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Abstract 

A combination of factors including environmental, resource availability, investor weariness 

and public perception of the oil and gas industry challenge the competitiveness of the sector in 

Norway and around the world. One frequent topic of discussion addressed in these areas of 

concern, as well as an opportunity for improvement, is the generation of CO2 from upstream 

oil and gas production. Forecasting these emissions serves many purposes and may alleviate 

some of these challenges while benefiting the environment. Currently, emission forecasting in 

the industry may not meet current needs, are complex, and can be done more simplistically. 

This study has aimed to produce a novel and simplified means to estimate upstream oil and gas 

emissions. Through a data-driven statistical method, emission and production volume histories 

as well as drainage strategy at the asset level were analyzed to build two emission models. The 

methodology derived in this thesis is not currently used in upstream emissions calculations and 

is novel for the oil and gas industry. The results of the modeling demonstrate the models’ ability 

to approximate emissions using less data, resources and knowledge than were previously 

needed while also providing a level of accuracy desired for industry workflows including 

already established requirements for project and business development in Equinor. The benefits 

these models provide allow emission forecasting to be less hindered by data requirements, more 

able to meet today’s growing demands and accelerate decision-making abilities to meet future 

needs. Further, the methodology is flexible and applicable to numerous industrial process 

which signifies a green light for expanding the use of data and furthering digitalization efforts 

within the oil and gas industry and elsewhere.   

 

 

 

 

 

 

 

 

 



 

  
iv 

Acknowledgements 

 

I would like to acknowledge and thank my advisor, Knut Åsnes who has been pivotal making 

this thesis and project what it is today. I would also like to give my appreciation to my 

supervisor Torleiv Bilstad who has been instrumental in adding value and enjoyment to my 

educational experience. 

I would to extend my thanks to my family and friends who have been supportive of me both 

before and during my master program. My gratitude towards them is not one that I can ever 

fully express.  

 

 

  



 

  
v 

Table of Contents 

Abstract ................................................................................................................................... iii 

Acknowledgements ................................................................................................................. iv 

List of Figures .......................................................................................................................... ix 

List of Tables ........................................................................................................................... xi 

List of Abbreviations ............................................................................................................. xii 

1 Introduction ...................................................................................................................... 1 

1.1 Problem Statement .......................................................................................................... 1 

1.2 Objective ......................................................................................................................... 2 

1.3 Collaboration with Industry ............................................................................................ 2 

2 Global Climate Change .................................................................................................... 4 

2.1 The Science and Socio-Economic Significance of CO2 Emissions from the Perspective 

of the Environment – A Synopsis .............................................................................................. 4 

2.2 Climate Change ............................................................................................................... 4 

2.3 Greenhouse Gasses ......................................................................................................... 4 

2.4 The Science ..................................................................................................................... 5 

2.4.1 Radiative Forcing .................................................................................................... 5 

2.4.2 Dipole moments and absorptive properties ............................................................. 5 

2.4.3 Climate Sensitivity ................................................................................................... 6 

2.4.4 Water as a Climate Influencer ................................................................................. 7 

2.4.5 Climatic Feedback Mechanisms .............................................................................. 8 

2.5 Current Trends and Effects Related to Climate Change ............................................... 10 

2.5.1 Emissions and Atmospheric Concentrations of CO2 ............................................. 10 

2.5.2 Air Temperature .................................................................................................... 10 

2.5.3 Ocean Temperature ............................................................................................... 11 

2.6 The Future Climate ....................................................................................................... 11 



 

  
vi 

2.6.1 Climate Change Commitment ................................................................................ 11 

2.6.2 Representative Concentration Pathways ............................................................... 11 

2.6.3 Atmospheric GHG Concentrations, Radiative Forcing and Temperature ............ 13 

2.6.4 Anticipated Changes due to Future Climate States ............................................... 13 

2.6.5 Economic and Ecological Impacts of Climate Change and its Drivers ................ 14 

3 Climate-Related Political and Economic Frameworks ............................................... 17 

3.1 The Paris Agreement - A Global Political Consensus .................................................. 17 

3.1.1 Carbon Pricing ...................................................................................................... 17 

3.2 Investing in the Era of Climate Change ........................................................................ 18 

3.2.1 Oil and Gas Investment Theory until 2014 ............................................................ 18 

3.2.2 Current Investment Theory .................................................................................... 19 

3.2.3 Climate Risks for Corporations ............................................................................. 19 

3.2.4 Climate Risk for Investors ..................................................................................... 20 

3.2.5 Investing with ESG ................................................................................................ 20 

3.2.6 The Divestment Trend ............................................................................................ 21 

4 Global Energy Outlook .................................................................................................. 22 

4.1 Energy Scenarios .......................................................................................................... 23 

4.1.1 IEA Outlooks.......................................................................................................... 23 

4.2 Energy Resources and Development Practices on the NCS ......................................... 24 

4.2.1 Business case screening through CVP .................................................................. 24 

4.2.2 Further Emission Considerations in Project Development ................................... 26 

4.2.3 Forecasted Emission Reporting to the Norwegian Government through RNB ..... 26 

5 Technical Background ................................................................................................... 27 

5.1 Combustion and Emissions ........................................................................................... 27 

5.1.1 By-products of Combustion ................................................................................... 27 

5.2 Carbon Emissions from the Oil and Gas Industry ........................................................ 28 



 

  
vii 

5.2.1 Emission System Boundaries ................................................................................. 28 

5.3 Emissions Estimations of Upstream Activities ............................................................. 29 

5.3.1 Energy Factors and Energy Demand .................................................................... 29 

5.3.2 Emissions Sources ................................................................................................. 30 

5.3.3 Emission Drivers ................................................................................................... 31 

5.3.4 Emission Factors ................................................................................................... 31 

5.4 Forecasting .................................................................................................................... 31 

5.4.1 Qualitative and Quantitative Forecasting ............................................................. 32 

5.4.2 Methods of Quantitative Forecasting .................................................................... 32 

5.5 Forecasting of Upstream CO2 Emissions in the Oil and Gas Industry ......................... 35 

5.5.1 Example of Existing Models for Emission Forecasting for Upstream activities ... 35 

5.5.2 Existing Parameter Development .......................................................................... 35 

5.6 Inverse Modeling and Predictive Analytics .................................................................. 36 

5.6.1 Novelty & Benefits ................................................................................................. 36 

6 Methods ........................................................................................................................... 38 

6.1 Data Sources ................................................................................................................. 38 

6.2 Data and Installation Selection ..................................................................................... 38 

6.3 Modeling Procedure ...................................................................................................... 39 

6.4 Comparison of Model Estimations ............................................................................... 40 

6.4.1 Integrations ............................................................................................................ 40 

6.4.2 Modeled vs Historical ............................................................................................ 42 

6.4.3 Historical, RNB and Estimations of each Field .................................................... 42 

6.4.4 Source of Emission Deviations .............................................................................. 42 

7 Results .............................................................................................................................. 43 

7.1 Model Development...................................................................................................... 43 

7.2 Model Parameters ......................................................................................................... 43 



 

  
viii 

7.3 Model Application Quality ........................................................................................... 43 

7.3.1 Training Data ........................................................................................................ 43 

7.3.2 Test Data................................................................................................................ 44 

7.4 Emission Integrations.................................................................................................... 45 

7.4.1 Explanation of Visualization Layout ..................................................................... 45 

7.4.2 Model Construction with Training Data ............................................................... 45 

7.4.3 Validation with Test Data ...................................................................................... 46 

7.4.4 Integrations for Model Application ....................................................................... 47 

7.5 Installation Level Emission Estimations ....................................................................... 50 

7.6 New Field Estimations .................................................................................................. 55 

8 Discussion ........................................................................................................................ 57 

8.1 Data challenges ............................................................................................................. 57 

8.2 Modeling ....................................................................................................................... 58 

8.2.1 Fitness .................................................................................................................... 58 

8.2.2 Data Trimming ...................................................................................................... 59 

8.2.3 Discrepancies ........................................................................................................ 59 

8.3 Usability for CVP ......................................................................................................... 63 

8.4 Consideration of Model Limitations ............................................................................. 63 

9 Conclusion ....................................................................................................................... 65 

Bibliography ........................................................................................................................... 66 

Appendix ................................................................................................................................. 74 

 

 

 

 



 

  
ix 

List of Figures 

Figure 4-1. Oil demand trends and projections for various energy outlooks in millions of barrels of oil 

per day from 1965 to 2040 (Dale). ................................................................................................ 22 

Figure 4-2. Accumulation of oil resource discoveries on the Norwegian Continental Shelf from 1966 to 

2019 (Norsk Petroleum, 2019). ..................................................................................................... 24 

Figure 4-3 Structure and Process flow of the Capital Value Process (Equinor, 2018). ........................ 25 

Figure 5-1. System boundaries and value chain location of thesis scope. Emissions boundaries (top 

text) within the lifecycle and value chain (bottom text) for offshore oil and gas production (adapted 

from Fløysvik, 2018). ................................................................................................................... 28 

Figure 5-2. Distribution of CO2 emissions by upstream source on the NCS in 2017 (Adapted from Norsk 

Olje og Gass, 2018). ...................................................................................................................... 30 

Figure 6-1. Size, structure, and layout of the color-assisted visual analysis process for P1 and P2 model 

development process with zoomed inset (left). ............................................................................. 39 

Figure 7-1 Integration of emission predictions from P1 and P2 modeling using trimmed historical 

parameters referenced to historical emission baseline for trimmed training set data. .................. 45 

Figure 7-2 Integration of emission predictions from P1 and P2 modeling using historical parameters 

referenced to historical emission baseline for the lifetime of the training set data. ...................... 45 

Figure 7-3 Integration of emission predictions from P1 and P2 modeling using trimmed historical 

parameters referenced to historical emission baseline for test set data. ........................................ 46 

Figure 7-4 Integration of emission predictions from P1 and P2 modeling using historical parameters 

referenced to historical emission baseline for test set data. .......................................................... 46 

Figure 7-5 Integration of emission predictions from RNB and P1 modeling of RNB parameters 

referenced to a historical emission baseline. ................................................................................. 47 

Figure 7-6 Integration of emission predictions from RNB and P2 modeling of RNB parameters 

referenced to a historical emission baseline. ................................................................................. 47 

Figure 7-7 Integration of emission predictions from P1 and P2 modeling using RNB parameters 

referenced to RNB emission baseline. .......................................................................................... 48 

Figure 7-8 Integration of emission predictions from RNB and P1 modeling using historical parameters 

referenced to the historical emission baseline. .............................................................................. 49 

Figure 7-9 Integration of emission predictions from RNB and P2 modeling using historical parameters 

referenced to the historical emission baseline. .............................................................................. 49 

Figure 7-10 Historical emissions and P1 emission estimates based on historical parameters for Njord 

for the first 20 years of operation. Percent error (black) and time frame for which emissions were 

correlated (blue) are shown by dashed lines. ................................................................................ 50 

Figure 7-11 Historical emissions and P2 emission estimates based on historical parameters for Njord 

for the first 20 years of operation. Percent error (black) and time frame for which emissions were 

correlated (blue) are shown by dashed lines. ................................................................................ 50 

file:///C:/Users/Rtem/Desktop/Thesis%20Draft%20May%2029.6.19.docx%23_Toc12826375
file:///C:/Users/Rtem/Desktop/Thesis%20Draft%20May%2029.6.19.docx%23_Toc12826375


 

  
x 

Figure 7-12. Historical emissions and P1 emission estimates based on historical parameters for Statfjord 

for years 19-40. Percent error (black) and time frame for which emissions were correlated (blue) 

are shown by dashed lines. ............................................................................................................ 51 

Figure 7-13 Historical emissions and P2 emission estimates based on historical parameters for Statfjord 

for years 19-40. Percent error (black) and time frame for which emissions were correlated (blue) 

are shown by dashed lines. ............................................................................................................ 51 

Figure 7-14 Historical emissions and P1 emission estimates based on historical parameters for Oseberg 

Sør for the first 19 years of operations. Percent error (black) and time frame for which emissions 

were correlated (blue) are shown by dashed lines. ....................................................................... 52 

Figure 7-15 Historical emissions and P2 emission estimates based on historical parameters for Oseberg 

Sør for the first 19 years of operations. Percent error (black) and time frame for which emissions 

were correlated (blue) are shown by dashed lines. ....................................................................... 52 

Figure 7-16 RNB predicted and historical emissions and P1 and P2 emission estimates based on RNB 

and historical parameters for Gullfaks from 2002 to 2017. .......................................................... 53 

Figure 7-17 RNB predicted and historical emissions and P1 and P2 emission estimates based on RNB 

and historical parameters for Åsgard. ........................................................................................... 53 

Figure 7-18 RNB predicted and historical emissions and P2 emission estimates based on RNB and 

historical parameters for Volve from 2008 to 2016. ..................................................................... 54 

Figure 7-19 Deviation of RNB production parameters from historical parameter values for Volve. ... 54 

Figure 7-20 RNB emission predictions and P1 emission estimates based on RNB parameters for Johan 

Castberg. Percent error (black) and time frame for which emissions were correlated (blue) are 

shown by dashed lines................................................................................................................... 55 

Figure 7-21 RNB emission predictions and P2 emission estimates based on RNB parameters for Johan 

Castberg. Percent error (black) and time frame for which emissions were correlated (blue) are 

shown by dashed lines................................................................................................................... 55 

Figure 7-22 Percent deviation of P1 and P2 emission estimates based on RNB parameters from RNB 

emission predictions for Johan Castberg....................................................................................... 56 

 

 

 

 

 

 

 

 



 

  
xi 

List of Tables 

Table 1. Parameters and quality assessment measurements from P1 and P2 model development ....... 43 

Table 2. Correlations between historical and P1 and P2 emission estimates for Njord, Statfjord and 

Oseberg Sør. .................................................................................................................................. 53 

Table 3. Detail of results represented in Figures 7-1 and 7-2. .............................................................. 74 

Table 4. Detail of results represented in Figures 7-3 and 7-4. .............................................................. 75 

Table 5. Detail of results represented in Figures 7-5 and 7-6. .............................................................. 76 

Table 6. Detail of results represented in Figures 7-7 ............................................................................ 77 

Table 7. Detail of results represented in Figures 7-8 and 7-9. .............................................................. 78 

Table 8. RNB annual report used for each installation ......................................................................... 80 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  
xii 

List of Abbreviations 

Abbreviation Long Form 

BAT Best Available Techniques 

bbl Barrel (of oil) 

boe Barrel of oil equivalent 

Ca2
+ Calcium 

CaCO3 Calcium Carbonate 

CH4 Methane 

CO2 Carbon Dioxide 

CO3
2-   Carbonate 

CVP Capital Value Process 

DG Decision Gate 

DPN Development Production Norway 

ESG Environmental, Social and Governance 

GWP Global Warming Potential 

H2O Water 

HCO3
- Hydrogen Carbonate 

IEA International Energy Agency  

IR Infrared 

KV Kvitebjørn and Valemon 

M Meter 

MIS Management Information System 

MW Megawatt 

N2O Nitrous Oxide 

NCS Norwegian Continental Shelf 

NPD Norwegian Petroleum Directorate 

OPGEE The Oil Production Greenhouse gas Emission Estimator  

RNB Revised National Budget 

RCP Representative Concentration Pathways 

W Watt 



 

  
1 

1 Introduction  

A culmination of climate change, abandonment of long-held investment theories, divestment 

trends, climate policies, and socio-economic factors have placed pressures on the oil and gas 

industry to be more environmentally conscious. While, at the same time, growth in populations 

and economic prosperity have created increased demands for energy. For the time being, this 

necessitates increased oil and gas production. This fact has been used by oil and gas, and energy 

companies as a reason for continuing and increasing oil and gas operations. However, a 

dwindling of resources in new field developments has forced operators on the Norwegian 

Continental Shelf (NCS) to exploit many smaller business opportunities. These potential 

developments require screening and assessment for environmental impacts. Currently, CO2 

emission estimations — one aspect of environmental impacts — are deduced from resource-

intensive data, which may inhibit the rate of development from matching that of demand on 

the NCS. The theory section provides an understanding of the significance of climate change 

and its science as well as the theory that underlies the interplay of socio-economic, financial 

and environmental factors that must be managed in the oil and gas industry.  

1.1 Problem Statement 

The oil and gas industry has been faced with challenges including climate policies, investor 

relations and, more specifically to Norwegian oil and gas production, smaller new discoveries 

than previously before. As a result, the ability to quickly and easily assess and communicate 

climate risks is needed to increase attractiveness for some investors and allow for easier 

alignment with climate policies. The issue of shrinking field size has meant that more 

discoveries need to be assessed in order to meet the growing global demand for energy. This 

needs to be accomplished while heeding the challenges and risks (both financial and 

environmental) brought about by climate change. Improved emission forecasting is one 

opportunity that can help in accomplishing this. With faster and less demanding emission 

estimating abilities, new opportunities can be assessed in terms of their climate impact and 

feasibly at a rate that is commensurate to their demand and minimizes climate risk, thereby 

attracting investors. A forecasting model that is simple, accurate and, easy to use is not yet 

available but could prove very useful in managing and addressing these issues.     
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1.2 Objective  

The objective of this thesis is to elucidate the usefulness of statistical and predictive analytics 

for building models for upstream emissions, and potentially elsewhere, in the oil and gas 

industry. Further, the study aims to uncover the accuracies, strengths, and limitations of such 

models to inform any continuance of this form of model construction. Ultimately, this thesis 

aspires to provide a simple, accurate, and easy way of modeling emissions that can effectively 

respond to some of the problems faced today by the oil and gas industry. 

1.3 Collaboration with Industry  

The work contained within this thesis has primarily been performed in Equinor’s offices in 

Stavanger, Norway. Equinor is a large oil and gas (energy) company that is interested in new 

ways of understanding, estimating, and quantifying emissions for business development and 

environmental purposes as well as meeting financial and stakeholder interests. Equinor has put 

considerable effort into their climate road map which serves to inform investors in interested 

members of the public. The company acknowledges climate science and the scientific 

consensus surrounding the issue.  As such, Equinor was receptive to supporting this unique 

thesis when the idea was proposed to the company. Equinor has provided historical emission 

data, Revised National Budget (RNB) reports, a desk, laptop, as well as support and guidance.  
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Part 1 - Theory 
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2 Global Climate Change  

The effects of climate change are far-reaching and affect the world’s natural environments, 

livelihoods, political policies and investment decisions. These aspects of climate change are 

given in support of the better forecasting abilities within the oil and gas industry as climate 

change is the underlying impetus for change in the industry.  

2.1 The Science and Socio-Economic Significance of CO2 Emissions from the 

Perspective of the Environment – A Synopsis  

This section serves to give a thorough overview of climatic drivers and their effects so that the 

primary aspect of this paper — forecasting of CO2 emissions (discussed later) — can be 

understood fully within the topic of its importance: climate change.  

Additionally, this chapter provides the science of climate change as it relates to greenhouse 

gasses and their fate. Also, it provides an overview of how climate factors have progressed to 

today’s state and the anticipated effects of changing climate going into the future. Climate 

change is a fact that necessitates the investigation into its human contributions such as 

emissions of CO2 and is the basis of political, regulatory and investment pressures as well as 

industry initiatives. Ecological and socio-economic case studies are presented in relation to 

climate change and its effects. An effort has been made to illustrate examples closely relevant 

to Norwegian industries and ways-of-life.  

2.2 Climate Change 

Climate is a measure of the mean and variation in meteorological measurements such as 

temperature, precipitation and other weather phenomena over a sustained period of time; 

classically, 30 years (WMO, 2018b).  

Although, term “Global Warming” is often used interchangeably with “Climate Change”, it 

should be noted that both refer to changes in climate overall (Kennedy & Lindsey, 2015). 

2.3 Greenhouse Gasses 

Greenhouse gasses are named for their ability to produce a greenhouse-like effect with regards 

to the energy and heat within the atmosphere. Their presence derives both from anthropogenic 

sources such as industrial activities and agriculture as well as natural processes like 

biodegradation, seepages, and geological processes (U.S. EPA, 2018). The atmospheric effects 

of these alter many climate-related functions.  
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2.4 The Science 

2.4.1 Radiative Forcing  

Radiative forcing is an energy balance concept that describes the overall energy flux (typically 

of Infrared (IR) energy) that enters and exits Earth’s atmosphere (ACS, 2012). This balance 

can be influenced by various disturbances (IPCC, 2014, p. 664). For Earth’s atmosphere to be 

kept at a consistent temperature, the thermal energy sequestered from the absorption of IR 

radiation within Earth’s atmosphere must be equivalent to the total amount of energy lost to 

space (ACS, 2012). Changes in the Earth’s energy budget due to changes in the atmosphere, 

land, ocean, biosphere and cryosphere can create radiative forcing effects that, in turn, change 

the climate (IPCC, 2014, p. 127). 

2.4.2 Dipole moments and absorptive properties 

The ability of a molecule to absorb radiation within the IR spectrum is directly linked to its 

dipole moments, which are specific to each molecule, e.g., CO2 or H2O. These dipole 

characteristics dictate which wavelengths of IR light are absorbed as well as the strength of the 

absorption. The absorption of IR radiation by greenhouse gasses converts non-vibrational 

energy into thermal, vibrational energy (ACS, 2012).  As the dipole moments for each 

greenhouse gas are different, so is the extent to which each greenhouse gas can absorb and 

convert IR radiation (Briggman, 2018).  

2.4.2.1 Global Warming Potential and CO2 Equivalents 

Global Warming Potentials (GWP) have been developed for greenhouse gasses to standardize 

their warming effect. This concept recognizes a greenhouse gas’ ability to affect radiative 

forcing and the duration of this effect by assigning each greenhouse gas (aside from CO2) a 

global warming potential. The GWP communicates a gas’ propensity, weight per weight, to 

enhance global warming relative to CO2. To manage different gas properties, the potential 

weighs the effect of a gas over a 100-year period. As an example, a kilogram of methane 

emissions, which has a global warming potential of 34, when climate change feedbacks are 

factored in, has the equivalent warming effect of 34 kilograms of CO2 across a 100-year 

horizon. Discounting feedback mechanisms, methane has a GPW factor of 28 (IPCC, 2014, p. 

714).  This ability of the GWP allows for a standardized quantification of warming effects 

across all greenhouse gas emissions.  
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When global warming potentials are applied to a quantity of greenhouse gas emissions, the 

CO2 equivalence of those emissions are determined as CO2e. This can be applied to quantities 

of multiple emissions as well with the given equation:  

𝐶𝑂2𝑒 (𝑡𝑜𝑛𝑛𝑒𝑠) = ∑ (𝑡𝑜𝑛𝑛𝑒𝑠𝑖  𝑥 𝐺𝑊𝑃𝑖

#𝐺𝑟𝑒𝑒𝑛ℎ𝑜𝑢𝑠𝑒 𝐺𝑎𝑠 𝑆𝑝𝑒𝑐𝑖𝑒𝑠

𝑖=1

) 

(Shires, Loughran, Jones, & Hopkins, 2009). 

2.4.2.2 Atmospheric Warming 

Warming of the atmosphere occurs when vibrational energy produced from the absorbance of 

IR radiation by greenhouse gasses is transferred to other atmospheric gasses. This process 

applies to the warming that is required to compensate for energy losses from the atmosphere to 

space and climatic changes associated with global warming (ACS, 2012). The increased 

atmospheric presence of greenhouse gasses increases the chance that IR radiation will be 

absorbed and converted to thermal energy rather than lost to space. 

2.4.3 Climate Sensitivity 

Climate Sensitivity is a concept that relates changes in radiative forcing to changes in the 

average surface temperature on Earth. A model that approximates the effect of changes in the 

net-flux of radiation on surface temperature is as follows: 

∆𝐹 = 𝜀𝜎(𝑇𝑝 + ∆𝑇)
4

− (1 − 𝛼)𝑆(𝑎𝑣𝑔) 

Where: 

∆F is the change in radiative forcing 

ε is the effective emissivity of the planetary system 

σ is the Stefan-Boltzman constant 

Tp is the average surface air temperature 

∆T is the change in surface air temperature 

α is the Earth’s albedo   

and S(avg) is the average solar energy flux 

 

Manipulation of this sensitivity equation results in the following model which provides an 

approximation for the change in surface air temperature as a function of changes in radiative 

forcing.  
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∆𝑇 =
𝑇𝑝∆𝐹

[4(1 − 𝛼)𝑆𝑎𝑣𝑔]
 

The contribution of greenhouse gasses to the surface air temperature of the planet is significant. 

The climate sensitivity model above estimates that greenhouse gasses in our atmosphere 

account for 33°C of surface air warming. Without the warming properties of greenhouse gasses, 

the average near-surface temperature on Earth would be -18°C. 

Analysis of historical data has shown that changes in radiative forcing from atmospheric CO2 

and CH4 levels account for 20-25% of previously observed temperature increases. This 

seemingly low percentage is due to the model’s inability to capture the secondary effects of a 

warming atmosphere, which, if included, would show these two gasses have a larger role in the 

historical warming of the atmosphere. These secondary effects come from climate influencers 

which act as positive feedback mechanisms (ACS, 2012). 

2.4.4 Water as a Climate Influencer 

Like other greenhouse gasses, water exhibits a dipole moment allowing it to absorb IR 

radiation. Atmospheric water presents a challenge when assessing its climate impact. Water 

exists in three phases in the atmosphere: solid, liquid and gas. Both the location and phase 

states of atmospheric water affect radiative forcing differently (ACS, 2012). 

2.4.4.1 Water as Vapor 

Water vapor is the most important of the greenhouse gasses (ACS, 2012); it has a large 

absorption spectrum and high heat capacity (Henshaw, Charlson, & Burges, 2006). Relatively, 

water vapor provides warming that is two to three times greater than CO2 (IPCC, 2014, p. 574-

666). Despite its importance, the influence that atmospheric water vapor has on radiative 

forcing is difficult to quantify in radiative forcing models (ACS, 2012). This is largely due to 

the short-lived nature of water vapor in the atmosphere; atmospheric water vapor has a 

residence time on the scale of days whereas other climate-influencing gasses have multi-year 

residence times. Furthermore, the water vapor content of the atmosphere is highly variable and 

is largely influenced by surface air temperatures. Due to this, changes in atmospheric water 

vapor composition is not directly influenced by human activity. It does, however, act in a 

positive feedback mechanism for anthropogenic climate change gasses (ACS, 2012). 
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2.4.4.2 Water as Cloud 

Changes in the presence and location of atmospheric water vapor affect cloud formation (ACS, 

2012). For cloud formation to take place, air must either cool or become oversaturated to 

initiate nucleation which forms nascent water or ice droplets (IPCC, 2014, p. 578-579). 

Clouds, like water vapor, influence radiative forcing. However, the location of a cloud in the 

atmosphere affects whether the cloud has positive (warming properties) or negative (cooling 

properties) radiative forcing (ACS, 2012). This is because clouds contribute to the planetary 

albedo, reflecting energy back to space (Henshaw, Charlson, & Burges, 2006) while also 

absorbing IR radiation (ACS, 2012) — thus acting as a heating blanket.  

Clouds that exist at high altitudes have an overall warming effect (ACS, 2012), adding 30W/m2 

to the global energy budget. These icy clouds higher in the atmosphere reflect little incoming 

solar energy back to space. However, they absorb heat reflected from the Earth’s surface which 

results in a warming effect.  

Lower clouds tend to be composed of liquid water (as opposed to ice). This means the cloud 

will have a high albedo, reflecting sunlight away from the Earth’s surface. This changes the 

global energy flux by removing 50W/m2 from the budget. These clouds, however, only provide 

an overall cooling effect during the day (Lemonick, 2010). 

2.4.4.3 Water in Oceans 

Oceans influence the climate indirectly by acting as climate sinks, absorbing both atmospheric 

heat and CO2. From 2007 to 2017, the oceans have absorbed one-quarter of anthropogenic CO2 

emissions (Heinze et al., 2014) and 90% of warming effects (Gray, 2017). This removal of 

atmospheric CO2, while outpaced by additions of anthropogenic emissions to the atmosphere, 

lessens the extent that dissolvable greenhouse gasses contribute to a warming effect (Heinze et 

al., 2014). Furthermore, the absorption of heat from the atmosphere has lessened the full 

warming potential of anthropogenic greenhouse gasses (Gray, 2017). 

2.4.5 Climatic Feedback Mechanisms  

The warming trend of the climate and near-surface air temperature is highly attributed to the 

effects of anthropogenic activity. However, warming itself exacerbates other mechanisms that 

contribute to a warming climate, thus creating a feedback loop. This section considers positive 

feedback effects in a warming climate as this is the dominant global climatic trend. 
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2.4.5.1 Water Vapor  

As a result of warming temperatures, water vapor content in the atmosphere will be able to 

increase because the atmosphere will have a higher carrying capacity for water vapor (IPCC, 

2014, p. 586) as vapor pressure increases by 7% for every degree Celsius increase in 

temperature (ACS, 2012). The feedback effect measured for this mechanism is (1.1 𝑊)/(𝑚2 ∙

°𝐶) meaning that 1.1 watts of energy is added to the net budget per degree Celsius square meter 

(IPCC, 2014, p. 574-666). 

A further warming effect of water vapor is observed from the conversion and transfer of energy. 

Water vapor carries with it the latent heat of vaporization. When condensation occurs, the latent 

heat of evaporation (now called the latent heat of condensation) once contained in the vapor 

phase is transferred to the atmosphere as thermal energy (Henshaw, Charlson, & Burges, 2006). 

This phenomenon will occur at greater rates with climatically driven increases in atmospheric 

water vapor since both evaporation and condensation will increase.  

2.4.5.2 Clouds 

Cloud simulation models predict that changes in cloud composition will result in less low and 

mid-level cloud coverage. The extent of this reduction is uncertain due to variability amongst 

predictive models. Clouds in these levels are highly associated with cooling effects due to their 

high albedos (IPCC, 2014, p. 589) and weak abilities to absorb IR radiation (ACS, 2012). Thus, 

a warming climate will lead to a smaller amount of cloud cooling effects which will further the 

warming effect.  

In addition, mid-level storms tracks are expected to migrate poleward. This emerging migratory 

pattern and its effects have already been observed.  The movement of these clouds and storm 

systems to polar regions will lessen the effect their albedos have on the global energy balance 

as there is far less radiative exposure in the extreme latitudes (IPCC, 2014, p. 1070).  

2.4.5.3 Oceans 

The solubility of a gas in an aqueous solution, such as the ocean, is directly proportional to the 

partial pressure of the gas at the surface of the solution, assuming equilibrium conditions. It is 

well known that dissolved gasses such as CO2 become less soluble with increasing solvent 

temperature. Warming ocean temperatures, which are observed as the near-surface air warms 

with climate change, will diminish the capacity of the oceans to store and absorb carbon (Gray, 
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2017). Thus, the oceans will be less able to absorb CO2 and theoretically could become a source 

of CO2 emissions in the future.  

2.4.5.4 Carbon in Permafrost 

In the Northern Hemisphere, 24% of snow and ice-free landmass is permafrost, soil that is 

frozen for at least two or more consecutive years. Approximately 1.5 trillion tonnes of carbon 

is frozen in the permafrost; double what is contained in our atmosphere. This frozen carbon is 

in the form of plant and animal matter that, due to its frozen state, has yet to decompose. As 

the permafrost thaws, previously frozen biomass will be degraded by bacteria and archaea. The 

degradation processes performed by these microbes yield emissions of CO2 and CH4, 

respectively. This is of great concern because, rather than being a store for carbon, former 

permafrost will be a new source of both CO2 and CH4. (Cho, 2018). Climate projections show 

that the greatest warming will occur near the poles where permafrost is found (IPCC, 2014, p. 

1061). This is confirmed by the observation that polar regions have already warmed at a rate 

that is twice the global average (Schuur et al., 2015). Emissions from thawing permafrost will 

cause continuous cycle of warming and further thawing. The International Panel on Climate 

Change does not account for emissions from the biodegradation of permafrost in their climate 

models (Cho, 2018), meaning that these emissions and their effects have yet to be accounted 

for in current climate projections.  

2.5 Current Trends and Effects Related to Climate Change 

2.5.1 Emissions and Atmospheric Concentrations of CO2 

Emissions of CO2 are currently higher than any previous levels on record. Since the 1960s, the 

emissions of CO2 from industry and fossil fuel use has grown precipitously, while the CO2 

contribution from land use change has remained relatively constant. As a result, the uptake of 

CO2 via the oceans, the terrestrial environment, and the atmosphere have increased 

proportionally (WMO, 2018b). 

2.5.2 Air Temperature 

Near-surface temperature observations show a warming trend from the onset of the industrial 

revolution with the most recent five-year segment showing the greatest observed average 

temperatures (WMO, 2018b). The warming trend has shown that the global climate has 

warmed 1.1° C since 1860 with the most rapid warming occurring since the 1970s where the 

average annual warming has been 0.1°C per decade (Blunden, Arndt, & Hartfield, 2018). The 

observed temperature changes during this time frame reflect natural temperature variations and 
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human-induced radiative forcing effects which account for the upward trend (Hansen et al., 

2013). 

2.5.3 Ocean Temperature 

In 2017, the ocean heat content reached a record high of 1.581x1023 Joules. The heat in the 

oceans’ upper layers is reflective of the oceans’ temperature (WMO, 2018b). The heat content 

of the oceans will increase concurrently with the warming of the atmosphere and has been 

observed since measurements began in the 1950s (Dahlman & Lindsey, 2018). 

2.6 The Future Climate 

2.6.1 Climate Change Commitment  

The future of the climate is highly dependent on several factors — mainly human activity. 

However, the global climate is a part of a complex system that will take years, and perhaps 

centuries, to equilibrate. Thus, some of the anthropogenic contributions to the environment 

have yet to affect climate. The amount of climate change yet to be realized by past 

anthropogenic activities is called “climate change commitment”. A large driver for this effect 

is the CO2 and heat storage capacity of the oceans as well as the oceans’ long retention time. 

Eventually, this stored carbon and heat will reach an equilibrium state and affect climate. These 

latent effects of heat and CO2 sequestered by the ocean will be seen in the future (IPCC, 2014, 

p. 1102). 

2.6.2 Representative Concentration Pathways 

To approximate future climate trends, future human activities need to be known or assumed. 

Some estimations of future activities are used to understand future emissions and form a picture 

of a future climate. Databases called representative concentration pathways (RCPs) have been 

developed by four modeling teams that contain their own assumptions regarding future trends 

in emissions, concentrations, and land use changes. The RCPs contain assumptions for 

greenhouse gas emissions based on analysis of future activities and relevant climate and 

regulatory policies. Four common RCPs have been developed (Bjørnæs, 2015). The 

information contained within these databases is used as inputs to derive the impact of future 

emissions and their radiative forcing effects. This common data allows researchers across the 

globe to have a standardized set of future assumptions with which the implications of climate 

change can be explored (Vuuren et al., 2011). From the climate projections that are constructed 

utilizing RCPs, researchers and analysists can make inferences regarding socio-economic and 

ecological outlooks (Wayne, 2013). 
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2.6.2.1 RCP 8.5 

RCP 8.5 was developed by the International Institute for Applied System Analysis and reflects 

assumed levels of atmospheric pollutants given high emission conditions. By 2100, the RCP 

data reflects a threefold increase in CO2 emissions in comparison to those observed today. 

Other assumptions reflected in the data are that 1) the world’s population will reach 12 billion 

by 2100, 2) that methane emissions will grow drastically, and 3) that there is a high reliance on 

fossil fuels which is unimpeded climate policies. The scenario presented by RCP 8.5 represents 

the “Worst Case Scenario” for the future of the environment and “business as usual” for policy, 

energy and fossil fuel use.  

2.6.2.2 RCP 6 

RCP 6 reflects intermediate emissions assumptions. In this concentration pathway, the National 

Institute for Environmental Science in Japan predicts that radiative forcing will reach a stable 

point soon after 2100. The basis for this assumption accounts for the current rate of 

technological and strategic development targeted at reducing greenhouse gas emissions. The 

future projections provided by RCP 6 align with a heavy reliance on fossil fuels, an 

intermediate level of energy intensity, and stable CH4 emissions. Additionally, the pathway 

assumes that CO2 emissions will peak in 2060 at a level that is 75% higher than that of today’s 

annual CO2 emissions.  

2.6.2.3 RCP 4.5 

RCP 4.5 was developed by researchers from the Pacific Northwest National Laboratory. The 

pathway reflects a slightly more ambitious outlook for actions taken to reduce emissions than 

RCP 6. It consists of assumptions including lower energy intensity, strong reforestation 

programs, decreased croplands, strict climate policies and CO2 emissions peaking at 2040 at 

levels only slightly above those observed today.  

2.6.2.4 RCP 2.6 

RCP 2.6, developed by PBL, the Netherland’s Environmental Assessment Agency, sets a limit 

on radiative forcing of 3.1W/m2 before a reduction to 2.6W/m2. According to RCP 2.6, this 

will happen by 2100. This projected trend for radiative forcing would require declining oil use, 

low energy intensity, a world population of 9 billion by 2100 and increased cropland use. In 

terms of CO2, this pathway assumes that CO2 emissions will not increase — instead, it will 

begin declining after 2020 with eventual net negative emissions 2100. Additionally, it assumes 

that CO2 concentrations will peak in 2050 as the climate change commitment from past 
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activities is realized. After this point, the data anticipates a drop in CO2 concentrations in 2100 

to approximately 400ppm (Bjørnæs, 2015). 

2.6.3 Atmospheric GHG Concentrations, Radiative Forcing and Temperature  

The assumptions given from each of the four main RCP models show an overall increase in 

CO2, CH4 and N2O from 2000 to 2100. These projections trend well with each scenario’s 

energy and oil consumption projections and fuel mix assumptions (Vuuren, 2011). 

2.6.4 Anticipated Changes due to Future Climate States 

2.6.4.1 Hydrological Cycles 

Modeling of the hydrological cycles accounts for several changing environmental factors 

caused by climate change. With reference to RCP 8.5, models predict that precipitation will 

increase through the tropics and temperate regions; areas typically considered “wet”. Despite 

increases in precipitation, it is predicted that relative humidity and soil moisture will decrease 

globally, especially across Southern Europe and Western Asia.   

Droughts are projected to become increasingly severe and more frequent as climate change 

continues. First are anticipated precipitation decreases in the Mediterranean, the Caribbean and 

Central America, southwestern United States, and South Africa. These areas are also expected 

to have a significantly reduced soil moisture (IPCC, 2014, p. 1118). During a total of three 

months in 2017, 25% of the globe was in a state of drought (WMO, 2018b). A general 

conclusion is that wet regions will become wetter while dryer regions will get dryer (WMO, 

2018a). 

2.6.4.2 Increased Ocean Acidification  

Absorption of CO2 in the oceans has resulted in ocean acidification. This process takes place 

through the following chemical equilibrium: 

𝐶𝑂2 +  𝐻2𝑂 ↔ 𝐻2𝐶𝑂3 ↔  𝐻+ + 𝐻𝐶𝑂3
− ↔ 2𝐻+ + 𝐶𝑂3

2− 

The amount of CO2 dissolved in the oceans is proportional to the partial pressure of CO2 (which 

increases with its atmospheric concentration). As such, emissions of CO2 are proportional to 

the acidification of the ocean, assuming a completely mixed atmosphere (Snoeyink & Jenkins, 

1980). 

Atmospheric concentrations of CO2 have been inversely proportional to the pH of ocean waters 

as expected, given the carbonate system described above (WMO, 2018b). 
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The absorption of CO2 into the ocean has resulted in a decrease in pH of 0.1 since the beginning 

of the industrial revolution (IPCC, 2014, p. 52). This decrease in pH represents a 26% increase 

in hydronium concentrations in the ocean (IPCC, 2014, p. 52). By the year 2100, under models 

assuming a continuation of heavy fossil fuel use, the pH of the ocean will decrease by 0.3 - 0.4 

pH units which results in a 2 - 2.5 times greater concentration in hydronium ions, relative to 

pre-industrial conditions (Houghton et al., 2001). 

2.6.5 Economic and Ecological Impacts of Climate Change and its Drivers 

The anticipated impacts of climate change and continued emissions of CO2 and other 

greenhouse gasses are copious; freshwater and inland water systems will be affected in addition 

to marine and terrestrial ecosystems. However, the consequences of continued climate change 

extend further than environmental impacts. Human security, livelihood, poverty, and food 

security will be impacted as well. These effects are well laid out by the Intergovernmental 

Panel on Climate Change.  

2.6.5.1 Northern Atlantic Cod Stock Case Study – An Ecological Impact of Warming Air 

Temperatures 

In the Arctic, a region particularly sensitive to climatic changes, warming air temperatures have 

caused Arctic sea ice to retreat, i.e., melt. The effect of warming temperatures and accelerated 

Arctic ice melt results in large amounts of non-saline water to exit the Arctic (Greene, Pershing, 

Cronin, & Ceci, 2008). This discharge of non-saline water changed sea circulatory patterns and 

altered oceanic stratigraphy. As a result, ecosystems of the North Atlantic were markedly 

changed. In the early 1990s, the North Atlantic cod industry faced a fish stock collapse and 

fishing cessations were put in place to aid in stock recovery. However, these efforts were 

primarily hampered by cold fresh waters occupying the northern reaches of the North Atlantic 

Cod’s habitable range (Greene & Pershing, 2007). This also impacted other fish markets and 

stocks have failed to rebound in the Northern Atlantic since the initial collapse. However, 

southern cod stocks (those below 44°N) rebounded by a factor of 4.4, with respect to biomass, 

ten years after fishing restrictions were put in place. The likely reason for this is that southern 

cod stocks reside in a separate hydrological regime in terms of temperature and stratification 

from their northern counterparts (Frank, 2005). The continual influx of cold, low-saline water, 

from climate change driven ice melt, continues to affect cod stocks in the Northern Atlantic. 

The annual cod catch for 2018 represents a 20.7% decrease from the annual average catch from 

2013-2018. By 2006, North Atlantic Cod catch had decreased 45% from 1997 in Norway. 
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North Atlantic Cod are not the only fisheries affected in this time frame; deep water prawn 

catches had declined by 81% from 2002 to 2017 (Statistics Norway, 2019a). These recent low 

catch records are accompanied by low salmon, sea trout and char catches in 2018 which were 

the lowest in the past 30 years (Statistics Norway, 2019b).  

2.6.5.2 Changing Global Hydrocycles  

Warming global temperatures are predicted to shift cloud coverage to the more northern 

latitudes. Accompanying this shift are increases in precipitation for the northern regions and 

accelerated warming (IPCC, 2014, p. 1070). 

The Sámi people, who are the only recognized indigenous European population, inhabit what 

is known as Sápmi, which overlies northern parts of Norway, Sweden, Finland, and Russia 

(Wing, 2019). They have long been reindeer herders which carries cultural significance and 

pride. Climate change has brought unusually warm winter temperatures to the areas where 

reindeer graze, leading to freeze-thaw conditions which result in thick ice formation making it 

difficult, if not impossible, for reindeer to access the vegetation that lies beneath the ice cover. 

As a result, many reindeer have starved. Additionally, warmer temperatures have led to an 

abundance of insects to the herding lands which pose a threat to calves. Ultimately, these 

climate consequences induce vulnerability to the Sámi people (Rees, Stammler, Danks, & 

Vitebsky, 2007).  

These freeze-thaw cycles might also impact fruit production in Norway. Some crops such as 

cherries and apples are sensitive to frost after fruit blossoms have developed (Eccel, Rea, 

Caffarra, & Crisci, 2009). Cherry farmers have relied on slow warming springtime weather to 

keep blossoms from forming before the threat of frost has passed. Climate change has altered 

when fruit trees will form their blossoms, making them more susceptible to frost damage. 

Further damage to fruit crops can come from increased sun exposure and immigration of crop 

harming insects to northern climes (Severson, 2019). 

2.6.5.3 Impact of Ocean Acidification 

2.6.5.3.1 Ecological 

Ocean acidification affects calcareous marine organisms such as clams, oysters, sea urchins 

(Cooley & Doney, 2009) and corals (Gazeau et al., 2007). As oceans become more acidic, the 

ability of these, and similar organisms, to form their shells and skeletal structures diminishes. 

Decreasing pH lowers carbonate ion concentrations, which are vital for the construction of 

shells and affect the vitality of many marine organisms (Cooley & Doney, 2009). Calcium 
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carbonate, CaCO3 (seashell), formation requires the presence of free CO3
2- and Ca2

+. However, 

CO3
2- exists within a pH driven pathway with CO2; thus, free CO3

2- is chemically dependent 

upon CO2 concentrations. In acidic conditions, CO3
2- exists in lower concentrations as it is 

converted to its conjugate acid (HCO3
-). Under these conditions, therefore, carbonate ion 

(CO3
2-) is less environmentally available.  

Further, it is observed that free CO2 concentrations increase with acidification as HCO3
- 

becomes free CO2 thus furthering the impacts upon calcareous organisms.   

𝐶𝑎𝐶𝑂3 + 𝐶𝑂2 + 𝐻2𝑂 → 𝐶𝑎2+ + 2𝐻𝐶𝑂3
− 

Chemical Equation for Seashell Dissolution  

Acidification also negatively affects survivability, growth, development, and abundance of 

mollusks, corals and echinoderms. Additionally, studies have shown a reduction of 

photosynthetic calcifying algae abundance of 80%. Algae populations whose abundance is not 

affected display a 27% reduction in photosynthetic activity (Kroeker et al., 2013). 

While calcareous organisms such as mollusks and corals represent only a fraction of marine 

species, these organisms are needed for filtering, shelter, and sustenance; their importance is 

high. Acidification has the potential to disrupt food webs which other marine species rely upon 

(Cooley & Doney, 2009). 

2.6.5.3.2 Socio-economic  

Ocean acidification has the potential to cause several socio-economic disturbances including 

income, vulnerability and food scarcity. According to Armstrong et al. (2012), a decrease in 

pH of 0.5 from preindustrial times would have impacts costing 10 million US dollars per year 

for Norway’s fisheries. The financial impacts of acidification for Norway are dwarfed by those 

to be suffered from the decline of coral reefs, which is placed at almost 1.1 trillion USD per 

year under the SRES A1B scenario (Brander et al., 2012) — a scenario which is similar to RCP 

8.5. Subsistence fishing communities would also be affected; having little recourse from 

declining food stocks upon which they rely (Rojas-Rocha, 2014).  
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3 Climate-Related Political and Economic Frameworks  

3.1 The Paris Agreement - A Global Political Consensus 

The Paris Agreement, set in place in 2015, launched what is arguably the most ambitious plan 

to lessen the effects of climate change. The goal of the agreement is to keep global temperature 

warming to less than two degrees Celsius, in comparison to preindustrial times, through a 

strengthening of responses aimed at targeting climate change. The agreement builds a 

foundation for financial mobilization and infrastructure for technological developments 

structured to assist nations in meeting their climate objectives.  

The agreement is structured into goals including maintaining temperatures below two-degrees 

above pre-industrial temperatures. Further, the agreement makes a goal of initiating global 

peaking of greenhouse gas emissions as soon as possible, that is, to continually reduce 

greenhouse gas emissions. Maintaining sinks and reservoirs of greenhouse gasses, such as 

rainforests and other carbon sequestering entities is encouraged through the agreement. Of the 

197 parties that have been a part of the Paris Convention, from which the eponymous agreement 

originates, only 13 parties have yet to ratify their commitment to climate change mitigation 

through its framework. 

Ultimately, these ambitions require that carbon emissions be drastically reduced or offset such 

that there are no net carbon emissions and that the net-zero carbon ambition must be reached 

by 2080 – 2100 to limit climate change to two degrees and must be reached by 2060 – 2080 to 

return to the 1.5-degree benchmark. However, industry and energy generation must reach net-

zero emissions even sooner for these ambitions to be met (Rogelj, Schaeffer, & Hare, 2015). 

The emission goals presented within the agreement serve as a benchmark for emissions which 

companies and industries aim to align themselves (Åsnes, Personal communication, March 22, 

2019).  

3.1.1 Carbon Pricing  

For industries and companies often associated with CO2 emissions, e.g., the oil and gas 

industry, alignment with the Paris agreement and its goals are not solely a matter of 

environmental concern or social concern. Shareholder pressure brought Statoil (now Equinor) 

to recognize its role in the changing climate and what actions are needed to reduce the 

company’s climate impact (Statoil, 2016). Further, companies are realizing climate related 

risks related to their operations, some of which have major financial implications.  
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Placing a price on CO2 emissions has been introduced to aid in the transition to a low carbon 

future. Effectively a fee on carbon emissions, pricing aids economies in transitioning to a low 

carbon profile. The additional cost of carbon emissions for the energy and oil and gas industries 

lessens their competitiveness in relation to renewables which are then advantaged by the carbon 

pricing. Pricing schemes have the additional benefits of increasing resource efficiency and 

building “resilience to risks inherent in deep structural change” for the oil and gas industry. 

The carbon-pricing gap, which describes the difference between current rates for carbon 

emissions, and a benchmark carbon rate need implementation in order for climate-related 

ambitions to be met. Measurement of this gap over time has shown that the gap is narrowing; 

this suggests that there is growing support for carbon rate policies globally (OECD, 2018).  

Although Norway already has carbon-pricing schemes in place since 1991, international 

operations will be affected by the carbon-pricing gap trend. Equinor supports a price on carbon 

emissions and assumes a $50/tonne carbon rate for all new business developments unless there 

is a rate in place for that locale that is higher (Equinor, 2018). 

3.2 Investing in the Era of Climate Change 

Climate change carries economic risks which shape investment decisions. In fact, investors are 

advised that economic growth should no longer be assumed to be highly resultant from fossil 

fuel energy sectors (Mercer, 2019). Concerns over climate change have influenced and changed 

where investors are placing their money and what considerations make up good investment 

decision making. Political and regulatory pressures that have been or will be implemented in 

order to meet climate goals will undoubtedly affect industries with large carbon footprints, such 

as the oil and gas industry. This chapter serves to outline the financial implications and 

consequences of climate change policies for the oil and gas industries.  

3.2.1 Oil and Gas Investment Theory until 2014  

Investment theory is the knowledge that serves as the basis for investment decisions 

(Goetzmann, 2000). For the oil and gas industry, investment theory had long held that a 

company’s long-term financial prospects were based on four key factors: 1) sales volumes, 2) 

cost to produce, 3) product value, and 4) proven reserve size. The driving investment 

assumption was that reserves were equated to rewards.  
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3.2.2 Current Investment Theory  

This ideology changed with the shale boom in the United States. New technology allowed for 

a new source of oil, unconventional oils, to be brought into the market. As a result, companies 

were able to increase their reserves drastically. This boom brought about a massive increase in 

proven reserves and a surfeit of oil – production was no longer under constraint – and proven 

reserves where no longer a valuable investment metric. This new abundance of oil brought 

about by the shale revolution, and related geopolitical factors, dramatically lowered the price 

of oil. 

Oil companies could no longer demand high prices for their products. Assets and reserves that 

required high oil prices to recuperate investment capital lost their economic value. As a result, 

reserves as a key investment metric was replaced by cash flow.  

Previously investors knew prices would rise after downturns, and even expensive projects 

would generate favorable returns. “The shale boom, and the accompanying price collapse, has 

undercut that idea, but no new investment narrative has emerged to take the place of the old 

one” (Sanzillo, Hipple, & Williams-Derry, 2018) (p. 19). This change meant that oil and gas 

companies would be evaluated by investors based on how revenue and profits are affected by 

oil prices which, in turn, has meant that oil and gas have become speculative investments 

(Sanzillo, Hipple, & Williams-Derry, 2018). 

3.2.3 Climate Risks for Corporations 

According to Karsten Löffler, “Institutional investors require actionable information to 

adequately reflect climate risks and opportunities into asset allocation. While global warming 

is a fact, we face great uncertainty around policy measures and the financial impacts in the 

nearer term are little understood” (Mercer, 2019). This means that climate change presents 

several challenges for companies. One challenge, in particular, is alignment with policies such 

as the Paris Agreement, which some in the oil and gas sector state they aim to do already. 

Climate policy alignment requires that companies consider the performance of their own assets 

to build a corporate level overview. This is an area that would benefit from improved emission 

modeling which would allow for continual alignment assessments and refinement of strategy.  

3.2.3.1 Stranded Assets 

Assets (fossil fuel energy and generation resources) can become stranded if they are no longer 

able to provide economic return before reaching the end of their economic lifetime (PRI, 2015). 

The marginal profitability of assets is negatively impacted by climate policies, including carbon 
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pricing; thus, the risk and exposure for assets are increased. This is of concern in the oil and 

gas industry as the Paris agreement and other political and regulatory forces move closer to 

implementing taxes and fees for carbon emissions. However, reporting from Wood Mackenzie 

shows that an imposed carbon tax of 50 USD per tonne carbon emitted would not strand any 

oil and gas assets (Flowers, 2018). 

3.2.4 Climate Risk for Investors  

Organizations must also think about investors – what their demands are and what influences 

them to invest. Climate change presents an unavoidable impact on investment returns, which 

necessitates its incorporation into investment decisions as a new return variable (Mercer, 2019). 

The Financial Stability Board has created a Task Force on Climate-related Financial 

Disclosures which aims to provide investors and other stakeholders with climate-related 

financial risk disclosures. The project focuses on three climate related risk types, physical, 

liability and transition risks. This work will serve to guide companies, based on what the 

financial markets want in terms of climate risk management, so that climate risks can be 

appropriately measured and responded to (Task Force on Climate-related Financial 

Disclosures, 2019).  

3.2.5 Investing with ESG 

The practice of environmental, social and governance (ESG) investing, which focuses on these 

non-financial dimensions of performance (Duuren, Plantinga, & Scholtens, 2015), is 

commonly used by governing boards that want to incorporate sustainability into their 

portfolios. Investment analysis using ESG aims to understand whether, and to what extent, 

corporate financial performance is influenced by the company’s conduct on social and 

environmental issues. This way of financial investment screening is a notable change from the 

former practice of negative screening which excluded certain industries and investment types 

from being a part of investment portfolios (Caplan, Griswold, & Jarvis, 2013). This technique 

allows for corporations to be benchmarked against their peers (RBC, 2012) and for best-in-

class investment selection whereby investment decisions are made based on certain 

environmental criteria having been met and performance against peers. As such, this shift in 

investment ideology presents an opportunity for oil and gas companies who are venturing into 

renewables as their performance in that sector might bring investor interest or provide a hedge 

for the company.   
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3.2.6 The Divestment Trend 

Resilience in the face of climate change is not the only factor affecting investments in the oil 

and gas sectors. A moral plea for action on climate change has led to a global divestment 

campaign from the fossil fuels industry. Since the campaign’s inception, approximately 1000 

investment firms, representing $6.24 trillion in assets, have made commitments to divest from 

the fossil fuels industries (Arabella, 2018). 

Financially, renewables demonstrate the highest positive sensitivity to changes and 

implementation of climate change policies due to an increased ability to compete against fossil 

fuels. Oil, as an industry sector, is second most sensitive to climate policy with a guaranteed 

1% reduction of returns on investments. Additional variability brings this figure to 4%, which 

reflects the effects of climate policy that is expected to exist in more severe climate scenarios. 

To contrast, renewables stand to increase their returns on investment by 3.5% over the same 

period (Mercer, 2019).  
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4 Global Energy Outlook 

The oil and gas industry is faced with numerous challenges from climate and social issues, the 

effect of carbon pricing on profit margins, investment uncertainty and shrinking resources. 

However, the world still needs oil and gas – the industry cannot simply be abandoned.  

Rapid levels of population and economic growth, particularly in emerging market economies, 

has resulted in equally paced energy demands. In 2017, global energy demand grew by 2.1% 

which represents more than a two-fold growth in demand over the previous year. This trend 

reflects growing global prosperity but poses new challenges, especially in terms of how these 

demands will be met and the resulting environmental impacts of meeting these demands 

(OECD, 2011). 

Energy sourced from renewables has grown dramatically, meeting around 30% of the global 

energy demand. Despite the growth in renewables, energy generation from fossil fuels 

continues to be the predominant supplier in the global energy mix. This continued reliance on 

fossil fuels and increases in global energy led to an increase in global emissions of 1.4% for 

2017, representing an all-time high (IEA, 2018).  

This increasing global energy demand trend is expected to continue, and the demand for oil is 

expected to grow for until 2025, at a minimum (Figure 4-1).  

 

Figure 4-1. Oil demand trends and projections for various energy outlooks in millions of barrels of oil per day from 1965 to 

2040 (Dale). 
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4.1 Energy Scenarios  

Energy scenarios, which are presented in Figure 4-1, use research and analysis to develop an 

idea what the future might look like in terms of how much energy will be required and from 

where that energy will come. This is similar to the representative concentration pathways which 

are used to make discernments and predictions about the future. The world energy scenarios 

assess what the future of energy might look like leading up to 2040 with regards to what energy 

needs will demand (Accenture Strategy, & Paul Scherrer Institute, 2016). In addition, oil and 

gas companies have made their own oil demand outlooks for the future. However, these are 

generally not the basis of international standards but may reflect policy and the company’s own 

ambitions. Equinor provides three such scenarios; reform, renewal and rivalry, of which, 

renewal provides an outlook lower than all the outlooks provided in Figure 4-1 aside from the 

3% decline projection (Equinor, 2019a).  

4.1.1 IEA Outlooks 

Three scenarios have been developed by the International Energy Agency (IEA) based on sets 

of assumptions which reflect policy changes with regard to emissions and climate issues. These 

scenarios are, the Sustainable Development Scenario, the New Policies Scenario, and the 

Current Policies Scenario (IEA, 2018). 

The Sustainable Development Scenario reflects changes that should or will need to occur for 

nations to align themselves with the Sustainable Development Goals outlined by the United 

Nations. The IEA Sustainable Development scenario is based on the implementation of climate 

policies needed to meet the goals of the Paris Agreement (Dale). Under this scenario, new oil 

and gas opportunities must be developed to meet global needs (Figure 4-1).  

The two other scenarios from IEA are Current Policies and New policies. They show, 

respectively, the anticipated demand for oil should, policies as they are today, are left 

unchanged and should policies slated to be implemented take effect. Both scenarios display 

futures with a reliance on oil that is higher than what is needed in order to be aligned with the 

Paris Agreement.   

The cessation of oil production and fossil fuel consumption would result in a significant 

reduction in greenhouse gas emissions with enough of an impact to curtail further warming and 

changing of the climate. However, there is not enough energy production capacity to meet the 

energy needs of the globe now or in the future without fossil fuels as part of the energy mix 
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(Accenture Strategy, & Paul Scherrer Institute, 2016). As such, all scenarios, including those 

aligned with the Paris Agreement, project increased oil demand in the near future.  

4.2 Energy Resources and Development Practices on the NCS 

Resource development, in terms of volume on the Norwegian Continental Shelf, has grown at 

a much smaller rate than in the early years of NCS oil exploration (Figure 4-2). 

 

Figure 4-2. Accumulation of oil resource discoveries on the Norwegian Continental Shelf from 1966 to 2019 (Norsk 

Petroleum, 2019). 

This means that an increasing number of smaller discoveries need to be considered so that new 

developments can meet consumption levels and future demands. This is evidenced in the fact 

that, since production began on the NCS, 100 fields have produced oil and gas. In 2018, 85 

discoveries were in the process of consideration for development, most of which are small tie-

backs (Norwegian Petroleum Directorate, 2018).  

4.2.1 Business case screening through CVP 

The capital value process (CVP) (Figure 4-3) is a structured and standardized approach to 

maturing business opportunities into operations that are both competitive and profitable. Each 

stage of the multistage process is demarcated by a decision gate (DG). Progression through 

these stages represents higher levels of project maturity. This process is embedded in 

workflows within Equinor to align business developments with its corporate and climate 

strategy to promote safety, high value and low carbon projects (Equinor, 2018).  The 

delineation of the CVP process via the DGs ensures that certain criteria are met when entering 

and exiting a DG (Walden, 2015, p. 362) as maturation through the CVP is dependent upon 
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whether certain stakeholder criteria are met. The standardization and structure of the CVP 

allow an organization to optimize its portfolio through the prioritization of the project through 

the organization’s value chain (Equinor, 2018) as well as implement climate (and other) 

strategy into work flows.  

New developments are screened through the CVP which includes estimations of the project’s 

anticipated carbon emissions and evaluation of best available techniques (BAT). This is of 

particular importance considering Equinor’s emphasis on low carbon operations. The 

understanding of the emissions generated from the extraction of resources from a new 

discovery is important; profit margins will be affected by emissions through carbon pricing and 

stakeholders and investors will be influenced by the amount risk the proposed development is 

exposed to in terms of its emissions.  

Lifetime emissions of CO2 and CO2 intensity are included in business case and project 

development studies and decisions as well as in sustainability risk identification and 

assessments. CO2 emissions and CO2 intensities are significant considerations for a new project 

because they may become significant cost drivers, uncertainties and/or project stoppers. 

Currently, for project development, the assessments of CO2 and CO2 intensities can be 

qualitative, based on experience and are informed by the power and main driver concept 

selections (Fosen, 2018). 

 

Figure 4-3 Structure and Process flow of the Capital Value Process (Equinor, 2018). 

Equinor does not have any formal requirements as to the accuracy of CO2 emission forecasting 

through each DG. However, the CVP process has requirements for accuracy for cost 

estimations which internalize emissions of CO2 into subsequent cost estimations (Folgerø, 

2015).  Internal requirements dictate that energy demands be assessed through various concepts 

in the early phases, DG0 to DG3. Equinor’s environmental technical requirements state that 
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the emissions intensity for conventional oil production is to be limited to 8kg CO2 per barrel 

of oil equivalent produced. Should this target not be attainable, an application for deviation 

must be submitted before a concept is selected at DG2 for environmental approval (Nilsen, 

2019). This assessment focuses on the energy demand (which is relatable to emissions) based 

on rotational machinery needed to carry out production and injection. From DG2 to DG3, a 

more detailed assessment is to be made (Folgerø, 2015).  

4.2.2 Further Emission Considerations in Project Development 

Emission assessments for project development are included in an environmental budget scheme 

for each project. Along with the budget, emission assessments are used to derive potential 

environmental and social impacts as well as to determine and develop potential mitigative 

strategies.  

4.2.3 Forecasted Emission Reporting to the Norwegian Government through the RNB 

The Revised National Budget (RNB) is a budgetary summary that accounts for natural resource 

use and reserves. It primarily serves to provide an overview of Norwegian natural resources in 

terms of their annual extraction and quantities in place. The overview of the status and 

forecasted consumption of natural resources allows the Norwegian Government to make 

budgetary decisions and to determine oil policy (among others). Oil companies are required to 

submit annual forecasting reports regarding production, cost, income and, environmental 

discharges and emissions to the RNB (Norwegian Petroleum Directorate, 2018). 

While this reporting has traditionally served to inform policymakers with regards to budgetary 

concerns and oil policy, the RNB also provides environmental forecast data, including 

emissions estimates, which are used to guide climate and environmental policy in Norway.  

Foreseeable production volumes and anticipated emissions are reported to RNB on an annual 

basis for each installation. The prognoses are revised annually, meaning that new forecasts are 

produced each year. 
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5 Technical Background 

The aim of this section is to provide an understanding of where and how CO2 emissions 

originate through combustive processes and the carbon emission driving processes in upstream 

operations that occur offshore.   

5.1 Combustion and Emissions 

Combustion is an exothermic oxidation process that consumes a fuel source and oxygen. The 

exothermic nature of the reaction allows the chemical process to be self-sustaining being 

limited only by the availability of fuel and oxygen (Speight, James G. 2013). Often, fossil fuels 

such as coal, natural gas and other petroleum distillates serve as the fuel in combustion 

processes (API, 2009). 

Combustion is not solely a chemical process; heat dispersion and conduction, bulk gas flow, 

and the diffusion of chemical constituents are all physical properties associated with 

combustion. As such, combustion is both a chemical and physical process (Speight, James G. 

2013).  

The purpose of combustion is generally energy production through the conversion of kinetic 

energy to useable work. With regards to gas turbines, the primary energy generator in the 

offshore oil and gas industry, the kinetic energy of the exhaust gas stream is converted into 

mechanical energy through the central shaft to produce electricity (Travers, 1996). 

5.1.1 By-products of Combustion 

While energy is the desired derivative of combustion, by-products, generally considered 

undesirable, are produced during the combustion process. CO2 is one of two primary 

combustion by-products, the other being water. The production of CO2 and water via the 

combustion process is understood through the following generalized balanced chemical 

combustion equation (API, 2009): 

𝐶𝑥𝐻𝑦𝑂𝑧 + (𝑥 +
𝑦

4
−

𝑧

2
) 𝑂2  → (𝑥)𝐶𝑂2 + (

𝑦

2
) 𝐻2𝑂 

where 

x = stoichiometric coefficient for carbon; 

y = stoichiometric coefficient for hydrogen; and 

z = stoichiometric coefficient for oxygen. 
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The equation is theoretical and represents an ideal situation which assumes complete and 

efficient combustion. This is not the characteristic of real systems.  

Non-ideal conditions result in the incomplete combustion of hydrocarbons, which generates 

emissions of methane, carbon monoxide, volatile organic compounds and nitrous oxides. A 

modified version of this chemical equation serves as a basis for the estimation of emissions 

from volumes of hydrocarbons combusted (API, 2009). 

5.2 Carbon Emissions from the Oil and Gas Industry  

Corporate emissions, across all industries, are be characterized into three scopes: 1, 2 and 3. 

Together these scopes serve as the international standard for which corporations measure and 

categorize their emissions. 

Scope 1 emissions consists of direct emissions. These emissions are a result of fuel combustion, 

vehicle use, and other emissions from assets owned by the company. 

Emissions in scope 2 are a result of energy generated elsewhere and imported to perform 

functions at an asset controlled by the company. Emissions that are included in scope 3 have 

occurred through the activities of the company but originate from sources that are not owned 

by the company. This scope captures emissions from the transport, transformation and end use 

of oil and gas products when considering the oil and gas industry (Greenhouse Gas Protocol). 

Comparatively, Equinor’s scope 1, 2 and 3 CO2 emissions were 14.4, 2.8 and 314 million 

tonnes in 2018 (Equinor, 2019).  

5.2.1 Emission System Boundaries 

The CO2 emissions assessed and predicted in this thesis will focus on the upstream emissions 

(emissions within scope 1) that are a result of, or are necessary for, the production of oil and 

gas, i.e., emissions from the operation of the installation and the production and processing of 

the well stream using activities that are performed by the installation.  

 

Figure 5-1. System boundaries and value chain location of thesis scope. Emissions boundaries (top text) within the lifecycle 

and value chain (bottom text) for offshore oil and gas production (adapted from Fløysvik, 2018). 
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The upstream activities, and hence upstream emissions, are the first segment in the operational 

lifecycle of an installation. Traditionally, upstream emissions include all activities performed 

and required to support and produce oil and gas and transport to the refinery gate (Fløysvik, 

2018) if transported by pipeline.  

5.3 Emissions Estimations of Upstream Activities 

5.3.1 Energy Factors and Energy Demand  

The production of oil and gas on an offshore oil and gas platform requires a slew of processes 

to transform the raw material extracted from the reservoir into useable and exportable products 

with each process possessing its own energy demand.   

The energy demand at an installation reflects various processes that are needed to acquire raw 

material and process the useable and non-useable components of the well stream. Additional 

energy demand is required to provide a habitable living condition for offshore workers.  

The Energy demand for an offshore oil and gas installation is the sum of the products of the 

energy factors and the quantity of attributable activity performed. 

𝐸𝑛𝑒𝑟𝑔𝑦 𝐷𝑒𝑚𝑎𝑛𝑑 =  ∑(𝐸𝑛𝑒𝑟𝑔𝑦 𝐹𝑎𝑐𝑡𝑜𝑟𝑖  ∙ 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦𝑖) 

The characteristics of the reservoir and the oil itself influence energy demand in addition to the 

production processes that are utilized (Gordon, Brandt, Bergerson, & Koomey, 2015). 

Assessments and predictions of energy demand for reporting have traditionally relied upon 

energy factor inventories. Installation specific factors are contained in assumption documents, 

which describe the operational energy demands that exist on a platform. These estimations are 

built upon the assumption that the installations operate in a steady state regarding annual 

baseline energy demand. Further, it is assumed that a linear relationship exists between the 

amount of activity performed and the energy demanded. However, Nonlinear relationships 

between overall emissions and the quantity of gas injected into reservoirs have been observed 

(Åsnes, Personal communication, March 22, 2019).  

Production volumes of oil and gas, water and gas injection, and volumes for gas lift need to be 

established so that an annual energy demand estimation can be established. Additionally, the 

baseline energy demand for the platform needs to be determined and built into emission 

estimation calculations.  
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5.3.2 Emissions Sources 

Numerous sources of emissions exist in offshore oil and gas production. Gas turbines, engines, 

boilers, and flaring represent four common combustion sources for offshore oil and gas 

production and are, therefore, primary emission drivers in this sector of the oil and gas industry. 

Gas turbines produce energy through the combustion of fuel gas in a compressive ignition 

system. For offshore installations in Norway, gas turbines are the primary energy production 

method for offshore installations. As such, they constitute the most significant portion of 

emissions of CO2 for Norwegian Continental Shelf installations (The Norwegian Oil and Gas 

Association, 2017). In 2017, CO2 emissions from turbines represented 84% of all CO2 

emissions on the NCS.  

Energy generation in offshore oil and gas production may also utilize engines, which are 

primarily used on drilling rigs. However, their usage constitutes approximately 6% of carbon 

emissions for upstream activities in Norway (Figure 5-2). 

 

Figure 5-2. Distribution of CO2 emissions by upstream source on the NCS in 2017 (Adapted from Norsk Olje og Gass, 2018). 

While production related processes drive most emissions, the flaring of gas, which on the 

Norwegian Continental Shelf is typically reserved as a safety measure, adds to overall carbon 

emissions. Flaring represented 7% of CO2 emissions on the NCS in 2017 (Norsk Olje og Gass, 

2018) Flaring intensity shows much more variability globally and exerts significant influence 

on emission metrics such as CO2/boe. In instances where flaring is high, pronounced effects 

on emissions metrics are observed (Skone & Gerdes, 2008). This difference can be attributed 
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to the strict regulations and carbon pricing schemes that exist in Norway, and a lack of 

incentives for reduced flaring internationally. 

The distribution of emissions by source for Equinor’s operations (from which the data in this 

thesis is based) is similar to the distribution observed on the NCS as Equinor is the primary 

operator on the NCS and accounts for 80% of NCS production (Åsnes, Personal 

communication, May 24, 2019). 

5.3.3 Emission Drivers 

Carbon emissions generated by a platform or installation that is not supplied or supported by 

external energy supply, i.e. power from shore or offshore wind, are predicated on the 

installation’s energy demand. This is because energy demand is most often met by gas turbines 

which generate emissions (Lommasson, 2015). As such, energy-demanding activities are also 

most often emission driving activities. Typical processes that have high energy demands are 

gas and water injection and gas compression as well as the operational needs of the platform, 

which is a static energy demand.  

5.3.4 Emission Factors  

Quantification of emissions produced by a platform is achieved using emission factors. These 

factors relate energy demand to the emissions produced when meeting the energy demand. 

These factors are based on three things: 1) the stoichiometric relationship between 

hydrocarbons and CO2 generated in the combustive process, 2) the energy derived from 

combustion, and 3) the efficiency of the combustive process.  

This method of CO2 estimation requires that all, or most, energy-demanding processes be 

known. For business development in Equinor, all energy demanding processes above 1MW are 

to be accounted for in determining the energy demands at an installation (Fosen, 2018). Energy 

demands will be further refined to include smaller components at a later stage (Åsnes, Personal 

communication, May 24, 2019). 

5.4 Forecasting  

Forecasting is a method that uses identifiable factors and their effect on a given value of interest 

to provide estimates of what that value of interest may be in the future. Thus, forecasts provide 

a tangible idea of what the future is likely to hold.  

In the context of CO2 emissions in the oil and gas industry, forecasting serves several important 

functions. Forecasting of emissions allows for oil and gas operators to assess their emissions 
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against internal and external climate goals which call for reductions in CO2. It also allows for 

corporations to assess the level of exposure that their assets have when carbon taxation schemes 

are applied to their operations. Further, it allows to corporations to assess their climate 

strategies.  

Forecasting of emissions from the oil and gas sector allows for oil and gas corporations to be 

more transparent with climate impacts of their activities and, in addressing and mitigating 

anticipated emission, assure investors of the corporation’s sustainability and attract increased 

investments.  

5.4.1 Qualitative and Quantitative Forecasting 

There are two different types of forecasting approaches. The first is a qualitative approach to 

modeling. In this approach, the model predictors use inputs to generate a qualitative response. 

The second approach is quantitative and uses predictors to generate an estimate of a quantity. 

With regards to CO2 forecasting, if a qualitative approach to modeling is used, the model 

outputs could be, for example, acceptable levels of CO2 or unacceptable levels of CO2. A 

quantitative approach to modeling will yield values for outputs, for example, tonnes CO2 

emitted per year. The model developed for this thesis is quantitative, as such, further discussion 

on modeling will be focused on aspects of quantitative modeling.  

5.4.2 Methods of Quantitative Forecasting 

Qualitative forecasting consists of two general categories: time series and causal methods.  

The time series methodology assumes that observed trends and patterns of the forecasted 

variable are relatable to the passage of time, e.g., age and height in adolescence. This 

methodology requires that observations are taken at regular intervals to extrapolate the time 

dependency of the forecasted variable (Stranden, 2014).  

5.4.2.1 Causal methods  

Causal methodologies attempt to use relationships between the model predictors and the model 

output to derive coefficients for the model parameters. This is done by using historical 

observation and the influence the model parameters have on that observation. Many methods 

exist for deriving causal relationships. The two most common are simple regression and 

multiple regression. The difference between the two is that simple regressions assume that a 

single independent variable is responsible for the model output while multiple regression 
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methods assume and make use of various factors that contribute to the model output – there are 

multiple independent variables.  

5.4.2.1.1 Simple Regression  

The simplest form of simple regression is a line with the formula 

𝑦 = 𝑚𝑥 + 𝑏 

Where: 

 y = model output (the dependent variable)  

 m = is the slope of the line generated by the regression 

x = model input (independent variable)  

 b = the point y that corresponds to the line’s horizontal position when x is 0 

Many iterations of this linear form exist to accommodate logarithmic, exponential and other 

relationships.  

5.4.2.2 Multiple Regression 

The multiple regression follows the form: 

𝑦 = 𝑚1 𝑥1 + 𝑚2 𝑥2 + 𝑚𝑖 𝑥𝑖 + 𝑏  

Where: 

 y = model output (the dependent variable)  

 mi = is the slope of the line generated by the regression for the ith
 variable 

xi = model input for the ith
 variable (independent variable)  

 b = the point y that corresponds to the lines position when x is 0 

5.4.2.3 The Forecasting Process 

Forecasting is not a perfect science; the estimations that forecast models produce sometimes 

fail to match the actual data that the forecast represents. This is likely due to an underlying 

assumption that there exists inherent stability within the system that is modeled. This is to say, 

what is expected to occur based on past observations of parameters and the resulting effects, 

represents an unchanging dictum that is unaffected by external influences and in a broader 

sense, reality.  
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The building of a forecasting model should follow a stepwise process. The process involved 

with forecast construction will likely vary somewhat due to the nature and intention of its 

purpose. The following is a nine-step example of how forecast construction could be carried 

out based on Stranden (2014) and Mester (2018).  

First, an understanding of the purpose and need of the forecast should be determined. This 

gives a sense of the level of detail that is required to produce estimations that meet the desired 

accuracy. This step will also help to define what resources will be needed to undertake the 

forecast construction process.   

Second, the item that should be forecasted should be selected. In the case of this thesis, the 

selected item is CO2 emitted from turbines to meet the energy demanded from upstream 

processes offshore.  

Third, the forecast must have an intended time horizon, short term, mid-range or long term. 

The time horizon is selected based on the purpose of the forecast. It should be kept in mind that 

forecasts tend to lose accuracy with increased time horizons. As such, the basis of the modeling 

process in this thesis utilizes, initially, the first 20 years of historical data. 

Fourth, the type of forecast model to be employed should be selected and based upon the time 

horizon selected for the forecast.  

Fifth, data should be gathered and examined. When collecting the data, consideration should 

be given to what the source of the data is (Stranden, 2014). 

Sixth, the data that is collected may need to be partitioned into two sets, a training set and a 

test set. This depends on how readily available new data can be acquired after the model is 

made and the relative diversity of the data sources. If new data is continually available, then 

the usefulness of segregating data may not need to be considered. In the partitioning process, 

one dataset will be the training set. This is used as the basis for the model and defines the 

parameters and their coefficients.  The other set is used as the test set, which is used to test and 

validate the model (Mester, 2018). 

Seventh, the model selection process in step four should be validated. The available data should 

be able to fulfill the requirements for the model. 

Eighth, the model should be applied to ensure that the model derives reasonable results for the 

model outputs given the data inputs.  

Ninth, the model should now be used to fulfil its intended purpose (Stranden, 2014). 
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5.5 Forecasting of Upstream CO2 Emissions in the Oil and Gas Industry 

Forecasting of upstream CO2 emissions in the oil and gas industry is typically conducted 

causally. Models are built upon facility specific equipment, their associated energy demand 

and the efficiency with which energy is generated offshore predictions of future production 

volumes (API, 2009). 

5.5.1 Example of Existing Models for Emission Forecasting for Upstream activities 

5.5.1.1 OPGEE 

The ‘Oil Production Greenhouse gas Emission Estimator’ (OPGEE) is a life cycle assessment 

emission model for emissions for all sectors and scopes of the oil and gas industry. OPGEE 

accounts for up to 50 parameters, many of which will have assumed values unless otherwise 

inputted by the user (Gordon, 2015). The model is highly detailed, accounting for parameters 

like frictional forces between the well stream and pipelines. It is an account of all, if not many, 

of the engineering and physical energy consuming factors in the industry (El-Houjeiri, 

Masnadi, Vafi, Duffy, & Brandt, 2017). The model relies on a minimum of four primary 

parameters. The accuracy of the model has been shown to receive no further benefit after 

having values for more than ten primary parameters (Gordon, 2015). The model is complex 

and takes a high level of familiarity to use.   

5.5.1.2 NEMS Forecaster 

NEMS is an environmental accounting firm that provides annual RNB emission estimations 

(which the models in this thesis are comparable to) through their environmental forecasting 

software. Understandably, documentation of the model and its development is not publicly 

available. However, the estimation provided by NEMS requires knowledge of each installation 

from reservoir and facility engineering specialists to develop modeling parameters which were 

mentioned in  5.3.1. 

5.5.2 Existing Parameter Development 

Parameters that are the basis for RNB estimations are derived from assumptions constructed 

by reservoir engineers who characterize the production reservoirs and the volumes to be 

extracted, injected, cleaned, discharged, and exported to create a theoretical inventory of 

mechanical needs for production. From these assumptions, a theoretical platform is designed 

based on capacities that should be required at a predetermined peak production level. The 

theoretical platform serves as a basis for the number of production components such as pumps 
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and compressors that will be in use at the platform. The energy demand of each component is 

summated and converted to units of CO2 based on energy load and turbine efficiencies (Åsnes, 

Personal communication, March 22, 2019). The assessment of an installation’s component 

inventory provides a way to isolate and analyze environmental impacts throughout industrial 

processes based on the function a process serves. This is the basis of bottom-up model 

development, which is the method of emission modeling across all current emission models in 

the industry (Fløysvik, 2018). Development of energy demand and emission models using the 

bottom-up methodology is time consuming, resource intensive (Åsnes, Personal 

communication, March 22, 2019). 

5.6 Inverse Modeling and Predictive Analytics 

Inverse modeling is a modeling process where inputs and outputs are known. Model parameters 

are statistically derived through regression or are determined through physical understanding 

by relating observations to the variables that produce them (Brasseur & Jacob, 2017). This is 

the basis of top-down modeling which is easier and less resource intensive given that data exists 

and is available.  

5.6.1 Novelty & Benefits 

Some models exist for CO2 emissions in upstream oil and gas production. However, none that 

are publicly available attempt to produce estimations using a statistically based top-down 

methodology, where observations of historical input values are the basis of parameter 

development. This is a significant change in the way emissions are quantified for upstream oil 

and gas production. Additionally, none of the existing models work with the level of simplicity 

that is attempted within the scope of this thesis.  

A benefit of the top-down modeling process is that it removes some of the inherent 

uncertainties within bottom-up modeling. As such, top-down based models can be used to 

validate emission inventories, which means that increased transparency and accountability are 

benefits of the top-down modeling (Frost, 2015). This form of modeling emissions was used 

to verify emission statements from Volkswagen, who were resultantly found to be cheating 

emissions, which led to a major scandal and the company losing 20% of their value (Ross, 

2015). 
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Part 2 – Modeling 
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6 Methods 

6.1 Data Sources 

Data for historical CO2 emissions from turbines was obtained through the Management 

Information System (MIS), a relational database of emissions and other environmental 

accounting parameters available in Equinor. The data obtained from MIS in this thesis is also 

accessible externally for each specific field through annual environmental reports from the 

Norwegian Oil and Gas Association. 

Historical values for injection volumes and production values were obtained through the 

Norwegian Petroleum Directorate’s (NPD) Diskos database and by data request made to the 

NPD.   

Quality control of the collected data was performed and verified against internal documentation 

contained within Energy Components; an Equinor database.  

Forecasted data reported to the Norwegian Government though RNB was obtained through an 

internal data request.  

Turbine efficiencies and inventories were sourced from RNB assumption document libraries.  

6.2 Data and Installation Selection 

Eleven installations were selected based on a) being located on the Norwegian Continental 

Shelf, b) being operated by Equinor, and c) their relative simplicity with regards to where 

volumes originate and end in terms of processes that are typical to installation-based 

production.   

The eleven selected installations were:  

Grane 

Gullfaks 

Heidrun 

Kristin 

Kvitebjørn & Valemon 

Norne  

Sleipner  

Snorre  

Visund 

Åsgard 

 

NPD factpages were consulted to understand the network of facilities on the NCS to ensure 

that production and injection volumes were properly allocated in the historical library. 

Information from NPD factpages was also used to combine installations that share significant 

portions of work to determine if separate facilities should be treated as a single installation.  
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Kvitebjørn and Valemon were combined, and their combined data acts as a single installation 

in all assessments in this thesis. A significant amount of production processes are shared 

between these two installations, which supports the assumption that these two installations can 

be assessed as one. 

6.3 Modeling Procedure 

A historical library was constructed with regards to the parameters of interest and CO2 

emissions. These parameters were injection of gas and water, oil production and gas export 

volumes, and emission values for each installation. Historical data consisted of values resulting 

from activities during calendar years. The library was constructed relationally with reference 

to operational age. For this modeling process and throughout this thesis ‘age’ is with reference 

to the calendar year of startup. 

Data from the library was then segregated based on installation age. The segregated sub-

datasets were run through regression software, which yielded statistical analyses consisting of 

R, R2 and the f-significance based on the set of derived parameters. This form of modeling was 

performed continually to provide further refined datasets and parameters. 

During the model development process, visual analyses of R, R2 and significance-f values were 

done to build and refine sub-datasets based on when, in an installation’s lifetime, models 

produced statistically appropriate approximations. 

 

 

 

 

P1 Modeling analyses                           P2 Modeling analyses 

 

Figure 6-1 Size, structure, and layout of the color-assisted visual analysis process for P1 and P2 

model development process with zoomed inset (left).  
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The parameters from the sub-dataset modeling were used to generate emission estimates based 

on historical parameters. Percent errors were calculated for each estimation. The calculated 

errors were color-coded into three error groups; errors ranging from -25% to 25% were green, 

errors between -50% and -25% and 25% and 50% were yellow, errors outside of the +/- 50% 

range were red. These error ranges were arbitrarily chosen. Visual analysis of the errors was 

qualitatively conducted to further refine the sub-datasets by identifying which, if any of the 

installations, may not be suited for modeling (Figure 6-1). 

One model was selected for P1 modeling, which does not consider oil production volumes as 

a parameter. A second model was selected for the P2 model, which, in addition, to the 

parameters considered by P1, considers oil production volume. These two models were 

selected based on their respective statistical quality and their qualitative fit. 

The ability of each model to produce emission estimations was performed on an installation to 

installation basis. Correlations between the resulting predictions and the historical emissions, 

which they aimed to predict, were calculated.  

The earliest RNB document (which are produced annually) for each installation was selected 

to provide the “first” forecast of the installation’s environmental performance (Table 8). 

P1 and P2 parameters, as well as emission projections, were obtained from these documents 

and built into a library. The oldest projections were selected, and data from them was 

segregated similarly to the historical data from which the models were built. For the assessment 

of predictions to RNB, it was assumed that projections for volumes of CO2 injected and gas lift 

could be combined with, and considered as, gas injection volumes. Old forecast data was then 

put through the models and projections based on modeling for RNB was compared to 

projections from P1 and P2 models based on RNB forecasts of key parameters. 

6.4 Comparison of Model Estimations 

P1 and P2 models were used to produce emission estimates for each installation on a yearly 

basis by assessing parameters in RNB and historical parameters.  

6.4.1 Integrations 

P1 and P2 emissions estimates based on historical parameters were integrated for each 

respective installation in the training and test group. These estimates were compared with 

reference to the integration of their respective historical emissions. These estimations were 

done with a lifetime and trimmed historical time frame. The trimmed time excluded years of 
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operation with poor data quality. Generally, these were years prior to 1999 where reporting of 

injection volumes did not require quality control; a fact that is evident through an examination 

of historical injection volumes. Additionally, years of operation which were more than 30 years 

in the installation’s lifetime were removed. External factors that affect an installation’s 

environmental performance and are not incorporated into the P1 and P2 modeling assumptions 

hence the exclusion of years above 30.  

P1 and P2 emissions estimates based on RNB parameters for each field were integrated. P1 

and P2 emission estimates were compared, separately, to RNB emissions estimated with 

reference to the integration of their respective historical emissions. 

P1 and P2 emissions estimates based on RNB parameters for each field were integrated and 

compared with reference to the integration of their respective RNB emissions predictions.  

P1 and P2 emissions estimates based on historical for each field were integrated. P1 and P2 

emission estimates were compared, separately, to RNB emissions estimated with reference to 

the integration of their respective historical emissions. 

P1 and P2 emissions estimates based on historical parameters for each field were integrated 

and compared with reference to the integration of their respective historical emissions. Data 

for this comparison was separated to compare results of P1 with RNB and P2 with RNB. 

Visual representations of the comparisons were produced with a dashed blue line representing 

a “perfect fit” and two solid blue lines representing errors/deviations of +/- 20%. The level of 

accuracy highlighted by these error lines aligns the results with DG3 in the CVP so that results 

are understood in a useful manner.  

From these comparisons, annual average emission deviations were calculated. The deviations 

were divided by the years assessed for each installation to produce an annual average model 

deviation.  

The validity of the emission integrations for P1 and P2 modeling was examined through an 

assessment of historical and modeled emission correlations for Njord, Statfjord and Oseberg 

Sør. These were selected randomly from the test set. Further assessment of the modeling results 

supports the validity of the models.  
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6.4.2 Modeled vs Historical  

Test data for the modeling assessment were selected based on appropriateness, i.e., low data 

quality and non-modellable years (year 1 and years after 30 years of operation) were removed 

from the modeling procedure when measuring modeling quality.   

Historical parameters for each year were used as inputs for P1 and P2 modeling for Njord, 

Statfjord and Oseberg Sør. The historical emissions were used to calculate percent errors for 

emissions estimations for each year. Historical emissions and percent errors were plotted 

against P1 and P2 estimates separately.  

The correlation between historical emissions and estimated emissions was calculated from this 

data for each installation assessed.  

6.4.3 Historical, RNB and Estimations of each Field 

Historical and RNB parameters were used as inputs for P1 and P2 modeling for Brage, Oseberg 

Sør, Statfjord, Veslefrikk, Njord and Volve. These six were the remaining Equinor NCS 

installations (which met the same criteria as the training set) after the training set was selected. 

Brage, however, is no longer operated by Equinor. Historical emissions and RNB predictions 

and emissions estimations from P1 and P2 were assessed, and the various emission values were 

plotted for each model.  

6.4.4 Source of Emission Deviations 

Predicted parameters for Volve from RNB 2009 were compared to historical parameters across 

the same time frame: 2008 to 2016. The deviation from expected was calculated in terms of a 

percentage. Volve was randomly chosen to serve as an illustrative example of the concept. The 

extent to which this concept effects NCS installations is outside the scope of the thesis. This 

single example may, however, be used to assume the same of deviations for other NCS 

installations.  

Predicted Emissions from RNB 2009 for Volve and historical emissions were compiled for the 

years 2008-2016 and were compared to P2 modeling estimations using the respective 

parameters of each.  
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7 Results  

7.1 Model Development 

50 models were developed and tested through the data-driven refinement process before a 

model was selected as representative for P1 modeling. 30 models were developed and refined 

through the same process before one was selected as a representative model for P2 modeling.  

7.2 Model Parameters 

Analysis of the sub-datasets yielded the emissions factors for each model’s respective 

production parameters. The quality of the models’ fit and quality of parameters were assessed 

to ensure that the models would properly assess data when applied to test data (Table 1). 

Table 1. Parameters and quality assessment measurements from P1 and P2 model development 

  Parameter Value 

Parameter (p-value) and Model 

Quality  

Parameter/Quality 

Measurement Units P1 P2 P1 P2 

Intercept Tonnes CO2 50830.70545 37438.05173 0.143424063 0.024903113 

Gas Export Tonnes CO2/Sm3 3.85936E-05 2.87289E-05 0.000502689 3.34037E-09 

Gas Injection Tonnes CO2/Sm3 3.88435E-05 4.73785E-05 0.00107825 1.82729E-11 

Water Injection Tonnes CO2/Sm3 0.015701426 0.01292028 0.000178577 1.5867E-05 

Oil Production  Tonnes CO2/bbl -- 0.000510105 -- 0.405136403 

Significance F -- -- -- 1.49379E-06 0.000510105 

Multiple R -- -- -- 0.962978898 0.952754851 

R squared -- -- -- 0.927328358 0.907741806 

The low (closer to zero) significance F values show that both P1 and P2 model parameter values 

were derived through the statistical process and not by chance. The P values for P2 model 

parameters are significantly lower than those of P1 meaning that the P2 parameter values are 

better fit to the training data.  

7.3 Model Application Quality  

7.3.1 Training Data 

7.3.1.1 P1 Modeling 

A total of 945 input points representing the training data were run through each model in the 

development process using P1 parameters. This modeling resulted in 315 outputs (emission 

estimates) for each model. 207 (66.1%) of the emissions estimates for the selected P1 model 
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were within +/- 25% of their true historical value. 252 (80.5%) of the emissions estimates for 

the P1 model were within +/- 50% of their true historical value. After removing input outliers 

(data known to be not suited for these models as mentioned before), 76.5% and 90.6% of the 

emissions estimates were within +/- 25% and +/- 50%, respectively, of their true historical 

value. 

7.3.1.2 P2 Modeling 

A total of 1260 input points representing the training data were run through each model in the 

development process using P2 parameters. The testing of this data in the 30 P2 models resulted 

in 9450 outputs (emission estimates). The model developed through the modeling process for 

P2 modeling found 206 (65.8%) of the emissions estimates were within +/- 25% of their true 

historical value. 261 (83.4%) of the emissions estimates for the P2 model were within +/- 50% 

of their true historical value. After removing input outliers 75.7% and 93.3% of the emissions 

estimates were within +/- 25% and +/- 50%, respectively, of their true historical value. 

7.3.2 Test Data  

The test data, after being narrowed for data quality and appropriateness, consisted of 156 input 

sets for P1 modeling and 111 sets for P2 which represents 33:67 and 26:74 test:training splits, 

respectively. Modeling of the test data using P1 modeling found that 96 estimations were 

labeled green while 33 were yellow and 11 were red. This resulted in 68% of the P1 estimations 

being within +/- 25% and 92% of the P1 estimations within +/- 50% of their historical emission. 

Analysis of P2 modeling on the test data found that the model 82 (73.9%) and 106 (95.5%) 

were within +/- 25% and +/-50% of their historical emissions, respectively.  
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7.4 Emission Integrations 

7.4.1 Explanation of Visualization Layout 

Emission integrations represent lifetime CO2 emissions estimations (y-axis) for an installation 

within an appropriate time horizon relative their respective the historical or RNB lifetime CO2 

emissions (x-axis). The dashed blue line represents perfect modeling while the solid blue lines 

represent +/- 20% deviation boundaries.  

7.4.2 Model Construction with Training Data 

  

Figure 7-1 Integration of emission predictions from P1 and P2 modeling using trimmed historical parameters referenced to 

historical emission baseline for trimmed training set data.  

 

Figure 7-2 Integration of emission predictions from P1 and P2 modeling using historical parameters referenced to historical 

emission baseline for the lifetime of the training set data. 

P1 and P2 emission estimations for training set installations assessed with reference to their 

historical emissions are shown in (Figure 7-1 and Figure 7-2). Estimations in Figure 7-1 
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represent a retrospective adjustment of the training data to meet quality requirements, while 

Figure 7-2 makes no such adjustment. Kristin, KV were consistently outside the error range in 

both trimmed and lifetime assessments. Gullfaks and Grane had estimations both inside and 

outside of the +/- 20% error region.  The results show large variance in years assessed between 

trimmed and lifetime assessments as well as deviations from historical emissions (Table 3). 

7.4.3 Validation with Test Data 

 

Figure 7-3 Integration of emission predictions from P1 and P2 modeling using trimmed historical parameters referenced to 

historical emission baseline for test set data.  

 

 

Figure 7-4 Integration of emission predictions from P1 and P2 modeling using historical parameters referenced to historical 

emission baseline for test set data. 

The accuracy of P1 and P2 emission estimates for the test-set data on an installation by 

installation basis based on historical parameters are referenced to historical emissions (the 
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dashed blue line) (Figure 7-3 and Figure 7-4). P1 estimations for Volve and Veslefrikk were 

outside of the error region in both trimmed and lifetime assessments (Figure 7-3). Each of the 

test installations had modeled emissions within 10% of their historical emission integration 

(Table 4).  

7.4.4 Integrations for Model Application  

 

Figure 7-5 Integration of emission predictions from RNB and P1 modeling of RNB parameters referenced to a historical 

emission baseline. 

  

Figure 7-6 Integration of emission predictions from RNB and P2 modeling of RNB parameters referenced to a historical 

emission baseline. 

Figure 7-5 and Figure 7-6 show what would have been predicted if P1 or P2 models were used 

to make emissions estimates, rather than RNB forecasting. Lifetime RNB estimations are 

shown relative to each model. The dashed blue line provides a reference of how close, P1, P2, 
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and RNB estimates were to approximating historical emissions. Five RNB estimations and nine 

estimates from P1 and P2 modeling were greater than +/-20% from their respective historical 

emissions. Nine of the 16 installations had P1 or P2 estimates where deviations from historical 

were less than that from RNB estimates. 13 of the 16 P1 and 10 of the 16 P2 emissions were 

within +/- 20% of RNB estimations (Table 6). 

 

Figure 7-7 Integration of emission predictions from P1 and P2 modeling using RNB parameters referenced to RNB emission 

baseline. 

The closeness of P1 and P2 emission estimates to those of RNB (the dashed blue line), given 

the same inputs is shown in Figure 7-7. Twelve P1 and nine P2 estimations were within the +/-

20% error range from their respective RNB emissions. Combining the results of P1 and P2 

found that six of the seventeen installations did not have emissions estimates within 10% of 

RNB emissions (Table 6).  
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Figure 7-8 Integration of emission predictions from RNB and P1 modeling using historical parameters referenced to the 

historical emission baseline. 

 

Figure 7-9 Integration of emission predictions from RNB and P2 modeling using historical parameters referenced to the 

historical emission baseline. 

The accuracy of P1 and P2 emission estimates using historical parameters and RNB estimates 

on an installation by installation basis is referenced to historical estimations (the dashed blue 

line) (Figure 7-8 and Figure 7-9). These figures show how well P1 and P2 modeling 

approximates historical emissions when the estimations are based on the parameters that their 

models are built upon. 12 RNB, 10 P1 and 11 P2 estimations were within the +/-20% error 

range from their respective historical emissions. 10 of 16 installations had emission estimations 

from P1 or P2 modeling that approximated historical emissions better than RNB (Table 7). 
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7.5 Installation Level Emission Estimations 

 

Figure 7-10 Historical emissions and P1 emission estimates based on historical parameters for Njord for the first 20 years of 

operation. Percent error (black) and time frame for which emissions were correlated (blue) are shown by dashed lines.  

 

Figure 7-11 Historical emissions and P2 emission estimates based on historical parameters for Njord for the first 20 years of 

operation. Percent error (black) and time frame for which emissions were correlated (blue) are shown by dashed lines. 

Emission estimates from Njord were within +/- 10% relative to historical emissions for years 

3-16. The same error window for P2 estimates exists from year 3 to 11. The P1 and P2 

estimations had a correlation of 0.96728 and 0.901314, respectively, with regards to the 

historical emissions from turbines (Figure 7-10 and Figure 7-11).  
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Figure 7-12. Historical emissions and P1 emission estimates based on historical parameters for Statfjord for years 19-40. 

Percent error (black) and time frame for which emissions were correlated (blue) are shown by dashed lines. 

 

Figure 7-13 Historical emissions and P2 emission estimates based on historical parameters for Statfjord for years 19-40. 

Percent error (black) and time frame for which emissions were correlated (blue) are shown by dashed lines. 

P1 and P2 emission estimations for Statfjord had a correlation of 0.93224 and 0.92776, 

respectively, with regards to the historical emissions within timeframes of 21-30 years. 

Deviation from historical emissions exceeds +/- 20% in years after 30 for both P1 and P2 

estimations (Figure 7-12 and Figure 7-13).  
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Figure 7-14 Historical emissions and P1 emission estimates based on historical parameters for Oseberg Sør for the first 19 

years of operations. Percent error (black) and time frame for which emissions were correlated (blue) are shown by dashed 

lines. 

 

Figure 7-15 Historical emissions and P2 emission estimates based on historical parameters for Oseberg Sør for the first 19 

years of operations. Percent error (black) and time frame for which emissions were correlated (blue) are shown by dashed 

lines. 

P1 and P2 estimations had a correlation of 0.93224 and 0.92776, respectively, with regards to 

the historical emissions within timeframes of 3-19 years of operation for Oseberg Sør. 

Deviation from historical emissions exceeds +/- 20% in years after 30 for both P1 and P2 

estimations (Figure 7-14 and Figure 7-15). 
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Table 2. Correlations between historical and P1 and P2 emission estimates for Njord, Statfjord and Oseberg Sør. 

 
Correlation of Modeled Emissions to 

Historical Emissions 
 

Installation P1 P2 

Njord 0.96728 0.901314 

Statfjord 0.93224 0.92776 

Oseberg Sør 0.9284 0.9455    

Correlations between the historical and modeled emissions show relatively strong correlations 

for both P1 and P2 modeling (Table 2).  

 

Figure 7-16 RNB predicted and historical emissions and P1 and P2 emission estimates based on RNB and historical parameters 

for Gullfaks from 2002 to 2017. 

Deviations for P1 modeling ranges from 1.3% to 27.1% representing emission deviations of 

10518 and 63735 tonnes of CO2, respectively. P2 modeling of RNB parameters yielded 

deviations of 0.8% to 11.7% representing emission deviations of 33154 and -113719 tonnes of 

CO2, respectively. P1 and P2 estimations based on historical data show overestimation relative 

to historical emissions (Figure 7-16). 

 

Figure 7-17 RNB predicted and historical emissions and P1 and P2 emission estimates based on RNB and historical parameters 

for Åsgard. 
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P1 and P2 modeling of RNB parameters for Åsgard closely follow RNB emission estimates. 

The first 20 years of predictions provided by RNB P2 gives and deviations ranging from 0.2% 

to 16.5% while P1 modeling resulted in deviations ranging from 0.01% to 42.7% during the 

same time frame. These deviations correspond to emissions errors of -1662, -26835, 112 and 

123893 tonnes of CO2, respectively (Figure 7-17).  

 

Figure 7-18 RNB predicted and historical emissions and P2 emission estimates based on RNB and historical parameters for 

Volve from 2008 to 2016. 

 

Figure 7-19 Deviation of RNB production parameters from historical parameter values for Volve. 

Emission estimates for Volve based on RNB parameters resulted in estimations above those 

observed historically for 2011, 2012, 2015 and 2016 (Figure 7-18). Parameter estimation 

deviations (Figure 7-19) show the significant positive deviation in parameter estimations for 

corresponding to the same years where RNB overestimated emissions. 
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7.6 New Field Estimations 

Johan Castberg is a field currently under development and is anticipated to begin production 

in the latter portion of 2022. The field is located in the Barents Sea within the NCS. Drainage 

strategy supporting reservoir production includes both gas and water injection. Platform-based 

energy demand will be supplied by gas turbines (Equinor, 2017). Despite not exporting gas 

volumes, the drainage and energy generation strategies for Johan Castberg make the installation 

fit for P1 and P2 modeling.  

 

Figure 7-20 RNB emission predictions and P1 emission estimates based on RNB parameters for Johan Castberg. Percent error 

(black) and time frame for which emissions were correlated (blue) are shown by dashed lines. 

 

Figure 7-21 RNB emission predictions and P2 emission estimates based on RNB parameters for Johan Castberg. Percent error 

(black) and time frame for which emissions were correlated (blue) are shown by dashed lines. 
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Figure 7-22 Percent deviation of P1 and P2 emission estimates based on RNB parameters from RNB emission predictions for 

Johan Castberg. 

P1 and P2 emission estimates using RNB parameters deviate from RNB estimates by a 

maximum of 11% and 10% respectively in years 3-30 of the lifetime for Johan Castberg (Figure 

7-22). P1 and P2 emission estimates had correlations of 0.83814 and 0.938271 with RNB 

emission estimations (Figure 7-20 and Figure 7-21). P2 estimates of Johan Castberg from year 

3-30 deviated 4.79% from RNB (Figure 7-22). 
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8 Discussion  

8.1 Data challenges 

The sourcing of data from various sources has created slight and unavoidable incongruencies. 

The assessment of the results is minimally affected. However, as a result, it behooves the reader 

to be provided with a more explanatory version of the results to avoid any conflation.  

Data quality and availability have had a structural impact on how data and results can be shown 

and interpreted. Injection data reported to the NPD for water and gas before 1999 did not have 

any quality control. This fact is apparent in the historical data records. The effect of this data 

issue is attributed to the poor match for emissions estimates for Statfjord in years 19 and 20 

(Figure 7-13). As a result, sizable amounts of data were precluded from being used in the model 

building process as well as from the model analysis process.  

For some of the older installations assessed in this thesis, the first 20 years of operation and the 

earliest years of predictions from RNB show minimal overlap. As such, it becomes difficult to 

compare integrated modeling and prediction results as P1 and P2 models are no longer 

assessing parameters within their intended forecasting horizon. Theoretical comparison, in 

these instances, through extrapolation of the results could support multiple conclusions. 

As an illustrative example, Gullfaks started production in 1986, as such the first 13 years of 

production data was not able to be utilized. Since the intention of the model is to predict within 

a 20-year horizon, that leaves a six-year window where the scope of the models developed 

within this thesis overlap with available data for the installation.   

A further complication in the comparison of RNB emission predictions to P1 and P2 

predictions is that RNB records do not go back to the start of many installations. Thus, the 

window for which fair comparisons between the P1 and P2 predictions to those of RNB are 

often slim. As a result, despite the ability of P1 and P2 modeling to closely approximate 

historical emissions, RNB modeling does appear to perform better in the integrations, but this 

is likely because the integrations are based on years that would disadvantage P1 and P2 

modeling and that RNB is continually adjust for each installation on an annual basis. While 

helpful in providing estimations, continual refinement is quite resource intensive.  
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8.2 Modeling 

8.2.1 Fitness 

The validity of the methodology derived in this thesis, that is, how well the modeling 

parameters are a reflection of real parameters, was found to be quite good with the ability of 

the models to replicate actual emissions from the training data from which they were derived 

(Figure 7-1 and Figure 7-2). This is also supported by the statistical fitness of the model 

parameters (Table 1). The fitness of the P1 and P2 test modeling to historical emissions, along 

with the statistical quality of the parameters, suggests that the assumptions made in building 

the models are not overly generous.  

Application of the models to test data (Figure 7-3 and Figure 7-4) show that the models are 

able to provide reasonable emission estimations for installations that were not influential in the 

statistical parameter development for P1 and P2 models, i.e., the training set data. This finding 

supports the modeling assumption that relative homogeneity exists between activity levels and 

resulting emissions for Equinor’s assets on the NCS.   

Emissions estimates from the modeling of RNB parameters yielded close approximations to 

emissions (Figure 7-5 and Figure 7-6). These estimations demonstrate the models’ ability to 

predict emissions as they would in practical application within the industry. The practical use 

and implementation of these models, using RNB parameters to generate emissions estimates, 

is, while possible, not a part of the models’ construction. The models were designed based on 

historical parameters and historical emissions, not RNB inputs. This could explain the 

deviations that are observed when emission estimates from RNB parameters are compared to 

historical emissions. RNB predictions for Kvitebjorn and Kristin display much better accuracy 

than P1 and P2 modeling (Figure 7-7). This suggests the need for high-pressure, high-

temperature fields to be assessed as a separate category, i.e., a P3 model should be developed 

specifically for production from this type of reservoir. Application of the models shows a good 

ability to approximate RNB for most other installations (Figure 7-7). 

Comparison of modeled emission integrations based on historical data and RNB emissions 

integrations relative to historical data shows that, in general, P1 and P2, using their intended 

inputs, perform better than RNB when approximating actual emissions (Figure 7-8 and Figure 

7-9).  

Correlations found between emission estimates for P1 and P2 modeling to historical emissions 

(Table 2) when assessing historical production parameters, gives strong evidence that the 
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integrated results for P1 and P2 modeling reflect the models’ ability to approximate emissions. 

This shows that the integrated results for P1 and P2 emissions estimates is not a result of a 

combination of overestimates and underestimations that, ultimately, average out. The same 

conclusion was made for modeling of RNB parameters through visual analysis of RNB 

predictions and emissions estimates based on RNB parameters (Figure 7-16 and Figure 7-17). 

Analysis of emission estimates for Volve (Figure 7-18) show an overestimation of historical 

emissions and predicted emissions beginning in 2010 and going through to 2013. Modeling of 

historical parameters does not show similar deviation meaning that P2 modeling provided a 

closer estimation of emissions than did RNB using RNB data. A possible explanation for this 

deviation is that the assumed parameters in RNB might not always provide the most accurate 

predictions. Comparison of RNB and historical production parameters applicable to P1 and P2 

modeling (Figure 7-19) shows, most notably, increasing trends in overestimations of gas export 

and oil production volumes. This trend continues until 2011, with two and three-fold 

overestimations, respectively, and aligns well with both modeling of RNB parameters and RNB 

emissions estimates. Inaccurate predictions, however, may be inherent to forecasting which 

accepts a certain level of uncertainty.  

8.2.2 Data Trimming 

Trimming of historical data to exclude low-quality data and years outside the models’ 

forecasting horizon improved deviations from historical. This benefit was generally observed 

in a single model, though two installations benefitted from trimming in both P1 and P2 models 

from improved data quality. Åsgard (P1, P2), Grane (P2), Heidrun (P1), Norne (P2) Snorre 

(P1), Visund (P1), Oseberg Sør (P1, P2), Velsefrikk (P2) and Volve (P2) had improvements in 

integrated emission estimates with trimmed data (Figure 7-1, Figure 7-2, Figure 7-3 and Figure 

7-4). 

8.2.3 Discrepancies  

8.2.3.1 Startup years 

Within the first two calendar years of operation, installations are working up to efficient 

production capacities. Additionally, data from MIS show that there is considerable energy 

demand from non-production, start-up related processes which are met by turbines. These 

factors skew the relationship between turbine emissions and production values that are assessed 

by the P1 and P2 models. As such, the P1 and P2 models do show discrepancies during these 
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first two years (Figure 7-10, Figure 7-11, Figure 7-14 and Figure 7-15) as the models are trained 

for more efficient production profiles than are exhibited during this period.  

8.2.3.2 Drainage Strategy 

Two drainage strategies, water and gas injection, were primary factors in both models in this 

thesis. Both models assume drainage strategy in making emissions estimates. Years where 

drainage strategy changes to pressure depletion, as in the case of Statfjord beginning in year 31 

of operation (when late life operations began), there is a marked change in the ability of the 

models to match historical emissions given historical production parameters (Figure 7-12 and 

Figure 7-13).  

8.2.3.2.1 Installations producing from High-Pressure High-Temperature Reservoirs 

The ability of the P1 and P2 models to estimate the historical emissions for KV and Kristin 

show less of a fit than the estimations for the other installations that were assessed. The 

apparent lack of accuracy for these three installations can be explained. Each of these 

installations produces through pressure depletion as they produce from high-temperature, high-

pressure reservoirs. This means that there is no gas or water injection at these fields. The P1 

and P2 models distribute the share of emissions across each of their respective model 

parameters through a statistical process. As such, fields that do not have one or more of the 

model parameters in their production are likely to have less accurate emission estimations and 

predictions from models generated through this and similar statistical methodologies. 

8.2.3.3 Aging 

The results of P1 and P2 modeling show that estimation of historical emissions is possible 

through these models. The model works particularly well with installations aged 3-20 years. 

Some installations show good modeling with these approaches in even later years of operation 

though this may be due to tie-backs to existing facilities; tie-backs deliver a non-aged source 

of oil and gas to the installation which has lower water content which is typical of younger 

fields. The delivery and processing of water from the well steam is assumed in the P1 and P2 

models. P1 and P2 models assume a steady state ratio for water-oil volumes that is consistent 

with water cuts typical of installations aged in the range of 1-7 years. However, as the amount 

of water in the well stream increases with age (Masnadi & Brandt, 2017), volumes of oil put 

into the models contains more water than is assumed by the modeling process. This 

phenomenon would result in an underestimation of emissions, which is observed for Åsgard 

with P1 and P2 modeling performed on the historical parameters (Figure 7-17). This is also 
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seen in the modeling of RNB parameters for Gullfaks and Åsgard (Figure 7-5 and Figure 7-6). 

RNB predictions and estimates based on RNB parameters for Gullfaks and Åsgard (Figure 7-7) 

show relative closeness, suggesting that RNB predictions also struggle to account for aging. 

Emission predictions from RNB also show this underestimation with both P1 and P2 models 

closely approximating RNB predictions.    

8.2.3.4 Scale 

Gullfaks is a large production facility relative to the others in the training set. Estimations for 

Gullfaks also show a lack of accuracy in relation to historical emissions integrations. An 

analysis of energy drivers has suggested that there is an economies-of-scale at play regarding 

the emissions generated to provide energy for injection volumes. As a result, the statistical 

modeling process used in this thesis would produce emission factors for injection volumes that 

are higher than what may be observed at Gullfaks. Similarly, the emission predictions would 

be overestimated for other large installations. Annual emission estimations show a continual 

and sizable overestimation for emissions for Gullfaks (Figure 7-16) as do the estimations for 

Statfjord (Figure 7-12 and Figure 7-13), another large field on the NCS. The overestimations 

for Statfjord appear less significant than Gullfaks.  This may be because historical emissions 

at Statfjord are elevated due to age related effects, thus making the historical emissions closer 

to the supposedly overestimated modeled emissions which might mask this phenomenon 

slightly.  

8.2.3.5 Comparability of Results 

8.2.3.5.1 Comparisons of RNB and P1 and P2 modeling 

Naturally, a comparison of RNB results to P1 and P2 modeling results would be a valuable part 

of this discussion. However, it is not possible, at least within the scope of this thesis, to 

understand why RNB predictions deviate or match historical. RNB emission estimations have 

not been made using the historical parameters; they are based on historical predictions. 

Deviations between historical RNB estimation parameters and predicted parameters could have 

a positive effect or negative effect on the accuracy of the emissions. Ultimately, it is not within 

the scope of this thesis to make that discernment.    

Comparison of RNB to historical emissions should be made with care in knowing that it is 

unlikely that the predicted parameters in RNB, which are the basis of RNB emissions, are the 

same as what was observed and recorded in the historical data. For this reason, it is expected 

that RNB emissions deviate from historical emissions, as shown in Figure 7-19. Similarly, the 
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comparison of P1 and P2 modeling, using RNB parameters, and RNB emissions predictions 

provides what the emissions prediction would have been had P1 or P2 modeling been used. 

However, a comparison of how well P1 and P2 modeling, with RNB parameters, performs in 

approximating historical emissions or RNB emissions is not the fairest of comparisons. This is 

because P1 and P2 models are based solely on historical data and are not meant to approximate 

RNB predictions, although they can.    

The accuracy of RNB emission estimates is predicated on the assessment’s ability to know the 

production volumes for a given year. It seems that this can be done with relative accuracy for 

short term forecasting; 5-7 years. That is to say, that even if an RNB emission estimation is, 

for example, 50% higher than what would occur for that year, the error might not have arisen 

from the inner mathematical workings of RNB modeling. Instead, the deviation could have 

arisen from anticipated production volumes that did not come to represent accurately the 

production that was to take place. Due to this, this thesis does not aim to understand the 

accuracy of RNB emission forecasts and the quantitative measure of this is outside the scope 

of this project. However, the application of the models to RNB parameters often results in 

emission approximations that are better than RNB predictions. 

8.2.3.5.2 Comparison of P1 and P2 Modeling  

The quality of the P2 model parameters (Table 1) fit its training data better than P1 model 

parameters did. An assumption in P1 modeling that emissions arising oil production can be 

simplified into other production processes may be the reason for this observation. The 

variability of gas to oil ratio across the training installations was not investigated but is 

generally quite variable on the NCS. Thus, assuming a highly variable into non-related 

parameters would likely lead to reduced fit.  

The fact that each model was derived from their own training sets (not the same one) could be 

another factor in the discrepancy between the quality of each model and their respective 

parameters.  

The limited ability to make conclusive comparisons between the models’ parameters affects an 

important question in furthering this study; “How many parameters are needed to provide a 

reasonable emission estimate?”. For the intents and purposes of this thesis, the models and the 

parameters that they involve are adequate. The increased modeling quality that is observed 

between P1 and P2 modeling speciously suggests that more data makes for better modeling. In 

this case, this statement makes sense, the additional parameter (oil production volume) is one 
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that is, understandably, essential to this study. However, it is possible that additional parameters 

may not be as essential or have consistent and strong relationships to emissions and therefore, 

may make models with additional considerations worse or at least unimproved. Further 

modeling and assessments could clarify this question should more accurate results be desired.    

8.3 Usability for CVP  

The integration of historical emission estimates for P1 and P2 models on the training dataset 

shows a good fit to historical emissions (Figure 7-1 and Figure 7-2). Additionally, per annum 

assessments of the same show high accuracy and correlation with understandable exceptions. 

Further assessment of the model upon test data shows that the model, rather consistently, 

predicts emissions within +/-20% or less, excluding explainable outliers. This degree of 

accuracy would suffice for all decision gates for the advancement of new projects in Equinor’s 

corporate value process. This assumes that lifetime emissions estimation requirements are 

developed to be equally as stringent as cost estimations in the corporate value process.  

Modeling of emissions for Johan Castberg, an installation not yet in operation shows that 

predictive modeling provides emission estimates that very closely resemble that which are 

included in RNB (Figure 7-20, Figure 7-21 and Figure 7-22). The strong correlation between 

RNB emission estimates and predictively modeled estimates suggests that the parameters 

assessed in P2 modeling capture the essential energy driving process well. The modeling results 

assessed over a forecast horizon of 30 years resulted in a deviation of 422037 tonnes of CO2 

(14068 tonnes/year), representing a deviation of 4.9% from RNB projections. This suggests 

that the P2 emission estimating process gives results with high similarity to RNB estimations.    

8.4 Consideration of Model Limitations  

The assumptions of this model and its limitations should be understood when performing 

assessments. The specific models in this thesis are generalizations and are limited by 

installation age and drainage strategy. However, other models could be developed using the 

same methodology to make estimations for the types of installations where estimations in P1 

and P2 modeling chronically deviate from historical emissions.   

The installations assessed in this thesis all use a deviant of the General Electric LM 2500 

turbine, a single cycle turbine. The average efficiency of those in use on Equinor operated 

installations is 37.1% with efficiencies ranging from 35% - 39%. The efficiency of a turbine 

directly affects the amount of CO2 emissions generated from production processes. As such, 

this efficiency range is assumed in the models. Installations using gas turbines with efficiencies 
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outside of this range or combined cycle turbines will experience deviations in emission 

estimations that are inversely proportional to the deviation in turbine efficiency of the turbines 

at the installation.  

Likewise, installations where turbine generated energy is supplemented by an external energy 

source, particularly through electrification, will also have deviations in emission assessments 

from P1 and P2 modeling. The CO2 equivalent of the energy demand met by external sources 

could, however, be factored in after P1 and P2 modeling. 

Further, due to the relationship between energy demand and emissions, the P1 and P2 models 

could be used to estimate the quantity of energy required to offset emissions to meet a desired 

intensity or to eliminate emissions resulting from meeting energy demands.  

These abilities will be highly useful as an assessment of electrification is now required for all 

new development projects on the Norwegian Continental Shelf.  
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9 Conclusion 

Forecasting of emissions in the oil and gas industry is used for licensing, mitigation, budgeting, 

communication and policy alignment. However, the methods currently employed in the 

industry are resource intensive and encumber the progression that needs to be made in meeting 

climate change challenges and global energy demand. This study has developed models using 

statistics and big data, which provide potential solutions for these problems. The models give 

close emission estimates using fewer inputs than have been required in with other forecast 

models while also meeting accuracy requirements of established standards, meaning that the 

models could be integrated into existing workflows. As a result, new modeling techniques may 

allow for improved process efficiencies in meeting future energy needs. The strengths and 

weakness of the models produced were understood and provide reason and aim for further 

development and investigation. Moreover, the success of this modeling endeavor should be 

seen as a way that data can be used to benefit both the industry and environment through greater 

ease with which emission estimates can be made. These results give a green light for further 

investigation into CO2 emission modeling which should be carried out to refine the models in 

this thesis or to devise new models using big data and digitalization to provide other new 

solutions for environmental accounting and industries.  
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Appendix 

Table 3. Detail of results represented in Figures 7-1 and 7-2. 

      Average Annual Deviation (Tonnes CO2)  % Error Years Assessed 

 
Years Assessed Trimmed Lifetime Trimmed Lifetime 

Installation Trimmed Lifetime P1 P2 P1 P2 P1 P2 P1 P2 

Åsgard 15 20 2555 2540 -43162 -87541 0.33 -4.44 -5.58 -11.31 

Grane 15 17 41684 16149 15935 37903 21.89 8.48 9.38 22.32 

Gullfaks 7 19 279937 217219 312050 216327 32.87 25.51 26.43 18.32 

Heidrun 14 25 4512 -186613 -14860 -35178 1.48 -4.36 -5.24 -12.40 

Kristin 12 15 -117617 -1750168 -93012 -118547 -46.70 -57.91 -43.39 -55.30 

KV 15 15 179037 1622530 167847 101408 183.36 110.78 183.36 110.78 

Norne 20 23 11967 -520549 8652 -24287 4.24 -9.21 3.41 -9.57 

Snorre 13 24 12815 13856 14303 -7285 3.57 0.30 3.72 -1.89 

Visund 17 21 -3340 -26186 -10518 -9089 -1.58 -0.73 -5.51 -4.76 
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Table 4. Detail of results represented in Figures 7-3 and 7-4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Average Annual Deviation (Tonnes 

CO2)  % Error Years Assessed 

 
Years Assessed Trimmed Lifetime Trimmed Lifetime 

Installation Trimmed Lifetime P1 P2 P1 P2 P1 P2 P1 P2 

Statfjord 10 20 97272 39264 7579 -17959 1.98 -4.69 9.10 3.67 

Oseberg Sør 17 19 -6731 -28111 -12050 -33035 -3.52 -14.70 -6.46 -17.71 

Brage 14 21 11449 -22458 7633 -14972 6.49 -12.73 6.49 -12.73 

Veslefrikk 20 30 33575 5156 27233 6758 29.24 4.49 32.28 8.01 

Njord 18 18 3481 -9897 3481 -9897 2.43 -6.90 2.43 -6.90 

Volve 8 9 30570 950 27832 -1313 34.83 1.08 31.65 -1.49 
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Table 5. Detail of results represented in Figures 7-5 and 7-6. 

 

 

 

 

  

Average Annual Deviation 

(Tonnes CO2)  

% Error Years Assessed 

from Historical  

% Deviation from 

RNB Estimate 

Installation 

Years 

Assess

ed RNB P1 P2 RNB P1 P2 P1 P2 

Brage 6 -27475 -32689 -76984 -9.95 -11.84 -27.88 -1.89 -16.04 

Gullfaks 13 -328757 -295449 -349029 -41.33 -37.14 -43.88 4.19 -6.74 

Heidrun 17 43016 107474 51307 13.79 34.45 16.45 20.66 -18.00 

Heimdal 8 8304 -82463 -97338 5.95 -59.07 -69.73 -65.02 -10.66 

Norne 12 2170 10921 -34002 0.83 4.18 -13.02 3.35 -17.20 

Oseberg Sør 17 -4158 31260 3270 -2.17 16.35 1.71 18.52 -14.64 

Snorre 17 47546 131663 86863 11.31 31.31 20.65 20.00 -10.65 

Statfjord 12 145018 195107 79377 22.71 30.56 12.43 7.84 -18.13 

Veslefrikk 23 7864 40078 26177 11.84 60.33 39.41 48.50 -20.93 

Visund 17 39966 35527 23033 18.90 16.80 10.89 -2.10 -5.91 

Åsgard 16 -224222 -160456 -221737 -26.24 -18.78 -25.95 7.46 -7.17 

Grane 16 -20677 15431 35291 -11.46 8.55 19.56 20.01 11.01 

Kristin 14 -793 -78907 -108662 -0.35 -34.36 -47.31 -34.01 -12.95 

Kvitebjørn 14 -43945 153300 94552 -43.45 151.56 93.48 195.00 -58.08 

Njord 11 6092 -12698 -28216 4.72 -9.85 -21.88 -14.57 -12.04 

Volve 9 22622 31191 10048 25.73 35.47 11.43 9.74 -24.04 
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Table 6. Detail of results represented in Figures 7-7 

  

Average Annual Deviation (Tonnes 

CO2)  

% Error Years 

Assessed 

Installation 

Years 

Assessed P1 P2 P1 P2 

Brage 6 -6616 -34888 -4.29 -22.64 

Gullfaks 13 33308 -20272 7.14 -4.34 

Heidrun 17 64458 8291 18.16 2.34 

Heimdal 8 -90767 -105643 -61.37 -71.43 

Norne 12 8751 -36172 3.32 -13.74 

Oseberg Sør 17 35419 7429 18.93 3.97 

Snorre 17 84116 39317 17.97 8.40 

Statfjord 12 79612 -53769 9.34 -6.31 

Veslefrikk 23 32213 18312 43.36 24.65 

Visund 17 -4440 -16933 -1.77 -6.74 

Åsgard 16 63766 2485 10.12 0.39 

Grane 16 36108 55968 22.60 35.03 

Kristin 14 -78114 -107869 -34.13 -47.13 

Kvitebjørn 14 197245 138497 344.81 242.11 

Njord 11 -18790 -34308 -13.92 -25.41 

Volve 9 8569 -12574 7.75 -11.37 

Johan Castberg 31 32163 11480 11.88 4.24 
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Table 7. Detail of results represented in Figures 7-8 and 7-9. 

  

Average Annual Deviation 

(Tonnes CO2) 

% Error Years Assessed 

Installation 

Years 

Assessed RNB P1 P2 RNB P1 P2 

Brage 6 -27475 11468 -76984 -9.95 4.15 -13.90 

Gullfaks 13 -328757 253746 -349029 -41.33 31.90 23.09 

Heidrun 17 43016 -61897 51307 13.79 -19.84 -17.46 

Heimdal 8 8304 0 -97338 5.95 n/a n/a 

Norne 12 2170 16835 -34002 0.83 6.45 -11.32 

Oseberg Sør 17 -4158 -11561 3270 -2.17 -6.04 -14.70 

Snorre 17 47546 13303 86863 11.31 3.16 -3.37 

Statfjord 12 68728 12632 79377 8.77 1.98 -4.69 

Veslefrikk 23 7864 22755 26177 11.84 34.26 10.16 

Visund 17 39966 5125 23033 18.90 2.42 -0.73 

Åsgard 16 -224222 -65611 -221737 -26.24 -7.68 -10.87 

Grane 16 -20677 16931 35291 -11.46 9.38 22.32 

Kristin 14 -793 1915521 -108662 -0.35 -40.43 -40.43 

Kvitebjørn 14 -43945 3954456 94552 -43.45 179.25 179.25 

Njord 11 6092 -4908 -28216 4.72 -3.81 -14.62 

Volve 9 22622 27832 10048 25.73 31.65 -1.49 
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Table 8. RNB annual report used for each installation 

Installation  RNB Annual Report 

Brage 2004 

Gullfaks 2004 

Heidrun 2004 

Heimdal  2004 

Norne 2004 

Oseberg Sør 2004 

Snorre 2004 

Statfjord 2004 

Veslefrikk 2004 

Visund 2004 

Åsgard 2004 

Grane 2005 

Kristin 2005 

KV 2005 

Njord 2008 

Volve 2008 

Johan Castberg 2019 

 


