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Abstract 
 

This thesis compares results from experimental and numerical analyses of structural steel I-beams 
subjected to lateral-torsional buckling due to a vertical point load located at the mid-span. The aim is 
to find a suitable finite element model for estimating buckling load and lateral deflection of the beam 
under increasing load, and to provide information on how beam dimensions affect the results of the 
numerical simulation relative to the experimental analysis. Fundamental theory of the lateral-torsional 
buckling of beams is provided, along with previously conducted research on the field. 
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1 Introduction 
 

1.1 Background and Motivation 
 

Steel as a structural material is of great importance in the modern world’s society. It is widely used in 
structural elements in construction projects, such as high-rise buildings, bridges and offshore 
structures, and it is also used in ship hulls, pipes, pressure vessels, containers and wind turbines. Due 
to its material properties, cost and availability, structural steel is preferred in situations that require 
high tensile strength or high ductility. Additionally, it has a high flexibility in terms of shape and area 
of use. 

Because of its importance, steel structures have been and are still being widely researched. From 
material properties related to the crystallographic structure to macro-scale behavioral studies, 
structural steel and its uses comprise many aspects that require attention regarding the design of 
structures and its constituent elements. 

One of these aspects are the failure modes of steel beams and columns subjected to externally applied 
load. Failures include global failures, such as overall buckling, and local failures, including cross-
sectional yielding, local buckling, web crushing. 

This thesis focuses on lateral-torsional buckling. Many of the behaviors of steel members are well 
understood, both in terms of material properties and geometric properties. However, this field is still 
subject to a lot of research, as it is important to fully grasp these concepts to further improve 
engineering standards and guidelines, especially from a safety point of view. Limit state design is the 
design philosophy used to provide the best possible material and geometry choice for a given 
engineering problem, and these design principles have been derived from extensive knowledge of 
structural steel. 
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1.2 Objectives and Overview 
 

The main objectives of this thesis are related to the analysis of beams undergoing lateral-torsional 
buckling. They are: 

- To find a suitable model for estimating buckling loads and lateral deflection 
- To compare results of applied load vs. lateral deflection from experimental and numerical 

analyses. 
- To check whether the formulas for elastic critical moment are compatible with the 

experimental and numerical results 
- To look for patterns and trends in the results that will aid in the prediction of critical values 

applicable for design 
- To check whether the numerical models are conservative with regards to design loads 

To engage in these problems the thesis has been structured in a way that separates the analyses of 
lateral-torsional buckling of beams into three categories. These are: 

1. Theoretical background and analytical derivation 
2. Experimental analysis through laboratory testing 
3. Numerical analysis through FEM software simulation 

Chapter 2 involves the theory behind lateral-torsional buckling. Renowned researchers on the field 
such as Trahair et al. are referenced to provide a fundamental understanding of the behavior of steel 
beams under loading conditions that inhibit lateral-torsional buckling. The derivation of the elastic 
critical moment along with modifications and applications of this are presented. 

Chapter 3 gives an overview of experimental testing conducted at the University of Stavanger by M. 
Ruud in association with a bachelor thesis. A total of nine steel I-beam specimens were tested with a 
range of different profiles and beam lengths. Results from these tests are presented, referencing 
Ruud’s work, along with information on previously done work in the field of testing for lateral-
torsional buckling. 

Chapter 4 focuses on numerical analysis, and presents models, theory and results for the numerical 
simulations that were done using ANSYS Workbench 17. Finite element models of the nine different 
specimens used in the lab testing were developed using a combination of Autodesk Inventor and 
ANSYS. Additionally, some fundamental theory of FEA, linear and nonlinear buckling and 
convergence is provided. 

Chapters 5 and 6 include comparisons and discussion of the findings in the previous chapters, along 
with a conclusion. Suggestions to further work are also proposed. Finally, an appendix consisting of 
ANSYS generated reports for the numerical simulations is given. 
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2 Theory of Lateral-Torsional Buckling 
 

2.1 General 
 

Lateral-torsional buckling, abbreviated LTB, is a phenomenon occurring with structural members 
subjected to certain loading conditions. The name comes from the types of deformation the member 
undergoes, namely lateral displacement and torsional twisting. Lateral displacements involve the 
lateral shifting of a local cross section relative to its initial position, and twisting involves the rotation 
of the cross-sectional axes relative to their original position. 

Fig. 1 presents the principle of LTB. The beam is supported or otherwise restrained in the right end, 
hence the local cross section at this position is fixed in place. The left end may represent the free end 
section of a cantilever beam or the mid-section of a beam supported in both ends. 

 

 

(a)      (b) 

 

Fig. 1. Schematic representation of lateral-torsional buckling showing (a) an undeformed beam 
segment and (b) the beam segment undergoing displacement and twisting. 

 

Lateral torsional buckling is one of the known failure modes of beams and columns. It is a global 
failure, in which the entire beam assumes a buckled shape due to longitudinal compressive or 
transverse loads. 

The mechanics of LTB are related to the behavior of the two flanges of the beam. While undergoing 
bending, the top flange of the beam is subjected to compression and the bottom flange is subjected to 
tension. Because of the materials resistance against deformation, the compression flange will try to 
retain its original length. The “path of least resistance” for doing this is bending out of the vertical 
plane. The top flange therefore undergoes vertical and lateral deflection. 

In order to retain its original length, the tensile flange will stay straight relative to the longitudinal axis 
of the beam. It undergoes vertical and lateral deflection just like the top flange. However, the lateral 
deflection of the bottom flange is insignificant relative to that of the top flange. 



4 
 

The larger lateral deflection of the compressive flange and the smaller lateral deflection of the tensile 
flange result in a twisting motion of the beam cross section. The centroid of the deformed section is 
located at a different position than that of the undeformed section, and the deformed section is rotated, 
i.e. oriented at an angle, relative to the undeformed section. 

LTB in I-beams can be reduced or prevented by lateral restraints. These will work in a way that stiffen 
the web and thereby increasing the bending resistance, making the member less susceptible to LTB. 
Lateral restraints are spaced out evenly throughout the beam length (or column height), with a spacing 
length dependent on the section dimensions and the nature and magnitudes of the external loading on 
the structure. Closed sections like rectangular hollow sections RHS have sufficient resistance in the 
lateral direction and are not susceptible to LTB. These sections tend to fail due to other modes like 
local buckling and material failure. 

A schematic view of a beam cross section subjected to LTB is shown in Fig. 2. The dotted line 
represents the position and orientation of an undeformed section, while the shaded area represents 
those of a deformed section. When operating in a 2D plane, three parameters can be used to describe 
the change in position and orientation between the two sections. These are the vertical deflection 𝑤𝑤, 
the horizontal deflection 𝑣𝑣 and the rotation angle 𝜑𝜑. The horizontal deflection is often referred to as 
the lateral deflection. For a beam with a central vertical point load the largest value of all these 
parameters occur at the center span of the beam. Refer to section 2.2 for further definitions of the 
principal axes, displacement and angles. 

 

 

Fig. 2. Schematic view of a beam cross section subjected to LTB. Note: The translations and rotations 
of the deformed cross section relative to the initial cross section are highly exaggerated; A structural 
steel beam would fail due to local buckling and collapse before reaching such a large deformation 
relative to the cross-sectional dimensions. 
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2.2 Definitions 
 

2.2.1 Nomenclature 

 

Table 1 provides an overview of the different symbols used in the figures and equations presented in 
this thesis. All the units are given in terms of standard SI units. 

 

Table 1. Symbols, definitions and units used in this thesis. 

Symbol Definition Unit 
𝐼𝐼𝑦𝑦 Moment of inertia about the 𝑦𝑦-axis 𝑚𝑚4 
𝐼𝐼𝑧𝑧 Moment of inertia about the 𝑧𝑧-axis 𝑚𝑚4 
𝐼𝐼𝑤𝑤 Warping constant 𝑚𝑚6 
𝐼𝐼𝑡𝑡 St. Venant’s torsional constant 𝑚𝑚4 
𝐸𝐸 Young’s modulus 𝑁𝑁/𝑚𝑚2 
𝐺𝐺 Shear modulus 𝑁𝑁/𝑚𝑚2 
𝑀𝑀𝑦𝑦 Moment about the 𝑦𝑦-axis 𝑁𝑁𝑁𝑁 
𝑣𝑣 Lateral displacement along the 𝑦𝑦-axis 𝑚𝑚 
𝑤𝑤 Lateral displacement along the 𝑧𝑧-axis 𝑚𝑚 
𝜑𝜑 Twisting angle 𝑟𝑟𝑟𝑟𝑟𝑟 
𝑀𝑀𝑐𝑐𝑐𝑐 Elastic critical moment for lateral-torsional buckling 𝑁𝑁𝑁𝑁 
𝐿𝐿 Beam length 𝑚𝑚 
𝑃𝑃 Point load 𝑁𝑁 
𝐴𝐴 Cross-sectional area 𝑚𝑚2 
ℎ Height of cross section 𝑚𝑚 
𝑏𝑏 Width of cross section 𝑚𝑚 
𝑡𝑡𝑓𝑓 Thickness of flange 𝑚𝑚 
𝑡𝑡𝑤𝑤 Thickness of web 𝑚𝑚 
𝑃𝑃 Applied concentrated load 𝑁𝑁 
𝑧𝑧𝑄𝑄 Distance (height) from neutral axis to the point of loading 𝑚𝑚 
𝑓𝑓𝑦𝑦 Yield strength of steel/material 𝑁𝑁/𝑚𝑚2 
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2.2.2 Reference System and Principal Axes 

 

The global coordinate system used in this thesis for definitions, references and analysis is defined as 
shown in Fig. 3. 

 

 

Fig. 3. Figure showing the coordinate system corresponding to the beam axes. 

 

The principal axes of a beam are defined in accordance with Fig. 3. The 𝑥𝑥-axis is the longitudinal axis 
of the beam. The 𝑦𝑦-axis is the horizontal, or lateral, axis and the 𝑧𝑧-axis is the vertical axis. The 
following sign convention is adopted: 

- Positive direction along the 𝑧𝑧-axis is the same as the direction of loading, i.e. downwards for 
all theoretical, numerical and experimental considerations in this thesis. 

- Positive direction along the 𝑥𝑥-axis is chosen arbitrarily for each separate consideration. 
- Positive direction along the 𝑦𝑦-axis is towards the right when viewing along the positive 

direction along the 𝑥𝑥-axis. 
- Positive rotation is clockwise when viewing along the positive direction along the 𝑥𝑥-axis. 

This coordinate system of principal axes and the sign convention is used throughout the entire thesis 
unless stated otherwise Note: In ANSYS Workbench 17 used in the numerical analysis, the naming of 
the axes in the reference coordinate system is different from the ones stated above. 
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2.3 Derivation of the Elastic Critical Moment 
 

The elastic critical moment 𝑀𝑀𝑐𝑐𝑐𝑐 is the value of the buckling moment about the y-axis, 𝑀𝑀𝑦𝑦, at which 
out-of-plane deformations start to occur [1]. These deformations are said to be out-of-plane because 
they do not occur in the stiffer principal plane of the beam, i.e. the plane consisting of the longitudinal 
and vertical axes of the beam. In-plane bending is the case of deformations aligning with the direction 
of loading, and this happens when 𝑀𝑀𝑦𝑦 < 𝑀𝑀𝑐𝑐𝑐𝑐. 

In this section the derivation of the elastic critical moment is written out according to da Silva et al. 
[2]. The following assumptions are made: 

- The beam is perfect, i.e. there are no imperfections with respect to geometry or material. 
Geometrical imperfections in general can be described as initial deviations from a straight 
beam and from the intended cross section. 

- The cross section is doubly symmetric, i.e. there is symmetry about both the y- and the z-axis. 
- The material behaves in a linear elastic manner, i.e. the distribution of strain is linear within 

any given cross section throughout the beam length, and hence, initially plane sections remain 
plane after deformation. 

- The lateral displacements of the beam are small. When the displacement of a point close to the 
middle of the beam is small relative to the beam length, the angle of rotation, or the slope, of 
the beam is small. Mathematically, this translates to sin𝜑𝜑 ≈ 𝜑𝜑 and cos𝜑𝜑 ≈ 1. 

It is necessary to establish expressions that describe the mathematical relations of bending and torsion 
with corresponding deformations. These are given in Eq. 1-3. 

Bending about 𝑦𝑦′-axis: 

 

𝐸𝐸𝐼𝐼𝑦𝑦
𝑑𝑑2𝑤𝑤(𝑥𝑥)
𝑑𝑑𝑥𝑥2

+𝑀𝑀𝑦𝑦 = 0 Eq. 1 

 

Bending about 𝑧𝑧′-axis: 

 

𝐸𝐸𝐼𝐼𝑧𝑧
𝑑𝑑2𝑣𝑣(𝑥𝑥)
𝑑𝑑𝑥𝑥2

+ 𝜑𝜑(𝑥𝑥)𝑀𝑀𝑦𝑦 = 0 Eq. 2 

 

Torsion about 𝑥𝑥′-axis: 

 

𝐸𝐸𝐼𝐼𝑤𝑤
𝑑𝑑3𝜑𝜑(𝑥𝑥)
𝑑𝑑𝑥𝑥3

− 𝐺𝐺𝐼𝐼𝑡𝑡
𝑑𝑑𝑑𝑑(𝑥𝑥)
𝑑𝑑𝑑𝑑

+ 𝑀𝑀𝑦𝑦
𝑑𝑑𝑑𝑑(𝑥𝑥)
𝑑𝑑𝑑𝑑

= 0 Eq. 3 
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At any given point along the beam, the lateral displacements are given as the distances between the 
centroids of the initially undeformed cross section and the deformed cross section. The rotation is 
defined as the angle between the principal axes of the undeformed cross section and those of the 
deformed cross section. 

Differentiating Eq. 3 with respect to x results in the following: 

 

𝐸𝐸𝐼𝐼𝑤𝑤
𝑑𝑑4𝜑𝜑(𝑥𝑥)
𝑑𝑑𝑥𝑥4

− 𝐺𝐺𝐼𝐼𝑡𝑡
𝑑𝑑2𝜑𝜑(𝑥𝑥)
𝑑𝑑𝑥𝑥2

+ 𝑀𝑀𝑦𝑦
𝑑𝑑2𝑣𝑣(𝑥𝑥)
𝑑𝑑𝑥𝑥2

= 0 Eq. 4 

 

Rearranging Eq. 2 yields: 

 

𝑑𝑑2𝑣𝑣(𝑥𝑥)
𝑑𝑑𝑥𝑥2

= −
𝑀𝑀𝑦𝑦

𝐸𝐸𝐼𝐼𝑧𝑧
𝜑𝜑(𝑥𝑥) Eq. 5 

 

Inserting Eq. 5 into Eq. 4 results in a 4th order differential equation with only one variable, 𝜑𝜑(𝑥𝑥): 

 

𝐸𝐸𝐼𝐼𝑤𝑤
𝑑𝑑4𝜑𝜑(𝑥𝑥)
𝑑𝑑𝑥𝑥4

− 𝐺𝐺𝐼𝐼𝑡𝑡
𝑑𝑑2𝜑𝜑(𝑥𝑥)
𝑑𝑑𝑥𝑥2

−
𝑀𝑀𝑦𝑦

2

𝐸𝐸𝐼𝐼𝑧𝑧
𝜑𝜑(𝑥𝑥) = 0 Eq. 6 

 

The solution to this differential equation is given in the following form: 

 

𝜑𝜑(𝑥𝑥) = 𝐷𝐷1 sin𝑚𝑚𝑚𝑚 + 𝐷𝐷2 cos𝑚𝑚𝑚𝑚 + 𝐷𝐷3𝑒𝑒𝑛𝑛𝑛𝑛 + 𝐷𝐷4𝑒𝑒−𝑛𝑛𝑛𝑛 Eq. 7 
 

Where the constants 𝑚𝑚 and 𝑛𝑛 are given by the below equations: 

 

𝑚𝑚 = �−𝑎𝑎 + �𝑎𝑎2 + 𝑏𝑏          𝑛𝑛 = �𝑎𝑎 +�𝑎𝑎2 + 𝑏𝑏 

 

𝑎𝑎 =
𝐺𝐺𝐼𝐼𝑡𝑡

2𝐸𝐸𝐼𝐼𝑤𝑤
          𝑏𝑏 =

𝑀𝑀𝑦𝑦
2

𝐸𝐸𝐼𝐼𝑧𝑧𝐸𝐸𝐼𝐼𝑤𝑤
 

Eq. 8a-d 

 

The supports prevent both lateral displacement and twisting: 

 

𝐴𝐴𝐴𝐴 𝑥𝑥 = 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥 = 𝐿𝐿:          𝑣𝑣 = 𝑤𝑤 = 𝜑𝜑 = 0 Eq. 9 
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When warping torsion is induced on a cantilever beam, the fixed end disables warping and results in 
warping moments 𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖 being developed. These moments act perpendicular to the cross- 
sectional plane, and are related to what is known as the bimoment, 𝐵𝐵 = 𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑚𝑚 = 𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑚𝑚, where 
ℎ𝑚𝑚 is the distance between the moments. The bimoment is responsible for the normal stress related to 
warping, 𝜎𝜎𝑤𝑤. 

 

The equation for the relation between the lateral displacement of the upper flange, 𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠, and the 
corresponding warping moment, 𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠, is as follows: 

 

𝑑𝑑2𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥)
𝑑𝑑𝑥𝑥2

= −
𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠

𝐸𝐸𝐼𝐼𝑓𝑓𝑓𝑓
 Eq. 10 

 

The expression for the lateral deflection of the upper flange is given in terms of the twisting angle and 
half the bimoment lever arm distance: 

 

𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) = 𝜑𝜑(𝑥𝑥)
ℎ𝑚𝑚
2

 Eq. 11 

 

Since warping is allowed, 𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠 does not develop: 

 

𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠 = 0 ⟹
𝑑𝑑2𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥)

𝑑𝑑𝑥𝑥2
= 0 

 
Eq. 12 

 

Differentiation of Eq. 11 twice yields: 

 

𝑑𝑑2𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥)
𝑑𝑑𝑥𝑥2

=
𝑑𝑑2𝜑𝜑(𝑥𝑥)
𝑑𝑑𝑥𝑥2

ℎ𝑚𝑚
2

 Eq. 13 

 

Equating the two expressions in Eq. 11 and Eq. 12 leads to the following observation: 

 

𝐴𝐴𝐴𝐴 𝑥𝑥 = 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥 = 𝐿𝐿:          
𝑑𝑑2𝜑𝜑
𝑑𝑑𝑥𝑥2

= 0 Eq. 14 

 

Inserting the above results in Eq. 7 leads to the following constant values: 

 

𝐷𝐷2 = 0          ,          𝐷𝐷3 = −𝐷𝐷4 Eq. 15 
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Inserting the constant values from Eq. 15 into Eq. 7 and applying the hyperbolic trigonometric identity 
sinh𝑎𝑎𝑎𝑎 = (𝑒𝑒𝑎𝑎𝑎𝑎 − 𝑒𝑒−𝑎𝑎𝑎𝑎)/2 results in the following equation for 𝑥𝑥 = 𝐿𝐿: 

 

𝐷𝐷1 sin𝑚𝑚𝑚𝑚 − 2𝐷𝐷4 sinh𝑛𝑛𝑛𝑛 = 0 
 

Eq. 16 

Differentiating Eq. 16 twice and using the result in Eq. 13 yields: 

 

𝐷𝐷1𝑚𝑚2 sin𝑚𝑚𝑚𝑚 + 2𝐷𝐷4𝑛𝑛2 sinh𝑛𝑛𝑛𝑛 = 0 Eq. 17 
 

For a non-trivial solution of Eq. 16 and Eq. 17 to be obtained, the determinant of this system of 
equations must equal zero: 

 

(sin𝑚𝑚𝑚𝑚)(sinh𝑛𝑛𝑛𝑛)(2𝑚𝑚2 + 2𝑛𝑛2) = 0 Eq. 18 
 

The non-trivial solution is only obtained if sin𝑚𝑚𝑚𝑚 = 0 as 𝑚𝑚 and 𝑛𝑛 are positive real quantities and 
sin𝑛𝑛𝑛𝑛 = 0 only if 𝑛𝑛𝑛𝑛 = 𝑛𝑛 = 0. The first solution to sin𝑚𝑚𝑚𝑚 = 0 is given by 𝑚𝑚 = 𝜋𝜋/𝐿𝐿, which results 
in the following: 

 

−𝑎𝑎 + �𝑎𝑎2 + 𝑏𝑏 = �
𝜋𝜋
𝐿𝐿
�
2

 Eq. 19 

 

The formula for 𝑀𝑀𝑐𝑐𝑐𝑐 is obtained by combining Eq. 19 and the expressions for 𝑎𝑎 and 𝑏𝑏 in Eq. 8c-d, 
denoting 𝑀𝑀𝑦𝑦 as 𝑀𝑀𝑐𝑐𝑐𝑐: 

 

𝑀𝑀𝑐𝑐𝑐𝑐 =
𝜋𝜋
𝐿𝐿
�𝐺𝐺𝐼𝐼𝑡𝑡𝐸𝐸𝐼𝐼𝑧𝑧 �1 +

𝜋𝜋2𝐸𝐸𝐼𝐼𝑤𝑤
𝐿𝐿2𝐺𝐺𝐼𝐼𝑡𝑡

� Eq. 20 

 

This formula for 𝑀𝑀𝑐𝑐𝑐𝑐 is only valid for a beam with equal end moments and gives the reference value 
for the elastic critical moment. Trahair et al. denotes this value 𝑀𝑀𝑧𝑧𝑧𝑧 so that 𝑀𝑀𝑐𝑐𝑐𝑐 = 𝑀𝑀𝑧𝑧𝑧𝑧 for a beam with 
equal end moments. The same notation is adopted in this thesis. 
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2.4 Modifications to the Elastic Critical Moment 
 

For other load situations a correction factor 𝛼𝛼𝑚𝑚 is introduced. The value of this factor is estimated so 
that the critical load for any given load situation is equal to: 

 

𝑀𝑀𝑐𝑐𝑐𝑐 = 𝛼𝛼𝑚𝑚𝑀𝑀𝑧𝑧𝑧𝑧 Eq. 21 
 

Values of the correction factor 𝛼𝛼𝑚𝑚 for different load configurations is given in Table 2. 

 

Table 2. Loading conditions and corresponding modification factors, modified from Da Silva et al. 
[2]. 

Member and loading Factor 𝛼𝛼𝑚𝑚 Validity limits 

 

 
 
 

1.75 + 1.05𝛽𝛽 + 0.3𝛽𝛽2 ≤ 2.5 

 

 

 
 

1.0 + 0.35 �1 −
2𝑑𝑑
𝐿𝐿2
� 

 

 

 
 

1.35 + 0.4 �
2𝑑𝑑
𝐿𝐿2
� 

 

 

 
1.35 + 0.15𝛽𝛽 

 

 
−1.2 + 3𝛽𝛽 
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1.35 + 0.36𝛽𝛽 

 

 

 
1.13 + 0.10𝛽𝛽 

 

 
−1.25 + 3.5𝛽𝛽 

 

 

 
1.13 + 0.12𝛽𝛽 

 

 
−2.38 + 4.8𝛽𝛽 
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3 Experimental Analysis 
 

The experimental analysis was conducted in the lab for constructions and materials testing at the 
University of Stavanger by Mikael Ruud in relation to a bachelor thesis. This chapter is referencing 
the mentioned thesis [3] for details on the experimental setup and results from the testing. 

 

3.1 Experimental Setup 
 

3.1.1 Support and Loading Configuration 

 

The entire experimental setup consisted of a supporting rig, a loading rig, the test specimens and 
measuring equipment. The beams were supported by two cut out steel plates that would prevent the 
beam ends from moving too far out of place. These plates act as simple supports for the beam, 
allowing rotation about the horizontal lateral axis and translation to a certain extent in the longitudinal 
direction, similar to that of a simply supported beam with a roller support at one end. 

The vertical point load was applied by a high strength steel plate connected to a hydraulic extender, 
which in turn was connected to a control board. A connected computer allows for monitoring and 
extracting data on load magnitude vs. time. 

The total test set consisted of nine specimens, each of a separate profile and length combination. Three 
different profiles – IPE200, IPE240 and IPE270 – and three beam lengths – 2.00, 2.25 and 2.50 meters 
– of each profile were used. The profiles are shown in Fig. 5. This choice was made for the testing to 
include different sections and beam lengths to see what effects these parameters has on the results. 

 

Fig. 4. Schematic view of the beam with supports and loading. The vertical point load acts at the mid-
span of the beam directly on top of the upper flange. 
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3.1.2 Measuring Equipment 

 

A total of three different measuring systems were used in the testing of the beams – Two response 
measuring devices and one force measuring device. The responses, namely deflections and strains, 
were measured using relative displacement rulers and a DIC system. 

The rulers were placed in order to measure vertical deflection of the beam and the horizontal 
deflections of the top and bottom flanges, all measured at the mid-span where the deflections are 
largest. The measurements were recorded and used for plots of vertical load vs. deflection of the 
separate beams. 

The DIC is short for Digital Image Correlation and is a system used to measure strain and 
displacement on surfaces by high precision imaging technology. The system utilizes a special camera 
that takes pictures with set time intervals during the deformation of the test specimen. The steel beams 
were spray painted with a white layer followed by black dots for the camera to be able to respond to 
shape changes. 

 

3.1.3 Beam Dimensions and Material 

 

Table 3: Material properties of the beams. 

Material properties 
Material Steel grade S355 
Modulus of elasticity 210 GPa 
Shear modulus 81 GPa 
Poisson’s ratio 0.3 

 

Table 4: Cross section dimensions and geometrical properties of the three different beam cross 
sections. 

Cross section dimensions and geometrical properties 
Cross section IPE 200 IPE 240 IPE 270 
Height 200 mm 240 mm 270 mm 
Width 100 mm 120 mm 135 mm 
Web thickness 5.6 mm 6.2 mm 6.6 mm 
Flange thickness 8.5 mm 9.8 mm 10.2 mm 
Roller radius 12 mm 15 mm 15 mm 
Moment of inertia 
about y-axis 

19.4 ∙ 106 mm4 38.9 ∙ 106 mm4 57.9 ∙ 106 mm4 

Moment of inertia 
about z-axis 

1.42 ∙ 106 mm4 2.84 ∙ 106 mm4 4.20 ∙ 106 mm4 

St Venant’s constant 70.2 ∙ 103 mm4 129 ∙ 103 mm4 160 ∙ 103 mm4 
Warping constant 12.99 ∙ 109 mm6 37.39 ∙ 109 mm6 70.58 ∙ 109 mm6 
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(a)     (b) 

 

(c) 

Fig. 5: Cross sectional views of the three different profiles used in the experimental testing and in the 
numerical simulations. (a) IPE200, (b) IPE240 and (c) IPE270. 
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3.1.4 Testing Procedure 

 

During the experimental testing, the beams were loaded to the point of local buckling failure. The 
overall beams were still in the elastic region, as they returned to their original position after removing 
the load. This can also be verified by checking the maximum applied load vs. the theoretical elastic 
limit/strength of the beam. However, local failure occurred at the loading point of action. Technically 
speaking this is the mid span section of the beam, but it is referred to as a point. 

 

3.2 Experimental Results 
 

In this section, results from the experimental analysis are presented. These are plots of the vertical load 
vs. lateral deflection of the top flange at the mid-span of the beam, where the deflection is the largest. 
The results were compiled from the load data and the lateral displacement data, and each plot 
corresponds to one test specimen. 

 

 

 

Fig. 6. Force vs. lateral displacement for IPE200, 2.00 m length. 
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Fig. 7. Force vs. lateral displacement for IPE200, 2.25 m length. 

 

Fig. 8. Force vs. lateral displacement for IPE200, 2.50 m length. 
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Fig. 9. Force vs. lateral displacement for IPE240, 2.00 m length. 

 

Fig. 10. Force vs. lateral displacement for IPE240, 2.25 m length. 
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Fig. 11. Force vs. lateral displacement for IPE240, 2.50 m length. 

 

Fig. 12. Force vs. lateral displacement for IPE270, 2.00 m length. 
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Fig. 13. Force vs. lateral displacement for IPE270, 2.25 m length. 

 

Fig. 14. Force vs. lateral displacement for IPE270, 2.50 m length. 
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3.3 Previously Conducted Tests 
 

A substantial amount of work has been done regarding LTB and buckling capacity of steel members. 
This section will focus on previously conducted studies with the intent to provide a general overview 
of the type of work done, the different geometrical, material and loading configurations studied, the 
models used and the results of these tests. 

Analytical, numerical and experimental analyses have been carried out, some of which have been used 
to compare with given code recommendations. Numerical analyses are presented in section 4.5. The 
current section will comprise some of the comparisons to give a perspective on which parameters are 
being calculated and discussed. The standards used in these studies include Eurocode 3, GB50017 and 
ANSI/AISC360-10. 

Yang et al. [4] conducted an extensive experimental and numerical analysis on beams with I-section 
profiles. The members were made of Q460GJ steel plates welded together, where the specimens had 
the dimensions of 270x180x8x16 and 450x180x8x16 (ℎ x 𝑤𝑤 x 𝑡𝑡𝑤𝑤 x 𝑡𝑡𝑓𝑓). Steel of this quality has a 
nominal yield strength of 460 MPa. The spans of the beams varied from 6 through 7 to 8 m. The 
beams were setup using simple supports. 

Deflections were measured using linear variable displacement transducers, abbreviated LVDT’s. 
These were placed at four different points along the beam’s length. Strain gauges were used to 
measure strains at two of these points as well. 

The results of this test were presented in the form of vertical load-displacement curves and lateral 
displacements versus normalized applied load. The greatest change in lateral direction was found to 
occur at a value of 𝑃𝑃𝑃𝑃/(4𝑀𝑀𝑦𝑦𝑦𝑦) = 0.3 in the pre-failure region. Failure occurred at 𝑃𝑃𝑃𝑃/(4𝑀𝑀𝑦𝑦𝑦𝑦) = 0.8, 
represented by the load at which the LTB of the beam results in plastic deformation. In this post-
failure region, a small change in applied load results in a large change in lateral displacement. 

 

 

Fig. 15. Lateral displacements vs. normalized applied load. From Yang et al. 
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The plot of lateral displacement suggests that the beam undergoes LTB to one side in the beginning, 
but then assumes an antisymmetric buckling shape when close to failure. This means that one half of 
the beam buckles to one side while the other half buckles to the other. 

The results were compared with different codes, namely GB50017-2003, GB50017-201X, Eurocode 3 
and ANSI/AISC360-10. GB50017, which is the Chinese code of structural steel, provides a formula 
for buckling moment similar to that of EC3, which is the European code: 

 

𝑀𝑀𝑦𝑦 = 𝜒𝜒𝐿𝐿𝐿𝐿𝑊𝑊𝑦𝑦𝑓𝑓𝑦𝑦 Eq. 22 
 

 

𝜒𝜒𝐿𝐿𝐿𝐿 =
1

Φ𝐿𝐿𝐿𝐿 + �Φ𝐿𝐿𝐿𝐿
2 − 𝜆̅𝜆𝐿𝐿𝐿𝐿2

 

 

Eq. 23 

 

Φ𝐿𝐿𝐿𝐿 = 0.5�1 + 𝛼𝛼𝐿𝐿𝐿𝐿�𝜆̅𝜆𝐿𝐿𝐿𝐿2 − 0.2� + 𝜆̅𝜆𝐿𝐿𝐿𝐿2 � Eq. 24 
 

 

𝜆̅𝜆𝐿𝐿𝐿𝐿2 = �
𝑊𝑊𝑦𝑦𝑓𝑓𝑦𝑦
𝑀𝑀𝑐𝑐𝑐𝑐

 Eq. 25 

 

The ANSI/AISC360-10 is the code of the American Institute of Steel Construction, abbreviated AISC. 
This code provides a different formula for calculating the buckling moment: 

 

𝑀𝑀𝑛𝑛 = 𝐶𝐶𝑏𝑏 �𝑅𝑅𝑝𝑝𝑝𝑝𝑀𝑀𝑦𝑦𝑦𝑦 − �𝑅𝑅𝑝𝑝𝑝𝑝𝑀𝑀𝑦𝑦𝑦𝑦 − 𝐹𝐹𝐿𝐿𝑆𝑆𝑥𝑥𝑥𝑥�
𝐿𝐿𝑏𝑏 − 𝐿𝐿𝑝𝑝
𝐿𝐿𝑟𝑟 − 𝐿𝐿𝑝𝑝

� ≤ 𝑅𝑅𝑝𝑝𝑝𝑝𝑀𝑀𝑦𝑦𝑦𝑦 

𝑖𝑖𝑖𝑖 𝐿𝐿𝑝𝑝 < 𝐿𝐿𝑏𝑏 < 𝐿𝐿𝑟𝑟𝑀𝑀𝑛𝑛 = 𝐹𝐹𝑐𝑐𝑐𝑐𝑆𝑆𝑥𝑥𝑥𝑥 ≤ 𝑅𝑅𝑝𝑝𝑝𝑝𝑀𝑀𝑦𝑦𝑦𝑦 
𝑖𝑖𝑖𝑖 𝐿𝐿𝑟𝑟 < 𝐿𝐿𝑏𝑏 

Eq. 26 

 

When comparing the experimental result with the different codes, the buckling moment of each test 
specimen was compared with the calculated value from each code. These were tabulated along with 
normalized values given by the ratio of the calculated value to the experimental value, so that the 
normalized values are given in the form of 𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒. These are presented in Table below. 
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Table 5: Normalized values of analytical to experimental bending moments. 

 GB50017-2003 GB50017-201X Eurocode 3 ANSI/AISC360-
10 

Mean value for 
specimen with 

ℎ/𝑏𝑏 = 1.5 

1.00 0.95 0.91 0.84 

Coefficient of 
variation for 
specimen with  

ℎ/𝑏𝑏 = 1.5 

0.030 0.010 0.045 0.063 

Mean value for 
specimen with  

ℎ/𝑏𝑏 = 2.5 

0.93 0.80 0.80 0.92 

Coefficient of 
variation for 
specimen with  

ℎ/𝑏𝑏 = 2.5 

0.022 0.025 0.014 0.077 

 

As seen in the table above the experimental values compare well with the calculated values given in 
the Chinese code, especially for the profiles with an aspect ratio of 1.5. The values calculated in 
accordance to EC3 and the AISC standard deviate a bit more. Notably, the values obtained from 
AISC360-10 calculations have a relatively high variation with respect to the test results. 
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4 Numerical Analysis 
 

This chapter focuses on the numerical analysis carried out for the purpose of handling this thesis’ 
objectives.  

 

4.1 Software 
 

The software used to generate the model and obtain the results of the problem is ANSYS Workbench 
17. This is a finite element analysis software, and the simulation process consists of separate systems 
comprising a flow chart model. The flow chart indicates the order in which the systems are processed. 

There are different types of analysis systems. For the case of lateral-torsional buckling analysis it is 
necessary to use a combination of two separate systems, namely Static structural and Eigenvalue 
buckling. The static structural analysis system consists of the following cells: 

1. Engineering data 
2. Geometry 
3. Model 
4. Setup 
5. Solution 
6. Results 

The engineering data is synonymous with the material model. All the material properties are listed in 
Appendix A section A.1. The geometry can be filled with a geometric model made within the program 
or imported from a file made in an external 3D CAD software. In this case the geometry is modelled in 
Autodesk Inventor. The model and setup cells provide the load model and finite element meshing of 
the geometry. Features like loads – i.e. forces, moments and pressures – and displacements can be 
added here in order to model the boundary conditions and external loads on the element or structure. 
The mesh is also generated and altered here. The solution shows the deformed model after every pre-
processing and processing feature has been applied. The results can be shown in terms of different 
parameters calculated by the solution process. Examples are displacements, stresses, strains etc. 

The eigenvalue buckling analysis system is identical to the static structural system in structure and 
consists of the same cells. The differences between the two systems are the analysis procedure, as the 
static structural solves the static equilibrium while the eigenvalue buckling estimates the eigenvalues 
and corresponding eigenvectors or modes similar to a modal analysis. 

The two systems are connected within the flow chart so that the information from the cells 
Engineering data and Model is shared between the two blocks. The solution from the Static structural 
system is sent to the setup cell in the Eigenvalue buckling system. In this way the static structural 
analysis acts as a preliminary process to the buckling. Finally, another static structural system is used 
for the nonlinear buckling analysis. The information from the Engineering data, Geometry and Model 
cells in the Eigenvalue buckling system is shared with the second Static structural system. Refer to 
section 4.2.1 for theory on eigenvalue and nonlinear buckling. 
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Fig. 16. Screenshot from ANSYS showing the flowchart model. System A is a component containing 
the geometry, system B and D are static structural systems and system C is an eigenvalue buckling 
system. 

 

4.2 Model 
 

The complete model can be described in terms of a geometric model, a material model and a load 
model. Combined, they provide the foundation for a numerical solution of the problem. Finite element 
modelling is summarized in the equation: 

 

[𝐊𝐊][𝐃𝐃] = [𝐑𝐑] Eq. 27 
 

The material model is represented by the stiffness matrix [𝐊𝐊], the load model is represented by the 
load matrix [𝐑𝐑] and the geometric model is represented by the size and shape of the matrices. The 
displacement matrix represents the solution of the problem, i.e. the results in terms of lateral 
displacement in this case. The … equation can be altered in order to yield a different type of results, 
i.e. stress or strain instead of displacement. 

The equation is of course a general representation of the load-displacement relationship of a structure 
or an element. The same relation can be found in special cases of axial deformation, bending and 
Hooke’s law, known as the stress-strain relationship. In each of the cases related to structural 
mechanics, the stiffness matrix is derived from some sort of stiffness parameter. In axial deformation 
this parameter is 𝐴𝐴𝐴𝐴, in bending cases it is 𝐸𝐸𝐸𝐸, and in the stress-strain relationship it is simply 𝐸𝐸. In 
terms of shear stiffness, the parameter is given in terms of the shear modulus 𝐺𝐺, which is related to 
Young’s modulus in the following way: 

 

𝐺𝐺 =
𝐸𝐸

2(1 − 𝑣𝑣) Eq. 28 
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4.2.1 Linear and Nonlinear Buckling Analyses 

 

The buckling analysis consists of two separate concepts: Linear and nonlinear buckling. 

The linear buckling analysis aims to provide a theoretical buckling load and theoretical buckling shape 
mode, much like in modal analysis. The theoretical buckling load, often given in terms of a unit load 
and a buckling load factor, is referred to as the eigenvalue of the analysis. Eigenvalue problems are 
solved by finding the eigenvectors and the corresponding eigenvalues of a mathematical problem. 

The nonlinear buckling analysis is referred to as post-buckling analysis and aims to provide a definite 
solution of the buckling problem in terms of buckling loads and the corresponding quasi-static 
responses, i.e. final stresses or displacements. An increasing external load is applied to the element or 
structure in question. Every load increment is equal in magnitude, and the displacement corresponding 
to a given load is estimated for each step. For a single node in a FEA: 

 

𝑑𝑑𝑖𝑖 =
1
𝑘𝑘
�𝑟𝑟𝑗𝑗

𝑖𝑖

𝑗𝑗=1

 Eq. 29 

 

For the entire system: 

 

[𝐃𝐃]𝑖𝑖 = ��[𝐑𝐑]𝑗𝑗

𝑖𝑖

𝑗𝑗=1

� [𝐊𝐊]−1 Eq. 30 

 

With a given finite element model, consisting of a geometric model, material model and load model, 
the solution to this problem is found through a convergence series of data. If the intended result is 
lateral displacements of a beam, the buckling load can be found by running a convergence analysis in 
the form of tolerance and diminishing returns. The difference in lateral displacement between the last 
step and the second last step is calculated and compared to the total displacement throughout the entire 
iteration process. If the difference is less than a given tolerance level, often set to a percentage of the 
total lateral displacement at that step, the solution is given by the buckling load required for that 
displacement: 

 

If 𝑑𝑑𝑖𝑖 − 𝑑𝑑𝑖𝑖−1 > 𝑒𝑒 then continue iteration. 

If 𝑑𝑑𝑖𝑖 − 𝑑𝑑𝑖𝑖−1 < 𝑒𝑒 then stop iteration. Buckling load = �𝑟𝑟𝑗𝑗

𝑖𝑖

𝑗𝑗=1

 
Eq. 31 

 

Generally, for the nonlinear buckling analysis to take place, an initial imperfection is necessary. This 
can be a small asymmetry in the finite element mesh or a small load, either nodal or body, in a given 
direction resulting in a slightly asymmetric loading situation. 
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With a solution for the buckling load, it is possible to obtain a solution for the resulting parameters 
like displacements and stresses, given geometric and material models. Using simulation software the 
solution for lateral displacement can be found, and ANSYS Workbench 17 offers/enables the 
opportunity to show the deformed shape of the structure under loading along with color coded contour 
plot showing the different values of the displacement. 

In this thesis, the simulated buckling load is compared to the measured buckling load in the 
experimental analysis. The same comparison is done with the corresponding lateral displacements. 

 

Fig. 17. Schematic figure of the load displacement relationship and the regions of linear and nonlinear 
buckling. 

 

4.2.2 Force Convergence Theory 

 

A convergence analysis is based on the principle that a parameter error or residual value must be 
smaller than a given tolerance level in order for the problem analysis to result in a balanced solution. 
In terms of a force convergence analysis the goal is to minimize the difference between external and 
internal forces so that the problem can be solved for a structure in equilibrium. 

The difference between the externally applied loads and the internally reactive forces, termed the 
residual value, needs to be smaller than the given tolerance level, known as the convergence criterion, 
or more specifically the force criterion. 

In the ANSYS force criterion solver output, the force convergence is the unbalanced force, or residual 
value, that is computed for each iteration of the finite element analysis of the model. The force 
criterion is the tolerance level below which the force convergence has to be at the end of the analysis. 
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The vertical lines corresponding to Substep Converged in the legend shows the step or substep number 
locations in the iteration process for which the value at that point converged, i.e. satisfies the 
convergence criterion. 

 

Fig. 18. Example of a force convergence plot. Taken from the ANSYS report on the simulation results 
for the IPE200 2-meter length beam model. Refer to Appendix. 

 

As seen in the force convergence plots, the convergence value in the beginning of the analysis is 
around the order of 10-5 while the criterion is in the order of 101. This relation is characteristic of a 
balanced FE model. The convergence value steadily increases exponentially up until the time when the 
externally applied load is approximately 70-80 % of the total theoretical buckling load, or rather the 
applied vertical load in the program. This is the onset of the nonlinear behavior of the model (the 
equivalent of the elastoplastic region of materials), and the convergence value starts to increase 
drastically before returning to a value below the convergence criterion. This process repeats until the 
end of loading, resulting in the seemingly chaotic region of the convergence plot. This behavior of the 
algorithm is characteristic of the program’s attempt to model nonlinearity in the structural model, 
incorporating the given material properties and the mesh. 

 

 

 

 

 



29 
 

4.3 Initial testing 
 

The initial testing phase involved trying out and finding the best boundary conditions, mesh 
configuration and iteration procedure details in the software in order to obtain the best results relative 
to the analytical and experimental data. The test was carried out/conducted using the beam model for 
the IPE200 cross section with a 2 m span length. 

 

4.3.1 Preliminary Eigenvalue Buckling Analysis 

 

The buckling analysis consists of two parts: Linear buckling, or eigenvalue buckling, and nonlinear 
buckling analyses. The first part involves finding the theoretical buckling load of the given model, and 
the second parts incorporates a nonlinear analysis in the form of a force convergence solution. 

A preliminary eigenvalue buckling analysis was carried out to find the best suited boundary conditions 
model when comparing the results to the experimental analysis. This was done by testing different 
support constraints at the end sections of the geometric beam model, conducting pre-stress and 
eigenvalue buckling analysis and comparing the results with the experimental results. 

The pre-buckling analysis was done using the static structural analysis system in ANSYS. Common 
for all the tests were an externally applied unit load of 1 kN at the center span of the beam, placed 
centrally on the mid-section (just like in the …, see FIG. X). Generally a unit load is placed where the 
real load in the model is to be placed. In this case it is a unit load of 1 kN. This way the buckling load 
factor/multiplier will provide the theoretical buckling load in kN when multiplied with the unit load of 
1 kN. 

The linear buckling analysis was done using the eigenvalue buckling analysis system in ANSYS. This 
uses the pre-stress analysis solution and recognizes the resulting buckling modes, which essentially 
consists of eigenvectors – buckling mode shape – and eigenvalues – buckling mode values. The 
eigenvalue corresponds to a load factor or a load multiplier. By default the program solves the 
problem for two buckling modes. The convention when analyzing eigenvalue problems related to 
physical models is to neglect negative eigenvalues. Additionally, when considering structural 
engineering problems involving limit state design and failure, it is the lowest eigenvalue that should be 
assumed as solution for the most conservative design, as this corresponds to the first value that will be 
reached when applying external load to the structure. 

The different boundary conditions are listed in the table below. The types of constraints for each end 
sections support are listed along with schematic figures of the constraints where the red colored line 
segments or areas represent the edges or faces that are constrained. Additionally the load factor for 
each case is listed. 

The ultimate buckling load in the experimental analysis is 139 kN. Case 5 yields the best result 
compared to this value, as it is the value closest to and larger than the experimental value. 
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Table 6: Different support configurations and their corresponding load factors. 

Case Support A Support B Load factor Schematic of 
constraints/BC 

1 Fixed support, 
bottom flange edge 

Displacement, bottom 
flange edge 

103,32  

 
 

2 Fixed support, 
bottom flange edge 

Fixed support, bottom 
flange edge 

104,79  

 
 

3 Fixed support, 
bottom flange 
lower and upper 
edges 

Fixed support, bottom 
flange lower and upper 
edges 

110,97  

 
 

4 Fixed support, end 
section 

Displacement, end 
section 

-1671,3 
635,18 
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5* Fixed support, 
bottom flange edge. 
Displacement, 
lower web edges 

Displacement, bottom 
flange edge. 
Displacement, lower 
web edges 

159,54  

 
 

6* Fixed support, 
bottom flange edge. 
Fixed support, 
lower web edges 

Displacement, bottom 
flange edge. Fixed 
support, lower web 
edges 

193,21  

 
 

7* Fixed support, 
lower half of end 
section 

Displacement, lower 
half of end section 

191,04  

 
 

8* Fixed support, 
bottom flange 
lower and upper 
edges. 
Displacement, 
lower web edges 

Displacement, bottom 
flange lower edge. 
Fixed support, bottom 
flange upper edges. 
Displacement, lower 
web edges 

163,21  
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The mesh model consists of an automatically generated shell element model and several refinements. 
An automatic mesh refinement was done for all faces of the geometry. In addition, manual face sizing 
was done for both the split end section faces and for the roller radii and flange sides. In this face sizing 
the element size was set to 20 mm on all faces. Fig. 19 are showing how the overall mesh looks like in 
one of the beam models. 

 

 

 

(a)        (b) 

 

(c) 

 

Fig. 19. Screenshots from ANSYS showing the visualized mesh model. (a) Overall isometric view, (b) 
end section view and (c) side view of an IPE200 2 m length beam. 
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4.3.2 Testing Procedure 

 

Step 1: Initial loading, i.e. pre-stress analysis 

The support reactions were chosen according to the best fit boundary conditions found in the 
preliminary Eigenvalue buckling analysis. Otherwise the settings and model parameters were identical 
to the pre-buckling analysis described in section 4.3.1. 

Step 2: Eigenvalue buckling analysis 

The procedure for the eigenvalue buckling analysis is described in section 4.3.1. 

Step 3: Nonlinear buckling analysis 

The nonlinear buckling analysis was conducted using a static structural analysis system. This was 
connected to the eigenvalue buckling analysis system, sharing Engineering data, Geometry and Model 
cell data. 

In the Analysis settings the step controls for the FEA iteration process were changed from standard, so 
that the Step End Time were set to 100 s. The Auto Time Stepping feature was set to On so that it is 
possible to override the program controlled settings. This way the program runs an iteration process in 
which the load rate/increment is constant. Additionally the Large Deformation setting was turned on. 
This allows for the Solver Output to run a nonlinear analysis. 

The initial testing resulted in a good estimation of the buckling load and corresponding lateral 
deflection when compared to the experimental results. 

 

4.4 Numerical Results 
 

This section presents the results of the numerical analyses carried out as described in the sections 4.1 
through 4.3.  

 

Table 7: Theoretical buckling loads based on eigenvalue buckling analysis. 

Cross section Beam length (mm) Theoretical buckling load (kN) 
 
IPE200 

2000 142.12 
2250 126.20 
2500 111.56 

 
IPE240 

2000 196.48 
2250 183.82 
2500 169.23 

 
IPE270 

2000 215.66 
2250 206.58 
2500 195.87 
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Fig. 20. Force vs. lateral displacement for IPE200, 2.00 m length. 

 

Fig. 21. Force vs. lateral displacement for IPE200, 2.25 m length. 
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Fig. 22. Force vs. lateral displacement for IPE200, 2.50 m length. 

 

Fig. 23. Force vs. lateral displacement for IPE240, 2.00 m length. 
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Fig. 24. Force vs. lateral displacement for IPE240, 2.25 m length. 

 

Fig. 25. Force vs. lateral displacement for IPE240, 2.50 m length. 
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Fig. 26. Force vs. lateral displacement for IPE270, 2.00 m length. 

 

Fig. 26. Force vs. lateral displacement for IPE270, 2.25 m length. 
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Fig. 27. Force vs. lateral displacement for IPE270, 2.50 m length. 
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4.5 Previously Conducted Numerical Analyses 
 

Vales and Stan [5] compared different finite element models of I-sections. The FEA software 
programs ABAQUS and ANSYS were used to develop models and conduct numerical analyses. 

ABAQUS model: 

The geometrical model consisted of S4 shell elements. This element has four corner nodes with six 
degrees of freedom each. The beam was modelled having 16 elements along the flange width, 16 
elements along the web height and 200 elements along the beam length. 

ANSYS model: 

The geometrical model consisted of SOLID185 elements. This element is prism-shaped with eight 
corner nodes. The beam was modelled having ten elements along the flange width, 20 elements along 
the web height, and two elements along the flange thickness. The number of elements along the beam 
length varied. 

The moment was modelled as a linearly varying pressure along the vertical axis. The boundary 
conditions were modelled so that certain nodal displacements were linked to the displacement of a 
master node; The end nodes of the flanges were coupled with a master node located at the intersection 
between the flange and the web, and these end nodes of the web were coupled to a master node located 
in the centroid of the section. This way the boundary conditions needed only be applied at one node. 

The vertical and lateral displacements in addition to the rotation about the longitudinal axis were set to 
equal zero at the end sections of the beam model. Additionally, the longitudinal displacement was set 
to zero at the mid-span of the beam in order to constrain the position of the model. These boundary 
conditions allowed for warping of the member at the supports, represented by local longitudinal 
displacements. Anywhere else along the beam length, sections could deflect vertically and laterally, 
and twist rotate. 

As described in the paper, the fillet welds of the built-up I-section have almost no effect on the lateral-
torsional buckling capacity of the profile. The beam was hence modelled having right angle inner 
edges in the transition between the web and the flanges with no excessive volume. 
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5 Comparisons and Discussion 
 

5.1 Comparison between Experimental and Numerical 
Results 
 

The comparisons between the experimental and numerical results is done based on observations made 
in regards to sections 3.2 and 4.4. The main focus is to analyze and characterize the results from the 
load vs. lateral deflection plots and the elastic critical moment calculations, and extract information 
that will help answer the question of whether numerical analysis can suffice in modelling lateral-
torsional buckling and to what extent this tool is useful in further research. 

 

5.1.1 Lateral Deflections 

 

The load vs. lateral deflection curves from the numerical analysis do not differ a lot from the 
experimental ones. 

It is possible to define three regions within the load vs. lateral displacement plots: 

- The 1st linear region. This is the region from the origin of the diagram to the point where the 
moment reaches the elastic critical moment, i.e. first lateral deflection. 

- The nonlinear region. This is the region in which lateral deflection and twisting of the cross 
section starts to govern the type of deformation. 

- The 2nd linear region. This is the region beyond the nonlinear region in which the governing 
stiffness parameter of the beam is the moment of inertia about the weak axis. Lateral 
deflections and twisting increases with almost no additional load. 

The program runs a nonlinear analysis, and the entire load vs. deflection plot is nonlinear as the rate of 
change is not constant. However, it is reasonable to assume a linear region of the curves as the rate 
changes are small compared to those of the nonlinear region. 

It is hard to define the load magnitude for which the elastic critical moment has been reached. The 
values in Table 8 are extracted from the plots of load vs. lateral deflection based on where the curves 
changes are most abrupt. 
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Table 8: Estimated buckling loads and corresponding lateral deflections 

Cross 
section 

Beam length 
(mm) 

Estimated 
elastic critical 
buckling load 
(kN) 

Corresponding 
lateral 
deflection 
(mm) 

Estimated 
maximum 
buckling load 
(kN) 

Corresponding 
lateral 
deflection 
(mm) 

 
IPE200 

2000 110 0.4 135 2 
2250 95 0.4 120 2 
2500 80 0.4 115 2 

 
IPE240 

2000 140 0.3 190 2 
2250 130 0.3 175 2 
2500 120 0.3 160 2 

 
IPE270 

2000 160 0.3 205 2 
2250 145 0.2 200 2 
2500 135 0.2 190 2 
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Fig. 28. Diagram of theoretical buckling load factors vs. beam lengths for the different profiles. 

 

Within the data set containing the values for beam lengths the theoretical buckling load seems to 
decrease linearly with increasing beam length. This observation goes for all three profiles. 
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Fig. 29. Theoretical buckling load factors vs. beam lengths for the IPE200 profile. 

 

Four additional beam models were tested, all of the same profile – IPE200. The beam lengths for these 
models were 1 m, 1.5 m, 3 m and 3.5 m. The entire FEM process was applied to these additional 
models to provide results outside of the original data set. 

What seemed to be a linear trend for 2 m < 𝐿𝐿 < 2.5 m has been proven incorrect. The theoretical 
buckling load has a relatively low negative rate of change for beam lengths between 1 m and 1.5 m. It 
has a higher negative rate of change in the region of lengths between 2 m and 2.5 m, and then a 
decreasing negative rate of change as the length approaches 3 m. 
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Fig. 30. Force vs. lateral displacement for different beam lengths of IPE200. 

 

Fig. 30 shows another perspective on the varying numerically estimated buckling load. The larger the 
spacing between the different curves, the higher the rate of change of the theoretical buckling load. 
Additionally, it is worth noticing that theoretical buckling loads correspond to displacement values 
around 5 – 6 mm – the exception being for 𝐿𝐿 = 1.5 m, as it diverges relative to the other plots. A 
deflection of 5 – 6 mm is in the second linear region in every case. 

General observations: 

- The theoretical buckling loads seem to decrease linearly with increasing beam length. 
- The theoretical buckling loads calculated from the eigenvalue buckling analyses decreases 

relative to the buckling loads when the cross sections increase in size. 
- The load vs. lateral deflection curves from the numerical analysis overestimate the load 

required to … a given lateral displacement in the nonlinear region relative to the curves from 
the experimental analysis. 

- The numerical curves also underestimate the loads required to … a given lateral displacement 
beyond the nonlinear region, i.e. the region of displacement divergence. 
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5.1.2 Specifics Regarding the Numerical Analysis 

 

The nonlinear buckling analysis was unable to calculate lateral deflections for high maximum loads. 
This was due to a convergence error – The program was not able to obtain a converged solution of the 
force equilibrium when reaching certain load magnitudes above the theoretical buckling load. Another 
effect of this obstacle/difficulty is the slightly inaccurate calculation of deflections beyond the 
nonlinear region. When considering the numerically derived load vs. lateral deflection plots, the load 
continues to increase after having reached the third region, which in practice is linear and, in some 
cases, starts to dip. This prevents the use of the software to estimate deflections beyond the region of 
nonlinear behavior of the lateral-torsional buckling. 

 

5.2 Possible Reasons for Differences in Results 
 

Listed below are potential sources and reasons for the observed differences between experimental and 
numerical results. 

- Geometric imperfections 

Geometric imperfections are all types of geometric features that cause the symmetry about any of the 
principal axes of the beam to break, resulting in weaknesses in certain directions or planes. When 
external loading is applied, the geometric asymmetry leads to certain preferred deformation directions 
and modes, and ultimately reduces the capacity of the beam. 

- Material defects 

Material defects include impurities, dislocations and otherwise material features that … 
anisotropic/orthotropic material behavior. A perfectly homogeneous and isotropic material is 
impossible to achieve in reality, however the material is assumed to have isotropic and linear-elastic 
properties given it is processed and manufactured using industry standard manufacturing equipment 
and procedures. Crystallographic theory teaches that material defects may act as strengthening 
mechanisms if the preferable type of impurities or dislocations are induced upon the material. 

- Asymmetry in loading 

If the vertical mid-span point load is asymmetric with respect to any of the principal axes of the beam, 
i.e. the real loading configuration is deviating from the ideal one presented in Fig. X, the resulting 
deformations may vary from what is to be expected in the case of an analytical or numerical analysis.  

- Asymmetry in support rig 

The setup for the experimental analysis, which also includes the loading configuration, is most likely 
not 100 % symmetric in geometry. The asymmetry is generally very small for manufactured rigs and 
parts, but after a long time of use it may experience some asymmetries. 
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- Mesh model in FEM 

The mesh model in the finite element modelling software might not be generated in a way that, when 
incorporated into the final model with loading and boundary conditions and material properties, yields 
results that compares well with the results from experimental or analytical analysis. In most cases, a 
sufficiently accurate mesh model consists of an automatically generated global mesh with manually 
refined local sections around geometric features prone to relatively high stress concentrations. 

- Initial lateral load in FEM 

The lateral load of 100 N in this case was induced upon the top flange of the beam model for all the 
nine specimens in order to generate an initial imperfection for the nonlinear analysis to take place. 

- Lack of material data input in FEM 

The engineering data section was unedited, i.e. the standard settings and material properties for 
structural steel was used. There are however possibilities for adding additional material properties and 
behavioral models, like models related to elasticity, plasticity, creep and fatigue etc. 
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6 Conclusion 
 

6.1 Conclusion Based on Comparisons and Discussion 
 

Based on the comparisons between experimental and numerical results for load vs. deflection there are 
several points to be made. 

- The numerical models predict lateral deflection to a certain degree, but struggle to extend the 
2nd linear region of the load vs. deflection curves due to non-converging solutions with high 
loads. 

- The numerical models seem to estimate a lower value for buckling load in the 2nd linear region 
where the maximum loads occur, something which is positive from a conservative design 
perspective. 

- The data set is too small to make a certain conclusion on how the different beam dimensions 
affect the results, both in the experimental and numerical analyses. 

- The points stated in section 5.2 must be taken into consideration when reflection on the 
analyses and results. Models need further refinement and testing before they can be verified. 
Refer to section 6.2 for suggestions on further work. 

 

6.2 Further Work 
 

Due to time limitations, simulations on other than the nine test specimens and the four additional 
beams could not be made. It is of interest to check whether the trends related to the values of lateral 
deflection and elastic critical moment can be extended to incorporate other beam profiles and beam 
lengths. If this is the case, a model can be developed to predict buckling loads and corresponding 
deformations by the means of numerical linear and nonlinear buckling analyses. Numerical simulation 
is of course a cheaper and less time-consuming way of testing beams given that the models are 
reliable. It is also preferable that the model and analysis procedure is … conservative design. 

It is also possible to check different mesh models with different levels of refinement and sizing. 
Different element types can also be checked to see what implications this will have on the load-
displacement relationship. Different element types enable different modes of deformation and nodal 
forces. 

The models should be extensively tested and compared with experimental and practical results before 
being used in real life design situations. Returning to the points made in the introduction chapter, all 
improvements made to design guidelines, procedures and models that helps increase safety and reduce 
costs in the design, construction and maintenance of structures are of great importance to society. 
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Appendix – ANSYS generated project 
reports 
 

This appendix is a compilation of extracts of automatically generated project reports for all analyses in 
ANSYS Workbench 17 carried out for this thesis. Each extract consists of project data relevant for the 
results and discussion of the problem, including buckling eigenvalues, force convergence plots, and 
directional deformation plots. The directional deformations correspond to maximum lateral deflections 
of each beam under the linearly increasing loading conditions that the beams are subjected to in the 
analyses. 

The settings used in the analyses are the default setting for the default structural steel preset, except 
from the strength parameters, which were changed from 250 MPa to 355 MPa. Theoretically, the 
material strength should not change the results in LTB analysis, however. The material data settings 
are the same for each project. 
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1. IPE200, 2.00 m 
 

 

Eigenvalue Buckling (C5) 
 

Solution (C6) 

FIGURE 10 
Model (B4, C4, D4) > Eigenvalue Buckling (C5) > Solution (C6) 

 

TABLE 20 
Model (B4, C4, D4) > Eigenvalue Buckling (C5) > Solution (C6) 

Mode Load Multiplier 

1, 142,12 

2, 327,16 
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Static Structural 2 (D5) 
 

Solution (D6) 

 

FIGURE 18 
Model (B4, C4, D4) > Static Structural 2 (D5) > Solution (D6) > Solution Information 
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FIGURE 19 
Model (B4, C4, D4) > Static Structural 2 (D5) > Solution (D6) > Solution Information 

 

FIGURE 20 
Model (B4, C4, D4) > Static Structural 2 (D5) > Solution (D6) > Directional Deformation 
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TABLE 31 
Model (B4, C4, D4) > Static Structural 2 (D5) > Solution (D6) > Directional Deformation 

Time [s] Minimum [m] Maximum [m] 

2, -1,2295e-007 1,8292e-006 

4, -2,4746e-007 3,7021e-006 

6, -3,7359e-007 5,6206e-006 

8, -5,0138e-007 7,5867e-006 

10, -6,3092e-007 9,6026e-006 

12, -7,6228e-007 1,1671e-005 

14, -8,9553e-007 1,3793e-005 

16, -1,0307e-006 1,5972e-005 

18, -1,168e-006 1,8211e-005 

20, -1,3074e-006 2,0513e-005 

22, -1,4491e-006 2,288e-005 

24, -1,5931e-006 2,5316e-005 

26, -1,7395e-006 2,7825e-005 

28, -1,8885e-006 3,041e-005 

30, -2,0403e-006 3,3075e-005 

32, -2,1948e-006 3,5825e-005 

34, -2,3524e-006 3,8664e-005 

36, -2,513e-006 4,1597e-005 

38, -2,677e-006 4,4629e-005 

40, -2,8445e-006 4,7767e-005 

42, -3,0157e-006 5,1016e-005 

44, -3,1907e-006 5,4383e-005 

46, -3,3699e-006 5,7875e-005 

48, -3,5535e-006 6,1501e-005 

50, -3,7417e-006 6,5268e-005 

52, -3,9348e-006 6,9185e-005 

54, -4,1332e-006 7,3264e-005 

56, -4,3372e-006 7,7515e-005 

58, -4,5473e-006 8,1949e-005 
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60, -4,7637e-006 8,658e-005 

62, -4,987e-006 9,1423e-005 

64, -5,2177e-006 9,6493e-005 

66, -5,4563e-006 1,0181e-004 

68, -5,7035e-006 1,0739e-004 

70, -5,96e-006 1,1325e-004 

72, -6,2264e-006 1,1942e-004 

74, -6,5037e-006 1,2593e-004 

76, -6,7928e-006 1,3281e-004 

78, -7,0948e-006 1,4008e-004 

80, -7,4108e-006 1,4779e-004 

82, -7,7423e-006 1,5597e-004 

84, -8,0907e-006 1,6469e-004 

86, -8,4579e-006 1,7398e-004 

88, -8,8457e-006 1,8391e-004 

90, -9,2566e-006 1,9456e-004 

92, -9,6931e-006 2,06e-004 

94, -1,0158e-005 2,1833e-004 

96, -1,0656e-005 2,3167e-004 

98, -1,119e-005 2,4614e-004 

100, -1,1766e-005 2,6189e-004 

102, -1,2389e-005 2,7911e-004 

104, -1,3067e-005 2,9802e-004 

106, -1,3808e-005 3,1889e-004 

108, -1,4623e-005 3,4204e-004 

110, -1,5525e-005 3,6787e-004 

112, -1,653e-005 3,9688e-004 

114, -1,7662e-005 4,2975e-004 

116, -1,8942e-005 4,6722e-004 

118, -2,0409e-005 5,104e-004 

120, -2,2109e-005 5,607e-004 
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122, -2,4106e-005 6,2005e-004 

124, -2,6488e-005 6,9116e-004 

126, -2,9387e-005 7,7791e-004 

128, -3,2997e-005 8,8612e-004 

130, -3,7627e-005 1,0249e-003 

132, -4,3789e-005 1,2094e-003 

134, -5,2407e-005 1,4663e-003 

136, -6,5315e-005 1,8482e-003 

138, -8,6704e-005 2,4721e-003 

140, -1,0681e-004 3,113e-003 

142, -2,2847e-004 6,3525e-003 

143, -2,9048e-004 7,9942e-003 

144, -3,5269e-004 9,6508e-003 

145,5 -4,4849e-004 1,2155e-002 

146,5 -5,1392e-004 1,3855e-002 

147,5 -5,826e-004 1,5597e-002 

149, -6,9056e-004 1,8246e-002 

150, -7,668e-004 2,0072e-002 
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2. IPE200, 2.25 m 
 

Eigenvalue Buckling (C5) 
 

Solution (C6) 

FIGURE 8 
Model (B4, C4, D4) > Eigenvalue Buckling (C5) > Solution (C6) 

 

TABLE 18 
Model (B4, C4, D4) > Eigenvalue Buckling (C5) > Solution (C6) 

Mode Load Multiplier 

1, 126,2 

2, 308,29 
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Static Structural 2 (D5) 
 

Solution (D6) 

FIGURE 16 
Model (B4, C4, D4) > Static Structural 2 (D5) > Solution (D6) > Solution Information 
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FIGURE 17 
Model (B4, C4, D4) > Static Structural 2 (D5) > Solution (D6) > Solution Information 

 

FIGURE 18 
Model (B4, C4, D4) > Static Structural 2 (D5) > Solution (D6) > Directional Deformation 

 

 



59 
 

TABLE 28 
Model (B4, C4, D4) > Static Structural 2 (D5) > Solution (D6) > Directional Deformation 

Time [s] Minimum [m] Maximum [m] 

5, -3,3389e-007 5,8879e-006 

10, -6,7893e-007 1,2203e-005 

15, -1,0366e-006 1,9005e-005 

20, -1,4085e-006 2,6359e-005 

25, -1,7964e-006 3,4347e-005 

30, -2,2025e-006 4,3064e-005 

35, -2,6297e-006 5,2629e-005 

40, -3,0814e-006 6,3187e-005 

45, -3,5618e-006 7,4915e-005 

50, -4,0763e-006 8,8039e-005 

55, -4,6316e-006 1,0284e-004 

60, -5,2367e-006 1,197e-004 

65, -5,9032e-006 1,391e-004 

70, -6,6467e-006 1,6168e-004 

75, -7,4887e-006 1,8836e-004 

80, -8,4596e-006 2,2039e-004 

85, -9,6038e-006 2,5962e-004 

90, -1,0988e-005 3,0885e-004 

95, -1,2749e-005 3,7312e-004 

100, -1,5038e-005 4,5948e-004 

105, -1,8224e-005 5,8264e-004 

110, -2,3063e-005 7,7299e-004 

115, -3,1433e-005 1,1059e-003 

120, -4,9315e-005 1,8203e-003 

125, -1,2273e-004 4,6058e-003 

130, -1,8465e-004 7,4539e-003 

135, -2,3168e-004 1,0389e-002 

 

 



60 
 

3. IPE200, 2.50 m 
 

Eigenvalue Buckling (C5) 
 

Solution (C6) 

FIGURE 8 
Model (B4, C4, D4) > Eigenvalue Buckling (C5) > Solution (C6) 

 

TABLE 18 
Model (B4, C4, D4) > Eigenvalue Buckling (C5) > Solution (C6) 

Mode Load Multiplier 

1, 111,56 

2, 291,33 
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Static Structural 2 (D5) 
 

Solution (D6) 

 

FIGURE 16 
Model (B4, C4, D4) > Static Structural 2 (D5) > Solution (D6) > Solution Information 
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FIGURE 17 
Model (B4, C4, D4) > Static Structural 2 (D5) > Solution (D6) > Solution Information 

 

FIGURE 18 
Model (B4, C4, D4) > Static Structural 2 (D5) > Solution (D6) > Directional Deformation 
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TABLE 28 
Model (B4, C4, D4) > Static Structural 2 (D5) > Solution (D6) > Directional Deformation 

Time [s] Minimum [m] Maximum [m] 

5, -2,8109e-007 7,6106e-006 

10, -5,6194e-007 1,5854e-005 

15, -8,4251e-007 2,4832e-005 

20, -1,1228e-006 3,4661e-005 

25, -1,4027e-006 4,5484e-005 

30, -1,6821e-006 5,748e-005 

35, -1,9611e-006 7,0875e-005 

40, -2,2395e-006 8,5952e-005 

45, -2,5173e-006 1,0308e-004 

50, -2,7941e-006 1,2275e-004 

55, -3,0699e-006 1,456e-004 

60, -3,4854e-006 1,7253e-004 

65, -4,0915e-006 2,0478e-004 

70, -4,8229e-006 2,4419e-004 

75, -5,7267e-006 2,935e-004 

80, -6,8795e-006 3,5703e-004 

85, -8,4607e-006 4,4366e-004 

90, -1,0657e-005 5,6558e-004 

95, -1,4007e-005 7,5225e-004 

100, -1,9848e-005 1,0764e-003 

105, -3,2168e-005 1,7586e-003 

110, -7,9347e-005 4,2546e-003 

115, -1,1656e-004 6,8135e-003 

120, -1,4259e-004 9,4718e-003 
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4. IPE240, 2.00 m 
 

Eigenvalue Buckling (C5) 
 

Solution (C6) 

FIGURE 8 
Model (B4, C4, D4) > Eigenvalue Buckling (C5) > Solution (C6) 

 

TABLE 18 
Model (B4, C4, D4) > Eigenvalue Buckling (C5) > Solution (C6) 

Mode Load Multiplier 

1, 196,48 

2, 415,76 
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Static Structural 2 (D5) 
 

Solution (D6) 

FIGURE 16 
Model (B4, C4, D4) > Static Structural 2 (D5) > Solution (D6) > Solution Information 
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FIGURE 17 
Model (B4, C4, D4) > Static Structural 2 (D5) > Solution (D6) > Solution Information 

 

 

FIGURE 18 
Model (B4, C4, D4) > Static Structural 2 (D5) > Solution (D6) > Directional Deformation 
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TABLE 28 
Model (B4, C4, D4) > Static Structural 2 (D5) > Solution (D6) > Directional Deformation 

Time [s] Minimum [m] Maximum [m] 

5, -4,0281e-007 2,9408e-006 

10, -8,1047e-007 6,0081e-006 

17,5 -1,432e-006 1,0869e-005 

27,5 -2,2818e-006 1,7898e-005 

37,5 -3,1602e-006 2,5663e-005 

47,5 -4,0729e-006 3,431e-005 

57,5 -5,0274e-006 4,4025e-005 

67,5 -6,0332e-006 5,5054e-005 

77,5 -7,1035e-006 6,7723e-005 

87,5 -8,2557e-006 8,2477e-005 

97,5 -9,5146e-006 9,9935e-005 

107,5 -1,0915e-005 1,2099e-004 

117,5 -1,2511e-005 1,4698e-004 

127,5 -1,4385e-005 1,7998e-004 

137,5 -1,6684e-005 2,236e-004 

147,5 -1,9644e-005 2,8386e-004 

157,5 -2,3765e-005 3,7317e-004 

167,5 -3,0181e-005 5,1973e-004 

177,5 -4,2268e-005 8,0671e-004 

187,5 -7,3155e-005 1,5608e-003 

192, -1,2082e-004 2,7007e-003 

196,5 -1,6573e-004 3,8642e-003 

203,25 -2,2826e-004 5,6642e-003 

204,25 -1,0226e-003 2,0874e-002 

205, -1,4568e-003 2,7335e-002 
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5. IPE240, 2.25 m 
 

 

Eigenvalue Buckling (C5) 
 

Solution (C6) 

 

FIGURE 8 
Model (B4, C4, D4) > Eigenvalue Buckling (C5) > Solution (C6) 

 

TABLE 18 
Model (B4, C4, D4) > Eigenvalue Buckling (C5) > Solution (C6) 

Mode Load Multiplier 

1, 183,82 

2, 399,56 
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Static Structural 2 (D5) 
 

Solution (D6) 

 

FIGURE 16 
Model (B4, C4, D4) > Static Structural 2 (D5) > Solution (D6) > Solution Information 
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FIGURE 17 
Model (B4, C4, D4) > Static Structural 2 (D5) > Solution (D6) > Solution Information 

 

 

FIGURE 18 
Model (B4, C4, D4) > Static Structural 2 (D5) > Solution (D6) > Directional Deformation 
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TABLE 28 
Model (B4, C4, D4) > Static Structural 2 (D5) > Solution (D6) > Directional Deformation 

Time [s] Minimum [m] Maximum [m] 

5, -4,1456e-007 3,4769e-006 

10, -8,3478e-007 7,1173e-006 

15, -1,2612e-006 1,0936e-005 

20, -1,6943e-006 1,4948e-005 

25, -2,1348e-006 1,9173e-005 

30, -2,5834e-006 2,363e-005 

35, -3,0409e-006 2,8344e-005 

40, -3,5082e-006 3,3339e-005 

45, -3,9865e-006 3,8646e-005 

50, -4,4769e-006 4,43e-005 

55, -4,9808e-006 5,034e-005 

60, -5,4999e-006 5,6812e-005 

65, -6,0361e-006 6,377e-005 

70, -6,5916e-006 7,1277e-005 

75, -7,1691e-006 7,9408e-005 

80, -7,7717e-006 8,825e-005 

85, -8,4031e-006 9,7909e-005 

90, -9,068e-006 1,0851e-004 

95, -9,7719e-006 1,2022e-004 

100, -1,0522e-005 1,3322e-004 

105, -1,1326e-005 1,4775e-004 

110, -1,2195e-005 1,6412e-004 

115, -1,3144e-005 1,8272e-004 

120, -1,419e-005 2,0405e-004 

125, -1,5357e-005 2,2878e-004 

130, -1,6679e-005 2,5783e-004 

135, -1,82e-005 2,9247e-004 

140, -1,9993e-005 3,3462e-004 

145, -2,2146e-005 3,8687e-004 
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150, -2,4819e-005 4,5353e-004 

155, -2,8264e-005 5,4159e-004 

160, -3,2935e-005 6,6346e-004 

165, -3,9725e-005 8,4348e-004 

170, -5,0658e-005 1,1362e-003 

175, -7,1278e-005 1,6901e-003 

180, -1,2562e-004 3,1245e-003 

185, -1,7382e-004 4,5835e-003 

190, -2,1667e-004 6,1048e-003 
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6. IPE240, 2.50 m 
 

 

Eigenvalue Buckling (C5) 
 

Solution (C6) 

FIGURE 8 
Model (B4, C4, D4) > Eigenvalue Buckling (C5) > Solution (C6) 

 

TABLE 18 
Model (B4, C4, D4) > Eigenvalue Buckling (C5) > Solution (C6) 

Mode Load Multiplier 

1, 169,23 

2, 381,92 
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Static Structural 2 (D5) 
 

Solution (D6) 

FIGURE 16 
Model (B4, C4, D4) > Static Structural 2 (D5) > Solution (D6) > Solution Information 
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FIGURE 17 
Model (B4, C4, D4) > Static Structural 2 (D5) > Solution (D6) > Solution Information 

 

FIGURE 18 
Model (B4, C4, D4) > Static Structural 2 (D5) > Solution (D6) > Directional Deformation 
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TABLE 28 
Model (B4, C4, D4) > Static Structural 2 (D5) > Solution (D6) > Directional Deformation 

Time [s] Minimum [m] Maximum [m] 

5, -3,2554e-007 4,1968e-006 

10, -6,579e-007 8,6125e-006 

17,5 -1,1705e-006 1,5692e-005 

27,5 -1,884e-006 2,6116e-005 

37,5 -2,6391e-006 3,7901e-005 

47,5 -3,4453e-006 5,1376e-005 

57,5 -4,3155e-006 6,6984e-005 

67,5 -5,2677e-006 8,5342e-005 

77,5 -6,3278e-006 1,0732e-004 

87,5 -7,5338e-006 1,3423e-004 

97,5 -8,9443e-006 1,6804e-004 

107,5 -1,0654e-005 2,1197e-004 

117,5 -1,2825e-005 2,7157e-004 

127,5 -1,5846e-005 3,5868e-004 

137,5 -2,0336e-005 4,9546e-004 

147,5 -2,8253e-005 7,4556e-004 

157,5 -4,6468e-005 1,337e-003 

163,75 -8,0247e-005 2,4266e-003 

170, -1,0685e-004 3,5571e-003 
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7. IPE270, 2.00 m 
 

 

Eigenvalue Buckling (C5) 
 

Solution (C6) 

 

FIGURE 8 
Model (B4, C4, D4) > Eigenvalue Buckling (C5) > Solution (C6) 

 

TABLE 18 
Model (B4, C4, D4) > Eigenvalue Buckling (C5) > Solution (C6) 

Mode Load Multiplier 

1, 215,66 

2, 442,47 
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Static Structural 2 (D5) 
 

Solution (D6) 

 

FIGURE 16 
Model (B4, C4, D4) > Static Structural 2 (D5) > Solution (D6) > Solution Information 
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FIGURE 17 
Model (B4, C4, D4) > Static Structural 2 (D5) > Solution (D6) > Solution Information 

 

 

FIGURE 18 
Model (B4, C4, D4) > Static Structural 2 (D5) > Solution (D6) > Directional Deformation 

 



80 
 

TABLE 28 
Model (B4, C4, D4) > Static Structural 2 (D5) > Solution (D6) > Directional Deformation 

Time [s] Minimum [m] Maximum [m] 

5,0233 -3,3719e-007 2,7913e-006 

10,023 -6,7696e-007 5,6781e-006 

15,023 -1,0212e-006 8,6811e-006 

20,023 -1,3701e-006 1,1809e-005 

25,023 -1,7243e-006 1,5072e-005 

30,023 -2,084e-006 1,848e-005 

35,023 -2,4498e-006 2,2046e-005 

40,023 -2,8221e-006 2,5783e-005 

45,023 -3,2016e-006 2,9705e-005 

50,023 -3,5889e-006 3,3831e-005 

55,023 -3,9847e-006 3,8177e-005 

60,023 -4,3898e-006 4,2765e-005 

65,023 -4,8053e-006 4,762e-005 

70,023 -5,232e-006 5,2768e-005 

75,023 -5,6714e-006 5,8241e-005 

80,023 -6,1246e-006 6,4073e-005 

85,023 -6,5934e-006 7,0307e-005 

90,023 -7,0796e-006 7,6988e-005 

95,023 -7,5853e-006 8,4172e-005 

100,02 -8,113e-006 9,1924e-005 

105,02 -8,6658e-006 1,0032e-004 

110,02 -9,2471e-006 1,0945e-004 

115,02 -9,8611e-006 1,1942e-004 

120,02 -1,0513e-005 1,3036e-004 

125,02 -1,1209e-005 1,4243e-004 

130,02 -1,1957e-005 1,5583e-004 

135,02 -1,2765e-005 1,708e-004 

140,02 -1,3647e-005 1,8763e-004 

145,02 -1,4618e-005 2,0673e-004 
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150,02 -1,5697e-005 2,286e-004 

155,02 -1,691e-005 2,539e-004 

160,02 -1,8294e-005 2,8356e-004 

165,02 -1,9898e-005 3,188e-004 

170,02 -2,1791e-005 3,6143e-004 

175,02 -2,4079e-005 4,1406e-004 

180,02 -2,692e-005 4,8075e-004 

185,02 -3,0578e-005 5,6807e-004 

190,02 -3,5505e-005 6,8745e-004 

195,02 -4,2574e-005 8,6065e-004 

200,02 -5,3672e-005 1,1345e-003 

205,02 -7,3676e-005 1,629e-003 

210,02 -1,1992e-004 2,761e-003 

213,01 -1,4742e-004 3,4614e-003 

216, -3,6538e-004 8,4175e-003 
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8. IPE270, 2.25 m 
 

Eigenvalue Buckling (C5) 
 

Solution (C6) 

 

FIGURE 8 
Model (B4, C4, D4) > Eigenvalue Buckling (C5) > Solution (C6) 

 

TABLE 18 
Model (B4, C4, D4) > Eigenvalue Buckling (C5) > Solution (C6) 

Mode Load Multiplier 

1, 206,58 

2, 426,93 
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Static Structural 2 (D5) 
 

Solution (D6) 

 

FIGURE 16 
Model (B4, C4, D4) > Static Structural 2 (D5) > Solution (D6) > Solution Information 
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FIGURE 17 
Model (B4, C4, D4) > Static Structural 2 (D5) > Solution (D6) > Solution Information 

 

 

FIGURE 18 
Model (B4, C4, D4) > Static Structural 2 (D5) > Solution (D6) > Directional Deformation 
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TABLE 28 
Model (B4, C4, D4) > Static Structural 2 (D5) > Solution (D6) > Directional Deformation 

Time [s] Minimum [m] Maximum [m] 

5, -3,5164e-007 2,8934e-006 

10, -7,079e-007 5,9045e-006 

17,5 -1,2518e-006 1,0662e-005 

27,5 -1,9968e-006 1,751e-005 

37,5 -2,7682e-006 2,503e-005 

47,5 -3,5709e-006 3,3345e-005 

57,5 -4,4111e-006 4,2614e-005 

67,5 -5,2968e-006 5,3041e-005 

77,5 -6,2385e-006 6,4891e-005 

87,5 -7,25e-006 7,8516e-005 

97,5 -8,3503e-006 9,4399e-005 

107,5 -9,566e-006 1,1321e-004 

117,5 -1,0935e-005 1,3592e-004 

127,5 -1,2515e-005 1,6396e-004 

137,5 -1,4394e-005 1,9961e-004 

147,5 -1,673e-005 2,4674e-004 

157,5 -1,9779e-005 3,1189e-004 

167,5 -2,4076e-005 4,0848e-004 

177,5 -3,0841e-005 5,6703e-004 

187,5 -4,3701e-005 8,7748e-004 

197,5 -7,6655e-005 1,6901e-003 

202, -1,2777e-004 2,9221e-003 

206,5 -1,7642e-004 4,1768e-003 

213,25 -2,451e-004 6,1119e-003 

220, -3,0983e-004 8,1498e-003 

 

 

 

 



86 
 

9. IPE270, 2.50 m 
 

Eigenvalue Buckling (C5) 
 

Solution (C6) 

FIGURE 8 
Model (B4, C4, D4) > Eigenvalue Buckling (C5) > Solution (C6) 

 

TABLE 18 
Model (B4, C4, D4) > Eigenvalue Buckling (C5) > Solution (C6) 

Mode Load Multiplier 

1, 195,87 

2, 413,5 
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Static Structural 2 (D5) 
 

Solution (D6) 

FIGURE 16 
Model (B4, C4, D4) > Static Structural 2 (D5) > Solution (D6) > Solution Information 
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FIGURE 17 
Model (B4, C4, D4) > Static Structural 2 (D5) > Solution (D6) > Solution Information 

 

FIGURE 18 
Model (B4, C4, D4) > Static Structural 2 (D5) > Solution (D6) > Directional Deformation 
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TABLE 28 
Model (B4, C4, D4) > Static Structural 2 (D5) > Solution (D6) > Directional Deformation 

Time [s] Minimum [m] Maximum [m] 

5, -3,6355e-007 3,2505e-006 

10, -7,3247e-007 6,6427e-006 

17,5 -1,2969e-006 1,2023e-005 

27,5 -2,0726e-006 1,9811e-005 

37,5 -2,8796e-006 2,8426e-005 

47,5 -3,724e-006 3,8031e-005 

57,5 -4,6137e-006 4,8838e-005 

67,5 -5,5591e-006 6,1123e-005 

77,5 -6,5741e-006 7,5255e-005 

87,5 -7,6776e-006 9,1735e-005 

97,5 -8,8961e-006 1,1127e-004 

107,5 -1,0268e-005 1,3486e-004 

117,5 -1,185e-005 1,6403e-004 

127,5 -1,3731e-005 2,0115e-004 

137,5 -1,6076e-005 2,5036e-004 

147,5 -1,9136e-005 3,1853e-004 

157,5 -2,3462e-005 4,1995e-004 

167,5 -3,0306e-005 5,8738e-004 

177,5 -4,3466e-005 9,1891e-004 

187,5 -7,7654e-005 1,8019e-003 

192, -1,3503e-004 3,2349e-003 

196,5 -1,8791e-004 4,6898e-003 

203,25 -2,5908e-004 6,9255e-003 

210, -3,2156e-004 9,2691e-003 
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