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Evaluation of machine learning for optimization and anomaly detection
in offshore drilling operations.

by Santiago Echeverri

Studies of drilling operation have been focused on control parameter optimization to
improve the rate of penetration and mechanical specific energy. Drilling is a com-
plex operation with uncontrolled parameters and disturbances that could generate
non-productive time during the bit trajectory. The operation is not fully automated
increasing the likelihood of misbehavior events. A possible scenario to improve the op-
eration is proposed in this research, coupling predictions of parameters with anomaly
detection algorithms to minimize the cost of the drilling operation. It means that
at the same time that we are optimizing we need to issue an alert in case of misbe-
havior. Machine learning algorithms have contributed to both approaches uncovering
relations between input parameters and the quantity of interest. This research is con-
ducted based on the following structure: First, machine learning models have been
implemented with incremental training data available to predict the rate of penetra-
tion. Second, detection of misbehavior models of control, uncontrolled and response
parameters have been integrated into the algorithm. Our experiments showed that
random forest is a competent machine learning algorithm to predict the rate of pene-
tration with a performance error (root mean squared error) of 2,92 m/hr (9,57 ft/hr)
in static analysis and 4,43 m/hr (14,55 ft/hr) average error increasing the availability
of data. Furthermore, isolation forest represents a flexible method detecting anoma-
lies in the context of unsupervised learning. Both methods, random forest and isola-
tion forest, performance under a similar structure with incremental data architecture.
Algorithms for anomaly detection exposed between 52 and 69 anomalies over 6511
points. Results indicated that just one method could miss the detection of a critical
event. Finally a virtual detector is proposed with an architecture of five layers to
optimize drilling operations.

Keywords: Machine learning, anomaly detection, rate of penetration, drilling
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Chapter 1

Introduction

Selecting operational parameters that maximize a desirable measure of drilling per-
formance is one of the goal of drilling optimization [58]. Efforts are geared to vary
drilling parameters and achieve minimum mechanical specific energy and optimum
penetration rate [5]. Drilling parameters measured on the rig can be classified into
control parameters, uncontrollable parameters, and response parameters [30]. Con-
trol parameters can be controlled by the drilling engineer on the rig: weight on bit,
drilling rotational speed, and drilling fluid (mud) flow rate [30][34][58]. Strength of
the rock, geological properties, maximum pump power correspond to uncontrollable
parameters which cannot be changed by engineers while drilling a well. Response
parameters (the objectives) are those which change when control parameters are
changed: rate of penetration, mechanical specific energy, downhole vibrations, and
torque on bit. Still, there are several variables which are difficult or impossible to
measure on real-time [58].

Drilling is a complex operation with uncontrolled parameters and disturbances
that could generate non productive time during the bit trajectory. Many variables
profoundly influence the rate of penetration which include, but are not limited to,
parameters on the surface, formation properties such as rock strength, abrasiveness,
heterogeneity, pore pressure and permeability, parameters on the surface, bit design,
mud, human factors, downhole conditions, and mud rheology [34], hole diameter, hole
cleaning and hydraulics[58]. Any incorrect decision, deviation, or unknown scenario
could interfere in the normal operation. The operations are not fully automated
increasing the likelihood of misbehavior events [27]. The efficiency of such operations
depends on the driller skills.

This research evaluates machine learning models to contribute in the parameter
optimization and anomaly detection. On one hand, machine learning models have
been implemented to predict rate of penetration [34] [58] [56]. These models leverage
statistics to uncover relations between any prescribed inputs (features/predictors)
and the quantity of interest (response) [58]. With no set equation, machine learning
model allowance segmentation of the drilling operational parameter space. However,
the increased model complexity reduces interpretability of how and adjustment to
the inputs will affect the output. On the other hand, machine learning models for
anomaly detection has supported the predictability of failures events [20] specially
in predictive maintenance of equipment [35]. For humans, it is difficult to recognize
abnormal state and normal state using raw data [53]. Training machine learning
models to learn the normal state and identify the divergent pattern is valuable.

The main goal of this study is the characterization of machine learning models
for prediction of response parameters and anomaly detection. Therefore, the research
is conducted based on the following structure: First, machine learning models have
been evaluated with incremental training data available to predict rate of penetra-
tion. Second, detection of misbehavior models of control, uncontrolled and response
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parameters have been integrated to the algorithm. It provides drilling superintendent,
drilling supervisors and real time operations centers staff with better tool for decision
making. Any optimization or detection of misbehavior represent saving cost, improve
safety and increase efficiency in drilling operation and add value to the investment of
operational centers, monitoring and management systems.

The present document is distributed in 6 chapters. Chapter 1 includes the scope,
objectives, limitations, and methodology of the research. In Chapter 2, the current
machine learning methods and tools applied in drilling operations are reviewed dur-
ing the revision of academic literature. Then, the relevant alternatives based on the
literature review are defined and analyzed in Chapter 3. The implementation archi-
tecture is structured in Chapter 4. The experimental results and analysis are included
in Chapter 5. The last but not least, the conclusion and future research are presented
in Chapter 6.

1.1 Scope
Different machine learning models has been used in the oil and gas industry, most of
them focused on prediction of rate of penetration. Looking forward to understand
the implementation of models already used in previous studies and complement the
analysis with additional strategies, in this research the scope will be to evaluate
machine learning and optimization methods to predict response parameters (rate of
penetration) and detect misbehavior in drilling operations. To explain with more
details the general scope, the specific goals are:

1. Machine learning method analysis:
• Evaluate relation training test set required to obtain predictability with
the lowest error.
• Investigate the feature set required to train the machine learning model.
• Identify methods that allows predictability with the lowest error.

2. Detection of misbehavior:
• Select the machine learning model to detect misbehavior with lowest false
positive and false negative flag.

1.2 Objectives
Based on the scope described in previous section, the objectives with the respective
metrics are defined as follow:

1. Characterization of machine learning model with stationary analysis and incre-
mental training data available to predict rate of penetration.
• Select optimal hyperparameter combination (hyperparameters)
• Determine relevant features (features with 95 % of importance)
• Identify model with best performance (RMSE and run time)
• Analyze training to test set ratio (% training/test)
• Assess incremental data availability strategy using batches per formation
(RMSE and run time)

2. Identification of misbehavior of operational parameters (control, uncontrolled
and response parameters)
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• Test machine learning methods to identify anomalies in stationary analysis
(number of anomaly detection)
• Test machine learning methods to identify anomalies in streaming data
(number of anomaly detection)

1.3 Limitations
This research is governed by some limitations, which are:

• The purpose of the thesis embraces the evaluation of the machine learning mod-
els. Therefore, the pipeline is not implemented in real-time operations. Data
preparation, modeling, evaluating, model selection and optimizing are include
in the development of the analysis. However, operationalizing the models in a
production environment are not included in our process. Further code develop-
ments and use of cloud solution are required to reach that goal.
• Simulation of incremental data available reproducing the real time collection of
data is not included in the research. It means, the algorithm does not reproduce
the collection of data per second or minute or subsequent scales.
• Open source services are used during the stage of experimentation and imple-
mentation.
• The information submitted here does not have any connection with Utah Forge
U.S Department of Energy or University of Utah.
• The geological formation identified for Well 58-32 and Well 21-31 allowed us
to delimited the top of each data set for batch analysis. However, geological
analysis or interpretation is not included in the present research.
• The data set available does not include labels of anomalies. It means that
metrics like confusion matrix to identify the best model of anomaly detection
are not included in this research.

1.4 Methodology
With the research methodology designed for this project, we are exploring the follow-
ing questions: What have been the machine learning techniques used for prediction
and anomaly detection in drilling operation?, What are the machine learning algo-
rithms that fit with our context of drilling operation data sets?. How appropriate is
the performance of the models?, and Is there an additional model to predict variables
and detect anomalies?. To achieve an interpretation for the previous questions, we
are going to describe our approach:

• Literature review: This review will include the analysis of machine learn-
ing models implemented in drilling operation targeting the prediction of rate
of penetration. How to split the training and test set will be inspected. Iden-
tification of physics-based models used in well drilling planning or real-time
optimization will be required to understand and compare the main features of
analysis. Possible optimization algorithms should be explored to find optimum
parameters. Objective functions must be identified to analyze the impact of
the parameter variations. Therefore, how to couple training data, predictions,
objective functions and optimization of parameters will require a deep analysis
in previous work. This structure will contribute to analyze the feasibility of the
machine learning models to optimize operational parameters. The last but not
least, anomaly detection techniques will be explored in this stage.
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• Alternative solutions and selection: Based on literature review, the rele-
vant machine learning models, physics-based models for objective function, and
anomaly detection models will be defined. The study will include the analysis
of main hyper-parameters, and advantage and disadvantage for each method.
The outcome of this analysis will be the selection of the respective models. Par-
allel to this activities, preliminary experiments will be developed to inspect the
functionalities and performance of models.
• Implementation: The technological configuration will be implemented based
on the models and algorithms selected. Coding tasks are developed during this
stage. Here, the important task is to compare the performance of the models.
Different open source environments are available to implement the code. We
are going to explore the different alternatives to achieve the best alternative for
our purpose.

What cases of study are this research going to analyze? Specifically, in the activi-
ties of experimental results and evaluation (Chapter 5) we are going to use the cases
of study disclosed of Utah Well 58-32 [46] and Fallon Well 21-31 [54].

• The data set Well 58-32 Milford, Utah (USA) [46] contains processed drilling
data with the following characteristics.
– Well 58-32 was drilled vertically in 58 days to a depth of 7,536 ft.
– The intent of the drilling was to determine the characteristics of the rock

within the target formation and at the depth and temperatures of interest.
– Information about geological formation and stratigraphy of the well is

found in Frontier report [23].
• The data set Well 21-31 Fallon, Nevada (USA) [54] contains: well lithology logs
and well logging data.
– Well lithology log fields include: geologic unit, depth from, depth to, unit

thickness, unit thickness, and full unit name.
– Well logging data includes: daily reports, well logs (drill rate, lithology,

fractures, mud losses, minerals, temperature, gases, and descriptions), mud
reports, drilling parameter plots, daily mud loss summaries, survey reports,
progress reports, plan view maps (easting, northing), and wireline logs.

– Well 21-31 was drilled in 25 days (February 2018) to a depth of 6,108 ft.

The methodology proposed by Theodoridis et al [62] will be used in our imple-
mentation during the machine learning analysis for prediction and anomaly detection:
pre-processing, feature selection and/or reduction, regression design and anomaly de-
tector design and system evaluation.

1.5 Assistance and design tools
Google Colaboratory allows to develop the coding task of machine learning models.
Consequently, the following packages will be used: Scikit-Learn for machine learning
algorithms [48], Pandas [43] for data extraction and preparation and, Matplotlib [37]
and Seaborn for data visualization as well as Bokeh [13] for interactive visualization,
and Keras [22] and Tensorflow [1] for deep learning algorithms.

The following online examples [7], [18], [16], [39], [17] will guide during the coding
stage.
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At the same time, this project will be developed in the research group Quan-
tum and Computer Engineering from TUDelft. Therefore, the thesis developed by
Helmiriawan [35] and Hes [36], who are part of this team, will contribute with the
structure, application and theory for this project.

1.6 Results and outcomes
The outcomes of the research project are defined as follow:

1. In machine learning method analysis, the result will be the characterization of
machine learning models to predict response parameter (rate of penetration).

2. In detection of misbehavior, the development will be the characterization of
machine learning models to detect misbehavior in drilling operation.

Highlights:

• The data set available to develop the research comes from Well 58-32
Milford, Utah (USA) [46] and Well 21-31 Fallon, Nevada (USA) [54]
• The outcome of the researches is focused in the characterization of ma-
chine learning models for rate of penetration prediction and anomaly
detection.
• Google Colaboratory will be the main tool to develop the implementation
of machine learning models. This tool offers easy access to many packages
available for machine learning and deep learning. Bokeh application will
be used for interactive visualization.
• The project is developed in Quantum and Computer Engineering research
group from TUDelft.
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Chapter 2

Literature review

2.1 Drilling operation
Oil and gas industry is divided in upstream, midstream, and downstream. In upstream
we have exploration, drilling and production of crude oil and natural gas. Meanwhile,
processing, storing, transporting and marketing of oil, natural gas and natural gas
liquids are part ofmidstream. On the other hand, downstream corresponds to refining,
processing, and purifying, marketing and distribution of products derived from crude
oil and natural gas. In this project we are going to focus on drilling operations.
According to Speight [59], drilling is the most essential activity in oil and gas recovery.
Drilling accounts for a significant part of oil and gas budgets [29] [9]. The costs of
rig operations make up a significant part of the drilling expense [65]. Therefore,
optimization is a central priority of all operators. The types of drilling operations
include drilling, circulating and moving the drillstring up or down [27].

The first stage in the extraction of crude oil from an underground reservoir is to
drill a well into the reservoir [59]. It is only through the actual penetration of the
formation by the drill bit that the presence of recoverable crude oil and natural gas can
be confirmed. We can find drilling operation onshore and offshore. Drilling operations
are more cost efficient when rate of penetration are optimized [33], representing how
fast or slow a well is being drilled. Efforts are geared to vary drilling parameter to
achieve minimum mechanical specific energy and obtaining optimum penetration rate
as formation strength are reasonable uniform within the same formation interval [5].
Drilling offshore wells are drilled by lowering a drill string consisting of a drill bit,
drill collar, and drill pipe through a conduit (riser) that extends from the drilling rig
to the sea floor. Some of the main characteristics of drilling operation are described
as follow [59]:

• Drill bits have cones with teeth and are designed to break the rock by indention
and a gouging action. As the cones roll across the bottom, the teeth press
against the formation with enough pressure to exceed the failure strength of
the rock at which rock fracture occurs.

• At the surface, a rotary table turns the drill string and the drill bit teeth
penetrate the sea floor sediment and the various rock formations that overly
the reservoir while a drilling fluid is pumped into the drill pipe from a tank on
the surface and the mud flows through perforations in the drill bit. The weight
of the mud exerts a pressure greater than the pressure in the rock formations,
and, therefore, keeps the well under control.

• As the drill bit penetrates further into the rock formations, strings of steel pipe
(casing) are run into the well and cemented into place in order to seal off the
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walls of the well and maintain the integrity of the well by preventing collapse
of the walls.

The related parameters of drilling rig and bit, formation, and fluids include [56]:

(a) Rig and bit parameters: Weight on bit, torque, rotary speed (rotations per
minute of the drill bit), flow rates (drilling mud), pump stroke speed, pump
pressure, hook load, bit wear, type of the bit.

(b) Formation parameters: Local stress, hardness, mineralogy, porosity and per-
meability, formation abrasiveness, drillability, depth, temperature, unconfined
compressive strength.

(c) Drilling fluid properties: Mud weight, viscosity, filtrate loss, solid content,
gel strength, mud pH and yield point.

Input parameters such as weight on bit, rotations per minute of the drill bit,
flow rate of the drilling mud and unconfined compressive strength of the rock [58][29]
are considered relevant in drilling operational analysis. In addition to bottom hole
pressure and temperature, pump pressure, torque, hole depth and bit depth [26].

2.2 Machine learning
The result of running the machine learning algorithm can be expressed as a function
y(x) which takes a feature x as input and that generates an output vector y, encoded
in the same way as the target vectors [12]. The precise form of the function y(x) is
determined during the training phase, also known as the learning phase, on the basis of
the training data. Once the model is trained it can then determine the identity of new
feature, which are said to comprise a test set. The ability to categorize correctly new
examples that differ from those used for training is known as generalization [12] [64].
In genera, implementing machine learning algorithms includes preprocessing, feature
generation, feature selection and reduction, classification or regression, and system
evaluation [62] as was mentioned for our methodology.

When the aim is to assign each input vector to one of the activities in drilling
operation, we would have a classification problems. And it is called regression, if the
desired output consists of one or more continuous variables. For instance, prediction
of rate of penetration in oil and gas in which the inputs consist of the weight on bit,
rotary speed and flow, we would have a regression problem. Applications in which the
training data comprises examples of the input vectors along with their corresponding
target vectors are known as supervised learning problems [12]. On the other hand,
when the training data consists of a set of input vectors x without any corresponding
target values. We have unsupervised learning, the goal in such a problem may be
to discover groups of similar examples within the data, where it is called clustering,
or to determine the distribution of data within the input space, known as density
estimation, or to project the data from a high-dimensional space down to two or
three dimensions for the purpose of visualization.

Classical learning with supervised techniques include linear regression, logistic
regression, k-nearest neighbor, support vector machine [55], decision tree [51], random
forest [14], Neural networks [12] and advances in deep learning [28]. In the case of
unsupervised learning we can find clustering [62] with k-means, hierarchical cluster
analysis, and expectation maximization, visualization and dimensionality reduction
with principal component analysis and t-distributed stochastic neighbor embedding.
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2.3 Machine learning fro drilling operation
Machine learning techniques are constructed based on mathematical models. These
models are able to learn the trend or behavior of experimental or real data and
thus discern a pattern [9]. The main objective of seeking smart machine methods
is to predict the occurrence of some problems based on previous experience with
reasonable cost and time. The reliability of the method depends on the accuracy
of prediction and the error between the actual and the predicted class labels of the
problem. Machine learning techniques are able to find patters usually with nonlinear
behaviours and multidimensional parameters.

Currently, statistical learning methods and automation can improve drilling effi-
ciency reducing non-productive time (NPT), and decreasing the cost of drilling [65].
With no set equation, machine learning models permit segmentation of the drilling
operational parameter space [58]. Different techniques have been used to optimize
operations and detect anomalies. On one hand, least squares regression, random
forests [65], trees, bagging and random forest [32], neural networks [58] have been
used to optimize operations. When we talk about optimization, most of the studies
have been focused on rate of penetration [26]. On the other hand, the approach of
early detection of drilling events have been proposed under artificial neural networks
and support vector machine.

2.3.1 Optimization of parameters, machine learning and drilling op-
eration

Which techniques and what are the characteristics of the experiments developed in
previous research? In this section, we developed a literature review about papers
related to drilling operation and machine learning. The summary is displayed in
Table 2.1 with the methods, goal and the respective reference.

Wallace et al. [65] used random forests, neural networks and ensemble techniques
to build a predictive model for rate of penetration. In this study, each rock formation
type is analyzed separately. Surface while drilling data was used in their implemen-
tation, and does not depend on any down hole measurements, bottom hole assembly
characteristics, or formation properties for its analysis. Selecting the data, the first
500 ft of the lateral well was used as the training data, using the following 5000
ft as validation data. The model were analysed with root mean square error met-
ric, obtaining an error around 23 ft/hr. By allowing the traditional physical models
(Bingham, Bourgoyne and Young, Hareland and Rampersad, and Motahhari) to re-
calibrate the empirical coefficients every 50 ft of depth, the accuracy was improved to
around 18 ft/hr root mean square error. According to Wallace et al. [65], this practice
of recalculating the empirical coefficients every 50 ft is merely a forced overfit of the
traditional model.

Searching for to optimize the ROP, Hegde et al. [32] used decision trees, bagged
trees and random forests. Decision trees provide easy interpretability and hence are
favored over other non-linear techniques. However, decision trees can result in sub-
stantial overfitting. This shortcoming was rectified using bagging or random forest
methods to substantially increase accuracy. The analysis was developed with a train-
ing and validation set with a subsection of first 500 ft. The test set was developed with
2000 ft yet to be drilled. The data set was obtained from Tyler formation (Williston
Basin of Western North Dakota). The evaluation was established in each formation,
nine (9) formations in total. Regression tree obtained 35 ft/hr root mean square error,
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boosting method 34 ft/hr and random forest 7.4 ft/hr. Decision trees carries high vari-
ance. Having high lithology variation, decision trees have disadvantage. Averaging
models helps to reduce variance where ensemble models have advantages. An addi-
tional study developed by Hegde et al. [29], random forest achieved an accuracy (R2)
of 0.96 and linear regression 0.42. This study included training, validation and test
set of the data set obtained from Tyler formation. Cross validation was implemented
in this analysis. Rate of penetration was predicted using weight on bit, rotary speed,
flow rate and unconfined compressive strength of rock which can be manipulated by
an engineer to change the mentioned rate. In an additional study, Hegde et al. [30]
used random forest to predict rate of penetration in 12 different formations using the
same features as the previous research. At each iteration, 40% of the data points were
selected in a formation for training set and 60% for test set. The technique achieved
to improve 28% on average the rate of penetration.

Moreover, Soares et al. [58] used random forests, support vector machines and
neural networks to predict rate of penetration. Weight on bit, rotations per minute
of the drill bit (RPM), and drilling fluid (mud) flow rate were the features selected
for the analysis in 19 formations. The implementation included cross-validation and
the input data from Williston Basin dataset (USA). For support vector machine and
neural networks models, the data were standardized to zero mean and variance equal
to one. The system obtained 12.58 normalized root mean square error with random
forest. The best hyperparameters were 25 trees and 2 maximum features per split in
random forest. In support vector machine, Soares et al. [58] achieved best performance
with Gaussian kernel function, epsilon(ε) 1, penalty parameter C of the error term
equal to 100, and kernel coefficient (λ) 0.1. In the neural networks grid, the solver
with best score was the limited memory Broyden–Fletcher–Goldfarb–Shanno (BFGS)
optimizer, two hidden layers with 4 and 2 neurons in each one, logistic as activation
function and 0.0001 in I2 regularization (α).

With the goal to improve the efficiency of directional drilling, Pollock et al. [50]
used neural network with reinforcement learning methods. Training, test and valida-
tion set were splitted. The data set contains 377,000 time points used for training
and testing and 214,000 time points for network validation. Much of the informa-
tion was recorded in the drilling logs and includes differential pressure, rotary torque,
hook load, tool face angle, and rate of penetration as well as planned and estimated
actual wellbore trajectory, weight on bit, flow rate, rotary speed and top drive center
position and torque. Hierarchical clustering based on column was used to determine
closely related categories, such as rotary torque and rotation speed, and which cate-
gories should be used as outputs and inputs for training the artificial neural network.
In this pipeline, a generative adversarial network (GAN) was used for unsupervised
learning with long short-term memory (LSTM) to automatically identify sliding time-
frames and provide a framework for sliding identification for artificial neural network
training. A feed-forward multilayer perceptron network was constructed as the first
step toward deep machine learning for directional drilling. The neural network pre-
dicts future differential pressure and rotary torque based on current tool face, weight
on bit, total pump output, rate of penetration, current rotary torque and current
differential pressure. Reinforcement learning was used to refine the neural nets of
the directional drilling system based on the results of an appropriate drilling sim-
ulator. After 1,800,000 training steps, normalized percentage error for differential
pressure prediction was down to 0.21% and that for rotary torque prediction was at
2.72% when tested against directional drilling not included in training or validation
processes.

On the other hand, Shi et al. [56] concentrates on ROP estimation using bit type
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and its properties, mud type and mud viscosity, formation parameters such as rock
strength, formation drillability, and formation abrasiveness, and some critical drilling
equipment operational parameters such as pump pressure, weight on bit, and rotary
speed based on the previous drilled wells data with the extreme learning machine
(ELM) and upper-layer-solution-aware (USA) model. ELM is a fast algorithm for
single hidden-layer feedforward neural networks. The developed ELM and USA model
are shown to be efficient (accuracy and running time) compared to traditional artificial
neural network models. The training subset was 75% of the total data and testing
subset correspond to 25%. The total number of target wells is summed up to 5500.
The study developed by Shi et al. [56] contributed with a literature review of neural
networks used for rate of penetration prediction.

2.3.2 Early detection in drilling operation and machine learning

Some of the well known misbehavior in drilling operation the other hand are stuck
pipe [9], kick and fluid loss [63], severe vibration, sudden equivalent circulating density
changes, high stick/slip, and severe whirling [67]. These events cause the decrease of
drilling efficiency, increase of drilling cost, and even equipment failures. For example,
the severity of stick/slip events can be inferred from downhole gyro data or the
stick/slip ratio (SSR) derived from downhole RPM. Stick/slip with high severity can
lead to reduced ROP and premature bit failure, downhole tool failure, and bottom
hole assembly (BHA) failure [67].

Al-Baiyat et al. [9] proposed artificial neural networks and support vector machine
to predict stuck pipe occurrences. Stuck pipe has been recognized as one of the most
challenging and costly problems in the oil and gas industry [9]. The study involved
classifying stuck pipe incidents into two groups - stuck and non-stuck - and also into
three subgroups: differentially stuck, mechanically stuck, and non-stuck. It means,
stuck pipe is considered as the dependent variable while the drilling parameters are
considered the independent variables. The implementation used sigmoid and tanh as
activation function. The system included 18 neurons in the input layer, 19 neurons in
the hidden layer and 1 output. Meanwhile, support vector machine was implemented
with linear and radial kernel. For this study, 48 data sets were used for training and
18 data sets for testing. Support vector machine was more convenient than artificial
neural networks since they need fewer parameters to be optimized. The accuracy of
support vector machine was over 85%.

When a drilling rig find that the mud hydrostatic is lower than the pressure within
the drilled rock called kick or experiences lost circulation, it is both dangerous and
expensive. The earlier these events are detected the sooner the crew can take critical
corrective action, minimizing both the danger and cost associated with the event. As
a kick enters the wellbore and begins making its way to the surface it shows up as a
gain in the volume of mud at surface and also an increase in mud flow rate out of the
well. Conversely, lost circulation occurs when some of the drilling mud is lost down
hole. The early detection of kicks and loss circulation have been studied by Tem-
izel et al.[61] where machine learning has been proposed as an alternative to define
adaptive alarms thresholds. This work undertook machine learning techniques not
specified in their study, which reduced false alarm rates while increasing the prob-
ability of detection. The research achieved 33 influxes detected at a gain of 0.4m3

in mud volume and 3.5% increase in flow. All 20 losses were detected with a loss of
1.0m3 and 3.5% decrease in flow. Meanwhile, Zhao et al. [67] developed a method
to detect the precursors of drilling events based on drilling data such as surface data,
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wellbore geometry data, lithology (formation characteristics), and downhole mea-
surements from various downhole tools. The drilling events refer to a behavior of the
drilling system detected or recorded, such as severe vibration, stuck pipe, fluid loss,
sudden equivalent circulating density (ECD) changes, etc. Based on various machine
learning techniques, the method learn the changing trend of drilling parameters when
the drilling events happen. The time series of drilling parameters were represented by
symbolic aggregate approximation (SAX). The patterns of these SAX strings are clus-
tered by unsupervised learning and then used for pattern recognition with dynamic
time warping (DTW). The searching pattern recognition was proposed to classify the
changing trend of drilling parameters.

The summary of machine learning technique with the respective reference is pre-
sented in Table 2.1.

Table 2.1: Literature review of machine learning and drilling operation

Ref. Goal Linear
regres-
sion

Least
square
regres-
sion

Random
forests

Ensem-
ble

Decision
trees

Support
vector

Neural
networks

Symbolic
aggregate
approxi-
mation

[65] ROP pre-
diction

X X X

[33] ROP pre-
diction

X X

[29] ROP pre-
diction

X X

[30] ROP
prediction-
optimization

X

[58] ROP
prediction-
optimization

X X X

[50] ROP op-
timization
and rein-
forcement
learning

X

[56] ROP pre-
diction

X

[9] Anomaly
detection

X X

[67] Anomaly
detection

X

2.4 Anomaly detection
The term “outlier” refers to a data point that could either be considered an abnor-
mality or noise, whereas an “anomaly” refers to a special kind of outlier that is of
interest to an analyst [3]. In the unsupervised scenario, where previous examples of
interesting anomalies are not available, the noise represents the boundary between
regular data and real anomalies – noise is often considered as a fragile form of out-
liers that does not always accomplished the criteria necessary for a data point to be
considered unusual or anomalous enough [3]. It is the interest of the analyst that
regulates the distinction between noise and an anomaly.

The study developed by Chandola et al. [20] has contributed to define the options
for anomaly detection. In statistical based models, we found parametric and no
parametric models. Gaussian, regression and mixture of distributions based mod-
els are part of parametric techniques. Besides, Histogram based and Kernel function
based correspond to non parametric techniques. Inmachine learning based model



2.4. Anomaly detection 13

the techniques are categorized as classification, nearest-neighbor, clustering and spec-
tral. In classification group, we have neural networks, bayesian networks, support
vector machine and rule based (decision tree). Nearest-neighbor methods involve dis-
tance and density based and clustering commonly known with k-means clustering and
local outlier factor. While nearest-neighbor analyzes each instance with respect to its
local neighborhood, clustering evaluates each instance with respect to the cluster it
belongs. The last but not least, spectral techniques with principal component anal-
ysis. Two recently surveys [8] [45] have developed their taxonomy analysis based on
the study developed by Chandola et al. [20]. More methods inside this classifications
have been developed like isolation forest [41], autoencoders [28], and hierarchical tem-
porary memory [4]. In addition, the notions of prediction and anomaly detection are
intimately related [3]. Outliers are values that deviate from expected (or predicted)
values on the basis of a particular model. Linear models focus on the use of inter-
attribute dependencies to achieve this goal. In the classical statistics literature, this
process is referred to as regression modeling.

The case of sensor network [20] contributes to address in our research of anomaly
detection techniques. In this case, one or more sensors are faulty or they are detecting
events, data is generated in a streaming mode, environment and the communication
channel induce noise and missing values, the model requires to operate online and due
to severe resource constraints the technique needs to be lightweight and distributed
data mining approach. The techniques used in the sensor network corresponds to
bayesian network, rule-based system with decision tree, Parametric statistical mod-
eling, nearest neighbor-based and spectral techniques according to the survey [20].

The problem of detecting anomalies in streaming data has the following charac-
teristics [60]. Firstly, the stream is infinite, so any off-line learning algorithms that
attempt to store the entire stream for analysis will run out of memory space. Sec-
ondly, the stream contains mostly normal instances because anomalous data are rare
and may not be available for training. In this case, any multi-class classifiers that
require fully labeled data will not be suitable. Thirdly, streaming data often evolve
over time. Thus, the model must adapt to different parts of the stream in order to
maintain high detection accuracy. These relevant issues will be considered in our
design.

Highlights

• Machine learning models have been implemented in drilling operation
where random forest and neural networks have achieved high accu-
racy predicting rate of penetration. Stationary analysis, assessment per
batches and prediction of specific intervals have been incorporated in
these researches. The study developed by Soares et al. [58], Hegde et
al. [30] and Shi et al. [56] offer a comprehensive analysis in this field.

• In the case of anomaly detection, different approaches have been devel-
oped for drilling operation without a conclusive structure. In addition,
the issue has not been addressed in depth for drilling parameters in the
literature. Chandola et al. [20] and Aggarwal [3] offer an overview about
the possible techniques that the oil & gas industry could implement in
their monitoring of parameters.
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Chapter 3

Alternative solutions and
selection

Which are the models that fit the context of our research? and, which are the char-
acteristics of the selected models? We are going to develop this answer in Chapter 3.
Firstly, the machine learning rate of penetration models that fit with the characteris-
tics of the data set are explained. In the second section, the objective functions and
the optimization algorithms to achieve optimum parameters are defined. The last
section corresponds to the description of the anomaly detection methods.

3.1 Models for rate of penetration
Flexibility in model form allows machine learning algorithms to overcome physical-
based ROP methods inability to segment the drilling parameter space. With no
predefined equation, specific hyperparameters to each algorithm control model archi-
tecture. The machine learning models explored in this research are: support vector
regressive, ensemble models (random forest and extreme gradient boost) and neural
networks. There are two important factors that drive these successful applications:
usage of effective (statistical) models that capture the complex data dependencies and
scalable learning systems that learn the model of interest from large datasets [21].
However, the general disadvantage of machine learning models is that increased model
complexity also create downsides in reduce interpretability and risk of overfitting.

3.1.1 Support vector regression

Support vector machine introduced by Vapnik [64] is a model employed for regression
and forecasting. The model evaluates the regression based on kernel functions, which
are able to convert the lower-dimensional input data to a higher dimensional space
in an implicit manner.

How does the support vector machine model work? With a training data where
X represents the space of input patterns. For instances, the rate of penetration with
the corresponding depth. The purpose is to find a function f(x) that has at most
ε deviation from the actually obtained targets yi (For instances, rate of penetration
ROPi) for all the training data, and at the same time is as flat as possible. We will
accept errors less that ε, any deviation larger that this will not be accepted. The case
of linear functions f take the following structure [57]:

f(x) = 〈w,x〉+ bwithw ∈ X, b ∈ R (3.1)

The problem can be represented as a convex optimization problem:
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minimize
1
2 ‖w‖

2

subject to

{
yi − 〈w,xi〉 − b ≤ ε
〈w,xi〉+ b− yi ≤ ε

(3.2)

The function f approximates all pairs (xi, yi) with ε precision.
Knowing that we have a case of non-linearity, how would be the structure of support

vector machine? In the case of non-linearity, the function is represented as follows:

f(x) = wϕ(x) + b (3.3)

where ϕ(x) is the higher-dimensional feature space converted from the input vec-
tor x. The wights vector (w) and the threshold b can be estimated by minimizing the
following regularized risk function [24].

R(C) = C
1
n

n∑
i=1

L(di, yi) +
1
2 ‖w‖

2 (3.4)

where C is the penalty parameter of the error, di is the desired value, n is the
number of observations, C 1

n

∑n
i=1 L(di, yi) is the empirical error, 1

2 ‖w‖
2 is the regu-

larization term. Lε can be determined as following equation:

Lε(d, y) = |d− y| − ε |d− y| ≥ ε (3.5)

where ε is the acceptance error. The Eq. 3.3 can be expressed in a explicit from
by introducing Lagrange multipliers (αi − α∗i ).

f(x,αi,α∗i ) =
n∑
i=1

(αi − α∗i )k(x,xi) + b (3.6)

where k(x,xi) is the kernel function. For instance, the radial base function non-
linear kernel function is:

krbf (x,xi) = exp

[
−(x− xi)2

2σ2

]
(3.7)

where the kernel coefficient is represented as γ = 1
2σ2 .

Consequently, to implement our model the next question that we need to address
is: What are the required parameters to adjust in support vector regression? Following
the previous description and the the models described in Python packages, we need
to control the following hyperparameters:

• Kernel function included linear, polynomial and radial basis functions, and sig-
moid.
• Epsilon (ε)
• Penalty parameter C of the error term.
• Kernel coefficient (γ)

3.1.2 Decision tree and random forest regression

Decision tree is proposed by Quinlan [51] where the idea is to construct a model that
predicts the value of a target variable by learning simple decision rules inferred from
the data features. Meanwhile, random forest method introduced by Breiman [14] is a
compilation of decision trees and their results are aggregated into one final outcome.
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This method builds a predictor ensemble with a set of decision trees that grow in
randomly selected subspace of data [11]. Each tree is formed by first selecting at
random, at each node, a small group of input coordinates (features or variable) to
split on and, secondly, by calculating the best split based on these features in the
training set. The convergence of the model depends only on the number of strong
features and not on how many noise variables are present. The model is fast and
easy to implement, produce highly accurate predictions and can handle a very large
number of input variables without over-fitting.

Now that we have the definition, How is the structure of Random forest? Ran-
dom forest is a collection of randomized base regression tress {rn(x, Θm,Dn,m ≥ 1)},
where Θ1, Θ2, ..., Θn are outputs of a randomizing variable Θ. We have a training
sample Dn = {(X1,Y1), ..., (Xn,Yn)}. The goal is to estimate the regression func-
tion r(x) = E[Y |X = x] using the data Dn. The aggregated regression estimate is
presented as:

r̄n(X,Dn) = EΘ [rn(X, Θ,Dn)] (3.8)

where EΘ represent the expectation with respect to the random parameter, subject
to X and the data set Dn.

At each node, a coordinate of X = (X(1), ...,X(d)) is selected, with the j − th
feature having a probability pnj ∈ (0, 1) of being selected. Once the coordinate is
selected, the split is at the midpoint of the chosen side.

Each randomized tree rn(X, Θ) outputs the average over all Yi for which the
corresponding vectors Xi fall in the same cell of the random partition as X. Let
An(X, Θ) be the rectangular cell of the random partition containing X.

rn(X, Θ) =

∑n
i=1 YiI[Xi∈An(X,Θ)]∑n
i=1 I[Xi∈An(X,Θ)]

IEn(X,Θ) (3.9)

where I is and indicator function that represent association of an element in a
subset A of X (e.g. IA : X → 0, 1). Finally, taking expectation with respect to the
parameter Θ, the random forest regression estimate takes the form:

r̄n(X)) = EΘ [rn(X, Θ)] = EΘ

[∑n
i=1 YiI[Xi∈An(X,Θ)]∑n
i=1 I[Xi∈An(X,Θ)]

IEn(X,Θ)

]
(3.10)

How could we describe this model in our context? In decision tree, data set is
divided in two groups according to the criterion.

Measured data with rotation speed lower than 70 rev/min are gathered together
and ROP average performs the outcome for the entire group. Next, data with rotation
speed greater than 70 rev/min are clustered with the equal process. Similar process
is obtained with the additional features. Combining high weight on bit parameter
with high rotation speed, we will achieve sever hole cleaning issues and ROP slows
down. Example retrieved from Soares et al. [58].

With the model described, What are the required parameters to adjust in Ran-
dom forest regression? To answer this question, we need to analyze the following
hyperparameters:

• Number of features to be consider in each split.
• Number of trees.
• Minimum samples to split.
• How deep trees should grow.
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Now, we are able to implement random forest algorithm. However, Is there any
disadvantage of the model? The simple decision trees are straight forward to interpret,
but such interpretability is greatly diminished as random forest algorithm averages
out multiple deep decision trees to improve predictive accuracy.

3.1.3 Extreme gradient boosting

How does extreme gradient boosting work? The algorithm submitted by Chen et
al. [21] combines all the predictions of a set of "weak" learners for developing a
"strong" learner through additive training strategies. During training phase, parallel
calculation are executed. This method targets to prevent over-fitting and optimize
computation capabilities. The impact of the system has been widely recognize in a
number of machine learning and data mining challenges [21].

The algorithm looks encouraging according to the results in different competi-
tions. What is the framework of extreme gradient boosting? Based on the model
given in Fan et al. [24], we are going to develop this answer. The first learner is
fitted to the whole space of input data, for tackling the deficiency of a weak learner
a second model is then fitted to these residuals. Until the stopping criterion is met,
the fitting process is repeated for a few times. By the sum of the prediction of each
learner, the latest prediction of the model is obtained. The prediction at step t is
defined in the following function:

f ti =
t∑

k=1
fk(xi) = f

(t−1)
i + ft(xi) (3.11)

where ft(xi) is the learner at step t, f ti and f
(t−1)
i are the predictions at step t

and (t− 1), and xi is the input variable. The model defines the following expression
to evaluate the "goodness" of the model from the original function.

Obj(t) =
n∑
k=1

l(ȳi, yi) +
t∑

k=1
Ω(fi) (3.12)

where l is the loss function, n is the number of observations and Ω is the regular-
ization term defined in the following expression:

Ω(f) = γT +
1
2λ ‖ω‖

2 (3.13)

where ω is the vector of scores in the leaves, λ is the minimum loss needed to
further partition the leaf node.

Again, we want to know what are the parameters that we need to tune during
our implementation? Understanding the previous model and the structure defined in
Python model, the hyperparameters are:

• Learning rate
• Number of estimators
• Maximum depth
• Minimum child weight
• Gamma
• Sub sample

where minimum child weight stop trying to separate once sample size in a node
goes below a limit, gamma is the minimum loss reduction required to make a further
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partition on a leaf node of the tree, and sub sample represents a sub sample ratio of
the training instances [21].

What are the advantages of extreme gradient boosting? One of the advantage
recognized in the literature is that the system runs more than ten times faster than
existing popular solutions on a single machine and scales to billions of examples in
distributed or memory-limited settings [24].

3.1.4 Neural networks

To analyze neural networks technique, we are going to start describing the configura-
tion of the model explained from Bishop [12]. Neural networks consists of successive
layers of adaptive weights. We can find three different types on layers, input layer,
one ore more hidden layers, and an output layer in which each layer includes a num-
ber of units. Single layer are based on a linear combination of the input variables
which is transformed by a non-linear activation function. At the same time, we can
have networks having successive layers of processing units, with connections running
from every unit in one layer to every unit in the next layer. In feedforward neural
networks, the direction of the information transmission is from input units through
activation of the hidden units to the outputs.

The weights of the layers are updated in the training procedure by minimizing the
objective function between the actual outputs of the network and the desire value.
Back propagation is one of the algorithms for training a neural network. Through
the information transferring on layers one by one, the predicted output is obtained.
The training stop if the error between the formed and the expected outputs is suf-
ficient. If the error is not acceptable in the past stage, the weights are substituted
on the interconnections that go into the output layer. The weights are adapted for
all interconnections that go into the hidden layer. Until the last layer of weights has
been adjusted the process is continued.

The back-propagation algorithm could present poor performance employing the
standard gradient descent method to adjust the weights. We could observe poor
performance as a consequence of slow convergence speed and prone to being stuck in a
local minimum. Therefore, We can find the following variants on different optimizing
strategies: gradient descent with momentum, penalty term, and adaptive learning
rate (AdaGrad, RMSProp, Adam) [28].

Now, we want to obtain details about the structure of the model. Therefore,
we need to address the following question: How the layers and units interact to get
the output that we require in our regression problem? We have a network with d
inputs, M hidden units and c output units. The following network that we are going
to analyze corresponds to a transformation of the input variables by two successive
single-layer networks. The output of the jth hidden unit is obtained by first forming
a weighted linear combination of the d input values, as follow:

aj =
d∑
i=1

w
(1)
ji xi (3.14)

where w(1)
ji stand for a weight in the first layer, going from input i to hidden unit

j. The activation of hidden unit j is then obtained by transforming the linear sum
in Eq. 3.14 using an activation function g(·) to obtain:

zj = g(aj) (3.15)
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the outputs of the network are obtained using a second layer of processing ele-
ments. For each output unit k, we construct a linear combination of the outputs of
the hidden units of the form:

aj =
M∑
j=1

w
(2)
kj zj (3.16)

the activation of the kth output units is then obtained by transforming this linear
combination using a non-linear activation function, to obtain

yk = g̃(ak) (3.17)

the notation g̃(·) is used for the activation function of the output units to empha-
size that this need not be the same function as used for the hidden units. Combining
Eq. 3.14, Eq. 3.15, Eq. 3.16, and Eq. 3.17 we obtain an explicit expression for the
complete function in the form:

yk = g̃

 M∑
j=0

w
(2)
kj g

(
d∑
i=0

w
(1)
ji xi

) (3.18)

We can extend this class of networks by considering further successive transfor-
mations of the same general kind, corresponding to networks with extra layers of
weights.

Given the data set, how the previous network can learn a convenient mapping?
Learning will be based on the definition of an error function, which is then minimized
with respect to the weights and biases in the network. We can evaluate the deriva-
tives of the error function (back-propagation) with respect to the weights and these
derivatives can then be used to find weight values which minimize the error function,
by using gradient descent or another optimization function. The function error is
given by:

En =
1
2

c∑
k=1

(yk − tk)2 (3.19)

where yk is the response of the output unit k, and tk is the corresponding target,
for a particular input pattern xn.

The back-propagation procedure for evaluating the derivatives of the error En
with respect to the weights is:

1. Apply an input vector xn to the network and forward propagate through the
network aj =

∑
iwjizi and zj = g(aj) to find the activation of all the hidden

and outputs units.

2. Evaluate the δk (errors) for all the output units using δk ≡ ∂En

∂ak
= g′(ak)

∂En

∂yk

3. Back-propagate the δ′s using δj = g′(aj)
∑
j wkjδk to obtain δk for each hidden

unit in the network.

4. Then, with ∂En

∂wji
= δjzi we can evaluate the required derivatives.

The derivative of the total error E can then be obtained by repeating the above
steps for each pattern in the training set. We can sum over all patterns:

∂E

∂wji
=
∑
n

∂En

∂wji
(3.20)
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In the context of neural network training, we usually do not care about finding
the exact minimum of a function, but only in reducing its value sufficiently to obtain
good generalization error [28].

How could we translate the previous theory to our problem?. Features such as
depth, weigth on bit, rotation speed, and flow rate are feeding into the input layer and
then combined in hidden layers to produce the output, in our case rate of penetration.
Discovering new features that represent relations between these inputs, the result for
the unit in the hidden layer produces an alteration of the precursor data [58]. Units in
the second hidden layer link the outputs of the previous units and arrange their own
features to obtain the rate of penetration predicted in the output layer. For instance,
using back-propagation, method we can obtain the weights for each unit connection.

As previous analysis, we require to control some hyperparameters to achieve the
desired performance. Which are the hyperparameters that we need to tune?. There-
fore, we need to consider the following variables:

• Number of hidden layers
• Number of units in each hidden layer
• Activation function
• I2 regularization (α)

However, knowing that neural networks have achieved high performance, we have
to be aware about some challenges of the technique. What are these challenges found
by researches in geo-sciences [52]?. To begin with iterpretability, the field is still
far from achieving self-explanatory models, and also far from causal discovery from
observational data. Secondly, deep learning models can fit observations very well, but
predictions may be physically inconsistent or implausible, owing to extrapolation or
observational biases. Third, deep learning models are needed to cope with complex
statistics, multiple outputs, different noise sources and high-dimensional spaces, but
the exact cause-and-effect relations between variables are not clear in advance and
need to be discovered. Finally, deep learning methods are needed to learn from few
labelled examples while exploiting the wealth of information in related unlabelled
observations.

3.1.5 Performance metrics

How are we going to analyze the performance of the selected models?. In this section,
we are working with regression task where we want to know what is the difference
between the predictions of our models and the field data. The most common metrics
used in the literature are mean squared error, mean absolute error and root
mean squared error. The following functions define each metric:

The average of squared differences between predicted and actual values is repre-
sented in the following way:

MSE =
1
n

n∑
i=1

(
ROPfield,i −ROP

′
Model,i

)2
(3.21)

where, n is the number of points in the test data-set.
Alternative, mean absolute error (MAE) defined as the average of absolute differ-

ences between predicted values ROP ′
model,i and the actual values ROPfield,i.

MAE =
1
n

n∑
i=1

∣∣∣ROPfield,i −ROP
′
model,i

∣∣∣ (3.22)
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Root mean squared error (RMSE) is a useful expression which has been used in
different research to compare the performance of the models [58] [34] [30]. Here, we
describe the metric:

RMSE =

√√√√ 1
n

n∑
i=1

(
ROPfield,i −ROP

′
model,i

)2
(3.23)

In addition, Soares et al. [58] has identified that a disadvantage of RMSE is a
relative measurement, incapable of quantify error significance without knowledge of
the quantity mean. Once we are evaluating the results of different formations, each
of this formation has a different mean. Therefore, the error is normalized over the
mean of rate of penetration of the test set as follow.

NormalizedRMSE =

√
1
n

∑n
i=1

(
ROPfield,i −ROP

′
model,i

)2

1
n

∑n
i=1ROPfield,i

(3.24)

3.2 Drilling physical models: Rate of penetration and
Mechanical specific energy

As aforementioned in the introduction, control parameters that can be manipulated
by the drilling engineer on the rig are weight on bit, drilling rotational speed, and
drilling fluid (mud) flow rate [30][34][58]. Strength of the rock, geological properties,
maximum pump power correspond to uncontrollable parameters which cannot be
changed by engineers while drilling a well. Response parameters (the objectives)
are those which change when control parameters are changed: rate of penetration,
mechanical specific energy, downhole vibrations, and torque on bit.

What are the critical variables of real-time tracking? Penetration rate, lateral vi-
brations, mechanical specific energy and unconfined compressive strength have been
variables supervised in real-time operation [5]. These variables have been used at
the rig site to make operational decisions, and in post-drill analysis to redesign the
procedure. Efforts are geared to vary drilling parameter to achieve minimum mechan-
ical specific energy and obtaining optimum penetration rate as formation strength are
reasonable uniform within the same formation interval. Increase in mechanical spe-
cific energy is an indication of inefficient drilling which may be caused by shock and
vibration, high stickslip, bit balling and bit wear. Meanwhile, optimal weight on bit
and rotary speed have been controlled parameters to optimize drilling rate.

Therefore, what functions could we use to optimize the parameters? Drilling con-
trol parameters are drilling parameters which can be changed to control the response
(objective function). Algorithms are then used (on fitted drilling models) to deter-
mine the best control parameters to implement ahead of the bit [30]. Model evaluation
is performed by running simulations on data measured during drilling a well. Rate
of penetration and mechanical specific energy are modeled using a physical-driven
approach.

Based on the research developed by Soares et al. [58] and Hegde et al. [30], we are
going to work with the model for rate of penetration proposed by modified Bourgoyne
and Young (1986) and the model developed by Teale (1965) for mechanical specific
energy. The evaluation of the best physical model for this variables is not part of our
scope, that is the reason that we select the models with the best performance in the
mentioned researches.
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ROP = a1D
a2WOBa5RPMa6q

a8 (3.25)

where the function depends on the diameter of bit (D), weight on bit (WOB),
rotational speed (RPM) and the flow rate (q). The model performance highly on
coefficient bounds a1, a2, a5, a6, a8.

In the case of mechanical specific energy (MSE), we have:

MSE =
WOB

Ab
+

120π RPM TOB

AbROP
(3.26)

where the function depends on the cross sectional area of bit (Ab), weight on bit
(WOB), rotational speed (RPM) and torque on bit (TOB).

3.3 Models for misbehavior detection
In this section, we must answer key questions to define among several techniques (See
Chapter 2), which one will fit in our research. According to Chandola et al. [20],
to define a method "the problem is determined by several different factors such as
the nature of the input data, the availability or unavailability of labels as well as the
constraints and requirements induced by the application domain". Therefore, before
the definition of alternatives we need to answer the following question: what are the
characteristics of our data set in the context of anomaly detection?. The structure
proposed by Chandola et al. [20] allows us to characterize the data based on nature of
input data, type of anomaly, labels, and output. The respective analysis is presented
in the following items:

(a) Nature of input data:

• Multivariate (Multiple attributes): Weight on bit, rotational speed, drilling
fluid rate, temperature, surface torque are some of the variables that we
obtain on real time operation.
• Sequence of data: Data instances are linearly ordered. The drilling rig

continuously receive information equidistant where the values of temporal
attribute are equally spaced by a time step ∆. At the same time, we have
valuable information in each depth of the well consider as a sequence as
well.

(b) Type of anomaly: Anomalies can be classified into point anomalies, contextual
anomalies and collective anomalies.

• Point Anomalies: If an individual data instance can be considered as
anomalous with respect to the rest of data, then the instance is termed
a point anomaly [20]. We could have scenarios where rate of penetration
have extreme variations as a consequence of high or low rotational speed,
then we can consider this point as an anomaly.
• Contextual anomaly: If a data instance is anomalous in a specific con-
text, but not otherwise, then it is termed a contextual anomaly [20]. For
instance, the longitude and latitude of a location are the contextual at-
tributes in spatial data sets. In our case, we could have the depth as a
contextual attribute that determines the position of an instance on the
entire sequence. In addition, the top of the formations could delimit the
specific context in our study. In means, that some variables could have
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specific values in a defined formation but this values could have a relevant
change in the following formation. Even though, it is not considered as an
anomaly.
• Collective anomaly. The individual data instances may not be anomalies
by themselves, but their occurrence together as a collection is anoma-
lous [20]. This scenario have relevance in our study where small variations
in a sequence of the same variable could generate non productive time dur-
ing the operation. According to Chandola et al. [20], collective anomalies
can occur only in data sets in which data instances are related. Here, we
have interaction of multiple variables in each depth instance.

(c) Data labels: Anomaly detection techniques can operate in one of the following
three modes: supervised, semi-supervised or unsupervised anomaly detection
based on the availability of labels.

• Supervised anomaly detection techniques assume the availability of a train-
ing data set that has labeled instances for normal as well as anomaly
classes. However, this case does not apply in our data set where we are
collecting streaming real time data without any label.
• In the scenario of semi-supervised anomaly detection techniques assumes
that the training data has labeled instances only for the normal class.
However, in our case normal class is not label either. One approach is to
build a model for the class corresponding to normal behavior, and use the
model to identify anomalies in the test data.
• Unsupervised anomaly detection, techniques do not require training data
and make the assumption that normal instances are far more frequent
than anomalies in the test data. According to Chandola et al. [20], semi-
supervised techniques can be adapted to operate in an unsupervised mode
by using a sample of the unlabeled data set as training data. This last
scenario could apply in our case and base of distances or density or another
techniques we could determine the anomalies.

(d) Output of anomaly detection: The two type of outputs that we can produce
are scores or labels.

• Scores: The output is a ranked list of anomalies. Depending on the degree
to which that instance is considered an anomaly this technique assign an
anomaly score to each instance in the test data. Our data set is not static,
consequently we do not have the full data set to give a rank based on
critically.
• Labels: This category assigns a label normal or anomalous to each test

instance. As aforementioned, we have streaming data where we could
label the respective anomalies being a feasible alternative.

Therefore, we have a multivariate data set which is captured as a sequence
(streaming data) where we could find point, contextual and collective anomalies,
in an scenario of unsupervised learning obtaining normal or anomalous labels. Ac-
cording to this scenario, What would be the ideal technique that we need to implement
to identify these anomalies?. To give an answer about the ideal technique, Ahmad et
al. [4] have defined the ideal characteristics of a real-world anomaly detection summed
up as follows:
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1. Before receiving the subsequent xt+1 state, the algorithm must identify xt state
as normal or anomalous. It means that predictions must be made online.

2. Without a requirement to store the entire stream, the algorithm must learn
continuously.

3. The method must run without data labels or manual parameter tuning. It
means that the algorithm is an unsupervised automated fashion.

4. Algorithms must adapt to dynamic environment. Data stream is often non-
stationary.

5. The detection should be as soon as possible.
6. False positive and false negatives should be minimize by the algorithm.

This research has examined the following techniques: k-means clustering, decision
trees (isolation forest), one class support vector, and deep neural networks (autoen-
coder).

3.3.1 k-means clustering

A clustering algorithm can be employed to reveal the groups in which feature vectors
are clustered in the l-dimensional feature space [62]. Clusters are formed from a
series of examples, any example that is found not to match an existing cluster would
be defined as an anomaly [2]. Clusters are described as continuous regions of this
space containing a relatively high density of points, separated from other high density
regions of relatively low density of points [62].

"The purpose of clustering methods is to group patterns on the basis of a similarity
(or dissimilarity) criteria where groups (or clusters) are set of similar patterns" [25].
For metric representation, the most popular dissimilarity measure for metric rep-
resentations is the euclidean distance [25]. We can find two categories in clustering
techniques: hierarchical and partitioning. In this research we will focus in partitioning
technique where we obtain separations hypersurfaces among clusters.

What are the main steps to develop a clustering task? According to Theodor-
idis [62], the main steps are proximity measure, clustering criterion and clustering
algorithm. Proximity measure quantify how "similar" or "dissimilar" two features
vectors are. The clustering criterion may be expressed via a cost function. Next step
is to chose a specific algorithm scheme that resolve the clustering structure.

Now that we have the steps, we need to understand the structure of the technique.
Therefore, we will answer the following question: What are the functions and metrics
determined to create the clusters in our dataset? Let X = {x1, ...,xn} be a data set
composed by n patterns. The set of centroids V is defined as the set V = {v1, ..., vc}
where each element vi is called centroid. The Voronoi region Ri of the centroid vi is
the set of centroids for which vi is the nearest vector:

Ri =

{
x ∈ X|i = argmin

j
‖x− vj‖2

}
(3.27)

Starting from the finite data set X, the method moves iterative the k centroids to
the arithmetic mean of their Voronoi set Ri,i=1,...,k. A condition for a set of centroids
V to minimize the empirical quantization error :

E(X) =
1

2n

k∑
i=1

∑
x∈Ri

‖x− vi‖2 (3.28)

each centroid vi must fulfill the centroid condition. A finite data set X and with
euclidean distance, the centroid condition is defined as follow:
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vi =
1
|Ri|

∑
x∈Ri

x (3.29)

Then, the following steps represent the batch k-means algorithm:

1. Choose the number k of clusters.
2. Initialize the set of centroids V with vectors randomly selected from X.
3. Compute the Voronoi set Ri associated to the centroid vi.
4. Move each centroid to the mean of its Voronoi set using Eq. 3.29.
5. Return to step 3 if any centroid has changed otherwise return the set of cen-

troids.

In general, the distance of a data point to its k-nearest neighbor (or other vari-
ant) is used in order to define proximity. Data points with large k-nearest neighbor
distances are defined as outliers. Distance-based algorithms typically perform the
analysis at a much more detailed granularity than the other two methods [3] On the
other hand, this greater granularity often comes at a significant computational cost.

Based on the previous description, What are the parameters that we need to tune?
The following parameters are required in our implementation:

• The number of clusters to form as well as the number of centroids to generate.
• Maximum number of iterations of the k-means algorithm for a single run.

K-means clustering has been widely used in static data. How are we going to
performance with real time classification? Three approaches can be taken to perform
real-time classification [2]: (i) to shorten the computational search time needed for
classifying the pattern, the size of an input can be reduced; (ii) to limit the compu-
tation time to search the complete space, the maximum number of clusters can be
restricted; and (iii) the number of clusters can be reduced from the complete set of
existing clusters to some subset of the complete search space tested in real time.

3.3.2 Isolation forest

Isolation forest proposed by Liu and Zhou [41] builds an ensemble of trees where the
instances with short average path length on the trees are consider anomalies. The
algorithm sorts data points according to their average path lengths and anomalies are
points ranked at the top of the list. It is also noteworthy that isolation tree algorithm
are virtually parameter-free; this makes their applicability particularly simple [3].
This alternative detects anomalies based on the mechanism of isolation without any
distance or density measure. This condition eliminates a major computational cost.
Moreover. it considers that the data set has few anomaly instances and the anomalies
are very different from those of normal instances. Therefore, how does the method
identify the isolated point in our data set? The process is described in the following
items:

• The training stage shapes isolation trees using sub-samples of the giving training
set. Isolation trees are built by recursively partitioning a subsample X ′ until all
instances are isolated. Multiple times the partition is done independently. The
algorithm contains two input parameter, the subsampling size ψ that control
the training data size, and the number of trees t controls the ensemble size.
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• Then, test instances passes through isolation trees to obtain an anomaly score
for each instance. A single path length h(x) is derived by counting the number
of edges e from the root node to an external node as instance x traverses through
an isolation tree. Once the traversal reaches a predefined height limit hlim, the
return value is e.
• When h(x) is obtained for each tree of the ensemble, anomaly score is computed.

As previous analysis, we are interested to identify the parameters to obtain good
performance of the model. According to the model, we have:

• Number of trees to build and subsampling size.
• The tree height limit corresponds to the evaluation parameter.

What are the advantage of this algorithm? According to Liu and Zhou [41]:

• Isolation forest fit in high dimensional problems with a large number of irrele-
vant attributes and when anomalies are not available in training sample.
• The model exploit sub-sampling technique to obtain a low linear time-complexity
and a small memory-requirement.
• The method converges quickly with very small number of trees.
• Lower computational costs is obtained because not distance or density measure
is required to be defined and calculated.

3.3.3 Autoencoder

Autoencoders train to copy their input to their output [28]. The neural network has
a hidden layer h that define a code used to describe the input. This network has
two parts, an encoder function h = f(x) and a decoder that obtain a reconstruction
r = g(h).

How does the autoencoder algorithm obtain a reconstruction error? In the train-
ing phase, we have the training set x(1),x(2), ...,x(m). Each data sample x(i) is
represented by a vector of D different variables. The data is compressed into lower
dimensional subspace and reproduce the output {x̂(1), x̂(2), ..., x̂(m)}. Therefore,
the reconstruction error used as anomaly score is defined as follow [53]:

Err(i) =

√√√√ D∑
j=1

(xj(i)− x̂j(i))2 (3.30)

In the test step, the test data is projected into the subspace and reconstruct the
original data. For normal instances, the reconstruction error has low values that
satisfy the normal correlation learned during the test phase. On the other hand,
reconstruction error has high value with anomalous samples.

Activation of unit i in layer l is described in the following equation:

a
(l)
i = f

 n∑
j=1

W
(l−1)
ij a

(l−1)
j + b

(1)
i

 (3.31)

where W and b represent the weight and bias parameters. The input layer a(1) =
x, the last layer a(3) = x̂. The goal is to minimize the following objective function
Eq. 3.32 with respect to W and b:

J(W , b) = 1
m

m∑
i=1

(1
2 ‖x(i)− x̂(i)‖

2
)
+
λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(
W

(l)
ji

)2
(3.32)
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where λ expresses the strength of regularization, nl represent the number of layers
in the network and sl determines the number of units in layer Ll.

Neural networks are highly dependent of hyperparameters. What are the main
hyperparameters required to tune our algorithm?

• Optimizer
• Loss function
• Learning rate
• Epochs
• Batch size
• Number of units per layer
• Number of layers

3.3.4 One-class support vector machine

This model is porposed by Schölkopf et al.[55]. The algorithm is designed specifically
to detect outliers. The idea is separate all the possible faulty samples from normal
samples [42]. Given the normal operating regime, this technique compute the margin
support or the boundary that accommodates most of the training points. If the
test sample falls within the boundary y, it is categorized as normal operating data,
otherwise it is classified as an outlier or a faulty data point [42]. Therefore, the
objective of the algorithm is to develop a classifier or hyperplane in the feature space
which returns a positive value for all samples that fall inside the normal cluster and
a negative value for all values outside this cluster and maximize the perpendicular
distance of this hyperplane from the origin.

How is structured the optimization function in one-class support vector machine?
The optimization problem is described as follow:

minw,ξi,b
1
2 ‖w‖

2 + 1
νm

∑m
i=1 ξi + b

subject tow · φ(xi) + b+ ξi ≥ 0, ξi ≥ 0, i = 1...m (3.33)

where Lagrange multipliers αi ≥ 0 and ηi ≥ 0 are introduced. The partial deriva-
tives of the Lagrangian are set to zero as follows:

L(w, ξ, b) = 1
2 ‖w‖

2 +
1
νm

m∑
i=1

ξi + b−
m∑
i=1

αi(w · φ(xi) + b+ ξi)−
m∑
i=1

ηiξi (3.34)

∂L

∂w
= 0→ w =

m∑
i=1

αiφ(xi) (3.35)

∂L

∂ξi
= 0→ αi =

1
νm
− ηi, ηi ∈ (0, 1) (3.36)

∂L

∂b
= 0→

m∑
i=1

αi = 1 (3.37)

Here, the variable ν is the maximum value of the fraction of training data set
errors, ξi is the slack variable to relax the optimality constraints.

Therefore, What are the main parameters for one-class support vector?

• Kernel (linear, poly, radial basis function, sigmoid)
• Degree (in case that we use kernel poly)
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• Gamma (γ)
• Nu (ν)

Highlights:

• The machine learning models selected are defined with their respective
optimization function to predict and detect anomalies. The identifica-
tion of parameters is fundamental to implement and optimize. Relevant
parameters allow us to find the best performance for each algorithm.

• The metrics defined for our analysis include mean squared error, root
mean squared error and normalized mean squared error.

• The physical model of rate of penetration and mechanical specific energy
give us an insight about the main parameters that has been studied and
considered in drilling operation which include weight on bit, rotary speed,
torque on bit, flow and diameter of the hole.

• In addition, in this section was described the characteristics of our data
set obtained in drilling operation based on the categories established by
Chandola et al. [20]. In case that you are interested to find insight of the
anomaly detection methods, this reference contributes to clarify in this
field.
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Chapter 4

Implementation

4.1 Implementation for rate of penetration prediction
Drilling rigs are constantly receiving drilling data in the cabin of the driller. It means,
that constantly we have incremental training data accessible. Machine learning mod-
els depends on the size of data available. Some model have good performance with
small proportion of data available for training. However, methods as neural networks
works better once more data is available. With the following implementation, we are
going to analyze this scenario given answer to the following question: Could machine
learning models learn more about drilling parameters with incremental data?.

The first exercises is developed splitting the data set in nine (9) batches increasing
the data available per batch. In this scenario we are simulating real-time operation
with incremental data to train. The design is presented in Figure 4.1. This architec-
ture will be used in (i) full data set per batches and (ii) analysis per formation.
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Figure 4.1: Prediction of rate of penetration per batches

The analysis include the evaluation of linear model, non-linear model, ensemble
and neural network. The metric defined to analyze the performance of the model is
Root mean squared error and Normalized root mean squared error. The last indicator
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allow us to compare the error between formations. As aforementioned in Chapter 1
and 2, the process follows the main steps defined by Theodoridis et al [62].

The data set contains many variables. What are the most importance features?
Based on Gini Importance method measuring Mean Decrease in Impurity (MDI) we
are going to determine the parameters that have more impact in the prediction of rate
of penetration. In Figure 4.2, we defined the steps required. At the same time, we
compared the performance (RMSE and time) of the prediction using all variables and
only the parameters that capture the 95% of importance. The result of this analysis
will allow to identify if decreasing the number of features, we could gain in accuracy
and run time or we should continue with all the feature. Normally, the more data we
have the more the performance. However, more data could bring more noise.
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Figure 4.2: Implementation for feature importance

In addition, as we mention in Chapter 3, machine learning parameters require to
be tune. To optimize the hyperparameters we implement cross-validation stage. The
architecture to describe the process is presented in Figure 4.3. Assessing the machine
learning models, we defined two blocks depending on the algorithm. For instance,
in the case of random forest and xgboost, normalization is not required while support
vector regression and neural networks are affected in case of unbalanced data where
one variable dominate and the rest of the variables will be almost ignored. Posterior
to the prediction, the data is re-scaled to improve the interpretation and visualization
of the results.
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Figure 4.3: Rate of penetration prediction in stationary analysis and
optimization of hyperparameters

Implementing cross-validation involves randomly k-fold CV dividing the set of
observations into k groups, or folds, of approximately equal size. Figure 4.4 represents
the distributions of the folds in each split which contributes to fin the best parameters
for the machine learning model. The first fold is treated as a validation set, and the
method is fit on the remaining k − 1 folds [38]. The mean squared error is then
computed on the observations in the held-out fold. This procedure is repeated k
times; each time, a different group of observations is treated as a validation set.

Figure 4.4: Cross validation architecture [47]

4.2 Implementation for anomaly detection
As aforementioned in the introduction (Chapter 1), it is difficult for humans to rec-
ognize abnormal state and normal state using raw data [53]. Therefore, real-time
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monitoring centers require techniques to flag in case of anomaly events. We are going
to explore machine learning models to contribute in the drilling operation optimiza-
tion. The analysis is divided in two categories: stationary analysis and time series
analysis.

(a) In the case of stationary analysis, we are going to assess k-means clustering,
one-class support vector machine, isolation forest, and autoencoders which are
structured in the following diagrams (Figures 4.5, 4.6, 4.7, and 4.8).

(b) For time series analysis, we are going to design an architecture based on regres-
sion models (random forest, xgboost, k-nearest neighbor, decision tree, support
vector regression, and neural network), and difference between prediction and
measured data (Figure 4.9.

Before to start, some critical observations that arise in the context of outlier
detection are as follows [3]:

• Data normalization is important to avoid imbalance losing importance of some
variables.

• We need to differentiate between noise and interesting anomalies. Most appli-
cation domains contain noisy or incomplete data or data that has errors. For
example, sensor data often contains noise because of defects in transmission or
failure in the data-collection hardware.

• Data cleaning is itself a key application of outlier analysis.

• Exploratory and visual analysis can be helpful at all stages of outlier analysis.

• A human in the loop can more easily generate labels in conjunction with unsu-
pervised outlier analysis algorithms. Unsupervised and supervised algorithms
can be used in an iterative way in conjunction with a human in the loop in
order to generate labels. Even a small amount of labeled data can significantly
improve the effectiveness of outlier analysis algorithms.

• Outlier ensembles can be used to reduce risk. By combining a small number
of models that are known to work well across a wide variety of data sets, it is
possible to consistently obtain results of good quality.

These observations will contribute with the design of our architecture for station-
ary analysis and time series analysis.

4.2.1 Stationary anomaly detection

The pipeline for k-means clustering is presented in Figure 4.5. The data is nor-
malized to avoid the impact of imbalance and the two (2) principal component is
calculated. The next stage, k-means clustering method is fitted. In this case, all the
data is injected to the model to obtain the clusters. For this stage, we define an
initial number of clusters k. Elbow curve analysis allows us to identify the correct
number of clusters based on the variance score. It means, that we can obtain the
number of cluster with the lowest error. Considering the distance of each point and
the centroids, we are able to determine the anomalies. Those points considered far
from the centroids will be determined as misbehavior according to the threshold for
outlier fraction.



4.2. Implementation for anomaly detection 35

Google Colaboratory 

Architecture: Machine Learning Google Colab > Clustering > Anomaly detection in offshore drilling operation

Raw data Preprocessing 
(Normalization)

Pandas 
Dataframe

Principal 
component 
analysis

Analysis 
(Outlier rule)

Anomaly detection

# Clusters with
low score

Elbow curve
(Loss with 
different # of 
centroids)

Fit K-means 
Clustering
(Set of k clusters)

Clusters Predict
(Defined # clusters)

Evaluate
(Distance each
point and centroids)

Figure 4.5: Anomaly detection based on k-means clustering tech-
nique.

In the case of isolation forest, the model identifies the short path in the ensemble
which is labeled as an anomaly as was mentioned in Chapter 3. The basic version
of the isolation tree, when grown to full height, is parameter-free. Unlike traditional
histograms, isolation forests are not parameterized by grid-width and are therefore
more flexible in handling data distributions of varying density. This characteristic is
always a significant advantage in unsupervised problems like outlier detection. This
methodology is straightforward, where additional steps are not required to identify
misbehavior and all the data is injected to the model. The process is presented in
Figure 4.6. This model does not require normalized data. As the previous algorithm,
outlier fraction must be defined. It means, that we need to define the proportion of
points that could be consider as an outlier. Probably we need to analyze multiple
data set from drilling data to define this threshold.
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Figure 4.6: Anomaly detection based on isolation forest technique.



36 Chapter 4. Implementation

In the case of one-class support vector (Figure 4.7), we normalized the data.
Then we injected all the data set in the model. We trained to infers the properties
of normal cases and from these properties can predict which examples are unlike the
normal example. Once the model identify the abnormal points, it is labeled with 1
as anomaly and 0 as normal.
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Figure 4.7: Anomaly detection based on one-class support vector
architecture

The implementation of autoencoder is presented in Figure 4.8. This pipeline
require normalization of data. We split the data where 80% correspond to training
data and 20% to test data. The model stack is defined with the section of decoder
layers and the respective number of units as well as the encoder structure. For this
neural network we define optimizer, loss function, epoch, batch size, and validation
split. The model measure the reconstruction error metric to define the anomalies. At
the same time, we can identify the cause-root of the anomaly. For instance, we could
diagnose if weight on bit, rotation speed or flow are affecting the rate of penetration.
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Figure 4.8: Anomaly detection based on autoencoder technique.

The architecture of the neural network is presented in Table 4.1. One should
select the complexity of the neural network depending on the amount of available
training data [3]. In our case, we are exploring the algorithm. Further research will
require optimization of parameters.

Table 4.1: Autoencoder architecture

Layer Output shape Param #
Input 1 16 0
Dense 1 12 204
Dense 2 6 78
Dense 3 3 21
Dense 4 6 24
Dense 5 12 84
Dense 6 16 208

4.2.2 Time series anomaly detection

In the case of time series anomaly detection, we have similar configuration as the
architecture developed for rate of penetration prediction. In this case we are assessing
random forest, xgboost, k-nearest neighbor, decision tree, support vector regression, and
neural network to predict the next segment of points. Once we have the prediction, we
can calculate the difference between the prediction and the measured data. Defining
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a threshold of outlier fraction we can control the definition of anomaly. At the end,
base on the conditional function we classify our data as normal or anomaly which is
represented in Figure 4.9.
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Figure 4.9: Anomaly detection based on time series architecture

This structure is highly dependent on the accuracy of our prediction. However,
machine learning algorithms have high performance in non linear behaviors.

Highlights:

• The architectures designed for rate of penetration prediction cover sta-
tionary analysis injecting all the data set selecting test set randomly.
This include (i) feature importance, (ii) reduction of features and (iii) hy-
perparameter optimization analysis. In addition, predictions per batches
is structured to evaluate (i) all data set and (ii) formations simulating
streaming data. Linear, non-linear, ensemble and neural networks are
incorporated in this project.

• For anomaly detection, the techniques are classified for stationary anal-
ysis and time series detection. First alternative will contribute for post
analysis of drilling engineer where all the data is injected to detect misbe-
haviors with isolation forest, k-means clustering, one-class support vector
and autoencoders. Meanwhile, time series detection is proposed based on
regression models (linear, non-linear, ensemble and neural networks) to
predict the next interval and obtain the difference respect to measured
data.
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Chapter 5

Experimental results and
evaluation

5.1 Data set of drilling operation
The data set selected for this project corresponds to drilling data from Forge project
Well 58-32 Milford, Utah (USA) [46] and Well 21-31 Fallon, Nevada (USA) [54] as
was mentioned in Chapter 1 (See location in Figure 5.1).

Figure 5.1: Location of Well 58-32 Milford, Utah (USA) and Well
21-31 Fallon, Nevada (USA)

About Well 58-32 Milford, Utah (USA) [10]:

(a) Well 58-32 was drilled vertically in 58 days (July-August 2017) to a depth of
7,536 ft.

(b) The intent of the drilling was to determine the characteristics of the rock within
the target formation and at the depth and temperatures of interest.

(c) The 58-32 well site is located within the 1.9 square mile Forge deep drilling site
west of the Mineral Mountains, it is 217 miles south of Salt Lake City and 10
miles north-northeast of the town of Milford (Figure 5.2).

(d) A 20in conductor casing was to be set at 40 ft, a 17-1/2in surface hole with
cemented 13-3/8in casing was planned to 300 ft, the intermediate 12-1/4in hole
with cemented 9-5/8in casing was planned to 2,100 ft, below this an 8-3/4in
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hole to 7,060 ft was planned, with cemented 7 in casing to 6,900 ft, and open
hole to total depth (TD).

Figure 5.2: Location of Well 58-32 Milford, Utah (USA) [10] delim-
iting the area of interest.

The 58-32 well is characterized by three formations Alluvium (F1), Granitoid
"quartz-poor" (F2) and Granitoid "quartz-rich" (F3). Detailed information is pre-
sented Figure 5.3.

Figure 5.3: Lithology and stratigraphy of Well 58-32 [23]

Secondly, about Well 21-31 Fallon, Nevada (USA) [54] we have:

(a) Well 21-31 was drilled in 25 days (February 2018) to a depth of 6,108 ft.

(b) The 21-31 well site is located in Carson Field (Nevada) (Figure 5.4) with geo-
graphical coordinates: 39o 23′ 11.8114′′N and 118o 40′ 00.1716′′W .
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(c) A 20in conductor casing was to be set at 100 ft, a 17-1/2 in surface hole with
cemented 13-3/8in casing was planned to 900 ft, below this an 12-1/4in hole
was planned to 6,058 ft.

(d) The 58-32 well is characterized by four formations neogene basin fill (F1),
miocene basaltic andesite (F2), miocene rhyodacite (F3), and miocene basaltic
andesite (F4).

Figure 5.4: Location of Well 21-31 Fallon, Nevada (USA) [40]

The first analysis was developed with the data set of Well 58-32 [46]. This data
set includes the following parameters: ROP(ft/hr), depth (ft), weight on bit (k-lbs
meaning kilo-pounds), surface torque (psi), rotary speed (rpm), flow in (gal/min),
hookload (k-lbs), temp out (oF ), temp in (oF ), pit total (bbls), pump press (psi), flow
out %, wellhead pressure (psi), and partial pressure of H2S with H2S floor (psi),
H2S cellar (psi), H2S pits (psi). The information is visualized in Figure 5.5 which
correspond to parameters normally monitored in a real-time operational center.

The analysis developed in this research will contain static data evaluation and
experiments analysis simulating real time assessment using batches. In the case of
static data, we assume that all information is already available. With this assumption,
we want to examine the features available and the correlation among this features
(Figure 5.6). Dark shades means positive correlation, light shade means negative.
The stronger the color, the larger the positive correlation magnitude.

Correlation describes the association between variables. According to Figure 5.6,
rotary Speed (rpm), flow in (gal/min), pit total (bbls), partial pressure H2S Floor
(psi) has a positive correlation with ROP (ft/hr). At the same time, weight on bit
(k-lbs), temp out (oF ), pump press (psi), hookload (k-lbs) and partial pressure H2S
Cellar (psi) has a strong correlation with depth (ft). On the other hand, the physical
model proposed by Bourgoyne and Young [58] defines that ROP depends on diameter
of the hole, weight on bit, rotary speed and flow. This variables would be analyzed
later.
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Figure 5.5: Parameters of drilling operation Well 58-32. ROP
(ft/hr), weight on bit (k-lbs), surface torque (psi), rotary speed (rpm),

flow in (gal/min), and hookload (k-lbs)

Moreover, is our data set balanced? It means, that the data set analyzed does
not have any disproportion in the range of values that could affect future analysis.
In Figure 5.7 we can inspect the distribution of our data set. The range of hookload
(k-lbs) overpass the rest of the variables. These wide difference can impact in the
machine learning model implementation. The use of support vector machine, or
linear models on such a data (without normalization) will be dominated by hookload
(k-lbs) and the rest of the variables will be almost ignored. This ensures that the
different attributes are given an equal level of importance.

Therefore, we add the step of normalization presented in Figure 5.8. Normalizing
data set, we subtract the mean in each sample X := X − µ where µ = 1

m

∑m
i=1 x

(i)

and we divide samples by σ2 where variance is defined as σ2 = 1
m

∑m
i=1

(
x(i)

)2
.

With this assessment, we finished the characterization of our Well 58-32 data
set considered in the context of static analysis. Now we are going to evaluate the
implementation of machine learning models in the following sections.

5.2 Experimental results of machine learning implemen-
tation

In first place, we developed experiments based on static data set analysis. For this
reason, the analysis of predictions is developed splitting all the data randomly be-
tween training (70%) and test (30%). The data is trained in the model selected
(support vector regression, random forest, xgboost and neural networks). The data set
for support vector regression and neural networks is standardized to zero mean and
variance equal to one to remove effects of differing feature magnitudes, similar to the
research developed by Soares et al [58].
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Figure 5.6: Correlation of drilling operation parameters Well 58-
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Figure 5.7: Boxplot representing the distribution of 16 features in
Well 58-32
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Figure 5.8: Boxplot representing the normalized distribution of 16
features in Well 58-32
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In order to optimize the models, what is the hyper-parameter combination that
achieve better performance in each technique? Following the structure of Figure 4.3
we are able to identify the parameters. The experiment is implemented with cross-
validation analysis which involves randomly k − fold equal size to identify the best
parameters per model. Previously assessment, we defined the grid of option for each
hyper-parameter. The grid of hyper-parameters and the respective best options are
presented in Table 5.1, Table 5.2, Table 5.3, and Table 5.4. The models were run
with 20 iterations and cross validation k-fold equal to 4.

Table 5.1: Hyperparameters alternatives for random forest

Hyperparameter Grid Best hyperparame-
ter

Number of trees (2 to 2000 step 20) 632
Maximum features per split (2, 5, 10, 15) 5
Minimum sample to split (2, 3, 4, 5, 10) 3
Minimum sample per leaf (1, 2, 4) 2
Maximim depth (4 to 30 steps 2) 30

Table 5.2: Hyperparameters alternatives for support vector regres-
sion

Hyperparameter Grid Best hyperparameter
Kernel function Linear, Polynomial (3rd

degree), RBF, Sigmoid
RBF

Epsilon (ε) (0.01, 0.1, 1, 10) 0.1
Penalty parameter C (1, 10, 100, 1000) 1
Kernel coefficient (γ) (0.0001, 0.001, 0.01, 0.1) 0.1

Table 5.3: Hyperparameters alternatives for XGBoost

Hyperparameter Grid Best hyperparameter
Number of estimators (2 to 2000 step 20) 1474
Maximum depth (3,4,5,6,7,8,9,10) 9
Learning rate (0.0001, 0.001, 0.01, 0.1) 0.01
Minimum child weight (2,4,6,8,10,12) 12
Gamma (0.0, 0.1, 0.2, 0.3, 0.4) 0.4
Subsample (0.7,0.8,0.9) 0.8

As aforementioned, we obtained the hyper-parameters that will contribute to
achieve a good prediction. Therefore, What is the model with the best performance?.
The performance indicators used to evaluate the models correspond to Root mean
squared error. Table 5.5 summarize the results for each machine learning algorithm.

The machine learning algorithm with the lowest RMSE was random forest with
a close result obtained by xgboost. This result matched with the studies developed
by Hegde et al [30] [31]. The low deviation obtained by Random forest proved that
the ensemble method are competent for rate of penetration prediction. In addition,
we wanted to evaluated how was the improvement of the models after selecting the
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Table 5.4: Hyperparameters alternatives for neural network

Hyperparameter Grid Best hyperparameter
Optimizer Adam, SGD, LBFGS LBFGS
Number of neurons in hidden
layer

(2, 3, 4, (2,1), (2,2), (3,1),
(3,2), (3,3))

(3, 1)

Activation function Identity, logistic, Tanh,
ReLu

ReLu

Regularization (0.00001, 0.0001, 0.001,
0.01, 0.1)

0.0001

Table 5.5: Performance of machine learning models in stationary
analysis according to RMSE and normalized RMSE

Method RMSE before
optimization

RMSE after
optimization

Normalized
RMSE

Random forest 9,99 9,57 0,29
XGBoost 10,36 9,8 0,30
Support vector re-
gression

45,88 10,58 0,32

Neural networks re-
gression

10,87 11,46 0,35

best hyperparameters. Therefore, random forest represented an improvement of 4.2%
and xgboost achieved 5.4%. Meanwhile, support vector regression improved 77% and
neural networks decreased 5.4%, probably overfitting. Support vector regression will
require high computational and manual demand tuning the model. The visualization
of prediction is presented in Figure 5.9.

Random forest offers the possibility to analyse the ranking of the main features
that contribute to predict our objective value (rate of penetration). Therefore, What
are the features that describe the 95% of importance in our data set? The ranking of
features is presented in Figure 5.10. Using the gini importance [15] model with mean
decrease in impurity (MDI) explained in section 4, we obtained the importance of
each feature (Figure 5.10 and Figure 5.11).

The main feature selected are: depth, hookload, surface torque, flow in, flow out.
Some of the features as rotary speed and weight on bit were not identify by the model
as an important variable for prediction of rate of penetration. This results contrast
with the reality of operation where rotary speed and weight on bit are controlled
parameters in the drilling rig.

However, with this unexpected result, What is the impact in the predictions if we
reduce the number of features? To have a complete analysis, we can assess random
forest with the total number of features available and compare the performance once
we reduce the number of variables. The results were obtained after 10 iterations.
Based on gini importance, we collected the main features, in this case 5 features, to
train and test random forest. The results are presented in Table 5.6. The analysis
did not include parameters optimization.

Reducing the number of features does not represent a relevant impact in the
performance of random forest, indicating that we could work with all the features.
In fact, the root mean squared error increased. The only benefit that we obtained
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(a) Prediction with random forest

1000 2000 3000 4000 5000 6000 7000
Depth (ft)

0

50

100

150

200

R
at

e 
of

 p
en

et
ra

tio
n 

(f
t/h

r)

train
test
prediction

(b) Prediction with support vector regression
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(c) Prediction with extreme gradient boosting
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(d) Prediction with neural networks

Figure 5.9: Visualization of rate of penetration predictions using
support vector regression, random forest, xgboost and neural networks

in Well 58-32
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Figure 5.10: Feature importance using random forest
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Figure 5.11: Cumulative importance using random forest

Table 5.6: Performance of random forest reducing the number of
features in Well 58-32

Number of features RMSE Run time (sec)
16 features 9,99 0,46
5 features 10,23 0,18

is that the run time is reduced in 0.28sec. In addition, the analysis was developed
with only the features considered for control parameters by Soares et al [58] (weight
on bit, drilling rotational speed, and drilling fluid (mud) flow rate) and depth. On
this run, we obtained a performance (RMSE) of 10.28 ft/hr which is higher that the
performance with all features (9,99 ft/hr). Still, we need to work with a realistic
model to assess the real-time operation. This analysis will come later. In this way,
we finish the evaluation in the context of static data assuming that we have available
all the data after operation. This scenario only contribute to analyze what models are
competent to offer a good prediction, identify the main features and obtain optimized
hyper-parameters.

Now, we need to approximate our assessment to a more realistic scenario. There-
fore, what is the performance of machine learning models splitting the data set per
batches increasing the data available? With this scenario, we are trying to assess the
option increasing the data available to be trained for our model. This experiment
was developed under the following conditions:

(a) We analyzed linear regression, k-neighbors regression, support vector regression,
decision trees, random forest, xgboost, ada boost regression and neural network
regression.

(b) Nine (9) batches were implemented and we tested our model in 266 points
(Table 5.7).

(c) The performance was measured based on root mean squared error (Figure 5.12).
For each batch, this performance indicator is appended.
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Table 5.7: Definition of number of points for each batch split in
train-test set for Well 58-32

Batch Train set Test set
1 691 691
2 1382 691
3 2073 691
4 2764 691
5 3455 691
6 4146 691
7 4837 691
8 5528 691
9 6219 691

After training and testing each model, the performance and run time are repre-
sented in the box plot Figure 5.12 and Table A.1, Table A.2 and Table A.3. Random
forest endorsed its capacity achieving lower average error (RMSE:14.55) evaluated
in each batch. Decision tree achieved the second lowest average error (RMSE:16.75)
whit high deviation. Xgboost and k-nearest neighbor obtained a compact distribution
similar to random forest.

What is the model that run the respective algorithm with the lowest time?. Ac-
cording to the results presented in Figure 5.12 the model with the lowest run time
average was linear regression with 0.002 sec and k-nearest neighbor with 0.043 sec
(Figure 5.12). On the other hand, neural networks had the highest run time average
among the models (2.98 sec). Still, we need to take into account the option of neu-
ral networks which has a lot of potential in future research related to reinforcement
learning. According to Aggarwal [3], neural networks are slow to train. Computa-
tional complexity is an inherent problem with neural networks. Nevertheless, recent
hardware and algorithmic advancements have made neural networks (in general) and
deep learning (in particular) more feasible [3].

Being random forest regression the model with the better performance among the
models, generating good generalization performance in most cases at speeds much
faster than the rest of the learning algorithms. This model obtained a normalized
average RMSE equal to 0.59 which is higher compared to stationary analysis (Nor-
malized RMSE equal to 0.29 with random forest). We were interested to observe the
behavior of predictions per batch. Therefore, in Figure 5.13 is presented the results.

An additional approach that we can explore based on the proposal of Soares [58]
and Helge [30] is to implement the machine learning model per formation. According
to these authors, the lithology-dependence assumption for physical ROP models is
maintained for machine learning techniques. In the following analysis, we are going
to use the data set available from Well 58-32. Based on the tops of each formation
presented in Figure 5.3. The characterization of the data set is presented in Table 5.8.

To contribute in our characterization, we can observe the distribution of rate
of penetration in the different formations (Figure 5.14).F1 has the highest standard
deviation with a pick in 125 ft/hr. Meanwhile, F1 and F2 were described with similar
behavior. The number of bins were defined automatically by the system.

Simulating the incremental availability of data, the model is trained with the
initial points and the test were executed with the remaining points according to the
distribution presented in Table 5.9 for Well 58-32.
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(b) Normalized RMSE for each machine learning algorithm
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Figure 5.12: Performance (RMSE and time) of each machine learn-
ing model increasing the data available (Batch) in all data set.

What was the performance of the machine learning techniques using incremental
data available?. To answer this question, we obtained the normalized metrics for each
iteration which could be presented in the box plot Figure 5.15, Table A.4, Table A.5,
and Table A.6.

Among these algorithms, random forest and xgboost endorsed its capacity to ob-
tain accurate predictions in Formation 1. As well as k-nearest neighbor. However,
k-nearest neighbor regression developed better average performance in Formation 2
and 3. These performance is better compared to batch analysis without formation
where the average error with the best model (random forest) was 0.59 with the ex-
ception of the results in Formation 2. In Figure 5.16, we visualized the prediction in
Formation 1 for Well 58-32 increasing the training data.

The same analysis was developed for 21-32 Well data set. The characterization of
each formation is presented in Table 5.10.

In addition, we included the distribution of rate of penetration per formation in
Figure 5.17. High standard deviation is observed in each of the Well 21-31 formations.
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Figure 5.13: Visualization of training, test set and prediction Well
58-32 (9 Batches) with random forest

Table 5.8: Characterization of data set Utah Well 58-32 per forma-
tion

Formation Thickness (ft) Number of points ROP average (ft/hr)
F1 3165 3064 60.59 ± 36.78
F2 2000 1983 14.92 ± 7.62
F3 2286 2264 12.33 ± 7.73
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(c) Formation 3 (F3)

Figure 5.14: Histogram of rate of penetration (ft/hr) per formation
Well 58-32
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(c) Formation (F3)

Figure 5.15: Performance of rate of penetration (ft/hr) prediction
per formation with normalized RMSE in Well 58-32
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Table 5.9: Distribution of points in train-test set per formation Well
58-32 distributed in 9 batches

Batch Formation 1 Formation 2 Formation 3
Train
set

Test
set

Train
set

Test
set

Train
set

Test
set

1 269 266 201 198 230 226
2 535 266 399 198 456 226
3 801 266 597 198 682 226
4 1067 266 795 198 908 226
5 1333 266 993 198 1134 226
6 1599 266 1191 198 1360 226
7 1865 266 1389 198 1586 226
8 2131 266 1587 198 1812 226
9 2397 266 1785 198 2038 226
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Figure 5.16: Visualization of train, test and prediction for Formation
F2 in Well 58-32 (9 batches)
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Figure 5.17: Histogram of rate of penetration (ft/hr) per formation
Well 21-31
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Table 5.10: Characterization of data set Fallon Well 21-31 per for-
mation

Formation Thickness (ft) Number of points ROP average (ft/hr)
F1 1950 1820 220.69 ± 140.45
F2 680 680 82.27 ± 48.96
F3 180 180 61.21 ± 65.34
F4 2635 2635 38.19 ± 30.81

After training and testing, we achieved the results presented in Figure 5.18 for each
formation assessing linear regression, k-nearest neighbor regression, support vector
regression, decision tree, random forest, xgboost, adaboost and neural networks.

We can observe that support vector regression achieved better performance in
Formation 1. In Formation 2, Linear regression obtained lower error. Furthermore,
k-nearest neighbor regression offered better score in Formation 3 and Formation 4.
However, it is important to noticed that the performance of prediction started de-
creased after batch 5 where RMSE started to increase.

5.3 Experimental results of anomaly detection
In this section, we are going to explore the models selected to detect anomalies under
the following conditions:

(a) The first scenario corresponds to stationary evaluation having all the data
available. We assessed k-means clustering, one-class support vector machine,
isolation forest and autoencoder. A total of 16 features were analyzed including
rate of penetration. In addition, with the exception of autoencoder, the machine
learning models were evaluated in all the data set. In the case of autoencoder,
we had to split the data in train and test set.

(b) The second scenario is developed with regression models and distance of
prediction. This section includes: random forest, xgboost, k-nearest neighbor,
decision tree, support vector regression, and neural network, the same models
used in Section 1.

(c) Based on the recommendations by Aggarwal [3], an exploratory and visual
analysis has been implemented in all stages of anomaly detection.

(d) The data set available (Well 58-32 and Well 21-31) does not include any label
defining which points are considered anomaly or normal point. We are eval-
uating in unsupervised learning where we do not know which data point is
normal and which one is an anomaly. The data set used for anomaly detection
corresponds to Well 58-32.

(e) In general, the outlier fraction is defined in 0.01 (1%) for all the models. In
further research, this value requires to be adjusted. With more data, we can
define a more realistic threshold.

(f) Hyperparameter optimization is not included in our analysis. Part of this deci-
sion is based on the lack of anomaly labels. Moreover, setting hyper-parameters
in anomaly detection is generally a difficult unsolved problem unless there is a
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Figure 5.18: Performance of rate of penetration (ft/hr) prediction
per formation with normalized RMSE in Well 21-31
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validation ground truth available for the parameter tuning according to Pevny
et al [49].

Therefore, the first method analysed in stationary scenario is k-means cluster-
ing. With clustering in unsupervised learning, non knowledge of anomaly is needed
while we are training for detection [19]. On the other hand, classification methods
needs to be trained with normal an abnormal data to be able to separate those classes
during detection.

• As aforementioned in Chapter 4, we implemented principal component analysis
reducing the dimensionality of our data (16 features) in two principal compo-
nents. Our implementation of principal component analysis based on principal
component transformation used two (2) components capturing more than 95%
variance.
• Then, elbow method (Figure 5.19) has been used to determine the optimal num-
ber of clusters. We obtained the score of variance for each number of centroids
assessed.
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Figure 5.19: Elbow curve to determine number of clusters required
for k-means clustering Well 58-32

We can observe from the elbow curve (Figure 5.19), the graph leveled off after
14 clusters. Large clusters correspond to normal data, and small clusters possibly
correspond to anomalies. After we computed the distance between each point and
its nearest centroid, the biggest distances were considered as anomaly. The result
is presented in Figure 5.20 where dark points correspond to normal data and light
shades represent anomalies.

However, we need to observe this information in our response parameter to have
a reference of the anomaly location. It means, the algorithm has identified in one
of the variables (16 features) a deviation. Figure 5.21 display the anomaly detection
using k-means clustering technique. Finally, this method detected 69 anomalies in
6511 points.

The second method analysed in stationary scenario corresponds to one-class
support vector machine used on unsupervised detection. The use of this method
without normalization would be dominated by the feature hookload and the rest of the
variables would be almost ignored. Normalization ensures that the different attributes
are given an equal level of importance in the anomaly detection process. We trained
all data set to infers the properties of normal cases and from these properties can
predict which examples are unlike the normal examples. Then, the data is labeled
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Figure 5.20: Visualization of two principal component identifying
the anomalies Well 58-32
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Figure 5.21: Anomaly detection using k-means clustering technique
Well 58-32

as normal and anomaly which is represented in Figure 5.22. One-class support vector
machine detected 69 anomalies and 6511 points.

The third method evaluated is isolation forest. As was explained in Chapter 3,
this method select the shorter path to define the anomalies. Outlier points are usually
isolated quickly with a few splits. The location of the anomalies are displayed in
Figure 5.23. The method identified 69 anomalies in 6511 points.

In Table 5.11, you can find the total number of anomalies detected by each ma-
chine learning model. However, we can not define which model performed better.
Further research will require the label of anomalies to evaluate the performance of
each algorithm.

Table 5.11: Number of anomalies detected for each method Well
58-32

Method Run time (sec) Normal Anomaly
Isolation forest 1,19 6459 52
One class support vector 0,12 6442 69
k-means clustering 15,88 6442 69

According to the results, isolation forest and one-class support vector machine
methods performed favourably in terms of run-time. The cause of anomaly is not
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Figure 5.22: Anomaly detection using one-class support vector tech-
nique Well 58-32
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Figure 5.23: Anomaly detection using random forest technique Well
58-32

identified representing a drawback of the implementation. Explaining the causes
of an anomaly detection is relatively new field and there is not yet an established
methodology to evaluate and compare the quality of algorithms [49].

We have finished with the stationary analysis. Then, we explored the second
scenario in anomaly detection, where we were predicting part of the interval. Then, we
measure the difference between the prediction and measured data. In the assessment,
we have defined a interval of analysis between 3595 ft to 4097 ft in Well 58-32 where
70% represents training and 30% testing. The proportion of training and test were
defined in a sequence. To detect the anomalies, we need to define a threshold which
represent the proportion of outliers (1.5%). However, this reference requires the
analysis of several data set to define a common threshold. For this study, the limit has
been arbitrarily defined. Further research, with more data available, will contribute
to define a realistic limit. In Figure 5.24 training and test set are visualized.
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Figure 5.24: Train and test for prediction and anomaly detection
between 3595 ft to 4097 ft Well 58-32

To predict the subsequent interval, different machine learning algorithm (random
forest, xgboost, k-nearest neighbor, decision tree, support vector regression, and neural
network) were implemented. In Figure 5.25 is presented the result for each algorithm.
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shade points represent test data, light points correspond to predictions and x points
perform as anomalies.
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(a) Random forest
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(b) Xgboost
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(c) K-nearest neighbor
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(d) Decision tree
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(e) Support vector
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(f) Neural network

Figure 5.25: Prediction and anomaly detection for 6 machine learn-
ing algorithms between 3595 ft to 4097 ft Well 58-32

As a result, random forest, xgboost and decision tree identified the same anoma-
lies. However, the results were imprecise to determine what was the correct model
in unsupervised learning. In Table 5.12 is presented the performance metric for each
of the models related to prediction accuracy. As a aforementioned, metrics of de-
tection were not included due to unlabeled data. Further research will require this
information.

In the section of analysis, 3595 ft to 4097 ft in Well 58-32, we can observe that deci-
sion tree and support vector regression obtained the best performance (lower RMSE).
This scenario of anomaly identification is highly dependent of how precise was the
prediction, otherwise this methodology will generate false positives or false negatives



62 Chapter 5. Experimental results and evaluation

Table 5.12: RMSE and run time (sec) for interval between 3595 ft
to 4097 ft Well 58-32

Method RMSE (ft/hr) Run time (sec)
Random forest 6,42 0,10
XGBoost 6,30 0,13
K-Nearest neighbor 5,85 0,04
Decision tree 5,73 0,03
Support vector 5,77 0,06
Neural networks 8,67 0,78

alarms. With these assessment, we have finished the experimental result section. In
the next section you will find the discussion for prediction and anomaly detection.

Highlights:

• In stationary analysis, random forest produced better performance in
the scenario of random data analysis. In the case of of incremental data,
again random forest endorse its capacity. However, once we divided the
data set by formations, different models obtained low error.

• In the case of anomaly detection, machine learning models identified mis-
behaviour in the case of complete data-set for stationary analysis. How-
ever, their root cause was not determined. Assessing the distance of the
data regard to the prediction is another alternative to identify anomalies.
This last strategy requires high accuracy of the machine learning model
selected.



63

Chapter 6

Discussion

6.1 Discussion about prediction and anomaly detection
In general, this research allows us to explore different machine learning algorithms
for prediction and anomaly detection. This analysis indicated that machine learning
models can provide highly accurate results by applying the proposed methodology
with high flexibility. The performance of prediction assessment was more robust hav-
ing two data set to explore the different alternatives. Meanwhile, the exploration of
anomalies were challenging because the data set of both wells (Well 21-31 and Well
58-32) had not identified which points were anomalous. This situation allowed us to
explore and research more alternatives to improve the identification of these misbe-
haviour.

Related to rate of penetration prediction, we have found the followings insights:

• Testing with real-world data sets seems to show that more complex algorithms
do not always yield the performance gains that one would expect from their
sophistication. In our case, random forest and xgboost obtained better perfor-
mance than neural networks in stationary evaluation.
• Related to run time, neural networks achieved the highest value. This scenario

decreases the possibilities to implement the algorithm in further analysis. How-
ever, even with low accuracy of neural networks and high run time, this method
has to be in the list of analysis for additional research. Reinforcement learning
using neural networks has been implemented in others fields. Alternative that
could be implemented in drilling operation. In addition, the new developments
in deep learning could increase the capacity of the models already evaluated.
For instances, with long short term memory (LSTM) neural networks and con-
volutional neural networks or more complex architectures.
• In hyperparameter optimization, the definition of parameters was defined with
specific sequence of values. Recently, researchers suggest to develop the analysis
with random values.
• Decreasing the number of features decreased the performance of the predictions.
In fact, Soares [58] suggested that could be interesting to evaluate these algo-
rithms considering additional data sources available in real time like gamma ray
logs, sonic travel times, bottom-hole pressure and bit torque.
• Increasing the data available to train enabled us to approximate the assessment
toward an approximation to real-time scenario. Therefore, this architecture
could contribute for further research.
• Exploring predictions per formations with batch assessment granted us to iden-
tify that there are not a unique machine learning algorithm with the best capac-
ity. Which represents a different result obtained by Soares [58] where random
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forest obtained the best performance. In addition, an increasing in the error
metric was observed once we were analysing the last batches. It means, a real-
time implementation could require a simultaneously assessment to define which
model represents the interested patter with better accuracy.
• In the analysis per formation still there is a gap to cover with hyperparameter
optimization which was not included in this architecture.
• The same architecture proposed in Chapter 4 which represented a generalization
of the implemented code could be useful to develop in another oil & gas field.
• The lithological formation identified for Well 58-32 and Well 21-31 allowed us
to delimited the top of each data set for batch analysis. However, geological
analysis or interpretation is not included in the present research.
• All the algorithms and analysis were developed in Google Colaboratory. Tools
like Azure from Microsoft or AWS (Amazon Web Service) were not included
in the development. However, this services reduce time consuming in the de-
velopment of the solutions and probably would bring the flexibility to execute
more experiments. In term of speed, Google Colaboratory offers access to GPU
(Graphic Processing Unit) speeding up our analysis.

In the case of anomaly detection, we can identify the following characteristic
of our analysis:

• The alternatives evaluated in stationary analysis achieved to identify outliers
based on the interaction of the different features. However, we still need to
research how to identify the root cause of misbehaviour.
• The analysis was developed under unsupervised learning since there were not
examples of specific anomalies. Future research will require a data set with
anomalies. This scenario will allow to establish performance metrics. Oil &
gas companies have the challenge to increase the data structured with anomaly
labels which will bring multiple benefits to optimize and increase the accuracy
performance of misbehavior detection.
• In stationary analysis, the implementation of each algorithm contained differ-
ent architecture, definition of parameters and subsequent adjustment. It rep-
resented a challenge during the research. At the same time, implementing this
solution in streaming data will require high customization of the models.
• Combining the analysis of rate of penetration prediction and anomaly detection,
drilling engineers can use this predictions as a reference identifying drilling prob-
lems. Initially, assessment of machine learning models could be implemented
during planning stage and post-drilling evaluation.
• Definition of thresholds were defined arbitrarily. The study of multiple data set
will increase the accuracy of proposed architectures.
• As was previously mentioned, deep learning models has been surpassing the
performance of traditional machine learning algorithms. Exploring complex
architectures will bring new alternatives in misbehavior detection for drilling
operation.

To sum up, we are proposing a virtual detector in drilling operation able to opti-
mize the operation and reduce uncertainty in decision making.
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6.2 Proposal of virtual detector
Industry is finding multiples options to optimize the process based on data manage-
ment. Recently, companies have developed strategies from bottom to top to admin-
istrate the data flow. From digitization technologies to data science teams have been
developed to discover solutions hidden in all the data collected. In parallel, different
models or layers have been proposed to implement digital programs. In this case,
based on the results of machine learning model, we are proposing a virtual detector
constructed with the following layers: streaming data, historical data, machine learn-
ing detector, report alert and optimization, and control parameters. This architecture
is focused on data analysis as a source of decision making described in Figure 6.1.

Virtual detector

Figure 6.1: Proposal of virtual detector and respective layers. Image
adapted from World Oil [66], Duva oil and gas field

In drilling operation, there are multiple parameters to follow up. As aforemen-
tioned in the introduction, to recognize abnormal state and normal state using raw
data is difficult for human [53]. Considering this virtual detector, we will focus on
any algorithm that allow us to reduce the decision uncertainties based on streaming
data analysis. Therefore, combining the alternatives evaluated in this research inma-
chine learning detector layer, we will improve the process in real-time operational
center. Assessing the models for anomaly detection, the engineers team will receive
alerts of abnormal events that will require attention, as were displayed in Chapter
5. In our case, interactive visualization implemented with Bokeh allows to identify
the point of anomaly and identify which variable has a deviation. Immediate action
can be taken in control parameter layer once the flag has be visualized in report
alert layer. The open source visualization tool implemented in python offered us
the option of zoom in and out, get the label of the point with technical information,
select one area of interest reflected in the rest of the variables, hide points specially
when we are analyzing train and test. In Figure 6.2, we exhibited one of the results
of our virtual detector.

In addition, historical data layer will collect all the results for multiple op-
eration in the cluster. This data becomes the brain of the detector. In addition,
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(a) Detection of anomaly

(b) Visualization of data analysis of features

Figure 6.2: Report alert and optimization layer in virtual detector

this layer will support the planning of drilling engineers. Post analysis of the data
using again the machine leaning detector on stationary mode will contribute to de-
fine which parameters require modification in the respective formation for the next
well. In terms of streaming data, it is known that the format of data collected is
WITSML which stand for wellsite information transfer standard markup language.
To sum up, each layer was described in Figure 6.3.

6.3 Personal experience during the project
During the master thesis project different abilities were developed. The implementa-
tion of machine learning algorithms allowed me to explore from the statistical theory
to coding algorithms. In addition, visualization requirements pushed me to developed
better codification skills. In general, all the concept and theory brought me outside
my comfort zone. Patter recognition course and additional courses in Coursera con-
tributed to achieve this result.

The topic called my attention since my participation in Data bootcamp in Rice
University (Houston, USA). Multiple concepts to learn in a field where there are
new advances every day. To keep the track and be updated represent a continuously
learning challenge. However, information has always been available. The network
in the data science field has been opened with multiple sources about theory and
codification. This condition has helped to understand complex and advance models
during the implementation.
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Figure 6.3: Layers of virtual detector

For my professional path, this research will bring the opportunity to participate
in industry digitization programs. Having knowledge of machine learning models will
contribute to propose new application and solutions for industrial challenges.
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Chapter 7

Conclusion and future work

7.1 Conclusion
This research has presented the evaluation of machine learning models for predic-
tion of respond parameters and anomaly detection in drilling operation. The results
demonstrated how the machine learning algorithms could learn continuously in real
time operations with accuracy. Based on the proposed objectives we are going to
describe our conclusions.

1. Characterization of machine learning model with stationary analysis and incre-
mental training data available to predict rate of penetration:
• Identify model with best performance (RMSE and run time): Based on
the data set explored, in the case of stationary analysis, random forest
and xgboost obtained the best performance. Our experiments showed that
random forest is a competent machine learning algorithm to predict the
rate of penetration with a performance error (root mean squared error) of
2,92 m/hr (9,57 ft/hr) in static analysis and 4,43 m/hr (14,55 ft/hr) average
error increasing the availability of data per batches. Testing with real-
world data sets seems to show that more complex algorithms like neural
networks do not always yield the performance gains that one would expect
from their sophistication.
• Assess incremental data availability strategy using batches per formation
(RMSE and run time) and analyze training to test set ratio (% train-
ing/test): Comparing the evaluation increasing the availability of data per
batches, we used normalized root mean square error as a metric. In the
experiment without limit of formation, we obtained an average error of
0,59 with the best model (random forest). However, when we assessed per
formation the average error decreased to 0,42 (with extreme gradient boost-
ing) for formation 1 and 0,35 for formation 3 (with k-nearest neighbor).
In the scenario of batches per formation, there are not a unique machine
learning algorithm with the best capacity. It means that a real-time imple-
mentation will require a simultaneously assessment to define which model
represents the interested patter with better accuracy. In terms of time,
neural networks was the model with major run average time (2.98 sec)
compared to random forest with 0.35 sec.
• Select optimal hyperparameter combination (hyperparameters): Cross val-

idation analysis allowed us to identify the best hyper-parameter for each
model. Except neural network, all the models improved the performance
after optimization of parameters. In the case of neural network was ob-
served overfitting after the identification of best hyperparameters.
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• Determine relevant features (features with 95 % of importance): Reducing
the number of features increased the error of the predictions, therefore all
the features were used during the experimentation. With 16 features we
obtained a root mean square error of 9,99 ft/hr, while with 5 features the
root mean square error increased to 10,23 ft/hr.

2. Identification of misbehavior of operational parameters (control, uncontrolled
and response parameters): The experiments were executed in unsupervised
learning. No labels were available defining normal or abnormal parameters.
Therefore, an exploratory analysis was executed in this section. The assessment
were implemented in a stationary analysis and applying time series assessment.
• Test machine learning methods to identify anomalies in stationary analysis
(number of anomaly detection): Among the machine learning models stud-
ied for anomaly detection in stationary analysis, isolation forest demon-
strated to be a flexible alternative being free of parameters. The methods
detected between 52 and 69 anomalies over 6511 points. However, there is
no single detector excelling on all type of problems, as different detectors
are suitable for different types of problems.
• Test machine learning methods to identify anomalies in streaming data
(number of anomaly detection): In the case of time-series, this strategy
is highly depend on the accuracy of predictions. However, this section
requires further research with labeled data to define the accuracy of the
models based on confusion matrix.

Finally, a virtual detector was proposed based on this implementation. Streaming
data, historical data, machine learning detector, report alert and optimization, and
control parameters are the five layers that constitute the architecture. Drilling en-
gineers can use these predictions as a reference for post analysis, optimization and
real-time detection of misbehavior. An interactive visualization in report alert and
optimization layer contributed to improve the data analysis.

7.2 Future work
• How can drilling operation take advantage of reinforcement learning to improve
the autonomy and online learning with respect to a prior unknown system and
environment, dynamic uncertainties, and partial observability?. For this pro-
posal, neural networks will have a relevant functionality. Therefore, better
configuration of neural networks architecture will require a deep analysis.

• Companies are requiring to implement solution on real time. Next step will need
to adequate the models designed in this research using solutions as Amazon Web
Service [6] or Azure [44] to develop experiments with streaming data.

• Having access to a cluster well data set. For instance, if we can get access to
drilling data of a number of wells in a determined area under similar conditions
of formations. It will allow to identify similar patters of parameters. Under this
condition, we could improve the detection of anomalies generating a virtual
detector.

• Experiments using deep learning are constantly growing. Therefore, for future
research is recommended to evaluate combination of neural networks techniques
to improve the detection of misbehavior. For instance, we could link autoencoder
with long short term memory neural networks.
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• With more details of the wells, we could include more features like: uncofined
compressive strength (UCS) of the different rock types and mud viscosity of
mud drilling. At the same time, we could add categorical parameters like bit
size, bit type, bit wear, drilling mud type, formation abrasiveness and forma-
tion drillability. Uncofined compressive strength, formation abrasiveness and
formation drillability could be calculated from lab cores and well logging data.
The research developed by Shi et al. [56] used the mentioned features in their
neural networks model obtaining high accuracy in their test.

• Currently, oil & gas companies are interested to create digital twin of the well,
looking for closed-loop optimization at the field level. Therefore, high perfor-
mance algorithms like machine learning models are improving this solution. The
models analyzed in this research could be implemented in a digital twin pilot
project.
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Appendix A

Performance of rate of
penetration prediction per
batches

A.1 Results of rate of penetration prediction per batches
Well 58-32

The performance results of predictions per batches for each machine learning model
are presented in the following tables. First, the outcome of increasing data available
per batch without limit of formation is presented in Table A.1, Table A.2, and Table
A.3. In the second part, we find the results of increasing data available per batch per
formation in Table A.4, Table A.5 and Table A.6. These information is support for
the analysis in Chapter 5.

Table A.1: Root mean square error (ft/hr) per batch increasing data available
Well 58-32

BATCH LR KNR SVR DT RF XGB ADABR MLP
1 103.17 69.40 64.56 38.86 44.18 51.80 48.82 38.86
2 34.50 19.77 32.01 28.32 21.35 18.97 24.67 28.32
3 37.40 15.45 16.35 21.90 16.79 19.19 16.25 21.90
4 17.81 13.89 17.43 25.30 19.00 20.54 22.29 25.30
5 23.73 16.20 30.15 9.49 8.55 14.81 29.49 9.49
6 29.70 3.31 7.83 11.61 4.04 5.62 29.32 11.61
7 24.91 4.28 7.49 6.95 5.17 3.28 19.77 6.95
8 32.99 5.83 6.01 8.65 5.85 4.91 17.46 8.65
9 24.31 6.83 6.26 7.91 6.02 6.13 9.93 7.91
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Table A.2: Normalized root mean square error per batch increasing data available
Well 58-32

BATCH LR KNR SVR DT RF XGB ADABR MLP
1 1.98 1.33 1.24 0.75 0.85 1.00 0.94 0.75
2 0.92 0.52 0.85 0.75 0.57 0.50 0.65 0.75
3 1.02 0.42 0.44 0.60 0.46 0.52 0.44 0.60
4 1.02 0.80 1.00 1.45 1.09 1.18 1.28 1.45
5 1.62 1.10 2.05 0.65 0.58 1.01 2.01 0.65
6 3.36 0.37 0.89 1.31 0.46 0.64 3.31 1.31
7 2.47 0.42 0.74 0.69 0.51 0.32 1.96 0.69
8 2.50 0.44 0.46 0.66 0.44 0.37 1.33 0.66
9 1.65 0.46 0.43 0.54 0.41 0.42 0.67 0.54

Table A.3: Time (sec) per batch increasing data available Well 58-32

BATCH LR KNR SVR DT RF XGB ADABR MLP
1 0.00 0.02 0.07 0.02 0.07 0.08 0.13 0.85
2 0.00 0.04 0.16 0.02 0.12 0.14 0.20 1.50
3 0.00 0.03 0.30 0.03 0.18 0.20 0.25 2.26
4 0.00 0.04 0.50 0.04 0.25 0.25 0.30 2.94
5 0.00 0.10 0.68 0.05 0.31 0.31 0.36 3.29
6 0.00 0.05 0.86 0.06 0.39 0.39 0.45 3.92
7 0.00 0.06 1.04 0.07 0.45 0.42 0.50 2.57
8 0.00 0.07 1.24 0.09 0.54 0.47 0.57 4.07
9 0.00 0.08 1.52 0.10 0.62 0.52 0.61 5.47

Table A.4: Normalized root mean square error per batch increasing data available
in F1 Well 58-32

BATCH LR KNR SVR DT RF XGB ADABR MLP
1 0.41 0.14 0.14 0.43 0.30 0.32 0.24 0.43
2 0.27 0.25 0.26 0.32 0.27 0.29 0.25 0.32
3 1.61 0.84 1.00 0.69 0.68 0.61 0.75 0.69
4 0.50 0.53 0.64 0.50 0.51 0.40 0.85 0.50
5 0.63 0.65 1.11 1.68 0.98 0.64 1.29 1.68
6 1.11 0.50 0.73 0.68 0.54 0.51 0.52 0.68
7 0.83 0.26 0.49 0.39 0.30 0.28 0.26 0.39
8 0.31 0.34 0.32 0.44 0.34 0.35 0.34 0.44
9 1.17 0.42 0.36 0.45 0.36 0.36 0.42 0.45
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Table A.5: Normalized root mean square error per batch increasing data available
in F2 Well 58-32

BATCH LR KNR SVR DT RF XGB ADABR MLP
1 1.25 1.28 1.39 1.85 1.65 1.82 1.69 1.85
2 0.62 1.05 1.18 0.90 1.22 1.20 1.28 0.90
3 0.54 0.82 0.83 1.92 1.01 0.92 1.06 1.92
4 1.26 1.06 0.83 0.73 0.95 0.74 0.96 0.73
5 1.54 1.60 1.45 1.68 1.65 1.54 1.77 1.68
6 1.20 1.01 1.44 1.98 1.72 2.12 2.80 1.98
7 0.59 1.33 1.33 1.45 1.37 1.68 1.54 1.45
8 0.80 1.04 1.13 1.32 0.99 1.09 1.45 1.32
9 1.54 1.27 1.41 1.52 1.36 1.49 1.65 1.52

Table A.6: Normalized root mean square error per batch increasing data available
in F3 Well 58-32

BATCH LR KNR SVR DT RF XGB ADABR MLP
1 0.48 0.33 0.30 0.40 0.30 0.29 0.28 0.40
2 0.61 0.34 0.30 0.39 0.37 0.36 0.28 0.39
3 0.31 0.31 0.37 0.72 0.53 0.49 0.44 0.72
4 0.47 0.53 0.48 0.42 0.39 0.36 0.36 0.42
5 0.35 0.31 0.34 0.51 0.45 0.38 0.37 0.51
6 0.39 0.41 0.39 0.54 0.47 0.49 0.52 0.54
7 0.50 0.33 0.27 0.34 0.29 0.32 0.28 0.34
8 0.30 0.28 0.36 0.43 0.34 0.33 0.32 0.43
9 0.48 0.39 0.49 0.50 0.47 0.48 0.48 0.50


	Abstract
	Acknowledgements
	Introduction
	Scope
	Objectives
	Limitations
	Methodology
	Assistance and design tools
	Results and outcomes

	Literature review
	Drilling operation
	Machine learning
	Machine learning fro drilling operation
	Optimization of parameters, machine learning and drilling operation
	Early detection in drilling operation and machine learning

	Anomaly detection

	Alternative solutions and selection
	Models for rate of penetration
	Support vector regression
	Decision tree and random forest regression
	Extreme gradient boosting
	Neural networks
	Performance metrics

	Drilling physical models: Rate of penetration and Mechanical specific energy
	Models for misbehavior detection
	k-means clustering
	Isolation forest
	Autoencoder
	One-class support vector machine


	Implementation
	Implementation for rate of penetration prediction
	Implementation for anomaly detection
	Stationary anomaly detection
	Time series anomaly detection


	Experimental results and evaluation
	Data set of drilling operation
	Experimental results of machine learning implementation
	Experimental results of anomaly detection

	Discussion
	Discussion about prediction and anomaly detection
	Proposal of virtual detector
	Personal experience during the project

	Conclusion and future work
	Conclusion
	Future work

	Bibliography
	Performance of rate of penetration prediction per batches
	Results of rate of penetration prediction per batches Well 58-32


