevent health problems,

• sleep monitoring by detecting sleep patterns, time a person sleeps, etc. [17–19]

• providing useful data to doctors and practitioners to diagnose or evaluate the

progress of a patient.

Besides the above mentioned points HAR also helps with rehabilitation of patients

[20–22], assist people with disabilities [23–25], motivate people to meet their workout or

calorie burning goal with reminders, alarms and customized workouts.

Also, as mentioned in Section 1.1 there are multiple other areas of healthcare that physical

activity monitoring can help with.
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Sports and Fitness Starting from basic pedometers to today’s advanced Fitbit systems

[26] and smart watches, activity recognition has come a long way in the field of sports

and fitness. There is a huge array of applications and wearables available in the market

today which is focused mainly on measuring and monitoring the individuals’ activities

and provide feedback and motivation. These applications provide individual details about

the activity performed like distance travelled, duration and intensity, calories burned, etc.

Work has also been done in recognizing the sport activities. Recognizing the activity

pattern, maximum speed, performance analysis, etc.

Gaming Research in gaming industry on motion sensing controllers and VR systems

has sparked interest in consumers for more. It gained popularity with Nintendo Wii [27]

in 2006 and has evolved to today’s full boy virtual reality systems like Oculus Quest

[28]. Since there is no pressure on 100 percent accuracy as opposed to the healthcare

field, more consumers and developers are investing into it. In fact, some research has

also suggested that playing interactive physical games on these gaming consoles - like

Nintendo Wii - may lead to better physical therapy and a healthy elderly population

[29].

Industrial and Other Physical activity monitoring can help in industrial applications

such as helping workers with safety, analysis of daily tasks, support and training. Wearable

technology helps the workers in looking up or gathering data, communication and tracking

coworkers. It also is of use in workshop or assembly activities in industries, such as, in

car or plane manufacturing. Companies can utilize this by tracking the workers’ progress

and gain feedback, get warnings and notifications about the work [30].

There is also work done for assisting hospital field by delivering patient notes on mobile

devices to relevant staff, displaying priority patients, maintaining their health status

automatically [31, 32]

Besides the above mentioned applications, there are various other fields where activity

recognition systems are in effect and numerous new areas where research is being done.

Some of the work done is in the following fields:

• Use of activity recognition for target or context-aware advertising [33].



Chapter 2 Related Work

• Uses in military by tracking soldiers [34]

• Robotics field also uses activity recognition to interact with objects and people

• Surveillance applications

• In educational field, [35] explores learning a new language with the help of RFID

tags.

2.2 Activities

Huynh [36] describes the activities performed by an individual in three categories:

gestures, low-level activities and high-level activities.

Gestures are movements performed in seconds like a wave or bending an arm. These

very short timed activities might prove to be harder to recognize as they might be done

as a specific gesture or it might just be a random movement, and isolating them from

background data could also be challenging.

Low-level activities are performed in scale of minutes; like walking, talking, running,

eating, etc.

There is a lot of work done on monitoring and recognizing low-level activities. It is

possible to recognize these type of activities by just one tri-axial accelerometer [37].

[38–41] also focus on data acquired from single sensor. Smartphones have opened a new

dimension of study in recognition of activities based on sensors in the mobile phone only.

This has its own challenges also. Work done by [42–44] using mobile phone for activity

recognition has brought forth problems and solutions for energy consumption, position

and orientation and training, etc.

We will focus mainly on the low-level activities in our paper, as the dataset we are

working with consists mainly of low-level activities as shown in Table 3.1.

High-level activities are done over a period of hours and are a collection of low-

level activities. These activities can include getting ready, working at office, shopping,
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sightseeing, etc. Recognition of high-level activities depends on recognizing the low-level

activities and the order in which we perform them. We can establish a pattern from

low-level activities for the detection of the high-level activities. [45] There has been

some work done in classifying high-level activities, but with limitations. Recognition of

high-level and long time activities still needs work.

Activities of Daily Living On the other hand, activities of daily living (ADL) cannot

be simply placed by these three categories. ADL were first described by [46] for the

field of healthcare in determining the activities a person should perform to stay healthy.

List of ADL activities, since then, have been improvised and added on. ADL activities

include: personal hygiene(bathing, grooming, etc.), use of bathroom facilities, dressing

and feeding oneself.

In addition to ADL activities there are Instrumental Activities of Daily living(IADL)

which comprise of activities which prove that a person can live independently like grocery

shopping, preparing meals, socialization and companionship, etc. Recognition of ADL in

conjunction with IADL is a great focus in healthcare field.

Figure 2.2: Activities categorized base on duration. Source [36]
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2.3 Sensors

Sensors for activity recognition range from fairly simple to complex and small to large

scale. There are sensors with discrete signals(switches, RFID tag readers) and sensors

with continuous signals(accelerometers). More complex sensors include audio and video

signal processing.

Some common sensors used are discussed below

Inertial Sensors Inertial measurement units(IMUs) are fairly good sensors to work on

activity recognition. It has been studied that recognition of a number of activities is

done, with only IMUs placed on human body, with high accuracy.

Early work in activity recognition was done on accelerometers [11] [10]. Accelerometers

are a popular sensor in activity recognition as they are small, accurate, cheap and

non-intrusive (as opposed to camera and microphone).

Physiological Sensors Physiological sensors, such as heart rate monitor and tempera-

ture, also provide a good source of information for activity recognition. But it comes

with its own set of challenges - more expensive, slow response(for example heart rate

stays elevated even after stopped running), intrusive and, according to some studies [41],

does not correctly recognize the activity on physiological data alone. Whereas, when

used in conjunction with inertial sensors, they can measure the intensity of the work

done (how fast/hard run, carrying heavy or light weight, etc).

But according study done by [47] physiological sensors are useful in distinguishing and

differentiating between some activities.

Image and Audio based Sensing Images, videos and audio are also being used for the

monitoring the activities of the people. Images and audios provide good data for analysis

but they are also harder to analyze, and the sensors (i.e. cameras and microphones) are

not necessarily mobile. They also prove to be a problem with the issue of privacy. People

are not comfortable with the intrusion. There have been strides to manage the timing

and only capturing data when needed but the issue remains.



13

Audio signals help with activity recognition, for example, the sound of turning pages

could indicate reading, the crunching sound of eating, etc. The sounds could also provide

the information about the environment and place and thus helping with matching the

activity in context with the environment.

Object Use [48, 49] study the use of RFID tag readers to interpret household activities,

by installing RFID tags on household items and readers on the individual so that when

that person interacts with the said object, it logs it as the activity done, such as doing

laundry, making coffee, etc. Another approach could be to install contact or binary

switches to sense the activity - for example the opening and closing of the door or cabinet

- and installing a wireless system to recognize high-level activities. [50]

Radio-based Sensing Use of radio sensors where one does not have to carry a device on

his person for detection, instead studying the interruption of signals between transmitter

and receiver - example when a person crosses a door. Not much work has been done

using this technology, [51] was able to detect two activities of ’walking’ and ’talking on

mobile phone’ with the setup done in a office doorway.

Combination Sensors The best results are achieved by using a combination of sensors

to log data. Using GPS sensors with other sensors help with the activity recognition

better as it tells if the activity is performed indoors or outdoors, or in which room of

the house [52]. Combination of physiological sensors and inertial sensors help with

measuring the intensity of the workout or the energy expended during that particular

activity [53]. Image and audio sensors combined provide more concrete conclusion than

using just one.

Besides these there are many more type of sensors which are used for specific fields; for

example, sensors for body temperature, muscle contractions, optical, etc.
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2.4 Methods

There is a lot of work done on different approaches in human physical activity recognition.

Mainly, the bulk of the work is done on following methods for supervised machine

learning:

• Distance based methods: K-Nearest Neighbors (k-NN)

• Decision tree based methods: CART, ID3, C4.5, custom generated trees

• Statistical methods: Naive Bayes’ classifier, Linear discriminant analysis (LDA)

technique

• Kernel methods: Support Vector Machine (SVM)

• Ensemble methods: Random trees, extra trees

• Deep learning: Deep neural network (DNN), Artificial neural network (ANN)

2.4.1 K-Nearest Neighbors

KNN is a distance based machine learning algorithm used for classification or regression

problems. It is one of the most basic and most used supervised learning algorithms.

It is based on the theory that birds of a feather flock together ; i.e. the assumption

that similar things are in close proximity. KNN classifies data points based on closest

training instances by voting of the neighbors and determining which class the data point

belongs to. [45, 54–57] are a few who have used KNN method for the purpose of activity

recognition. Determining the value of k is a trial and error process, we check with

various values to see which gives the most accurate results. [58] gets an accuracy of

97.65 with k = 3. [59] used the default scikit-learn parameters(k = 5 nearest neighbors,

uniform weights and p = 2 for Minkowski metric) and according to their observation

KNN performed better than C4.5 decision tree. Supporting this [53] also got a score of

87.62 percent accuracy using the Weka toolkit [60] as opposed to 85.03 percent of C4.5.
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2.4.2 Decision Trees

Decision trees are widely used technique for machine learning. It is a predictive model

where a target value is predicted based on other input/training values. It splits a data

based on various conditions. There are many different algorithms for decision trees, and

many of them are used for different problems to machine learning.

CART can be used as standalone (as done by [61]) or in conjunction with other algorithms.

[58] uses CART algorithm on different datasets with varying percentages of training data.

On PAMAP2 with 50 percent training data, he gained accuracy of 94.5 percent.

C4.5 is used by [53] with 85.03 percent accuracy with the help of Weka toolkit. [59]

uses an optimized version of it but the results were not above those of other methods.

[56, 62, 63] have also used C4.5 in their work on activity recognition.

2.4.3 Random Forest

Random forest is an ensemble method of different decision trees in random order, forming

a ’forest’. When splitting a node while forming trees, random forest algorithm chooses

the best feature from a random subset of features. This renders random forest to be a

very stable and well-performing method in some areas. [58] gained an accuracy of 98.05

percent using 50 percent of training data for random forest.

2.4.4 Linear Discriminant Analysis

LDA is a great supervised machine learning algorithm used in characterization or

separation of classes. It works by making predictions that which class the set of inputs

belong to. It works great with some specific problems with continuous predictors. [64]

used LDA for image feature extraction and [65] has used it for speech recognition. .

Working with PAMAP2 dataset and 50 percent training data [58] gained 64.47 percent

accuracy using LDA.

Quadratic discriminant analysis (QDA) is a derivative of LDA also used for classification.

QDA is use by [66] in bioinformatics and by [67] in molecular physics.
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2.4.5 Other Methods

The above mentioned methods are supervised machine learning techniques. Supervised

learning is learning with supervision which translates to using labeled data to train

your project. Majority of the work done for activity recognition is based on supervised

techniques. There are also some unsupervised or semi-supervised techniques that have

been used with success. In unsupervised learning we work with unlabeled data.



Chapter 3

Dataset for Physical Activity

Monitoring

For a list of all the ways technology has failed to improve

the quality of life, please press three.

— Alice Kahn

3.1 Introduction

Our thesis is about analyzing the data we get from wearables. The dataset we are

exploring is PAMAP2 Physical Activity Monitoring Dataset. It is an open source dataset

made available at UCI repository [68].

This dataset is chosen because of extensive physical activities: both everyday household

and sports, performed by 9 subjects wearing 3 IMUs (Inertial Measurement Units) and a

heart rate monitor.

17
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3.2 Data Collection

The data is collected from 9 test subjects, 8 male and 1 female. All of them were aged

27.22 +/- 3.31 years with BMI ranging 25.11 +/- 2.62 kgm-2 [69].

Three inertial measurement units (IMUs) and a heart rate monitor were worn by these

subjects. Sampling frequency of the IMUs is 100Hz; i.e. data is collected at every 0.01

second. The sampling frequency of heart rate monitor is 9Hz.

The placement of the IMU sensors was: [68]

• 1 IMU over the wrist on the dominant arm

• 1 IMU on the chest

• 1 IMU on the dominant side’s ankle

Figure 3.1: Positions of the IMUs in PAMAP2

The participants had to perform 12 protocol and 6 optional activities. The list of activities

is given in Table 3.1
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Protocol Activities Optional Activities

Lie Watching TV

Sit Computer Work

Stand Car Driving

Iron Folding laundry

Vacuum clean House cleaning

Descend stairs Playing soccer

Ascend stairs

Normal walk

Nordic walk

Cycle

Run

Rope jumping

Table 3.1: Activities performed by the test subjects

These activities and their mapping is given in the dataset by [68]

3.3 Data Format

The dataset contains two sub-folders: Protocol and Optional. In addition to that following

five pdf files are included:

• readme

• DataCollectionProtocol

• DescriptionOfActivities

• PerformedActivitiesSummary

• subjectInformation

The titles of the files are self-explanatory.

The protocol folder contains information from all 9 subjects, whereas, the optional folder

contains data from only five test subjects.
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All files contains data in 54 columns. The distribution of information in columns, as

described in [68], is given in 3.2

ID Description

1 timestamp (s)

2 activityID

3 heart rate (bpm)

4-20 IMU hand

21-37 IMU chest

38-54 IMU ankle

Table 3.2: PAMAP2 columns

The activitiesID is int64, and the rest of the 53 columns are float64 format.

Table 3.3 provides further explanation on the IMU columns.

ID Description

1 temperature (◦C)

2-4 3D-acceleration data (ms-2), scale: ±16g, resolution: 13-bit

5-7 3D-acceleration data (ms-2), scale: ±16g, resolution: 13-bit

8-10 3D-gyroscope data (rad/s)

11-13 3D-magnetometer data (µT )

14-17 orientation

Table 3.3: PAMAP2 attributes extracted from IMUs

Protocol folder contains 2872533 entries, total combined data of all subjects. We know

that we should ignore the transitional entries, with activityID = 0, so after that we are

left with 1942872 rows.

Number of data entries per test subject can be seen in the Figure 3.2
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Figure 3.2: Number of protocol activities performed by subjects

3.4 Data Summary

Performed Activities Using crosstab function of the Pandas we have created the sum-

mary of the activities performed by the test subjects. Table 3.4 shows the total number of

activity samples collected from each subject. The samples were collected at 0.01 seconds.

Table 3.4: Performed activities summary

Figure 3.3 and 3.4 show the total number of times the activities samples were collected

from the test subjects.



Chapter 3 Dataset for Physical Activity Monitoring

Figure 3.3: Performed activities summary stack graph

Figure 3.4: Performed activities summary bar plot

3.5 Data Cleaning

There is no substitute for getting to know your data. It is a time-intensive manual

exercise. Investing the time up front to analyze your data to improve its quality and

integrity always pays dividends in the latter phases of the project. [70]
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Clean data is better than large data. A small cleaner data may give meaningful results

with simple algorithms than a larger dataset with complicated algorithms. Therefore

data cleaning is an important part of the project. There are different methods or steps

to cleaning data.

3.5.1 Remove Duplicates

The first basic step is to remove the duplicate rows, if there are any, from the dataset.

This can occur during data collection stage and is fairly easy to determine and fix.

3.5.2 Remove Timestamp

Another step to cleaning the data is to remove irreverent data; i.e. columns that do

not provide any meaningful information to reach our desired result. We have removed

timestamp column because it could bias the classifier performance by artificially increasing

it, since subjects follow a protocol in which all activities are timed. By removing this

feature, the classification will only rely on the sensors data. [71]

3.5.3 Remove Orientation

The orientation columns, which are 4 per IMU (12 total), will be removed as they do not

provide valid data as mentioned by the dataset collection author [68].

3.5.4 Remove Subject 109

We will ignore the data from subject 109 as we can see from the Table 3.4 that it performs

only one activity, the rest of the data is missing - either due to miscommunication or

faulty connection while recording the data by the authors of dataset.

3.5.5 Handle Missing Values

Missing values appear as NaN, blanks or dashes. They are very easy to find in the dataset

but the question is how to handle them. Missing values can be completely random or

they could be systematically missing for a reason.
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There are numerous methods to deal with missing values: do nothing, remove the entire

row, imputing/replacing values based on other observations - threshold, mean or median

value. We can also set a threshold for the number of values in an instance to be missing

before dropping the row; for example, if the row is missing 3 or more values then drop

the row.

We should always drop the instances only if the dataset integrity is increased. Always

dropping the row might not be in best practice, as we may miss some meaningful

randomness.

In our thesis we see that about 90 percent of the heart rate data is missing because

of the difference of the sampling frequency of IMUs and heartrate sensor. In case of

heartrate column we have filled the missing values with bfill (i.e. a technique used to fill

the data from below row) as we assume that heartrate will not change drastically in 0.01

of seconds. As for the rest of the data, we have dropped the rows with missing values.

3.5.6 Removing Outliers

Detecting and handling outliers is more difficult task than handling missing values and

duplicates. Outliers are values distant from other observed values. But just because a

value is an outlier doesn’t mean its an erroneous value - they could prove to be very

informative. They could be a mistake or show a variance in the data.

Removing an outlier should only be done when absolutely sure that it is a mistake and

can cause problem with our model. In a good trustworthy dataset the outliers should be

rare - and thus should not have much statistical impact.

In case of qualitative data present in the dataset, we would have dealt with typographical

errors and inconsistencies. But as discussed before, PAMAP2 is mostly a qualitative

dataset.
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Feature Analysis and Classification

We live in a society exquisitely dependent on science and technology,

in which hardly anyone knows anything about science and technology.

— Carl Sagan

4.1 Introduction

In this thesis we attempt to classify the activities correctly from the raw data available.

In Chapter 1 we have discussed the motivation for the work of this thesis. Chapter 3

explores the dataset used for this project: PAMAP2. The dataset provides us with 53

features (excluding time stamp). We are left with 40 features after the pre-processing

in Chapter 3. In this chapter we will delve into extracting features for the classifiers

and various classifier algorithms and compare their performance in identifying different

physical activities. [41] and some other studies suggests that data from accelerometers

is the best in identifying the activity as they respond quickly to activity change.

Figure 4.1 shows the raw acceleration (from chest IMU) and heart rate (in bpm) and

we can see how they vary with four different activities (standing, cycling, running and

walking)

25
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Figure 4.1: Raw acceleration (from chest IMU) and heat rate data from PAMAP2
dataset of four activities

4.2 Data Processing Chain

Figure 4.2 shows the basic HAR chain which is also adopted in this study.

Figure 4.2: Data processing chain for Human activity recognition [72]
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4.2.1 Data Acquisition

We are using the PAMAP2 open dataset. This data is collected from 9 subjects, wearing

3 IMUs and a heart rate monitor. Chapter 3 explores the dataset and its features.

4.2.2 Pre-processing

Data is pre-processed by (1) removing the unnecessary columns of time-stamp and

orientation, (2) missing (NaN) or duplicated values are filled or removed, (3) transition

activities are also removed. After this, we are left with 40 features.

All of the above mentioned steps are detailed in Chapter 3.

4.2.3 Segmentation

Features for the classification are typically computed over a sliding window. The sliding

window length is usually fixed. Different window lengths are used by authors in various

studies.

We have decided to take window size of 512 (5.12 seconds) which slides one instance

(0.01 second) at a time.

4.2.4 Feature Extraction

Identifying suitable features for the classifiers is crucial for the correct identification of

the target classes.

Most common features used for the acceleration data are mean, variance, standard

deviation or discrete Fast Fourier transform (FFT) coefficients. Energy, entropy or peaks

in data are commonly derived from FFT.

Features used in this thesis:

• Difference of absolute acceleration

• FFT amplitude peak of rotation rate
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We compute the features over every window separately. But, before computing the

features we will cut off first and last 1000 items, because of activity start and end

transition period.

Difference of Absolute Acceleration

First features we explore is absolute acceleration, maximum and minimum acceleration

and difference between max and min acceleration. We calculate absolute acceleration in

order to get rid of the orientation.

Absolute acceleration:

|a| =
√
a2

x + a2
y + a2

z

where,

|a| = absolute acceleration,

a2
x = IMU chest acceleration in x-axis,

a2
y = IMU chest acceleration in y-axis,

a2
z = IMU chest acceleration in z-axis

Figure 4.3: Absolute acceleration of four activities (running, walking, cycling/biking,
standing)
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From the absolute acceleration we will calculate maximum and minimum acceleration

over the sliding window.

3300 3325 3350 3375 3400 3425 3450 3475 3500

timestamp

0

1

2

3

4

ac
c 

in
 g

acc
rolling_max
rolling_min

Figure 4.4: Rolling maximum and rolling minimum of absolute acceleration of running
activity calculated over sliding window

Figure 4.4 shows the rolling maximum and rolling minimum of absolute acceleration of

running activity calculated over sliding window.

Figure 4.5 shows the difference of maximum and minimum absolute acceleration.

Figure 4.5: Difference of absolute acceleration of four activities (running, walking,
cycling/biking, standing) calculated over sliding window
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Now if we take a look at this feature and plot it as in figure 4.6 we can see that this

feature provides us with pretty good separation between certain activities (like standing

and running) but overlaps in others (walking and cycling). We need other features to

separate them.

Figure 4.6: Plotting of absolute acceleration of four activities (running, walking, cy-
cling/biking, standing) against difference in acceleration.

FFT Amplitude Peak of Rotation Rate

Because it is expected that a higher accuracy can be reached if each instance capture

temporal information, we will compute the discrete Fourier transform (DFT) over the

signal for every window and dimension separately using the fast Fourier transform (FFT)

algorithm. [71]

We calculate FFT amplitude of rotation rate and check how it differentiates the activities.

Figure 4.7 shows that it is a good feature for classification.
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Figure 4.7: FFT amplitude of rotation rate of four activities (running, walking, cy-
cling/biking, standing)

Using the method in Listing 4.1 we will calculate FFT amplitude peak of the rotation

rate over the sliding window.

1 de f f f t_ampl i tude ( s , kind=’ peak ’ ) :

2

3 # windowing to get r i d o f the l eakage e f f e c t

4 hann = np . hanning ( l en ( s ) )

5

6 # FFT with Hanning Window

7 Yhann = np . f f t . f f t ( hann∗ s )

8

9 N = i n t ( l en (Yhann) /2+1)

10 Y = 2.0∗ np . abs (Yhann [ : N] ) /N # r i g h t h a l f ( p o s i t i v e f r e q s only )

11

12 # frequency axis , i f needed

13 f a = 1 .0/ dt

14 f = np . l i n s p a c e (0 , f a /2 . 0 , N, endpoint=True )

15

16 i f kind==’ peak ’ :

17 re turn np . max(Y) # j u s t re turn the maximum peak amplitude

18 e l i f kind==’ p e r i o d i c i t y ’ :

19 re turn np . max(Y) / np . mean(Y) # return p e r i o d i c i t y

20 e l i f kind==’ f u l l ’ :

21 re turn f , Y # return the f u l l spectrum

Listing 4.1: Code for calculating FFT amplitue
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4.2.5 Classification

The last stage of data processing chain is classification. The goal of this thesis is to find

a classifier which gives us the highest accuracy score. Therefore we will use multiple

classifier algorithms to compare, analyze the result and chose the best one.

We have used several different classifiers mentioned in the referenced works for comparison.

Below are listed some of the classifiers used.

• Simple algorithms like Naive Bayes, Decision Trees

• Ensemble algorithms: Bagging algorithms (Bagged Decision Tree, Random Forest,

Extra Trees), Boosting algorithms (Stochastic Gradient Boosting, AdaBoost), and

voting ensemble

• Others (Neural Net)

We will perform classification with the features extracted in previous section plus heart

rate. We split the dataset into training set and testing set. We use 70 percent data for

training the classifier and 30 percent to test the model as shown in Figure 4.8.

Figure 4.8: Schematic for training and testing data split for classification process [73]

We will use three main methods for classification validation:

• Single subject validation: training and testing from the data from a single subject.

• LOSO (Leave One Subject Out): training on data from all the subjects minus one,

that one we will use for testing the model

• Cross-person validation: training on the data from one subject and testing it on

data from another subject
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In the next chapter we will look at the results of our classifier models and the metrics

used to check the validity.





Chapter 5

Evaluation and Results

Technology is cool, but you’ve got to use it as opposed to letting it use you.

— Prince

In this chapter we will discuss the measures and the methodology used to evaluate our

classifiers. The results are also presented in Section 5.2

5.1 Performance Evaluation

This section describes the metrics and the methods used for performance evaluation of

the classifier models.

5.1.1 Performance Metrics

To evaluate our classifier models we will use multiple metrics of accuracy, precision, recall

(sensitivity), and f1 score. We will explain in detail these metrics below but first we need

to understand confusion matrix and its four parameters as seen in Figure 5.1.

• True Positive (TP): Correctly predicted positive values; i.e. actual class and

predicted class are both true.
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• True Negative (TN): Correctly predicted negative values; i.e. actual class and

predicted class are both false.

• False Positive (FP): Incorrectly predicted positive values; i.e. actual class is false

and predicted class is true.

• False Negative (FN): Incorrectly predicted negative values; i.e. actual class is true

and predicted class is false.

Figure 5.1: Confusion matrix

Accuracy

Accuracy is the proportion of correctly predicted instances out of total number of

predictions.

Accuracy = Number of correct classifications
Total number of classifications

Precision

Precision is a measure that tells us the accuracy or precision of our model from predicted

instances, i.e. actual positives from the predicted positives.

Precision = True Positive
True Positive + False Positive

= True Positive
Total Predicted Positive
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Recall

Recall calculates the proportion of true positives out of the total actual positives, i.e. how

many actual positives our model captures through labeling it as Positive (True Positive).

Recall = True Positive
True Positive + False Negative

= True Positive
Total Actual Positive

F1 Score

F1 score gives us the balance between Precision and Recall. It is a good measure when

our data is unbalanced.

F1 = 2 ∗ Precision * Recall
Precision + Recall

5.1.2 Evaluation Methods

In our thesis we have used three methods of validation.

• Single person validation

• Cross person validation

• LOSO: Leave One Subject Out

We will further explain these methods below.

Single Person Validation

In this validation method we will use the data of a single subject and split that data into

training set and testing set. We will use the train set to train our model and test set to

test the model.

Basically, training the model on the same person we are going to test it on. This method,

as is observed in the Figure 5.2, gives us the highest accuracy.
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Figure 5.2: Preliminary classifier comparison performed on whole data with a single
person validation

Cross Person Validation

In this we will perform validation by training the model on one subject and testing it on

another, and so on.

Leave One Subject Out Validation

As we can tell from the name, the validation is performed by training the model by all

subjects but one, and testing the model on that one subject.
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5.2 Results

In this section we will present the results from our experimental evaluation of various

classifier algorithms.

We can see from Figure 5.3 that for four selected activities of walking, running, cycling

and standing, the selected features provide good decision boundaries for the classifier.

Figure 5.3: Decision boundaries of Support Vector Classifier with features for four
different activities

As our data has unbalanced class distribution, accuracy is not necessarily the best of the

metrics for evaluation due to the accuracy paradox.

The accuracy paradox is where our model gives us very high accuracy but it is actually only

representing the class distribution. Therefore, we will also use other metrics mentioned

in Section 5.1.1.

We have also balanced the training set using undersampling before training our models.

From the preliminary classification comparison using the whole dataset (all subjects)

and performing single person validation method we get the results shown in 5.2. Basing

on the results we will choose six top classifiers for further validation.

For single subject validation we see that Extra Trees, Random Forest and Bagged Decision

Trees perform best, with accuracy, balanced accuracy, f1 score, precision and recall given

Table 5.4.

Leave One Subject Out performs best on Stochastic Gradient Boosting, Bagged Decision

Trees and Random Forest, with results shown in Table 5.5.
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Cross person evaluation performs best on kNN, Extra Trees and Stochastic Gradient

Boosting as shown by results in Table 5.6.

We are also calculating balanced accuracy along with normal accuracy because as

discussed before accuracy scores can not be trusted with unbalanced data as such that

we have.

Figure 5.4: Confusion Matrix for Extra Trees Classifier with Single Person Validation

Figure 5.5: Confusion Matrix for Stochastic Gradient Boosting Classifier with LOSO
Validation
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Figure 5.6: Confusion Matrix for K Nearest Neighbors Classifier with Cross Person
Validation

Furthermore, confusion matrices as shown in Figures 5.4, 5.5 and 5.6, give us a more

detailed look at the validity of the model.

We can see from the above results that training a model on a single person and testing

it on the same person gives us a almost perfect accuracy score, followed by Leave One

Subject Out method. Cross Person method comes in last because there is not sufficient

training data.

Table 5.1: Breakdown of classifier scores for each class for Extra Trees Classifier with
Single Person Validation
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Table 5.2: Breakdown of classifier scores for each class for Stochastic Gradient Boosting
with LOSO Validation

Table 5.3: Breakdown of classifier scores for each class for K Nearest Neighbors Classifier
with Cross Person Validation
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Chapter 6

Conclusion and Future Directions

Success in creating AI would be the biggest event in human history. Unfortunately,

it might also be the last, unless we learn how to avoid the risks.

— Stephen Hawking

Human activity recognition is a field which benefits many areas of life. The goal of the

thesis was to successfully classifying various everyday life ADL activities as motivated by

reasons discussed in Chapter 1.

6.1 Conclusion

In this thesis, we have used PAMAP2 dataset which comprises of 9 subjects performing

12 protocol activities over a period of 10 hours.

First we pre-processed the raw data by removing unnecessary data and filling in missing

values. Then, we extracted the features from time and frequency domain to use in the

classifier models. Finally we performed classification on the transformed data.

Validation of the the selected model has been done by methods of single person, cross-

person and LOSO. Multiple performance metrics have been used for evaluating the

classifier models.
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We have managed to achieve considerable accuracy in our thesis but further work needs

to be done as there is a lot more scope in this field that we must explore. We will discuss

the future direction this work can take in the next section.

6.2 Future Direction

Intensity Estimations

Next step is to recognize the intensity of the activities as done in [53] Heartbeat or other

physiological data can be used to measure the intensity of the activity being performed.

Recognition of High Level Activities

We can use the recognition of the low level activities (as such done in this thesis) to help

us with the recognition of high-level activities.

Towards this direction considerable work has been done by [45].

More Data

More data need to be collected with more subjects and over longer period of time. We

were limited by unbalanced data where some classes had more/sufficient data while

others had very small amount in comparison.

Multiple datasets should be used to validate the robustness of the selected model.

Feature Extraction and Analysis

In our thesis we have worked with limited number of features for classification, but more

work needs to be done in order to gain better accuracy and scores with selection of

optimal features. In [71] the authors have focused mainly on feature selection.

Semi supervised model

Most of the work done on activity recognition is done on annotated data and with

supervised learning.

Un-annotated data is easier to collect than labeled data. These days with wearable

technology many un-annotated datasets are available which can be used to test and
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create a unsupervised or semi supervised model. As discussed in [8] semi supervised

learning is gaining more popularity among businesses and researchers.

Some researchers have implemented semi supervised learning with considerable success

[74–76]

Activity Quality

If we can manage to capture and recognize not only what activity has been performed

but also how well it has been performed, then that could open new doors for various

applications.

Major impact will be in sports an fitness field, where athletes or individuals could monitor

how well they are training or performing.

It could also prove useful in health field with elderly living assistance and rehabilitation

patients.
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Appendix A

Brief description of the 18 different

performed activities

lying: lying quietly while doing nothing, small movements – e.g. changing the lying

posture – are allowed

sitting: sitting in a chair in whatever posture the subject feels comfortable, changing

sitting postures is also allowed

standing: consists of standing still or standing still and talking, possibly gesticulating

ironing: ironing 1-2 shirts or T-shirts

vacuuming: vacuum cleaning one or two office rooms (which includes moving objects,

e.g. chairs, placed on the floor)

ascending stairs: was performed in a building between the ground and the top floors, a

distance of five floors had to be covered going upstairs

descending stairs: was performed in a building between the ground and the top floors, a

distance of five floors had to be covered going downstairs

normal walking: walking outside with moderate to brisk pace with a speed of 4-6km/h,

according to what was suitable for the subject

53



Appendix A Brief description of the 18 different performed activities

Nordic walking: was performed outside on asphaltic terrain, using asphalt pads on the

walking poles (it has to be noted, that none of the subjects was very familiar with this

sport activity)

cycling: was performed outside with a real bike with slow to moderate pace, as if the

subject would bike to work or bike for pleasure (but not as a sport activity)

running: meant jogging outside with a suitable speed for the individual subjects

rope jumping: the subjects used the technique most suitable for them, which mainly

consisted of the basic jump (where both feet jump at the same time over the rope) or

the alternate foot jump (where alternate feet are used to jump off the ground)

watching TV: watching TV at home, in whatever posture – lying, sitting – the subject

feels comfortable

computer work: working normally in the office

car driving: driving between office and subject’s home

folding laundry: folding shirts, T-shirts and/or bed linnens

house cleaning: dusting some shelves, including removing books and other things and

putting them back again onto the shelves

playing soccer: playing 1 vs. 1 or 2 vs. 1, running with the ball, dribbling, passing the

ball and shooting the ball on goal
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Appendix B
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Appendix C
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