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Abstract

The Kalman filter is used to estimate the parameters and forecast the

observations in a dynamic Nelson-Siegel model a linear Gaussian state

space representation for futures contracts on the commodities oil, natural

gas, cotton, copper, gold and sugar. The three-factor Nelson-Siegel model

is compared to three-factor Nelson-Siegel model with seasonality terms to

check for seasonality in the different commodities. Using Wilks’ Theorem

we find that natural gas, cotton and sugar has an improved model fit by

adding the seasonality term. The Kalman filter is shown to be a great

model fit for most commodities except for natural gas and cotton, there

needs to be further studies to find out why the parameter estimates for

these two commodities are not as expected. For the forecasting of the

observations, the Kalman filter performs very well with both three-factor

model Nelson-Siegel and the three-factor Nelson-Siegel with a seasonality

term. It was not possible to forecast the observations for sugar for the

three-factor Nelson-Siegel model because the variance matrix of the pre-

diction error is singular. Thus it does not have an inverse which is crucial

for the Kalman filter. This should also be studied further to figure out

why this happens for the sugar data.
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1 Introduction

In this thesis I will look at estimating linear Gaussian state space models and

forecasting prices of futures contracts on commodities using the Kalman filter.

It is very interesting to look at predicting such prices and the results of these

predictions are very valuable, especially for risk managers and producers within

the different markets where prices are predicted. The data that I will work with

in this thesis are future contracts for crude oil, natural gas, copper, cotton, gold

and sugar, they are large data sets that consist of prices and maturities of future

contracts on the different commodities. These are natural commodities to look

at as they are some of the most traded commodities in the world. For example,

the prices of crude oil are also an indicator of how the economy in the world

is doing. For conveniency regarding normal approximations I have worked with

log-prices instead of prices in my analyses.

To get an understanding of how and why the different analyses are done I

will introduce the reader to some important theory to be able to understand

the analyses in this thesis. The linear Gaussian state space model builds upon

the latent variable model, hence to get a good understanding of what a linear

Gaussian state space model is we need to start with establishing what a latent

variable model is. In this thesis I am focusing on the Nelson-Siegel model,

which is a dynamic factor model. To understand the Nelson-Siegel model it

is therefore important to have a look at some of the foundation of dynamic

factor models. Further on I will then look at what a linear Gaussian state space

model is before I present the Nelson-Siegel model and how it looks in linear

Gaussian state space form. The next step, after we have an understanding of

what a linear Gaussian state space model with the Nelson-Siegel model as the

observation equation is, we can go on and look at the method for estimating the

parameters in the linear Gaussian state space model, namely the Kalman filter.

To get an understanding of how the filter works I will derive the equations in the

filter with regards to a linear Gaussian state space model. Further I will look

at forecasting the observed data with the use of the Kalman filter. I will also
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briefly look at maximum likelihood estimation for parameter estimation and

goodness of fit of a model. And lastly I will present the Delta method, which

will be used to present a confidence interval of the most important parameters

in the data treatment.

All analyses have been done using the R programming language, there are

several packages that utilizes a Kalman filter, but none of them handles the

seasonal model used in this thesis to a satisfying degree. As such I have written

my own Kalman filter in R and have used the package KFAS as a reference

point for the three-factor model. The results presented in this thesis will solely

be from my own Kalman filter code.

In this thesis I am following the notation used in James Durbin (2012), this

book has also been the main source of information for the thesis.
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2 Latent variable models

We have our data of futures contracts on commodities, the prices are different

at different times. What is the cause of this? Can we observe some data that

can explain why the prices are volatile? If not, how can we explain the volatility

in our dataset? This is where latent variable models comes in to the picture.

Firstly, what is a latent variable? A variable that you cannot observe or

measure directly and which is presumed to have an effect on a directly observed

variable (manifest variable), is called a latent variable. Since one cannot measure

a latent variable they need to be described by other variables that can be ob-

served directly, for example quality-of-life is a latent variable in economics. One

can’t observe quality-of-life directly, it needs to be described by other manifest

variables such as wealth, education, employment, physical and mental health

etc. A latent variable is typically used in a latent variable model. A latent

variable model is a statistical model which is used to describe the relations be-

tween a set of manifest variables and a set of latent variables. These types of

models are used with a variety of goals in mind. Latent variable models can

be used to explain the effect some unobserved covariates have on the observed

variable. Another use can be to assume the latent variable is the “true” value of

the observed variable and the directly observed variable is a “disturbed” version,

thus one can account for measurement errors. There are a lot of distinct ways

that a latent variable model can be applied to problems. A lot of well known

models are latent variable models, such as General linear mixed models, Fac-

tor analysis models, Models for longitudinal/panel data based on a state-space

formulation etc. An basic assumption that is made for latent variable models

is local independence. This means that the observable items are conditionally

independent of each other given an individual score on the latent variables.

2.1 Dynamic factor models

Factor models are a special form of latent-variable model. A factor model is a

model where the observed vector is divided into two unobserved parts, which are

3



a systematic part and an error part. The different components in the error part

is considered to be independent of each other. The systematic part is a linear

combination of different factor variables. In a factor model both the manifest

variables and the latent variables are continuous, and their relationship is linear.

The basic form of a factor model is presented in equation 2.1:

yi = Λfi + ui (2.1)

where the latent variable fi, is a vector of m components, the components of

fi are sometimes referred to as common factors. The observation vector,yi, is

of dimension p. The vector yi represents here a zero-mean vector that consists

of observered or measured traits of subject number i, for i = 1, ...., n. Λ is a

p×m matrix of factor loadings and ui is a noise vector of p components, with

mean equal to 0 and a diagonal variance matrix Σu. ui and fi is assumed to be

mutually and serially independent. We also assume that the components of ui

are uncorrelated. The variance of yi, Σy is presented in 2.2:

V ar (yi) = Σy = ΛΣfΛ′ + Σu (2.2)

If one is to use a factor analysis in a time-series case, the observations in the

vector yi will then correspond to a time period t instead of a subject i. Thus

we have yt and not yi. Now, the observations gets a time dependence to handle.

This can be solved by substituting the assumption of serially independence for

ft with an assumption of serial dependence. One can, for example, make the

assumption that ft is modelled as a vector autoregressive process (VAR). There

is also the case where one can let ft depend liearly on state vector αt (which

we will look more at in the next section), that would be on the form:

ft = Utαt,

where Ut usually is a known matrix.

In this thesis we are looking at state space models and we can treat the

dynamic factor model as one. The components of the state vector are the latent

4



factors in the model. Usually, the size, p, of the observation vector, yt, is much

larger than the size of the state vector, m, which is usually small, thus we have

p >> m. The dynamic factor model described in 2.3

yt = Λft + ut (2.3)

is a special case of a linear Gaussian state space model (which we will describe

in detail in the next section), with ft = Utαt, ut = εt and εt ∼ N (0, Ht). Thus

the factor model that will be described in the linear Gaussian state space model,

3.1, in the next section is:

yt = Ztαt + εt (2.4)

where Zt = ΛUt.

5



3 Linear Gaussian state space models

3.1 Introduction

In this section I will look at linear Gaussian state space models, how they are

built up and how they can be used in time series analysis. A model where state

variables are used to describe a system of first-order differential or difference

equations is called a state space model. A state space model is built up of two

equations, one which describes how a latent process changes over time, the other

describes how the latent process is measured at each time-step. State variables

are not themself being measured or observed during data collection, but they

can be recreated from the observed data. The general linear Gaussian state

space model can be written in many different ways, in 3.1 the form that is used

in this thesis is presented:

yt = Ztαt + εt, εt ∼ N(0, Ht)

αt+1 = Ttαt +Rtηt, ηt ∼ N(0, Qt)
(3.1)

where yt is a p × 1 vector of observations called the observation vector, and

αt is an unobserved m × 1 vector called the state vector. How the system

progresses over time is determined by αt, specifically by the second equation in

(3.1). Eventhough the system progression is determined by αt, we can’t observe

αt directly so the analysis must therefore be based on the observations yt. The

first and second equation in (3.1) are called the observation equation and the

state equation respectively. Zt, Tt, Rt, Ht and Qt are assumed to be known

matrices and the error terms εt and ηt are assumed to be independent of each

other at all points in time and serially independent. The matrices Zt and Tt−1

can be allowed to be dependent on y1, ..., yt−1. It is assumed that the initial

state vector α1 is N(a1, P1) independently of ε1, ..., εn and η1, ..., ηn, where a1

and P1 are assumed to be known. Some or all of the matrices Zt, Tt, Rt, Ht

and Qt will in actuallity usually depend on elements of a parameter vector ψ,

which is unknown. This vector will be estimated using maximum likelihood

estimation.

6



The observation equation in (3.1), has the strucuture of a linear regression

model where αt, the coefficient vector, differs over time. The state equation

in (3.1) is representing a first order vector autoregressive (VAR) model. It’s

the Markovian nature of this model which accounts for many of the elegant

properties of the state space model. The matrice Rt is the identity in many

applications, in others it is possible to define η∗t = Rtηt and Q∗ = RtQtR
′
t,

then one can continue without explicit inclusion of Rt and make the model look

simpler. If Rt is m × r with r < m and Qt is nonsingular, then there is an

advantage in working with nonsingular ηt instead of singular η∗t . If we assume

that Rt is a subset of the columns of Im; in that case Rt is called a selection

matrix because it selects the rows of the state equation which have nonzero

disturbance terms; however, much of the theory remains valid if Rt is a general

m×r matrix. To keep it simple I will summarize the dimensions of the different

parts in 3.1.

Vector Matrix
yt p× 1 Zt p×m
αt m× 1 Tt m×m
εt p× 1 Ht p× p
ηt r × 1 Rt m× r

Qt r × r
a1 m× 1 P1 m×m

Table 1: Dimensions of state space model 3.1

3.2 Local level model

The local level model is a special case of the general linear Gaussian state space

model. The local level model has the form:

yt = αt + εt, εt ∼ N(0, σ2
ε )

αt+1 = αt + ηt, ηt ∼ N(0, σ2
η)

(3.2)

for t = 1, ..., n, where the ε′ts and η′ts are mutually independent and independent

of α1.

The first line in 3.1 and 3.2 are the observation equation. An observation
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equation is an equation that expresses measured values of some function of one

(or more) unknown quantities. The unknown quantity that we are looking for

here are αt which is a random walk. The local level model may have a simple

form, but it is not a special case made just for showing the principles of state

space analysis. It provides the basis for the analysis of important real problems

in practical time series analysis. The model shows the characteristic structure

of a state space model in which there is a series of unobserved values α1, ....., αn

called states.

3.3 Time series models

A time series is a set of observations y1, ..., yn ordered in time. The basic model

for representing a time series is the additive model:

yt = µt + γt + εt, t = 1, ...., n (3.3)

In this model µt is a slowly varying component called the trend, γt is a

periodic component of fixed period called the seasonal and εt is an irregular

component called the error or disturbance. In many applications, particulary in

economics, the components combine multiplicatively, this the gives the model:

yt = µt ∗ γt ∗ εt (3.4)

This model can be reduced to model (3.3) by working with logged values of

each component.

A structural time series model is a model where the trend, seasonal and error

terms in model (3.3), and other relevant terms, are modelled explicitly. In this

section we will look at the cases where yt is univariate. Later we will look at

cases where yt is multivariate.
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3.3.1 Trend Component

Model (3.2) is a simple form of a structural time series model. If we add a slope

term νt, which is generated by a random walk we have this model:

yt = µt + εt εt ∼ N(0, σ2
ε )

µt+1 = µt + νt + ξt ξt ∼ N(0, σ2
ξ )

νt+1 = νt + ζt ζt ∼ N(0, σ2
ζ )

(3.5)

This model is called the local linear trend model. If ξt = ζt = 0 then

νt+1 = νt = ν, and then we have µt+1 = µt + ν. So the trend is exactly linear

and model (3.5) reduces to the deterministic linear trend plus noise model. The

form of model (3.5) with σ2
ξ > 0 and σ2

ζ > 0 makes it so that the trend level

and slope varies over time. An objection that is made by looking at the series

of values of µt that is obtained by fitting model 3.5 is that the values doesn’t

look smooth enough to represent the idea of a trend. To meet this objection we

can set σ2
ξ = 0 at the outset and then fitting the model under this restriction.

The same effect can essentially be obtained if, in place of the second and third

equation of 3.5, we use the model ∆2µt+1 = ζt, that is µt+1 = 2µt − µt−1 + ζt

where ∆ is the first difference operator that is defined by ∆xt = xt − xt−1.

Model 3.5 can be written in the form:

yt =
(

1 0
) µt

νt

+ εt µt+1

νt+1

 =

 1 1

0 1

 µt

νt

+

 ξt

ζt

 (3.6)

this is a special case of model 3.1.

3.3.2 Seasonal Component

The seasonal component of a time series is the part of the variations in the

series that represents fluctuations occuring at specific intervals, examples of

these intervals may be weekly, monthly or quarterly. The seasonal component is

also known as the seasonality of a time series. If we are to model the seasonality

9



in 3.3, suppose we have s ’months’ per ’year’. Then we have s = 12 for monthly

data, for quarterly data we have s = 4 and, when modelling the weekly pattern

we have s = 7 for daily data. We can model the seasonal values for months 1

to s by the constants γ∗1 , ...., γ∗s , where Σsj=1γ
∗
j = 0, if the seasonal pattern is

constant over time. For the jth ’month’ in ’year’ i we have γt = γ∗j where t =

s (i− 1) + j for i = 1, 2, ... and j = 1, ..., s. It then follows that Σs−1j=0γt+1−j = 0

so γt+1 = −Σs−1j=1γt+1−j with t = s − 1, s, .... In practice we often don’t want

the seasonal pattern to be constant, we want to allow it to change over time.

One way of getting the seasonal pattern to change over time is to add an error

term, ωt, to this relation. Then we get the model:

γt+1 = −
s−1∑
j=1

γt+1−j + ωt, ωt ∼ N
(
0, σ2

ω

)
(3.7)

for t = 1, ...., n. Harrison and Stevens (1976) suggested and alternative way

of achieving the seasonality to change over time. They suggested to denote

the effect of season j at time t by γjt and then let γjt be generated by the

quasi-random walk

γj,t+1 = γjt + ωjt, t = (i− 1) s+ j, i = 1, 2, ..., j = 1, ...., s, (3.8)

with an adjustment to make sure that every successive set of s seasonal com-

ponents sums to zero. Often, it is preferable to express the seasonality in a

trigonometric form, for a constant seasonality one such form is:

γt =

[s/2]∑
j=1

(
γ̃jcosλjt+ γ̃∗j sinλjt

)
, λj =

2πj

s
, j = 1, ...., [s/2] (3.9)

where [a] is the largest integer ≤ a and where the quantities γ̃j and γ̃∗j are given

constants. For a seasonality that changes over time we can make this stochastic

by replacing γ̃j and γ̃∗j by these random walks:

γ̃j,t+1 = γ̃jt + ω̃jt, γ̃∗j,t+1 = γ̃∗jt + ω̃∗jt, (3.10)

10



where ω̃jt and ω̃∗jt are independent N
(
0, σ2

ω

)
variables, with j = 1, ..., [s/2] and

t = 1, ...., n. An alternative trigonometric form is the quasi-random walk model:

γt =

[s/2]∑
j=1

γjt, (3.11)

where
γj,t+1 = γjtcosλj + γ∗jtsinλj + ωjt,

γ∗j,t+1 = −γjtsinλj + γ∗jtcosλj + ω∗jt, j = 1, ..., [s/2]
(3.12)

with the ωjtand ω∗jt terms are independent N
(
0, σ2

ω

)
variables. When the

stochastic term in 3.12 are zero, the values of γt defined by model 3.11 are

periodic with the period being s. This can be shown by taking

γjt = γ̃jcosλjt+ γ̃∗j sinλjt,

γ∗jt = −γ̃jsinλjt+ γ̃∗j cosλjt,
(3.13)

which satisfy the deterministic part of 3.12. The required result follows con-

sidering γt that is defined by 3.9 is periodic with the period being s. Thus the

deterministic part of 3.12 gives a recursion for 3.9. There is an advantage of

choosing 3.11 over 3.10, the advantage is that the in 3.11 the contributions of

the errors ωjt and ω∗jt aren’t amplified by the trigonometric functions cosλjt and

sinλjt. Model 3.7 is regarded as the main time domain model and model 3.11 is

regarded as the main frequency domain model for the seasonality in structural

time series analysis.

In our model the seasonality term will be presented in the state equation as

a mean adjustement added to the model 3.1, this gives the model 3.14:

yt = Ztαt + dt + εt εt ∼ N (0, Ht)

αt+1 = Ttαt + ct + ηt ηt ∼ N (0, Qt)

α1 ∼ N (a1, P1)

(3.14)

where dt is a p × 1 vector and th ct is m × 1 vector. In the case of this thesis

dt = 0 and ct is the seasonality term in our model.

11



4 Nelson Siegel model

Now that we have an understanding of what a dynamic factor model and a linear

Gaussian state space model is we can move on with the model that is going to

be used in this thesis. In this section I will talk about the Nelson-Siegel model.

I will look at the three-factor Nelson-Siegel model and a three-factor Nelson-

Siegel model with seasonality. There are more variants of the Nelson-Siegel

model, such as a four- and five-factor model. These will not be considered due

to them being computationally expensive. For a discussion on these models

I refer you to Svensson (1994), Christensen et al. (2009) and de Rezende and

Ferreira (2013).

4.1 Three-factor model

For the term structure of futures contracts on commodities, I will look at a

dynamic version of the Nelson-Siegel model as was suggested by Grønborg and

Lunde (2016). A three factor Nelson-Siegel model has the following form in

terms of a linear regression model:

yt(τi) = β1t + β2t

(
1− e−λτi

λτi

)
+ β3t

(
1− e−λτi

λτi
− e−λτi

)
+ εit, i = 1, ...., Nt

(4.1)

where yt (τi) denotes the price for future contract i with the maturity τi

that is observed at time period t, (t = 1, ...., T ). εit denotes the error term

and βt = (β1t, β2t, β3t)
T are interpreted as factors capturing the level (β1t) ,the

slope (β2t) and the curvature (β3t) of the yield curve. The parameter λ > 0

determines the exponential decay of the second and third component in (4.1).

τi is the maturity of yt (τi). We can write this model as a linear Gaussian state

space model in the following way:

yt = Ztβt + εt, εt ∼ N (0,Σy)

βt+1 = βt + ηt, ηt ∼ N(0, σ2
η)

(4.2)
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with Σy = σ2
yI.

For the case with the three-factor model with seasonality, the observation

equation is the same. The seasonality term is added to the state equation. The

three-factor model with seasonality is presented in 4.3, this model is referred to

as the seasonal model in the rest of this thesis:

yt = Ztβt + εt, εt ∼ N (0,Σy)

βt+1 = βt + ct + ηt, ηt ∼ N
(
0, σ2

η

) (4.3)

with−π ≤ Ω ≤ π. The seasonality term is trigonometric, ct =


θ1cos

(
2πt
s + Ω

)
θ2cos

(
2πt
s + Ω

)
θ3cos

(
2πt
s + Ω

)
.
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5 Kalman filter

5.1 Introduction

As the linear Gaussian state space and the dynamic factor models have been

established, our next task is to estimate the β’s in the Nelson-Siegel model. This

is where the Kalman filter comes in. A Kalman filter is a numerical method

that uses different observations over time and produces estimates of unknown

variables. The observations may include statistical noise and other inaccuracies

and the Kalman filter uses a recursive method to compute a statistical optimal

estimate. The filter is named after Rudolf E. Kálmán, one of the primary

developers of this theory in the late 50s and early 60s. The Kalman filter has

several applications in technology. Navigation, guidance and control of vehicles,

especially aircraft and spacecraft is an area where the Kalman filter is used.

Kalman filter is also a widely applied concept in time series analysis that are

used in such fields as econometrics and signal prosessing.

In this section we put the Kalman filter under the microscope and derive the

Kalman filter for a linear Gaussian state space model, (3.1).

5.2 Derivation of the Kalman filter

Before we can derive the Kalman filter recursions we need a little background

theory. I will present som results that are well known in regression theory. If we

letX be normally distributed with a nonsingular variance matrix, X ∼ N (µ,Σ).

From Anderson (2003) we have a theorem as such:

Theorem 2.5.1. Let the components of X be divided into two

groups composing the subvectors X(1) and X(2). Suppose the mean

µ is similarly divided into µ(1) and µ(2), and suppose the covariance

matrix Σ of X is divided into Σ11,Σ12,Σ22, the covariance matrices

of X(1), of X(1) and X(2), and of X(2), respectively. Then if the

distribution of X is normal, the conditional distribution of X(1)

given X(2) = x(2) is normal with mean µ(1) + Σ12Σ−122

(
x(2) − µ(2)

)
14



and covariance matrix Σ11 − Σ12Σ−122 Σ21.

To summarize this theorem, conditional distributions that is derived from joint

normal distributions are normal. The means of such distributions does only

depend linearly on the variates being held fixed. The variances and covariances

does not depend on the values of the variates at all. Let x1 and x2 be joint

normally distributed random vectors with:

E

 x1

x2

 =

 µ1

µ2

 , V ar

 x1

x2

 =

 Σ11 Σ12

Σ′12 Σ22

 , (5.1)

where Σyy a nonsingular matrix. Then the conditional distribution x|y is a

normal distribution with a mean vector and variance matrix:

E (x1|x2) = µ1 + Σ12Σ−122 (x2 − µ2) , (5.2)

V ar (x1|x2) = Σ11 − Σ12Σ−122 Σ′12. (5.3)

When Σyy is singular, 5.2 and 5.3will still be valid if we interpret Σ−1yy as a

generalised inverse.

Now we want to produce an estimator for the latent variable αt and αt+1

given the data Yt for t = 1, ...n. We have that the observations and the states

are Markovian:

P (yt|α1, ...., αt, Yt−1) = P (yt|αt) , (5.4)

and

P (αt+1|α1, ...., αt, Yt) = P (αt+1|αt) . (5.5)

I will throughout this part use these definitions from James Durbin (2012):

at|t = E (αt|Yt) , (5.6)

at+1 = E (αt+1|Yt) , (5.7)

Pt|t = V ar (αt|Yt) , (5.8)

Pt+1 = V ar (αt+1|Yt) . (5.9)
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Using the theorem from Anderson (2003) cited further up, we know that since

all the distributions are normal then the conditional distributions of αt and

αt+1given Yt are also normal, given by N
(
at|t, Pt|t

)
and N (at+1, Pt+1) respec-

tively. From this we can also conclude that the distribution of αt given Yt−1 is

N (at, Pt), and we will use αt and Pt to recursively calculate 5.6, 5.7, 5.8 and

5.9 for t = 1, ...., n.

Now lets introduce vt, the one-step ahead forecast error (or prediction error)

of yt given Yt−1:

vt = yt − E (yt|Yt−1)

= yt − E (Ztαt + εt|Yt−1)

= yt − ZtE (αt|Yt−1)− E (εt|Yt−1)

= yt − Ztat (5.10)

Now let:

Ft = V ar (vt|Yt−1)

= V ar (yt − Ztat|Yt−1)

= V ar (Ztαt + εt − Ztat|Yt−1)

= V ar (Ztαt|Yt−1) + V ar (εt|Yt−1)

= ZtV ar (αt|Yt−1)Z ′t +Ht

= ZtPtZ
′
t +Ht (5.11)

When vt and Yt−1 are fixed, then Yt is also fixed which then means:

at|t = E (αt|Yt) = E (αt|Yt−1, vt) ,

at+1 = E (αt+1|Yt) = E (αt+1|Yt−1, vt)

Now if we apply the Theorem from Anderson (2003), let x1 and x2 in the
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theorem be αt and vt respectively, thus we have:

at+1 = E (αt+1|Yt−1) + Cov (αt+1, vt|Yt−1)V ar (vt|Yt−1)
−1

(vt − E (vt))

= E (αt+1|Yt−1) + Cov (αt+1, vt|Yt−1)F−1t vt,

since E (vt) = E (E (vt|Yt−1)) = E (0) = 0. The covariance Cov (αt+1, vt|Yt−1)

is:

Cov (αt+1, vt|Yt−1) = Cov (Ttαt +Rtηt, yt − Ztat|Yt−1)

= Cov (Ttαt +Rtηt, Ztαt + εt − Ztat|Yt−1)

= E
(
(Ttαt +Rtηt) (Ztαt + εt − Ztat)′ |Yt−1

)
− E (Ttαt +Rtηt)E (Ztαt + εt − Ztat|Yt−1)

= E
(
Ttαt (Ztαt − Ztat)′ |Yt−1

)
= TtE (αt (αt − at) |Yt−1)Z ′t

= TtV ar (αt|Yt−1)Z ′t

= TtPtZ
′
t

Next we have:

E (αt+1|Yt−1) = E (Ttαt +Rtηt|Yt−1)

= TtE (αt|Yt−1)

= Ttat

Thus we get at+1 to be:

at+1 = Ttat + TtPtZ
′
tF
−1
t vt

= Ttat +Ktvt (5.12)

with Kt = TtPtZ
′
tF
−1
t , Kt is called the Kalman gain.
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Now we need to calculate Pt+1:

Pt+1 = V ar (αt+1|Yt)

= V ar (αt+1|Yt−1, vt)

= V ar (αt+1|Yt−1)− Cov (αt+1, vt|Yt−1)V ar (vt|Yt−1)
−1
Cov (αt+1, vt|Yt−1)

′

= V ar (αt+1|Yt−1)− TtPtZ ′tF−1t ZtP
′
tT
′
t

= V ar (Ttαt +Rtηt|Yt−1)− TtPtZ ′tF−1t ZtP
′
tT
′
t

= TtV ar (αt|Yt−1)T ′t +RtQtR
′
t − TtPtZ ′tF−1t ZtP

′
tT
′
t

= TtPt (Tt −KtZt)
′
+RtQtR

′
t (5.13)

Lastly we’re going to calculate at|t and Pt|t:

at|t = E (αt|Yt)

= E (αt|Yt−1, vt)

= E (αt|Yt−1) + Cov (αt, vt|Yt−1)V ar (vt|Yt−1)
−1
vt

Cov (αt, vt|Yt−1) = E
(
αt (yt − Ztat)′ |Yt−1

)
= E

(
αt (Ztαt + εt − Ztat)′ |Yt−1

)
= E (αt (αt − at)Z ′t|Yt−1)

= V ar (αt|Yt−1)Z ′t

= PtZ
′
t

at|t = at + PtZ
′
tF
−1
t vt (5.14)

Pt|t = V ar (αt|Yt)

= V ar (αt|Yt−1, vt)

= V ar (αt|Yt−1)− Cov (αt, vt|Yt−1)V ar (vt|Yt−1)
−1
Cov (αt, vt|Yt−1)

′

= Pt − PtZ ′tF−1t ZtP
′
t (5.15)

The kalman filter equations are collected together in 5.16 for the conveniency
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of the reader:

vt = yt − Ztat, Ft = ZtPtZ
′
t +Ht,

at|t = at + PtZ
′
tF
−1
t vt, Pt|t = Pt − PtZ ′tF−1t ZtPt,

at+1 = Ttat +Ktvt, Pt+1 = TtPt (Tt −KtZt)
′
+RtQtR

′
t

(5.16)

for t = 1, ...., n, where Kt = TtPtZ
′
tF
−1
t with a1 and P1 as the mean vec-

tor and variance matrix of the initial state vector α1. Once at|t and Pt|t are

computed, it is enough to use the relations in 5.17

at+1 = Ttat|t,Pt+1 = TtPt|tT
′
t +RtQtR

′
t, (5.17)

for predicting αt+1 and its variance matrix at time t.

The Kalman filter for the seasonal model presented in 3.14 is not very differ-

ent from the Kalman filter for 3.1. For the reader, the model 3.14 is presented

again:
yt = Ztαt + dt + εt εt ∼ N (0, Ht)

αt+1 = Ttαt + ct + ηt ηt ∼ N (0, Qt)

α1 ∼ N (a1, P1)

(5.18)

We use the same theorem and methods to calculate the Kalman filter for model

5.18.

vt = yt − E (yt|Yt−1)

= yt − E (Ztαt + dt + εt|Yt−1)

= yt − ZtE (αt|Yt−1)− E (dt|Yt−1)− E (εt|Yt−1)

= yt − Ztat − dt (5.19)
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Ft = V ar (vt|Yt−1)

= V ar (yt − Ztat − dt|Yt−1)

= V ar (Ztαt + dt + εt − Ztat − dt|Yt)

= V ar (Ztαt|Yt) + V ar (εt|Yt)

= ZtPtZ
′
t +Ht (5.20)

at|t = E (αt|Yt)

= E (αt|Yt−1, vt)

= E (αt|Yt−1) + Cov (αt, vt|Yt−1)V ar (vt|Yt−1)
−1
vt

Cov (αt, vt|Yt−1) = E
(
αt (Ztαt + dt + εt − Ztat − dt)′ |Yt−1

)
= E

(
αt (Ztαt + εt − Ztat)′ |Yt−1

)
= PtZ

′
t

at|t = at + PtZ
′
tF
−1
t vt (5.21)

Pt|t = V ar (αt|Yt)

= V ar (αt|Yt−1, vt)

= V ar (αt|Yt−1)− Cov (αt, vt|Yt−1)V ar (vt|Yt−1)Cov (αt, vt|Yt−1)
′

= Pt − PtZ ′tF−1t ZtP
′
t (5.22)

at+1 = E (αt+1|Yt)

= E (Ttαt + ct +Rtηt|Yt)

= TtE (αt|Yt) + E (ct)

= Ttat|t + ct (5.23)
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Pt+1 = V ar (αt+1|Yt)

= V ar (Ttαt + ct +Rtηt|Yt)

= TtV ar (αt|Yt)T ′t +RtQtR
′
t

= TtPt|tT
′
t +RtQtR

′
t (5.24)

For the convenience of the reader the filter equations for model 5.18 are

collected together:

vt = yt − Ztat − dt, Ft = ZtPtZ
′
t +Ht,

at|t = at + PtZ
′
tF
−1
t vt, Pt|t = Pt − PtZ ′tF−1t ZtP

′
t ,

at+1 = Ttat|t + ct, Pt+1 = TtPt|tT
′
t +RtQtR

′
t,

(5.25)

In the table below the dimensions of the vectors and matrices of the Kalman

filter are presented.

Vector Matrix
vt p× 1 Ft p× p

Kt m× p
at m× 1 Pt m×m
at|t m× 1 Pt|t m×m
dt p× 1
ct m× 1

Table 2: Dimensions of Kalman filter.

5.3 Missing observations

Lets assume that some observations yj are missing for j = τ, ...., τ∗ where 1 <

τ < τ∗ < n.

An easy way to handle missing values is as such, for the missing times t =

τ, ...., τ∗ − 1 we set Zt = 0 in the Kalman filter equations in 5.16 and 5.25. We

then get these results:

at|t = E (αt|Yt)

= at
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Pt|t = V ar (αt|Yt)

= Pt

at+1 = E (αt+1|Yt)

= Ttat

Pt+1 = V ar (αt+1|Yt)

= TtPtT
′

t +RtQtR
′

t

Thus we can use the same Kalman filter equations as we derived above. This

way of treating missing observations is very straightforward and is a reason for

the appeal that state space methods has when it comes to state space analysis.

Now let us assume that not all observations in yt at time t are missing, just

some of the element of yt are missing. A way to handle this case is to let the

vector of values actually observed be set as y∗. We can then take y∗ to be

y∗ = Wtyt

whereWt is a matrix whose rows are a subset of the rows in I. Therefore, at the

times t where some of the elements in yt are missing, the observation equation

in 3.1 will then be replaced with the equation

y∗ = Z∗t αt + ε∗t ,ε
∗
t ∼ N (0, H∗t ) ,

where Z∗t = WtZt, ε∗t = Wtεt and H∗t = WtHtW
′
t . The filtering using the

Kalman filter 5.16 or 5.25 can then continue as usual as long as yt, Zt and

Ht are replaced by y∗t , Z∗t and H∗t at the times t where yt has some elements

missing.
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6 Forecasting

In this section we will look at forecasting. There are many ways to do forecasting

and which method you choose depends on what your goal is. For example, if

we want to forecast future observations of the state vector, that is the βt’s in

our model, then one can treat the future forecasted observed values, yn+j for

j = 1, ...., J , as missing observations.

ȳn+j = Zn+jE (αn+j |Yn)

= Zn+j ān+j

F̄n+j = E
[
(ȳn+j − yn+j) (ȳn+j − yn+j)

′
|Yn
]

= Zn+jP̄n+jZ
′

n+j +Hn+j

ān+j+1 = Tn+jE (αn+j |Yn)

= Tn+j ān+j

where ān+1 = an+1.

Pn+j+1 = E
[
(ān+j+1 − αn+j+1) (ān+j+1 − αn+j+1)

′
|Yn
]

= Tn+jP̄n+jT
′

n+j +Rn+jQn+jR
′

n+j

If one are to forecast the observations yt then one way to do so is to do a

one-day-ahead forecast. The premise of this forecast is to switch between doing

a forecast one-day-ahead and updating the filter with observation that is done

on the forecasted day. The first forecasted day would be:

ȳn+1 = Zn+1E (αn+1|Yn)

= Zn+1an+1

where Zn+1is the Z matrix for the first forecasted day and an+1 is the predicted
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value of the state vector, we get this vector from the last iteration of the Kalman

Filter for the data we already have. Now we have forecasted one-day-ahead. The

next thing we do is observe what yt actually is on the forecasted day. Then we

update the Kalman Filter with this observed yt, this will give us an estimation

of the state vector αn and the predicted state vector, αn+1, for the next day.

This predicted state vector value will be used to forecast the next day again. In

principal it will look like this. First we forecast day n+ 1:

ȳn+1 = Zn+1an+1

then we observe the value of yt when the forecasted day comes, t = n+ 1. We

update the filter equations with this vector:

vn+1 = yn+1 − Zn+1an+1,

Fn+1 = Zn+1Pn+1Z
′

n+1 +Hn+1,

an+1|n+1 = an+1 + Pn+1Z
′

n+1F
−1
n+1vn+1,

Pn+1|n+1 = Pn+1 − Pn+1Z
′

n+1F
−1
n+1Zn+1Pn+1,

an+2 = Tn+1an+1 +Ktvn+1,

Pn+2 = Tn+1Pn+1 (Tn+1 −Kn+1Zn+1)
′
+Rn+1Qn+1R

′

n+1

Now we can predict yt for t = n+ 2:

ȳn+2 = Zn+2an+2

and so we update the Kalman Filter again and so forth.
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7 Maximum likelihood estimation

In this thesis I am using maximum likelihood estimation (MLE) for parameter

estimation and to find the goodness of fit of a model. The reader is expected

familiar with MLE, but in this section the application MLEs for this thesis will

be expanded upon.

7.1 Parameter estimation

The matrices Zt, Rt, Tt, Ht and Qt may all or some of them depend on a

vector of parameters ψ. We are interested in their values so that we get a better

estimation from the Kalman filter. The different parameters of ψ are estimated

using maximum likelihood estimation. The likelihood is:

L (Yn) = p (y1, ...., yn)

= p (y1)
n∏
t=2

p (yt|Yt−1)
(7.1)

under the assumption that the initial state vector has the density N (a1, P1),

with a1 and P1 being known. Further, it is the loglikelihood that we want to

find:

log (L (Yn)) =

n∑
t=1

log (p (yt|Yt−1)) (7.2)

where p (y1|Y0) = p (y1). For the linear Gaussian state space model, 3.1, we have

that E (yt|Yt−1) = Ztat, vt = yt − Ztat and Ft = V ar (yt|Yt−1) = ZtPtZ
′

t +Ht.

If we now substitute the density N (Ztat, Ft) with p (yt|Yt−1) in the loglikelihood

in 7.2 and with a dependence on the parameter vector ψ, we get:

log (LYn
(ψ)) = −np

2
log (2π)− 1

2

n∑
t=1

(
log (|Ft (ψ) |) + v (ψ)

′

t F (ψ)
−1
t v (ψ)t

)
(7.3)

with L (Yn) = LYn . vt and Ft are computed using the Kalman filter. As such

it is easy to update the loglikelihood with the output of each iteration of the

Kalman filter. If the reader is interested, further discussions on the subject of

parameter estimation and MLE can be found here Shumway and Stoffer (2017)
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and here James Durbin (2012).

7.2 Goodness of fit

Suppose you have a model that fits your observed data, now how good does the

model fit? What if someone comes with a different model and says that it is

better than yours? This is where a model goodness of fit comes in to play. For

time series models the goodness of fit is often assosicated with the errors in the

forecasted observations. Usually that would be handled by mean squared errors

(MSE). If we denote the forecasted observations as y∗t , the mean squared error

would be:

MSE =

n∑
t=1

(y∗t − yt)
2

If you have two or more competing models and you want to find out which

is the best one, it is common to compare the loglikelihood, log (LYn (ψ)), of the

different models. The initial problem here is that the greater the number of

parameters in ψ the greater the loglikelihood value will be. Thus, if we are to

compare the models fairly we use the Akaike information criterion (AIC) or the

Bayesian information criterion (BIC). These are given as:

AIC = −2 log (LYn
(ψ)) + 2ω

BIC = −2 log (LYn (ψ)) + ω log (n)

with ω being the number of parameters in ψ and n is the number of observations

you have.
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8 Delta method

When you’re doing an analysis, there will always be uncertainties in your results.

Thus it is normal to calculate confidence intervals so that we can say with more

certainty that our results are within the area found. Thus the Delta method

is here to calculate the variance or in other words, the length of the confidence

interval.

The delta method is, in its essence, a method to determine the variance

of a function of random variables that are asymptotically normal with known

variances. I will first show the univariate delta method. Let Xn be a sequence

of random variables that satisfies

√
n [Xn − θ]

D−→ N
(
0, σ2

)
, (8.1)

where θ and σ2 are finite constants, then

√
n [g (Xn)− g (θ)]

D−→ N
(

0, σ2 [g′ (θ)]
2
)

(8.2)

for any function g that satisfies the property of g′ (θ) existing and being non-

zero.

The delta method is easily generalized to the multivariate case. Let B be

an consistent estimator, which means as the number of observations increases

(meaning as n grows) the estimator converges toward the true value it is sup-

posed to estimate. If we have an consistent estimator B we often can use the

central limit theorem to achieve asymptotic normality:

√
n (B − β)

D−→ N (0,Σ) , (8.3)

here Σ is a symmetric positive semi-definite (non-negative) covariance matrix.

Next we need to estimate the variance of a function h of the estimator B, h (B).

We can estimate h (B) by taking the first two terms of a Taylor Series as such:

h (B) ≈ h (β) +∇h (β)
T

(B − β) , (8.4)

27



and that implies that the variance of h (B) can be approximated by:

V ar (h (B)) ≈ V ar
(
h (β) +∇h (β)

T
(B − β)

)
= ∇h (β)

T

(
Σ

n

)
∇h (β) (8.5)

It is thus indicated by the delta method:

√
n (h (B)− h (β))

D−→ N
(

0,∇h (β)
T

Σ∇h (β)
)

(8.6)
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9 Results

In this paper I have been working with several types of futures contracts of

commodities. I have used a Kalman filter and MLE to estimate parameters

β1t, β2t, β3t, λ and σy. These have been estimated for both the three-factor

model and the seasonal model. In addition, the seasonality terms c1t, c2t and c3t

have been estimated for the seasonal model. The results from these estimations

and the hypothesis testing following these estimates are presented below, with

regards to the different data sets. For the hypothesis testing our null hypothesis

for all data sets is that there is no seasonality, meaning that we don’t get a

better fit by adding a seasonality term to the three-factor model.

9.1 Crude oil

9.1.1 Three-factor model

Using the Kalman filter for a linear Gaussian state space model and optimizing

the likelihood function we get an estimate for the variables β1t, β2t, β3t and λ.

To get a 95% confidence interval of λ and of σy we use the Delta method to

obtain this. The 95% confidence interval of λ is:

λ =
(
5.419× 10−3, 5.479× 10−3

)
Using the optimized λ value we can plug it in the Z-matrix and get the factor

loadings for the three-factor model. The factor loadings for the three-factor

model with its optimized λ are showed in the following figure:
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Figure 9.1: Factor loadings for three-factor model on natural gas data

From the optimizing we also get a 95% confidence interval of σy that is used

in the variance in the error term in equation 4.2.

σy =
(
2.633× 10−3, 2.656× 10−3

)
The time series estimates for the β1t’s are:

Figure 9.2: Plot of β1t from time t = 0, ...., 4865

The plot for the β2t’s are:
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Figure 9.3: Plot of β2t from time t = 0, ...., 4865

The estimates of β3t’s are:

Figure 9.4: Plot of β3t from time t = 0, ...., 4865

The values for the β1t’s are increasing over the crude oil sample size, except

for a little decrease after hitting the highpoint, this is an indicator that in general
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the prices has increased over time. The β2t’s start out as mainly positive for a

while before becoming mainly negative in latter part of the sample size. The

β3t’s changes from negative to positive and back several times throughout the

sample size.

Forecasting of future observations was also done for both the three-factor

model and the seasonal model. I use mean squared error, MSE, to see how good

the forecasting is. By doing a one-day-ahead forecast of the future observations,

they look like this:

Figure 9.5: Forecasted observations for three-factor model and actual observa-
tions of crude oil data

As we can see from the two plots, the forecasted observations look very good.
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And with a MSE = 5.41× 10−4 it is indeed a very good forecast.

9.1.2 Seasonal model

The results for the seasonal model regarding λ and σy are quite similar to the

three factor model. Down to the 4th decimal, the results are the same for the

λ′s and for the σ′ys the results are the same down to the 5th decimal. The 95%

confidence interval, using the Delta method, for λ is:

λ =
(
5.420× 10−3, 5.480× 10−3

)
The factor loadings for the seasonal model:

Figure 9.6: Factor loadings of seasonal model on crude oil data

For σy, the 95% confidence interval is:

σy =
(
2.631× 10−3, 2.655× 10−3

)
The estimates for the βt’s are also quite similar to the ones from the three factor

model. The estimates for β1t are:
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Figure 9.7: Plot of β1t from time t = 0, ...., 4865

The estimates for β2t are:

Figure 9.8: Plot of β2t from time t = 0, ...., 4865

And the estimates for β3t are:
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Figure 9.9: Plot of β3t from time t = 0, ...., 4865

The seasonality related to the βt’s is:
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Figure 9.10: Seasonality on βt with period s = 253

The βt’s for the seasonal model behaves much the same way as for the
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three-factor model, where the β1t’s increase throughout, except for the same

decrease when hitting the highpoint. The β2t’s are for the most part positive

to begin with and the mainly negative at the latter part of the sample, while

the β3t’s changes sign several times throghout the sample size. The dataset

consists of data collected each day for 253 days a year, thus excluding weekends

etc. Therefore the period of the seasonality is s = 253. As we can see, the

seasonality terms are very small, with the seasonality on the β1t’s and β2t’s

having the biggest amplitude.

As mentioned, I also forecasted future observations using the seasonal model.

The forecasting method is the same, one-day-ahead forecasting, and to check

how the forecast is I use MSE. The next figure shows the forecasted data for

the seasonal model and the actual observed data:
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Figure 9.11: Forecasted observations for seasonal model and actual observations
of crude oil data

As with the three-factor model, the forecasting looks very good in the plot.

Now to check how good it is, MSE = 5.37 × 10−4. A very good result. In

fact it is slightly better than the mean squared error value that I got from the

forecasting of the three-factor model.

9.1.3 Hypothesis testing

I’ve been comparing the two models to check if the data for crude oil has sea-

sonality to be aware of. To compare the models I did a likelihood ratio test.

Specifically I used to Wilks’ theorem to perform the test. In short, the theory,
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developed by Samuel S. Wilks, says that when n → ∞ then the test statis-

tic, −2 log (Λ), of a nested model, when H0 is true, will be asymptotically

chi-squared distributed with degrees of freedom equal to the difference in di-

mensionality of the two models, Θ and Θ0, being tested,
(
χ2
p−q
)
. This means

that we only need to calculate the likelihood ratio of the three-factor model and

the seasonal model, Λ, and then compare the value of −2log (Λ) with the value

of the χ2 distribution with the corresponding degrees of freedom.

For the three-factor model we have a log-likelihood value of log (L (Yn|ψ0)) =

499436.7, and for the seasonal model we have log (L (Yn|ψ)) = 499438.1. The

test statistic is thus:

D = −2 log (Λ)

= 2× (log (L (Yn|ψ))− log (L (Yn|ψ0)))

= 2× (499438.1− 499436.7)

= 2.8

The parameter vector for the three-factor model, ψ0, has a dimensionality of

q = 8 and the parameter vector for the seasonal model, ψ, has a dimensionality

of p = 12. Thus the degrees of freedom for the test statistic is p− q = 12− 8 =

4. Now to see if the seasonal model has a significantly better fit than the

three-factor model we need to check if D = 2.8 is a significant value in a χ2
4-

distribution. For a chi-squared distribution with degrees of freedom equal to 4

and a significans level of α = 0.05, then the test statistic needs to be higher

than 9.49. D = 2.8 < 9.49, thus we can conclude that there are no seasonality

of significance in the dataset.

Furthermore, the AIC and the BIC have been calculated for both models.

AIC and BIC are goodness of fit numbers and if they are used to compare

models, then one would like to choose the model with the lowest AIC and BIC
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value. For the three-factor model:

AIC = −998857

BIC = −998780

and for the seasonal model:

AIC = −998852

BIC = −998736

which suggests that there is nothing to gain by choosing the seasonal model over

the three-factor model.

9.2 Natural gas

9.2.1 Three-factor model

The results from estimating β1t, β2t, β3t, λ and σy of the natural gas futures

contracts are as follows, the 95% confidence interval for λ:

λ =
(
1.412× 10−3, 2.217× 10−3

)
for σy:

σy =
(
3.419× 10−2, 3.464× 10−2

)
and the factor loadings for the three-factor model are:
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Figure 9.12: Factor loadings of three-factor model on natural gas data

The estimates for the β1t’s are:

Figure 9.13: Plot of β1t from time t = 0, ..., 6059

For the β2t’s:
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Figure 9.14: Plot of β2t from time t = 0, ...., 6059

And for the β3t’s:

Figure 9.15: Plot of β3t from time t = 0, ...., 6059

The plot for the β1t’s are not how the plot for the β1t’s should look like,

hence it is difficult to draw any conclusions from the plot of either of the βt’s.

The estimates for β1t should look like the first column in our dataset due to

the β1t’s governing the level of the yield curve. It is an indicator of how the
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Figure 9.16: Plot of first column in Natural Gas dataset

prices varies in time, if they go up or down. From the estimates of the β1t’s it

is impossible to tell if the yield curve is going up or down. Also worth noting

is that the estimates for the β1t’s and the β2t’s are mirror opposites of each

other, and the β3t’s have the same shape as the β2t’s with higher maximum

and minimum values, this should be studied further to find the cause of this

problem. The plot of β1t should look like this:

The fact that it does not have this shape at all could be an indicator that the

model is not good for this purpose. As the other βt’s are probably compensating

for the β1t’s not having the shape it should have. Although the βt’s appear to

not be the way they should, the one-day-ahead forecasting of the observerd

data does look very good, with a mean squared error, MSE = 1.49× 10−3. As

can be seen from the plots below, the forecasted observations follow the actual

observations very closely.
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Figure 9.17: Forecasted observations for three-factor model and actual observa-
tions of natural gas data.

9.2.2 Seasonal model

The estimates of λ for the seasonal model are quite different from the three-

factor model. The 95% confidence interval for the λ in the seasonal model is:

λ =
(
3.132× 10−3, 3.721× 10−3

)
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while the confidence interval for σy is similar to the three-factor model, down

to the 1st significant number:

σy =
(
3.469× 10−2, 3.515× 10−2

)
.

The factor loadings for the seasonal model are a little different from the three-

factor model:

Figure 9.18: Factor loadings of the seasonal model on natural gas data

For the seasonal model we get a lot smaller values for the βt’s. The estimates

for the β1t’s are:
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Figure 9.19: Plot of β1t from time t = 0, ...., 6059

For the β2t’s:

Figure 9.20: Plot of β2t from time t = 0, ...., 6059

And for the β3t’s we have:
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Figure 9.21: Plot of β3t from time t = 0, ...., 6059

Here we also have the seasonality term for the βt’s:

Again, these estimates for βt’s does not look to have the shape they should

have, even though the end maximum and minimum values of these βt’s are a lot

smaller than for the seasonal model, thus it is difficult to draw any conclusions

for these βt’s aswell. As for the three-factor model, the β1t’s and β2t’s are mirror

opposites of each other and the β3t’s have the same shape as the β2t’s, but with

higher maximum and minimum values. The seasonality terms are quite small

except for the seasonality on the β3t’s which has the highest amplitude of the

seasonality terms.

For the one-day-ahead forecasting of the observations, these are even better

for the seasonal model, with an mean squared error,MSE = 8.85×10−4. Indeed

a very good forecast:
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Figure 9.22: Seasonality on βt with period s = 253
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Figure 9.23: Forecasted observations for seasonal model and actual observations
of natural gas data.

9.2.3 Hypothesis testing

Now we have estimated parameters and forecasted observations for the nat-

ural gas data. The next thing to do is to compare the three-factor model

and the seasonal model to check if there is a significant improvement to the

model if we use the seasonality term. For the three-factor model we have a
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log-likelihood value of log (L (Yn|ψ0)) = 100238, and for the seasonal model we

have log (L (Yn|ψ)) = 100276.1. The test statistic is thus:

D = −2 log (Λ)

= 2× (log (L (Yn|ψ))− log (L (Yn|ψ0)))

= 2× (100276.1− 100238)

= 76.2

The degrees of freedom for the test statistic is p − q = 12 − 8 = 4 as it was

further up for the crude oil data. We have the test statistic D = 76.2, to see

if the seasonal model has a better fit to the data we need to check if the value

D = 76.2 is significant in a χ2
4-ditribution. As mentioned in the hypothesis

testing for the crude oil data, with a significance level of α = 0.05 and 4 degrees

of freedom, we need D > 9.49. We have D = 76.2 > 9.49, thus we can conclude

that there are seasonality of signifcance in the dataset.

The AIC and BIC calculated for the three-factor model:

AIC = −200460

BIC = −200388

and for the seasonal model:

AIC = −200538

BIC = −200421

and this indicates that the seasonal model has a better fit.

9.3 Copper

9.3.1 Three-factor model

For the three-factor model, the 95% confidence interval for λ and σy are:

λ =
(
6.32× 10−3, 6.49× 10−3

)
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σy =
(
2.16× 10−3, 2.19× 10−3

)
The factor loadings for the three-factor model are:

Figure 9.24: Factor loadings of three-factor model on the copper data

The results from estimating the β1t’s, β2t’s and β3t’s for the three-factor

model are as follows, for the β1t’s:

Figure 9.25: Plot of β1t from time t = 0, ...., 8562

For the β2t’s:
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Figure 9.27: Plot of β3t from time t = 0, ...., 8562

Figure 9.26: Plot of β2t from time t = 0, ...., 8562

And for the β3t’s:

The values for the β1t’s are predominantly varying around 4.5 over the sam-

ple size, but at end of the sample the β1t’s increase, this is an indicator that
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Figure 9.28: Forecasted observations of three-factor model and actual observa-
tions of copper data

the prices in general have been steady over time before going up in the end

of the sample size. The β2t’s start out as mainly negative for a while before

becoming predominantly positive in the latter 3/4th’s of the sample size. The

β3t’s changes from negative to positive and back several times in the beginning

before becoming mainly positive in the latter half of the sample.

The forecasted observations looks very good with an MSE = 1.47 × 10−4

the one-day-ahead forecasted results are:
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9.3.2 Seasonal model

The 95% confidence interval for λ and σy for the seasonal model are:

λ =
(
6.33× 10−3, 6.49× 10−3

)
σy =

(
2.15× 10−3, 2.19× 10−3

)
The factor loadings for the seasonal model are:

Figure 9.29: Factor loadings of seasonal model on the copper data

The estimates of β1t’s are:
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Figure 9.30: Plot of β1t from time t = 0, ...., 8562

Estimates of β2t’s:

Figure 9.31: Plot of β2t from time t = 0, ...., 8562

And of β3t’s:

55



Figure 9.32: Plot of β3t from time t = 0, ...., 8562

The seasonality on the βt’s are also estimated:
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Figure 9.33: Seasonality on βt for period s = 253

The βt’s for the seasonal model behaves much the same way as for the three-
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Figure 9.34: Forecasted observations of seasonal model and actual observations
of the copper data

factor model, where the β1t’s vary around 4.5 before increasing at the very end.

The β2t’s are for the most part negative to begin with and then mainly positive

at the latter 3/4th’s of the sample, while the β3t’s changes sign several times in

the beginning of the sample size and getting mainly positive in the latter half.

As we can see, the seasonality terms are very small, with the seasonality on the

β3t’s slightly having the biggest amplitude.

The one-day-ahead forecasting is very good for the seasonal model as well

as for the three-factor model. The MSE = 1.47 × 10−4 of the seasonal model

is the same as for the three-factor model. The forecasted observations are:
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9.3.3 Hypothesis testing

For the three-factor model we have a log-likelihood value of log (L (Yn|ψ0)) =

207409.9 and the seasonal model have a log-likelihood value of log (L (Yn|ψ)) =

207412.2. Comparing the three-factor model and the seasonal model to check if

there is significant improvement by adding the seasonality term, we get the test

statistic:

D = −2 log (Λ)

= 2× (log (L (Yn|ψ))− log (L (Yn|ψ0)))

= 2× (207412.2− 207409.9)

= 4.6

The degrees of freedom for the test statistic is p − q = 12 − 8 = 4. We have

the test statistic D = 4.6, to see if the seasonal model has a better fit to the

data we need to check if the value D = 4.6 is significant in a χ2
4-ditribution. As

mentioned in the hypothesis testing for the crude oil data, with a significance

level of α = 0.05 and 4 degrees of freedom, we need D > 9.49. We have

D = 4.6 < 9.49, thus we cannot reject the null hypothesis.

The AIC and BIC calculated for the three-factor model:

AIC = −414804

BIC = −414733

and for the seasonal model:

AIC = −414800

BIC = −414694

and this seems to indicate that there is no improvement by adding the season-

ality term to the model.

59



9.4 Cotton

9.4.1 Three-factor model

The results from estimating λ and σy of the cotton futures contracts are as

follows, the 95% confidence interval for λ:

λ =
(
6.897× 10−3, 7.403× 10−3

)
for σy:

σy =
(
1.460× 10−2, 1.478× 10−2

)
and the factor loadings for the three-factor model are:

Figure 9.35: Factor loadings of three-factor model on cotton data

The estimates for the β1t’s are:
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Figure 9.36: Plot of β1t from time t = 0, ..., 10380

For the β2t’s:

Figure 9.37: Plot of β2t from time t = 0, ...., 10380

And for the β3t’s:
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Figure 9.38: Plot of β3t from time t = 0, ...., 10380

As with the β1t’s for the natural gas data the plot for the β1t’s are not how

the plot for the β1t’s should look like, hence it is difficult to draw any conclusions

from the plot of either of the βt’s. The estimates for β1t should look like the first

column in our dataset due to the β1t’s governing the level of the yield curve. It

is an indicator of how the prices varies in time, if they go up or down. From

the estimates of the β1t’s it is impossible to tell if the yield curve is going up or

down. As stated earlier, the estimates for β1t should look like the first column

in our dataset. The plot of β1t should look like this:

The fact that it does not have this shape at all could be an indicator that

the model is not very good for this purpose. As the other βt’s are probably

compensating for the β1t’s not having the shape it should have. Although the

βt’s appear to be not the way they should, the one-day-ahead forecasting of

the observerd data does look very good, with a mean squared error, MSE =

2.14 × 10−4. As can be seen from the plots below, the forecasted observations

follow the actual observations very closely.
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Figure 9.39: Plot of first column in Cotton dataset

Figure 9.40: Forecasted observations for three-factor model and actual observa-
tions of cotton data.
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9.4.2 Seasonal model

The 95% confidence interval for the λ in the seasonal model is:

λ =
(
7.116× 10−3, 7.622× 10−3

)
the confidence interval for σy is the same as for the three-factor model:

σy =
(
1.460× 10−2, 1.478× 10−2

)
.

The factor loadings for the seasonal model:

Figure 9.41: Factor loadings of the seasonal model on cotton data

For the seasonal model the estimates for the β1t’s are:
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Figure 9.42: Plot of β1t from time t = 0, ...., 10380

For the β2t’s:

Figure 9.43: Plot of β2t from time t = 0, ...., 10380

And for the β3t’s we have:
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Figure 9.44: Plot of β3t from time t = 0, ...., 10380

Here we also have the seasonality term for the βt’s:

Again, these estimates for βt’s does not look to have the shape they should

have, thus it is difficult to draw any conclusions for these βt’s as well. The

seasonality on the β1t’s has the highest amplitude of the seasonality terms.

For the one-day-ahead forecasting of the observations, these are good, with

an mean squared error, MSE = 2.14 × 10−4, the same as for the three-factor

model. Indeed a good forecast:
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Figure 9.45: Seasonality on βt with period s = 253
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Figure 9.46: Forecasted observations for seasonal model and actual observations
of cotton data.

9.4.3 Hypothesis testing

For the three-factor model we have a log-likelihood value of log (L (Yn|ψ0)) =

162514.3 and the seasonal model have a log-likelihood value of log (L (Yn|ψ)) =

162520.2. Comparing the three-factor model and the seasonal model to check if

there is significant improvement by adding the seasonality term, we get the test
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statistic:

D = −2 log (Λ)

= 2× (log (L (Yn|ψ))− log (L (Yn|ψ0)))

= 2× (162520.2− 162514.3)

= 11.8

The degrees of freedom for the test statistic is p− q = 12− 8 = 4. We have the

test statistic D = 11.8, to see if the seasonal model has a better fit to the data

we need to check if the value D = 11.8 is significant in a χ2
4-ditribution. As

mentioned in the hypothesis testing for the crude oil data, with a significance

level of α = 0.05 and 4 degrees of freedom, we need D > 9.49. We have

D = 11.8 > 9.49, thus we can reject the null hypothesis and conclude that there

is seasonality in the cotton data.

The AIC and BIC calculated for the three-factor model:

AIC = −325012

BIC = −324940

and for the seasonal model:

AIC = −325016

BIC = −324907

Here we have a bit of a disagreement, the AIC seems to favour the seasonal

model while the BIC seems to favour the three-factor model. This is probably

due to the BIC giving a higher penalty to more complex models hence the BIC is

more likely to choose a simpler model than the AIC. On the grounds of D = 11.8

which gives a p − value = 1.89 × 10−2 we choose to agree with the AIC and

choose the seasonal model.
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9.5 Gold

9.5.1 Three-factor model

For the three-factor model, the 95% confidence interval for λ and σy are:

λ =
(
1.55× 10−3, 1.73× 10−3

)

σy =
(
4.79× 10−4, 4.86× 10−4

)
The factor loadings for the three-factor model are:

Figure 9.47: Factor loadings of three-factor model on the gold data

The results from estimating the β1t’s, β2t’s and β3t’s for the three-factor

model are as follows, for the β1t’s:
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Figure 9.48: Plot of β1t from time t = 0, ...., 9205

For the β2t’s:

Figure 9.49: Plot of β2t from time t = 0, ...., 9205

And for the β3t’s:

The values for the β1t’s are increasing in the beginning, decreasing in the

middle part of the sample before it increases again in the end, this is an in-

dicator that the prices in general have varied over time, but overall the prices

has increased over time. The β2t’s are predominantly negative throughout the

sample size. The β3t’s are also mainly negative, but with several times where
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Figure 9.50: Plot of β3t from time t = 0, ...., 9205

the β3t’s become positive.

The forecasted observations looks very good with an MSE = 1.19 × 10−4

the one-day-ahead forecasted results are:

9.5.2 Seasonal model

The 95% confidence interval for λ and σy for the seasonal model are:

λ =
(
1.41× 10−3, 1.46× 10−3

)
σy =

(
4.81× 10−4, 4.87× 10−4

)
The factor loadings for the seasonal model are:
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Figure 9.51: Forecasted observations of three-factor model and actual observa-
tions of gold data
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Figure 9.52: Factor loadings of seasonal model on the gold data

The estimates of β1t’s are:

Figure 9.53: Plot of β1t from time t = 0, ...., 9205

Estimates of β2t’s:
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Figure 9.54: Plot of β2t from time t = 0, ...., 9205

And of β3t’s:

Figure 9.55: Plot of β3t from time t = 0, ...., 9205

The seasonality on the βt’s are also estimated:
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Figure 9.56: Seasonality on βt for period s = 253

The βt’s for the seasonal model behaves much the same way as for the three-
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factor model, where the β1t’s increases a lot in the beginning, then it decreases

slowly over the middle part of the sample befor it increases again in the end

part. The β2t’s are predominantly negative throughout the sample size, while

the β3t’s are also mainly negative, but with several times where the β3t’s become

positive. As we can see, the seasonality terms are small, with the seasonality

on the β1t’s having the biggest amplitude.

The one-day-ahead forecasting is very good for the seasonal model as well

as for the three-factor model. The MSE = 1.19 × 10−4 of the seasonal model

is the same as for the three-factor model. The forecasted observations are:

9.5.3 Hypothesis testing

For the three-factor model we have a log-likelihood value of log (L (Yn|ψ0)) =

293513.2 and the seasonal model have a log-likelihood value of log (L (Yn|ψ)) =

293513.6. Comparing the three-factor model and the seasonal model to check if

there is significant improvement by adding the seasonality term, we get the test

statistic:

D = −2 log (Λ)

= 2× (log (L (Yn|ψ))− log (L (Yn|ψ0)))

= 2× (293513.6− 293513.2)

= 0.8

The degrees of freedom for the test statistic is p − q = 12 − 8 = 4. We have

the test statistic D = 0.8, to see if the seasonal model has a better fit to the

data we need to check if the value D = 0.8 is significant in a χ2
4-ditribution. As

mentioned in the hypothesis testing for the crude oil data, with a significance

level of α = 0.05 and 4 degrees of freedom, we need D > 9.49. We have

D = 0.8 < 9.49, thus we cannot reject the null hypothesis.
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Figure 9.57: Forecasted observations of seasonal model and actual observations
of the gold data
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The AIC and BIC calculated for the three-factor model:

AIC = −587010

BIC = −586939

and for the seasonal model:

AIC = −587003

BIC = −586896

this seems to indicate that there is no improvement by adding the seasonality

term to the model.

9.6 Sugar

9.6.1 Three-factor model

For the three-factor model, the 95% confidence interval for λ and σy are:

λ =
(
9.53× 10−3, 9.87× 10−3

)

σy =
(
9.838× 10−3, 9.995× 10−4

)
The factor loadings for the three-factor model are:
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Figure 9.58: Factor loadings of three-factor model on the sugar data

The results from estimating the β1t’s, β2t’s and β3t’s for the three-factor

model are as follows, for the β1t’s:

Figure 9.59: Plot of β1t from time t = 0, ...., 7407

For the β2t’s:
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Figure 9.61: Plot of β3t from time t = 0, ...., 7407

Figure 9.60: Plot of β2t from time t = 0, ...., 7407

And for the β3t’s:

The values for the β1t’s are for the most part increasing in the beginning,

decreasing a little and being stable in the middle part of the sample before it

increases again in the latter part of the sample, this is an indicator that the

prices increased for the first few years, then had a several years where the price
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decreased or was stable before it had several years where the price increased

again. The β2t’s are changing sign several times over time, and the same goes

for the β3t’s.

The variance matrix, Ft, for the prediction error, vt, is singular, meaning the

determinant of the matrix is equal to zero, det (Ft) = 0. This means that the

matrix Ft does not have an inverse, hence it is not possible, using the kalman

filter on the three-factor model, to forecast the observations of the sugar data.

Thus we move on to the seasonal model.

9.6.2 Seasonal model

The 95% confidence interval for λ and σy for the seasonal model are:

λ =
(
9.49× 10−3, 9.84× 10−3

)
σy =

(
9.835× 10−3, 9.992× 10−3

)
The factor loadings for the seasonal model are:

Figure 9.62: Factor loadings of seasonal model on the sugar data

The estimates of β1t’s are:
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Figure 9.63: Plot of β1t from time t = 0, ...., 7407

Estimates of β2t’s:

Figure 9.64: Plot of β2t from time t = 0, ...., 7407

And of β3t’s:

83



Figure 9.65: Plot of β3t from time t = 0, ...., 7407

The seasonality on the βt’s are also estimated:
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Figure 9.66: Seasonality on βt for period s = 253

The βt’s for the seasonal model behaves much the same way as for the three-
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factor model, where the β1t’s are mainly increasing throughout the sample size,

with a part in the middle where there is a decrease in the β1t’s. The β2t’s and

β3t’s are changing sign several times over time. The seasonality on the β1t’s

have the biggest amplitude of the seasonality terms.

For the seasonal model it was possible to do the one-day-ahead forecasting.

The one-day-ahead forecasting is very good for the seasonal model withMSE =

2.13× 10−4. The forecasted observations are:

9.6.3 Hypothesis testing

For the three-factor model we have a log-likelihood value of log (L (Yn|ψ0)) =

122817.2 and the seasonal model have a log-likelihood value of log (L (Yn|ψ)) =

122830.5. Comparing the three-factor model and the seasonal model to check if

there is significant improvement by adding the seasonality term, we get the test

statistic:

D = −2 log (Λ)

= 2× (log (L (Yn|ψ))− log (L (Yn|ψ0)))

= 2× (122830.5− 122817.2)

= 26.6

The degrees of freedom for the test statistic is p− q = 12− 8 = 4. We have the

test statistic D = 26.6, to see if the seasonal model has a better fit to the data

we need to check if the value D = 26.6 is significant in a χ2
4-ditribution. As

mentioned in the hypothesis testing for the crude oil data, with a significance

level of α = 0.05 and 4 degrees of freedom, we need D > 9.49. We have

D = 26.6 > 9.49, thus we can reject the null hypothesis and conclude that there

is seasonality in the sugar data.

The AIC and BIC calculated for the three-factor model:

AIC = −245618

BIC = −245549
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Figure 9.67: Forecasted observations of seasonal model and actual observations
of the sugar data
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and for the seasonal model:

AIC = −245637

BIC = −245532

these seems to favour different models, the AIC agrees with log-likelihood ratio

test and prefers the seasonal model while the BIC disagrees with the ratio test

and prefers the three-factor model. As with the AIC and BIC for the cotton

data, this is probably due to the BIC giving a higher penalty to more complex

models and thus it is more likely than the AIC to be choosing too small a model.

Since we have D = 26.6 > 9.49 which gives a p − value = 2.44 × 10−5, we go

with AIC and choose the seasonal model.
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10 Conclusion

Throughout this thesis we have built an understanding of the theory behind

a linear Gaussian state space model. The Kalman filter equations have been

derived for the use of estimating parameters and forecasting observations. The

parameters in a three-factor Nelson-Siegel model and a three-factor Nelson-

Siegel model with seasonality has been estimated for several different data sets.

Those data sets consists of prices and maturities on future contracts of com-

modities such as, crude oil, natural gas, copper, cotton, gold and sugar. From

our results we can see that both the three-factor model and the seasonal model

are very good fits for the different commodities with the two question marks be-

ing the natural gas and cotton data as the estimates of β1t’s aren’t as expected

for those two commodities, following from this is that the β2t’s and the β3t’s for

these commodities are probably compensating for the level factor, β1t’s, when it

comes to the forecasting of the observations. This could suggest that the model

is not to great for those data sets and it could be the basis for further work to

find out why the estimates for the β1t’s are so far from what we expected them

to look like.

From the log-likelihood ratio tests on these model regarding the different

data sets we can conclude that three of the six data sets have seasonlity, those

are the data sets for the commodities natural gas, cotton and sugar. The AIC

and BIC for the cotton and sugar data are choosing different models, the AIC for

both commodities agree with the log-likelihood ratio test, but the BIC chooses

the three-factor model in both cases. Which model to choose are up for debate

as it is highly debated which of the two information criterions that are the best,

thus in this thesis we side with the AIC.

The results of the forecasting are very good and for most of the commodities

the results from the forecasting of the three-factor model is indistinguishable

from the forecasting of the seasonal model. Excluding the sugar data, where the

forecasting of the observations with the three-factor model was not possible, the

commodity with the largest difference in the forecasting performance is natural
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gas. Although both the three-factor model and the seasonal model performed

very well for the natural gas data, the seasonal model do have almost half the

MSE value as the three-factor model.

In this thesis we see that the Kalman filter is very good at estimating pa-

rameters for the three-factor and the seasonal model. It is also very good at

forecasting the observations of the different commodities. Although there are

some areas, such as the reason for the unexpected results in estimating the βt’s

for the natural gas and cotton data.
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