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Abstract

In this thesis, basic concepts of survival analysis such as censoring, trun-
cation and survival functions are described. Measures of survival ( i.e
overall survival, net survival and relative survival ratio) and regression
models such as Cox regression for overall hazard ratios and excess hazard
regression model for excess hazard ratios are discussed. Cox regression
model estimates the overall risk(hazard) whereas excess mortality pro-
vided by relative survival estimates the risk due to cancer. Kaplan-Meier
curves are used to estimate the survival curve, to estimate regression coef-
�cient, partial likelihood estimate is used. The main focus is to study the
comparison between overall survival and relative survival ratio and apply
this on non-curable colon and rectum data, derived from a research project
on patients who received non-curative treatment due to incurable disease
or other reasons preventing curative surgery. The data is obtained from
Cancer Registry of Norway, Norweigan patient registry and population
data from Statistics Norway between 2008 and 2015. The results pro-
vided by comparison show how much change the risk of death is, if death
only because of cancer is considered and when other causes of death are
involved. Regression analysis is done in two ways, 1. univariate analysis
in which each covariate a�ect the analysis individually and 2. multivariate
analysis in which all covariates togther a�ect the analysis. The software
R is used for analysis and to plot survival curves and other graphs used.
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1 Introduction to Survival Analysis

Analyzing time-to-event (survival times)data is called survival analysis. The

time to event data shows the time span from well de�ned time origin til the

well de�ned end point of interest (event). The terms survival analysis and

survival data are in generally used more often than time-to-event analysis and

time-to-event data but term �Time to event� is more clear and precise to use.

The time origin and end point must be well de�ned. For instance, in study of

a particular type of cancer, the time point of diagnosis of that type of cancer is

chosen to be time origin and the death due to that particular cancer would be

the end point. Or a study might follow people from birth (time origin) until

the occurrence of a disease(end point). This is how the time length can be

measured. The time to event data is usually collected prospectively in time

such as data is collected for clinical experiment or data from potential cohort

study. Sometimes data can also be collected retrospectively through accessing

medical records or by interviewing patients who have that certain disease.

Time to death is the event of interest in most of the medical studies. But in

cancer the time between a response to treatment and reappearance or disease

-free time is another essential measure. Also the event and duration of

observation is important to express. For example time interval between

con�rmed response and �rst relapse of cancer. The time to event data can

include survival time, response to a given treatment, patient's attributes

associated to response, survival and disease growth.

A particular problem linked to time to event analysis come to light from the

fact that not all the individuals have experienced event so eventually survival

times will not be known for a part of the study group. For example the

individuals could have di�erent events such as in the above example where the

event of interest is death due to cancer but the patient died due to accident or

they may drop out of a study. The other feasibility is that the study might

�nish at a certain point of time and individuals have not had their event yet

and thus their event time will not have been noticed. This is known as

censoring. These incomplete observations needs to be handled in a proper way.

This is why `special `techniques are needed in time-to-event analysis.

Additionally time to event data are skewed and seldom normally distributed,
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therefore simple techniques established on normal distribution cannot be used

accurately.

Observed survival and relative survival are two analysis which I am going to
describe later in my thesis where I will be using data consisting of colon and
rectum patients taken from the Norwegian registry named as the Norwegian
register for cancer of the colon and rectum. My major focus will be on non
curative colon and cancer patients and their survival rate after applying both
the mentioned analysis.
In observed survival, the risk of death is not only considered cancer but other
causes like death due to heart attack is also included but in relative survival
we only take into account death due to cancer. Other causes of death does not
a�ect the survival of cancer patients.

The introduction is based on [1, 2, 3]

2 Basic Concepts in Survival Analysis

2.1 Censoring

A main source for this subsection is [4]. Apart from survival analysis censoring
may arise in other applications, whereby not all survival data hold censored
observations. However, this is one such topic that unites a lot of applications to
survival analysis because censored survival data are so common and censoring
needs special treatment. Censoring has many forms and there are di�erent
causes of occurance of censoring . The primary di�erence is in between left
censoring and right censoring.

2.1.1 Right Censoring

In survival data T is the time from start of observation until an event happens
and some cases become right censored as observation breaks o� before the event
arise. Accordingly, if T is said to be the event as person's age at death(in years),
the event is right censored at age 50 if you may only know that T>50. This
concept is also not con�ned to event times only. The income is right censored
at $75,000, if the only thing you know is that a person's income is more then
$75,000 per year.

Example. Figure 2.1 shows data from a study in which all the persons go
through heart surgery at time 0 and followed up to 3 years. The horizontal axis
shows time in years after surgery and horizontal lines tagged A to E represents
di�erent person. The vertical line at 3 is the point at which we stop following
the patients. An X specify that death occured at that point in time. Deaths
occured at point 3 or before time 3 is observed and hence are uncensored but
on the other hand, deaths occuring after time point 3 are not observed thus are
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Figure 2.1: Image showing right censoring

censored at time 3. Consequently, A,C and D are uncensored, while B and E
are right-censored.

2.1.2 Left Censoring

Left censoring occur when we only know that T is less than some value. This
concept is not only applicable for event time but any kind of variables. For
survival data left censoring most probably occur when some of the individuals
may have already experienced the event when observing a sample at a time is
just started.

Example. In the study of menarche(the beginning of menstruation) if you start
observing girls of age 12 and you get to know some of the girls have already
started menstruating so the age of menarche is called to be left censored at age
12 except if you can get informauion on the starting date for those girls.

2.1.3 Interval Censoring

Interval censoring is more common then left censoring. Both left censoring and
right censoring together makes interval censoring. When you only know about
variable T is a<T<b for some values of a and b then T is interval censored.
Interval censoring arise in survival data when the observations are made at
speci�c time points and retroactive information on the exact timing of event
cannot be achieved.

Example. For HIV infection, sample of people is followed.The time of infection
between 2 an 3 would be interval censoring if a person who is not infected at

9



Figure 2.2: Image representation left truncation

the end of year 2 is then found to be infected at the end of year 3.

2.2 Truncation

For subsection (2.2), sources are [5, 6, 7].
Another factor which a�ects the survival data by giving rise to incomplete ob-
servations is truncation. Interval over which the subject was not observed but
is not failed as well, is known as truncation. The statistical di�cualty is if
the subject had failed, he or she have never been observed. In truncated sur-
vival time data, survival times are excluded systematically from one's sample.
The following are three types of truncation from which left truncation is most
common.

2.2.1 Left Truncation

The period of ignorance in left truncation widen from on or before the beginning
of study(at t=0) to sometime after time t=0. The Figure 2.2 explains the left
truncation. The subject is not observed for some time after the start time but
come under observation. Later if they have not had the event. This is why left
trucation arise as we confront a subject who enrolled sometimes after the onset
of risk.
This subject is only added to the study if he or she has not failed earlier,before
the threshold. For example only those individual who survive the initial stage of
myocardial infarction and reach the hospital will be included in the study. If an
individual has been admitted to the hospital and is added to the study where
the time t=0 is the time of infarction. For di�erent patient it may happen
at di�erent times but those patients will never be entered into study if they
die before reaching to the hospital.�Delayed entry� is sometimes used for left
truncated data.
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2.2.2 Interval Truncation

Interval truncation is just an adoption of left truncation where an individual
enters in the study at time zero but disappear for some time and report back
to the study generating a gap in between observation.This is what the issue is
that individual could have died when he or she disappear and can never report
back.

2.2.3 Right Truncation

In this case only those individuals are added to the study who have experienced
the exit event by some speci�c date but there is a point after which the subject
who hasn't experienced exit event is not observed anymore and consequently
long survival times are excluded systematically .

2.3 Functions of Survival Times

This subsection is based on references[1, 3, 8, 9, 10].
Before analysing the survival data, some related functions needs to be described
such as survival function, density function, hazard function and cumulative
hazard function from which survival and hazard functions are of particular
interest[8]. In traditionally established statistical models, density and cumu-
lative distributions are used but due to the incomplete observations in survival
data(censored and truncated data) these standard functions are not appropriate.
So survival and hazard functions are considered more suitable.

2.3.1 Survival Function

Survival function is de�ned to be the probability of surviving beyond a speci�ed
time t. Survival function is denoted by S(t) where 0 < t < ∞.The formula is
given in (2.1).

S(t) = P (T ≥ t) = 1− F (t), t > 0 (2.1)

where T is the random variable under study(time to event) t is a �xed num-
berand F(t) is the cumulative distribution function of T[9]. S(t)= 1 at t=0
and S(t) = 0 at t=∞.The graph of the survival functionS(t) is called the sur-
vival curve which begins at S(t)=1 and as t increases to ∞, S(t) decreases to 0.
The survival curve can be estimated by the Kaplan-Meier method (and will be
disscussed later). See Figure 2.3 for an example of survival curve.

2.3.2 Density Function

The probability density function f(t) is de�ned as the rate of event every unit
time[1]. We can calculate the density function by taking the derivative of the
survival function, which is as follows:

d

dt
S(t) =

d

dt
(1− F (t))
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Figure 2.3: An example of a survival curve

and from the de�nition of distribution function we get:

d

dt
S(t) = −f(t)

f(t) = − d

dt
S(t) (2.2)

The equation (2.2) shows the relation of probability density function with
survival function.

Probability density function, also known as unconditional failure rate[10] is
intuitively de�ned as:

P (t ≤ T < t+ ∆t) ≈ ∆tf(t)

Equation (2.3) is the traditional matematical de�nition of probability density
function as a limit.

f(t) = lim
∆t→0

P (t ≤ T < t+ ∆t)

∆t
, t > 0 (2.3)

The de�nition described by the formula in equation (2.3) is well illustrated by
Figure 2.4 , which shows that the probability of an observation lies in interval
(t, t + ∆t) is fairly approximated by the area of rectangle with sides of length
∆t and f(t) [9]

2.3.3 Hazard Function

To understand survival analysis, hazard function is an important concept which
we can say is a kind of density function f(t). The di�erence is that hazard
function is conditional while density function is an unconditional probability.
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Figure 2.4: Graph of probability density function

Figure 2.5: Hazard Functon

Hazard function also known as instantaneous failure rate is de�ned as the prob-
ability that the event lies in an interval (t, t+∆t), given that it has not happened
prior to t.

h(t) = lim
∆t→0

P (t ≤ T < t+ ∆t|T ≥ t)
∆t

, t > 0 (2.4)

h(t)∆t ≈ P (t ≤ T < t+ ∆t|T ≥ t)

Equation (2.4) explains that the probability of a person who dies in a short
interval(t, t+ ∆t) where the individual has already survived the time t. [3]
The graphical interpretation of hazard function can be seen in Figure 2.5

2.3.4 Cumulative Hazard Function

By taking integral of hazard function we get cumulative hazard function which
is comparatively easier to estimate non parametric models than hazard and

13



density functions.That is why it is considered to be an important function[9].
The formula is given in equation (2.5)

H(t) =

t�

0

h(x)dx, t ≥ 0 (2.5)

2.4 Parametric vs Semi-parametric vs Non parametric

Subsection (2.4) has references[1, 12, 14].
In survival analysis parametric and non-parametric approaches are used to es-
timate the quantities describing survival data so it is important and necessary
to describe these approaches before moving ahead.

2.4.1 Parametric Approach

In parametric approach we assume to have a distribution with particular type of
parametric form for example normal distribution, weibull distribution etc. We
make assumptions on functional form that are used in distribution we assume
and maximum likelihood procedure can be used to estimate the parameters.
The most common assumption we made for parametric model is that data follow
some speci�c probability distribution

2.4.2 Non Parametric Approach

This method of estimation does not assume any speci�c distribution. In the
distribution of survival times setting non parametric method is quite simple and
useful for example to abridge the survival data and to make simple comparisons
but for the complex condition, it is di�cult for these methods to deal with such
situation[1][12]. Non parametric methods are generally used more to analyse
the survival data as it is less restricted then the parametric method. We make
few assumptions about the observed data. I am going to use the most common
method for non parametric estimation of the survival function which is Kaplan-
Meier estimator.

2.4.3 Semi-Parametric Approach

Semi-parametric method consists of models with both parametric and non para-
metric elements. It also focuses on e�ects of the covariates. The most well known
example of semi parametric model is Cox proportional hazard model. (which
we will disscuss later) [14]
In this thesis I will explain some well known examples of non parametric and
semi parametric models.

2.5 Kaplan-Meier Estimate(KM)

The subsection (2.5) has references [2, 10, 11, 13]. Kaplan-Meier includes com-
puting probability of survival within a small interval of time. It is also known

14



as �Product Limit estimate�(PL). As we know about the censored and trunca-
tion factors which give rise to incomplete observations and we cannot eliminate
them as each individual, as long as they are event-free, contribute information
to the calculation and also we do not want to make our sample size smaller
by excluding those individuals. Also excluding the censored cases will lead to
biased estimator. Kaplan-Meier is considered the simplest way of estimating
probabilities of survival for both censored and uncensored survival times.

We calculate the probability of survival at distinct times by dividing the
number of subjects survived to the number of subjects at risk. Where those
subjects who are censored are not considered as �at risk� therefore are not added
to the denominator n. Mathematically we can express the estimated survival
probability at a certain time point as: 1− d

n where,
d =no of subjects died / no of events
n =no of subjects live at the start of the day
The total probability of survival or cumulative probability in the period of

follow up is obtained by multiplying all the probabilities of survival at all speci�c
times within speci�ed interval.
To make it more understandable, lets say the distinct event times are t1 < t2 <
t3 < t4 < t5 < . . . < tj where j patients have the events within the follow up
period and at time t1 the probability is p1. At time t2 the probability is p2 after
the patients have survived time t1, and at tj the probability is pj after surviving
time tj−1.

The probability of surviving beyond time tj is estimated as:

Ŝ(tj) = P̂ (T > tj) = p1.p2.p3...ptj

The Kaplan- Meier estimate could then be found by:

Ŝ(tk) =
∏
tk<t

S(tk−1)(1− dk
nk

) 1 < k < j (2.6)

In equation (2.6) S(tk−1) is the probability of survival computed at time tk−1

, dkis the number of subjects died at tk and nkis the number of subjects alive
just beforetk, where S(0)=1

For example to �nd the probability of survival of a patient two days after
kidney transplant could be found as the number of patients survived the day
oneS(tk−1) multiplied by the probability of patient survived the second day
given that patient has survived �rst day(1− dk

nk
). The second one is the condi-

tional probability that means for the patients/subjects to remian in the study
they should have survived the �rst period of time.

Example. Figure 2.6 illustrates the survival function drawn by taking a hypo-
thetical data of group of patients entered in clinical trial receiving anti-retroviral
therapy for HIV infection. The data shows the time of event i.e death, occured
among the patients that is:

6, 12, 21, 27, 32, 39, 43, 43, 46∗, 89, 115∗, 139∗, 181∗, 211∗

15



Figure 2.6: Plot of Kaplan-Meier estimates group of patients receiving ARV
therapy

, 217∗, 261, 263, 270, 295∗, 311, 335∗, 346∗, 365∗(* means right censored obser-
vation). From Figure 2.6 we can see the estimated probability is the step func-
tion that remain unchanged even if there is a censored observation in between.
The X-axis (horizontal lines) show the time past after entry into studies and
the Y-axis (vertical lines) shows the estimated survival probabilities. The time
t when the cumulative probability is 0.5 i.e S(t) = 0.5 is called median survival
time which according to this example is t=263. We can use di�erent statistical
programs to plot Kaplan-Meier curve such as SPSS, R, Sigma plot etc. Here in
our example we have used R to plot the curve.

2.6 Comparison of Kaplan-Meier Estimates

The citations for the following subsection (2.6) are [8, 11, 13].
The Kaplan-Meier curves can be compared to see the di�erence between them.
For example we can check if a particular treatment, lets say A given to patients is
less or more e�ective then the new treatment B given to other group of patients.
The survival patterns in the survival curves such as horizontal and vertical gaps
can be compared. The gap in horizontal direction means one from the two
groups took longer time to experience the event (death) and the gap in vertical
direction means that one group had survived more then the other group. That
means both the directions are two sides of same result so we don't need to check
both the directions at the same time. In clinical trials comparison of survival
curves are particularly taken into account. The di�erence must be statistically
signi�cant otherwise both the estimates are considered same.
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The method we are going to use to compare the survival curves is �log-rank test�
which is the most common method. In each group this method calculates the
chi square

(
X2
)
of each event time and sums the result. And the �nal chi-square

is obtained by adding all the results from each group to compare the complete
curves.

Log Rank Test

In this method we compare the curves of two di�erent groups of patients and test
whether the di�erence between their survival times are statistically di�erent or
not using statistical hypothesis test by testing a null hypothesis. Null hypothesis
states that there is no di�erence between the curves regarding survival. We
calculate the log rank test statistics as follows:

χ2 =
(O1 − E1)

2

E1
+

(O2 − E2)
2

E2
(2.7)

where
01 =Total number of observed events(patients died) in group 1
02 =Total number of observed events in group 2
E1 =Total number of expected event(death) in group 1
E2 =Total number of expected event (death) in group 2

The total number of expected events in any of the group are the sum of all the
expected events calculated at di�erent times ( at the time of each event) and the
expected number of events at the time of each event in a group is computed by
multiplying the risk of event at that time with all the patients alive at the start
of an event in that group (i.e lets say the total number of patients are 46, 23 in
each group and at day 6 the risk of event is calculated as 1/46=0.0217395 where
all the patients are alive at the start of the day and 1 died,hence in group 2 the
expected number of event at day 6 would be 23x 0.0217395= 0.5). Once we get
the sum of all expcted events in group 2 (E2) we can get (E1) by subtracting
E2from O1 +O2. Lets take an example.

Example. Following the previous example for Kaplan-Meier plot and name it
as group1(ART therapy), lets take another hypothetical data for the patients
entered in clinical trail for receiving a new Ayurvedic therapy for HIV infection:

9, 13, 27, 38, 45∗, 49, 49, 79∗, 93, 118∗, 118∗, 126, 159∗, 211∗,
218, 229∗, 263∗, 298∗, 301, 333, 346∗, 353∗, 362∗(∗ right censored observations

) and name it as group 2 (Ayurvedic therapy) . For these two groups of patients,
Figure 2.7 illustrates the di�erence between the survival curves of these two
groups. The Figure 2.7 is constructed by using a package in statistical program
R for the given data in the examples.
It can be seen from the Figure 2.7 that there is no big di�erence between the
two curves. But to check the signi�cant di�erence accuratly, we calculate test
statistics (which is computed by using the formula in equation (2.7)) and com-
pare it with the critical value (the value from chi-suare table) for one degree of
freedom. If the test statistical value is less then the critical value, we accept the
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Figure 2.7: Plots of Kaplan-Meier estimates of two di�erent groups of patients

N observed expected (O−E)2

E
(O−E)2

V

group 1 23 13 11.5 0.184 0.357
group 2 23 11 12.5 0.170 0.357

chisq= 0.4 on 1 degree of freedom , p= 0.5

Table 1: Result of log rank test in statistical programming R

null hypothesis. The second method (which we have used) to draw the signi�-
cance is using the statistical package in R for log rank test where the chisquare
value is used to calculate p value which is then compared to the signi�cant level
(P = 0.5 in our case). In our example, the Table 1 shows the result of formula
applied in R for the log rank test. According to the result we get chisqr =0.4
with p value= 0.5,we can see that the p value is the same as the signi�cant level
which means there is no signi�cant di�erence between group 1 and group 2 (we
accept the null hypothesis). The overall result of both the therapies are same
regarding the survival.

2.7 Cox Proportional Hazard Model

The following subsection (2.7) is based on the references [1, 9, 10, 16, 17]. The
Cox model is a semi parametric model. No matter if there is censored data or
time-to-events are descrete or continuous, Cox model is widely used in survival
data analysis.
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2.7.1 Proportional Hazards Assumption

The one important property or we can say the prime assumption of Cox model
is the proportional hazards, de�ned as the two hazard functions h1(t) and h0(t)
from two independent distributions are proportional if:

h1(t) = ψxh0(t), ∀t > 0, x = 0, 1, ψ > 0 (2.8)

where ψ is the positive proportionality constant that does not depend on t and
h0(t)is a baseline hazard. The proportional hazards would not be used for all the
cases. For example if we take two groups, women and men and let the hazard
function be age-speci�c mortality for these groups. Since it is widely known
that in all ages men have larger mortality then women, hence we can plausibly
assume the proportional hazards for this case which would mean that relative
advantage for women in all ages is equaly large then men. This assumption
must always be carefully examined and this could be done by using Schoenfeld
residuals. and will descibe later in the thesis.

2.7.2 Cox's Proportional Hazard Model

Sometimes it is interesting to know if a person's attributes are associated with
the occurrence of a certain disease. For example in public health research, it
is checked whether the characteristics like exalted cholesterol level, cigarette
smoking or having a history of heart disease are associated to the expansion of
cardiovascular disease. These characteristics/attributes are called covariates or
risk factors. The e�ect of such factors on time to event can be modelled by Cox
model. On the other hand, hazard is the probability of experiencing the event
given that patients have survived certain period of time.
The Cox model is a regression model for time-to-event data assuming that the
covariates will a�ect the survival times. It enables to test the di�erence between
survival times of di�erent groups of patients allowing other factors(i.e covariate)
to be taken into account. The proportional hazard assumption is the base for
Cox's regression model. Using β = log(ψ) if we rewrite equation(2.8), we can
estimate hazard function as:

hx(t) = h0(t)eβx, t > 0, x = 0, 1; −∞ < β <∞ (2.9)

which is the form of Cox model of two groups, where t is the survival time,hx(t)is
the hazard at time t, β is the parameter to be estimated, h0(t) is the baseline
hazard (hazard when all the covariates are equal to zero) and x is the covariate
(also called explanatory variables). And because of these two term β and h0(t),
the Cox model is called a semi parametric model as h0(t) is non parametric and
β is parametric part.
Parameter β can be interpreted as the hazard function is multiplied by eβeverytime
when covaritae x increases one unit. For example to represent two groups say
A and B if covariate x takes the value 0 and 1, we say group B has a risk of
eβtimes than group A.
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eβx =
h1(t)

h0(t)
, ∀t ≥ 0 (2.10)

The equation(2.10) is called hazard ratio or hazard rate (the risk of failure).
The general proportional hazard model for set of p covariates xi = (x1i, x2i, ....., xpi)

T ,
take the following form:

hi(t,xi) = h0(t)eβ
Txi t > 0 (2.11)

where regression coe�cient β = (β1i, β2i, ....., βpi)
T , i = 1, 2, ....d, baseline haz-

ard h0(t) is the hazard with all the covariates equal to zero (x1i, x2i, ....., xpi = 0).
If we have two patients with the same score on all covariates except covariate
m then:

eβm =
h1(t)

h0(t)
, ∀t ≥ 0

The e�ect of covariate xm could be read as if xm increases 1 unit, the hazard is
multiplied by eβm .

2.7.3 Estimation

In equation (2.11) two components need to be estimated. First and most im-
portant, the regression coe�cient β and the baseline hazard h0(t).

In Cox's proportional hazard model, the unknown parameter β can be esti-
mated by partial likelihood.[9]

Partial Likelihood The standard likelihood function cannot be used as we
do not have any knowledge about baseline hazard h0(t), it does not have any
speci�c form(unspeci�ed), also we do not model the censoring distribution and is
therefore removed out of the formula by Cox. That is why Cox model likelihood
function is called �partial likelihood Function�. It clearly studies probabilities
of failed subjects. Rregression parameter β for Cox model is obtained by max-
imizing the partial likelihood and to do so �rst we �nd out the equation for
partial likelihhod.
Assume that t(i) = t(1), t(2), ....., t(d)be the true failure times with one failure at
each time and R(t(i)) is the risk set consisting of the subjects under observation
i.e have not been censored or have not failed by time ti, i = 1, 2, ...., d.
Then the full likelihood is:

L(β) =

k∏
i=1

Li(β) =

k∏
i=1

P (No.i dies|One event occur,Ri)

Li(β) =
hi(ti)∑
lεRi

hl(ti)

Using equation(2.9)
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Li(β) =
h0(t(i))e

βTxi∑
lεRi

h0(t(i))eβ
Txl

from the denominator and numerator, the baseline hazards cancle out, hence
we get the �nal form of partial likelihood:

L(β) =

k∏
i=1

Li(β) =

k∏
i=1

eβ
Txi∑

lεRi
eβ

Txl
(2.12)

Now, maximum partial likelihood estimate of β can be calculated as follows.
The log partial likelihood is given by

l(β) = log(L(β)) = log[
k∏
i=1

eβ
Txi∑

lεRi
eβ

Txl
]

l(β) =

k∑
i=1

[βTxi − log{
∑
lεRi

eβ
Txl}] (2.13)

The Scorefunction U (β) is de�ned as the �rst derivative of log likelihood
function, given by

U(β) =
∂

∂β
(l(β)) = xi −

∑
lεRi

xl.e
βTxl∑

lεRi
eβxl

(2.14)

We get estimator β̂of parameter β, by setting the score function (equation(2.14))
equal to zero.(why prof has removed subscript l from x on numerator?)

β̂ =xi −
∑
lεRi

xi.e
βTxl∑

lεRi
eβ

Txl
= 0 (2.15)

By taking the negative of the derivative of score function (or second deriva-
tive of log likelihood) we can �nd the partial likelihood observed InformationmatrixI (β).

I(β) = −[
∂

∂β
(U(β))] = − ∂

∂β
[xi −

∑
lεRi

xi.e
βTxl∑

lεRi
eβ

Txl
]

I(β) = −[

∑
lεRi

xix
′

i.e
βTxl∑

lεRi
eβ

Txl
−

[
∑
lεRi

xi.e
βTxl ][

∑
lεRi

x
′

i.e
βTxl ]

(
∑
lεRi

eβ
Txl)2

] (2.16)

Equation(2.16) also known as minus the Hessian Matrix is used to produce
the standard errors for the regression coe��cients.(from wikipedia)
After we obtain maximum partial likelihood estimator β̂. then asymptotically,

β̂ ∼ N(β0, I
−1(β̂))
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whereI−1(β̂) is the inverse of information matrix at β = β̂ and β0is a true value.
This approximate distribution is used to construct con�dence interval and test
the hypothesis H0 : β = β0

For example β̂ ± zα
2

[J−1(β̂)]
1
2 is a (1 − α) CI (con�dense interval) of β.

(reference : NC State university, Dr. Daowen Zhang's lecture notes, chapter 6)
In my thesis I asume only one event occur at one event time. I am not working
with tied events but if it occur there are special ways to deal with it.

Base-line Hazard The baseline hazard could be estimated by using cumula-
tive hazard function.

Let dj be the number of events and Rj is the risk set at tj . The estimator is
as follows:

Ĥ0(t) =
∑
j:tj≤t

dj∑
lεRj

eβ̂xl
(2.17)

and if β̂ = 0,equation (2.17) is shortened to:

Ĥ0(t) =
∑
j:tj≤t

dj
nj

where nj is the size at Rj [9].
In R, to perform a Cox regression, coxph function in the package �survival� is
used and in the summary of this given function, exp(coef) gives the proportion-
ality constant (ψ)and also we can plot a diagram to show the proportionality
constant.

2.7.4 Schoenfeld Residuals

For the proportional hazard regression model, Schoenfeld recommended a chi
squared goodness of �t statistic which exploited the residuals of the shape
�Expected- Observed�. Schoenfeld residuals is de�ne as:

rk(β̂) = X(k)=x̄(β, tk) k = 1, ....., d

where d is the total number of events, Xk is the subject with event k at event
time tk. And x̄(β, tk)is the weighted average of X. I will not go in detail of how
can Schoenfeld residuals is solved manually but we will check how R tests it. In
R, function cox .zph() from survival package is used to test the proportionality
assumption for each covariate based on set of scaled Schoenfeld residuals versus
suitable transformation of time. If the result shows higher chi-square, means
the assumption is violated. We can also plot the graph of Schoenfeld residuals
returned by cox .zph() by simply using the plot function. Cox .zph() provide a
smoothing spline showed by solid line (horizontal line) in a graph with covering
±2 standard error around the �t. A systematic deviation from the horizontal
line showes non proportionality assumption.
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The corresponding cumulative hazard function H1(t) and H0(t) can also hold if
equation (2.8) holds following: [16, 17].

H1(t) = ψH0(t), ∀t ≥ 0

Plots for the smooth Schoenfeld residuals for all the covariates discussed in
section 3 are given in appendex B.

3 Introduction and First Analysis of Data

In this section I will introduce my data by describing the background of my
data and how we get it.

3.1 Back ground:

The data I am working on consists of data on patients su�ering from colorectal
cancer and therefore it is important to get an idea about what colorectal cancer
is.

3.1.1 Colorectal Cancer (CRC):

This is a type of cancer that develops in the colon or rectum (parts of large
intestine) and is therefore called colorectal cancer. This cancer may spread to
the other parts of the body like lungs, liver etc which is called metastasic(stage
IV) stage and is considered incurable. This cancer has four stages of disease
where the �rst three (I-III) stages are curable by surgical resection of the tumor,
sometimes combined with chemotherapy and/or radiation. For stage IV some
of the treatment options are: removal of primary tumor, oncological treatment,
multimodel treatment or no tumor related treatment.

3.1.2 Data:

The data I am working on are derived from a research project on patients
who received non-curative treatment for CRC due to incurable disease or other
reasons preventing curative surgery. The project has been approved by the
regional Ethics committee (REK Sør-Øst 2016/409), and parts of the data have
been made available for statistical evaluation within the current master project.
Data are obtained from the following two Norwegian registries from the year
2008 to 2014:

1. Cancer Registry of Norway (Kreftregisteret)/Norwegian Colorectal Cancer
Registry (Norsk kvalitetsregister for kreft i tykk- og endetarm).

2. NPR: Norwegian Patient Registry

The complete data set consists of N=30404 observations with all patients diag-
nosed with CRC during the study period. Patients with non-metastatic CRC
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are considered curable (stage I to III), III), and those with metastatic disease as
incurable (stage IV). Some patients are either un�t for surgery, or do not wish
surgery, and will not receive curative treatment but need palliative care as those
with stage IV disease. My focus in the thesis is the survival of those patients
with stage four (IV) and those patients who were unable to receive curative
treatment. The number of observations treated non curatively are N=10663;
35.1% of the entire study population. The time scale used in data is �days since
diagnosis to death�.
The data consists of 55 variables from which the following variables, considered
to possibly be important for the survival, are studied:

1. Treatment category

� 1:no resection

� 2:no treatment

� 3:primary resection of tumor

� 4:oncological treatment only

� 5:curative attempt� resection of metastases without resection of primary
tumor

� 6:resection of primary tumor and metastases

� 7:primary resection + oncology

2. Age category

� category1: age <66

� category2: age between 66-79

� category3: 80+

3. Stage category

� 1. Stage 4: Incurable

� 2. Stage 5: Unknown

4. Gender

5. Tumor location(Colon and rectum)

6. Metastasis status

� M0: No metastasis

� M+: Metastasis
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7. Site of metastasis

� 0: No metastasis

� 1: Liver

� 2: Lung

� 3: Liver+Lung

� 4: Multiple sites

� 5: unknown

8. Resection of metastasis

� .00: No resection of metastasis

� 1.00: Resection of metastasis

9. Tumor location category

� 1: Right Colon

� 2: Left Colon nonsigmoid

� 3: Sigmoid

� 4: Rectosigmoid

� 5: Rectum

� 6: Unspeci�ed

10. Chemotherapy

� 0: No chemo

� 1: Chemo

11. Radiation

� 0: No radiation

� 1: Radiation

12. ASA category

� 1: Category 1-2

� 2: Category 3-4

� 3: Unknown

13. Charleson Comorbidity Index (CCI)

� Group0: 0-1 comorb

� Group1: 2+ comorb
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Figure 3.1: Treatment options for Non curative CRC with number of patients
receieving the treatment

3.1.3 Treatment Options for Given Data:

For my data (N=10663) the incurable treatment options are:

� Non surgical treatment

� Non-resective surgical treatment

� Resection of primary tumor

The number of patients treated non curatively using the three options above
are shown by the Figure 3.1. These treatment options are then further divided
into 7 subgroups. The treatment category basically contain 2 subgroups �M0:
no metastases� and �M+: metastases� and then M+ is further divided into six
subgroups (categorical variables). The treatment category is as follows:

1: M0, no resection

2: M+, no treatment

3: M+, primary resection

4: M+, oncology only

5: M+, curative attempt

6: M+, primary and metastases resection

7: M+, primary resection + oncology
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Figure 3.2: Overall survival for the population in non curable CRC

3.2 Statistical Analysis:

Kaplan-Meier and Cox regression model(explained in section 1) are used to �t
the model, to get overall survival, plotting the survival curve and how covariates
a�ect the survival. The signi�cant level is taken as a p value <0.05. I will
describe the results by p value, hazard ratio and con�dence interval from the
summary of Cox model. The criterian for hazard ratio is if HR >1 means high
hazard of death and if HR< 1 means hazard is low and survival is better.

3.2.1 Overall Survival:

After diagnosis, the probability of survival of patients after certain time point t
is called overall survival. Overall survival is associated with the overall hazard
rate λO such that:

SO(t) = exp

[
−
� t

0

λO(u)du

]
(3.1)

We can see in the Figure 3.2, the survival curve is gradually decreasing with the
passage of time. At the end of the study almost 86% of patients had died that
means overall survival is only 14%. If we look at the median survival time, we
got to know that 50% of the patients would die until the 625th day. This shows
that the overall survival is not good which is not surprising since this includes
incurable patients.

3.2.2 Univariate Cox Analysis

� Treatment category

From the Figure 3.3 we can see that category 6 (where the patients receive
�primary and metastas resection� treatment) shows good prognosis and category
2 (where patients do not receive any treatment) has worst prognosis. After
analysing the data, results show that every category is signi�cant and di�erent
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Figure 3.3: Rplot for 7 subgroups of treatment category

from reference category as the p value as shown in the Table 2 is less than the
speci�ed p value(0.05). Also the hazard ratio(HR) which tells the e�ect of each
covariate on survival is shown in the Table 2 The HR for category 3,6 and 7
reduces the the risk of death by a factor of 0.78, 0.34 and 0.75 respectively
compared to the reference category whereas for category 2, 4, 5 and 7, the
hazard is high so they don't have good prognosis.

� Age category

The categorical covariate �age� consists of 3 categories where patiens are divided
by age such as

category1: age <66

category2: age between 66-79

category3: 80+

The hazard ratio, p value and CI for the category 2 and 3 relative to 1 is given
in the Table 2 and we can clearly see, both the age groups (category 2 and 3)
as compare to group 1 has lower prognosis. The hazard is high by factors 1.35
and 2.43 (more than 1).This can also be seen clearly in Figure 3.4 (a).
Also the p value is far less then 0.05 which means the covariate �Age� is quite
signi�cant.

� Stages category

Stage category consists of 2 following stages:
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Figure 3.4: Kplan-Meier curves for (a): age, (b): stages of disease

1. Stage 4: Incurable

2. Stage 5: Unknown

The stage 5 is found to have slightly better survival than stage 4. The risk of
death in stage 5 is 0.7, lower than stage 4, see Table 2. Figure 3.4 (b) shows the
survival in the beginning was litte lower than 4 but after about 1000 days the
curve went up and sustained above stage 4. Due to the crossing curves the p-
value will be inaccurate. This covariate violates the proportionality assumption
as you can see the Figure, the curves cross each other and thus are not constant
over time.

� Gender

Normaly in cancer studies it is seen that survival of female is better than male
but for our data the survival for men is slightly better than the women. HR
and p value is given in Table 2 and Figure 3.5 (c) shows the Kaplan curve.

� Tumor location(Colon_Rectum)

This category shows the presence of cancer in colon or rectum. More than 70
percent of patients have rectum cancer in our data. As it is clear from Kaplan-
Meier Figure 3.5 (d) that patients with rectum cancer has little better survival
than patients with colon cancer. Rectum cancer patients have (0.23) lower risk
of death than colon cancer patients. P value is quite high that means this
variable is very signi�cant.

� Metastasis yes or no
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Figure 3.5: Kaplan-Meier curve for (c): Gender and (d): colon_Rectum(place
of disease)

Patients with metastasis have higher hazard then the non metastasis patients.
See the Table 2. In Figure 3.6 (e) before approx. 1000th day the patients with
metastasis has good prognosis which means people can survive more than those
of without metastasis. This is one of an example of non proportional model.

� Site of metastasis

This variable has following six groups:

0: No metastasis

1: Liver

2: Lung

3: Liver+Lung

4: Others or multiple locations

5: unknown

According to the Cox summary, group 1 (liver) and group 5 (unknown) appears
to be not signi�cantly di�erent relative to group 0 (reference group) as the p
values are more than 0.05 and con�dence intervals contain 1. Group 1 and 2
relative to group 0 (no metastasis) has hazard ratio of 0.96 and 0.57 respectively
whereas rest of the groups have higher death risk. Group 2 with patients having
metastasis in lungs has better survival than the rest of the groups as can be seen
by Figure 3.6 (f) and group 3 has worst prognosis.

� Resection of metastasis (yes or no)
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Figure 3.6: Kaplan-Meier for (e): �status of metastasis�(either presense of
metastatic disease or not) and (f): �site of metastatic disease�

This Variable has two groups of patients.

0: No resection of metastasis

1: Resection of metastasis

It is very clear from the plot 3.7 (g) that patients with resection of metastases
have quite better survival than the other group. The resection of metastasis
reduces the risk of death by factor 0.44. See Table 2

� Tumor location category

Following are the 6 locations of tumor:

1: Right Colon

2: Left Colon nonsigmoid

3: Sigmoid

4: Rectosigmoid

5: Rectum

6: Unspeci�ed

The survival of all locations is better relative to loction 1 except 6 which is
unspeci�ed and has worst prognosis. See Figure 3.7 (h)

� Chemotherapy
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Figure 3.7: Survival curves for covariates (a):�resection of metastasis� and (b):
�Location of tumor�

This covariate consist of 2 groups of patients either receiving chemotherapy for
cancer or not.

Group0: No chemotherapy

Group1: Chemotherapy

There is no huge di�erence in survival between two groups, see Figure 3.8 (i)
but group 2 with patients who have gone through chemotherapy has better
survival(HR= 0.92) than those without chemotherapy. See Table 2

� Radiation

Another therapy than chemo for cancer treatment is radiation. This covariate
consists of following two groups

Group0: No radiation

Group1: Radiation

From the Cox summary given in Table 2, this covariate seems to be insigni�cant
as p value (0.5) is more then the speci�ed p value (0.05). Even though HR is
less than 1, both groups are not signi�cantly di�erent from each other as 1 is
included in the 95% con�dence interval. See Figure 3.8 (j) .

� ASA

The American Society of Anesthesiologists (ASA) score also called as ASA-
PS(physical status) score use to evaluate the physical status of all surgical pa-
tients. It has following �ve di�erent classi�cation:
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Figure 3.8: Kaplan-Meier curves for(i): �chemo� and (j): �radiation�

ASAI: A normal healthy patient.
ASA II: A patient with mild systemic disease.
ASAIII: A patient with a severe systemic disease that limits activity but is

not incapacitating. .
ASAIV A patient with a severe systemic disease that is a persistent threat

to life.
ASAV: A dying patient not expected to survive. [15]
In this covariate, following are the values given to the ASA categories

1: Category 1-2

2: Category 3-4

3: Unknown

Relative to group 1 which is �category (1-2)�, both the other groups have a very
high hazard rate which means �category 1-2� has quite better survival than the
other groups as can be seen in the plot 3.9 (k).
Also group 2 and 3 have non proportional curves. See Table 2 for Cox summary.

� Charleson Comorbidity Index

Group0: 0-1 comorb

Group1: 2+ comorb

From the plot 3.9 (l), there seems to be no di�erence between the curves except
after 1500 days where patients with �2+ comorbs� have little better survival
than �0-1 comorb�. HR is only 2% lower than the group1 (reference group) but
p value is 0.6, higher than 0.05 so this covariate found to be not signi�cant for
the analysis.
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Variables HR P CI

Treatment category <0.0001

category 1 ref

2 2.97 <0.0001 (2.77, 3.19)

3 0.78 <0.0001 (0.73, 0.83)

4 1.82 <0.0001 (1.64, 2.02)

5 1.78 <0.0001 (1.33, 2.39)

6 0.34 <0.0001 (0.27, 0.42)

7 0.75 <0.0001 (0.67, 0.84)

Age category <0.0001

<66 ref

66-79 1.35 <0.0001 (1.28, 1.42)

80+ 2.43 <0.0001 (2.30, 2.58)

Stages category

stage 4 ref

stage unknown 0.93 0.035 (0.88, 0.99)

Gender 0.01

female ref

male 0.94 0.01 (0.90, 0.98)

Tumor location <0.0001

Colon ref

Rectum 0.77 <0.0001 (0.74, 0.81)

Metastasis status 0.03

No metastasis ref

metastasis 1.06 0.035 (1.00, 1.03)

Site of metastasis <0.0001

group 0 ref

1 0.96 0.39 (0.90, 1.04)

2 0.57 <0.0001 (0.51, 0.64)

3 1.38 <0.0001 (1.25, 1.52)

4 1.23 <0.0001 (1.15, 1.31)

5 1.09 0.08 (0.98, 1.21)

Variables HR P CI

Resection of metastasis <0.0001

0.no resection ref

1.resection 0.44 <0.0001 (0.37, 0.52)

Tumor location category <0.0001

1 ref

2 0.80 <0.0001 (0.73, 0.88)

3 0.67 <0.0001 (0.63, 0.72)

4 0.70 <0.0001 (0.63, 0.78)

5 0.66 <0.0001 (0.63, 0.70)

6 1.54 <0.0001 (1.35, 1.75)

Chemotherapy 0.03

No chemotherapy ref

chemotherapy 0.92 0.02 (0.85, 0.99)

Radiation 0.5

No radiation ref

Radiation 0.96 0.49 (0.85, 1.07)

ASA category <0.0001

1 ref

2 1.81 <0.0001 (1.67, 1.96)

3 1.83 <0.0001 (1.72, 1.94)

CCI 0.6

2+ comorb ref

0-1 comorb 0.98 0.62 (0.91, 1.05)

Table 2: characteristics of patients with cholorectal cancer from 2008 to
2014(Univariate Analysis)
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Figure 3.9: Kaplan-Meier plots for (k): ASA scores and (l): CCI

3.2.3 Multivariate Analysis:

Now I am going to analyse how all selected covariates together a�ect the survival.
I will add all the covariates selected for univariate Cox analysis except radiation
and CCI for not being signi�cant (as p>0.05). Also I will not include ASA
category as both ASA and CCI has 67% and 60% missing values respectively.
After performing Multivariate Cox regression Analysis on 10 covariates in R,
we get the results mentioned in Table(3)
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Variables HR P value CI

i.Treatmeant category
1 ref
2 2.65 <0.0001 (2.35, 3.00)
3 0.68 <0.0001 (0.60, 0.76)
4 2.16 <0.0001 (1.80, 2.59)
5 1.31·105 0.95 (4.27·10−182, 4.04·10191)
6 2.42·104 0.96 (7.88·10−183, 7.46·10190)
7 0.79 0.01 (0.65, 0.96)

ii.Age
<66 ref
66-79 1.38 <0.0001 (1.30, 1.45)
80+ 2.47 <0.0001 (2.33, 2.62)

iii.Stages Category
Stage 4 ref
Unknown NA NA NA

iv. Gender
Female ref
Male 1.05 0.02 (1.00, 1.09 )

v. Colon-Rectum
Colon ref
Rectum 0.63 <0.0001 (0.60, 0.67)

vi. M-status
No metastasis ref
metastasis NA NA NA

vii. Site of metastasis
0 ref
1 1.25 <0.001 (1.12, 1.39)
2 0.80 0.001 (0.70, 0.92)
3 1.50 <0.0001 (1.33, 1.70)
4 1.36 <0.0001 (1.22, 1.51)
5 NA NA NA

viii. Resection of Met
No resection ref
Resection 1.32·10−5 0.95 (4.30·10−192, 4.07·10181)

ix. Location of tumor
1 ref
2 0.89 0.019 (0.81, 0.98)
3 0.67 <0.0001 (0.63, 0.71)
4 0.69 <0.0001 (0.62, 0.77)
5 NA NA NA
6 0.85 0.01 (0.75, 0.97)

x. Chemotherapy
No chemotherapy ref
Chemotherapy 0.81 0.005 (0.69, 0.94)

Table 3: Results for Multivariate Cox regression Analysis of 11 covariates
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As we can see through the Table there are some covariates and some subgroup
of covariate have written �NA� instead of some values which means missing
values. So we have to �nd a way to remove this �NA� values. And to do
so if we really go through into the information given for covariates, we will
see that some covariates have overlapping information. For example covariate
�stage category� contains the same information about metastasis as covariate
�Metastasis status� i.e in �stage category� category 4 represents the presence
of metastasis and in �Metastasis status� group 1 shows the same. Similary
covariate �Metastasis loation�, �Resection of metastasis� and �Tumor location
category� also carry the same information about metastasis. These 5 are the
covariates causing the overlap information and the prevention is only removing
unnecessary covariates. Removing one by one the covariates, I get my best
option �Tumor location category� as my �nal covariate. This one is selected as
it does not only contain required information about metastasis but some other
information which cannot be deleted. So basically all the information in rest
deleted covariates are covered by mentioned selected covariate.
After removing the not needed covarites and performing Multivariate Cox Anal-
ysis We get the result given in Table(4)

3.2.4 Final Results

Likelihood-ratio-test = 3631 on 15 df, p=<2e-16

The p value of the �nal model is quite low(<0.0001) which shows the model is
quite signi�cant. All the covariates in Table(4) are signi�cant.

� Category 7 in treatment category is not signi�cant as p value is greater
than 0.05 but altogether the covariate is signi�cant with category 6 �pri-
mary and metastaes resection� having the good prognosis with better sur-
vival of 0.62. And category 2,4 and 5 found to have a worst prognosis.

� The covariate age is related to the poor prognosis as increased age, in-
creased the risk of death. The 95 % con�dence interval includes 1 means
both the age groups (66-79) and (80+) are not signi�cantly di�erent from
reference group(<66).

� Being male or female are not signi�cantly di�erent from each other. Sex
with HR=1.05 indicates increased risk of death.

� The overall tumor location category seems quite signi�cant for the analy-
sis. Every category has a good relationship with decreased risk of death.
Location 5 which is �Rectum� has comparatively good survival than the
other locations. And location 2 that is �Left Colon nonsigmoid� has poor
survival than other locations.

� Chemo category with HR= 0.77 is associated with good prognosis. Chemother-
apy reduces the risk of death by facor 0.77
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Variables HR P value CI

Treatment category
1 ref
2 3.38 <0.0001 (3.14, 3.64)
3 0.83 <0.0001 (0.77, 0.89)
4 2.52 <0.0001 (2.12, 3.00)
5 2.23 <0.0001 (1.65, 3.02)
6 0.38 <0.0001 (0.30, 0.47)
7 0.99 0.90 (0.84, 1.16)

Age category
<66 ref
66-79 1.35 <0.0001 (1.28, 1.43)
80+ 2.41 <0.0001 (2.27, 2.55)

Gender
Female ref
Male 1.05 0.02 (1.00, 1.10)

Tumor location category
1 ref
2 0.89 0.01 (0.80, 0.97)
3 0.65 <0.0001 (0.61, 0.69)
4 0.67 <0.0001 (0.60, 0.74)
5 0.61 <0.0001 (0.57, 0.64)
6 0.81 0.001 (0.70, 0.92)

chemotherapy
No chemotherapy ref
Chemotherapy 0.77 0.0009 (0.66, 0.89)

Table 4: Final Multivariate Cox Analysis results after removing overlapping
information
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4 Further Measures of Survival Analysis

4.1 Relative Survival

One is often interested in estimating survival/mortality, based on cause speci�c

data (i.e cancer) but most of the registries do not provide information about

the speci�c cause of death as the information about cause of death collected

is either unreliable or unavailable because of misclassi�cation error or intrinsic

uncertainty. As a result, interpretation and comparisons between countries and

time periods is not easy due to the unassurity that whether the change in survival

among the group of patients is due to change in risk of death from cancer or

other causes of death. In such situations, the relative survival analysis provide

information about survival/mortality of disease without knowing the cause of

death.

The idea of relative survival is constructed to provide the probability of survival

with the disease of interest when the cause of death is not known or not required

and relative survival is de�ned as ratio of overall survival of patients dying of

all causes of death to expected survival of comparable group with same demo-

graphical structure i.e age, gender and birth distribution as the patient groups

(study cohort). Expected survival is generally estimated from the life table and

is the total survival in a normal population life Table. Relative survival captures

mortality both directly and indirectly related to the disease (for example, death

due to treatment complications, suicide triggered by disease, etc.).

Assuming that cause of disease of interest and all other causes are independent.

Let Td indicate the time to death related to the disease, Tp indicate the time to

death assuming the risk of death from all other causes, To = minimum(Td, Tp)

be the observed time to death, all calculated with an accepTable reference point

such as date of diagnosis. The overall survival probability to time t would then

be:

P (To ≥ t) = P (Td≥t)P (Tp ≥ t) (4.1)

P (Td≥t) =
P (To≥t)
P (Tp≥t)

where P (Td≥t) is the probability of survival to time t with disease of interest

wihout the e�ect of other causes of death and termed as relative survival oftenly

denoted as SR(t),SO(t) = P (To≥t) is the observed probability of survival and

can be estimated from the data and P (Tp≥t)denoted as SP (t) is the expected

or population survival that have all other causes of death except the disease of
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interest. It can be estimated from population mortality Tables. For patients of

size N , expected survival equals SP (t) = 1
N

∑
i Spi(t). [18] hence,

SR(t) =
SO(t)

SP (t)
(4.2)

The ratio describes in equation (4.2) how our patients' survival compares to

that of the general population. A measure of excess mortality is provided by

relative survival, adepted by the cohort without the information about cause

of death. The idea of relative survival inspired Researchers as it is related to

the idea of �cure�. In estimating cancer prognsis the researchers were concerned

to know if and when the overall survival for both cancer patients and general

population could be on same level. This level is called the cure point so when

the excess deaths related to cancer became zero no patients died due to cancer.

In the next subsection (4.2) I will explain what excess mortality is?

4.2 Excess Hazard

One needs precise cause of death data to directly estimate the cause speci�c
mortality, but when the data is given for all causes of deaths so one can instead
estimate excess mortality(excess hazard) also known as disease speci�c mortality
by:

TotalMortality = PopulationMortality + ExcessMortality

where population mortality is considered for a normal population with same
age, gender and birth pro�le as the patient group.

A hazard function at time t for every individual diagnosed with disease i.e
cancer is modelled as the sum of population hazard and the excess hazard due
to the disease, following:

ho(t) = hp(t) + he(t) (4.3)

where
h0(t) is the observed hazard for every individual in given data
hp(t) is the hazard every patient takes because of his age, sex and cohort

year
he(t) is the excess hazard speci�c for the disease

Now, if we integrate equation (4.3) and apply exponential we get:

e−
�
ho(t)dt = e−

�
(hp(t)+he(t))dt

e−
�
ho(t)dt = e−

�
(hp(t)dt + e−

�
(he(t)dt (4.4)

by using cumulative survival function equation S(t) = e−
�
h(t)dtin equation

(4.4)we get the expression:
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SO(t) = SP (t) × SR(t) (4.5)

This equation (4.5) gives the same form as in eqaution (4.2).The equation (4.3) is
known as additive model, especially subjugated in cancer research. Also known
as relative survival model as it can also be written as equation (4.5).
We can make a regression model for the excess hazard of the form:

he(t) = he0(t)eβ
Tx

In relative survival, the additive model is the preferred regression model to es-
timate the excess hazard. It provides better �t to data than other models, in
general such models are considered reasonable for population based epidemio-
logical studies. Population hazard does not depend on clinical covariates for
example tumor speci�c covariate in cancer such as stage or histology but pre-
sume to depend on subset of covariates such as (typically) age, sex and birth
distribution.
There are several methods to �t the additive model from which 3 are: (i)
Hakulinen�Tenkanen additive survival method, (ii) The glm model with the
Poisson error structure, (iii) The Esteve additive survival model.
For my data I am going to use the default method in R which is �The Esteve
additive survival model�. [20]

4.3 Net Survival

Net survival is another measure of estimating cause speci�c mortality referred
to as the probability that a patient is still alive where the feasible cause of
death is only the disease of interest (i.e cancer). Net survival is evaluated on
survival scale when solely the disease speci�c mortality for each individual hei(t)
is considered and an assumption is made that when the other causes of death
are removed, the excess hazard will remain unaltered. The reason to use this
measure is to get the measure that does no depend on the probability of dying
due to other causes therefore is used when interest is in comparing populations
with di�erent mortality.
An alternative interpretation of net survival is known as the marginal relative
survival ratio where a new unbaised estimator is described by Perme et al in
which net survival is estimated as weighted average. [21] Relative survival ratio
is the ratio of averages, likewise net survival can be written as average of ratios.
Net survival for a cohort, is estimated as the weighted average of individual-
speci�c net survival. These weights actually are the inverse of individual-speci�c
expected survival probabilities of each individual. As a consequence of weights
the number of people and number of deaths observed are increased in order to
account for number of people and deaths not observed by reason of mortality
caused by competing risks. To this end, we de�ne the individual relative survival
ratio through time and over individual as

SNi(t) = exp{−
� t

0

hei(u)du} =
exp{−

� t
0
hoi(u)du}

exp{−
� t

0
hpi(u)du}
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SNi =
SOi(t)

SPi(t)

So the net survival can be written as average of ratios of cohort of size N :

SN (t) =
1

N

N∑
i=1

SNi =
1

N

N∑
i=1

SOi(t)

SPi(t)
(4.6)

in contrast to the relative survival ratio which is the ratio of averages:

SR(t) =
1
N

∑N
i=1 SOi(t)

1
N

∑N
i=1 SPi(t)

Net survival, contrary to relative survival is more suitable when comparing two
cohorts with di�erent population survival as it is not a�ected by population
mortality hazard.

4.4 The Relsurv Package in R

To estimate the net survival and relative survival, function �rs.surv �and to �t
the additive model the function �rsadd � in package �relsurv �in R is used.

-rs.surve:

To calculate an estimate of relative survival or net survival, di�erent methods
are given as an argument and user can choose among them. The methods
applied are the pohar-perma method, ederer 1, ederer 11 and hakulinen. Pohar
perma is the default method and estimates the net seurvival with cumulative
hazard. Other methods estimate the relative survival ratio.

-rsadd:

The function rsadd is used to �t the additive model to the data using the
di�erent method of estimation through methodargument. The methods are (as
descibed in section 4.2): Hakulinen�Tenkanen de�ned by �glm.bin�, glm model
with poisson error and Esteve method de�ned by �glm.poi �and �max .lik �. The
Esteve(or maximum likelihood method) is the default method.

-Usage The basic syntax for both the functions are same:

rs.surv(formula, data, ratetable)
rsadd(formula, data, ratetable)
where the syntax of the argument formulais same as we used for function coxph
and survfit in survival package which is:

formula = Surv(time, status) ~ 1
formula = Surv(time, status) ~ x for rsadd where x is a covariate(or sum of

covariates)
The object Surve holds the follow up time and status for censoring. The value 1
to the right of ~ sign represent the entire cohort but the curves for a subgroup
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Figure 5.1: (a)Relative Survival, (b) Net survival

of certain covariates can also be estimated by writing that covariate or sum of
covariates to the right of ~ sign (like in rsadd formula)

The argument datacontains the data of observed cohort (patients) and the
population data (mortality Table) should be stated inratetable.The covariates
in population data should be organised in the same manner as in the observed
cohort. And the population data can be organised as a ratetable object. The
factor 365.24 is used whenever the transformation between day and year is
required. for example age is always expressed in days so if the age is in years it
must be multiplied by factor 365.24.
Section 4 is based on sites [18, 19, 20, 21, 22]

5 Data Analysis

5.1 Relative Survival and Net Survival- All Patients

For my data the disease of interest is the non curative CRC. We see the relative
survival reaches 50% at almost 2 years(716 days). After 8 years, relative survival
ratio seems 20% according to the Figure 5.1 (a) which implies that survival of
our observed cohort is at 20% of the survival of their population counterparts.
The relative survival ratio is higher than the 8 year observed survival which
is 14 %. See observed survival Figure 3.2 but the di�erence is not large, and
means mostly patients in observed cohort died because of the disease.
At approximately 2 years(695 days) net survival reaches 50 %, see Figure 5.1(b).
After 8 years, net survival of our cohort is approximaley 17 % which means in
these years the number of patients who had died of non curative colon and
rectum cancer would be 83 % in a hypothetical world where the cancer was the
only thing the patients could die from. The net survival, as well is not larger
than the overall survival. Net survival and relative survival ratio estimates are
very close to each other as you can see both have almost same 2 years of survival
and the di�erence at the end of the study is also not large.
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Figure 5.2: (c)Relative survival, (d) net survival for treatment category

5.2 Relative and Net Survival - Treatment Category

Relative survival ratio of all the categorise is higher than the overall survival,
for example 6 year the relative survival ratio for group 6 (primary and metastas
resection) is roughly estimated at 0.73 which means after 6 years, survival of
patients in group 6 is at 73% of the survival of their counterparts. In Cox model,
overall survival for group 6 was roughly estimated at 60%, See Figure 5.2 (c).
Net survival at year 6 is estimated almost 0.73 for group 6. See Figure 5.2 (d).
That means 27% of patients would die due to cancer in the �rst 6 year. Net
surviavl and relative survival ratio estimates are almost equal. Relative and net
survival for group 2 (no treatment) at year 6 is estimated at 0.02 which means
the prognosis for group 2 is worst.

5.3 Excess Hazard Regression Model

In this subsection I will study the impact of all the covariates described in section
3 on the relative survival and the excess hazard. I am not applying net survival
separately since both net and relative survivals are almost same and due to the
link between excess hazard and relative survival experienced in subsection 4.2.

5.3.1 Univariate Analysis

I am going to compare my results obtained from Cox regression model for ob-
served survival with excess hazard regression for the cancer patients survival.
The column HR(ex) contain excess hazard ratios (mortality due to disease only
i.e colon-rectum cancer) (see subsection 4.2)

� Treatment category

Excess hazard ratio for category 6 which is �primary and metastas resection�
treatment is 0.25 compared to hazard ratio of 0.34 in Cox model. The risk of
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Figure 5.3: Relative survival curve for (a): age catgory, (b): stage category

death for category 2 (i.e no treatment) has increased from factor 2.97 to 3.76.
see Figure 5.2 and Table 5.

� Age category

Prognosis for both the age group (�66-79� and �80+�) relative to reference group
�<66� is still worse but the relative survival is higher than overall survival of
Cox model as patients died from other factors are not included now. See Figure
5.3 (a).

� Stage category

The relative survival ratio of stage 5 is 0.19 compared to Cox's observd survival
of 0.7. Also p value has changed and is more signi�cant but considered inacurate
because both the curves in Figure 5.3 (b) are crossing each other.

� Gender

This covariate is now more signi�cant and the excess hazard is 0.92 compared to
Cox HR of 0. 94. Male patients have lower risk of death than female patients.
see Table 5.

� Tumor location

Relative to reference group (colon location) the rectum cancer patients has lower
risk of death with excess hazard ratio of 0.74 which was 0.77 in Cox model. see
Tables 2 and 5.

� Metastasis status

The excess hazard for patients with metastasis has increased by factor 1.22,
compared to patients without metastasis. While in Cox modeling the hazard
ratio was 1.06. So the patients with metastasis still has poor prognosis relative
to patients with no metastasis. See Figure 5.5 (e).
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Figure 5.4: Relative survival curve for (c): gender, (d): colon-rectum
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Figure 5.5: Relative survival curve for (e): Metastasis status, (f): Site of metas-
tasis

� Site of metastasis

Group 1 and 5 are now signi�cantly di�erent relevant to group 0 (reference
group) compared to Cox model. All the groups have increased hazard except
group 2 . Relative to reference group, presence of metastasis in lungs (group
2) has lower hazard ratio of 0.55 and in Cox HR was 0.53. Group 3 has worst
prognosis, see Figure 5.5 (f) and Table 5.

� Resection of metastasis

The excess hazard ratio for resection of metastasis is 0.34 compared to HR of 0.44
in Cox model. The risk of death for the patients with resection of metastasis is
lower relative to patients with no resection of metstasis as the di�erence between
the curves can be seen from the Figure 5.6 (g).

� Location of tumor category
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Figure 5.6: Relative survival curve for (g): Resection of metastasis, (h): Loca-
tion of tumor

Relative to reference location, all the locations except 6 has better survival. The
excess hazard ratio of locations 3, 4 and 5 is lower while for location 6 is higher
than hazard ratio of Cox model. Location 2 has same hazard ratio as in Cox
model. Figure 5.6 (h).

� Chemotherapy

The excess hazard ratio is same as in Cox hazard ratio i.e chemotherapy has 8%
better survival compared to no chemotherapy but the covariate is now signi�cant
(0.05). See Figure 5.7 (i), Table 5 and Table 2 for comparison.

� Radiation therapy

The covariate is still insigni�cant as p value is less than the speci�ed p value(0.05).
Both the groups are not signi�cantly di�erent from each other and can be clearly
seen from the Figure 5.7(j).

� ASA category

Both the groups 2 and 3 still have poor prognosis relative to group 1. Group
2 �Catgory 2-3� and group 3 �category unknown� have non-proportional curves,
see Figure 5.8 (k). Compared to �observed survival� in Cox regression, excess
hazard ratio is a little lower in group 2 but higher in group 3. See Table 5

� Charleson Comorbidity Index

In Table 5, p value is not signi�cant (0.38> 0.05). And excess hazard for 2+
comorb is 0.96 compared to Cox's observed hazard of 0.98. See Figure 5.8 (l).
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Figure 5.7: Relative survival curve for (i): Chemo therapy, (j): Radiation ther-
apy
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Figure 5.8: Relative survival curve for (k): ASA category, (l): CCI
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Variables HR(ex) P CI

Treatment category <0.0001

category 1 ref

2 3.76 <0.0001 (3.45, 4.10)

3 0.86 0.0006 (0.80, 0.94)

4 2.20 <0.0001 (1.96, 2.48)

5 2.14 <0.0001 (1.56, 2.94)

6 0.25 <0.0001 (0.17, 0.35)

7 0.84 0.01 (0.73, 0.96)

Age category <0.0001

<66 ref

66-79 1.27 <0.0001 (1.20, 1.34)

80+ 2.07 <0.0001 (1.94, 2.21)

Stages category <0.0001

stage 4 ref

stage unknown 0.81 <0.0001 (0.75, 0.87)

Gender 0.002

female ref

male 0.92 0.002 (0.88, 0.97)

Tumor location <0.0001

Colon ref

Rectum 0.74 <0.0001 (0.70, 0.79)

Metas_status <0.0001

No Metastasis ref

metastasis 1.22 <0.0001 (1.13, 1.32)

Site of metastasis <0.0001

group 0 ref

1 1.11 0.01 (1.01, 1.21)

2 0.55 <0.0001 (0.47, 0.63)

3 1.64 <0.0001 (1.46, 1.83)

4 1.44 <0.0001 (1.33, 1.57)

5 1.20 0.002 (1.06, 1.35)

Variables HR(ex) P CI

Resection of Met <0.0001

0.no resection ref

1.resection 0.34 <0.0001 (0.27, 0.43)

Tumor location category <0.0001

1 ref

2 0.80 <0.0001 (0.71, 0.89)

3 0.64 <0.0001 (0.60, 0.69)

4 0.67 <0.0001 (0.59, 0.76)

5 0.63 <0.0001 (0.59, 0.67)

6 1.66 <0.0001 (1.45, 1.90)

Chemotherapy 0.05

No chemotherapy ref

chemotherapy 0.92 0.05 (0.85, 1.00)

Radiation 0.62

No radiation ref

Radiation 0.96 0.62 (0.85, 1.10)

ASA category <0.0001

1 ref

2 1.79 <0.0001 (1.63, 1.96)

3 1.87 <0.0001 (1.75, 2.00)

CCI 0.38

2+ comorb ref

0-1 comorb 0.96 0.38 (0.89, 1.04)

Table 5: Univariate excess hazard analysis of patients with cholorectal cancer
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Variables HR(excess) P value CI

Treatment category
1 ref
2 3.94 <0.0001 (3.62, 4.28)
3 0.86 0.0005 (0.80, 0.94)
4 2.94 <0.0001 2.43, 3.56)
5 2.55 <0.0001 (1.84, 3.52)
6 0.28 <0.0001 (0.20, 0.40)
7 1.05 0.57 (0.88, 1.26)

Age category
<66 ref
66-79 1.27 <0.0001 (1.20, 1.35)
80+ 2.04 <0.0001 (1.91, 2.17)

Gender
Female ref
Male 1.02 0.30 (0.97, 1.07)

Tumor location category
1 ref
2 0.89 0.02 0.79, 0.98)
3 0.63 <0.0001 (0.58, 0.67)
4 0.65 <0.0001 (0.57, 0.72)
5 0.57 <0.0001 (0.53, 0.60)
6 0.80 0.001 (0.69, 0.91)

Chemotherapy
No chemotherapy ref
Chemotherapy 0.75 0.001 (0.63, 0.89)

Table 6: Final multivariate excess analysis
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5.4 Multivariate Analysis

5.4.1 Final Results

The relative survival ratio of combination of covariates given in Table 6 is very
signi�cant as the overall p value is <0.0001, which is quite less than 0.05. After
comparing the �nal results with multivariates results of Cox model, we get:

� Treatment covariate as a whole is signi�cant but catgory 7 is insigni�cant
as p value is 0.57 which is greater than 0.05. Compared to category 1,
the excess hazard ratio for categories 2, 3, 4, 5 and 7 are 3.94, 0.86, 2.94,
2.55 and 1.05 respectively. The same hazard ratios from the Cox model
are lower, and are 3.38, 0.83, 2.52, 2.23 and 0.99. However, for category
6 the excess hazard ratio is lower (0.28) than the Cox hazard ratio (0.38).
So with category 6 �primary and metastasis resection� treatment, patients
survive longer, whereas category 2 �no treatment� has worst prognosis so
it is better to be in the group that receives any treatment. See Tables 6
and 4.

� The excess hazard ratio for both the categories of age is higher than the
reference category but is lower than hazard ratio for Cox model, that is
because in the excess hazard model, other factors of death than disease
are not considered. This shows the increasing age increases the risk of
death due to cancer. See Table 6.

� In gender covariate, both the excess hazard and hazard ratio for Cox model
are not very di�erent (HRexcess=1.05 ,HRoverall=1.03) which shows be-
ing male is not signi�cantly di�erent to being female. See Tables 4 and 6
.

� The overall tumor location covariate is signi�cant. The relative survival
ratios for all the locations are little higher compared to overall survival
from which location 5 �rectum� has better prognosis and location 2 �Left
Colon nonsigmoid� has worse prognosis. See Table 6.

� The excess hazard ratio for chemotherapy is 0.75 compared to hazard ratio
in Cox model of 0.73, see Tables 4 and 6 for comparison. So patients who
recieved chemotherapy relative to those who do not, tend to live longer.
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6 Summary

The aim of this thesis was to provide the introduction to various measures
of survival ( i.e the overall survival, net survival and relative survival) and
regression models such as Cox model and excess hazard model. The thesis
statistically evaluates a part of data taken from a research project on patients
who received non-curative treatment for CRC due to incurable disease or other
reasons preventing curative surgery. To analyse the survival of non curative
patients, Kaplan-Meier and Cox regression model were used to �t the model, to
get overall survival, plot the survival curve and study how covariates a�ect the
survival. Partial likelihood estimation was discussed to estimate the regression
coe�cient β. On the other hand, relative survival ratio and excess hazard
regression model were used to estimate the cause speci�c mortality, to plot
the relative survival curve and study how covariate a�ect the survival when
other causes of deaths do not a�ect. In excess hazard, population mortality is
considered for a normal population with same age, sex and birth pro�le as the
patient group. In both regression models, all thirteen covariates were analysed
through univariate analysis method to check each covariate's individual e�ect
and multivariate analysis to check overall e�ect of all covariats. In multivariate
analysis, all those insignifcant or overlapping covariates were thrown out of the
group and as a result we got the following signi�cant ones:

� Treatment category

� Age category

� Gender

� Tumor location category

� Chemotherapy

Speci�cally the focus was to compare the overall survival of cohort with the
survival of their counterparts in general population to check either the patients
died mostly from the disease or from other causes and what was the risk of
death in each category of overall survival compared to general population. The
results of Cox and excess hazard regression for all mentioned signi�cant covarites
were compared by comparing overall hazard ratio related to overall survival
and excess hazard ratio related to relative survival. The results from the two
methods are found to be not highly di�erent from each other which indicates
the patients with non curative disease are mostly died due to cancer.
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A. Norweigan Names for Covariates used in my

data

1. Beh_Kategori (Treatment category)

2. Age_kat(Age catgory)

3. Stadium_kat(Stage category)

4. KJOENN(Gender)

5. Colon_Rectum(Tumor location)

6. M_status(Metastasis status)

7. Met_lok(Site of metastasis)

8. Met_kir_appr(Resection of metastasis)

9. Tu_Lok_Kat(Tumor location category)

10. Kjemo(Chemo therapy)

11. Radiatio(Radiation therapy)

12. ASA_kat(ASA category)

13. CCI_kat(Charleson comorbidity index)

B. The graph of Schoenfeld residuals -All covari-

ates

The scheoenfeld residuals are used to examined the proportionality assumption.
In subection (2.7.4) it is mentioned that by using the simple plot function, the
graph of Schoenfeld residuals returned by cox .zph()can be plotted. Following
are the Schoenfeld graphs for each mentioned covariate.
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Figure .1: Smooth Schoenfeld residuals for (1) treatment category
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Figure .2: Smooth Schoenfeld residuals for (2): age category and (3): stage
category
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Figure .3: Smooth Schoenfeld residuals for (4) gender and (5) tumor location
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Figure .4: Smooth Schoenfeld residuals for (6) metastasis status and (7) site of
metastasis
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Figure .5: Smooth Schoenfeld residuals for (8) resection of metastasis and (9)
tumor location category
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Figure .6: Smooth Schoenfeld residuals for (10) chemotherapy and (11) radiation
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Figure .7: Smooth Schoenfeld residuals for (12) ASA category and (13) CCI
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