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1 Introduction

This master thesis presents a short introduction into the field of sampling of functions of
one variable. It is not meant to come up with any new theory, just to give an overview over
known material, and to prove most of the background theory. The main focus is on band-
limited functions, i.e. L2-functions f whose Fourier transform vanishes outside a bounded
set, called the spectrum of f . We will also consider the larger class of Bernstein functions,
which are not necessarily square-integrable.

Sampling means reducing a continuous function (signal) f to a discrete set Λ. The set
{f(λ) s.t. λ ∈ Λ} is called the samples of f on Λ, while Λ is called the sampling set.

The classical weak sampling problem is to determine when a given function, or class of
functions, can be detemined from knowledge of Λ and their samples. The strong sampling
problem asks when the sampling is stable, which is about how small perturbations changes
the results. For the class of band-limited L2-functions, whose spectrum lies inside a bounded
set S, this is equivalent to asking for which sets Λ the exponential system

{e2πiλ(·) s.t. λ ∈ Λ}
is a frame in the Hilbert space L2(S).

In the case of uniform sampling, i.e. when the sampling set Λ is an arithmetic progression,
we have the classical Shannon’s sampling theorem whenever S is an interval. It gives a
precise answer to how close the sample points must be for the exponential system to be an
orthonormal basis for L2(S). Also, it gives a reconstruction formula for the function we are
sampling. We will focus on uniform sampling in section 10, which is when we will get to
this theorem.

Until that point, we will be more general than uniform sampling. In that case, the
sampling problem becomes more complicated. However, the Swedish mathematician Arne
Beurling came up with a beautiful approach, which essentially gives the sampling properties
in terms of a density of the sampling set. We will briefly present his theory, but not prove
a lot of his theorems. It will just be introduced, and finally applied to the case of uniform
sampling.

The sampling theory presented below is based on the Fourier transform, the theory of
frames and a little bit of complex analysis. The theory of frames is itself based on the theory
of Hilbert spaces, which are Banach spaces with an inner product. Especially operators
between such spaces are important, which is why we will start our discussion there. We will
go into some very basic definitions and theorems, and some less well-known ones that will
be useful to us later. For that reason, we will not start looking at sampling before section 8.
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2 Some conventions and notations

2.1 Functions

Functions are normally defined in a pointwise sense. To say that a function f : R → R
squares the argument, we could write

f(x) := x2, ∀x ∈ R.
However, we will often use a dot in parenthesis when we talk about the function itself, rather
that the value of the function at a specific point. That is, we might define the same function
as f := (·)2. Note that if f is a function, then an expression like g := fe2πi(·) means the
function defined pointwise by

g(x) := f(x)e2πix, ∀x ∈ R.
Sometimes, we will encounter functions that are not defined pointwise. These functions,

we will view as equivalence classes of functions. If f is a function defined pointwise, then
the equivalence class containing f : R→ C will be denoted by [f ]. It is defined to consist of
all functions g : R→ C, defined pointwise, s.t. (such that) the set

{x ∈ R s.t. g(x) 6= f(x)} ⊂ R
has measure zero. Functions that coincide, except on a set of measure zero, are said to be
equal a.e. (almost everywhere).

We will not go into the details of what a measure is, but it is a function whose inputs
are (measurable) sets, and whose output is, in some sense, the size of that set. In particular,
the measure of any interval equals the length of that interval, and the measure of a disjoint
union of sets equals the sum of their individual measures. A set of measure zero is a set that
is, for any ε > 0, contained in some union of finitely or countably many open intervals of
length less than ε. Discrete sets, i.e. sets containing finitely or countably many elements,
have measure zero. Also, the (Lebesgue) integral of the unit function over a set S is equal
to the measure of S, denoted by µ(S). This is the only thing we really need to know about
measures in this thesis, other than the specific case that the measure is zero. Note that an
unbounded set can have infinite measure, so in general, µ(S) ∈ R+

0 = [0,∞].
A real function f might only be defined on a subset S ⊂ R. In that case, we will use

the convention that f is defined on R, but vanishes outside S. That is, we identify f by the
function fχS , where χS is the characteristic function of S, defined by

χS(x) :=

{
1, x ∈ S
0, x ∈ R \ S

Normally, we will just denote this extension by f as well. That is also the case when we
extend or restrict a function in a given different way, as long as it does not create any confu-
sion. Sometimes, we will start by calling it something else, until we have justified extending
the original function, but in general, we will denote them by the same letter. Unsurprisingly,
we will do the same when we extend or restrict functions between other vector spaces, which
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we will call operators. There is really no difference between the terms function, signal, map
and operator, but we will use them somewhat differently.

Note that there is an important exception to using the same notation when we extend or
restrict a function. If f : R→ C is a function and Λ ⊂ R is discrete, we do NOT denote fχΛ

by f . Instead, as we will see in section 8, we will denote it by f |Λ. f |Λ will then be viewed
as a sequence, indexed by Λ, rather than a function. This requires an ordering, as we will
talk about in the following section.

2.2 Sequences and series

When we have a sequence, it might be important to know the order of the terms. For that
reason, we will always view the index set as a sequence indexed by N. Of course, N is
indexed in increasing order. That is, if Λ ⊂ R is our index set, we think of it as the sequence

Λ = {λ1, λ2, ...} = {λk}∞k=1 = {λk}k∈N.
Lower case letters with subscripts in N will always denote the elements of the set with the
corresponding capital letter. However, we will nearly always use the notation {aλ}λ∈Λ, rather
than {aλk}k∈N, to denote a sequence indexed by Λ. Of course, the same is true for series,
which are just limits of sequences of partial sums:

∑
λ∈Λ

cλ :=
∑
k∈N

cλk := lim
n→∞

n∑
k=1

cλk .

In both cases, we are assuming to have decided on an ordering of Λ, even though it is not
stated explicitly. Subscripts of subscripts are mainly used to denote subsequences, in which
case not all the elements of Λ would be covered.

In the examples, our index set is often the integers, Z. Then, we are summing over the
symmetric partial sums, i.e.

∑
k∈Z

ck := lim
n→∞

n∑
k=−n

ck = c0 + lim
n→∞

n∑
k=1

(ck + c−k).

Strictly speaking, this does not correspond to an ordering, since we are grouping terms pair-
wise together, but the general theorems remain true for this convention.

When writing general results, until section 8, we will always index the sequences and
series by N. However, we may replace it by any other discrete set, since they have the same
cardinality. The index set might be finite, but that does not create any problems, since finite
sums can be viewed as infinite sums whose terms vanish from some point onwards. Note
that for the same reason, we might still call it a sequence or series even if there are finitely
many terms.

Finally, we will mention a sequence of functions that is going to be used so much that
have a notation for it:

E(Λ) := {e2πiλ(·)}λ∈Λ.
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It is also a normal convention to drop the factor 2π, but we will include it here. The main
reason is that we will do the same when we define the Fourier transform in section 3.6, in
order not to need any normalization. Most references, however, are from books that drop
that factor.

2.3 Vector spaces

Whenever we say space, we mean vector space. Through the whole thesis, in general, we will
assume that a given vector space is complex. That is, we can take linear combinations with
complex coefficients. However, in the finite-dimensional cases, we will often refer to both
Rn and Cn, even though Rn is a real vector space. In particular, some of our examples are
using R2. Since C is an extension of R, and is in fact a real vector space itself of dimension
two, it should be no surprise that most theorems also work for real vector spaces. The reason
for using R2 in many examples, is because it is easier to picture what is going on in that
space, as it can be drawn on a two-dimensional paper. The examples work equally well for
C2, though, which is a complex vector space. It should be noted that in these examples, we
will as a convention use subscripts to denote the two coordinates. That is, if x ∈ R2, then

x =

(
x1

x2

)
Also, quite sloppily, we will refer to both Rn and Cn as Euclidean space, since it will never
be important for us to distinguish them.

In the case that we have a normed vector space X , we will denote the norm by ‖ · ‖ or
‖·‖X . We will normally use the subscript if there are multiple normed spaces involved, except
when we are talking about the operator norm, to be defined in section 4.1. However, in the
case that X is Lp(S) or lp(Λ), we will just write ‖ · ‖p. Specifying whether the elements
are functions or sequences, and what their domain or index set is, will normally be clear
from the context. The sup-norm, which is typically used for spaces of bounded functions,
is denoted by ‖ · ‖∞. Sometimes, we will denote inner products with subscripts as well, if
we need to distinguish between two Hilbert spaces. However, we normally have just one, in
which case we will always denote it by 〈·, ·〉. It is well-known that norms and inner products
are continuous.

It should be noted that when consider stable sampling in section 8.2, we will encounter
two different norms on the same space. In that case, we give them different subscripts to
distinguish them. As we will see, we have a particular way of doing it in that case, so it is
always clear which of the two we are talking about.

We will never prove that a given vector space is actually a vector space. It is normally
very easy. However, when we encounter Paley-Wiener spaces and Bernstein spaces, we will
prove completeness. Another thing to note is that whenever we talk about a basis, we mean
a Schauder basis, i.e. a sequence of vectors s.t. every vector can be uniquely expanded as
a linear combination of all the basis vectors. Hence, if the basis is an infinite sequence, we
must allow infinite linear combinations.
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3 Functions and operators

There are lots of different properties that an operator between vector spaces may have. Sec-
tion 3.1 presents 11 of them, and proves a few relations between them that will be useful
later. A particularly important operator is the Fourier transform, which is defined on L1(R),
and can be extended to Lp(R) for any p > 1. We will, however, only consider its extension
to the Hilbert space L2(R), which will be the most relevant one.

3.1 Operators

Definition 3.1. Let X, Y be vector spaces and T : X → Y be an operator.

(i) T is called linear if T (αx+ βy) = αTx+ βTy, ∀α, β ∈ C, ∀x, y ∈ X .

(ii) T is called anti-linear if T (αx+ βy) = αTx+ βTy, ∀α, β ∈ C, ∀x, y ∈ X .

(iii) T is called surjective if ∀y ∈ Y, ∃x ∈ X s.t. Tx = y.

(iv) T is called injective if whenever x, y ∈ X and Tx = Ty, we must have x = y.

(v) T is called bijective, or invertible, if it is both surjective and injective. In that case,
the inverse of T is the operator T−1 : Y → X defined by T−1(Tx) = x, ∀x ∈ X .

(vi) T is called an isomorphism if it is linear and bijective.

(vii) T is called an anti-isomorphism if it is anti-linear and bijective.

Now, let X and Y be normed spaces.

(viii) T is called bounded (above) if ∃K > 0 s.t. ‖Tx‖Y ≤ K‖x‖X , ∀x ∈ X . K is called
an (upper) bound for T . The space of bounded linear operators mapping X into Y is
denoted by B(X, Y ).

(ix) T is called bounded below if ∃K > 0 s.t. ‖Tx‖Y ≥ K‖x‖X , ∀x ∈ X . K is called a
lower bound for T .

(x) T is called an isometry if ‖Tx‖Y = ‖x‖X , ∀x ∈ X .

(xi) T is called continuous at x ∈ X if for any sequence {xk}k∈N ⊂ X converging to x, it
is true that the sequence {Txk}k∈N ⊂ Y converges to Tx. If T is continuous at every
element of X , we simply say that T is continuous.

These are the main properties we will go into here. It can be shown that (xi) is equivalent
to the well-known ε-δ-definition of continuity. The rest of this section presents and proves
some other general facts involving the properties above.
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Lemma 3.2. Let X and Y be vector spaces and T : X → Y be a linear operator. Then, we
have:

(i) T is injective if and only if the only x ∈ X satisfying Tx = 0 is x = 0.

Now, let X and Y be normed spaces.

(ii) If T is bounded below, it is injective.

(iii) T is bounded if and only if it is continuous.

Proof. (i) The fact that T0 = 0 follows from linearity of T . And by definition, if T is
injective, there can be no more than one x ∈ X satisfying Tx = 0. This proves necessity.

For sufficiency, assume that Tx = 0 if and only if x = 0. If x1, x2 ∈ X satisfy
Tx1 = Tx2, then 0 = Tx1 − Tx2 = T (x1 − x2). Hence, our assumption implies that
x1 − x2 = 0, i.e. that x1 = x2, showing that T is injective.

(ii) Assume that K > 0 is a lower bound for T . If some x ∈ X satisfies Tx = 0, then
0 = ‖Tx‖Y ≥ K‖x‖X . This can only happen if ‖x‖X = 0, i.e. if x = 0. Thus, T is injective
by (i).

(iii) [Wik2] Assume that K > 0 is a bound for T , and pick an x ∈ X . Let {xk}k∈N ⊂ X be
a sequence converging to x. Pick an ε > 0, and find N ∈ N satisfying

‖x− xk‖X ≤
ε

K
, ∀k ≥ N.

Then,

‖Tx− Txk‖Y = ‖T (x− xk)‖Y ≤ K‖x− xk‖X ≤ ε, ∀k ≥ N.

That is, Txk → Tx in Y as k →∞, so T is continuous at x. Since x ∈ X was arbitrary, this
shows that T is continuous.

Conversely, assume T is continuous at 0. Find a δ > 0 s.t. ‖Ty‖Y ≤ 1 whenever
‖y‖X ≤ δ. Setting K := 1

δ
, we have:

‖Tx‖Y =
‖x‖X
δ

∥∥∥∥T (δ x

‖x‖X

)∥∥∥∥
Y

≤ 1

δ
‖x‖X · 1 = K‖x‖X , ∀x ∈ X,

since y := δ x
‖x‖X

satisfies ‖y‖X = δ. Thus, K is a bound for T .

From the proof of (iii), it is obvious that continuity for linear operators, continuity is implied
by continuity at just the origin! This is also a well-known fact.

Before we conclude the introduction to the basic properties of operators, we will briefly
talk about compositions of them. That is, given operators R : X → Y and S : Y → Z,
we will look at the operator T := SR : X → Z. If we know that both R and S possess
a given property, will that property necessarily be transferred to T ? Let us first show that
boundedness will, whether it is above or below.

Lemma 3.3. Let X, Y and Z be normed spaces. Given two operators R : X → Y and
S : Y → Z, define T := SR : X → Z.
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(i) If K1, K2 > 0 are bounds for R and S, respectively, then K1K2 is a bound for T .

(ii) If K1, K2 > 0 are lower bounds for K1 and K2, respectively, then K1K2 is a lower
bound for T .

Proof. (i) ‖Tx‖Z = ‖S(Rx)‖Z ≤ K2 · ‖Rx‖Y ≤ K2K1 · ‖x‖X , ∀x ∈ X .
The proof of (ii) is similar.

What about the other properties? If R and S are anti-linear, then it actually turns out that
T is linear, since T (αx + βy) = S(αRx + βRy) = α(SRx) + β(SRy) = αTx + βTy.
Hence, anti-linearity cannot be transferred to T . Of course, this can also be said about anti-
isomorphism, which is a stronger property. However, these turn out to be the only exceptions.
We will not provide the proofs, but they are very trivial.

Proposition 3.4. Any composition of operators sharing a property in definition 3.1, other
than anti-linearity and anti-isomorphism, must itself possess that property.

3.2 Lp-spaces

As usual, we define

Lp(S) := {f : R→ C s.t.
∫
S

|f(x)|p dx <∞},

where p ∈ [1,∞) and S ⊆ R are given. The corresponding space of equivalence classes,
defined in section 2.1, is also denoted by Lp(S). Whenever necessary, we will point out
which of the two we are talking about. These equivalence classes are crucial, since the norm
defined by

‖[f ]‖p :=

(∫
S

|f(x)|p dx
) 1

p

, ∀f ∈ Lp(S). (1)

will not be a norm if the elements of Lp(S) are functions. The reason is that there exist
non-zero functions f ∈ Lp(S) satisfying ‖f‖p = 0, which is forbidden for norms. However,
a nice thing about the equivalence classes is that any integral can be computed using any of
its representatives. That is, if f, g ∈ L1(S) and f = g a.e., then∫

S

f(x)dx =

∫
S

g(x)dx.

After all, any integral over a set of measure zero will vanish, so if the functions coincide
outside a set of measure zero, then the integrals must also coincide. In particular, that is what
allows us to define the norm, given by (1), using any representative of the equivalence class.

As mentioned in section 2.1, if S ⊂ R, then any f ∈ Lp(S) will be interpreted as the
function fχS , which is defined on R. With this convention, it is clear that Lp(S) ⊆ Lp(R)
whenever S ⊂ R, with equality if and only if the sets differ only on a set of measure zero.
Another useful property can be seen from Hölder’s inequality ([Ch10], p. 19). If S is
bounded, if p > q, if r > 1 is given so that q

p
+ 1

r
= 1, and if f ∈ Lp(S), we have:
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‖f‖qq =

∫
S

|1 · f(x)|q dx ≤
(∫

S

1qrdx

) 1
r
(∫

S

|f(x)|q
p
q dx

) q
p

= µ(S)
1
r ‖f‖qp <∞,

where µ(S) is the measure of S. Hence, any Lp-function is also an Lq-function. To see that
the converse does not hold, notice that f(x) := 1

(x−x0)p
, where x0 is an inner point of S,

defines a function that is in Lq(S), but not in Lp(S). We state these two observations as a
theorem.

Theorem 3.5. Let p, q ∈ [1,∞) and R, S ⊆ R be given.

(i) If S ⊂ R, then Lp(S) ⊆ Lp(R). Also, Lp(S) = Lp(R) if and only if µ(R \ S) = 0.

(ii) If S is bounded, and if p > q, then Lp(S) ⊂ Lq(S).

Specifically, theorem 3.5 tells us that L2(S) ⊂ L1(S) ⊂ L1(R) for any bounded set S ⊂ R.
This is a fact will be used a lot when we get to Paley-Winer spaces.

3.3 The Fourier transform and its inverse

Definition 3.6. The operators F and G are defined pointwise on L1(R) by:

(i)

f̂ := Ff :=

∫
R
f(x)e−2πi(·)xdx, ∀f ∈ L1(R).

(ii)

F̌ := GF :=

∫
R
F (t)e2πi(·)tdt, ∀F ∈ L1(R).

F is called the Fourier transform.

The operators above are well-defined, since the exponential factors have absolute value 1.
Since L1(S) ⊆ L1(R) for any S ⊂ R, we can specifically apply them to f ∈ L1(S). In that
case, we only need to integrate over S, since f vanishes elsewhere.

Clearly, both operators are linear by the properties of integrals. Some well-known, less
obvious properties of the Fourier-transform are given in the following theorem. Since f̂ and
f̌ are symmetric about the y-axis, it is clear that G must also have these properties.

Theorem 3.7 ([Ch10], p. 138-141). For any f ∈ L1(R), we have:

(i) f̂ is continuous on R, and f̂(t)→ 0 as |t| → ∞.

(ii) ‖f̂‖∞ ≤ ‖f‖1.

(iii) If f̂ ∈ L1(R), then f = Gf̂ a.e.

11



Property (ii) makes sense because the sup-norm is a norm on the space of continuous func-
tions tending to 0 at±∞. Note that it tells us that the Fourier transform is a bounded operator,
and that 1 is a bound. In fact, 1 is the smallest bound, but that is not an important point to us
yet. It is a lot more relevant what happens to the norm when we extend F to an operator on
L2(R), which can be done in a very convenient way!

As we have seen, L2[−R,R] ⊂ L1(R) for any R > 0. Thus, it makes sense to define an
operator FR on L2(R) by

FRf :=

∫ R

−R
f(x)e−2πi(·)xdx, ∀f ∈ L2(R).

It is well-known that if we let R → ∞, the integral converges a.e. Hence, up to a set of
measure zero, we can define an operator T on L2(R) by

Tf := lim
R→∞

(FRf), ∀f ∈ L2(R).

That is, if R ⊆ R is the set of points where the integral converges, then

(Tf)(t) :=

{ ∫∞
−∞ f(x)e−2πixtdx, t ∈ R

undefined, t ∈ R \R , ∀f ∈ L2(R).

Since Tf is defined a.e., we will not view it as a function, but as an equivalence class of
functions.

One property of our new operator is that if f ∈ L1(R) ∩ L2(R), then Tf = f̂ . That is, T
is an extension of the Fourier transform from L1(R) ∩ L2(R) to L2(R). For that reason, we
will also denote T by F, an refer to it as the Fourier transform on L2(R). Just as the Fourier
transform on L1(R), it has some really nice properties. The most relevant ones for us are
stated in the following theorem. One of them only makes sense if we extend G to L2(R) as
well, which is of course possible to do in the same way.

Theorem 3.8 ([Ch10], p. 143-144). The Fourier transform on L2(R) satisfies:

(i) f̂ ∈ L2(R), ∀f ∈ L2(R).

(ii) 〈f̂ , ĝ〉 = 〈f, g〉, ∀f, g ∈ L2(R).

(iii) F : L2(R)→ L2(R) is bijective, and F−1 = G.

This theorem gives us an idea of how nice the Fourier transform on L2(R) is! Properties (i)
and (iii) tell us that F maps L2(R) bijectively into itself, and (iii) also tells us what the inverse
is. For that reason, G is usually referred to as the Fourier inverse transform, and denoted by
F−1. However, since it is not in general true for L1-functions, we will use a non-standard
notation here to point out that they are not always inverses of each other.

Theorem 3.8 (ii) tells us that the Fourier transform is unitary, i.e. that it preserves inner
products. In particular, it preserves norms and orthogonality. Later, we will take advantage
of this to transform an orthonormal system in L2(R) into another one. Comparing with
the Fourier transform on L1(R), they are both bounded linear operators, with 1 being the
smallest bound, but only the Fourier transform on L2(R) is an isometry.

12



It should be noted that since f̂ ∈ L2(R), it makes sense to talk about convergence of FRf
to f in the L2-norm. For that reason, it is very usual to express the Fourier transform as an
integral, even though it is not defined everywhere. After all, an intergal with infinite limits
of integration simply means the limit of a corresponding integral as the limits of integration
tend to infinity. Taking the limit in the L2-norm, rather than in a pointwise sense, we do not
need to worry about sets of measure zero to say that limR→∞ FRf = f̂ .

Example 3.9. For constants c, σ > 0, let f := e2πic(·)χ[−σ,σ] ∈ L1[−σ, σ]. Then,

f̂(t) =

∫ σ

−σ
e2πicxe−2πixtdx =

∫ σ

−σ
e2πi(c−t)xdx =

1

2πi(c− t)
[
e2πi(c−t)x]x=σ

x=−σ

=
1

π(c− t)
· e

2πσi(c−t) − e2πσi(c−t)

2i
=

sin(2πσ(c− t)
π(c− t)

= 2σ sinc(2σ(c− t)), ∀t ∈ R,

where the sinc-function is defined by

sinc(x) :=

{
sin(πx)
πx

, x ∈ R \ {0}
1, x = 0

Example 3.10. For a constant c ∈ R and a function f ∈ L1(R), let g := fe2πic(·) ∈ L1(R)
and h := f((·)− c) ∈ L1(R). With a change of variable y := x− c, we get:

ĝ(t) =

∫
R
f(x)e2πicxe−2πixtdx =

∫
R
f(x)e−2πi(t−c)xdx = f̂(t− c), ∀t ∈ R.

ĥ(t) =

∫
R
f(x− c)e−2πixtdx =

∫
R
f(y)e−2πi(y+c)tdy =

∫
R
f(y)e−2πiytdy · e−2πict

= f̂(t)e−2πict, ∀t ∈ R.
That is, the Fourier transform turns multiplication by a complex exponential into translation,
and vice versa. Clearly, the same calculations hold if f ∈ L2(R), as long as we only consider
the values of t s.t. the integral converges. Alternatively, we can note that integrating over a
bounded interval leads to the same integral in y. The change of variable changes the limits
of integration, but when we let them tend to ±∞, it makes no difference. Thus, the Fourier
transform on L2(R) must possess these properties as well.

Example 3.11. Given a bounded set S ⊂ R, let F ∈ L2(S), and define f := F̌ ∈ L2(R).
Also, let G(t) := tF (t), ∀t ∈ R and g := Ǧ. Since

‖G‖2
2 =

∫
S

|G(t)|2 dt =

∫
S

|t|2 · |F (t)|2 dt ≤ (sup |S|)2‖F‖2
2 <∞,

we have G ∈ L2(S), and thus g ∈ L2(R). We will not justify interchanging derivative and
integral yet, but we get back to this again in section 7.3. Assuming we can, and repeatedly
using the fact that F and G preserve norms, we have:
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f ′(x) =
d

dx

∫
S

F (t)e2πixtdt = 2πi

∫
S

tF (t)e2πixtdt = 2πi

∫
S

G(t)e2πixtdt = 2πig(x),

∀x ∈ R.
‖f ′‖2 = 2π‖g‖2 = 2π‖G‖2 ≤ 2π(sup |S|)‖F‖2 = 2π(sup |S|)‖f‖2.

From this, we see that if f is the Fourier inverse transform of an L2-function vanishing
outside a bounded set, then f is differentiable on R, f ′ ∈ L2(R), and we have found an upper
bound on ‖f ′‖2. Our upper bound also shows that if we fix the set S, then the differentiation
operator on the space of such functions is bounded! We will come back to that in section 7.6.
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4 Banach theory

A normed vector space X is said to be Banach, or complete, if every Cauchy-sequence in X
converges to some element of X . Given any n ∈ N and any p ∈ [1,∞), it is well known
that both Rn, Cn, lp(N) and Lp(R) are all complete w.r.t. their usual norms. The same is
true for lp(Λ) and Lp(S), where Λ ⊂ R is discrete and S ⊂ R. However, unlike Hilbert
spaces, there are a lot of other structures that a Banach space may have, and a big problem
for mathematicians has been to classify all of them. We will not consider that problem here,
but we will look at some properties that all Banach spaces must have. The most important
concept we will consider is the adjoint of an operator between two Banach spaces.

Operators mapping a vector space into R or C will be very relevant in this section. They
are typically called functionals. Especially in section 4.3, the elements of B(X,C) are cen-
tral, i.e. the bounded linear functionals on X . Note that it is also normal to require X to be
Banach or Hilbert, or that the functional is linear.

4.1 The operator norm

Recall that there are many vector spaces whose elements are functions or operators. An
important one is the space B(X, Y ), defined in section 3.1, where X and Y are normed
spaces. It has a well-known norm, typically called the operator norm, which can be defined
equivalently in any of the following three ways:

‖T‖X→Y := sup
x 6=0

‖Tx‖Y
‖x‖X

= sup
‖x‖X=1

‖Tx‖Y = sup
‖x‖X≤1

‖Tx‖Y , ∀T ∈ B(X, Y ).

Equivalence of the three definitions follows from the fact that ‖αx‖X = |α| · ‖x‖X , where
α ∈ C and x ∈ X , which is one of the axioms for norms. ‖T‖X→Y is simply the smallest
bound for T . In all three expressions, we have skipped mentioning that we take supremum
over x ∈ X . We will continue skipping that throughout this thesis, since it saves space under
the supremum sign. It will always be clear anyway what space x is taken from. Also, we
will normally drop the subscripts for the operator norm. However, if the operator may have
different domains or co-domains, we now have a way of specifying them. Note that with
this norm, lemma 3.3 (i) tells us that ‖SR‖X→Z ≤ ‖R‖X→Y · ‖S‖Y→Z for compositions of
bounded operators.

An important property of B(X, Y ) is that it is a Banach space, assuming that Y is. This
is our first theorem in this section. Note that if we want to take the limit of a real sequence,
but we do not know whether it exists, it is sometimes convenient to replace lim by lim sup.
That always exists, and it coincides with the limit if it exists. We will use that trick a few
times in this thesis, and the proof of the following theorem is the first time.

Theorem 4.1. If X is a normed space and Y is a Banach space, then B(X, Y ) is complete
w.r.t. the operator norm.

Proof. Let {Ak}k∈N ⊂ B(X, Y ) be a Cauchy-sequence. Fix an x ∈ X , pick an ε > 0 and
find N ∈ N s.t. ‖Am − An‖ ≤ ε

‖x‖X
whenever m,n ≥ N . Then,
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‖Amx− Anx‖Y = ‖(Am − An)x‖Y ≤ ‖Am − An‖ · ‖x‖X ≤ ε, ∀m,n ≥ N,

showing that {Akx}k∈N ⊂ Y is also Cauchy. Since Y is complete, it converges to some
element of Y , which we will denote by Ax. Letting x ∈ X vary, this defines an operator
A : X → Y . We need to show that (i) A is bounded, (ii) A is linear and (iii) {Ak}k∈N
converges to A in the operator norm.

(i) Knowing that Cauchy-sequences are bounded, let K > 0 be an upper bound for the set
{‖Ak‖, k ∈ N}. Since norms are continuous, we have:

‖Ax‖Y = ‖ lim
k→∞

(Akx)‖Y = lim
k→∞
‖Akx‖Y ≤ lim sup

k→∞
‖Ak‖ · ‖x‖X ≤ K‖x‖X , ∀x ∈ X.

(ii) A(αx+ βy) = lim
k→∞

(Ak(αx+ βy)) = lim
k→∞

(αAkx+ βAky)

= α lim
k→∞

(Akx) + β lim
k→∞

(Aky) = αAx+ βAy, ∀α, β ∈ C, ∀x, y ∈ X.

(iii) As before, pick an ε > 0, but this time, find N ∈ N s.t. ‖Am − An‖ ≤ ε whenever
m,n ≥ N . For any x ∈ X with ‖x‖X = 1, we have:

‖(A− An)x‖Y = ‖Ax− Anx‖Y = ‖ lim
m→∞

(Amx)− Anx‖Y = lim
m→∞

‖Amx− Anx‖Y

= lim
m→∞

‖(Am − An)x‖Y ≤ lim
m→∞

‖Am − An‖ · ‖x‖X ≤ ε, ∀n ≥ N.

Hence, ‖A− An‖ = sup
‖x‖X=1

‖(A− An)x‖Y ≤ ε, ∀n ≥ N, i.e. An → A as n→∞.

4.2 Fundamental results of Banach theory

Now, we will get a brief overview of the most important theorems in Banach theory. They
are not so crucial in this thesis, so we will call them lemmas. However, two of them lead to
other theorems that we will use later.

Lemma 4.2 (Banach-Steinhaus’ theorem; [Sc02], p. 71). Let X and Y be normed spaces,
where X is Banach, and let F ⊆ B(X, Y ) be a family of operators.

If sup
T∈F
‖Tx‖Y <∞, ∀x ∈ X, then sup

T∈F
‖T‖X→Y <∞.
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Banach-Steinhaus’ theorem is also referred to as the uniform boundedness principle, since it
states that any pointwise bounded subset ofB(X, Y ) is also uniformly bounded. Specifically,
if {Tk}k∈N ⊂ B(X, Y ) is a pointwise bounded sequence converging to some T ∈ B(X, Y ),
then by Banach-Steinhaus’ theorem,

‖Tx‖Y = lim
k→∞
‖Tkx‖Y ≤ lim sup

k→∞
‖Tk‖X→Y ‖x‖ ≤ sup

k∈N
‖Tk‖X→Y ‖x‖, ∀x ∈ X.

Thus, T is also bounded, and supk∈N ‖Tk‖X→Y is a bound for T . In particular, this is useful
to study the partial sum operator, but we will not do that here.

Lemma 4.3 (Hahn-Banach theorem; [Sc02], p. 148). Let X be a vector space, let V ⊂ X
be a subspace, and let p : X → R be a functional satisfying:

(i) p(x+ y) ≤ p(x) + p(y), ∀x, y ∈ X .

(ii) p(αx) = |α| p(x), ∀α ∈ C, ∀x ∈ X .

Also, let f : V → C be a linear functional satisfying Re(f) ≤ p on V . Then, f can be
extended to a linear functional on X satisfying |f | ≤ p on X .

Functionals with properties (i) and (ii) are called sublinear. Note that norms are examples
of a sublinear functionals. We will take advantage of this observation to prove the following
result.

Corollary 4.4 ([Sc02], p. 36). Given a normed space X and a non-zero x0 ∈ X , there exists
a functional f ∈ B(X,R) s.t. ‖f‖X→R = 1 and f(x0) = ‖x0‖X .

Proof. Let V := {αx0, α ∈ C} ⊆ X , and define g ∈ B(V,R) by the expression

g(αx0) := |α| · ‖x0‖X , ∀α ∈ C.
Then, |g(αx0)| = |α| · ‖x0‖X = ‖αx0‖X , showing that ‖g‖V→R = 1. Also, the functional
p := ‖ · ‖X : X → R is sublinear and satisfies Re(g) ≤ |g| ≤ p on V . Hence, by the Hahn-
Banach theorem, g has a linear extension f : X → R satisfying |f | ≤ p on X . Since p(x)
is just the norm of x, the last inequality tells us that f is bounded, and that ‖f‖X→R ≤ 1.
Also, since f is an extension of g, we have ‖f‖X→R ≥ ‖g‖V→R = 1. We conclude that
‖f‖X→R = 1, and of course, f(x0) = g(x0) = ‖x0‖X .

Lemma 4.5 (Open mapping theorem; [Sc02], p. 71). Let X and Y be Banach spaces. If
T ∈ B(X, Y ) is surjective, and if U ⊆ X is open, then T [U ] ⊆ Y is open.

Mappings with this property are typically called open, which is the reason for the name of
the lemma. It is well-known that continuity can be defined topologically by the condition
that the preimage T−1[V ] ⊂ X is open whenever V ⊂ Y is open. In that sense, openness
is simply the converse of continuity. From this remark, it is obvious that if an operator T
is both open and continuous, so is T−1 if it exists. Specifically, this holds for any bijective
T ∈ B(X, Y ), since T is continuous by lemma 3.2 (iii). This gives us the following result.

Theorem 4.6. Let X and Y be Banach spaces. If T ∈ B(X, Y ) is bijective, then
T−1 ∈ B(Y,X).
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Proof.

T−1(αTx+ βTy) = T−1T (αx+ βy) = αx+ βy = αT−1(Tx) + βT−1(Ty), ∀α, β ∈ C,

∀x, y ∈ X , showing linearity. As remarked, T−1 is continuous by the open mapping theorem,
hence bounded by lemma 3.2 (iii).

4.3 Dual spaces

With theorem 4.1 established, we are ready to encounter a special class of bounded linear
operators, namely those having C as their co-domain. That is, we will introduce the spaces
of bounded linear functionals, specifically on Banach spaces.

Definition 4.7. If X is a normed space, then X∗ := B(X,C) is called the dual space of X .

If X∗∗ = X , up to isomorphism, we say that X is reflexive. Since C is complete, theorem
4.1 ensures us that X∗ is complete as well. This already tells us that might not be reflexive,
which we would often expect when using the name dual. We will see later that Hilbert spaces
are reflexive, and our next example tells us that it is also the case for Lp-spaces when p > 1.
On the other hand, L1(R) is not even the dual of a normed space, even though it is complete!
We will not prove that, but it is good to be aware of the fact that such cases exist.

Example 4.8. Given S ⊆ R and p ∈ (1,∞), find q ∈ (1,∞) s.t. 1
p

+ 1
q

= 1. Let g : R→ C
be a function, and consider the functional Φg : Lp(S)→ C given by

Φgf =

∫
S

f(x)g(x)dx, ∀f ∈ Lp(S).

Let us check whether Φg is even well-defined. For any f ∈ Lp(S), by Hölder’s inequality,

|Φgf | ≤
∫
S

|f(x)g(x)| dx ≤
(∫

S

|f(x)|p
) 1

p
(∫

S

|g(x)|q
) 1

q

= ‖f‖p · ‖g‖q.

Hence, Φg is indeed well-defined, as long as g ∈ Lq(S). Our calculation also shows that Φg

is bounded, with ‖Φg‖ ≤ ‖g‖q. It is easily verified that Φg is linear as well, so
Φg ∈ B(Lp(S),C) = (Lp(S))∗. In fact, it can be shown that every element of (Lp(S))∗

is equal to Φg for some unique g ∈ Lq(S). Hence, up to isomorphism, we conclude that
(Lp(S))∗ = Lq(S). In particular, this shows that Lp(S) is reflexive.

4.4 The adjoint operator

We start with two normed spaces, X and Y , and an operator T ∈ B(X, Y ). Given any
y∗ ∈ Y ∗, consider the composition y∗T . Note that it maps X into C. Also, since it is
composed of two bounded linear operators, it must itself be a bounded linear operator by
proposition 3.4. Hence, we conclude that y∗T ∈ B(X,C) = X∗. Letting y∗ ∈ Y ∗ vary, this
observation allows us to define a very useful operator mapping Y ∗ into X∗.

Definition 4.9. Let X and Y be normed spaces. If T ∈ B(X, Y ), then the adjoint of T is
the operator T ∗ : Y ∗ → X∗ given by T ∗y∗ = y∗T, ∀y∗ ∈ Y ∗.
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Theorem 4.10. Let X and Y be normed spaces. If T ∈ B(X, Y ), then T ∗ ∈ B(Y ∗, X∗),
and ‖T ∗‖ = ‖T‖.

Proof. T ∗(αx∗ + βy∗) = (αx∗ + βy∗)T = αx∗T + βy∗T = αT ∗x∗ + βT ∗y∗,
∀α, β ∈ C, ∀x∗, y∗ ∈ Y ∗. Thus, T ∗ is linear. Also,

‖T ∗y∗‖X∗ = ‖y∗T‖X∗ ≤ ‖y∗‖Y ∗ · ‖T‖, ∀y∗ ∈ Y ∗

by lemma 3.3 (i), showing that T ∗ is bounded and that ‖T ∗‖ ≤ ‖T‖.
For the converse inequality, pick an x ∈ X with ‖x‖X = 1. By corollary 4.4, there exists

a y∗ ∈ B(Y,R) ⊂ Y ∗ satisfying ‖y∗‖Y ∗ = 1 and y∗(Tx) = ‖Tx‖Y . Hence, we get:

‖Tx‖Y = |y∗Tx| ≤ ‖y∗T‖X∗ · ‖x‖X = ‖T ∗y∗‖X∗ · ‖x‖X ≤ ‖T ∗‖ · ‖y∗‖Y ∗ · ‖x‖X

= ‖T ∗‖ · ‖x‖X .
This shows that ‖T‖ ≤ ‖T ∗‖, so we conclude that ‖T ∗‖ = ‖T‖.

We finish this subsection by giving two results that we will use later.

Theorem 4.11. Given Banach spaces X and Y , let T ∈ B(X, Y ).

(i) T is injective with closed range if and only if it is bounded below ([Sc02], p. 67).

(ii) T is surjective if and only if T ∗ is bounded below ([Ru91], p. 100).

Proof of (i). Assume that K > 0 is a lower bound for T . We have already seen in lemma
3.2 that T is injective. Pick a sequence {yk}k∈N ⊂ T [X] converging to some y ∈ Y , and
find a sequence {xk}k∈N s.t. yk = Txk for k ∈ N. Pick an ε > 0, and find N ∈ N s.t.
‖yk − yl‖Y ≤ εK whenever k, l ≥ N . This exists since convergent sequences are Cauchy.
Now,

‖xk − xl‖X ≤
1

K
‖T (xk − xl)‖Y =

1

K
‖Txk − Txl‖Y ≤ ε, ∀k, l ≥ N.

Hence, {xk}k∈N is Cauchy, so it converges to some x ∈ X . Thus,

y = lim
k→∞

(Txk) = T ( lim
k→∞

xk) = Tx ∈ T [X].

This shows that T [X] is closed.
Conversely, assume that T is injective with closed range. By injectivity, T : X → T [X] is

bjiective. Any Cauchy-sequence in T [X] converges to some y ∈ Y , and since T has closed
range, y ∈ T [X]. Hence, T [X] is complete, so lemma 4.6 tells us that T−1 : T [X] → X is
continuous. Hence,

‖x‖X = ‖T−1Tx‖X ≤ ‖T−1‖T [X]→X · ‖Tx‖,
showing that ‖T−1‖T [X]→X is a lower bound for T .
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Using theorem 4.11, we might now be able to use boundedness below to show that an oper-
ator between Banach spaces X and Y is surjective and/or injective. Given T ∈ B(X, Y ), if
we can find constants K1, K2 > 0 satisfying

‖Tx‖Y ≥ K1‖x‖X , ∀x ∈ X
and

‖T ∗y∗‖X∗ ≥ K2‖y∗‖Y ∗ , ∀y∗ ∈ Y ∗,
it will prove that T is bijective. This is something we will take advantage of when we study
the frame operator in section 6.3.

4.5 Absolutely convergent series in Banach spaces

A series in a normed space X is said to converge absolutely if the corresponding series of
norms converges in R. That is, absolute convergence of

∑
k∈N xk means that

∑
k∈N ‖xk‖X

converges. If a series converges to the same limit regardless of the ordering, it is said to
converge unconditionally. These concepts will not be that important to us in general, but we
will sometimes take advantage of an important theorem for the case that X = C. We will,
however, prove it for a general Banach space.

Lemma 4.12 ([Wik1]). Let {xk}k∈N be a sequence in a Banach space X . If the series∑
k∈N xk converges absolutely, it converges unconditionally.

Proof. Pick an ε > 0. Since {
∑n

k=1 ‖xk‖X}n∈N ⊂ C is Cauchy,

∥∥∥∥∥
n∑
k=1

xk −
m∑
k=1

xk

∥∥∥∥∥
X

=

∥∥∥∥∥
n∑

k=m+1

xk

∥∥∥∥∥
X

≤
n∑

k=m+1

‖xk‖X =

∣∣∣∣∣
n∑
k=1

‖xk‖X −
m∑
k=1

‖xk‖X

∣∣∣∣∣ ≤ ε

for sufficiently large n,m ∈ N. Thus, {
∑n

k=1 xk}n∈N ⊂ X is also Cauchy, so it converges to
some x ∈ X .

Now, find N1, N2 ∈ N satisfying:∥∥∥∥∥x−
n∑
k=1

xk

∥∥∥∥∥
X

≤ ε

2
, ∀n ≥ N1.

∞∑
k=n

‖xk‖X ≤
ε

2
, ∀n ≥ N2.

N2 exists because the tail of any convergent series converges to 0. Let M := max{N1, N2}.
Pick a reordering of N, i.e. a bijective function σ : N→ N, and define:

J := {σ−1(1), σ−1(2), ..., σ−1(M)}.
N := max(J).

In := {1, 2, ..., n}, ∀n ∈ N.
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Then, for any n ≥ N , we have:∥∥∥∥∥x−
n∑
k=1

xσ(k)

∥∥∥∥∥
X

=

∥∥∥∥∥∥x−
∑
k∈J

xσ(k) −
∑

k∈In\J

xσ(k)

∥∥∥∥∥∥
X

≤

∥∥∥∥∥x−∑
k∈J

xσ(k)

∥∥∥∥∥
X

+

∥∥∥∥∥∥
∑

k∈In\J

xσ(k)

∥∥∥∥∥∥
X

=

∥∥∥∥∥x−
M∑
j=1

xj

∥∥∥∥∥
X

+

∥∥∥∥∥
n∑

j=M+1

xj

∥∥∥∥∥
X

≤

∥∥∥∥∥x−
M∑
j=1

xj

∥∥∥∥∥
X

+
n∑

j=M+1

‖xj‖X ≤
ε

2
+
ε

2
= ε.

Lemma 4.12 is particularly useful in R and C, since it implies that if a series of non-negative
real numbers converges, then the order of the terms does not matter. In partucular, whether a
given sequence is in lp(N) is independent of the order. This will be useful in section 6, since
where adding elements to an l2-sequence will be relevant.

In R, it is well-known that the converse is also the case, i.e. that unconditionally con-
vergent series are absolutely convergent. That is not true for general Banach spaces. For
example, if {ek}k∈N is an orthonormal basis for a Hilbert space H , we will see later that∑

k∈N ckek converges if and only if {ck}k∈N ∈ l2(N). The convergence turns out to be
unconditional ([Ch10], p. 81). However, absolute convergence would mean that∑

k∈N ‖ckek‖H =
∑

k∈N |ck| < ∞, i.e. that {ck}k∈N ∈ l1(N). Since not all l2-sequences are
l1-sequences, this disproves the converse of lemma 4.12. Note, however, that this discussion
tells us something else: If {ck}k∈N ∈ l1(N), then

∑
k∈N ckek is absolutely convergent, hence

convergent, so {ck}k∈N ∈ l2(N). That is, l2(N) ⊂ l1(N). This is no surprise, since the terms
of a convergent series must tend to zero, so their squares tend to zero even more rapidly.

Example 4.13. We want to compute the sum
∑

k∈Z
1

(k− 1
2

)2 by taking advantage of the follow-
ing well-known fact: ∑

n∈N

1

n2
=
π2

6
.

Since all the terms are positive, we do not need to worry about the order. Hence, we can split
the integers into the positive and the non-negative ones, and split them again into even and
odd numbers, to get:

∑
n∈N

1

(2n− 1)2
=
∑
n∈N

1

n2
−
∑
n∈N

1

(2n)2
=
∑
n∈N

1

n2
− 1

4

∑
n∈N

1

n2
=
π2

6
− 1

4
· π

2

6
=
π2

8
.

∑
n∈N

1

(n− 1
2
)2

=
∑
n∈N

1

(1
2
(2n− 1))2

= 4
∑
n∈N

1

(2n− 1)2
= 4 · π

2

8
=
π2

2
.

∑
k∈Z

1

(k − 1
2
)2

= 2
∑
n∈N

1

(n− 1
2
)2

= 2 · π
2

2
= π2.
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5 Hilbert spaces

A Hilbert space, which we will usually denote by H , is a Banach space whose norm is
induced by an inner product. As is well-known, the inner product should be linear in the first
slot and anti-linear in the second slot:

(i)
〈αx+ βy, z〉 = α〈x, z〉+ β〈y, z〉, ∀α, β ∈ C, ∀x, y, z ∈ H.

(ii)
〈z, αx+ βy〉 = α〈z, x〉+ β〈z, y〉, ∀α, β ∈ C, ∀x, y, z ∈ H.

Property (i) is one of the axioms for inner products, and combining it with the axiom that
〈x, y〉 = 〈y, x〉, ∀x, y ∈ H yields property (ii). By continuity of the inner product, which
follows from Cauchy-Schwarz’ inequality ([Ch10], p. 62), the two properties above are also
satisfied for infinite sums. That is, if

∑
k∈N ckxk converges in H , then we have, for any

y ∈ H:

(i) ∑
k∈N

ck〈xk, y〉 converges in C to

〈∑
k∈N

ckxk, y

〉
.

(ii) ∑
k∈N

ck〈y, xk〉 converges in C to

〈
y,
∑
k∈N

ckxk

〉
.

Given any n ∈ N, it is well known that Rn, Cn, l2(N) and L2(R) are Hilbert spaces w.r.t.
their usual inner products. The same is true for l2(Λ) and L2(S) for any discrete Λ ⊂ R
and any S ⊂ R. We will later encounter Paley-Wiener spaces, which also turn out to be
Hilbert spaces. It turns out that every finite-dimensional Hilbert space is isomorphic to Cn

for some n ∈ N, while every infinite-dimensional, separable Hilbert space, to be defined in
section 5.2, is isomorphic to l2(N) ([Ch10], p. 82). However, firstly, there are Hilbert spaces
whose dimension is uncountable, in which case it is not separable. Secondly, isomorphic
Hilbert spaces might be convenient to treat in different ways, depending on their applications.
And in fact, for some of our purposes, it is more convenient to use anti-isomorphisms than
isomorphisms, since we can use inner products for that!

5.1 The adjoint of operators between Hilbert spaces

LetH andK be Hilbert spaces. If T : H → K is a bounded linear operator, we know that we
can define the adjoint operator T ∗ : K∗ → H∗. What do H∗ and K∗ look like? This question
turns out to have a very simple answer, as we will now show. We will take advantage of the
following property of norms and inner products:

‖y‖H = sup
‖x‖H=1

|〈x, y〉| , ∀y ∈ H. (2)

It follows immediately from Cauchy-Schwarz’ inequality and the fact that setting x = y
‖y‖H

gives equality.
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Lemma 5.1. Any Hilbert space H is anti-isomorphic to its dual space H∗, and the function
UH : H → H∗ defined by UHy = 〈·, y〉, ∀y ∈ H is an isometric anti-isomorphism.

Proof. It is easily verified that UHy is a bounded linear functional for any y ∈ H , i.e. that
UHy ∈ H∗. By Riesz’ representation theorem ([Ch10], p. 70), any bounded linear functional
on H can be expressed as a left inner product with a fixed y ∈ H . Thus, UH is surjective.
Since Riesz’ representation theorem also states that the y ∈ H is unique, we conclude that
UH is injective as well, hence bijective. It remains to be shown that UH (i) is anti-linear and
(ii) preserves norms.

(i) UH(αy+βz) = 〈·, αy+βz〉 = α〈·, y〉+β〈·, z〉 = αUHy+βUHz, ∀α, β ∈ C, ∀y, z ∈ H.

(ii) ‖UHy‖H∗ = sup
‖x‖H=1

|(UHy)x| = sup
‖x‖H=1

|〈x, y〉| = ‖y‖H , ∀y ∈ H

by (2).

Lemma 5.1 allows us to interpret the adjoint operator in a very convenient way for Hilbert
spaces. If T : H → K is a bounded linear operator between two Hilbert spaces, then T ∗

maps K into H , up to (anti)-isomorphism. The following theorem tells us what T ∗ looks
like with that interpretation.

Theorem 5.2. Given two Hilbert spacesH andK, and a T ∈ B(H,K), define the operator
S := U−1

H T ∗UK : K → H . Then, S is the unique operator satisfying

〈Tx, y〉K = 〈x, Sy〉H , ∀x ∈ H, ∀y ∈ K. (3)

Also, S ∈ B(K,H) and ‖S‖ = ‖T‖.

Proof. For any y ∈ K, we have:

(T ∗UK)y = T ∗(UKy) = T ∗〈·, y〉K = 〈T (·), y〉K .

(UHS)y = UH(Sy) = 〈·, Sy〉H .
Since UHS = T ∗UK by definition of S, this proves (3). Uniqueness follows from the well-
known fact that if 〈x, y〉H = 〈x, z〉H for all x ∈ H , then y = z ([Ch10], p. 70). Since S
is a composition of bounded linear operators, we must have S ∈ B(K,H) by proposition
3.4. Now, taking advantage of lemma 3.3 (i) and the fact that UH , UK and their inverses are
isometries, we have:

‖S‖ = ‖U−1
H T ∗UK‖ ≤ ‖U−1

H ‖ · ‖T
∗‖ · ‖UK‖ = ‖T ∗‖.

‖T ∗‖ = ‖UHSU−1
K ‖ ≤ ‖UH‖ · ‖S‖ · ‖U

−1
K ‖ = ‖S‖.

The two inequalities above, together with theorem 4.10, tell us that ‖S‖ = ‖T ∗‖ = ‖T‖.
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For Hilbert spaces, it is normal to define T ∗ to be the operator satisfying
〈Tx, y〉K = 〈x, T ∗y〉H . That is, to define T ∗ to be the operator we called S in theorem 5.2.
Accordingly, we will simply denote S by T ∗ from now on. It will always be clear which
operator we are talking about. Note that since both UH and UK are bijective, anyone of
the two operators called T ∗ will be surjective/injective if and only if the other one is. Note
that to identify T ∗, we just need to find an operator satisfying (3), since T ∗ is UNIQUELY
determined by that equation.

Some properties of the adjoint operator are given in the following proposition. The iden-
tity operator is denoted by I .

Proposition 5.3. Given Hilbert spaces H, J and K, let T ∈ B(H, J) and S ∈ B(J,K) be
operators. Then, we have:

(i) (ST )∗ = T ∗S∗.

(ii) (T ∗)∗ = T .

(iii) If T is invertible, so is T ∗, and (T ∗)−1 = (T−1)∗.

Proof.
(i) 〈T ∗S∗x, y〉H = 〈S∗x, Ty〉J = 〈x, STy〉K , ∀x ∈ K, ∀y ∈ H.

(ii) 〈Tx, y〉J = 〈x, T ∗y〉H = 〈T ∗y, x〉H = 〈y, (T ∗)∗x〉J = 〈(T ∗)∗x, y〉J , ∀x ∈ H, ∀y ∈ J.

(iii) By theorem 4.6, T−1 ∈ B(Y,X), so its adjoint is defined. Also, by (i),

T ∗(T−1)∗ = (T−1T )∗ = I∗ = I.

(T−1)∗T ∗ = (TT−1)∗ = I∗ = I.

5.2 Complete sequences

Definition 5.4. Let X be a normed space. A sequence in X is said to be complete if
finite linear combinations of its elements can approximate any element of X . If a complete
sequence in X exists, then X is said to be separable.

A basis is an example of a complete sequence. In that case, we can improve our approxi-
mations by just adding more coefficients, without changing the ones we have already used.
We cannot do that in every separable space, though, since they might not possess any basis.
Specifically, a complete sequence is not necessarily a basis, even if it is linearly independent.
For example, it is well-known that ifX is the space of continuous functions on a fixed closed
interval, equipped with the sup-norm, then {1, (·), (·)2, (·)3, ...} is a complete sequence in X
that does not form a basis for X . But if a basis exists, it is certainly complete, so existence
of a basis for a normed space definitely guarantees separability.

In Hilbert spaces, we say that two vectors are orthogonal if their inner product vanishes.
This concept is very useful for a lot of reasons, and we will look at some of them in the next
section. For now, we will see how it can be used to give an alternative definition of complete
sequences.
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Theorem 5.5 ([Ch10], p. 71). Let H be a Hilbert space. A sequence {vk}k∈N ⊂ H is
complete if and only if the only element of H orthogonal to all the terms is the zero-vector.

We have pointed out that every basis in a normed space is complete. But if we have a basis
and add extra elements, we obviously still have a complete sequence. Contrary to a basis,
we do not require complete sequences to be linearly independent, so adding extra elements
does no harm. However, if we assume linear independence, things are sometimes different.
It is well-known that in n-dimensional Euclidean space, any linearly independent set of n
vectors is a basis. A bigger set will not be linearly independent, while a smaller set will not
be complete, so any complete, linearly independent set is a basis. What about separable,
infinite-dimensional spaces?

5.3 Bessel’s inequality and its converse

Definition 5.6. Let {uk}k∈N be a sequence in a Hilbert space H . If there exists a B > 0 s.t.∑
k∈N

|〈x, uk〉|2 ≤ B‖x‖2, ∀x ∈ H, (4)

then {uk}k∈N is called a Bessel sequence in H . B is called a Bessel bound for the sequence,
and (4) is called Bessel’s inequality.

An important feature of Bessel sequences is that the inner products 〈x, uk〉 always form an
l2-sequence. After all, Bessel’s inequality gives a finite upper bound for the l2-norm of that
sequence. Less obvious is the fact that for Bessel sequences, any l2-sequence can be used as
coefficients to get a convergent series.

Theorem 5.7 ([Ch10], p. 77). If {uk}k∈N be a Bessel sequence in a Hilbert space H . If
{ck}k∈N ∈ l2(N), then

∑
k∈N ckuk converges in H .

Proof. Pick a sequence {ck}k∈N ∈ l2(N), and define

xn :=
n∑
k=1

ckuk, ∀n ∈ N.

Then, whenever n > m, using (2) and Hölder’s inequality, we have:

‖xn − xm‖2 =

∥∥∥∥∥
n∑

k=m+1

ckuk

∥∥∥∥∥
2

= sup
‖x‖=1

∣∣∣∣∣〈x,
n∑

k=m+1

ckuk〉

∣∣∣∣∣
2

= sup
‖x‖=1

∣∣∣∣∣
n∑

k=m+1

ck〈x, uk〉

∣∣∣∣∣
2

≤ sup
‖x‖=1

n∑
k=m+1

|ck|2
n∑

k=m+1

|〈x, uk〉|2 ≤ sup
‖x‖=1

∞∑
k=m+1

|ck|2
∑
k∈N

|〈x, uk〉|2

≤ sup
‖x‖=1

∞∑
k=m+1

|ck|2 ·B‖x‖2 = B

∞∑
k=m+1

|ck|2 .

Since the last sum is the tail of a convergent sequence, it becomes arbitrarily small for large
m ∈ N. Hence, {xn}k∈N is Cauchy, hence convergent.
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Note that there might be convergent sequences whose coefficients do not form an l2-sequence.
E.g. if {ek}k∈N is an orthonormal basis for H , then we will see in the next section that it is
a Bessel sequence in H . Thus, {uk}k∈N := { 1

k2 ek}k∈N also satisfies Bessel’s inequality.
Clearly, {k}k∈N /∈ l2(N), but still,∑

k∈N

kuk =
∑
k∈N

k
1

k2
ek =

∑
k∈N

1

k
ek

converges, since { 1
k
}k∈N ∈ l2(N).

The converse of (4),

A‖x‖2 ≤
∑
k∈N

|〈x, uk〉|2 , ∀x ∈ H, (5)

has no commonly used name, other than the converse of Bessel’s inequality. Both of them,
however, will be important for us when we get to frames in section 6. We notice that if an
x ∈ H is orthogonal to all the uk, then the right side of (5) vanishes, showing that x = 0.
That is, due to theorem 5.5, every system satisfying the converse of Bessel’s inequality is
complete. The converse is not true, though. E.g. if {ek}k∈N is an orthonormal basis for H ,
then uk := kek for k ∈ N defines another complete system. Still,∑

k∈N

|〈en, uk〉|2 =
∑
k∈N

1

k
|〈en, ek〉|2 =

∑
k∈N

1

k
δnk =

1

n

becomes arbitrarily small for large enough n ∈ N. Since all the en have the same norm, this
contradicts (5).

5.4 Orthonormal sequences

Orthonormal vectors in a Hilbert space are orthogonal vectors of norm 1. A system of or-
thonormal vectors will be abbreviated by ONS, and if it is also a basis, we will write ONB.
A nice property of separable Hilbert spaces is that they always possess an ONB
([Ch10], p. 82). Not only do they always exist, but they also have some really nice proper-
ties. Before going specifically into ONBs, we will consider some more general properties of
orthonormal systems.

Let {uk}k∈N be an ONS in a Hilbert space H . Then, for any n ∈ N,

∥∥∥∥∥
n∑
k=1

ckuk

∥∥∥∥∥
2

=

〈
n∑
k=1

ckuk,

n∑
l=1

clul

〉
=

n∑
k=1

n∑
l=1

ckcl〈uk, ul〉 =
n∑
k=1

n∑
l=1

ckclδkl =
n∑
k=1

|ck|2

for any sequence of coefficients. Since all the operators we are dealing with are continuous,
the same must hold as n → ∞, assuming that the linear combination actually converges.
That is, ∥∥∥∥∥∑

k∈N

ckuk

∥∥∥∥∥
2

=
∑
k∈N

|ck|2 (6)
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whenever the linear combination converges in H . Hence, the sequence of coefficients must
always be an l2-sequence.

Do ALL l2-sequences give us convergent linear combinations? The first part of the fol-
lowing theorem will give us an answer to that.

Theorem 5.8. Let {uk}k∈N be an ONS in a Hilbert space H . Then,

(i) ∑
k∈N

|〈x, uk〉|2 ≤ ‖x‖2, ∀x ∈ H.

(ii)
∑

k∈N ckuk converges in H if and only if {ck}k∈N ∈ l2(N). In that case,∥∥∥∥∥∑
k∈N

ckuk

∥∥∥∥∥
2

=
∑
k∈N

|ck|2 .

Proof. (i) ([Mc07], p. 12) Given any x ∈ H , define ck := 〈x, uk〉, ∀k ∈ N. For any n ∈ N,
we have: ∥∥∥∥∥x−

n∑
k=1

ckuk

∥∥∥∥∥
2

=

〈
x−

n∑
k=1

ckuk, x−
n∑
k=1

ckuk

〉

= ‖x‖2 −
n∑
k=1

ck〈x, uk〉 −
n∑
k=1

ck〈uk, x〉+

∥∥∥∥∥
n∑
k=1

ckuk

∥∥∥∥∥
2

= ‖x‖2 −
n∑
k=1

ckck −
n∑
k=1

ckck +
n∑
k=1

|ck|2 = ‖x‖2 −
n∑
k=1

|ck|2 ,

where we have taken advantage of the finite version of (6). Hence,

n∑
k=1

|〈x, uk〉|2 =
n∑
k=1

|ck|2 = ‖x‖2 −

∥∥∥∥∥x−
n∑
k=1

ckuk

∥∥∥∥∥
2

≤ ‖x‖2,

so letting n→∞ gives the desired result.

(ii) Assuming convergence, the equality is just (6), and it shows necessity. Since (i) is a
special case of Bessel’s inequality, theorem 5.7 shows sufficience.

Property (i) shows, as pointed out in the proof, that any ONS is a Bessel sequence with
Bessel bound 1. If the system is also a basis, we even have equality, as the next theorem
shows.
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Theorem 5.9. Let {ek}k∈N be an ONB for a Hilbert space H . Then, the following hold:

(i)
x =

∑
k∈N

〈x, ek〉ek, ∀x ∈ H.

(ii)
‖x‖2 =

∑
k∈N

|〈x, ek〉|2 , ∀x ∈ H.

Proof. (i) Pick an x ∈ H . Since {ek}k∈N is a basis for H , there exists a unique sequence
{ck}k∈N ⊂ H s.t. x =

∑
k∈N ckek. Taking inner products with the en, this yields:

〈x, en〉 =

〈∑
k∈N

ckek, en

〉
=
∑
k∈N

ck〈ek, en〉 =
∑
k∈N

ckδkn = cn.

Hence,

x =
∑
k∈N

ckek =
∑
k∈N

〈x, ek〉ek.

(ii)
∑
k∈N

|〈x, ek〉|2 =
∑
k∈N

〈x, ek〉〈ek, x〉 =

〈∑
k∈N

〈x, ek〉ek, x

〉
= 〈x, x〉 = ‖x‖2, ∀x ∈ H.

Example 5.10. It is well-known that E(Z) is an ONB for L2[−1
2
, 1

2
] ([Ch10], p. 129). What

about L2[−σ, σ] for a general σ > 0? We will show that 1√
2σ
E(Z+c

2σ
) is an ONB for any

c > 0.
Firstly, pick an f ∈ L2[−σ, σ]. Then,

g(x) := f(2σx)e2πicx, ∀x ∈ [−1

2
,
1

2
]

defines a function g ∈ L2[−1
2
, 1

2
]. Find the unique sequence {ck}k∈N ⊂ C s.t.

g =
∑
k∈Z

cke
2πik(·)

in the L2-norm. Then, again in the L2-norm, we have:

f = g

(
1

2σ
(·)
)
e2πic 1

2σ
(·) =

∑
k∈Z

cke
2πik 1

2σ
(·)e2πic 1

2σ
(·) =

∑
k∈Z

cke
2πi k+c

2σ
(·).

This shows that the arbitrary f ∈ L2[−σ, σ] can be uniquely expanded in
{e2πi k+c

2σ
(·)}k∈Z = E(k+c

2σ
), so it is a basis for L2[−σ, σ].

Now, we need to calculate the inner products. If k, l ∈ Z and k 6= l, then
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〈e
π
σ
i(k+c)(·), e

π
σ
i(l+c)(·)〉 =

∫ σ

−σ
e
π
σ
i(k+c)xe−

π
σ
i(l+c)xdx =

∫ σ

−σ
e
π
σ
i(k−l)xdx

=
σ

πi(k − l)
[
e
π
σ
i(k−l)x]x=σ

x=−σ =
σ(eπi(k−l) − e−πi(k−l))

πi(k − l)
=
σ((−1)k−l − (−1)−(k−l))

πi(k − l)
= 0,

since k − l and −(k − l) are either both even or both odd. Also,

〈e
π
σ
i(k+c)(·), e

π
σ
i(k+c)(·)〉 =

∫ σ

−σ
e
π
σ
i(k+c)xe

π
σ
i(k+c)xdx =

∫ σ

−σ
dx = 2σ, ∀k ∈ Z.

Hence, if we normalize by dividing by 1√
2σ

, we get an ONB.
In fact, since all these exponential functions are periodic with period 2σ, both the expan-

sion and the integrals must give the same result if we replace [−σ, σ] by any interval S of
length 2σ. Hence, we conclude that 1√

2σ
E(Z+c

2σ
) is an ONB for L2(S).

Example 5.11. Let f(x) := 2πixe
π
σ
ix, ∀x ∈ [−σ, σ]. Then, f ∈ L2[−σ, σ], which has the

ONB 1√
2σ
E( Z

2σ
). We have, for k ∈ Z, using integration by parts:

〈f, e
π
σ
ik(·)〉 =

∫ σ

−σ
2πixe

π
2σ
ixe−

π
σ
ikxdx =

∫ σ

−σ
2πixe−

π
σ
i(k− 1

2
)xdx

= − 2σ

k − 1
2

∫ σ

−σ
x

(
d

dx
e−

π
σ
i(k− 1

2
)x

)
dx

= − 2σ

k − 1
2

([
xe−

π
σ
i(k− 1

2
)x
]x=σ

x=−σ
−
∫ σ

−σ
e−

π
σ
i(k− 1

2
)xdx

)
= − 4σ2

k − 1
2

· e
−πi(k− 1

2
) + eπi(k−

1
2

)

2
− 2σ2

πi(k − 1
2
)2

[
e−

π
σ
i(k− 1

2
)x
]x=σ

x=−σ

= −
4σ2 cos(π(k − 1

2
))

k − 1
2

− 4σ2

π(k − 1
2
)2
· e
−πi(k− 1

2
) − eπi(k− 1

2
)

2i

= −
4σ2 cos(π

2
(2k − 1))

k − 1
2

+
4σ2 sin(π

2
(2k − 1))

π(k − 1
2
)2

, ∀k ∈ Z.

The cosine of any odd multiple of π
2

is zero, so the first term vanishes. The sine, on the other
hand, oscillates betweeen 1 and−1, so we have sin(π

2
(2k−1)) = (−1)k−1, ∀k ∈ Z. Hence,

〈f, e
π
σ
ik(·)〉 =

4σ2(−1)k−1

π(k − 1
2
)2
, ∀k ∈ Z,

so by theorem 5.9 (i),

f =
∑
k∈Z

〈
f,

1√
2σ
e
π
σ
ik(·)
〉

1√
2σ
e
π
σ
ik(·) =

∑
k∈Z

2σ(−1)k−1

π(k − 1
2
)2
e
π
σ
ik(·)

in the L2-norm on [−σ, σ]. Since f is differentiable on [−σ, σ] and has continuous derivative,
this Fourier series converges to f also in a pointwise sense.
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5.5 Riesz bases

We have seen that if we have an ONS, specifically an ONB, then the linear combinations
that converge are exactly those with coefficients taken from l2. We will now look at another
type of basis where that is the case. If H and K are Hilbert spaces, if {uk}k∈N is a Bessel
sequence in H , and if T ∈ B(H,K), then

∑
k∈N

|〈x, Tuk〉K |2 =
∑
k∈N

|〈T ∗x, uk〉H |2 ≤ B‖T ∗x‖2
H ≤ B‖T ∗‖2‖x‖2

K , ∀x ∈ K. (7)

That is, bounded linear operators between Hilbert spaces map Bessel sequences into Bessel
sequences. The basis we will consider is the image of an ONB under such an operator, so
this observation guarantees that l2-coefficients give convergence. Also, the operator will be
an isomorphism, which allows us to say more than that. The following lemma tells us exactly
what we need in this respect.

Lemma 5.12 ([Yo01], p. 25). Let {uk}k∈N ⊂ X and {vk}k∈N ⊂ Y be sequences in two
Banach spaces, X and Y . If there exists a bounded isomorphism T : X → Y satisfying
Tuk = vk for any k ∈ N, then∑

k∈N

ckuk converges in X if and only if
∑
k∈N

ckvk converges in Y.

Proof. Assume
∑

k∈N ckuk converges to x ∈ X , and define

xn :=
n∑
k=1

ckuk ∈ X, ∀n ∈ N.

Now, continuity of T tlls us that Txn → Tx ∈ Y as n→∞. Since

Txn = T

(
n∑
k=1

ckuk

)
=

n∑
k=1

ckTuk =
n∑
k=1

ckvk

by linearity of T , this shows necessity.
Since T−1 is also a bounded isomorphism by theorem 4.6, we can use the same argument

to prove sufficiency.

Definition 5.13. Let H be a Hilbert space. {uk}k∈N is called a Riesz basis (RB) for H if
there exists a bounded isomorphism T : H → H s.t. {Tuk}k∈N is an ONB for H .

By theorem 5.8 (ii) and lemma 5.12, the convergent linear combinations of an RB are exactly
those whose coefficients are taken from l2(N). A convenient fact to be aware of is that if
{ek}k∈N is an ONB for H , and if T : H → H is a bounded isomorphism, then
{T−1ek}k∈N := {uk}k∈N is automatically a basis for H . Hence, to verify that the uk form an
RB for H , we just need to find T . To see why, given any x ∈ H , define y := Tx ∈ H , and
note:

x = T−1y = T−1

(∑
k∈N

〈y, ek〉ek

)
=
∑
k∈N

〈y, ek〉T−1ek =
∑
k∈N

〈y, ek〉uk.
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This shows that x can be expanded in the uk. Similarly, if {ck}k∈N are the coefficients in
such an expansion for x, then

y = Tx = T

(∑
k∈N

ckuk

)
=
∑
k∈N

ckTuk =
∑
k∈N

ckek.

If the coefficients were not unique, this would give us different expansions for y in the ONB,
which is a contradiction. Hence, they must be unique. This proves that {uk}k∈N is indeed a
basis, specifically an RB, as long as the desired operator exists. Note that all the sums above
converge, due to theorem 5.12, while continuity of T and T−1 justifies moving them into the
sums.

It is possible to define different inner products on the same Hilbert space. We will not
do that, but it turns out that there exists an inner product for which the RB becomes an
ONB ([Yo01], p. 27). This gives another view of how closely related RBs are to ONBs.
The elements of an RB might not have the same norm, like an ONB has, but they must be
bounded both above and below. That is, the norm of the elements of an RB can neither get
arbitrarily large nor arbitrarily small. That is one consequence of the following theorem,
which is a generalization of theorem 5.8 (ii) for ONBs. To see why boundedness of the RB
follows, set ck = 0 for all but one k ∈ N.

Theorem 5.14 ([Yo01], p. 27). A basis {uk}k∈N for a Hilbert space H is an RB if and only
if there exist constants A,B > 0 s.t.

∑
k∈N

ckuk converges, and A
∑
k∈N

|ck|2 ≤

∥∥∥∥∥∑
k∈N

ckuk

∥∥∥∥∥
2

≤ B
∑
k∈N

|ck|2 , ∀{ck}k∈N ∈ l2(N). (8)

Proof. Assume the uk form an RB for H , and find a bounded isomorphism T : H → H s.t.
the ek := Tuk form an ONB for H . Then, for any sequence {ck}k∈N ∈ l2(N), we have:

∑
k∈N

|ck|2 =

∥∥∥∥∥∑
k∈N

ckek

∥∥∥∥∥
2

=

∥∥∥∥∥∑
k∈N

ckTuk

∥∥∥∥∥
2

=

∥∥∥∥∥T
(∑
k∈N

ckuk

)∥∥∥∥∥
2

≤ ‖T‖2

∥∥∥∥∥∑
k∈N

ckuk

∥∥∥∥∥
2

.

∥∥∥∥∥∑
k∈N

ckuk

∥∥∥∥∥
2

=

∥∥∥∥∥∑
k∈N

ckT
−1ek

∥∥∥∥∥
2

=

∥∥∥∥∥T−1

(∑
k∈N

ckek

)∥∥∥∥∥
2

≤ ‖T−1‖2

∥∥∥∥∥∑
k∈N

ckek

∥∥∥∥∥
2

= ‖T−1‖2
∑
k∈N

|ck|2 .

This proves necessity, where we may pick A = 1
‖T‖2 and B = ‖T−1‖2.

For sufficiency, assume that {uk}k∈N is a basis for H satisfying (8). Existence of that
basis implies that H is separable, so it has an ONB as well. Pick an ONB {ek}k∈N for H ,
and define an operator S : H → H by

Sx :=
∑
k∈N

〈x, ek〉uk, ∀x ∈ H.
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Setting ck := 〈x, ek〉 for k ∈ N, by theorem 5.9 (ii), our assumption says that

A‖x‖2 ≤ ‖Sx‖2 ≤ B‖x‖2, ∀x ∈ H.
Hence, S is bounded both above and below. Lemma 3.2 (ii) now shows injectivity. Clearly,
S is linear as well, and it satisfies Sen = un for n ∈ N. Now, pick a y ∈ H , and find the
coefficients s.t. y =

∑
k∈N ckuk. Define

yn :=
n∑
k=1

ckuk, xn :=
n∑
k=1

ckek ∀n ∈ N.

Applying (8) to a sequence of finitely many non-vanisish terms, and using theorem 5.8 (ii),
we get:

‖yn − ym‖2 =

∥∥∥∥∥
n∑

k=m+1

ckuk

∥∥∥∥∥
2

≥ A

n∑
k=m+1

|ck|2 = A

∥∥∥∥∥
n∑

k=m+1

ckek

∥∥∥∥∥
2

= A‖xn − xm‖2

whenever n > m. Since {yk}k∈N is Cauchy, this shows that {xk}k∈N is also Cauchy, so it
converges to an x ∈ H . Also,

Sxn = S

(
n∑
k=1

ckek

)
=

n∑
k=1

ckSek =
n∑
k=1

ckuk → y

as n→∞. Continuity of S tells us that Sx = y, so S is surjective. Due to theorem 4.6, we
have now proven that S−1 satisfies the premises of the operator T in definition 5.13.

Something more general that RBs, called Riesz sequences, are in fact defined by (8). The
difference is that we require the uk to form a basis for their closed linear span, rather than for
the whole of H . If a Riesz sequence is complete in H as well, it is obviously an RB for H .

It is also convenient to note how T−1 was constructed in the proof of theorem 5.14. Firstly,
we picked the ONB, {ek}k∈N, that we want to equal {Tuk}k∈N. Then, we defined

T−1y :=
∑
k∈N

〈y, uk〉ek, ∀y ∈ H.

Constructing T might not be as easy, though. After all, there is no general way of construct-
ing the inverse of a known bijective operator, even if it is bounded and linear. We could start
by finding the inner product that makes {uk}k∈N an ONB, which would of course not change
the fact that {ek}k∈N is an RB. That allows us to construct T in the same way, but finding that
inner product is probably not any easier than finding T to begin with. However, if we pick a
particularly convenient ONB, it might be easier to understand what T should look like. We
will see an example in section 10.3, even though we will not attempt to find T in that case.
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Example 5.15. Define u1, u2, e1, e2 ∈ R2 by:

u1 :=

(
2
0

)
, u2 :=

(
1
1

)
.

e1 :=

(
1
0

)
, e2 :=

(
0
1

)
.

Then, {e1, e2} is an ONB for R2. We want to define an isomorphism T ∈ B(R2,R2) s.t.
Tu1 = e1 and Tu2 = e2. The inverse of T is given by:

T−1y =
2∑

k=1

〈y, uk〉ek = 2y1

(
1
0

)
+(y1+y2)

(
0
1

)
=

(
2y1

y1 + y2

)
=

(
2 0
1 1

)(
y1

y2

)
, ∀y ∈ R2.

Thus, T is given by the inverse of the 2x2-matrix above, i.e.

Tx =

(
2 0
1 1

)−1(
x1

x2

)
=

1

2

(
1 0
−1 2

)(
x1

x2

)
=

1

2

(
x1

−x1 + 2x2

)
, ∀x ∈ R2.

Clearly, T is linear. Since the matrix is invertible, T is bijective as well. For boundedness,

‖Tx‖2 =
1

4
(x2

1 + (−x1 + 2x2)2) =
1

4
(x2

1 + x2
1 − 4x1x2 + 4x2

2) ≤ x2
1 + x2

2 − x1x2

≤ x2
1 + x2

2 + |x1x2| ≤ x2
1 + x2

2 + (x2
1 + x2

2) = 2‖x‖2.

Here, we have used the fact that either |x1x2| ≤ x2
1 or |x1x2| ≤ x2

2, showing that
|x1x2| ≤ x2

1 + x2
2. Thus, {u1, u2} is an RB for R2.
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6 Frames

Frames are sequences in a Hilbert space H with some really nice properties. One of them
is that every element of H can be expanded in the frame, just like a basis can. Also, like
for the ONB, we have a general way of computing the coefficients in such an expansion. In
fact, frame is an even more general concept than RB, which as we know is more general
than ONB. The main difference is that a frame might be overcomplete, i.e. there might exist
proper subsequence that is still a frame in H . This allows us to lose some frame vectors, and
still be able to expand any element of H . Also, it means that the expansion is not unique.
However, the frame operator, to be defined in section 6.3, gives a particularly convenient
expansion, and that is the one that we have a general formula for.

As is well-known, L2(S) is a Hilbert space. If S is bounded, then there exist exponential
systems that form frames in L2(S). These frames are particularly important to us, since
the strong sampling problem in Paley-Wiener spaces is equivalent to finding all exponential
frames in L2(S) (see section 8.4). That is our main reason for considering frames. This
section is all about defining the most important concepts related to frames, proving some of
their general properties and doing some examples.

6.1 Introduction to frames

Definition 6.1. A sequence {uk}k∈N in a Hilbert spaceH is called a frame inH if it satisfies
both Bessel’s inequality and its converse. That is, if there exist constants A,B > 0 satisfying

A‖x‖2 ≤
∑
k∈N

|〈x, uk〉|2 ≤ B‖x‖2, ∀x ∈ H. (9)

The largest lower bound and the smallest upper bound for the frame are called the frame
bounds.

Note that whether {uk}k∈N ⊂ H is a frame or not, is independent of the ordering. The
reason is that the sum in (9) contains only non-negative terms, and absolute convergence
implies unconditional convergence. In particular, that means that if we add extra elements to
the frame, we do not need to worry about where to put them in the sequence.

As we have seen in section 5.3, the converse of Bessel’s inequality implies that every
frame is complete. The converse is not true, though. E.g. if {ek}k∈N is an ONB for H , then
{ 1
k
ek}k∈N is also complete in H . However, given any A > 0, we have:

∑
k∈N

∣∣∣∣〈en, 1

k
ek〉
∣∣∣∣2 =

1

n2
< A = A‖en‖2, ∀n > 1√

A
.

Thus, the converse of Bessel’s inequality is not satisfied for { 1
k
ek}k∈N.

Another feature of the converse of Bessel’s inequality is that it remains true if we add
extra elements to our sequence, since it only adds extra non-negative terms to the series in
the middle of (9). The same is not true for Bessel’s inequality. For example, if we start
with an ONB, and then add elements that do not form Bessel sequence, we clearly do not
get a Bessel sequence. On the other hand, among the two inequalities, Bessel’s inequality is
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normally the easier one to check. Also, our first two examples give us a couple of ways to
add elements to a Bessel sequence without disturbing Bessel’s inequality.

Bessel’s inequality tells us, by theorem 5.7, that every linear combination of the frame
vectors with l2-coefficients converges. In particular, for any x ∈ H , Bessel’s inequality
ensures us that the sequence {〈x, uk〉}k∈N is an element of l2(N). Hence, it can be used as
coefficients in a linear combination of the uk. In fact, this is exactly what we will do when
defining alternate dual frames and the frame operator in the next two sections.

Before looking at examples, we will define two properties that a frame may have, so that
we can check for those properties in our examples. However, we will not discuss them for
general cases yet.

Definition 6.2. A frame in a Hilbert space H is called

(i) tight if the two frame bounds are equal.

(ii) exact if no proper subsequence of the frame is complete in H .

By theorem 5.9 (ii), every ONB is a tight frame with frame bound 1, and since it is a basis, it
is also exact. Every ONS is a Bessel sequence with Bessel bound 1, but unless it is an ONB,
it will not be complete, hence not a frame. We will see later that exact frames are always
bases, in fact bases of a particular kind.

Example 6.3. Let J1, J2 ⊂ R be disjoint, discrete sets. If {uk}k∈J1 and {uk}k∈J2 are Bessel
sequences in a Hilbert space H , and their respective Bessel bounds are B1 and B2, then

∑
k∈J1∪J2

|〈x, uk〉|2 =
∑
k∈J1

|〈x, uk〉|2 +
∑
k∈J2

|〈x, uk〉|2 ≤ B1‖x‖2 +B2‖x‖2 = (B1 +B2)‖x‖2,

for any x ∈ H . Hence, {uk}k∈J1∪J2 is a Bessel sequence in H , and B1 + B2 is a Bessel
bound.

Example 6.4. Let {uk}k∈N be a sequence in a Hilbert space H , and assume that
{‖uk‖}k∈N ∈ l2(N). Then, ∑

k∈N

|〈x, uk〉|2 ≤
∑
k∈N

‖x‖2 · ‖uk‖2

by Cauchy-Schwarz’ inequality. Hence, {uk}k∈N is a Bessel sequence inH , and
∑

k∈N ‖uk‖2

is a Bessel bound.

These two examples, together with the fact that adding extra elements never destroys the
converse of Bessel’s inequality, give us some ways of adding extra elements. Example 6.3
tells us that we may add elements that form a Bessel sequence, and example 6.4 implies that
we may pick that extra Bessel sequence to be any finite set. In particular, this shows that if
we start with a finite number of ONBs and add finitely many other elements, we still get a
frame.

Now, what about the case that H is a finite-dimensional Euclidean space? In that case,
neither of the two inequalities is very difficult. We will give a theorem for that, before
considering an example.
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Theorem 6.5. Let n ∈ N and a finite set J ⊂ R be given. A sequence {uj}j∈J in Rn or Cn

is a frame if and only if it is complete.

Proof. Example 6.4 shows that the uj satisfy Bessel’s inequality, so we only need to check
its converse. Assume that no lower bound for the uj exists. Then, there exists a sequence
{xm}m∈N ⊂ Cn with ‖xm‖ = 1 and

1

m
=

1

m
‖xm‖2 >

∑
j∈J

|〈xm, uj〉|2 , ∀m ∈ N.

Since {xm}m∈N is a bounded sequence in Euclidean space, it has a subsequence {xmk}k∈N
converging to some x ∈ Cn. Then, we have:

∑
j∈J

|〈x, uj〉|2 =
∑
j∈J

∣∣∣〈 lim
k→∞

xmk , uj〉
∣∣∣2 = lim

k→∞

∑
j∈J

|〈xmk , uj〉|
2 ≤ lim

k→∞

1

mk

= 0.

This shows that x is orthogonal to all the uj , so {uj}j∈J is not complete.

Example 6.6. In R2, define the sequence {uk}3
k=1 = {u1, u2, u3} by:

u1 :=

(
1
0

)
, u2 :=

(
1
1

)
, u3 :=

(
0
1

)
.

Since {u1, u2, u3} is a complete system in Euclidean space, it is a frame. However, let us
verify that it is indeed the case. We have, for all x ∈ R2:

3∑
k=1

|〈x, uk〉|2 = x2
1 + (x1 + x2)2 + x2

2 ≥ x2
1 + x2

2 = ‖x‖2.

3∑
k=1

|〈x, uk〉|2 = x2
1+(x1+x2)2+x2

2 = 2(x2
1+x2

2)+2x1x2 ≤ 2(x2
1+x2

2)+2(x2
1+x2

2) = 4‖x‖2.

Hence, {u1, u2, u3} is a frame in R2, where we may pick A = 1 and B = 4. We will not
worry about optimizing A and B.

6.2 Alternate dual frames

Definition 6.7. Let {uk}k∈N be a frame in a Hilbert spaceH . A frame {vk}k∈N inH is called
an alternate dual frame for {uk}k∈N if it satisfies

x =
∑
k∈N

〈x, vk〉uk, ∀x ∈ H. (10)

We will see later that any frame has at least one alternate dual frame. So if we can find one,
it will give us a formula for expanding vectors in the frame! Note that the expansion in an
ONB, given by theorem 5.9 (i), is in that form, showing that it is its own alternate dual frame.
We will now show that, contrary to dual spaces, being an alternate dual frame is in general
a reflexive property. Thus, we can talk about two frames as being each other’s alternate dual
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frames. It should be noted, though, that the alternate dual frame might not unique. In fact, it
can be shown that it is unique if and only if the frame is exact ([HL00], p. 35).

Theorem 6.8 ([HL00], p. 17). Let {uk}k∈N be a frame in a Hilbert spaceH , and let {vk}k∈N
be an alternate dual frame. Then, x =

∑
k∈N〈x, uk〉vk, ∀x ∈ H . That is, {uk}k∈N is an

alternate dual frame for {vk}k∈N.

Partial proof. For any x ∈ H , we have:

∑
k∈N

〈x, uk〉vk =
∑
k∈N

〈x, uk〉
∑
l∈N

〈vk, vl〉ul =
∑
l∈N

〈x,
∑
k∈N

〈vl, vk〉uk〉ul =
∑
l∈N

〈x, vl〉ul = x.

What remains, which we willl not do here, is to justify interchanging the order of the two
sums.

Note that the proof of theorem 6.8 never took advantage of the fact that {uk}k∈N and {vk}k∈N
are frames, only that they satisfy the reconstruction formula (10). Hence, assuming that we
can interchange the two sums in the proof, the reconstruction formula is symmetric for any
two sequences satisfying it. Recall that as long as {uk}k∈N and {vk}k∈N are Bessel sequences,
we know that (10) converges. Specifically, it does in the case of frames, which is what the
theorem is actually about.

Example 6.9. Let an ONB {ek}k∈N for H and a c > 0 be given. Clearly, {cek}k∈N is a tight,
exact frame in H with frame bounds c2. Its alternate dual frame is {1

c
ek}k∈N, as is easily

seen by the expansion

x =
∑
k∈N

〈x, ek〉ek =
∑
k∈N

〈x, 1

c
ek〉cek, ∀x ∈ H.

This turns out to have a simple generalization. Given a tight frame {uk}k∈N with frame
bounds A > 0, define, vk := 1

A
uk for k ∈ N. Clearly, {vk}k∈N is a tight frame with frame

bounds 1
A

. It can be shown that the following reconstruction formula holds:

x =
1

A

∑
k∈N

〈x, uk〉uk =
∑
k∈N

〈x, vk〉uk, ∀x ∈ H (11)

([HL00], p. 14). This shows that {vk}k∈N is an alternate dual frame for {uk}k∈N. Setting
c :=

√
A, if the 1

c
uk form an ONB for H , we get the special case that we considered first.

6.3 The frame operator

There is a particular alternate dual frame that is very convenient. It is defined in terms of a
very important operator, which we will take a look at in this section. First, we need to define
a related operator.

Definition 6.10. Let {uk}k∈N be a Bessel sequence in a Hilbert space H . The operator
T : H → l2(N), defined by Tx := {〈x, uk〉}k∈N, ∀x ∈ H , is called the analysis operator.
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For the rest of this section, the only operator we will denote by T is the analysis operator.
Note that a reformulation of (4) is that

‖Tx‖2
2 ≤ B‖x‖2

H , ∀x ∈ H.

This is the same as saying that T is bounded, and that ‖T‖ ≤
√
B. Hence, Bessel sequences

are exactly the sequences for which the analysis operator, as an operator mapping H into
l2(N), is well-defined and bounded. Similarly, in the case of a frame, (9) can be written as

A‖x‖2
H ≤ ‖Tx‖2

2 ≤ B‖x‖2
H , ∀x ∈ H.

From this, we see that a sequence inH is a frame if and only if T is well-defined and bounded
both above and below. Obviously, T is linear as well, since inner products are linear in the
first slot. Hence, T ∈ B(H, l2(N)), which allows us to talk about the adjoint of T . The two
operators in the following definitions are well-defined for all Bessel sequences, but we will
only consider them for frames. Otherwise, theorem 6.13 (iii) and (iv) will not be true, and
those properties will be important!

Note that if H is Rn or Cn, and if the Bessel sequence contains m vectors, then T maps
Rn into Rm or Cn into Cm.

Definition 6.11. Let {uk}k∈N be a frame in a Hilbert space H .

(i) The operator T ∗ : l2(N)→ H is called the synthesis operator.

(ii) The operator S := T ∗T : H → H is called the frame operator.

Just as for the analysis operator, for the rest of this section, we are always talking about the
frame operator when we denote an operator by S. Now, what do T ∗ and S actually look like?
We will see in the following theorem.

Theorem 6.12. Let {uk}k∈N be a frame in a Hilbert space H .

(i) The synthesis operator is given by

T ∗{ck}k∈N =
∑
k∈N

ckuk, ∀{ck}k∈N ∈ l2(N).

(ii) The frame operator is given by

Sx =
∑
k∈N

〈x, uk〉uk, ∀x ∈ H.

Proof. (i) For any x ∈ H and any {ck}k∈N ∈ l2(N), we have:

〈Tx, {ck}k∈N〉2 =
∑
k∈N

(Tx)kck =
∑
k∈N

〈x, uk〉Hck =

〈
x,
∑
k∈N

ckuk

〉
H

.

Since this equals 〈x, T ∗{ck}k∈N〉H by theorem 5.2, this proves (i).

(ii) Sx = T ∗Tx = T ∗{〈x, uk〉}k∈N =
∑

k∈N〈x, uk〉uk, ∀x ∈ H by (i).
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A very convenient observation is the following:

‖Tx‖2
2 =

∑
k∈N

|〈x, uk〉|2 =
∑
k∈N

〈x, uk〉〈uk, x〉 =

〈∑
k∈N

〈x, uk〉uk, x

〉
= 〈Sx, x〉, ∀x ∈ H.

Hence, the sum in (9) may at any time be replaced by either ‖Tx‖2
2 or 〈Sx, x〉. This also

shows that 〈Sx, x〉 is a non-negative real number for any x ∈ H , which is a general property
of self-adjoint operators. This suggests that S might be self-adjoint, and it is not hard to
show that it is. This is one of many really nice properties of the frame operator. Some of
them are stated in the following theorem.

Theorem 6.13. The frame operator is

(i) self-adjoint.

(ii) linear and bounded, with ‖S‖ = ‖T‖2.

(iii) bounded below. If A > 0 is a lower bound for the frame, then A is a lower bound for
S.

(iv) bijective.

Proof. (i) S∗ = (T ∗T )∗ = T ∗T ∗∗ = T ∗T = S by proposition 5.3 (i) and (ii).

(ii) Since S is composed of two bounded linear operators, S is itself bounded and linear by
proposition 3.4. Also, we have:

‖S‖ = ‖T ∗T‖ ≤ ‖T‖ · ‖T ∗‖ = ‖T‖2

by lemma 3.3 (i) and theorem 5.2.

‖Tx‖2
2 = 〈Sx, x〉 ≤ ‖Sx‖H · ‖x‖H ≤ ‖S‖ · ‖x‖2

H , ∀x ∈ H ⇒ ‖T‖2 ≤ ‖S‖

by Cauchy-Schwarz. The two inequalities together show that ‖S‖ = ‖T‖2.

(iii)
A‖x‖2

H ≤ 〈Sx, x〉 ≤ ‖Sx‖H · ‖x‖H ⇒ A‖x‖H ≤ ‖Sx‖H , ∀x ∈ H,
showing that S is bounded below, with A being a lower bound.

(iv) By (i) and (iii), both S and S∗ are bounded below. Thus, S is bijective by theorem
4.11.

Note that if A,B > 0 are the frame bounds, recalling that ‖T‖2 = B, theorem 6.13 (ii) and
(iii) state the following:

A‖x‖ ≤ ‖Sx‖ ≤ B‖x‖, ∀x ∈ H. (12)

We will take advantage of that to prove an important result in the next subsection.
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6.4 The dual frame

We are now ready to introduce the particular alternate dual frame that the frame operator
gives us. Recall from the previous subsection that S is bijective.

Theorem 6.14 ([OU16], p. 9). Let {uk}k∈N be a frame in a Hilbert space H , and define
vk := S−1uk for k ∈ N. Then, {vk}k∈N is an alternate dual frame for {uk}k∈N. If A,B > 0
are the frame bounds for {uk}k∈N, then 1

B
, 1
A

are the frame bounds for {vk}k∈N.

Partial proof. Whenever we pick a y ∈ H , we set x := S−1y. We have:

∑
k∈N

〈y, vk〉uk =
∑
k∈N

〈y, S−1uk〉uk =
∑
k∈N

〈S−1y, uk〉uk = S(S−1y) = y, ∀y ∈ H,

where we have taken advantage of the fact that S−1 is self-adjoint by proposition 5.3 (iii).
Thus, if {vk}k∈N is a frame in H , it is an alternate dual frame for {uk}k∈N. Also,

∑
k∈N

|〈y, vk〉|2 =
∑
k∈N

∣∣〈y, S−1uk〉
∣∣2 =

∑
k∈N

∣∣〈S−1y, uk〉
∣∣2 =

∑
k∈N

|〈x, uk〉|2 = 〈Sx, x〉, ∀y ∈ H.

Hence, what remains is to find c, C > 0 s.t. c‖y‖2 ≤ 〈Sx, x〉 ≤ C‖y‖2, ∀y ∈ H . What we
will not do is to optimize them, but it is easily shown that c := A

B2 and C := B
A2 works. By

(12),

A

B2
‖y‖2 =

A

B2
‖Sx‖2 ≤ A‖x‖2 ≤ 〈Sx, x〉 ≤ B‖x‖2 ≤ B

A2
‖Sx‖2 =

B

A2
‖y‖2, ∀y ∈ H.

Definition 6.15. The alternate dual frame given in theorem 6.14 is called the (canonical)
dual frame.

Theorem 6.14 tells us that, as we have pointed out before, every frame does indeed have at
least one alternate dual frame, namely the canonical dual frame. Note that the frame bounds
are consistent with (11) for the case that A = B. With theorem 6.14, we have everything
we need to expand any x ∈ H in a given frame. The only remaining problem, in terms of
finding the coefficients of this expansion, is that it requires finding S−1, which we do not
have a general expression for.

One nice property of the expansion given by the dual frame, is that it minimizes the l2-
norm of the coefficients. That is, if x =

∑
k∈N ckuk =

∑
k∈N〈x, vk〉uk for some x ∈ H ,

then the l2-norm of the ck cannot be smaller than the l2-norm of the 〈x, vk〉. Of course, this
does not require {ck}k∈N to be in l2(N), since it still holds if

∑
k∈N |ck|

2 =∞. We state this
property of the dual frame as a proposition, before turning to examples.

Proposition 6.16 ([OU16], p. 9). Let {uk}k∈N be a frame in a Hilbert space H , and let
{vk}k∈N be the dual frame. If {ck}k∈N is a sequence of complex numbers s.t.

∑
k∈N ckuk

converges to an x ∈ H , then ∑
k∈N

|〈x, vk〉|2 ≤
∑
k∈N

|ck|2 .

40



Proof.

〈x, S−1x〉 =

〈∑
k∈N

〈x, S−1uk〉uk, S−1x

〉
=
∑
k∈N

〈S−1x, uk〉〈uk, S−1x〉 =
∑
k∈N

∣∣〈uk, S−1x〉
∣∣2 .

〈x, S−1x〉 =

〈∑
k∈N

ckuk, S
−1x

〉
=
∑
k∈N

ck〈uk, S−1x〉 ≤
√∑

k∈N

|ck|2
√∑

k∈N

|〈uk, S−1x〉|2

by Hölder’s inequality. Hence, combining the two lines above, we get:

∑
k∈N

|ck|2 ·
∑
k∈N

∣∣〈uk, S−1x〉
∣∣2 ≥ (∑

k∈N

∣∣〈uk, S−1x〉
∣∣2)2

⇒
∑
k∈N

|ck|2 ≥
∑
k∈N

∣∣〈S−1x, uk〉
∣∣2 =

∑
k∈N

∣∣〈x, S−1uk〉
∣∣2 =

∑
k∈N

|〈x, vk〉|2 .

Example 6.17. Let uk := eπik(·) ∈ L2[−1
2
, 1

2
] for k ∈ Z. Since both {u2k}k∈Z and {u2k+1}k∈Z

are ONBs for L2[−1
2
, 1

2
], we have:

∑
k∈Z

|〈f, uk〉|2 =
∑
k∈2Z

|〈f, uk〉|2+
∑

k∈2Z+1

|〈f, uk〉|2 = ‖f‖2
2+‖f‖2 = 2‖f‖2

2, ∀f ∈ L2[−1

2
,
1

2
].

Thus, the uk form a tight frame with frame bounds 2. Also,

Sf =
∑
k∈Z

〈f, uk〉uk =
∑
k∈2Z

〈f, uk〉uk +
∑

k∈2Z+1

〈f, uk〉uk = f + f = 2f, ∀f ∈ L2[−1

2
,
1

2
].

That is, S = 2I , so S−1 = 1
2
I . Hence, the dual frame is {1

2
uk}k∈Z. Also,

∑
k∈Z

|〈f, vk〉|2 =

(
1

2

)2∑
k∈Z

|〈f, uk〉|2 =
1

4
· 2‖f‖2

2 =
1

2
‖f‖2

2, ∀f ∈ L2[−1

2
,
1

2
].

Hence, the mimimum l2-norm of the coefficients in an expansion for f in the uk is 1
2
‖f‖2

2. Of
course, every step in this example works equally well for any two ONBs for any separable
Hilbert space.

Example 6.18. Define u1, u2, u3 ∈ R2 as in example 6.6. The three operators of this section
look like this:

Tx = {〈x, uk〉}3
k=1 = {x1, x1 + x2, x2}, ∀x ∈ R2.

T ∗{ck}3
k=1 =

3∑
k=1

ckuk = c1

(
1
0

)
+ c2

(
1
1

)
+ c3

(
0
1

)
=

(
c1 + c2

c2 + c3

)
, ∀c1, c2, c3 ∈ R.
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Sx = T ∗{x1, x1+x2, x2} =

(
x1 + (x1 + x2)
(x1 + x2) + x2

)
=

(
2x1 + x2

x1 + 2x2

)
=

(
2 1
1 2

)(
x1

x2

)
, ∀x ∈ R2.

That is, S can be viewed as left-multiplication by the 2x2-matrix above. Hence, S−1 is left-
multiplication by the inverse of that matrix, i.e.

S−1y =
1

3

(
2 −1
−1 2

)(
y1

y2

)
, ∀y ∈ R2.

The dual frame is:

v1 =
1

3

(
2 −1
−1 2

)(
1
0

)
=

1

3

(
2
−1

)
.

v2 =
1

3

(
2 −1
−1 2

)(
1
1

)
=

1

3

(
1
1

)
.

v3 =
1

3

(
2 −1
−1 2

)(
0
1

)
=

1

3

(
−1
2

)
.

Let us verify that (10) holds.

3∑
k=1

〈x, vk〉uk =
1

3

(
(2x1 − x2)

(
1
0

)
+ (x1 + x2)

(
1
1

)
+ (−x1 + 2x2)

(
0
1

))

=
1

3

((
2x1 − x2

0

)
+

(
x1 + x2

x1 + x2

)
+

(
0

−x1 + 2x2

))
=

1

3

(
3x1

3x2

)
= x, ∀x ∈ R2.

Now, for a special case, let x1 := 2, x2 := 5. Of course, x ∈ R2 can be expanded in the uk
as x =

∑3
k=1 ckuk by putting c1 = 2, c2 = 0, c3 = 5. In that case,

3∑
k=1

|ck|2 = 22 + 52 = 29.

Another option is to put c1 = 0, c2 = 2, c3 = 3. In that case,

3∑
k=1

|ck|2 = 22 + 32 = 13,

which is a definite improvement compared to just using the ONB. However, the optimal
solution, in terms of minimizing the l2-norm of the coefficients, is given by proposition 6.16:

c1 = 〈x, v1〉 =
1

3
(2x1 − x2) = −1

3
.

c2 = 〈x, v2〉 =
1

3
(x1 + x2) =

7

3
.

c3 = 〈x, v3〉 =
1

3
(−x1 + 2x2 =

8

3
.
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3∑
k=1

|ck|2 =
1

9
(12 + 72 + 82) =

114

9
≈ 12.67.

One thing to note from example 6.18 is that the matrix for the frame operator is symmetric.
That is consistent with the fact that S is in general a self-adjoint operator. After all, it is
well-known that the complex, self-adjoint matrices are exactly the anti-symmetric ones, i.e.
those that are equal to their conjugate transpose. In the real case, there is no difference
between symmetry and anti-symmetry, so the result is as expected. We will see the same
thing happening in example 6.20.

6.5 Riesz bases and frames

Now, we are ready to give an exact characterization of exact frames. We know that ONBs
are exact frames, and we have mentioned in a sentence that all exact frames are a particular
kind of basis. This is what we are going to show in our next theorem.

The theorem uses a term that we have not yet encountered. Two sequences, {uk}k∈N and
{vk}k∈N in H , are said to be biorthogonal if 〈uk, vl〉 = δkl for all k, l ∈ N. That is, each
element is orthogonal to all elements of the other sequence, except the one with the same
index. As an example, any orthonormal system is biorthogonal to itself. More generally,
if {uk}k∈N is an orthogonal system, it is biorthogonal to { uk

‖uk‖2
}k∈N. Note that a sequence

might not have a biorthogonal sequence. E.g. if two of its elements are parallel, then there is
no vector orthogonal to exactly one of them. However, in the case of exact frames, it always
exists, and it is unique. In general, {vk}k∈N has a biorthogonal sequence if and only none of
the vk can be approximated by finite linear combinations of the others, an it is unique if and
only if {vk}k∈N is complete in H as well ([Yo01], p. 24).

As pointed out in section 6.3, T is now referring to the analysis operator, rather than the
operator in definition 5.13.

Theorem 6.19 ([Yo01], p. 157). Let {uk}k∈N be a sequence in a Hilbert space H . Then, the
following three are equivalent:

(i) {uk}k∈N is an RB for H .

(ii) {uk}k∈N is an exact frame in H .

(iii) {uk}k∈N is a frame in H , and it is biorthogonal to its dual frame.

Proof. (i)⇒ (ii)
Let L : l2(N)→ H be the synthesis operator,

L{ck}k∈N :=
∑
k∈N

ckuk, ∀{ck}k∈N ∈ l2(N).

Since the uk form a basis for H , and since l2(N) is exactly the space of coefficients for the
convergent linear combinations, L is well-defined and bijective. Theorem 5.14 tells us that
L is bounded, and clearly, it is linear as well. Thus, L∗ is defined. Every step in the proof of
theorem 6.12 (i) still works here, so
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L∗x = {〈x, uk〉}k∈N, ∀x ∈ H.
By theorems 4.10 and 4.11 (ii), L∗ is bounded both above and below. That is just a reformu-
lation of (9), so {uk}k∈N is a frame in H . Since any proper subset of any basis is incomplete,
it must be exact.

(ii)⇒ (iii)
Pick an n ∈ N. Since {uk}k∈N\{n} is incomplete, there exists a vn ∈ H satisfying
〈vn, uk〉 = 0, ∀k ∈ N \ {n}. Since {uk}k∈N is complete, this implies 〈vn, un〉 6= 0, so we
may pick vn to satisfy 〈vn, un〉 = 1. Repeating that for all n ∈ N, we get a sequence {vn}n∈N
biorthogonal to {uk}k∈N. Also,

Svn =
∑
k∈N

〈vn, uk〉uk =
∑
k∈N

δnkuk = un, ∀n ∈ N,

so {vn}n∈N is the dual frame.

(iii)⇒ (i)
Pick a sequence {ck}k∈N ∈ l2(N), and define

x :=
∑
k∈N

ckvk,

where {vk}k∈N is the (biorthogonal) dual frame. Then,

(Tx)n = 〈x, un〉 =

〈∑
k∈N

ckvk, un

〉
=
∑
k∈N

ck〈vk, un〉 =
∑
k∈N

ckδkn = cn, ∀n ∈ N.

That is, Tx = {ck}k∈N, so the analysis operator is surjective. Hence, theorem 4.11 (ii)
shows that T ∗ is bounded below, and since it is also bounded above, this proves that {uk}k∈N
satisfies (8). Thus, if it is a basis, it must be an RB by theorem 5.14.

Now, pick a y ∈ H , and find coefficients {dk}k∈N ⊂ C s.t.

y =
∑
k∈N

dkuk.

Such an expansion exists by theorem 6.14. Now,

〈S−1y, un〉 =

〈∑
k∈N

dkuk, S
−1un

〉
=
∑
k∈N

dk〈uk, vn〉 =
∑
k∈N

dkδkn = dn, ∀n ∈ N.

Thus, ∑
n∈N

|dn|2 =
∑
n∈N

∣∣〈S−1y, un〉
∣∣2 ≤ B‖S−1y‖2 <∞,

where B is a Bessel bound for {uk}k∈N. This proves that such an expansion can only take
l2-coefficients. Since T ∗ is bounded below, it is injective, showing that an expansion for y in
the uk with l2-coefficients must be unique. Hence, {uk}k∈N is indeed a basis for H .
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Example 6.20. Define u1, u2 ∈ R2 as in exampe 5.15. We have seen that {u1, u2} is an RB
for R2, so it should be a frame. Let us verify that it is indeed the case. For all x ∈ R2,

2∑
k=1

|〈x, uk〉|2 = 2x2
1 + (x1 + x2)2 = 3x2

1 + x2
2 + 2x1x2 ≤ 3x2

1 + x2
2 + 2(x2

1 + x2
2) ≤ 5‖x‖2

The three operators, plus the inverse of the frame operator, are:

Tx = {〈x, uk〉}2
k=1 = {2x1, x1 + x2}, ∀x ∈ R2.

T ∗{c1, c2} =
2∑

k=1

ckuk = c1

(
2
0

)
+ c2

(
1
1

)
=

(
2c1 + c2

c2

)
, ∀c1, c2 ∈ R.

Sx =

(
2(2x1) + (x1 + x2)

x1 + x2

)
=

(
5x1 + x2

x1 + x2

)
=

(
5 1
1 1

)(
x1

x2

)
, ∀x ∈ R2.

S−1y =

(
5 1
1 1

)−1(
y1

y2

)
=

1

4

(
1 −1
−1 5

)(
y1

y2

)
=

1

4

(
y1 − y2

−y1 + 5y2

)
, ∀y ∈ R2.

The dual frame is:

v1 =
1

4

(
1 −1
−1 5

)(
2
0

)
=

1

4

(
2
−2

)
=

1

2

(
1
−1

)
.

v2 =
1

4

(
1 −1
−1 5

)(
1
1

)
=

1

4

(
0
4

)
=

(
0
1

)
.

Now,

2∑
k=1

〈x, vk〉uk =
1

2
(x1 − x2)

(
2
0

)
+ x2

(
1
1

)
=

(
(x1 − x2) + x2

x2

)
= x, ∀x ∈ R2,

verifying that {v1, v2} does indeed satisfy (10). Since it is the only expansion in the uk that
exists, since they form a basis for R2. It is easily seen that {v1, v2} is biorthogonal to u1, u2.
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7 Some function spaces

Earlier, we have been looking at Lp-spaces as spaces of equivalence classes of functions.
Soon, we want to consider separate functions. For that reason, we will in this section be very
careful to distinguish f from [f ]. Also, even though we will only do sampling on the real
number line, it will sometimes be useful to think of it as sampling a function with complex
domain. For that reason, we will start this section by introducing the complex analysis we
need. Then, we will go into the actual spaces of functions we are interested in. The relevant
function spaces are of two different kinds: Paley-Wiener spaces and Bernstein spaces.

7.1 Some complex analysis

Definition 7.1. A function mapping C into C is called

(i) analytic at a point z0 ∈ C if it is differentiable in some neighbourhood of z0.

(ii) entire if it is analytic in the whole complex plane.

A well-known fact is that any power series, centered at some z0 ∈ C, converges uniformly to
an analytic function inside some open ball B, centered at z0. Also, it is differentiable and in-
tegrable onB, and its derivative/anti-derivative can be obtained by differentiating/integrating
term by term. The new power series has the same radius of convergence, although the be-
haviour at the boundary might be different. Limits can also be performed term by term, since
the convergence is absolute.

Conversely, if f is analytic onB, it is well-known that its Taylor series about z0 converges
to f on B. Since the Taylor series is a power series, it has the mentioned properties. One
implication of this is that f is infinitely many times differentiable on B, since its derivative
is also a power series that converges on B. Another implication is that if f is entire, then
its Taylor series about any point converges pointwise to f on C. The reason is that any
z ∈ C lies on some open ball B, centered at any point, and uniform convergence on B
implies pointwise convergence at z ∈ B. Specifically, the Maclaurin series for f converges
pointwise to f on C, which we will take advantage of to prove our next lemma.

It should be noted that not all of the above is true for real functions. E.g. the function
defined by f(x) := 1

1+x2 , ∀x ∈ R is differentiable on R, but its Maclaurin series only
converges on (−1, 1). If we extend f from R to C by defining f(z) := 1

1+z2 , ∀z ∈ C, then
f has singularities at z = ±i. Thus, the Maclaurin series is only guaranteed to converge
(uniformly) to f for |z| < 1. In fact, it is also well-known that it diverges for |z| > 1.

Lemma 7.2. If f : C → C is entire, if {zk}k∈N is a sequence in C \ {0} converging to zero
as k →∞, and if f(zk) = 0 for any k ∈ N, then f = 0 on C.

Proof. Let
∑∞

k=0 ckz
k be the Maclaurin series for f . We want to prove by induction that

ck = 0, ∀k ∈ N0.
For the basis case, we have:

0 = f(zn) =
∞∑
k=0

ckz
k
n, ∀n ∈ N.
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Since limn→∞ zn = 0, we get:

0 = lim
n→∞

f(zn) = c0 +
∞∑
k=1

ck

(
lim
n→∞

zn

)k
= c0.

Now, for m ∈ N, assume that ck = 0 for all k < m. Then,

f(z)

zm
=

∞∑
k=m

ckz
k−m =

∞∑
k=0

ck+mz
k, ∀z ∈ C \ {0},

where we have translated the index of summation. Specifically,

f(zn)

zmn
=
∞∑
k=0

ck+mz
k
n, ∀n ∈ N.

Again, as n→∞, we get:

0 = lim
n→∞

f(zn)

zmn
= cm +

∞∑
k=1

ck+m

(
lim
n→∞

zn

)k
= cm.

This completes the proof by induction that all the coefficients of the Maclaurin series van-
ishes. Hence, the whole series vanishes for any z ∈ C, showing that f = 0 on C.

Lemma 7.3. (i) If f : C→ C is an entire function that vanishes on R, then f = 0.

(ii) If f1 : C→ C and f2 : C→ C are entire functions that coincide on R, then f1 = f2.

Proof. (i) Let zk := 1
k+1

, ∀k ∈ N. Then, zk → 0 as k → ∞, and f(zk) = 0, ∀k ∈ N.
Hence, f = 0 by lemma 7.2.

(ii) Let f := f1 − f2. Then, f is an entire function that vanishes on R. Hence, f = 0 by (i),
i.e. f1 = f2.

Note that a consequence of lemma 7.3 is that any real, complex-valued function has at most
one analytic extension to the complex plane. That is, if f : R → C has an extension to C
s.t. f is entire, then the extension is unique. This is the main knowledge we want to bring
into the following sections. In particular, we will see that Paley-Wiener functions can be
analytically extended to the complex plane.

Before finishing this section, we will give four more lemmas without proofs. All of them
will be helpful when we are studying Bernstein functions, which is why we will mention the
lemmas. However, none of them will be referred to more than once, so we will just continue
to the next section without going more deeply into them.

Lemma 7.4 ([Ah66], p. 214). Let F be a family of continuous functions mapping C into C.
Then, every sequence of functions in F has a subsequence that converges uniformly on every
compact subset of C, if and only if both of the following are satisfied.

(i) Given any compact set E ⊂ C and any ε > 0, there exists a δ > 0 satisfying
|f(z2)− f(z1)| ≤ ε for all f ∈ F and all z1, z2 ∈ E s.t. |z2 − z1| ≤ δ.

(ii) For any z ∈ C, there exists a compact set R ⊂ C s.t. f(z) ∈ R, ∀f ∈ F .
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Property (i) is often called equicontinuity on any compact set. It states that every element of
F is uniformly continuous on E, where the same δ > 0 works for all of them.

Lemma 7.5 (Maximum modulus principle; [Ah66], p. 134). If f : C → C is analytic on a
compact set E ⊂ C, then supz∈E |f(z)| is attained on the boundary of E.

Lemma 7.6 ([Yo01] p. 71 and 83). Let f : C → C be entire, and assume that there exist
constants A,B > 0 satisfying

|f(z)| ≤ AeB|z|, ∀z ∈ C. (13)

(i) Restricting f to the real number line, if f ∈ Lp(R) for some p ∈ [1,∞), then f(x)→ 0
as |x| → ∞.

(ii) If f(x) → 0 as |x| → ∞ along the real axis, then f(x + iy) → 0 uniformly in y as
|x| → ∞ along the real axis. That is, for any bounded set S ⊂ R, and for any ε > 0,
there exists an R > 0 s.t. |f(x+ iy)| ≤ ε whenever |x| ≥ R, y ∈ S.

Lemma 7.7 ([Ch10], p. 106). If {fk}k∈N is a sequence of integrable functions mapping R
into C, and if ∑

k∈N

∫
R
|fk(x)| dx <∞,

then ∫
R

∑
k∈N

fk(x)dx =
∑
k∈N

∫
R
fk(x)dx.

Note that lemma 7.7 can also be applied to sequences of complex functions that are square-
integrable on the real number line. After all, what matters here is their properties on R, so
we may consider their restrictions to the real number line and use the lemma.

7.2 Paley-Wiener spaces

In this subsection, we will sometimes encounter sets that are defined only up to a set of
measure zero. To take care of that, we will view them as being equivalence classes of well-
defined sets. The equivalence class containing a set S ⊆ R will be denoted by [S], and
it consists of the sets that equals S except possibly on a set of measure zero. Just like for
functions, it is easily verified that this does indeed define an equivalence relation. We will
say that [S] is bounded if for any Sc ∈ [S], there exists a set Λ ⊂ R of measure zero s.t.
Sc \ Λ is bounded. Similarly, given sets U, V ⊆ R, we will say that U ⊆ [S] ⊆ V if for any
Sc ∈ [S], there exist sets Λ,Γ ⊂ R of measure zero s.t. U ⊆ Sc \Λ and Sc \Γ ⊆ V . We will
never explicitly refer to equivalence classes of sets other than in this subsection. However,
after the following definition, it will be clear that some of the sets to come are not really
defined everywhere.
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Definition 7.8. Let f : R→ C be a function.

(i) The set supp(f) := {x ∈ R s.t. f(x) 6= 0} is called the support of f .

(ii) The support of [f ] is defined, up to a set of measure zero, as supp([f ]) := supp(f).

(iii) If f ∈ L1(R) ∪ L2(R), the set spec(f) := supp(f̂) is called the spectrum of f .

(iv) If spec(f) is bounded, then f is called band-limited.

Recall that the Fourier transform of an L1-function is a function, while an L2-function trans-
forms to an equivalence class of functions. Thus, the spectrum is a well-defined set for
L1-functions, but only defined up to a set of measure zero for L2-functions. However, for
our purposes, that is sufficient, since integrals of functions that are equal a.e. will always
coincide. That fact also means that we can integrate functions over equivalence classes of
sets. We can even integrate an equivalence class [f ] of functions over an equivalence class
[S] of sets, since for any choice of fc ∈ [f ] and Sc ∈ [S], the integral

∫
Sc
fc(x)dx will take

the same value. Still, to work with band-limited L2-functions, we need a way of saying that
spec(f) is bounded, even though it is only defined up to a set of measure zero. This is the
main reason for our discussion about equivalence classes of sets.

Proposition 7.9 ([Ch10], p. 149). If S ⊂ R is a bounded set, if f ∈ L2(R), and if
spec(f) ⊆ S, then f is equal to a continuous function a.e.

Proof. Since f ∈ L2(R) ⇒ f̂ ∈ L2(R) and supp(f̂) ⊆ S, we have f̂ ∈ L2(S) ⊂ L1(R) by
theorem 3.5. Hence, Gf̂ is continuous and equals f a.e. by theorem 3.7 (i) and (iii), applied
to the operator G (rather than to F).

Definition 7.10. Given a bounded set S ⊂ R, the Paley-Wiener space with spectrum S,
denoted by PWS , is defined by PWS := {f ∈ L2(R) s.t. f is continuous and spec(f) ⊆ S}.
If σ > 0 is given, then PWσ := PW[−σ,σ].

Propositions 7.9 ensures us that the definition of PWS makes sense. Since different con-
tinuous functions cannot be equivalent, we could just as well have defined PWS to be the
corresponding space of equivalence classes of functions. Then it would by definition be
a subspace of the Hilbert space L2(R). For our purposes, it is more convenient to let the
elements be functions. Note that since the inner product on L2(R) is computed using repre-
sentatives for the equivalence classes, the same inner product can be used for PWS . Thus, it
is an inner product space. It turns out that PWS is complete w.r.t. the induced norm, i.e. the
L2-norm. That is, PWS is a Hilbert space. Before proving that, we will show how we might
define PWS in an equivalent way. In practice, that is the definition we normally use when
we study Paley-Wiener functions.

Theorem 7.11 ([OU16], p. 13). If S ⊂ R is a bounded set, then
PWS = {GF s.t. F ∈ L2(S)}.

Proof. For f ∈ PWS , let F := f̂ . Then, F ∈ L2(S), and the same argument as in the proof
of proposition 7.9 shows that GF is continuous and equals f a.e. Since f is also continuous,
they must be equal everywhere, so f ∈ {GF s.t. F ∈ L2(S)}.
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Conversely, assume f = GF for some F ∈ L2(S) ⊂ L1(R). Then, f is continuous by
theorem 3.7 (i), and f̂ = F a.e. by theorem 3.8 (iii). Hence, spec(f) = supp(F ) ⊆ S, so
f ∈ PWS .

Theorem 7.12. If S ⊂ R is a bounded set, then PWS is complete w.r.t. the L2-norm.

Proof. Let {fk}k∈N ⊂ PWS be Cauchy. Then, {[fk]}k∈N is a Cauchy-sequence in the Hilbert
space L2(R), so it converges to [f ] ∈ L2(R) for some f ∈ L2(R). We need to show that f is
equivalent to an element of PWS . Since the Fourier transform on L2(R) is a linear isometry,
we have:

‖f̂ − f̂k‖2 = ‖Ff − Ffk‖2 = ‖F(f − fk)‖2 = ‖f − fk‖2 → 0

as k → ∞. That is, f̂k → f̂ in the L2-norm as k →∞. Also, since all the f̂k vanish almost
everywhere outside S, so does their limit class, f̂ . Thus, f̂ ∈ L2(S), so g := Gf̂ ∈ PWS by
theorem 7.12. Since and g = f a.e., this concludes the proof.

Obviously, if S ⊆ R, and if supp(f̂) ⊆ R, then supp(f̂) ⊆ S as well. Thus, PWS ⊆
PWR. In particular, we may pick R to be an interval, centered at the origin, containing
R. That is, PWS ⊆ PWσ for any σ ≥ sup |S|. We will take advantage of that a lot
of times, since Paley-Wiener spaces with such spectrums are often extra convenient. One
reason becomes clear when we start comparing them to Bernstein spaces. However, for the
moment, we will state most properties more generally, allowing S to be any bounded set.

7.3 Extending Paley-Wiener functions to the complex plane

As we have seen, the Paley-Wiener functions with spectrum S ⊂ R are the functions that can
be expressed as

∫
S
F (t)e2πixtdt for some F ∈ L2(S). What happens if we allow x to be any

complex number? Is the integral still guaranteed to converge pointwise, and if it does, what
properties will the defined function have? The following theorem gives part of the answer.

Theorem 7.13. Given a bounded set S ⊂ R, define σ := sup |S|. If F ∈ L2(S), then∫
S
F (t)e2πi(·)tdt defines pointwise a function f : C→ C. f is entire, and it satisfies:

(i) ([OU16], p. 14)
|f(z)| ≤

√
µ(S)‖f‖2e

2πσ|Im(z)|, ∀z ∈ C.

(ii)

f ′ = 2πi

∫
S

tF (t)e2πi(·)tdt.

(iii)
f ′ ∈ PWS, and ‖f ′‖2 ≤ 2πσ‖f‖2.

(iv)
|f ′(z)| ≤ 2πσ

√
µ(S)‖f‖2e

2πσ|Im(z)|, ∀z ∈ C.
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Proof. For any c ∈ R, we have 0 < ect ≤ e|c|σ whenever t ∈ S. Hence, for any fixed
x, y ∈ R, setting z = x+ iy , we have:

|f(z)| =
∣∣∣∣∫
S

F (t)e2πi(x+iy)tdt

∣∣∣∣ ≤ ∫
S

∣∣F (t)e2πixt−2πyt
∣∣ dt =

∫
S

|F (t)| ·
∣∣e2πixt

∣∣ · ∣∣e−2πyt
∣∣ dt

≤
∫
S

|F (t)| e2πσ|y|dt ≤
(∫

S

12dt

) 1
2
(∫

S

|F (t)|2 dt
) 1

2

e2πσ|y| =
√
µ(S)‖F‖2e

2πσ|y|

=
√
µ(S)‖f‖2e

2πσ|y| <∞,
where we have used Hölder’s inequality. This shows that the integral converges pointwise,
so f is defined on C. We have also proven (i).

Now, we need to show that f is differentiable at z. This involves a lot of interchanging
integrals, sums and derivatives, so we will do the steps carefully. First, we note, for any
n ∈ N:

∞∑
n=0

∫
S

∣∣∣∣F (t)
(2πizt)n

n!

∣∣∣∣ dt ≤ ∞∑
n=0

∫
S

|F (t)| (2πσ |z|)
n

n!
dt = ‖F‖1

∞∑
n=0

(2πσ |z|)n

n!
<∞

∞∑
n=0

∫
S

∣∣∣∣tF (t)
(2πizt)n

n!

∣∣∣∣ dt ≤ ∞∑
n=0

∫
S

σ |F (t)| (2πσ |z|)
n

n!
dt = σ‖F‖1

∞∑
n=0

(2πσ |z|)n

n!
<∞

The fact that the last sum converges is easily verified by the ratio test, and in fact, it is
well-known that its limit is e2πσ|z|. We will soon take advantage of these observations to
interchange integrals and sums. Assuming f is differentiable at z, we have:

f ′(z) =
d

dz

∫
S

F (t)e2πiztdt =
d

dz

∫
S

F (t)
∞∑
n=0

(2πizt)n

n!
dt =

d

dz

∫
S

∞∑
n=0

F (t)
(2πizt)n

n!
dt

=
d

dz

∞∑
n=0

∫
S

F (t)
(2πizt)n

n!
dt =

d

dz

(
∞∑
n=0

zn
∫
S

F (t)
(2πit)n

n!
dt

)

=
∞∑
n=0

(
d

dz
zn
∫
S

F (t)
(2πit)n

n!
dt

)
=
∞∑
n=1

(
nzn−1

∫
S

F (t)
(2πit)n

n!
dt

)

=
∞∑
n=1

∫
S

2πitF (t)
(2πizt)n−1

(n− 1)!
dt = 2πi

∞∑
n=0

∫
S

tF (t)
(2πizt)n

n!
dt

= 2πi

∫
S

∞∑
n=0

tF (t)
(2πizt)n

n!
dt = 2πi

∫
S

tF (t)e2πiztdt.

Before continuing, we will justify some of the equalities above:
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Fourth equality: Lemma 7.7.
Sixth equality: Any power series can be differentiated term by term.
Nineth equality: Translating the index of summation.
Tenth equality: Lemma 7.7 again.

Hence, we have found an expression for f ′(z) if it exists, i.e. if the last integral converges.
To see that it does, note that∫

S

∣∣tF (t)e2πizt
∣∣ dt ≤ ∫

S

σ |F (t)| e−2πytdt ≤ σ
√
µ(S)‖f‖2e

2πσ|y|

by the same calculation as in the beginning of the proof. Thus, f is indeed differentiable on
C, i.e. entire. This also shows (ii) and (iv), since

|f ′(z)| =
∣∣∣∣2πi∫

S

tF (t)e2πixtdt

∣∣∣∣ ≤ 2π

∫
S

∣∣tF (t)e2πiztdt
∣∣ ≤ 2πσ

√
µ(S)‖f‖2e

2πσ|y|.

Also, since tF (t) defines a function in L2(S), (ii) implies that f ′ ∈ PWS . Example 3.11
now shows that ‖f ′‖2 ≤ 2π(sup |S|)‖f‖2 = 2πσ‖f‖2, which concludes (iii).

In accordance with theorem 7.13, we will view PWS as a space of complex functions, rather
than a space of real functions, whenever that is convenient. We are mainly interested in the
case that S = [−σ, σ], after which µ(S) = 2σ. In any case, since S ⊆ [−σ, σ], it is obvious
that PWS ⊆ PWσ. Hence, if convenient, we can think of any Paley-Winer function as
having spectrum inside some bounded interval.

Example 7.14. Given σ > 0, pick an F ∈ L2[−σ, σ], and define f := F̌ ∈ PWσ. Also, let
g : [−σ, σ]→ C be the function given by

g(t) := 2πite
π
2σ
it, ∀t ∈ [−σ, σ].

By example 5.11, recalling that the Fourier series converges pointwise to g,

g(t) =
∑
k∈Z

2σ(−1)k−1

π(k − 1
2
)2
e
π
σ
ikt ⇒ 2πit =

∑
k∈Z

(−1)k−1

π(k − 1
2
)2
e
π
σ
ikte−

π
2σ
it, ∀t ∈ [−σ, σ].

Combining this with theorem 7.13 (ii),

f ′(x) =

∫ σ

−σ
2πitF (t)e2πixtdt =

∫ σ

−σ

∑
k∈Z

2σ(−1)k−1

π(k − 1
2
)2
e
π
σ
ikte−

π
2σ
itF (t)e2πixtdt

=
2σ

π

∑
k∈Z

(−1)k−1

(k − 1
2
)2

∫ σ

−σ
F (t)e2πi( 1

2σ
(k− 1

2
)+x)tdt =

2σ

π

∑
k∈Z

(−1)k−1

(k − 1
2
)2
f

(
x+

k − 1
2

2σ

)
,

for all x ∈ R. Exchanging integral and sum is justified by lemma 7.7, since the last sum
converges absolutely:
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∣∣∣∣ (−1)k−1

(k − 1
2
)2
f

(
x+

k − 1
2

2σ

)∣∣∣∣ ≤ ‖f‖∞ 1

(k − 1
2
)2
.

The integral test, applied to the function ‖f‖∞
((·)− 1

2
)2 , now shows convergence. So we do indeed

arrive at the pointwise formula

f ′(x) =
2σ

π

∑
k∈Z

(−1)k−1

(k − 1
2
)2
f

(
x+

k − 1
2

2σ

)
, ∀x ∈ R. (14)

7.4 Bernstein spaces

We are now ready to introduce a space of complex functions, defined by a that property that
we have already encountered for Paley-Wiener functions.

Definition 7.15. Given a σ > 0, the Bernstein space Bσ is the space of all entire functions
f : C→ C with the property that there exists a constant C > 0 satisfying

|f(z)| ≤ Ce2πσ|Im(z)|, ∀z ∈ C. (15)

Theorem 7.13 (i) shows that Paley-Wiener functions satisfy (15), so PWσ ⊆ Bσ. The fact
that the two spaces do not coincide is clear from the following example.

Example 7.16. Given a σ > 0, let f(z) := sin(2πσz), ∀z ∈ C. It is well-known that f is
an entire function. Also, for any x, y ∈ R,

|f(x+ iy)| =
∣∣∣∣e2πiσ(x+iy) − e−2πiσ(x+iy)

2i

∣∣∣∣ =
1

2

∣∣e2πiσx−2πσy − e−2πiσx+2πσy
∣∣

≤ 1

2

(∣∣e2πiσxe−2πσy
∣∣+
∣∣e−2πiσxe2πσy

∣∣) =
1

2
(e−2πσy + e2πσy) ≤ e2πσ|y|.

Thus, f ∈ Bσ. However, f is not square-integrable over the real number line, since the
integral of |f |2 over one period is a positive number, I > 0. The integral over n ∈ N periods
is then nI , which tends to infinity as n→∞. Hence, f /∈ PWσ ⊂ L2(R).

The fact that not all Bernstein functions are L2-functions means that we cannot use the
L2-norm on Bσ. However, to find a norm that works, we can take advantage of a simple
observation. If we restrict the domain of a Bernstein function to be the real number line, then
(15) reduces to |f(x)| ≤ C, ∀x ∈ R. For spaces of bounded functions, it is typical to use the
sup-norm, and that is exactly what we are going to do now. Just like the most well-known
spaces of bounded functions, Bernstein spaces are complete w.r.t. the sup-norm, but does
not have an inner product. We will prove that in the next section.

Theorem 7.17. If σ > 0, then, ‖ · ‖∞ : Bσ → R+
0 , defined by

‖f‖∞ = sup
x∈R
|f(x)| , ∀f ∈ Bσ,

is a norm on Bσ.
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Proof. (i) Obviously, ‖f‖∞ ≥ 0, ∀f ∈ Bσ, with equality if and only if f vanishes on the
real number line. By lemma 7.3 (i), since Bernstein functions are entire, this happens if and
only if f = 0.

(ii) ‖αf‖∞ = sup
x∈R
|αf(x)| = |α| sup

x∈R
|f(x)| = |α| · ‖f‖∞, ∀α ∈ C, ∀f ∈ Bσ.

(iii) ‖f + g‖∞ = sup
x∈R
|f(x) + g(x)| ≤ sup

x∈R
(|f(x)|+ |g(x)|)

≤ sup
x,y∈R

(|f(x)|+ |g(y)|) = sup
x∈R
|f(x)|+ sup

y∈R
|g(y)| = ‖f‖∞ + ‖g‖∞, ∀f, g ∈ Bσ.

Example 7.18. Let m ∈ N, ε ∈ (0, 1
m

), σ > 0 and f ∈ Bσ be given. Define

g(z) := sinc(2σεz), fε(z) := f((1−mε)z)(g(z))m, ∀z ∈ C.
For any x, y ∈ R, setting z = x+ iy, we have:

∫ σε

−σε
e2πiztdt =

1

2πiz

[
e2πizt

]z=σε
z=−σε =

1

πz

e2πiσεz − e−2πiσεz

2i
= 2σε

sin(2πσεz)

2πσεz

= 2σεsinc(2σεz) = 2σεg(z).

2σε |g(z)| ≤
∫ σε

−σε

∣∣e2πi(x+iy)t
∣∣ dt =

∫ σε

−σε

∣∣e2πixte−2πyt
∣∣ dt ≤ ∫ σε

−σε
e2πσε|y|dt = e2πσε|y|.

Hence, g ∈ Bσε. Also,

|(g(z))m| = |g(z)|m ≤
(

1

2σε
e2πσε|y|

)m
=

1

(2σε)m
e2πmσε|y|,

showing that gm ∈ Bmσε. Now, since f ∈ Bσ, picking C > 0 satisfying (15), we have:

|f((1−mε)z)| ≤ Ce2πσ|Im((1−mε)z)| = Ce2πσ(1−mε)|y|,

so f((1−mε)(·)) ∈ Bσ(1−mε). Thus,

|fε(z)| ≤ C

(2σε)m
e2πσ(1−mε)|y|e2πmσε|y| =

C

(2σε)m
e2πσ|y|.

Since z ∈ C was arbitrary, this shows that fε ∈ Bσ.
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7.5 Properties of Bernstein spaces

This subsection covers the most important properties of Bernstein spaces. Our ultimate goal
is to show that the sup-norm makes Bσ a Banach space, which will be the last theorem in
this section. However, there are lots of other properties, alll requiring a little bit of complex
analysis. We will carefully go through a proof for each of them, taking advantage of what
we know from section 7.1.

As we have seen, PWσ ⊂ Bσ. More specifically, PWσ ⊆ Bσ ∩ L2(R), where we
interpret L2(R) as being the space of all complex functions that are square integrable on the
real number line. In fact, the converse also turns out to be true. That is, ALL entire L2-
functions satisfying (15) are elements of PWσ, i.e. their spectrum lie inside [−σ, σ]. This is
known as the Paley-Wiener theorem, which we will now show.

Theorem 7.19 (Paley-Wiener theorem; [Yo01], p. 85). If σ > 0, then PWσ = Bσ ∩ L2(R).

Proof. Pick an f ∈ Bσ ∩ L2(R), and find a C > 0 satisfying (15). As pointed out, what
remains to be shown is that spec(f) ⊆ [−σ, σ], i.e. that f̂ vanises almost everywhere on
R \ [−σ, σ]. Fix a t < −σ. For any R > 0 and any r ∈ (0, R), consider the five line
segments

γ1 := [−R,−R + ir], γ2 := [−R + ir,−R + iR], γ3 := [−R + iR,R + iR],

γ4 := [R + ir, R + iR], γ5 := [R,R + iR].

Note that together, taking γ4 and γ5 in the negative direction, the five line segments make a
contour clockwise around a rectangle, starting at−R and ending atR. For n ∈ {1, 2, 3, 4, 5},
let In be the integral

In :=

∫
γn

f(z)e−2πiztdz =

∫
γn

f(x+ iy)e−2πixte2πytdz.

Our goal is to estimate the contour integral I := I1 + I2 + I3 − I4 − I5 for large R > 0,
which is independent of the chosen r > 0. Note that the function g := fe−2πi(·)t ∈ L2(R),
defined on C, satisfies, for all x, y ∈ R:

|g(x+ iy)| = |f(x+ iy)| ·
∣∣e−2πixt

∣∣ · ∣∣e2πyt
∣∣ ≤ Ce2πσ|y|e2πyt ≤ Ce2π(σ−t)|y| ≤ Ce2π(σ−t)|z|.

Thus, g is of exponential type, meaning that it satisfies (13). Now, pick an ε > 0, and
fix r > 0 s.t. e2π(σ+t)r ≤ −2π(σ+t)ε

5C
. This is possible because σ + t < 0. Also, find

R1, R2, R3 > 0 satisfying:

|f(−R + iy)| e2πyt = |g(−R + iy)| ≤ ε

5r
, ∀R ≥ R1.

|f(R + iy)| e2πyt = |g(R + iy)| ≤ ε

5r
, ∀R ≥ R2.

Re2π(σ+t)R ≤ ε

10C
, ∀R ≥ R3.
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R1 and R2 exist due to lemma 7.6. Now, for any R ≥ max{r, R1, R2, R3}, we have:

|I1| ≤
∫ r

0

|f(−R + iy)| e2πytdy ≤
∫ r

0

ε

5r
dy =

ε

5
.

|I2| ≤
∫ R

r

|f(−R + iy)| e2πytdy ≤
∫ R

r

Ce2πσye2πytdy =

[
C

2π(σ + t)
e2π(σ+t)y

]y=R

y=r

= − C

2π(σ + t)
(e2π(σ+t)r − e2π(σ+t)R) < − C

2π(σ + t)
e2π(σ+t)r ≤ ε

5
.

|I3| ≤
∫ R

−R
|f(x+ iR)| e2πRtdx ≤

∫ R

−R
Ce2πσRe2πRtdx = 2RCe2π(σ+t)R ≤ ε

5
.

Similar calculations show that |I4| , |I5| ≤ ε
5

as well. Thus, |I| ≤
∑5

n=1 |In| ≤ ε. By
Cauchy’s integral theorem, since f is entire,

I =

∫ R

−R
f(x)e−2πixtdx.

Thus, we have shown that this integral tends to zero as R→∞, assuming that t < −σ.
Now, h(z) := f(−z) defines another function h ∈ Bσ ∩ L2(R). The change of variable

X := −x gives, for t > σ ⇒ −t < −σ:

∫ R

−R
f(x)e−2πixtdx =

∫ R

−R
h(−x)e−2πi(−x)(−t)dx = −

∫ R

−R
h(X)e−2πiX(−t)dX → 0

as R→∞. Thus, for |t| < σ,

f̂(t) = lim
R→∞

∫ R

−R
f(x)e−2πixtdx = 0.

The next property optimizes the constant C in (15).

Proposition 7.20 ([OU16], p. 17). If σ > 0 and f ∈ Bσ, then

|f(z)| ≤ ‖f‖∞e2πσ|Im(z)|, ∀z ∈ C.

Proof. The case that f = 0 is trivial. Otherwise, find C > 0 satisfying (15). For any ε > 0,
define

fε(z) :=
f(z)

1− iεz
e2πiσz, ∀z ∈ C+,

where C+ is the set of all z ∈ C with Im(z) ≥ 0. Note that 1 − iεz never vanishes on C+,
so fε is analytic. Now, for any x ∈ R and any y ∈ R+

0 , we have:

fε(x+ iy) =
f(x+ iy)

1− iε(x+ iy)
e2πiσ(x+iy) =

f(x+ iy)

1 + εy − iεx
e2πiσxe−2πσy.
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|fε(x+ iy)| = |f(x+ iy)|√
(1 + εy)2 + (εx)2

e−2πσy ≤ C√
1 + 2εy + ε2(x2 + y2)

.

For R > 0, define ER := {z ∈ C s.t. Im(z) ≥ 0, |z| ≤ R}. If |z| = R, then

|fε(z)| ≤ C√
1 + 2εIm(z) + ε2R2

≤ C√
1 + ε2R2

→ 0 as R→∞.

Thus, for sufficiently large R, this cannot exceed the largest value that |fε| takes on the
real interval [−R,R]. Hence, the maximum modulus principle (lemma 7.5) tells us that
supz∈ER |fε(z)| must be attained on [−R,R]. Since

|fε(x)| = |f(x)|√
1 + ε2x2

≤ |f(x)|

for all x ∈ R, this shows that

sup
z∈C+

|fε(z)| ≤ sup
x∈R
|fε(x)| ≤ sup

x∈R
|f(x)| = ‖f‖∞.

Thus,

|f(x+ iy)| = |fε(x+ iy)|
√

(1 + εy)2 + (εx)2e2πσy ≤
√

(1 + εy)2 + (εx)2‖f‖∞e2πσy

for any x, y ∈ R with y ≥ 0. Since this holds for arbitrarily small ε > 0, we can get the
square root arbitrarily close to 1, as long as x and y are fixed. Hence, we conclude that
|f(x+ iy)| ≤ ‖f‖∞e2πσy = ‖f‖∞e2πσ|y|.

For y < 0, define h(z) := f(−z) for z ∈ C. Clearly, h ∈ Bσ and ‖h‖∞ = ‖f‖∞, so we
have shown:

|f(x+ iy)| = |h(−x− iy)| ≤ ‖h‖∞e2πσ(−y) = ‖f‖∞e2πσ|y|, ∀x, y ∈ R s.t. y ≤ 0.

It is well-known that on normed spaces of differentiable functions, the differentiation
operator is usually not bounded. We need some sort of restriction if we want that to be the
case. To do an example with the sup-norm, let

fk(x) := sin(kx), ∀x ∈ R, ∀k ∈ N.
Then, both fk and f ′k are bounded on R, where ‖fk‖∞ = 1 and ‖f ′k‖∞ = k, ∀k ∈ N. Hence,
‖f ′k‖∞
‖fk‖∞

→∞ as k →∞, showing that the differentiation operator is not bounded. This must
also be true for the corresponding space of functions that can be analytically extended to the
complex plane, since all the fk have that property. However, for sufficiently large k, we have
fk /∈ Bσ, so this does not prove that the differentiation operator on Bσ is not bounded. In
fact, it turns out to be bounded! This is known as Bernstein’s inequality, which is our next
theorem. It is very similar to the result of example 3.11, except that in Bernstein spaces, we
are using the sup-norm rather than the L2-norm.

57



Theorem 7.21 (Bernstein’s inequality; [OU16], p. 21). If σ > 0 and f ∈ Bσ, then f ′ ∈ Bσ

and ‖f ′‖∞ ≤ 2πσ‖f‖∞.

Proof. Since the derivative of any entire function is entire, it suffices to show that the
inequality holds. Pick an f ∈ Bσ. First, assume that f ∈ L2(R). Then, f ∈ PWσ by the
Paley-Wiener theorem. Now, by example 4.13,∣∣∣∣∣2σπ ∑

k∈Z

(−1)k−1

(k − 1
2
)2
f

(
x+

k − 1
2

2σ

)∣∣∣∣∣ ≤ 2σ

π

∑
k∈Z

1

(k − 1
2
)2

∣∣∣∣f (x+
k − 1

2

2σ

)∣∣∣∣
≤ 2σ

π
· π2 sup

y∈R
|f(y)| ≤ 2πσ‖f‖∞

for all x ∈ R. Applying (14) to f , we get ‖f ′‖∞ ≤ 2πσ‖f‖∞, which proves Bernstein’s
inequality for the space Bσ ∩ L2(R).

On the other hand, if f /∈ L2(R), we need to approximate f pointwise by a sequence in
Bσ ∩ L2(R). Define

fk(z) := f

((
1− 1

k

)
z

)(
sinc

(
2σz

k

))
, ∀z ∈ C, ∀k ∈ N.

Example 7.18 shows that fk ∈ Bσ, where we put m := 1 and ε := 1
k
. Also, since f is

bounded on R and the sinc-function is square-integrable on the real number line, we have
fk ∈ L2(R). Thus, {fk}k∈N is a sequence in Bσ ∩ L2(R), so we have shown that

‖f ′k‖∞ ≤ 2πσ‖fk‖∞, ∀k ∈ N.
Now, for any x ∈ R \ {0}, we have:

d

dx
sinc(2σεx) =

d

dx

(
sin(2πσεx)

2πσεx

)
=

2πσε cos(2πσεx) · 2πσεx− sin(2πσεx) · 2πσε
(2πσεx)2

=
cos(2πσεx)

x
− sin(2πσεx)

2πσεx2
=

cos(2πσεx)− sinc(2σεx)

x
→ 1− 1

x
= 0

as ε→ 0. Thus,

f ′k(x) =

(
1− 1

k

)
f ′
((

1− 1

k

)
x

)
sinc

(
2σx

k

)
+ f

((
1− 1

k

)
x

)
d

dx

(
sinc

(
2σx

k

))
→ 1 · f ′(1 · x) · 1 + f(1 · x) · 0 = f ′(x) as k →∞.

For x = 0, the derivative of the sinc-function vanishes, so

f ′k(0) =

(
1− 1

k

)
f ′(0)sinc(0)→ f ′(0) as k →∞.

Hence, f ′k → f ′ pointwise on R as k →∞. Also,
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|f ′(x)| =
∣∣∣ lim
k→∞

f ′k(x)
∣∣∣ = lim

k→∞
|f ′k(x)| = lim sup

k→∞
|f ′k(x)| ≤ lim sup

k→∞
‖f ′k‖∞, ∀x ∈ R

⇒ ‖f ′‖∞ ≤ lim sup
n→∞

‖f ′k‖∞.

Clearly, ‖fk‖∞ ≤ ‖f‖∞ for all k ∈ N, since the sinc-function never takes a greater value
than 1, while f((1− 1

k
)(·)) is just a translation of f . Hence, we finally get:

‖f ′‖∞ ≤ lim sup
k→∞

‖f ′k‖∞ ≤ lim sup
k→∞

(2πσ‖fk‖∞) ≤ 2πσ‖f‖∞.

Note that Bernstein’s inequality also gives an upper bound for |f ′|, in terms of the imaginary
part of the argument. Since f ′ ∈ Bσ, proposition 7.20 tells us that

|f ′(z)| ≤ ‖f ′‖∞e2πσ|Im(z)|, ∀z ∈ C.
Bernstein’s inequality now allows us to replace ‖f ′‖∞ by 2πσ‖f‖∞ in the inequality above.

Now, we get to the one theorem that uses equicontonuity on compact sets. This is ex-
actly the property we need before we are ready to prove completeness. Note how crucial
Bernstein’s inequality is in the proof.

Theorem 7.22 (Compactness property of Bernstein spaces; [OU16], p. 19). Given σ > 0,
every bounded sequence in Bσ has a subsequence converging uniformly on every compact
subset of C to some f ∈ Bσ.

Proof. Pick a C > 0, and define F := {f ∈ Bσ s.t. ‖f‖∞ ≤ C}. We need to show that F
satisfies the premises of lemma 7.4.

(i) Pick a compact E ⊂ C and an ε > 0. Let r := maxu∈E |Im(u)| and δ := ε
2πσC

e−2πσr. If
f ∈ F , and if z1, z2 ∈ E satisfy |z2 − z1| ≤ δ, then

|f(z2)− f(z1)| =
∣∣∣∣∫ z2

z1

f ′(u)du

∣∣∣∣ ≤ sup
u∈E
|f ′(u)|·|z2 − z1| ≤ sup

u∈E

(
‖f ′‖∞e2πσ|Im(u)|)·|z2 − z1|

≤ 2πσ‖f‖∞e2πσrδ ≤ 2πσCe2πσrδ = ε.

(ii) Pick a z0 ∈ C, and define

r := e2πσ|Im(z0)|, R := {z ∈ C s.t. |z| ≤ Cr}.
Then, R ⊂ C is compact, and

|f(z0)| ≤ ‖f‖∞e2πσ|Im(z0)| ≤ Cr ⇒ f(z0) ∈ R, ∀f ∈ F.
Hence, by lemma 7.4, any sequence {fk}k∈N ⊂ F converges uniformly on every compact
subset of C to a function f : C → C. For any z ∈ C, since uniform convergence implies
pointwise convergence,
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|f(z)| =
∣∣∣ lim
k→∞

fk(z)
∣∣∣ = lim

k→∞
|fk(z)| ≤ lim sup

k→∞
‖fk‖∞e2πσ|Im(z)| ≤ Ce2πσ|Im(z)|.

Thus, f ∈ F ⊂ Bσ, which concludes the proof.

As noted in the proof, the compactness property specifically says that any bounded sequence
in Bσ has a subsequence converging pointwise on C to a function f ∈ Bσ. This is what we
will now use to finish this section.

Theorem 7.23. If σ > 0, then Bσ is complete w.r.t. the sup-norm.

Proof. Let {fj}j∈N ⊂ Bσ be Cauchy. Since Cauchy-sequences are bounded, it has a
subsequence {fjk}k∈N converging pointwise to some f ∈ Bσ by the compactness property.
Pick an ε > 0, and find N ∈ N s.t. ‖fjk − fj‖∞ ≤ ε whenever j, k ≥ N . Then,

|f(x)− fj(x)| =
∣∣∣ lim
k→∞

fjk(x)− fj(x)
∣∣∣ = lim

k→∞
|fjk(x)− fj(x)|

≤ lim sup
k→∞

‖fjk − fj‖∞ ≤ ε,

for all x ∈ R and all j ≥ N . Thus,

‖f − fj‖∞ = sup
x∈R
|f(x)− fj(x)| ≤ ε, ∀j ≥ N,

showing that fj → f in the sup-norm as j →∞. Hence,Bσ is complete w.r.t. that norm.

7.6 Comparing PWσ and Bσ

Since PWσ ⊂ Bσ, the two spaces are guaranteed to have some similar properties. For
example, if functions with a given property exists in PWσ, they must also exist in Bσ. Also,
if there exists at most one function in Bσ with a given property, i.e. if we have uniqueness in
Bσ, then there is at most one such function in PWσ. Another implication is that any general
property of all functions in Bσ must also be a general property in PWσ. In particular, the
properties of the sup-norm are satisfied in PWσ. Thus, ‖ · ‖∞ is a norm on PWσ, but it does
not have as nice properties as the L2-norm. In particular, PWσ is not complete w.r.t. the
sup-norm. However, it turns out that there is an inequality relating the two norms on PWσ.
We will now show that for the more general space PWS , where the bounded set S might not
be an interval centered at the origin.

Lemma 7.24. If S ⊂ R is bounded, and if f ∈ PWS , then f is bounded on R, and
‖f‖∞ ≤

√
µ(S)‖f‖2.

Proof. Setting F := f̂ , we have:

|f(x)| =
∣∣∣∣∫
S

F (t)e2πixtdt

∣∣∣∣ ≤ ∫
S

∣∣F (t)e2πixt
∣∣ dt =

∫
S

|F (t)| dt

≤
(∫

S

12dt

) 1
2
(∫

S

|F (t)|2 dt
) 1

2

=
√
µ(S)‖F‖2 =

√
µ(S)‖f‖2, ∀x ∈ R.

Taking supremum over x ∈ R, we get the desired result.
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In particular, if S = [−σ, σ], lemma 7.24 states that ‖f‖∞ ≤
√

2σ‖f‖2. Comparing theorem
7.13 (i) and (iv) with proposition 7.20 and Bernstein’s inequality, this should be no surprise,
even though they do not prove it. With the properties we have found, we get the following
list of properties that hold for any σ > 0:

(i) PWσ = Bσ ∩ L2(R).

(ii) Bσ, equipped with the sup-norm, is a Banach space.

(iii) PWσ, equipped with the L2-inner product, is a Hilbert space.

For f ∈ Bσ:

(iv) |f(z)| ≤ ‖f‖∞e2πσ|Im(z)|, ∀z ∈ C.

(v) f ′ ∈ Bσ, and ‖f ′‖∞ ≤ 2πσ‖f‖∞.

(vi) |f ′(z)| ≤ 2πσ‖f‖∞e2πσ|Im(z)|, ∀z ∈ C.

For f ∈ PWσ:

(vii) |f(z)| ≤
√

2σ‖f‖2e
2πσ|Im(z)|, ∀z ∈ C.

(viii) f ′ ∈ PWσ, and ‖f ′‖2 ≤ 2πσ‖f‖2.

(ix) |f ′(z)| ≤ 2πσ
√

2σ‖f‖2e
2πσ|Im(z)|, ∀z ∈ C.

(x) ‖f ′‖∞ ≤ 2πσ
√

2σ‖f‖2.

Note that since all the properties of f also apply to f ′, we can iterate the properties of f ′ as
many times as we like. For example, (viii) can be generalized to: ‖f (n)‖2 ≤ (2πσ)n‖f‖2 for
all f ∈ PWσ.
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8 Sampling

Let X be a space of functions and Λ ⊂ R be a discrete set. Sampling theory adresses the
question of whether any f ∈ X can be uniquely determined if we know its values at Λ, and
whether there are any significant changes under small perturbations. We will give a precise
formulation of the two main problems in the next section. If f describes a process that we
are measuring in real life, we will not be able to measure points arbitrarily close to each
other, and our measurements might not be exact. After all, the instruments can only measure
with a certain frequency and a certain precision. That is why we will always assume that Λ
is uniformly discrete, and why we are interested in what happens under small perturbations.
This section presents the so-called weak and the strong sampling problems in general, before
concentrating on Paley-Wiener spaces.

8.1 A discussion about sampling

Definition 8.1. Let Λ = {λ1, λ2, ...} ⊂ R be discrete. If δ(Λ) := infk 6=l |λk − λl| > 0, then
Λ is called uniformly discrete (u.d.), and δ(Λ) is called the separation constant for Λ.

Uniformly discrete sets simply mean sets whose elements never get arbitrarily close to each
other, and the separation constant is the the largest lower bound for the distance between
them. For example, δ(Z) = δ(N) = 1, while sets like Q and { 1

k
s.t. k ∈ N} are not u.d. If

we measure in a time-domain with an instrument that can measure 100 times every second,
then δ(Λ) must be at least 0.01 seconds. That is, if we start at 0 and measure as often as we
can, then

Λ = {0, 0.01, 0.02, 0.03, ...} =
1

100
N0.

When Λ is an arthmetic progression like this, i.e. if the distance between consecutive points
is constant, we are dealing with so-called uniform sampling. In practice, that is normally
what we do, since we want as much data as possible. We will, however, study more general
samling than that, until we focus specifically on uniform sampling in Paley-Wiener space in
section 10.

The set Λ is called the sampling set, and the values {f(Λ) s.t. λ ∈ Λ} are called the
samples of f at Λ. The restriction og f to the sampling set is denoted by f |Λ. That is, f |Λ is
defined on Λ by f |Λ(λ) := f(λ), ∀λ ∈ Λ. As before, we will assume that Λ is ordered, so
that we can view Λ and f |Λ as sequences. This is important when we work with sampling in
Paley-Wiener spaces, since we will encounter a lot of sums over Λ. If Λ is bounded below,
we might pick ascending order, which simply means chronologically if the domain is time.
Note that with our new notation, sampling is about whether knowledge of f |Λ is sufficient to
determine f .

Note that a different question is whether f is guaranteed to exist. If Y is a space of se-
quences indexed by Λ, we could ask whether any sequence in Y is equal to f |Λ for some
f ∈ X . That is called the interpolation problem, which is not adressed in this thesis. Our fo-
cus is on uniqueness, plus a stronger property that is related to small perturbations, assuming
that the function we are searching for actually exists.
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What do we need to know about the function f to have any chance of being able to
determine it from knowledge of f |Λ? With no assumptions on f at all, one solution would
be:

f(x) =

{
f |Λ(x), x ∈ Λ
0, x ∈ R \ Λ

This solution is probably not the one we are looking for, and it is definitely not unique.
Usually, a convenient assumption is that f is continuous. However, that still allows us to
draw straight lines between the samples, which is probably not the right solution either. That
solution is still not differentiable, though. A good start is to assume that f is differentiable
infinitely many times. In any case, it is clear that we need some sort of assumptions on f ,
which is why we always consider some given function space X .

As mentioned, we can never measure anything with arbitrary frequency. Also, we cannot
measure anything forever. Hence, in reality, Λ is always a finite set. This is no problem if
the dimension of X is also finite. For example, it is well-known that given any set of n ∈ N
points in R2, having different x-coordinates, there exists a unique polynomial of degree at
most n − 1 going through all of them. Thus, as long as Λ contains at least n points, it can
be used for sampling in the space of such polynomials. However, if we have no restriction
on the degree of the polynomial, we get a problem. In fact, most convenient function spaces
have infinite dimension, just like the space of all polynomials. If X has an infinite basis,
{vk}k∈N, then we need infinitely many coefficients ck ∈ C to be able to write

f =
∑
k∈N

ckvk, ∀f ∈ X,

and we need infinitely many data points to determine infinitely many coefficients. Since
we only consider u.d. sampling sets, we must sample forever to get infinitely many data
points. One attempt to get around that problem is to restrict ourselves to a convenient, finite-
dimensional subspace of X that we expect to approximate f well. E.g. in Paley-Wiener
spaces, there may be finitely many frequencies we expect to get, which allows us to use the
discrete Fourier transform. Another idea is to measure finitely many points, and assume the
function vanishes on the rest of our infinite sampling set. To be exact, that cannot work if the
only element of X vanishing outside a bounded set is the zero-function. That is the case in
Paley-Winer spaces and Bernstein spaces. However, if we get a function that is very small
outside that bounded set, it might be a good approximation of the function we are searching
for. These are problems that will not be covered in this thesis. We will allow unbounded
sampling sets, and see what it leads to mathematically.

8.2 The sampling problem

To give a precise formulation of the sampling problem, we will take advantage of a
convenient operator.

Definition 8.2. Let Λ ⊂ R be a discrete set and X be a space of functions with real or
complex domain containing Λ. The restriction operator RΛ is defined by RΛf := f |Λ,
∀f ∈ X .
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That is, RΛ maps f into its samples on Λ. From now on, whenever we denote an operator
by RΛ, we are always talking about the restriction operator. Linearity of RΛ follows from
how linear combinations of functions are defined. However, no other property in definition
3.1 makes sense to talk about before we specify a co-domain Y for RΛ, and some of the
properties also require both X and Y to be normed. The only thing we can say in general
about Y is that it must be a space of sequences indexed by Λ. Assuming that Y is normed
and RΛ is injective, it turns out that we have a general way of inducing a norm on X .

Proposition 8.3. Let Λ ⊂ R be a discrete set, let X be a space of functions, and let Y be a
normed co-domain for RΛ. If RΛ is injective, then ‖f‖ := ‖RΛf‖Y , ∀f ∈ X defines a norm
on X .

Proof. (i) Since ‖ · ‖Y is a norm on Y , we have ‖f‖ ≥ 0, ∀f ∈ X , with equality if and only
if RΛf = 0. By linearity and injectivity of RΛ, this happens if and only if f = 0.

(ii) ‖αf‖ = ‖RΛ(αf)‖Y = ‖αRΛf‖Y = |α| · ‖RΛf‖Y = |α| · ‖f‖, ∀f ∈ X, ∀α ∈ C.

(iii) ‖f + g‖ = ‖RΛ(f + g)‖Y = ‖RΛf +RΛg‖Y ≤ ‖RΛf‖Y + ‖RΛg‖Y = ‖f‖+ ‖g‖,

∀f, g ∈ X .

We will denote this specific norm by ‖ · ‖Y , even though it is a norm on X rather than on
Y . Whenever we use it, it will be clear whether we are taking the norm of a function in X
or a sequence in Y . As we know, injectivity of RΛ means that given a sequence y ∈ Y ,
there exists at most one function f ∈ X satisfying RΛf = y. In other words, if it exists, it
must be unique. This motivates part (i) of our next definition. Part (ii) is the main reason for
introducing the norm given by proposition 8.3, as it defines a very convenient, even stronger,
property.

Definition 8.4. Let Λ ⊂ R be a u.d. set, let X be a space of functions, and let Y be a
co-domain for RΛ.

(i) If RΛ is injective, then Λ is called a uniqueness set (US) for X .

(ii) If RΛ is injective, if X and Y are normed, and if ‖ · ‖X and ‖ · ‖Y are equivalent norms
on X , then Λ is called a set of stable sampling (SS) for X . By equivalent, we mean that
there exist constants c, C > 0 satisfying

c‖f‖X ≤ ‖f‖Y ≤ C‖f‖X , ∀f ∈ X. (16)

These are exactly the sets that sampling theory tries to determine. The weak sampling
problem is to find all uniqueness sets for X , and the strong sampling problem is to find all
sets of stable sampling for X . Note that neither of the two problems involve actually finding
a way to reconstruct f from f |Λ, but if we can, then it is good to know that it is unique.
Our main focus will be on the strong sampling problem. When we get to section 9.5, we
will see one aspect of stable sampling that is very convenient. Note that we can check (16)
even without knowing that RΛ is injective. After all, the definition of ‖ · ‖Y : X → R+

0
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makes sense, even if it does not define a norm on X . In fact, if the left inequality is satisfied,
then RΛ is necessarily injective. The reason is that f |Λ = 0 still implies ‖f‖Y = 0, so the
inequality states that c‖f‖X ≤ 0, i.e. f = 0. Thus, we do not need to check for injectivity,
as long as we have verified (16).

Example 8.5. Given a u.d. set Λ ⊂ R, let Y be the space of bounded sequences indexed by
Λ. Define

‖y‖Y := sup
λ∈Λ
|f(y)| , ∀y ∈ Y.

Then, the same arguments as in the proof of theorem 7.17 show that ‖ · ‖Y is a norm on Y .
Now, pick a σ > 0. Clearly, since Bernstein functions are bounded on R, RΛf ∈ Y for all
f ∈ Bσ. That is, RΛ maps Bσ into Y . Also, ‖f‖∞ ≥ ‖f‖Y = ‖f |Λ‖Y for all f ∈ Bσ,
since the supremum over a subset of R cannot exceed the supremum over R. Thus, the right
inequality in (16) is always satisfied, where we may pick C = 1. Thus, to check whether Λ is
a set of SS for Bσ, we just need to check whether there exists a c > 0 s.t.

c sup
x∈R
|f(x)| ≤ sup

λ∈Λ
|f(λ)| , ∀f ∈ Bσ.

8.3 Bessel’s inequality in Paley-Wiener spaces

We want to consider the strong sampling problem in Paley-Wiener spaces and Bernstein
spaces. In order to do so, we need to find a normed co-domain for the restriction operator.
Example 8.5 solves that problem for Bernstein spaces in such a way that the left inequality
in (16) is all we need to check. It turns out that we can do the same in Paley-Wiener spaces.
The following theorem shows us how.

Theorem 8.6 ([OU16], p. 15). Let S ⊂ R be bounded, and let Λ ⊂ R be u.d. Then, there
exists a C > 0, only dependent on S and δ(Λ), satisfying

∑
λ∈Λ |f(λ)|2 ≤ C‖f‖2

2 for all
f ∈ PWS .

Proof. Pick a σ ∈ (0, 1
2
δ(Λ)] satisfying S ⊆ [− 1

4σ
, 1

4σ
]. Such a σ always exists, since if we

pick it to be sufficiently small, then the interval [− 1
4σ
, 1

4σ
] will be large enough to contain S.

We will prove that the theorem holds with C = π2

8σ
. Define h ∈ PWS and {hλ}λ∈Λ ⊂ PWS

by h := 1√
2σ
χ[−σ,σ] and hλ := h((·) + λ), ∀λ ∈ Λ. Then, we have, for any t ∈ R:

ĥ(t) =

∫ σ

−σ

√
2σ

2σ
e−2πixtdx =

−
√

2σ

2σ · 2πit
[
e−2πixt

]x=σ

x=−σ =
√

2σ · e
2πiσt − e−2πiσt

2i · 2πσt

=
√

2σ · sin(2πσt)

2πσt
=
√

2σ sinc(2σt).

If t ∈ S, then 2σt ∈ [−1
2
, 1

2
]. On that interval, the sinc-function only takes positive values,

the smallest one being 2
π

. Hence, the smallest value ĥ can take on S is
√

2σ · 2
π

= 1√
C

.
Now, given any λ ∈ Λ, hλ vanishes everywhere except on an interval of length 2σ ≤ δ(Λ).

Thus, if κ ∈ Λ and κ 6= λ, then hλ and hκ cannot both be non-zero at more than one single
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point. Hence, hλhκ = 0 a.e., so 〈hλ, hκ〉 = 0. Also, 〈hλ, hλ〉 = 1
2σ

∫ −λ+σ

−λ−σ dx = 1. This
shows that {hλ}λ∈Λ is an orthonormal system in L2(R), since λ, κ ∈ Λ were arbitrary.

Since the Fourier transform on L2(R) preserves inner-products, {ĥλ}λ∈Λ is an
orthonormal system as well. Thus, it satisfies Bessel’s inequality by theorem 5.8 (i). Also,
by example 3.10, ĥλ(t) = e2πiλtĥ(t), ∀t ∈ R, ∀λ ∈ Λ.

If f ∈ PWS , then g := f̂

ĥ
∈ L2(S), where we interpret 0

0
as being zero. Thus,

|〈g, hλ〉| =

∣∣∣∣∣
∫
S

f̂(t)

ĥ(t)
ĥ(t)e2πiλtdt

∣∣∣∣∣ =

∣∣∣∣∫
R
f̂(t)e2πiλtdt

∣∣∣∣ =
∣∣∣Gf̂(λ)

∣∣∣ = |f(λ)| , ∀λ ∈ Λ.

C‖f‖2
2 = C‖f̂‖2

2 = C‖gĥ‖2
2 ≥ C

∥∥∥∥g · 1√
C

∥∥∥∥2

2

= ‖g‖2
2 ≥

∑
λ∈Λ

|〈g, hλ〉|2 =
∑
λ∈Λ

|f(λ)|2 .

In the next section, we will see that theorem 8.6 actually states that Bessel’s inequality is
always satisfied in Paley-Wiener space. Note that

∑
λ∈Λ |f(λ)|2 is simply the l2-norm of

f |λ. Hence, one consequence is that the l2-norm of f |λ is finite for any f ∈ PWS . That
is exactly what it means to be an element of l2(Λ). Thus, we can pick l2(Λ) to be the co-
domain for the restriction operator, whenever the domain is a Paley-Wiener space. We finish
this section by stating this as a theorem.

Corollary 8.7. Let S ⊂ R be bounded, and let Λ ⊂ R be u.d. Then RΛ maps PWS into
l2(Λ).

8.4 Sampling in Paley-Wiener space

By definition, a set of SS for PWS is a u.d. set Λ ⊂ R s.t. there exist constants c, C > 0
satisfying

c‖f‖2
2 ≤

∑
λ∈Λ

|f(λ)|2 ≤ C‖f‖2
2, ∀f ∈ PWS. (17)

Theorem 8.6 ensures us that the right inequality is always satisfied. Hence, just as for Bern-
stein spaces, we only need to check the left one.

Since Paley-Wiener spaces are Hilbert spaces, we can talk about whether a sequence of
Paley-Wiener functions satisfies Bessel’s inequality or its converse. It turns out that the inner
product in (9) has a very convenient form. Given a bounded set S ⊂ R, if F ∈ L2(S), and if
f := GF ∈ PWS , then

〈F, e2πiλ(·)〉 =

∫
S

F (t)e−2πiλtdt =

∫
S

F (t)e2πiλtdt = f(λ), ∀λ ∈ R. (18)

Thus, since ‖f‖2 = ‖F‖2 = ‖F‖2, a reformulation of (17) is:
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c‖F‖2
2 ≤

∑
λ∈Λ

∣∣〈F, e2πiλ(·)〉
∣∣2 ≤ C‖F‖2

2, ∀F ∈ L2(S). (19)

Hence, theorem 8.6 actually states that E(Λ) is a Bessel sequence in L2(S)! Since the
Fourier inverse transform preserves inner products, it also states that the Fourier inverse
transform of that exponential system is a Bessel sequence in PWS . Hence, we can think of
it as being Bessel’s inequality in any of the two spaces.

With this discussion in mind, it is now easy to give a precise characterization of both
all US sets and all sets of SS for Paley-Wiener spaces. It turns out that the two sampling
problems can be interpreted in the language of frames and complete sequences.

Theorem 8.8. Let S ⊂ R be bounded and Λ ⊂ R be u.d.

(i) Λ is a US for PWS if and only if E(Λ) is complete in L2(S).

(ii) Λ is a set of SS for PWS if and only if E(Λ) is a frame in L2(S).

Proof. (i) First, assume that Λ is not a US for PWS . Find a non-zero f ∈ PWS that vanishes
on Λ, and let F := f̂ . Then, by (18)

〈F , e2πiλ(·)〉 = f(λ) = 0, ∀λ ∈ Λ.

That is, F is orthogonal to E(Λ). Since F is a non-zero element of L2(S) by injectivity of
F, this shows that E(Λ) is not complete in L2(S).

Conversely, assume that E(Λ) is not complete in L2(S), and find a non-zero F ∈ L2(S)
orthogonal to E(Λ). Then, by (18),

f(λ) = 〈F, e2πiλ(·)〉 = 0, ∀λ ∈ Λ,

where f := GF . Hence, by injectivity of G, f is a non-zero element of PWS that vanishes
on Λ, showing that Λ is not a US for PWS .

(ii) As we have seen, Λ is a set of SS for PWS if and only if (19) is satisfied. This is just (9)
for the sequence E(Λ), with A = c and B = C.

This theorem is a good reason to study frames, in particular exponential frames in L2(S)! In
fact, not only can we find all sets of SS for PWS by study frames. We can also reconstruct
in PWS , as long as we are able to find an alternate dual frame! The proof is a generalization
of an argument from [Ch10], page 152.

Theorem 8.9. Let S ⊂ R be bounded and Λ ⊂ R be a set of SS for PWS . Let {vλ}λ∈Λ be an
alternate dual frame to E(Λ) for L2(S), and define v′λ := Gvλ, ∀λ ∈ Λ. Then, the following
reconstruction formula holds pointwise on R:

f =
∑
λ∈Λ

f(λ)v′λ, ∀f ∈ PWS.

Proof. Let f ∈ PWS , and define F := f̂ . Since F ∈ L2(S), we can expand it in the alternate
dual frame as
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F = 〈F , e2πiλ(·)〉vλ =
∑
λ∈Λ

f(λ)vλ =
∑
k∈N

f(λk)vλk .

This convergence is in the L2(S)-norm, so we get:∣∣∣∣∣f(x)−
n∑
k=1

f(λk)v
′
λk

∣∣∣∣∣
2

=

∣∣∣∣∣
∫
S

F (t)e2πixtdt−
n∑
k=1

f(λk)

∫
S

vλk(t)e
2πixtdt

∣∣∣∣∣
2

=

∣∣∣∣∣
∫
S

(
F (t)−

n∑
k=1

f(λk)vλk(t)

)
e2πixtdt

∣∣∣∣∣
2

≤
∫
S

∣∣∣∣∣F (t)−
n∑
k=1

f(λk)vλk(t)

∣∣∣∣∣
2

dt

=

∫
S

∣∣∣∣∣F (t)−
n∑
k=1

f(λk)vλk(t)

∣∣∣∣∣
2

dt→ 0 as n→∞, ∀x ∈ R.

Hence,
∑n

k=1 f(λk)v
′
λk
→ f(x) as n→∞ for all x ∈ R.

We will get back to this formula in section 10.2, when we are specifically talking about
uniform sampling.
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9 The strong sampling problem in PWσ and Bσ

Our main goal of this section is to understand Beurling’s sampling theorem, which gives an
almost complete answer to the strong sampling problem for PWσ and Bσ. In the beginning,
we will consider some of the tools that are needed to understand at to prove Beurling’s
sampling theorem. However, proving it requires some theory that is not presented here, in
particular weak convergence of measures. For that reason, we will refer to [OU16], rather
than actually proving the theorem. In that book, Paley-Wiener spaces and Bernstein spaces
are defined slightly different than here. Therefore, we start section 9.6 by discussing how it
changes the theorems before going into them.

9.1 Weak convergence of sequences of u.d. sets

The sampling properties of Paley-Wiener spaces, as we have seen, can be equivalently found
by studying frames and complete seuences in L2(S). There is nothing similar for Bernstein
spaces, so their sampling properties must be approached in a different way. We will do it via
a concept called weak limits of translates. The goal of this section is to understand what that
means.

Definition 9.1. (i) Given A,B ⊆ R, pick an ε > 0. B is called an ε-perturbation of A if
there exists a bijective function f : A→ B s.t. |f(x)− x| ≤ ε, ∀x ∈ A.

(ii) A sequence {Λk}k∈N of u.d. sets is said to converge weakly to a set Λ ⊂ R if for any
ε > 0 and any a, b ∈ R \Λ, there exists an N ∈ N s.t. Λ∩ (a, b) is an ε-perturbation of
Λk ∩ (a, b) whenever k ≥ N . Λ is called the weak limit of {Λk}k∈N.

Note that if Λ ⊂ R is discrete, and if Γ ⊂ R is an ε-perturbation of Λ, then part of definition
9.1 (i) says that

|λk − γk| ≤ ε, ∀k ∈ N (20)

for a convenient choice of ordering. If Λ is u.d. and ε < δ(Λ)
2

, then the elements of Λ cannot
lie within distance ε of more than one element of Γ. Surjectivity of f makes sure that an
element of Γ always exists on the interval (λk − ε, λk + ε), so by our previous comment,
there is exactly one. This gives us an alternative way of viewing ε-perturbations of u.d. sets,
as long as ε is small enough, and specifically when we consider weak limits.

Another view is obtained by considering distances between real numbers and sets of real
numbers:

dist(x,B) := inf{|x− y| s.t. y ∈ B},
where x ∈ R and B ⊆ R. If Λ,Γ ⊂ R are u.d. sets, then Γ being an ε-perturbation of Λ is
almost the same as both of the following being true:

dist(λ,Γ) ≤ ε, ∀λ ∈ Λ.

dist(γ,Λ) ≤ ε, ∀γ ∈ Γ.
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Together, they make sure that every element of any of the sets is close enough to some
element of the other set. The missing part is that two elements of Λ can be close enough
to the same element of Γ, or the other way round. However, as before, that problem is
automatically fixed whenever ε < δ(Λ)

2
.

Now, intuitively, what is a weak limit? If J ⊂ R is a finite set, we denote the number
of elements in J by #J . Also, we denote the j’th element of Λk by (Λk)j . Assume that
Λk → Λ weakly as k →∞, and pick a, b ∈ R \ Λ. By (20), for some ordering, (Λk)j → λj
as k → ∞ for any j ∈ N s.t. λj ∈ (a, b). Since we could have picked (a, b) to contain
any element of Λ, this must be true for all j ∈ N. From now on, whenever we know that
we have weak convergence, we will assume such an ordering to be used. Bijectivity of the
function f in definition 9.1 (i) is equivalent to saying that #(Λk ∩ (a, b)) = #(Λ ∩ (a, b))
for sufficiently large k ∈ N. Thus, a reformulation of definition 9.1 (ii) is that for any ε > 0
and any a, b ∈ R \ Λ, there exists N ∈ N satisfying:

#(Λk ∩ (a, b)) = #(Λ ∩ (a, b)), |(Λk)j − λj| ≤ ε, ∀k ≥ N, ∀j ∈ N s.t. λj ∈ (a, b).

The fact that (a, b) contains only finitely elements of Λ ensures us that we may pick the same
N ∈ N for all the λj ∈ (a, b).

It is convenient to note that we may restrict ourselves to considering intervals centered at
the origin. That is, we may assume that −a = b. To see why, consider an interval (−R,R)
containing (a, b), where ±R /∈ Λ. For sufficiently large k ∈ N, we have

#(Λ ∩ (−R,R)) = #(Λk ∩ (−R,R)).

Assuming ε < δ(Λ)
2

, the (Λk)j approaching λj ∈ (−R,R)\ (a, b) must themselves be outside
(a, b), so we must have #(Λ∩ (a, b)) = #(Λk∩ (a, b)) as well. Note that this argument even
holds if we restrict R to be a natural number. Hence, we only need to consider a discrete
family of open intervals to check for weak convergence. We will take advantage of this
observation in the proof of theorem 9.4.

We have seen that if Λk → Λ weakly as k → ∞, then (Λk)j → λj in R for any j ∈ N.
Conversely, if we know that {(Λk)j}k∈N converges to λj for any j ∈ N, does that imply weak
convergence? In other words, are we guaranteed to have #(Λk ∩ (a, b)) = #(Λ ∩ (a, b)) for
sufficiently large k ∈ N, regardless of our choice of interval? Let us check with an example.

Example 9.2. Define the sequence {Λk}k∈N by:

Λk := {−mod(k, 2), 1, 2, 3, ..., k − 1, k + 1, ...}, ∀k ∈ N,
where mod(x, y) is the remainder when x is divided by y. The first few elements look like
this:

Λ1 = {−1, 2, 3, 4, 5, 6, ...}
Λ2 = {0, 1, 3, 4, 5, 6, ...}

Λ3 = {−1, 1, 2, 4, 5, 6, ...}
Λ4 = {0, 1, 2, 3, 5, 6, ...}
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We note that the lower element jumps between −1 and 0, so we do not expect {Λk}k∈N to
converge weakly. To absolutely prove it, note that no matter how big k ∈ N becomes, the
number of elements in the set Λk∩(−1

2
, 1

2
) does NOT stop jumping between 0 and 1. However,

it turns out to be possible to order the elements in such a way that {(Λk)j}k∈N ⊂ R converges
for any j ∈ N. Specifically, we define, for all j ∈ N:

(Λk)j :=

{
j, j ∈ N \ {k}
−mod(j, 2), j = k

, ∀k ∈ N.

Then, Λk is the same set as before, for any k ∈ N. Also, for any fixed j ∈ N, the sequence
{(Λk)j}k∈N ⊂ R converges to j. Thus, we conclude that convergence of each sequence of
corresponding terms does not imply weak convergence of the sequence of u.d. sets.

It should be noted, though, that there exists a subsequence converging weakly.
Specifically, it is not hard to see that the subsequence {Λ2k}k∈N converges weakly to N0.
Also, {Λ2k−1}k∈N converges weakly to N ∪ {−1}.

Now, what can we say in general about the weak limit? It is natural to think that it is u.d.,
since points that are always far from each other cannot converge to points that are close to
each other. That turns out to be the case. What can we say about the separation constant?
This is what our next lemma is all about.

Lemma 9.3 ([OU16], p. 27)). Let {Λk}k∈N be a sequence of u.d. sets converging weakly to
some set Λ ⊂ R. Then, Λ is u.d., and

δ(Λ) ≥ lim sup
k→∞

δ(Λk).

Proof. Choose different numbers n,m ∈ N. Pick an ε > 0 and find an N ∈ N s.t.

|(Λk)n − λn| ≤ ε, |(Λk)m − λm| ≤ ε, ∀k ≥ N.

Then, by the reverse triangle inequality, we have:

|λn − λm| = |((Λk)n − (Λk)m)− (λm − (Λk)m − λn + (Λk)n)|
≥ |(Λk)n − (Λk)m| − |((Λk)n − λn) + (λm − (Λk)m)|

≥ |(Λk)n − (Λk)m| − (|(Λk)n − λn|+ |λm − (Λk)m|) ≥ δ(Λk)− 2ε

whenever k ≥ N . Hence,

|λn − λm| ≥ lim sup
k→∞

δ(Λk)− 2ε,

and since this holds for any ε > 0, we conclude that

|λn − λm| ≥ lim sup
k→∞

δ(Λk).

This holds for any n,m ∈ N with n 6= m, so Λ is u.d. with the desired lower bound for
δ(Λ).
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This shows, in particular, that if all the Λk have the same separation constant, then the limit
cannot have a smaller one. We will see in example 9.5 that it might be strictly larger. Note
that if δ(Λk) → 0 as k → ∞, then it MUST be strictly larger, as we cannot have δ(Λ) = 0.
However, if the δ(Λk) do not become arbitrarily small, then it turns out that the sequence
satisfies a property that is very similar to Bolzano-Weierstrass’ lemma for Euclidean space,
which states that any bounded sequence has a convergent subsequence. In fact, our next
theorem is a consequence of that lemma.

Theorem 9.4 ([OU16], p. 28). Let {Λk}k∈N be a sequence of u.d. sets satisfying
lim supk→∞ δ(Λk) > 0. Then, {Λk}k∈N has a weakly convergent subsequence.

Proof. By passing down to a subsequence if necessary, we may assume that there exists a
δ > 0 s.t. δ(Λk) ≥ δ for all k ∈ N. For N ∈ N, define IN := (−N,N), except that if a
sequence of elements in the Λk converges to N or −N , we shift that endpoint by min{1

2
, δ

2
}

units towards the origin. Now, define

nN := lim inf
k→∞

#(Λk ∩ IN), ∀N ∈ N.

Pick an ordering s.t. for any N ∈ N, the first nN elements of (Λk) all lie inside IN for
sufficiently large k ∈ N. Obviously, the sequence {(Λk)j}k∈N is bounded for all
j ∈ {1, 2, ..., n1}. Hence, by Bolzano-Weierstrass’ lemma, {(Λk)1}k∈N has a subsequence
converging to a c1 ∈ I1. Then, the corresponding subsequence of {(Λk)2}k∈N itself has a
subsequence converging to a c2 ∈ I1. Continuing this process n1 times, we get a subsequence
{Λkm}m∈N of {Λk}k∈N s.t. {(Λkm)j}m∈N converges to cj ∈ I1 for all j ∈ {1, 2, ..., n1}. We
will denote the indexes of that subsequence by k1,m, i.e. (Λk1,m)j → cj , for all j ≤ n1, as
m→∞.

Now, we repeat the same process for the set I2 to get a sub-indexing {k2,m}m∈N, s.t. for
all j ∈ {n1 + 1, n1 + 2, ..., n1 + n2}, the sequence (Λk2,m)j converges to a cj ∈ IN . By sub-
indexing, we mean that the indexing sequence, {k2,m}m∈N, is a subsequence of {k1,m}m∈N.
This ensures us that for j ≤ n2, (Λk2,m)j → cj as m→∞, even if j ≤ n1.

ForN > 2, doing the process for IN , we get an indexing sequence, {kN,m}m∈N, satisfying
the following two criteria:

(i) {kN,m}m∈N is a subsequence of {kN−1,m}m∈N.

(ii) (ΛkN,m)j converges to a cj ∈ IN , for all j ≤ nN , as m→∞.

By construction, the cj do not change as N increases. This yields a u.d. set Λ ⊂ R, defined
by λj := cj , for all j ∈ N.

We need to construct an indexing {km}m∈N s.t. Λkm → Λ weakly as k →∞. Let us look
at the indexing sequences we have constructed so far.

k1,1 k1,2 k1,3 ...
k2,1 k2,2 k2,3 ...
k3,1 k3,2 k3,3 ...
... ... ... ...

Here, we have highlighted the diagonal indexes, {km,m}m∈N, as these are the ones we will
be using. Let km := km,m for all m ∈ N. Then, for any N ∈ N, {km}m∈N is a subsequence
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of {kN,m}, except for the first N − 1 terms. Thus, (Λkm)j → cj , for all j ∈ N, as m → ∞.
Also, by construction, Λ and Λkm contain the same number of elements on each of the IN
for sufficiently large m ∈ N. Thus, {Λkm}m∈N does indeed converge weakly to Λ.

Example 9.5. Let Λk := Z ∪ {k − 1
2
} for k ∈ N. Then, δ(Λk) = 1

2
for any k ∈ N, since

they all contain a point in the middle of two consecutive integers. Now, for any k ∈ N, if
I is an interval whose right endpoint is less than k − 1

2
, then Λk ∩ I contains exactly the

integers lying on I . That is, Λk ∩ I = Z∩ I . Hence, as k →∞, we see that Λk → Z weakly.
However, δ(Z) = 1 > 1

2
, showing that a sequence of u.d. sets with equal separation constant

may converge weakly to a set of larger separation constant.

Example 9.6. Let Λ ⊂ R be u.d., and let {ck}k∈N ⊂ R be a sequence of numbers converging
to some c ∈ R. Let {Λk}k∈N := {Λ− ck}k∈N be the corresponding sequence of translates of
Λ. Order the elements of Λk s.t. (Λk)j = λj−ck for all k, j ∈ N. Pick an interval (a, b) ⊂ R
with a, b /∈ Λ − c, and an ε > 0 small enough that (a, b) and (a, b) ± ε contain exactly the
same elements of Λ. For sufficiently large k ∈ N, we have:

|(Λk)j − (Λ− c)j| = |(λj − ck)− (λj − c)| = |c− ck| ≤ ε, ∀j ∈ N.
Hence, (Λk)j → (Λ− c)j as k →∞. Also, by construction,

#Λk ∩ (a, b) = #(Λ− c) ∩ (a, b)

for equally large k ∈ N. Hence, Λk converges weakly to Λ− c.

9.2 Weak limits of translates

The goal of this section is to understand what weak limits we can get from sequences of
translates of a given u.d. set. That is, if Λ ⊂ R is a given u.d. set, and if {ck}k∈N ⊂ R is
an arbitrary sequence of numbers, what can the weak limit of {Λ − ck}k∈N possibly be if it
exists? To get closer to an answer, we start by looking at some special cases of translates.

We have seen in example 9.6 that if ck → c ∈ R as k →∞, then Λ− ck → Λ− c weakly
as k → ∞. This shows that we can get any translate of Λ, and a very easy, general way of
generating the sequence. The easiest is to pick {ck}k∈N to be a constant sequence, but it can
be any sequence converging to the number we want to translate by.

If {ck}k∈N does not converge, we can still make {Λ − ck}k∈N converge weakly. For
example, if Λ = Z and all the ck are integers, then all the Λ − ck are just Z. Can we also
make it converge to something different than a translate of Λ? Let us look at an example.

Example 9.7. Let Λk := N−k and Γk := N+k, ∀k ∈ N. The first few elements of {Λk}k∈N
are:

Λ1 = {0, 1, 2, 3, ...}
Λ2 = {−1, 0, 1, 2, 3, ...}

Λ3 = {−2, 1, 0, 1, 2, 3, ...}
Any integer will be captured by Λk for sufficiently large k ∈ N. Obviously, no non-integer is
contained in any of the Λk, so we conclude that Λk → Z weakly as k →∞.
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Now, let us look at the first few elements of {Γk}k∈N.

Γ1 = {2, 3, 4, 5, 6, ...}
Γ2 = {3, 4, 5, 6, ...}
Γ3 = {4, 5, 6, ...}

This time, any integer disappears for sufficiently large k ∈ N. Again, no non-integer is ever
captured, so we conclude that Γk → ∅ weakly, i.e. the empty set, as k →∞.

Example 9.7 shows that {Λ−ck}k∈N may converge weakly, even if {ck}k∈N is unbounded!
If we replace N by any other set that is bounded below, we will still get the empty set by
putting ck := −k for k ∈ N. Similarly, if Λ is bounded above, ck := k, ∀k ∈ N would
give the empty set. Had we picked Λ := Z, though, we would just get Z back again in both
cases, since we never gain or lose any integer. The fact that Z is neither bounded above nor
below makes sure that even if {ck}k∈N is unbounded, we will never lose all the elements
larger/smaller than a fixed number. However, it turns out that even sets that are unbounded
both above and below may have the empty set as a weak limit of translates!

Example 9.8. Let I := {[22n, 22n+1]∪ [−22n+1,−22n] s.t. n ∈ N0}, and let Λ := Z∩ I . That
is, Λ contains the integers on the intervals

[1, 2], [4, 8], [16, 32], [64, 128], [256, 512], ...

and on the corresponding negative intervals. Define ak := 22k+1+22k

2
, bk := 22k+22k−1

2
and

ck := 22k − 1 for k ∈ N. Then, we have:

I − a1 = I − 8 + 4

2
= I − 6 = ... ∪ [−5,−4] ∪ [−2, 2] ∪ [10, 26] ∪ ...

I − a2 = I − 32 + 16

2
= I − 24 = ... ∪ [−20,−16] ∪ [−8, 8] ∪ [40, 104] ∪ ...

I − a3 = I − 128 + 64

2
= I − 96 = ... ∪ [−80,−64] ∪ [−32, 32] ∪ [160, 416] ∪ ...

In general, I−ak contains the interval [−22k−1, 22k−1]. Hence, any real number is contained
in I−ak for large enough k ∈ N. Similarly, any integer is contained in Λ−ak for sufficiently
large k ∈ N. Since no number between them is ever captured, we conclude that Λ− ak → Z
weakly as k →∞.

For the second sequence, we have:

I − b1 = I − 4 + 2

2
= I − 3 = ... ∪ [−2,−1] ∪ [1, 5] ∪ ...

I − b2 = I − 16 + 8

2
= I − 12 = ... ∪ [−8,−4] ∪ [4, 20] ∪ ...

I − b3 = I − 64 + 32

2
= I − 48 = ... ∪ [−32,−16] ∪ [16, 80] ∪ ...
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In general, elements of the interval (−22k−2, 22k−2) are NOT contained in I − bk. Simi-
larly, Λ − bk does not capture any integer (or non-integer) on that interval, which becomes
arbitrarily large as k →∞. Hence, Λ− bk → ∅ weakly as k →∞.

The third sequence yields:

I − c1 = I − 3 = ... ∪ [−2,−1] ∪ [1, 5] ∪ ...
I − c2 = I − 15 = ... ∪ [−11,−7] ∪ [1, 17] ∪ ...
I − c3 = I − 63 = ... ∪ [−47,−31] ∪ [1, 65] ∪ ...

In general, I − ck contains [1, 22k + 1], but no elements of (−22k−1 + 1, 1). Restricting
ourselves to integers, the same is true for Λ − ck. Any number greater than or equal to 1 is
contained in the former interval for sufficiently large k ∈ N, while any number less than 1 is
captured by the latter. Thus, we conclude that Λ− ck → N weakly as k →∞.

Note what allowed us to get both the integers and the empty set as weak limits in example 9.8.
Λ contained the integers on infinitely many intervals whose length became arbitrarily large,
allowing us to get Z as a weak limit. The fact that the empty intervals also became arbitrarily
large is what gave us the empty set as a weak limit. Also, in the example, translating Λ by
the sequence {3, 6, 12, 24, 48, 96, ...} = {3 · 2k−1}k∈N, we get both Z and ∅ as subsequential
limits.

The set of ALL weak limits of translates of a u.d. set Λ is denoted by W (Λ). As we have
seen, W (Λ) contains all translates of Λ. More generally, if Γ ∈ W (Λ), then any translate
of Γ is in W (Λ) as well. After all, if Λ − ck → Γ weakly as k → ∞, then Λ − (ck + a)
converges weakly to Γ − a. However, we have also demonstrated that even if Λ contains
only integers, W (Λ) may contain very different sets. In example 9.8, it contained both Z,
which has a separation of 1, and ∅, which has infinite separation. This is an exmple of how
different separation in different regions may give weak limits of different separation. If the
separation within the regions is not constant, it gets even trickier. However, in any case, a
good indication is to look for different regions having the same separation constant, and see
how the size of these regions changes.

9.3 Lower uniform densities

In this subsection, when considering a u.d. set Λ ⊂ R, we define

n(R) := inf
a∈R

#(Λ ∩ (a, a+R)), ∀R > 0.

It satisfies:

(i) n(R2) ≥ n(R1) whenever R2 ≥ R1 > 0.

(ii) n(R1 +R2) ≥ n(R1) + n(R2) for all R1, R2 > 0.

(iii) n(R) ≤ R
δ(Λ)

, rounded up, for all R > 0.

Property (iii) is a direct result of the fact that the elements cannot be arbitrarily close to
each other. (ii) follows from the following observation: If I is an open interval of length
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R1 + R2, containing n elements of Λ, then there exist two open intervals I1, I2 of length
R1 and R2, respectively, s.t. Λ ∩ (I1 ∪ I2) = Λ ∩ I . The intervals may be picked so that
they do not contain any common element of Λ. Hence, if I is the interval of length R1 +R2

that minimizes #(Λ ∩ I), then I1 and I2 are two particular intervals of length R1 and R2,
respectively, satisfying n(R1 + R2) ≥ #(Λ ∩ I1) + #(Λ ∩ I2). Since #(Λ ∩ I1) ≥ n(R1)
and #(Λ ∩ I2) ≥ n(R2), the property follows.

For any R > 0, applying property (i) multiple times, we have n(2kR)
2kR

≥ n(2lR)
2lR

whenever
k ≥ l. That is, { (2kR)

2kR
}k∈N is an increasing sequence. Since (iii) makes sure that it is also

bounded above by 1
δ(Λ)

, it must converge to some limit, L ∈ [0, 1
δ(Λ)

]. It turns out that L is
independent of the choice of R ([OU16], p. 29). This is exactly what we need to define the
density used to formulate Beurling’s sampling theorem in section 9.6.

Definition 9.9. If Λ ⊂ R is u.d., the lower uniform density of Λ is defined by

D−(Λ) := lim
R→∞

inf
a∈R

#(Λ ∩ (a, a+R))

R
= lim

R→∞

n(R)

R
.

If we replace inf by sup in definintion 9.9, we get the upper uniform density D+(Λ), but we
will not use that here. Step by step, what we do is:

(i) Pick an arbitrary R > 0.

(ii) Count the number of elements of Λ on every open interval of length R. The count is
always at least 0 and at most R

δ(Λ)
rounded up. Hence, the set of counts is bounded, so

it has both supremum and infimum. We pick the infimum to get n(R).

(iii) Divide by R to get the smallest density that Λ can have on intervals of length R.

(iv) Let R→∞.

Note that if Λ is an arithmetic progression, thenD−(Λ) = 1
δ(Λ)

. Also, if we fix the separation
constant, there is no way that we can make a u.d. set any sparser than the case of an arithmetic
progression. This observation reflects property (iii) at the beginning of the subsection, and
it helps us comparing the two quantities. The reciprocal of the separation constant is the
largest number of terms we can have on an open interval I , relative to the length of I . In
that sense, it can be thought of as an upper density, so the lower uniform density is kind
of an opposite. With that interpretation, it is no surprise that the two coincide when the
separation is constant. An important difference, though, is that in the uniform densities, we
let the length of I go to infinity. For 1

δ(Λ)
, on the other hand, we can just choose I so that

it maximizes #(Λ∩I)
µ(I)

. E.g. if Λ is bounded above or below, then D−(Λ) = 0. The same is
true if there exists a sequence of empty regions growing arbitrarily large, as in example 9.8.
However, that does not mean that δ(Λ) is infinite, since other regions have finite separation.
As long as a set contains at least two points, there is no doubt that δ(Λ) <∞.

Example 9.10. Let Λ := Z \ 3Z = {...,−8,−7,−5,−4,−2,−1, 1, 2, 4, 5, 7, 8, ...}. Then,
we can verify that the counting function n satisfies, for all k ∈ N:
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n(N) =

 2k, N = 3k
2k N = 3k + 1
2k + 1, N = 3k + 2

In particular, since n(3) = n(4) = 2, we obviously have n(3)
3
> n(4)

4
. Hence, n(R)

R
is not an

increasing function ofR. However, n(3k)
3k

= 2k
3k

= 2
3

for all k ∈ N. Also, forR ∈ (3k−3, 3k),
we have n(3k−3)

3k
< n(R)

R
< 2. Since n(3k−3)

3k
= 2k−2

3k
→ 2

3
as k → ∞, the squeeze lemma

shows that n(R)
R
→ 2

3
as R→∞. Hence, the lower uniform density does exist, and

D−(Λ) = 2
3
.

Example 9.10 demonstrates the fact that n(R)
R

is not an increasing function of R, even though
the sequence {n(2kR)

2kR
}k∈N is for fixedR > 0. The reason is that increasingR by a sufficiently

small amount will normally not capture any new elements of Λ. Hence, the fraction will
decrease in most small regions. However, we have also demonstrated (without proof) that as
R→∞, it does not decrease enough for the limit to not exist.

Before turning back to the sampling problems, it is convenient to note that bounded per-
turbations do not change the lower uniform density. That is, if Λ ⊂ R is u.d., and if there
exists a δ > 0 s.t. δk ∈ [0, δ] for all k ∈ N, then Γ := {λk + δk s.t. k ∈ N} satisfies
D−(Γ) = D−(Λ). The reason is that for any interval I ⊂ R, no matter how large it is, the
number of elements inside I cannot change by more than a fixed amount.
Specifically, we can get at most δδ(Λ) new elements from the above, and similarly from
below, so |#(Λ ∩ I)−#(Γ ∩ I)| ≤ 2δδ(Λ). Hence, as µ(I) → ∞, the changes approache
zero relative to µ(I). Of course, we are assuming that two points never overlap under the
perturbations. The separation constant may change, since that does not involve a limit, but
the lower uniform density stays fixed.

9.4 Sampling in Bσ

We are now ready to give a lemma about sampling sets for Bernstein spaces. It does not
immediately help us identifying the uniqueness sets or the sets of SS, but it allows us move
the problem into the space of weak limits of translates.

Lemma 9.11 ([OU16], p. 28). Given a u.d. set Λ ⊂ R and a σ > 0, we have:

(i) If Λ is a set of SS for Bσ, then every element of W (Λ) is a set of SS for Bσ.

(ii) If every element of W (Λ) is a US for Bσ, then Λ is a set of SS for Bσ.

proof of (ii). Assume that Λ is not a set of SS for Bσ. Then, there exists a sequence
{fk}k∈N ⊂ Bσ s.t.

‖fk‖∞ = 1, ‖fk|Λ‖∞ ≤
1

k
, ∀k ∈ N.

Since all the fk take values arbitrarily close to 1 on R, there exists a sequence {ck}k∈N ⊂ R
s.t. {fk(ck)}k∈N ⊂ {z ∈ C s.t. |z| ≤ 1} converges to 1 as k →∞. Now, define the sequence
{gk}k∈N ⊂ Bσ by
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gk(z) := fk(z + ck), ∀z ∈ C, ∀k ∈ N.
By passing down to a subsequence if necessary, theorem 9.4 makes sure that {Λ − ck}k∈N
converges weakly to some Γ ∈ W (Λ). Also, again possibly passing down to a subsequence,
{gk}k∈N converges pointwise on C to some g ∈ Bσ by the compactness property. Pick a
j ∈ N, and let E := [γj−1, γj +1]. We need to show that gk((Λ−ck)j)→ g(γj) as k →∞.
Hence, pick an ε > 0, and find an N1 ∈ N and a δ ∈ (0, 1] satisfying:

|g(x)− gk(x)| ≤ ε

2
, ∀k ≥ N1, ∀x ∈ E.

|g(x)− g(γj)| ≤
ε

2
, ∀x ∈ [γj − δ, γj + δ].

N1 exists because gk → g uniformly onE, while δ exists because g is continuous at γj . Also,
find N2 ∈ N s.t.

|γj − (Λ− ck)j| ≤ δ, ∀k ≥ N2.

Set N := max{N1, N2} and xk := (Λ − ck)j for k ∈ N. Then, since xk ∈ E whenever
k ≥ N , we have:

|g(γj)− gk(xk)| = |(g(γj)− g(xk)) + (g(xk)− gk(xk))|

≤ |g(γj)− g(xk)|+ |g(xk)− gk(xk)| ≤
ε

2
+
ε

2
= ε, ∀k ≥ N.

This shows that indeed, gk(xk) = gk((Λ− ck)j)→ g(γj) as k →∞.
Now, define j : N→ N so that (Λ− ck)j = λj(k) − ck, ∀k ∈ N. We get:

lim
k→∞

∣∣fk(λj(k))
∣∣ ≤ lim

k→∞
‖fk|Λ‖∞ ≤ lim

k→∞

1

k
= 0.

g(γj) = lim
k→∞

gk(λj(k) − cj) = lim
k→∞

fk(λj(k) − ck + ck) = lim
k→∞

fk(λj(k)) = 0.

Since j ∈ N was arbitrary, this shows that g|Γ = 0. However, g 6= 0, since
gk(0) = fk(ck)→ 1 6= 0 as k →∞. Thus, we conclude that Γ is not a US for Bσ.

Note that one statement of lemma 9.11 is that if all elements of W (Λ) are uniqueness sets,
then they are also sets of SS. The reason is that by (ii), it implies that Λ is a set of SS, which
by (i) implies that the elements of W (Λ) are sets of SS. This is NOT the same as saying that
in Bσ, being a US and being a set of SS are equivalent properties, as the following example
shows. It is only guaranteed to be the case if ALL elements of W (Λ) are uniqueness sets,
including Λ itself. The remaining statement of the lemma is, of course, that Λ is that a set of
SS for Bσ if and only if every element of W (Λ) is.

Example 9.12. Let σ := 1
2
, and let Λ := Z ∪ {1

2
}. It can be shown that if f ∈ Bσ vanishes

on Z, then there exists a C > 0 s.t. f(z) = C sin(πz), ∀z ∈ C ([OU16], p. 18). Thus, if
f(1

2
) = 0 as well, then f = 0. This shows that Λ is a US for Bσ, while Z is not. Example 9.5

shows that Z ∈ W (Λ). Hence, if Λ were a set of SS for Bσ, then lemma 9.11 would imply
that Z is a set of SS for Bσ, which is a contradiction. We conclude that Λ is a US set for Bσ,
but not a set of SS.
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9.5 Perturbations of sets of SS

In this subsection, we will consider differences between sequences of different indexings.
The elements of that difference are defined in terms of the ordering when N is used as the
indexing set. That is, by f |Γ − f |Λ, we mean the sequence {f(γk) − f(λk)}k∈N. Note that
the restriction operator can be defined the same way independently of which indexing set we
choose.

Recall that if two u.d. sets Λ,Γ ⊂ R are ε-perturbations of each other if any element of
any of the sets is within distance ε of an element of the other set. If ε < min{ δ(Λ)

2
, δ(Γ)

2
}, then

that condition is sufficient. Intuitively, when we say something is stable, we would think that
it does not change under sufficiently small perturbations. In that sense, what do we mean by
stable sampling, which we defined in a different way?

Let X be a normed function space, and let Y be a normed co-domain for the restriction
operator. If Λ,Γ ⊂ R are u.d. sets, with Λ being a set of SS for X , and if we find C > 0 in
(16), then

‖f |Γ‖Y = ‖fΓ−f |Λ+f |Λ‖Y ≥ ‖f |Λ‖Y −‖f |Γ−f |Λ‖Y ≥ C‖f‖X−‖f |Γ−f |Λ‖Y , ∀f ∈ X.

Thus, if we can find a constant K ∈ (0, C) satisfying ‖f |Γ − f |Λ‖Y ≤ K‖f‖X , it will show
that the left inequality in (16) is satisfied for Γ. Of course, we do not expect every u.d. set
to satisfy that, but there might very well be a δ > 0 s.t. every δ-perturbation of Γ has that
property.

Recall that in Paley-Wiener spaces and Bernstein spaces, we only need to check the right
inequalities in (16) to figure out whether a given u.d. set is a set of SS. Thus, we can take
advantage of our our previous discussion. This is exactly what we will do to prove the
following two theorems.

Theorem 9.13. Let σ > 0 and a u.d. set Λ ⊂ R be given. If Λ is a set of SS for Bσ, then
there exists a δ > 0 s.t. every δ-perturbation of Λ is also a set of SS for Bσ.

Proof. Find c > 0 s.t. ‖f |Λ‖∞ ≥ c‖f‖∞, ∀f ∈ Bσ, and let δ := min{ δ(Λ)
4
, c

4πσ
}. If Γ ⊂ R

is a δ-perturbation of Λ, then

|f(γk)− f(λk)| =
∣∣∣∣∫ γk

λk

f ′(u)du

∣∣∣∣ ≤ sup
u∈[λk,γk]

|f ′(u)| · |γk − λk|

≤ ‖f ′‖∞ · δ ≤ 2πσ‖f‖∞ ·
c

4πσ
=
c

2
‖f‖∞, ∀k ∈ N.

Hence, ‖f |Γ‖∞ ≥ ‖f |Λ‖∞ − sup
k∈N
|f(γk)− f(λk)| ≥ c‖f‖∞ −

c

2
‖f‖∞ =

c

2
‖f‖∞.

Theorem 9.14. Let a bounded set S ⊂ R and a u.d. set Λ ⊂ R be given. If Λ is a set of SS
for PWS , then there exists a δ > 0 s.t. every δ-perturbation of Λ is also a set of SS for PWS .

Proof. Find c > 0 s.t. ‖f |Λ‖2 ≥ c‖f‖2, ∀f ∈ PWS . In accordance with theorem 8.6, find
C > 0 s.t. ‖f |X‖2 ≤ C‖f‖2 for any f ∈ PWS and any u.d. set X ⊂ R with δ(X) ≥ δ(Λ)

2
.
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Now, define δ := min{ δ(Λ)
4
, c

4π(sup|S|)C}. For any δ-perturbation Γ ⊂ R of Λ, and any
f ∈ PWS , the mean value theorem ensures us that there exists a sequence {xk}k∈N ⊂ R s.t.

xk ∈ [γk, λk], f(γk)− f(λk) = f ′(xk)(γk − λk), ∀k ∈ N.

Also, X := {xk s.t. k ∈ N} is u.d. with δ(X) ≥ δ(Λ)
2

. Thus, by theorem 7.13 (iii),

‖f |Γ − f |Λ‖2 =

√∑
k∈N

|f(γn)− f(λn)|2 =

√∑
k∈N

|f ′(xk)|2 · |γn − λn|2 ≤ δ

√∑
k∈N

|f ′(xk)|2

= δ‖f ′|X‖2 ≤ δC‖f ′‖2 ≤ 2π(sup |S|)δC‖f‖2 ≤
c

2
‖f‖2.

‖f |Γ‖2 ≥ ‖f |Λ‖2 − ‖f |Γ − f |Λ‖2 ≥ c‖f‖2 −
c

2
‖f‖2 =

c

2
‖f‖2.

Since Γ and f were arbitrary, this proves the theorem.

We now have a couple of tools to determine some sets of SS from others. In both Bernstein
spaces and Paley-Wiener spaces, sufficiently small perturbations still keep the property of
being a set of SS. By lemma 9.11 (i), the same can be said for weak limits of translates, at
least for Bernstein spaces. We have not seen whether the same can be said for Paley-Wiener
spaces, but it turns out that the sets of stable sampling are almost the same for PWσ as for
Bσ. We will not prove it, but this is one of the crucial steps to prove our theorem for the next
section.

Another very relevant question about small perturbations is the following: under small
perturbations of the samples, are we still guaranteed to get a function, and will its changes
be small? That is, if {δλ}λ∈Λ is a sequence of complex numbers of small absolute value,
and if we replace f(λ) by f(λ) + δλ, does there exist a function g in the desired space s.t.
g(λ) = f(λ) + δλ for λ ∈ Λ? And if g exists, is |f(x)− g(x)| small for x ∈ C? In a
practical situation, this is a question of whether high precision in our measurements gives us
a function close to the one we want. However, this is not a question this thesis attempts to
answer. Identifying the sets of SS is our main focus here.

9.6 Beurling’s sampling theorem

We are almost ready to give the main theorem of this section. But as mentioned, [OU16] uses
another definition of PWσ and Bσ than this thesis. Thus, since the theorem is taken from
that book, we need to know how to interpret it with our definitions. On page 13, [OU16]
defines the Fourier transform by:

f̂ :=
1√
2π

∫
R
f(x)e−ix(·)dx.

One difference is the factor 1√
2π

, which is needed to make the Fourier transform on L2(R)

unitary. However, the relevant detail here is that the argument is scaled, since that is what
changes the support of f̂ . If f ∈ PWσ with our definition, then
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∫
R
f(x)e−ixtdx =

∫
R
f(x)e−2πix( t

2π
)dx = 0

a.e. for
∣∣ t

2π

∣∣ > σ, i.e. for |t| > 2πσ. This shows that what we call PWσ is the same space
that [OU16] calls PW2πσ.

Similarly, on page 17, the book defines Bσ to be the space of all entire functions s.t. there
exists a constant C > 0 satisfying

|f(z)| ≤ Ceσ|Im(z)|, ∀z ∈ C.
Thus, what we call Bσ is the same space that they call B2πσ.

From these observations, we get what we need to interpret the theorems. E.g. assume that
[OU16] states a u.d. set Λ ⊂ R to be a set of SS for PWσ if and only if a given statement
containing σ is satisfied. Replacing σ by 2πσ everywhere then gives the corresponding
statement for PW2πσ, which is what we call PWσ. Of course, the same can be said about
Bσ. With this in mind, we can now state the theorem.

Theorem 9.15. Let a u.d. set Λ ⊂ R and σ > 0 be given.

(i) If D−(Λ) > 2σ, then Λ is a set of SS for both PWσ and Bσ.

(ii) If D−(Λ) < 2σ, then Λ is neither a set of SS for PWσ nor Bσ.

(iii) If D−(Λ) = 2σ, then Λ is not a set of SS for Bσ.

This is found in [OU16], pages 30 and 33, where we have replaced σ
π

by 2πσ
π

= 2σ. Note
that in the limiting case that D−(Λ) = 2σ, Λ may or may not be a set of SS for PWσ. For
example, we know that in L2[−1

2
, 1

2
], E(Z) is an ONB, while E(Z \ {0}) is incomplete.

Thus, by theorem 8.8 (ii), Z is a set of SS for PW 1
2
, while E(Z \ {0}) is not. However, they

both have lower uniform density 1, which is the limiting case for σ = 1
2
.

In the beginning of this section, we mentioned that Beurling’s sampling theorem almost
solves the strong sampling problem completely for PWσ and Bσ. Now, we see that it does
solve the problem completely for Bσ. The only remaining part of the question is what u.d.
sets Λ ⊂ R with D−(Λ) = 2σ are sets of SS for PWσ. We will not adress that problem in
general, but as we will argue in the next section, the arithmetic progressions with D−(Λ) =
2σ are sets of SS for PWσ.

Note that the version of Beurling’s sampling theorem presented here does not say anything
about stable sampling in PWS , unless S is an interval centered at the origin. However, since
PWS ⊆ PWσ for any σ > 0 satisfying S ⊆ [−σ, σ], sampling in PWσ implies sampling in
PWS . Also, the two Paley-Wiener spaces have the same norm, so SS in PWσ implies SS in
PWS . What remains unanswered here is whether there are any other sets of SS for PWS .
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10 Uniform sampling in PWσ

We will now limit ourselves to considering uniform sampling, i.e. cases where the distance
between consecutive elements of the sampling set is fixed. Also, we will only consider PWσ,
i.e. the Paley-Wiener spaces whose spectrum is an interval centered at the origin. What does
the theory we have look like in that case?

10.1 Uniform sets of SS for PWσ

As we know, for any c ∈ R, E(Z+c
2σ

) is a multiple of an ONB for L2[−σ, σ], hence a (tight,
exact) frame. By theorem 8.8 (ii), this is equivalent to saying that Z+c

2σ
is a set of SS for PWσ.

As noted before, D−(Λ) = 1
δ(Λ)

whenever Λ is an arithmetic progression, so D−(Z+c
2σ

) = 2σ.
This is exactly the limiting case in Beurling’s sampling theorem. Clearly, every arithmetic
progression with separation 1

2σ
can be written as Z+c

2σ
for some c ∈ R, where we may pick

c ∈ [0, 2σ). Thus, in the case of uniform sampling, Beurling’s sampling theorem leads to the
following result.

Corollary 10.1. Given a σ > 0, let Λ ⊂ R be an arithmetic progression. Then, Λ is a set of
SS for PWσ if and only if D−(Λ) ≥ 2σ, i.e. if and only if δ(Λ) ≤ 1

2σ
.

Hence, depending on how much data we want and how much we are able to get, we may
pick any set of no more separation than 1

2σ
.

10.2 Reconstruction

We have mainly looked at what the sets of stable sampling are, without considering ways
to actually find the function. However, from theorem 8.9, any set of SS for a Paley-Wiener
spaces automatically gives us a reconstruction formula. In the case that S = [−σ, σ], and the
sampling set is Z

2σ
, we get a classical result, known as Shannon’s sampling theorem.

Theorem 10.2 (Shannon’s sampling theorem). Given a σ > 0, if f ∈ PWσ, then

f(x) =
√

2σ
∑
k∈Z

f

(
k

2σ

)
sinc(2σx− k), ∀x ∈ R. (21)

Proof. For any k ∈ Z, we have:

G
(
e2πi k

2σ
(·)χ[−σ,σ]

)
(x) =

∫ σ

−σ
e−2πi k

2σ
te2πixtdt =

∫ σ

−σ
e2πi(x− k

2σ
)tdt

=
1

2πi(x− k
2σ

)

[
e2πi(x− k

2σ
)t
]t=σ
t=−σ

=
1

π(x− k
2σ

)
· e

2πσi(x− k
2σ

) − e−2πσi(x− k
2σ

)

2i

= 2σ
sin(2πσ(x− k

2σ
))

2πσ(x− k
2σ

)
= 2σ sinc

(
2σ

(
x− k

2σ

))
= 2σ sinc(2σx− k), ∀x ∈ R.

Since 1√
2σ
E( Z

2σ
) is an ONB for L2[−σ, σ], and thus equals its own dual frame, Shannon’s

sampling theorem follows from theorem 8.9.
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Shannon’s sampling theorem is one of the most well-known theorems in sampling theory. It
is often stated for the case that σ = 1

2
, after which (21) becomes

f(x) =
∑
k∈Z

f(k)sinc(x− k), ∀x ∈ R, ∀f ∈ PW 1
2
.

If we translate Z
2σ

to get Z+c
2σ

, then the same calculation as before gives the exact same
combination of sinc-functions, except that k is replaced by k+c. In the rest of this discussion,
we will just assume that c = 0, remembering that cases where c 6= 0 are easy to get around.

How about if Λ is a uniform sampling set of smaller separation than 1
2σ

? In that case,
E(Λ) is not an ONB, so it might not be its own dual frame. In the case that we halve
the separation, as demonstrated in example 6.17, the dual frame of E(Λ) is simply 1

2
E(Λ).

Hence, if we replace k by k
2

to get a separation of 1
4σ

, we just need to halve every term in
(21):

f(x) =

√
2σ

2

∑
k∈Z

f

(
k

4σ

)
sinc

(
2σx− k

2

)
, ∀x ∈ R, ∀f ∈ PWσ.

The same argument works equally well if we scale down the separation by another natural
number m > 2. Thus, the reconstruction formula becomes:

f(x) =

√
2σ

m

∑
k∈Z

f

(
k

2σm

)
sinc

(
2σx− k

m

)
, ∀x ∈ R, ∀f ∈ PWσ. (22)

So far, the density 1
δ(Λ)

has been a multiple of 2σ. This has allowed us to view E(Λ) as a
disjoint union of ONBs, which is what we took advantage of to compute the frame operator
in example 6.17. The situation is a bit trickier otherwise. In that case, we need another way to
find the dual frame, or another alternate dual frame, for E(Λ). One possibility to get around
that problem is to take advantage of the fact that PWσ ⊆ PWγ whenever γ ≥ σ. As long as
γ ≤ 1

2δ(Λ)
, E(Λ) is a set of SS for PWγ as well. Picking γ ∈ [σ, 1

2δ(Λ)
] s.t. 1

δ(Λ)
is a multiple

of 2γ, we can use (21), with γ in place of σ. Note that such a γ always exists. Firstly, for Λ to
be a set of SS for PWσ, we must have σ ≤ 1

2δ(Λ)
by Beurling’s sampling theorem. Secondly,

picking γ := 1
2δ(Λ)

yields one solution. If a γ < 1
2δ(Λ)

satisfies our conditions, we may also
use (22) for the space PW 1

2δ(Λ)
.

Example 10.3. Let σ := 2
π

, let Λ := Z
2
, and assume that f ∈ PWσ satisfies:

f(λ) =


π, λ = 0
0, λ ∈ Z \ {0}
1
λ
, λ ∈ 2Z + 1

2
− 1
λ
, λ ∈ 2Z− 1

2

Since 1
2δ(Λ)

= 1 > σ, we know that Λ is a set of SS for PWσ. Thus, f is uniquely determined
from f |Λ, which is known, and we have a few ways of reconstructing f . If we pick a γ ∈ [ 2

π
, 1],

then Λ is a set of SS for PWγ ⊇ PWσ as well. Picking γ = 1 allows us to use (21) with
either m = 1 or m = 2. to get:
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f(x) =
∑
k∈Z

f

(
k

2

)
sinc(2x−k) = πsinc(2x)+

∑
n∈N

(f(n)sinc(2x−n)+f(−n)sinc(2x+n))

= πsinc(2x) +
∑
n∈N

1

n
(sinc(2x− n)− sinc(2x+ n)), ∀x ∈ R.

Had we sampled on Z
4
, i.e. twice as frequently, we could still get f in the same way. However,

we would also have the option of using (22), with n = 2. In addition, we could use γ = 2,
since the density would be doubled. In any case, the solution is:

f(x) = πsinc(x), ∀x ∈ R.
It can be checked that f coincides with f |Λ on Z

2
, and it is well-known that

f ∈ PW 1
2
⊂ PWσ. Note that finding f would be even easier had we known that f ∈ PW 1

2
,

since we could then use the values on Z, where all but one of them vanish. However, since
PW 1

2
6⊇ PWσ, we did not know that to begin with.

10.3 Perturbations of Z
2σ

By theorem 9.14, if Λ ⊂ R is a set of SS for PWσ, then every sufficiently small
perturbation of Λ is also a set of SS for PWσ. That is, if {δk}k∈N is a sequence of non-
negative real numbers not exceeding δ, then Γ := {λk − δk s.t. k ∈ N} is a set of SS for
PWσ. By theorem 8.8 (ii), this is equivalent to saying that if E(Λ) is a frame in L2(S), so
is E(Γ) = {e2πi(λk−δk)(·)}k∈N. But what is sufficiently small, i.e. how small does δ need to
be? The lower uniform density does not change, so if D−(Λ) > 2σ, Beurling’s sampling
theorem makes sure that we still have a set of SS. Thus, the only interesting cases are the
ones where D−(Λ) = 2σ.

Answering that question in general is hard, and we will not consider that problem.
However, in the case that Λ = Z

2σ
, we actually have an exact answer! This is known as

Kadec’s 1
4
-theorem, and it is known that the number 1

4
cannot be improved.

Theorem 10.4 (Kadec’s 1
4
-theorem). Let σ > 0 and a u.d. set Λ ⊂ R be given. If there exists

a δ ∈ [0, 1
4
) satisfying

|λk − k| ≤ δ, ∀k ∈ Z,
then E( Λ

2σ
) is an RB for L2[−σ, σ].

Proof. See [Yo01] page 36 for the case that σ = π. Otherwise, if f ∈ L2[−σ, σ], then

g(x) := f
(σ
π
x
)
, ∀x ∈ [−π, π]

defines a function g ∈ L2[−π, π]. Hence, there exists a unique sequence {ck}k∈N s.t.

g =
∑
k∈Z

cke
iλk(·)
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in the L2-norm. Hence, again in the L2-norm, setting γk := λk
2σ

, we have:

f(x) = g
(π
σ
x
)

=
∑
k∈Z

cke
iλk

π
σ
x =

∑
k∈Z

cke
2πiγkx.

Existence and uniqueness of this expansion shows that E( Λ
2σ

) is a basis for L2[−σ, σ]. Also,

∥∥∥∥∥∑
k∈Z

cke
2πiγk(·)

∥∥∥∥∥
2

L2[−σ,σ]

=

∫ σ

−σ

∣∣∣∣∣∑
k∈Z

cke
2πiγkx

∣∣∣∣∣
2

dx =
σ

π

∫ π

−π

∣∣∣∣∣∑
k∈Z

cke
iλkt

∣∣∣∣∣
2

dt

=
σ

π

∥∥∥∥∥∑
k∈Z

cke
iλk(·)

∥∥∥∥∥
2

L2[−π,π]

,

where we have been using the change of variable t := π
σ
x. Since E( Λ

2π
) satisfies (8) in

L2[−π, π], we conclude that E( Λ
2σ

) also satisfies (8) in L2[−σ, σ], where we scale A and B
by the factor σ

π
.

We now know how small the perturbations need to be for every UNIFORM sampling set.
Kadec’s 1

4
-theorem solves it for the case that 1

δ(Λ)
= 2σ, while Beurling’s sampling theorem

is sufficient to answer the cases of larger density. Note that since the frame is E( Λ
2σ

), rather
than E(Λ), the upper bound for the perturbations is 2σ · 1

4
= σ

2
, rather than 1

4
. Kadec’s

1
4
-theorem also tells us that the new frame is still an RB, i.e. it is exact. We will not find the

operator mapping E( Λ
2σ

) into the ONB E( Z
2σ

), but Kadec showed that it does exist, leading
to the theorem.
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11 Conclusion

This concludes the theory of this thesis. We have seen that the strong sampling problem in
PWS are equivalent to identifying the exponential frames in L2(S). Beurling’s sampling
theorem solves the strong sampling theorem for Bσ, and it almost solves it for PWσ as well.
For the case of uniform sampling in PWσ, we have an exact answer. Small perturbations do
not change the sampling properties in any of the two spaces, and for uniform sampling in
PWσ, we also know how small the perturbations need to be.

References

[Ah66] Ahlfors, L. (1966). Complex analysis, 2nd edition. USA: McGrav-Hill Book
Company.

[Ch10] Christensen, O. (2010). Functions, Spaces, and Expansions. Birkhäuser.

[HL00] Han, D. & Larson, D. R. (2000). Frames, Bases and Group Representations.
Providence, Rhode Island: American Mathematical Society.

[Mc07] McCormick, D. (12.02.2007). Orthonormal Bases in Hilbert Spaces.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.586.2734&rep=rep1&type=pdf

[OU16] Olevskii, A. & Ulanovskii, A. (2016). Functions with Disconnected Spectrum.
Providence, Rhode Island: American Mathematical Society.

[Ru91] Rudin, W. (1991). Functional analysis, 2nd edition. Singapore: McGrav-Hill, Inc.

[Sc02] Schechter, M. (2002). Principles of Functional analysis, 2nd edition. Providence,
Rhode Island: American Mathematical Society.

[Yo01] Young, R. M. (2001). An introduction to nonharmonic fourier series, revised 1st
edition. USA: Academic press.

[Wik1] Absolute convergence. https://en.wikipedia.org/wiki/Absolute_convergence
(edited 27.05.2019)

[Wik2] Bounded operator. https://en.wikipedia.org/wiki/Bounded_operator
(edited 25.01.2019)

86




