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Abstract

The cubic anisotropy model is a simple scalar field theory with a phase
transition of either first- or second order depending on the values of its
parameters, with similarities to the electroweak phase transition that oc-
curred in the very early universe. Using lattice simulations, the critical
mass of this phase transition is estimated for several values of the param-
eters, and an infinite volume estimate is produced. Further, the question
of whether the phase transitions are first- or second order in the lattice
model is investigated. The phase transitions are found to be of second-
order when 3λ2/λ1 = 0, 1, 3, and first order when 3λ2/λ1 = 3.003, in line
with existing theory on the matter.
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1 Introduction

In cosmological models of the very early Universe, it is theorized that all fun-
damental forces may have been unified, gradually separating as the Universe
expanded and cooled down through a series of symmetry-breaking phase tran-
sitions. Of these theories, the electroweak phase transition is particularly well-
developed, modelling the separation of the electromagnetic and weak interac-
tions. In this thesis, the aim is to test a numerical lattice simulation method of
analysing equilibrium states in a simpler scalar field theory, the cubic anisotropy
model. While simple compared to the standard model, it exhibits a similar tran-
sition to that in the electroweak phase transition, making it a useful toy model
for methods that could be applied to more realistic models. By seeing how the
equilibrium state changes as a function of the model parameters, properties of
the phase transition like the order and critical point of the transition can be
found.

The Monte Carlo simulations used here were implemented from scratch in
C++ for this thesis, and as such a large amount of the work involved dealt
with making the simulations run correctly. The payoff to doing it this way is
efficiency, as the custom software allows for large simulations to be performed
in short amounts of time, using only consumer-grade hardware.

The structure of this thesis is as follows: Sections 2-4 deal with the under-
lying physical theory, starting with phase transitions in general and how they
relate to cosmological models of the early universe in section 2, then moving
on to quantum field theory at non-zero finite temperatures and lattice models
thereof in section 3, and giving details on the cubic anisotropy model in section
4. Section 5 deals with the Monte-Carlo methods used to perform simulations
on the lattice model, while section 6 explains the parameters used to perform
the simulations, as well as how final results are derived from the simulation out-
put. Finally, those results are presented in section 7, along with some discussion
of those results. Some details on how simulations are implemented are given in
the appendix.

2 Phase transitions

The most familiar examples of phase transitions in everyday life are the freez-
ing and boiling of water, in which the substance changes into a solid or gas
once a critical temperature has been reached. This critical temperature varies
with pressure, and as such the phase transition is said to occur on a critical line
in the P − T -plane. Phase transitions are not limited to this familiar kind of
solid-liquid-gas transition, however. A general phase transition is characterized
by some rapid, possibly discontinuous, change in the properties of a system, in
response to a change in the thermodynamic variables of the system, such as the
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temperature. At the transition point(s) the free energy,

F = U − TS, (1)

remains constant, but its first- or second derivatives do not. It is in these
parameters that the phase change of the system can be identified. For example,
in the case of water, the specific volume and internal energy of the liquid and
gaseous phases are significantly different at the same temperature and pressure.
This is easily seen when boiling water: The temperature remains constant while
energy is transferred into the water, and only resumes increasing once all the
water has vaporized, assuming energy is still being added at that point.

2.1 Order parameters and transition types

For many phase transitions, the phases can most easily be distinguished through
an order parameter [8]. In these cases, the order parameter describes the order-
ing of some microscopic property, such as the alignment of the magnetic dipoles
in a metal. The usefulness of an order parameter comes from unambiguously
showing what phase the system is, as it is often zero in one phase, and nonzero
in the other. For example, in the case of a paramagnetic metal being cooled
below its Curie temperature, the magnetic dipoles strongly influence each other
to align in the same direction, causing ferromagnetism. The order parameter
in this case is the absolute value of the magnetization M, it is zero in the
paramagnetic phase and nonzero in the ferromagnetic case.

A good choice of order parameter, or something similar to an order param-
eter, is helpful to properly analyse the transition properties of a system. In the
type of statistical model used here, the order parameter is derived statistically
from the microscopic properties of the system. As will be shown in section 4, it
is not always possible to use the actual order parameter. In those cases where
it is not, a stand-in for the order parameter needs to be defined.

In the case where the discontinuity appears in a first derivative of the free
energy, the transition is said to be first-order. As the description of boiling
water above indicates, it is one such phase transition. In this case, the spe-
cific volume v(T ) is one of the discontinuous parameters. Boiling illustrates a
common property of these phase transitions: At the critical point, the system
will be a in a mixed state that occupies both phases in equilibrium, in this case
both steam and liquid water. This happens because any energy added to the
system is ”spent” to break the inter-molecular bonds keeping the water in its
liquid phase, so none is available to increase temperature. The heat ”lost” to
breaking these bonds is known as the latent heat of the phase transition.

Another common property of first-order phase transitions that appears in
the water-steam phase transition is the formation of bubbles. As a small portion
of the total mass changes phase, surface tension between the two phases appears.
It is then most efficient for the part of the system in contact with the bubble
surface to change phase first, and the bubbles grow as the phase transition
progresses. Depending on the system, this causes various turbulent behaviours.
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In the case of water the bubbles rise to the surface and burst, freeing the vapour
within and contributing to turbulent flow on the way up.

If the discontinuity appears in a second derivative, the transition is of second
order. These transitions do not involve a latent heat, and as such there is no
coexistence of separate phases. In this case, the order parameter is continuous at
the phase transition. The paramagnetism-ferromagnetism transition is a good
example of a second-order transition, as the magnetization changes continuously
from 0 to a positive value.

2.2 Spontaneous symmetry breaking

Figure 1: Scalar φ4 potential with m2 > 0 and
m2 < 0, going from a single minimum to two
minima.

In quantum field theory,
phase transitions most often
appear in the context of spon-
taneous symmetry breaking,
where the ground state of a
field lacks symmetries that
are present in the Lagrangian
of that field. The simplest
example of this occurs in the
case of a massive scalar field
with a φ4 interaction [21]:

L =
1

2
(∂µφ)2 − 1

2
m2φ2 − λ

4!
φ4, (2)

which has a Z2 symmetry where φ → −φ, and the order parameter has expec-
tation value 0 as long as m2 > 0 at tree level. In real systems, parameters like
m2 and λ are often functions of temperature, leading to the possibility of m2

going below 0. When this happens, there are two distinct ground states |0+〉
and |0−〉, with tree-level expectation values at the minima of the potential:

〈0±|φ|0±〉 = ±
√
−6m2

λ
. (3)

In these ground states, the φ→ −φ transformation maps |0+〉 to |0−〉, meaning
the symmetry of the Lagrangian does not apply to the ground states. While the
two ground states are equivalent, the system must fall into one or the other.

This kind of phase transition plays an important part in models of the early
Universe [21, 5], where it is theorized that the fundamental forces were initially
indistinguishable, but separated due to symmetry-breaking processes as the Uni-
verse expanded and the energy density decreased. The success of electroweak
theory in unifying the electromagnetic and weak interactions at high energies,
in particular, stands out as a key piece of evidence for this being the case. The
electroweak phase transition of the standard model occurred around 2× 10−11s
after the Big Bang, separating the weak and electromagnetic interactions by
breaking the SU(2) × U(1)-symmetry of the electroweak gauge fields into the
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U(1)-symmetry of electromagnetism. This happened because the Higgs mul-
tiplet, H, which is a complex doublet field, gains a vacuum expectation value
from the potential

V (H) = −m2|H|2 + λ|H|4, (4)

when m2 > 0, similar to the model in eq. 2. This vacuum expectation value is
what induces the symmetry breaking through the various couplings between H
and the gauge fields, resulting in the familiar weak- and electromagnetic forces.
The theory of electroweak baryogenesis[18, 5] is a possible consequence of this
phase transition, stating that if the phase transition is first-order, baryon num-
ber violation may have occurred during it, explaining the apparent prevalence
of matter over antimatter in the Universe. However, in the Standard Model,
a first-order phase transition is only possible if the Higgs boson has a mass
lower than mh . 70 GeV, which is much smaller than the LHC measurement
of mh ≈ 125 GeV. Because of this, electroweak baryogenesis is only possible
in modified versions of the standard model that make the phase transition first
order.

The model considered in this thesis, the cubic anisotropy model, is not such a
modification. It is, however, a much simpler scalar field theory with a potential
similar to that in eq. 4, which is easily discretized for lattice simulations. The
phase transition in the cubic anisotropy model is discussed in detail in section 4,
while the equation used to estimate its order parameter at arbitrary parameter
values is the main result of the next section.

3 Thermal quantum field theory on the lattice

Thermal field theory [8, 12] approaches quantum field theory at non-zero finite
temperatures using many of the tools from statistical mechanics, in particular
the canonical ensemble. The end goal of this section will be to derive the formula
needed to calculate an observable A in the lattice approximation of a field with
arbitrary parameters:

〈Â〉 =
1

Z

∫ ∏
x

(dφ(x))Â[φ(x)]e−S[φ(x)]. (5)

To arrive at this result, first a quick review of statistical mechanics applied to
quantum field theory at high temperatures is needed. From there, this section
proceeds to the lattice model, detailing the effect of using it to approximate
continuous fields, and the necessary steps to retrieve the continuum theory from
lattice simulations.

3.1 Thermal field theory and statistical mechanics

The core idea of statistical mechanics is to connect the microscopic states of a
system to macroscopic states described by a small number of thermodynamic
parameters. In the case of statistical mechanics on a crystal lattice, for example,
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the microscopic state is the position, internal energy, momentum, and other
relevant properties of the atoms in the crystal. The macroscopic properties of
the system, on the other hand, are the temperature, entropy, internal energy,
and so on. Clearly, there are many microscopic states corresponding to each
macroscopic state. To keep track of all these microscopic states, an ensemble of
states is defined, described by the density matrix ρ̂, [8] satisfying

tr[ρ̂] = 1. (6)

When a system is in the macroscopic state corresponding to ρ̂, the expecta-
tion value of any observable is given by

〈Â〉 = tr[ρ̂Â] =
∑
i

γi 〈i|Â|i〉 , (7)

where γi is the weight of each microstate |i〉. The density matrix can be ex-
pressed purely in terms of the weighted states as

ρ̂ =
∑
i

γi |i〉 〈i| . (8)

The time evolution of ρ̂(t) is given by the Liouville-von Neumann equation,
stating that

i∂tρ̂(t) = Ĥρ̂(t) + ρ̂(t)Ĥ = [Ĥ, ρ̂(t)], (9)

where Ĥ is the standard Hamiltonian operator for the system, which measures
the total energy of the system, i.e. the sum of the kinetic and potential energy.

In the case of thermal equilibrium, ρ̂(t) is constant in time, meaning that

i∂tρ̂(t) = 0. (10)

Of the possible solutions to this equation, the one that is relevant here is the
density matrix of the canonical ensemble, which is given by

ρ̂ =
1

Z
e−βĤ , (11)

where β = 1
kbT

is the inverse temperature, and Z, the partition function, is the
sum over all states weighted by energy, given by

Z = tr[e−βH̄ ]. (12)

The canonical ensemble is the Gibbs ensemble that models a system kept
at constant temperature in a heat bath [15]. This makes it particularly suited
to the study of phase transitions, as the temperature can be set externally for
calculations.

With this, the observable expectation value takes the form

〈Â〉 =
1

Z
tr[e−βH̄Â]. (13)

6



Before moving on to the direct evaluation of Z as a path integral, the in-
terpretation of the operator ρ̂ = 1

Z e
−βH̄ should be addressed. In statistical

mechanics, this is a Boltzmann distribution [15], which gives the probability of
a system to be in a state Φ with energy H(Φ) as a function of said energy. There
is a second interpretation in the context of quantum field theory, however [12].
The time evolution operator U(t1, t0), which evolves a system from its state at
time t0 to its state at t1, is given by

U(t1, t0) = ei(t1−t0)Ĥ , (14)

and immediately bears resemblance to the e−βĤ -factor in the density matrix.
In fact, the statistical mechanics of a 3D system at inverse temperature β can
be directly interpreted as being equivalent to a 4-dimensional field theory with
periodic ”time” of period β. The use of an imaginary value for time is a math-
ematical trick that relates the thermal path integral to the usual Minkowskian
path integral, with the effect of transforming the relativistic Minkowski metric
by

ds2 = dx2 + dy2 + dz2 − dt2 → dx2 + dy2 + dz2 + dτ2, (15)

which is a 4D Euclidean metric. Thermal field theory takes place in this 4D
spacetime analogue, with periodic ”time” so that τ = τ + β.

3.2 The path integral

The next step is to reformulate Z in terms of a path integral, using the same
approach to derive it as [12, 8, 21]. For a theory of a single scalar field, Z
is evaluated by taking the trace over the basis of field eigenstates, |Φ〉. Field
eigenstates are defined by the eigenvalue equation

φ̂(x) |Φ〉 = φ(x) |Φ〉 (16)

Where φ̂(x) is the field operator, normally used to extract field expectation

values in an arbitrary state |i〉 by 〈φ(x)〉 = 〈i|φ̂(x)|i〉, and φ(x) is simply a field
value at the point x. The trace in this basis is

Z =

∫
dΦ 〈Φ|e−βĤ |Φ〉 . (17)

With the substitution β → i(tb − tb), this becomes

Z =

∫
dΦ 〈Φ|e−i(tb−ta)Ĥ |Φ〉 =

∫
dΦ 〈Φtb|Φta〉 , (18)

where the inner product 〈Φtb|Φta〉 is the propagator from the state |Φta〉 to
|Φtb〉, giving the probability amplitude of a system known to be in the state |Φ〉
at time ta to be in the same state at time tb.

Defining Z(Φi, ti; Φj , tj) = 〈Φiti|Φjtj〉 = 〈Φi|ei(ti−tj)Ĥ |Φj〉 as the propaga-
tor from |Φiti〉 to |Φjtj〉, the next step is to derive the path integral for Z. The
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trick to doing this is to divide it into n→∞ small time steps δt = tj+1 − tj by
repeatedly inserting the completeness relation∫

dΦj |Φjtj〉 〈Φjtj | = 1, (19)

resulting in

Z =

∫
dΦdΦ1...dΦn 〈Φtb|Φntn〉 〈Φntn|Φn−1tn−1〉 ... 〈Φtb|Φta〉 . (20)

Inserting time evolution back in at every step by |Φjtj〉 = eiδtĤ |Φjtj−1〉
results in

Z =

∫
dΦdΦ1...dΦn 〈Φtb|eiδtĤ |Φntb〉 〈Φntn|eiδtĤ |Φn−1tn−1〉 ... 〈Φtb|eiδtĤ |Φta〉 .

(21)
Now, each piece is evaluated separately, resulting in

lim
δt→0

〈Φiti|eiδtĤ |Φi−1ti〉 = Neiδt
∫
d3xL[φ(x,t)j ,∂φ(x,t)j/∂t], (22)

where L is the Lagrangian density of the field. The partition function is now
the product of all these exponentials

Z = N
∫
dΦdΦ1...dΦn exp

[∑
j

iδt

∫
d3xL[φj(x, tj), ∂µφj(x, tj)]

]
, (23)

which, taking the limits n → ∞ and δt → 0 and dropping the normalization
factor N results in

Z =

∫
φ(x,t1)=φ(x,t2)

D[φ(x, t)]eiS[φ(x,t)] (24)

Here, the action S[φ(x, t) is a functional of φ(x, t) from time ta to tb, given by

S =

∫ tb

ta

dt

∫
d3xL[φ(x, t), ∂µφ(x, t)], (25)

and the integration measure

Dφ(x, t) = D[φ] =

∫
dΦdΦ1...dΦn, (26)

is understood to a functional integral over all possible 4D configurations of the
field φ.

Going back to imaginary time by ta → 0 and tb → iβ, the action becomes

S[φ, β] =

∫ β

0

dτ

∫
d3xLE [φ(x, τ), ∂µφ(x, τ)], (27)
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where the relativistic Minkowsky Lagrangian L has been replaced by the Eu-
clidean Lagrangian, LE . The difference between the two is that where a Minkowsky
Lagrangian for a scalar field theory generally reads

L[φ] = (∂t −∇2)φ− V [φ], (28)

the Euclidean Lagrangian is given by

L[φ] = (∂t +∇2)φ+ V [φ]. (29)

With all this, the final formulation of Z as a path integral in 4D euclidean
space with a periodic time boundary condition is

Z =

∫
φ(x,0)=φ(x,β)

D[φ].e−S[β,φ] (30)

Operator expectation values are similarly expressed by the path integral

〈A〉 =
1

Z

∫
φ(x,0)=φ(x,β)

D[φ]Ae−S[β,φ]. (31)

In practice, it is often necessary to use an effective field theory approxi-
mation for calculation purposes. One way to greatly simplify theories at high
temperatures in equilibrium is by dimensional reduction[5, 7]. Making use of
the periodic time boundary condition, it is possible to match the 4D theory to a
3D effective field theory when the temperature is large compared to the masses
involved, by exploiting the fact that as the time dimension is compactified, the
zero-mode dominates time-dependent dynamics, allowing them to be integrated
out. The 3D theory then has parameters that correspond to the ones in the 4D
theory as functions of temperature, and calculations done in the 3D theory can
be mapped back to the full 4D theory.

There are several benefits to using the dimensionally reduced 3D theory
instead of the full 4D theory, in particular that it vastly simplifies numerical
calculations. To do numerical calculations, however, it is necessary to make
further approximations.

3.3 Lattice regularization

In all of quantum field theory, it is common to encounter the problem of diver-
gences at very high and very low momenta [21]. Various regularization schemes
exist to combat this, but lattice regularization [4], the one used here, is particu-
larly well-suited to numerical work, as it reduces an otherwise infinitely granular
theory to a finite data set.

The idea behind lattice regularization is to model the otherwise continuous
fields using a discrete lattice with spacing a, modifying the theory so that in
the continuum limit, a → 0, the original theory is retrieved. The introduction
of a restricts all coordinates to the form

xµ = anµ. (32)
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For practical calculations, it is also necessary to restrict n to a finite range,
so that

0 < nµ < N, (33)

which corresponds to only considering the system within a finite volume V .
Outside this range, the lattice is assumed to be periodic, so that

nµ +N = nµ. (34)

With these restrictions, each field configuration is described by N3 points,
each containing one or more scalar, vector, tensor or spinor values depending
on the type of field.

The lattice serves as a UV cutoff, providing an upper bound on the frequen-
cies that can exist on the lattice. This can be seen when taking the Fourier
transform of any arbitrary function f(x) on a 1-D lattice:

f̃(k) =
∑
n

f(an)ei2πakn =
∑
n

f(an)ei2πakn+i2πn

=
∑
n

f(an)ei2πa(k+1/a)n = f̃(k + 1/a), (35)

meaning that frequencies separated by 1/a are equivalent on the lattice, effec-
tively restricting each component of the wave vector k to the range

−1/2a < ki ≤ 1/2a. (36)

Known as the Brillouin zone of the lattice [6]. Equivalently, wavelengths are
restricted to

λ ≥ 2a (37)

Figure 2: Lattice cutoff: Wavelengths less than twice the lattice spacing are
removed by the lattice cutoff, as only the value at each discrete point is recorded

Introducing the lattice necessitates modifications to the action. A generic
action integral in a 3D effective scalar field theory with a single field looks like

S =

∫
d3xT (φ(x), φ′(x)) + V(φ(x))

]
, (38)
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but with the action restricted to the lattice, it becomes a sum

S = a3
∑
x

[
T (φ(x), φ′(x)) + V(φ(x))

]
. (39)

The factor of a3 is commonly eliminated by rescaling the fields and field
parameters. The details of this rescaling are given in section 4.

The kinetic term T can be expressed in terms of the Laplacian, ∇2:

T (φ(x), φ′(x)) = −φ(x)∇2φ(x), (40)

On the lattice, the Laplacian ∇2φ(x) needs to be defined in terms of nearest-
neighbour derivatives. Defining x + i as the nearest-neighbour coordinate in a
positive direction along the ith dimension, the simplest approximation of the
Laplacian is

∇2
Lφ(x) =

1

a2

[
− 6φ(x) +

∑
i

(
φ(x + i) + φ(x− i)

)]
(41)

This only has O(a) accuracy, however. This can be shown [2] by first taking
the series expansion of an arbitrary function f(a) around a point x:

f(a) =

∞∑
i=0

fn(x)

n!
(a− x)n. (42)

Now, adding the series for f(x+ a) + f(x− a) results in

f(x+ a) + f(x− a) = 2f(x) + a2f ′′(x) +O(a4). (43)

Rearranging and dividing through by a2 results in

∂2

∂x2
f(x) =

f(x− a)− 2f(x) + f(x+ a)

a2
+O(a2), (44)

Which leads directly to the Laplacian through ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 . To

eliminate the O(a2) error term, an improved lattice Laplacian using next-to-
nearest neighbours [17] is used instead:

∇2
Lφ(x) =

1

a2

[
−15

2
φ(x)+

4

3

∑
i

(
φ(x+i)+φ(x−i)

)
− 1

12

∑
i

(
φ(x+2i)+φ(x−2i)

)]
.

(45)
Due to the rescaling mentioned above, the factor of 1

a2 above disappears in
the Lagrangian.

Another feature of the lattice model that needs to be addressed is that
of renormalization counterterms. When using perturbative methods, the need
for renormalization arises when loop corrections to observables that depend on
lattice parameters are found to be divergent in those parameters. In the case of
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the lattice approach, a similar problem arises in that O(a) errors appear, which
dominate results at large values of a [16].

The explanation for these errors is that they arise from effects dependent
on the degrees of freedom that have been cut away by the lattice model, i.e.
loop corrections to the path integral in momentum ranges outside of the lattice
cutoff [16]. To compensate for this, counterterms are calculated to provide the
higher-order corrections that are missing in the lattice theory.

The method to find these counterterms [16, 17] is to calculate correlation
functions from which the renormalization parameters are derived in both the
continuum and lattice theories, then derive counterterms that match the two,
as functions of the renormalized parameters. This results in finite counterterms,
which can be easily calculated and applied to produce bare parameters, which
are used in the lattice calculations.

3.3.1 Lattice path integral

Recalling that the path integral was defined as a product over the infinite degrees
of freedom in a continuous field, it is simple to see that it must be redefined
on the lattice. Since there are only N degrees of freedom along each spatial
dimension, the path integral measure returns to being a product of integration
measures over each individual lattice point x [4],

D[φ]L =
∏
x

(dφ(x)) (46)

Which leads to the partition function

Z =

∫ ∏
x

(dφ(x))e−S[φ(x)] (47)

And finally, the operator expectation value formula is

〈A〉 =
1

Z

∫ ∏
x

(dφ(x))Â[φ(x)]e−S[φ(x)] (48)

As will be shown in section 5, Monte-Carlo simulations are needed to evaluate
this numerically, due to the high number of degrees of freedom in the integral.

3.3.2 Continuum and infinite volume limits

Two limits are needed to retrieve the original theory when using lattice regu-
larization. The first is the infinite volume limit, (aN)3 →∞, the second is the
continuum limit, a → 0 [4]. In practice, calculating this limit for a calculated
measurement M works as follows [17]:

• Measure M by some procedure depending on observables in the lattice
theory at a fixed value of a for different N

• Fit M as a function of N−3, then extrapolate to N−3 = 0
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• Repeat this procedure for several a, fit the infinite volume limitsM(a, 1/N3− >
0) as a function of a, and finally extract the continuum estimate of M by
extrapolating to a = 0.

The details of how this procedure is implemented here are given in section 6.

4 Cubic anisotropy model

The cubic anisotropy model [17, 1] is a simple two-field scalar field theory with
a phase transition, which is well-suited to being studied in lattice models. The
model is defined by the partition function

Z =

∫
Dφ1Dφ2e

−S[φ1,φ2], (49)

where S is the action

S =

∫
d3x

[ ∑
i=1,2

(1

2
φi∇2φi +

m2

2
φ2
i +

λ1

24
φ4
i

)
+
λ2

4
φ2

1φ
2
2

]
. (50)

The parameters here are given in the standard particle physics units, where
~ = c = kB = 1, so that [length] = [time] = [energy]−1 = [temperature]−1. The
dimension of the scalar fields is (length)−1/2, so that squared fields φ2

i are given
in units of (length)−1. The coupling parameters λ have units of (length−1), and
m2 is given in terms of (energy)2 = (length)−2 [17].

Similar to the single-field model in eq. 2, this model has a phase transition
where the fields gain a nonzero expectation value when m2 < 0. At tree-level,
this transition is always of second order, as the stationary point at |φ| = 0 is
unstable. However, at λ2 > λ2, it has been shown that radiative effects cause
the phase transition to become first-order [17, 1], with the latent heat increasing
as a function of the ratio λ2/λ1. The effect this ratio has on the potential is
discussed further in section 4.1.

Used as a dimensionally reduced effective field theory for a 4-dimensional
high-temperature scalar field theory, the parameters of the 3D theory correspond
to those of the 4D theory by [17]

m2 = m2
4D +O(T 2), φ = φ4DT

1/2, λ = λ4DT, S = S4D/T, (51)

meaning that lowering temperature in the 4D theory rescales both the 3D
parameters and the field values, as well as lowering the mass of the 3D theory.

Regardless of parameter values, the cubic anisotropy model has discrete
symmetries under both φi → −φi and φ1 ↔ φ2. Like in the single field model,
the ground state at m2 > 0 has tree-level expectation value 〈φ1〉 = 〈φ2〉, while
at m2 < 0 there are several ground states, in which the symmetries of the
Lagrangian are broken, detailed in section 4.1.
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Figure 3: Contour plots of the cubic anisotropy model’s potential for x =
3λ2/λ1 = {−0.5, 0, 0.5, 1.0, 2.0, 3.0}, showing the dependence of the shape on
x.

4.1 Shape of the potential

There are several ratios of the parameters λ1 and λ2 of particular interest, due to
the way they shape the potential V(φ1, φ2) in the φ1φ2-plane. [17] To illustrate

this, it is convenient to rescale the fields by φi →
√
− λ1

6m2φi. The factor
√
− λ1

6m2

comes from inverting the tree-level expectation value v =
√
−6m2

λ1
of the single-

field model in eq. 2, which is a reasonable starting point to look for minima, as
the λ2-term is zero along both φi-axes. Applying the rescaling results in

V = −3m4

λ1
(φ2

1 + φ2
2) +

3m4

2λ1
(φ4

1 + φ4
2) +

9λ2m
2

λ1
φ2

1φ
2
2

= X[−(φ2
1 + φ2

2) +
1

2
(φ4

1 + φ4
2) + x(φ2

1φ
2
2)], (52)

where X = 3m2

λ1
and x = 3λ2/λ1.

The ratio x has several special points where the potential gains additional
symmetries:

• Firstly, when x=0, the potential is

V = V1 + V2 = X
∑
i

(−φ2
i +

1

2
φ4
i ) (53)
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Which corresponds to the fields being entirely separate, as there is no
interaction in the kinetic term. From this, it seems reasonable to guess that
the phase transition will have the same critical mass as a single-field model
with the same λ1. The minima of each φi are located at φi = ±1, which
corresponds to φi = ±v when the coordinates are scaled back. For the
combined system, then, the minima are located at {φ1, φ2} = {±v,±v},
and as such there are four distinct ground states to this value of x.

• The point where x = 1 has

V = X[−(φ2
1 +φ2

2) +
1

2
(φ4

1 +φ4
2) + (φ2

1φ
2
2)] = X[−(φ2

1 +φ2
2) +

1

2
(φ2

1 +φ2
2)2]

(54)
Corresponding to another single-field theory under the substitution φ2 =
φ2

1 + φ2
2:

V = X[−φ2 +
1

2
φ4], (55)

so again the phase transition must be equivalent to the one observed in the
one-field theory. This time, however, there are infinitely many minima in
a ring around φ1 = φ2 = 0, with radius 1, or v in the original coordinate
system. This corresponds to an infinite number of equivalent ground states
related by a rotation in the φ1φ2-plane, and stands out as the only value
of x with this kind of continuous symmetry. The radial component is,
however, completely equivalent to the same single-field model as when
x = 1, and as such it should share its critical mass.

• At x = −1, the potential becomes

V = X[(φ2
1+φ2

2)+
1

2
(φ4

1+φ4
2)−(φ2

1φ
2
2)] = X[(φ2

1+φ2
2)+

1

2
(φ2

1−φ2
2)2]. (56)

This potential has a serious problem: As the φ4 part of the potential is zero
along the diagonals φ1 = ±φ2, the negative φ2 term is never countered by
the growth of the φ4-term along this diagonal, and V diverges to negative
infinity. As there are no minima to the potential, the ground state expec-
tation value in this case is also divergent, and no proper analysis in the
broken phase can be done.

• The final special point is when x = 3. In this case, λ1 = λ2, and the
potential is:

V = X[−(φ2
1 + φ2

2) +
1

2
(φ4

1 + φ4
2) + 3(φ2

1φ
2
2)]

= X[−(φ2
1 + φ2

2) +
1

2
(φ2

1 + φ2
2)2 + 2(φ2

1φ
2
2)]. (57)

While this does not look all that informative, a redefinition of the fields
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by {φ1, φ2} → 1√
2
{φ′1 + φ′2, φ

′
1 − φ′2}, results in

V = X[−(φ′
2
1 + φ′

2
2) +

1

2
(φ′

2
1 + φ′

2
2)2 +

1

2
(φ′

2
1 − φ′

2
2)2]

= V1 + V2 = X
∑
i

[−φ′2i + φ′
4
i ], (58)

which again corresponds to two uncoupled fields, but unlike before, the
factor of 1

2 preceding the φ4-term is missing. This implies that the poten-
tial at x = 3 is not equivalent to the same one-field model as the ones at
x = 0 and x = 1, and as such the critical mass could be different. Going
back to the φ1, φ2-coordinates, the minima are easily found by noticing
that the φ2

1φ
2
2-term is zero along the orthogonal lines φ1 = 0 and φ2 = 0.

From this, it’s clear that the minima are located at φ1, φ2 = ±v, 0 and
0,±v.

4.2 Discretization on the lattice

The discretized action for the cubic anisotropy model on the lattice is

S =
∑
x

[ ∑
i=1,2

(
−Zφ

2
φi∇2φi+

Zm(m2 + δm)

2
φ2
i+

λ1 + δλ1

24
φ4
i

)
+
λ2 + δλ2

4
φ2

1φ
2
2

]
,

(59)
where the Z- and δ-factors are multiplicative and additive renormalization coef-
ficients as described in [17], and the spacing parameter a is baked into the units
by rescaling so that

φL = a1/2φ,m2
L = a2m2, λL = aλ, (60)

defining a set of units on the lattice that are dimensionless. The symmetries
described in section 4.1 are preserved by the renormalizations [17], meaning the
properties of the system described there should hold on the lattice.

The order parameter used for the phase transition of this model is:

φ2
av =

1

N3

∑
x

(φ1(x)2 + φ2(x)2), (61)

which is strictly speaking not an order parameter [17], as it is nonzero in
both phases. The alternative, however, would be to use

φav =
√

(φ̄1)2 + (φ̄2)2, φ̄i =
1

N3

∑
x

φi. (62)

While this order parameter has a nonzero expectation value for each of the
individual ground states of the system, its expectation value for a path integral
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is 0, due to the symmetric nature of the potential. This makes φav unsuitable
for this situation, and φ2

av must be used instead. Further, as will be shown in
section 6, this choice of order parameter is helpful when reweighting.

The order parameter is also corrected by [17]

a 〈φ2〉 = Zm 〈φav2〉 − δ 〈φav2〉 (63)

From here on out, the physical volume of the lattice is defined in terms of
λ1L, and continuum limit approximations are taken at λ1L → 0. With this
convention, measurements of the critical mass are given in terms of m2

L/λ
2
1L.

5 Monte-Carlo Methods

When it comes to actually evaluating the path integral in eq. 48, the sheer di-
mensionality of the problem is a major detriment to numerical solutions. Treat-
ing each φi(x) as a separate degree of freedom, there are 2N3 such degrees
of freedom, and a Monte-Carlo approach is necessary to converge to a good
estimate in a reasonable time frame.

The basic application of the Monte-Carlo method [4] to this problem is to
draw n field configurations Φ = Φ0, ...Φn randomly from the distribution

Φ ∼ 1

Z
e−S , (64)

then, an observable’s expectation value is approximated using

¯〈A〉 =
1

n

n∑
i=0

A[Φi]. (65)

Provided that a way to randomly generate uncorrelated samples from the target
distribution can be used, the estimate 〈Ā〉 will converge to the true value 〈A〉
with error σA√

n
, where σA is the standard deviation of A in the sample Φ:

σ2
A =

1

n− 1

n∑
i=0

(A[Φi]− ¯〈A〉)2 (66)

The problem is that getting a sample with the distribution in eq. 64 is a
non-trivial issue. A simple method to generate a sample X from an arbitrary
distribution P (x) is rejection sampling [14], in which for every iteration i, a
proposed configuration y ∼ g(y) is generated from an easily sampled proposal
distribution g. Then, P (y) is calculated from the target distribution, and an
accept/reject step is performed, in which y is either accepted as the ith sample
in X, or rejected, with acceptance probability p(y)/Mg(y). M is a constant
that ensures Mg(x > p(x)) for all x. Rejection sampling has two problems
that make it unsuitable for this situation, however. The first is that the choice
of an appropriate g(x) is itself difficult. More importantly, however, there is

17



the problem that outside a very narrow range of field configurations around the
stationary points of the action, P (φ) is exponentially suppressed by the action
growing large. As a result, rejection sampling approaches will end up with a
very high rejection rate, ending up with a large percentage of the computation
time wasted on rejecting samples.

This kind of high-dimension, small-peaked problem is what Markov chain
Monte-Carlo simulations[14, 20] are for. The fundamental idea of any MCMC
strategy is to define some transition rule which results in a Markov chain that
converges to the desired distribution. The code developed for this thesis is just
such a simulation strategy, implementing a variant of the Metropolis-Hastings
sampling algorithm from scratch in the C++ programming language, using the
CUDA GPU programming API. The following describes the algorithm more
generally, while the specifics of this implementation are found in the appendix.

Starting from some arbitrary configuration Φ0 = {φ(x0,0,0), ...φ(xN,N,N )},
for every step, Φi+1 is acquired by a simple procedure:

1. Propose a perturbation Φ′ of Φi using the proposal distribution T (Φ; Φ′),
which can be any easily sampled distribution as long as it is symmetric,
i.e. T (Φ; Φ′) = T (Φ′; Φ).

2. Calculate ∆S = S[Φ′]− S[ΦI ]

3. Generate a random number b ∼ U(0, 1)

4. Accept or reject the sample φ′ based on b and ∆S. If b ≤ e−∆S , the
sample is accepted, and φi+1 = φ′. Otherwise, the sample is rejected,
and φi+1 = φi

A good choice of proposal distribution is critical. The first question is one of
whether to sample every component in φ all at once, or to instead focus on some
small number of components for each iteration. In this case, a pseudo-Gibbs
sampling scheme was used, so that at each iteration, only one lattice point x is
resampled from a normal distribution with mean φ(x). This resampling affects
the whole φ1, φ2-doublet, so that

φi(x)′ ∼ N(φi(x), σ), (67)

making the Markov chain a random walk, but only moving along two of the
system’s degrees of freedom at every step.

The standard deviation σ needs some fine-tuning for optimal results. If the
variance is too large, the rejection rate will also be large, meaning the simulation
spends most of its time on wasted samples. On the other hand, if the variance
is too small, the simulation will just perform a random walk in a small area,
with the accept/reject step having almost no impact. When no other method
of fine-tuning presents itself, simply recording the rejection rate for a short test
run and manually adjusting σ until the rejection rate falls within a good interval
(0.2− 0.5) is sufficient.
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Figure 4: Autocorrelation curve of a strongly autocorrelated sample, τ(φ2) ≈
104 sweeps.

Once the configurations Φ have been sampled, any number of useful observ-
ables can be calculated using eq. 65. Due to the size of Φ when the lattice is
large, it is rarely practical, or even feasible, to save the raw configurations. For
example, if Φ is 400, 000 samples of lattice configurations at N = 80, an un-
compressed file containing the entire lattice at every step using double-precision
floating point numbers would be at least 2× 803 × 400000× 8 ≈ 3.3× 1012b=
125GB in size, meaning just 16 simulation runs would be needed to fill up a
mid-range hard drive with 2 TB storage space. Instead of doing this, it is much
more economical to only save the observables A[Φi], meaning the simulation
code only keeps the current configuration Φi in memory at any one point.

The big issue with samples acquired using this algorithm is that they are
very strongly autocorrelated. Because of this, a large number of sweeps is
needed. One sweep is defined as a number of sampling steps equal to the number
of lattice points, N3, in which the sampler has had the chance to visit every
single lattice point once. As detailed in section A, a major advantage of the
GPU implementation used here is that it can run several independent sampling
steps in parallel. However, the parallelization makes it infeasible to record any
observables during a sweep, due to the need to access every lattice point to
calculate observables. Because of this, observables are at most recorded for
every sweep in this implementation. To measure the autocorrelation of the
samples, the integrated autocorrelation time of an observable measured by the
MCMC sampler is given by

τ(A) =
1

2
+

∞∑
j=1

ρj (68)

Where ρj , the autocorrelation at lag j, is given by

ρj = corr({A[Φ1], ...A[Φn−j ]}, {A[Φj+1], ..., A[Φn]}) (69)
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Figure 5: The first few sweeps differ significantly from the rest of the markov
chain (left), but when a burn-in period of 5000 sweeps is removed, the sample
is very stable. (right)

The standard error of the estimated observable is then given by

σĀ =

√
n

2τ(A)
σ2
A (70)

The factor n/2τ(A) is known as the effective sample size, and as the simulation
results show in section refresults, it can become very small even at large sample
sizes.

Another factor to consider in these simulations is the burn-in time. For a
number of iterations depending on Φ0, Φ does not follow the target distribution,
but instead moves towards the nearest maximum. To ensure that the burn-in
period does not affect results, these samples are discarded.

Finally, to help the simulation converge to the desired distribution more ef-
ficiently, an overrelaxation update [11] can be performed every m sweeps for
some small number m. In the overrelaxation update, Φi is transformed under
one of the spontaneously broken symmetries of the Lagrangian before the next
Metropolis-Hastings update can take place. This way, the sampler is ”forced”
to visit all the peaks of the distribution related by these symmetry transforma-
tions. While the simulation should in principle be able to do this without the
overrelaxation update, the probability of moving past the energy barriers be-
tween wells is often low enough that the minor additional computational effort
to add in overrelaxation updates is justified.

6 The simulations

With all the necessary tools and theory in place, the simulations that were per-
formed for this thesis can be discussed. This section describes the purpose and
parameters of the simulations, as well as the processing of the output necessary
to get the final measurements, which are presented in section 7.

The simulations are performed with two simple goals:

• Determine the order of the phase transitions at several x = 3λ2/λ1, and
check if this matches existing theory.
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Figure 6: Large-scale estimation of the critical mass at aλ1 = 0.5, N = 48 by
linear model intersection, providing the estimate m2

L/λ
2
L1 = 0.0205± 0.0057 at

95% confidence.

• Determine the critical mass of the phase transitions at those x.

To help validate the simulations in the initial search, as well as checking
convergence and adjusting the proposal distribution, several observables are
recorded every sweep:

• The action S, a useful indicator of algorithm convergence, as it should
stabilize after some number of iterations.

• The order parameter φ2
av.

• The means of each component field, φi,av = N−3
∑

x φi(x), which are
helpful to see the effect x has on the shape of the potential.

• The rejection rate for each sweep, which is not used for analysing the final
output, but rather to indicate if the proposal distribution is good.

For both of these goals, an initial estimate of the critical mass is needed.
As long as the transition is second-order or weakly first-order, the first estimate
for each x can be acquired by doing short (104 < n < 105) simulation runs,
keeping λ1L and N constant while varying m in some small range around 0,
|m2| < λ2

1. Then, calculating ¯〈φ2〉 for each run, along with an error estimate
σ ¯〈φ2〉, the critical mass is estimated using a piecewise linear model fit:

¯〈φ2〉(m2) =

{
am2 + b m2 < m2

break

cm2 + d m2 ≥ m2
break

(71)
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The breakpoint m2
break is simply chosen by iterating over the simulation values

of m2, and picking the one that yields the best combined coefficient of determi-
nation, R2 for the piecewise function. Using these fit parameters, it is easy to
estimate m2

c as the intersection of the two linear models:

m̄2
c =

d− b
a− c

. (72)

By the usual formula for propagation of uncertainty

σf =

√√√√ n∑
i=1

σ2
xi

( ∂f
∂xi

)2

, (73)

the standard deviation of this estimate is given by

σm̄2 =

√
(σ2
a + σ2

c )
(d− b)2

(a− c)4
+ (σ2

b + σ2
d)

1

(a− c)2
. (74)

This method only determines a very rough initial estimate, however. Near
the critical mass, lattice estimates of the order parameter do not behave as a
piecewise linear model, regardless of the order of the phase transition, making
the breakpoint of a piecewise linear model an insufficient estimate for proceed-
ing.

If the transition is of first order, the discontinuity in 〈φ2〉 ensures that a
simple intersection of two linear models will be off-target by a significant amount
as the strength of the phase transition increases. Instead, as in [17], the critical
mass is estimated by making use of the fact that in first-order transitions the
two phases coexist at the critical mass, defining it as the mass where P (φ2

av)m2

is a two-peaked distribution with peaks of equal volume.
In the case of second-order transitions, there is only one peak to the distri-

bution, meaning the critical mass cannot be estimated by equalizing the peak
sizes. Instead, the curve intersection method used earlier is applied with some
modifications. Observing that near the critical mass, the measured values of
〈φ2
av〉 curve upwards before transitioning into the broken phase and resuming

linear development, a nonlinear term is added to the piecewise model fit:

¯〈φ2〉(m2) =

{
am2 + b m2 < m2

break

cm2 + d+ 1
fx+g m2 ≥ m2

break

(75)

And the critical mass estimate is found from the intersection of the two pieces,
which is found numerically

To avoid re-running simulations indefinitely when trying to find the best es-
timate of the critical mass, once a simulation has been run to a good amount
of precision, the expectation value of the order parameter at different masses
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Figure 7: Estimating the critical mass of a phase transition by curve fitting,
taking the intersection of the two curves as the critical mass.
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Figure 8: Reweighting a histogram from m2/λ2
1 = 0.012 (left) to m2/λ2

1 = 0.022
(centre) and m2/λ2

1 = 0.032 (right). Estimates from the rightmost histogram
are unreliable, and reweighting much further in the same direction fails entirely.

can be acquired by reweighting. The idea behind this reweighting is that in the
probability distribution

Pm2(φ2
av) =

∫
dφ′e−Sm(φ′)δ(φ′2av − φ2

av), (76)

φ2
av appears as the sum over all the φ2-terms in the action divided by m2

2 N
3,

which means that the distribution at any other value of m2 can be acquired by

Pm2
2
(φ2
av) ∝ exp

[
N3

2
(m2

1 −m2
2)φ2

av

]
Pm2

1
(φ2
av). (77)

Using the reweighted probability distribution, 〈φ2〉 is measured at the new
m2 by

〈φ2〉m2 =

∫
d(φ2

av)Pm2(φ2
av)φ

2
av (78)

The range of masses that this can be reliably applied to in practice is limited,
however. If, for example, the peak of Pm2(φ2

av) is located outside of the region
that has actually been sampled by the simulation, no amount of reweighting
on that sample will give the right distribution. More rigorously, the relative
error for a particular value of φ2

av, δPm2(φ2
av)/Pm2(φ2

av), remains constant un-
der reweighting [17], which makes the absolute error of histogram bins grow
exponentially as tail values are amplified by the reweighting. Because of this,
the simulations need to get close enough to the critical mass that both peaks of
the distribution are well-sampled before reweighting can handle the rest. This
is also why the initial estimation runs at a large m2-range had to be performed
separately, as the ranges of φav in samples taken at very different m2 easily end
up with zero overlap.

Several parameter combinations were used to perform the simulations. As
discussed in section 4, x has a large effect on the potential, and as such the
primary focus is to compare the behaviour at different values of it in the simu-
lations. The three values x = 0, 1, 3 were all simulated on to verify the expected
behaviour that the transition is second-order, that x = 0 and x = 1 give equiv-
alent results for the critical mass, and that x = 3 gives a different result to
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the two. For first-order transitions, x = 3.003 was used. The reason for this
rather low value is that for x > 3, the transition is expected to have an in-
creasing latent heat of the phase transition in x. This presents a problem for
the MCMC algorithm, as the region between the two peaks is exponentially
suppressed.[17] While multicanonical simulations could fix this, there was not
enough time to implement and debug this method in the simulation program,
and as such x = 3.003 was chosen so that the phase transition is only weakly
first order, with a small energy barrier to tunnel through. This allows the algo-
rithm to get a representative sample of the distribution in a reasonable number
of iterations, without having to use multicanonical simulations.

Setting the lattice scale by λ1L = 0.5, the critical mass for each of these
four cases was determined through the methods described above, at several
lattice volumes. For the second-order transitions, the simulations were run at
N = 70, 76, 80, 90, while for the first-order transition, N = 80, 90, 100 were
used. Performance issues were the primary reason not to use N = 100 for the
second-order transitions, as simulation runs as long as the one performed at
N = 100 were not feasible to perform at all x. Using the measurements at
these varying N , the infinite volume limit was extracted by fitting m2

c/λ
2
1 as a

function of 1/N3 as a linear model, and extrapolating to 1/N3 → 0. Again due
to time constraints, the continuum limit λ1L → 0 was not evaluated in the final
simulation set.

7 Results and discussion

As discussed in section 4, the potential’s minima vary in the φ1φ2-plane depend-
ing on x. By comparing scatter plots of the recorded observables φ1,av, φ2,av

from simulations in the broken phase to contour plots of the potential at the
same parameters (Figure 9), it is easy to see that the correct distributions are
being sampled from. Similarly, for the first order phase transitions, it can be
verified that the symmetric and broken phases have been sampled from by in-
specting scatter plots and seeing

While initial runs with the linear model intersection method at low lattice
sizes (N ≤ 60) were unsuccessful at finding the first-order phase transition at
x = 3.003, increasing the lattice size to N = 70 and up resulted in visibly
bimodal P (φ2

av)-distributions, from which the critical mass could be measured.

m2
c/λ

2
1 N = 70 N=76 N = 80 N = 90 N = 100 N →∞

x = 0 0.00258 0.00509 0.00749 0.00786 0.0130± 0.0018
x = 1 0.000151 0.00406 0.00664 0.00794 0.0150± 0.0036
x = 3 0.00484 0.00517 0.00950 0.00989 0.0152± 0.0062
x = 3.003 0.00716 0.0090 0.0096 0.0124± 0.0012

Table 1: Table of m2/λ2
1 for each simulation at λ1L = 0.5, as well as continuum

limits

The estimated infinite volume, continuum-limit critical masses are given in
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Figure 9: Correspondence between contour plots of the potential as a function of
φ1 and φ2, and scatter plots of phi1,av, φ2,av in simulation results at x = 0, 1, 3.

Figure 10: Scatter plot at x=3.003, m2/λ2 = 0.0146, indicating that simulation
has sampled from both broken and symmetric phases. (N=80)
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table 1. The x = 0 and x = 1 simulation runs display a close similarity, as
predicted in section 4. While x = 3 was speculated to have some level of
deviation, the infinite volume estimate does not support this to any significant
degree. As predicted, however, no bimodal distributions occurred at any of
these x. With no evidence of a first-order transition, these values of x appear
to be second order, as expected.

The case where x = 3.003 proved to be troublesome, in that early quick
estimates were far off target, needing iterative simulations to get close enough
for successful reweighting from one phase to another. Long autocorrelation times
corroborated this issue, for example the simulation atN = 100 had an integrated
autocorrelation time τ = 2052 sweeps. In the end, however, the approach of
reweighting to a bimodal distribution with peaks of equal size succeeded in
producing estimates of the critical mass.

There are several possible sources of systematic error that could apply to
these measurements. The most obvious is the possibility of undiscovered bugs
in the simulation code. While runs to validate that the code behaves correctly
accounted for the majority of simulation time for this thesis, the possibility that
bugs still remain cannot be dismissed. Beyond bugs in the implementation, the
method used to estimate the critical mass at second order may need refinement.
Reweighted estimates of 〈φ2〉 for multiple m2 sometimes gave ambiguous results
with a barely visible break point, leading to a small difference between the fitted
models and high error margin for the fit parameters. The reason for this appears
to be that simulations at masses that are too high lack the statistics to reweight
into the broken phase. As such, the easiest way to rectify this issue would simply
be to run more simulations at lower masses, as well as considering improvements
to the piecewise fits used in the estimation process.

The simulation code is built to be easily extended, and as such may be ap-
plied to different projects in the future. Several possible improvements to the
code could be made, such as a full implementation of multicanonical sampling,
further optimization for performance, and even the possibility of running multi-
ple instances of the program at the same time. Another important improvement
is the ability to recover simulations in the case of interruptions. As has been
mentioned, time constraints reduced the amount of data used for final estimates,
and a major factor in this was unexpected interruptions to the simulations, such
as due to overheating.
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A Implementation details

As has been mentioned, writing simulation code accounted for the majority of
the work done for this thesis. In this appendix, the details of that implemen-
tation are discussed, including some notes on necessary optimizations to make
the simulations run fast. The focus on speed was motivated primarily by the
hardware used. As the author of this text owns a rather powerful computer,
it would be a waste to not utilize the available resources properly. In particu-
lar, the graphics card is a very powerful resource, easily capable of millions of
parallel computations1. As an example of the benefit to doing this, consider
the following: In the early stages of development, the first batch of 16 mass-
varying simulations at N = 32 took 19 hours, with a meagre sample size of only
1000 sweeps. Towards the end of the project, a single simulation at N = 90
with a sample size of 810000 sweeps could be performed in the same timeframe.

Figure 11: Nearest-
and next-to-nearest
neighbours of the
lattice point x in
two dimensions

The need to run N3 sampling steps per sweep is a major
drain on resources when the sampling algorithm is run lin-
early. As N increases, the time to compute a single sweep
increases increase as to t ∝ N3. In an effort to combat
this problem, the simulation code was written to run in
parallel on the computer’s graphics card. GPUs are pow-
erful parallel processing devices, easily capable of running
calculations on every single lattice point simultaneously.
A simple way that this benefits simulation speed is in
evaluating any observable that is a sum of some quantity
over the whole lattice by parallel reduction[19], in which
a sum over a large array A of size n is evaluated by n/2
parallel threads. The basic algorithm works as follows:

• Allocate an array B which all threads have access
to

• Each thread i computes Bi = Ai +Ai+n/2

• Every jth step after the first, each thread calculates
Bi = Bi + Bi+n/(2(j+1)), effectively summing one
half of the array with the other every step

• This is repeated until all values in A have been
added together in B0, which is the final result.

While the specifics of the implementation vary, the benefit of this algorithm is
a theoretical O(log(n)) computation time, a significant improvement over the
O(n) time to sum over an array linearly.

1The theoretical limit of the GPU in question is 655353 ∗ 1024 [19], but no simulations
done here came close to that number
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Figure 12: Indepen-
dent diagonals in
the 2D plane.

Parallelization has its own issues, however. If every
single point was sampled at the same time, calculating
∆S and performing an accept-reject step for each stage,
the possibility of a race condition would emerge, where
multiple parallel threads try to read or write at the same
memory address. The trick to avoiding this, as well as
massively reducing the computation work to calculate
∆S, is to realize that for each sampling step, ∆S does
not depend on the entire lattice. Instead, it only depends
on the region of nearest- and next-to-nearest neighbours
of the lattice site being considered when using the O(a2)
Laplacian. For a sampling step taking place at a lattice
position x′, in which φ is the sampling configuration of
the previous step and θ is the proposed field configuration where θ(x′) is the
single altered field value, ∆S is given by

∆S = S[θ]− S[φ] =
∑
x

[
L(θ(x))− L(φ(x))

]
. (79)

However, since Θ = Φi for all points except x, the vast majority of terms in the
sum cancel, leaving only the ones that depend on δφ = θ − φ(x). Dividing the
Lagrangian into kinetic and potential terms

L(φ(x),∇2φ(x)) = T (φ(x),∇2φ(x)) + V(φ(x)), (80)

it is apparent that all V-terms except the ones at x cancel, as well as all T
except at x, nearest neighbours of x, and next-to-nearest neighbours, through
the Laplacian in each of these terms relying on φx′. This expression

∆S = ∆T (x′),∇2(θ(x′)

+
∑

j=±{1,2}

∑
i

[
∆T (x′ + ji),∇2(θ(x′ + ji))] + V(θ)− V(φ(x)), (81)

is not without issue however, as it still contains many terms that cancel. This
is seen by examining ∆T (x) more closely, noting that its form changes depends
on whether it is evaluated at x′ or its neighbours. With ∆φ(x′) = θ(x′)−φ(x′)
and ∆φ(x′)2 = θ(x′)2 − φ(x′)2, the parts of the T -terms that do not cancel are

∆T (x′) = −15

2
∆φ(x′)2

+ ∆φ(x′)
∑
i

[4
3

(φ(x + i) + φ(x− i))− 1

12
(φ(x + 2i) + φ(x− 2i))

]
, (82)

∆T (x′ ± j) =
4

3
φ(x′ ± j)∆φ(x′), (83)

∆T (x′ ± 2j) =
1

12
φ(x′ ± 2j)∆φ(x′). (84)
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Collecting these terms into a single ”Effective ∆T ” results in

∆T ′(x′) = −15

2
∆φ(x′)2

+ ∆φ(x′)
∑
i

[8
3

(φ(x + i) + φ(x− i))− 1

6
(φ(x + 2i) + φ(x− 2i))

]
, (85)

and
∆S(x′) = T ′(x′) + V(θ(x′))− V(φ(x′)). (86)

This expression achieves the goal of expressing ∆S only in terms of lattice
values at x′ and its next-to-nearest neighbourhood, and is easily generalized to
two fields. This is what allows sampling steps to be performed in parallel, as
long as they deal with proposed changes to lattice points a sufficient distance
apart. Figure 11 shows the dependency zone of a sampling step. As long as
other sampling steps only depend on the light grey areas, in which the lattice
sites are only read from instead of written to, they can be performed in parallel.
The full set of points that are independent in this way is simply all parallel
diagonal planes in the lattice with a separation of two lattice sites in between
them. This is exactly what the simulation kernel does, shifting the planes by
one lattice site per cycle, achieving a full sweep in just three calls to the parallel
sampling kernel.
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