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ABSTRACT 
	

Maintenance and modifications for offshore installations are completed on site, on already 

operating installations. To be able to accommodate the additional personnel responsible for 

conduction these services, flotels are used. Flotels are floating “hotels” that uses dynamic 

positioning and/or mooring lines to position themselves in a close proximity to the offshore 

installation, and utilize gangway bridges or “Walk-2-Work” bridges to allow for transfer of 

personnel between the floating accommodation vessel and the offshore installation. Crossing 

the gangway bridge is associated with risks to personnel as elements, such as winds and waves 

can cause the gangway bridge to exceed its safe operation limit. 

In an attempt simplify the workload on the gangway operator, a risk-based decision support 

model has been developed. This model utilizes algorithms, and the aim of this thesis is to 

analyze how the use of algorithms to support decision-making impact risk management in the 

petroleum industry, and how algorithmic risk can be managed in the future. 
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1. INTRODUCTION 
1.1. Background 

Risk management and safety has gone hand in hand throughout history of the offshore industry. 

The constant pursuit to improve safety together with the zero-vision philosophy has led to giant 

leaps in risk management and how it`s impacted the industry as we know it today. The 

development of safety models and methodologies has proven to improve safety standards 

greatly, and the use of risk acceptance criteria has guided the industry to the right path. Even 

though the use of risk acceptance criteria today in the “new” risk management theory is under 

discussion, it has proven so far to be useful as a pin pointer as of which direction risk 

management should and has taken. However, safety models are built on statistical data in 

combination with background knowledge, and in some cases with the use of algorithms. The 

topic for this thesis will revolve around the issue related to the use of an algorithmic decision-

support model and its impact on the collective risk and overall risk management for offshore 

installations.  

The model, which is a risk-based decision support model for an offshore gangway bridge 

mounted at a flotel, is studied.  

A flotel is as the word suggests a floating hotel. It has several different purposes, but the most 

frequent use in the offshore industry is as living accommodations for worker’s conducting 

maintenance- and modification operations on already established offshore installations. The 

flotel is connected to the offshore installation by the use of a gangway bridge, often referred to 

as a Walk-to-Work bridge. The bridge retains its position relative to the flotels and the offshore 

installations movement by the help of multiple systems ranging from Dynamic Position 

thrusters on the flotel, station keeping performance, gangway stroke and elevation readings, to 

the weather forecasted/real-time weather. 

But under certain circumstances the gangway is unable to remain connected to the offshore 

installation, and the bridge will enter a disconnect mode. This mode carries with it risks, related 

to both personnel injury and lost work time. In an attempt to help mitigate/reduce the risks 

related to an unwanted gangway disconnect Erdogan et.al. (2018) developed a model using a 

software called DEXi, which is an advanced multi-attribute decision-tool, to help guide the 

gangway operator into making better calculated decisions on when the gangway bridge enters 

more critical stages and whether a disconnect is imminent. 
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The idea of the model sounds promising, but how does the use of algorithm’s in decision-

making affect risk management? Are computers capable of making sound decisions? How does 

the human and computational decision-basis interlink? Is the model built up of the best possible 

algorithmic framework? This is all questions that this thesis seeks to answer. 

 

1.2. Research Question 
The research question the thesis will answer is: 

“How do algorithms incorporated into decision-support tools impact risk management 

in the oil industry?” 

By studying the paper “Risk-Based Decision Support Model for Offshore Installations”, the 

thesis will create an understanding of how algorithms are incorporated into the mentioned 

model. It will also answer how algorithmic risk impact field operators in general, and what the 

future of risk management most likely will look like due to the incorporation of algorithms into 

every day applications, as a result of the “digital revolution”. 

 

1.3. Outline of thesis 
The first chapter of the thesis introduces the gangway model, which is the algorithmic decision-

support tool used as a basis for analyzing how algorithmic safety models impact risk 

management for the offshore petroleum industry. Chapter two is a theoretical review of 

necessary documents for conducting the qualitative research assessment of the model. Chapter 

three covers the methodology for the thesis. The fourth chapter is a detailed explanation and 

analysis of the algorithmic decision-support tool for offshore gangway bridges used on flotels, 

and an assessment of how this algorithmic model impacts risk management. Chapter 5 discusses 

the results discovered, and chapter 6 is a concluding remark. 

 

1.4. Limitations 

• Its beyond of the scope of this thesis to develop a functional machine learning model 

for guiding computational decisional-support for gangway bridges. Only the theoretic 

for developing the model will be provided. 

• Being a discursive thesis, calculations using numerical data will not be provided. 

Positive and negative reflections on each topic will be provided instead. 
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2. THEORETICAL BACKGROUND 
	

2.1. Risk Management 
Risk management has two main purposes. Firstly, it is in place to ensure that people, the 

environment and assets are protected adequately from undesirable consequences of the 

activities that are being conducted. Secondly, risk management is there to balance different 

concerns related to e.g. safety and costs. Both measures are covered by risk management in the 

form of avoiding the occurrence of hazards/potential threats and measures to reduce the 

potential consequences of these events. In the oil & gas industry, as well as the nuclear industry, 

risk management used to be based on a prescriptive regulating regime, were design and 

operation of plants/offshore modules were governed by detailed requirements. Later, this 

regime has taken a new adaptation towards a more goal-oriented regime, that puts emphasis on 

what to achieve rather than on the means of doing so (Aven, 2011). 

Risk is according to international standards such as ISO defined as “combination of the 

probability or an event and its consequences” (ISO 31000:2018). Other standards define risk 

as “A term which combines the chance that a specified hazardous event will occur and the 

severity of the consequence of the event”. Risk can be expressed both quantitatively and/or 

qualitatively by distributions, expected values, single probabilities of a specific consequence, 

etc. And the operational expression for practical calculation of risk is (Vinnem, 2016): 

 

𝑅 = 𝑃$ ∙ 𝐶$
$

 

where: 

P = probability of accidents 

C = consequence of accidents 

  

PSA (Petroleum Safety Authority Norway) states that risk shall be reduced and the responsible 

party shall select technical, operational and organizational solutions that reduce the likelihood 

that harm, errors and hazard/accident situations occur according to their §11 Framework 

Regulations (PSA, 2018). The framework states that: 
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“Harm or danger of harm to people, the environment or material assets shall be 

prevented or limited in accordance with the health, safety and environment legislation, 

including internal requirements and acceptance criteria that are of significance for 

complying with requirements in this legislation. In addition, the risk shall be further 

reduced to the extent possible…” (PSA, 2018) 

 
From ISO31000:2018 it becomes clear that the purpose of risk management is the creation and 

protection of value. The principles provide guidance on the characteristics of effective and 

efficient risk management, communicating its value and explain its intention and purpose. The 

risk management principles in ISO31000:2018 are derived into eight different categories, 

starting with 1) framework and processes being customized and proportionate, 2) appropriate 

and timely involvement from stakeholders is necessary, 3) structured and comprehensive 

approach is required, that 4) risk management is an integral part of all organizational activities, 

and that 5) risk managements job is to anticipate, detect, acknowledge and respond to change. 

The first five principles mentioned (there are 8) provide guidance on how risk management 

should be designed. Principles 6-8 are related to the operation of the risk management initiative. 

6) Risk management must consider any limitations of available information, 7) human and 

cultural factors influence all aspects of risk management, and 8) risk management is continually 

improved through learning and experience. The 3 last principles should confirm that the best 

information available is used, that human/cultural factors should be considered, and lastly but 

most important, that the risk management activities are continually improved. (ISO31000, 

2018). 

	

Figure	1	–	Principles,	framework	and	risk	management	process	ISO31000:2018	(ISO31000,	2018)	
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Closely related to the risk management principles lies the risk management framework. The 

framework guidelines are centered around leadership and commitment, and the effectiveness 

of risk management will depend on the integration into aspects of the organization, not 

excluding decision-making support. The other parts of the framework including 

implementation, design, evaluation and improvement is often referred to the well-known Plan-

Do-Check-Act approach. (IRM, 2018) 

The risk management process describes risk assessment and risk treatment as being the center 

of the risk management process. The process comprises of firstly establishing the scope, context 

and criteria for the assessment to be made, followed by conducting the risk assessment. The 

risk assessment should include a risk identification process (formally known as hazard 

identification in ISO31000:2009), risk analysis and a risk evaluation. The resulting risk 

assessment should be subjected to risk treatment, meaning using the outcome as a basis for the 

decision-making process to determine how the risk should be treated. Relevant stakeholders 

should be included throughout the process through recording and reporting, monitoring and 

reviewing the information, and communicating and consulting on the information provided 

from the risk assessment. 

Risk management involves decision-making in situations involving high risks and large 

uncertainties, and such decision-making is difficult as the consequences of the decision is hard 

to predict. For decision-making support there are several tools available including risk and 

uncertainty analysis, risk acceptance criteria (tolerability limits), cost-benefit analyses and cost 

effectiveness analyses. But these tools do not always produce a clear answer. They have 

limitations as they are built up on several assumptions and presumption, are not only made up 

of scientific knowledge and also rely on value judgements reflecting ethical, strategic and 

political concerns (Aven & Vinnem, 2007). 

The importance of risk management boils down to a few objectives, as proposed by Hopkins, 

2012: 
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Objective Description 

Compliance 
The basic objective for any risk management initiative is to 
ensure compliance with applicable rules and regulations. 

Assurance 
The board and audit committee of an organization will require 
assurance that risk management and internal control activates 
comply with PACED. 

Decision making 
Risk management activities should ensure that appropriate 
risk-based information is available to support decision 
making. 

Efficient operations 
Efficient processes 
Efficacious strategy 

Risk management considerations will assist with efficiency of 
operations, effectiveness of processes and efficacy of strategy 
to ensure the best outcome with reduced volatility of results. 

Figure	2	-	Risk	management	objectives	(Hopkins,	2012) 

2.1.1. Expected Utility Theory 

The Expected Utility Theory is the ruling paradigm for decision-making under uncertainty, 

which states that the decision alternative with the highest expected utility is the best alternative. 

(Abrahamsen, 2010). It can be denoted in mathematical terms as: 

𝐸 𝑢(𝑖, 𝑋) = 𝑢 𝑖, 0 𝑃 𝑋 = 0 + 𝑢 𝑖, 1 𝑃(𝑋 = 1)	

Where i, is a function of the consequences and 0,1 represents consequences between one 

alternative to another. P represents the probability of the consequences, and as above, 0,1 

represents the belonging probability for different alternatives. 

Through the expected utility theory, one can reflect that the negative consequence of an event 

is disliked so strongly that there are given more weight to these negative consequences than 

what is justified by the expected value. The decision-maker’s attitude towards risk is then risk 

averse, which is a standard behavioral assumption (Abrahamsen, 2010). 

For assessments related to uncertainty of events and its coherency, it is a requirement that one 

follows the rules of probability. On the other hand, coherency for consequences means 

adherence to several axioms, including the transitive axiom. This axiom states that if alternative 

b is preferred to c, which again is preferred to alternative d, then alternative b is preferred to 

alternative d. This acts as a strong tool for guiding decision-making, as a framework for 

maximization is utilized. The way the expected utility theory is used in practice for decision-

making is based on one assesses the probabilities and a belonging utility function for a set of 

outcomes, and then use the expected utility to define the preferences between these actions. 

This is commonly referred to as rational decision-making. (Aven & Vinnem, 2007) 
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2.1.2. Risk Aversion 

Risk aversion is a concept that is used to describe an attitude to risk and uncertainty. The 

concept`s main theme is that one dislikes negative consequences or outcomes so bad that we 

give more weight to these negative consequences compared to what a statistical mean value 

would justify (Stearns, 2000). 

The risk aversion concept is a concept that describes rather than determining attitudes. One 

could argue that the main reason for investing in a safety measure is not risk aversion but rather 

the fact that one wishes to protect some values, when faced with uncertainty. The thinking 

behind is then cautionary. The decision to invest in safety is based on attempting to reduce 

uncertainty and provide assurance if a hazardous situation should occur. If the consequences of 

an outcome are highly disliked, then one will be wanting to use substantial resources to avoid 

these outcomes from occurring, even though it cannot be justified in a quantitative way. 

Using the term risk aversion indicates that one has to base our risk attitude to the expected 

utility, and in a safety context were the main focus is on attitudes towards uncertainty and risk 

one would not always be able to see these relationships compared to the expected value. 

 

2.1.3. The Precautionary Principle 
The precautionary principle is defined according to the 1992 Rio Declaration as: 

“In order to protect the environment, the precautionary approach shall be widely 

applied by States according to their capabilities. Where there are threats of serious or 

irreversible damage, lack of full scientific certainty shall not be used as a reason for 

postponing cost-effective measures to prevent environmental damage.” 

Looking beyond the scope of environment, the precautionary principle can be defined as an 

ethical principal that over rules decisions made when the consequences of an event are subjected 

to scientific uncertainty. If this is the case, it is better not to go through with the action being 

made, rather than face the uncertainty and the possible very negative consequences. (Ortwin, 

2008) 

The main message behind the principle is clear. If there is a lack of scientific certainty for an 

event and its consequences, the action should not be carried out. But sometimes this principle 

can be considered counter intuitive, as for some cases at the offshore petroleum industry, so the 

cautionary principle is applied instead. 
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2.1.4. The Cautionary Principle 

In safety management there is a basic principle referred to as the cautionary principle. It is the 

idea of when facing uncertainty, caution should be the ruling principle (Aven & Vinnem, 2007). 

An example of the cautionary principle can be drawn from the Norwegian petroleum industry, 

where it is a regulatory requirement to have fireproof panels of a certain quality protecting the 

living quarters on an offshore installation. This is an adaptation of a minimum safety level, 

established after many years of operation of process plants.  

Even though the assigned probability of for example a fire in the living quarter is considered 

low, there is to our knowledge known that fires on offshore installations happen from time to 

time. It is simply based on how one judge the risk. One should be prepared even if the likelihood 

of the event is small, and without reference to cost-benefit analysis. This is the bases of 

cautionary thinking. 

Aven and Vinnem (2007) go on to state that “during the face of uncertainty related to the 

possibility of hazardous situations and accidents, we are cautious and adopt principles of safety 

management” such as: 

• Robust design solutions, such that deviations from normal conditions are not leading to 

hazardous situations and accidents, 

• Design for flexibility, meaning that it is possible to utilize a new situation and adapt to 

changes in the frame conditions, 

• Implementation of safety barriers, to reduce the negative consequences of hazardous 

situations if they should occur, for example a fire, 

• Improvement of the performance of barriers by using redundancy, maintenance/testing, 

etc. 

• Quality control/quality assurance 

• The precautionary principle, saying that in the case of lack of scientific certainty on the 

possible consequences of an activity, we should not carry out the activity, 

• The ALARP-principle, saying that risk should be reduced to a level which is as low as 

reasonably practicable. 
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2.2. Safety models 
Systems that are safety-critical have mechanisms that are both passive and active that help to 

prevent, detect, or tolerate a system failure. These mechanisms are normally built up by safety 

models. A system model is normally split into two essential parts: a basic system model and a 

safety mechanisms model.  

	

Figure	3	-	A	Model	of	a	Safety-Critical	System	(Burns,	G.,	Anderson,	S.,	2011) 

The model’s job is then to identify and verify the different property inputs the model receives 

and then output either an action or a number that can be used both in a physical or a theoretical 

purpose. An example of a physical purpose would be if a pump offshore fails, a model would 

detect this failure and shut down the pump before it would reach a safety critical temperature. 

On the other hand, an example of a theoretical model would be one were historical data and 

expert opinions would be inputted into a model, and data to help guide a decision-maker would 

be the output. The latter will be the focus of this thesis with attention to the algorithmic 

background that is implemented in the model, and how the algorithms process the data input. 

The whole reason for implementing safety models is to avoid accidents. Accidents are defined 

in a broad sense as: 

“a short, sudden and unexpected event or occurrence that results in an unwanted and 

undesirable outcome… and must directly or indirectly be the result of human activity rather 

than a natural event”. (Hollnagel, E., 2004) 

For safety management to be considered effective, the aim would be to achieve zero accidents. 

And on the other hand, if there are accidents, the total safety management seems to be 

ineffective or absent. This is the reason why it is crucial to understand the fundamentals of how 

accidents occur, and how one can help to establish preventive measures for preventing accidents 

from occurring. Through time accident models have been developed and evolved into different 

phases and variants: 1) Simple linear models, 2) Complex linear models, 3) Complex non-linear 

models. (Pryor, P., Capra, M., 2012).  
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Figure	4	–	Summary:	the	history	of	accident	modelling	(Hollnagel,	E.	2010)	

As Pryor, P. and Capra, M. (2012) mentions, complex non-linear models were developed as a 

result of technological advances had made systems so complex that that accidents in these 

systems were considered normal. Tightly coupled systems were almost unmanageable for the 

operators which resulted in user errors being unavoidable. The complexness of these new 

systems left a void in safety management and these complex non-linear models were developed 

in the early 2000s. These models are considered effective in doing what they are made to do, 

but the process is time consuming, complex and resourceful. As a result of the computational 

advances that were made in the 2000s, a new tool for developing and improving safety models 

were considered. Algorithms. Algorithms were implemented into existing and newly developed 

models and their effectiveness were unparalleled. The analysis of the data with support of 

algorithms has drastically reduced the time and resources it takes to produce an output for the 

decision-makers and increased the accuracy.  

In the modern area of safety models, algorithms have proven to have a large potential when 

implemented into a safety models framework. 

 

2.3. Algorithms 
An algorithm is a computational procedure which is well-defined ant that takes a set of data as 

input and produce a set of values (or value) as an output. Algorithms are thus a sequence of 

computational steps that transform different inputs into outputs. Algorithms can also be viewed 

as tools for solving well-specified computational problems, where the statement of the problem 

specifies some terms for the desired input/output relationship. A simple example of an 
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algorithm would be if one wanted to sort a sequence of numbers into decreasing order. The 

sorting problem would then be defined as follows: 

Input: A sequence of n numbers < 𝑎3, 𝑎4, … , 𝑎6 >. 

Output: A reordering < 𝑎′3, 𝑎′4, … , 𝑎:6 > of the input sequence such that 𝑎:3 ≥ 𝑎4 ≥ ⋯ ,≥ 𝑎6. 

So for example with the number set < 32, 44, 61, 25, 44, 60 >, a sorting algorithm would 

produce an output in the following order: < 61, 60, 44, 44, 32, 25 >. This input sequence is 

commonly known as an instance of the sorting problem, and in general this consists of the input 

needed to compute a solution to the problem. (Cormon, T. H., Leiserson, C. E., Rivest, R. L., 

Stein, C., 2001) 

But algorithms can be put into use on so many different applications. Its most recent 

development is the use of AI and machine learning to help problem solving and dealing with 

large amount of data. This has gone hand in hand with the offshore industry`s shifted focus 

towards digitalization, and has a promising future for both providing solutions to complicated 

tasks, but also within the field of risk management. 

 

2.3.1. Machine Learning 

To define machine learning it is important to understand its context. It is a part of a bigger 

concept known as Artificial intelligence which has been around since the 1950s, discovered 

by AI pioneer called Alan Turing in his paper “Computing Machinery and Intelligence”. 

	

Figure	5	-	Correlation	between	Artificial	intelligence,	Machine	learning	and	Deep	learning	(Chollet,	F.,	2018)	

Machine learning can be viewed as a tool used for turning some form of information into useful 

knowledge. And as the last year’s data information has exploded in volume, there seems to be 
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plenty of information available that one is unable to transform into usable knowledge unless 

one finds a way to analyze the data and find the hidden patterns they contain. 

Machine learning is a technique that automatically finds such a pattern by repeating an 

operation over and over again in a high work rate, thus resulting in it finding the pattern in the 

highly complex datasets. And as Frances Chollet (2018) states; machine learning can be used 

to convert this information into patterns that again will provide knowledge about the situation, 

guiding the end user to predict the future more accurately and support complex decision-making 

actions. 

Software engineers in the common way of using computer power used rules created by humans 

combined with data to produce an answer to a problem. Machine learning, on the other hand, 

flips this problem and uses data and answers to discover the rules behind the problem (Chollet, 

2018). 

 

	

Figure	6	-	Classical	programming	vs.	Machine	learning	(Chollet,	F.,	2018)	

To achieve the purpose of learning a rule that governs a problem, computers that utilize machine 

learning go through a learning process. In this process the machine runs through many loops 

with different rules, learning from how well each rule performs for the given task.  

Within machine learning there are several forms that it can be split into. The main three are (as 

indicated in figure 7): Supervised learning, Unsupervised learning and Reinforcement learning. 

They all have unique approaches of how they tackle the problem at hand, but they follow the 

same underlying process and theory behind the theory of machine learning, where discovering 

rules is the main purpose. Supervised and Unsupervised are well established methods that are 

commonly used. 
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Figure	7	-	Machine	Learning	classification	(Wahid,	A.,	2017)	

The process in which machine learning works is displayed in table 1: 

Process	 Description	
Data	collection	 Collect	the	data	that	the	algorithm	will	learn	from.	
Data	preparation	 Format	and	engineer	the	data	into	the	optimal	format,	extracting	

important	features	and	performing	dimensionality	reduction.	
Training	 Also	known	as	the	fitting	stage,	this	is	where	the	Machine	learning	

algorithm	actually	learns	by	showing	the	data	that	has	been	collected	and	
prepared.	

Evaluation	 Test	the	model	to	see	how	well	it	performs.	
Tuning	 Fine	tune	the	model	to	maximize	it`s	performance.	

Table	1	-	Machine	Learning	process	(Edwards,	G.,	2018)	

	 	

2.3.2. Algorithmic decision-trees 
ID3 was developed in 1986 by Quinlan and has become a famous algorithm, and its basic 

principle is based on decision trees as the development of computers, technology, networks and 

databases grow so fast that decision trees proved to be the best way of managing this rapid 

development. The quick growth of information has resulted in database access and query 

operations no longer meeting the requirements needed, as humans require mining of available 

information of massive data in a quick and effective methodology. Data mining methods, for 

the most part, use decision tree classifications to discover rules and patterns within the dataset 

(Yong & Yunlong, 2012), and the main advantage of utilizing these methods is that they are 

easily readable by the rules and decision trees they project as an output. The decision tree 

classification algorithm is an example-based inductive learning algorithm in data mining and 
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looks at different groups, that has no rules, no order and examples that justifies the use of 

decision tree classification rules. The ID3 algorithm represents a decision set by the use of a 

tree structure similar to a fault tree diagram to represent a decision set and uses this 

classification to generate its decision rules. Every attribute test in the three is represented by a 

non-leaf node and each leaf node represents a category. When constructing a decision tree 

process, cutting out noise from the dataset and outside influences is crucial, as this improves 

the reliability of the classification of the unknown data sets. The two most frequently used 

decision trees in an ID3 algorithm are classification trees and regression trees. 

 

2.3.3. The ID3 algorithm 

Information entropy is the basis for the ID3 decision tree classification algorithm. ID3 selects 

attributes that contain the largest amount of information gain as the test attribute for the node it 

is currently at, and the core thought of the algorithm is to select properties on the decision tree 

nodes at all levels. This reduces the amount of information needed by the data classification, 

and reflects the principle of minimum randomness (Yong & Yunlong, 2012). The main idea 

behind implementing the ID3 algorithm is to recognize the value of different information assets, 

thus resulting in valuable identification rules that provide important support for decision making 

and risk evaluations. 

	
Figure	8	–	Flowchart	of	an	ID3	algorithm	(Kraidech	&	Jearanaitanakij,	2017)	
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2.4. Decision-Making in theory 
To be able to analyze whether a computer and belonging algorithms are capable of making 

decisions (or decision support) that help mitigate and manage risk, one need to first analyze 

what a decision is and what decisions are based on both in a human and computational 

perspective. 

2.4.1. The Decision-Making process for humans 

The decision making process evolves around several different theoretical aspects. Humans have 

a basic nature on how to take make a decision, and this nature comprises of several strengths 

and weaknesses. On the other hand, computational decision making has its own theoretical 

aspects that also carry with them some strengths and weaknesses. 

 

2.4.1.1. The rational approach 

Pareto (1927) states that human decision making and its rational has its background on 

utilitarian theory and the notion of homo economics. The basis is that when humans are opted 

with a choice, they have two main sources of motivation: either to minimize the cost, or to 

optimize value. 

Utilitarian theory also states that a requirement is that a human decision maker tends to choose 

the most “attractive” alternative. This is referred to as the “rationality principle”, and the 

approach can be split into four points: (Barthelemy et. al, 2002) 

1) The decision maker has to be able to generate possible scenario that is relevant, and the 

potential outcomes of the situation. 

2) The decision maker is able to evaluate the attractiveness of each of the scenarios and 

available alternatives. 

3) The decision maker should be able to aggregate the local evaluations (or partial) into a 

global perspective. 

4) Finally, the decision maker should choose alternatives that are most beneficial in a 

global perspective. 

 

These four points in the rationality principle are assumed to support the utility theory and its 

axioms (Von Neumann & Morgenstern, 1944), in the sense that point 1) does not only account 

for exhaustive descriptions of possible actions, but also the possible likelihood linked to 
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consequences of actions taken. Point 2) involves the axiom that is attached to issues, the notion 

of utility functions. Probabilities and utilities linked to being able to compute expected utility 

attached to each perspective is covered in point 3), and finally point 4) emphasizes that the 

decision maker will choose these actions based on what action will bring with it a maximum 

expected utility. 

The rational principle approach has later been modified to be used in practical tools and as 

guiding principles for decision-making made on an organizational level. On an organizational 

level, subjects for analyzation are normally quite complex, involving multiple stakeholders, and 

involve decisions that are made for a long-term benefit and perspective. A tool that utilizes 

these aspects and has been converted for real world use is the Analytic Hierarchy Process (AHP) 

(Saaty, T. L, 2008). Here a technique for making a rational decision is proposed in a systematic 

manner: 

Process steps 

1. Define the problem and what kind of knowledge that is needed 

2. Make a decision hierarchy, starting with the goal of the decision on top, then state the 
objectives from a broad perspective at the intermediate levels. Formulate criteria and draw 
lines representing dependencies to subsequent elements. The lowest level should represent a 
set of alternatives. 

3. Make matrices allowing for pairwise comparison. Upper level elements should be used to 
compare elements in the level below. 

4. Generate priorities from the comparison. Upper level elements should be used to compare 
elements in the level below. 

5. For each element in the level below, apply its weighed value to obtain its global priority. 
Continue this process of weighting and prioritizing throughout the hierarchy until one reaches 
the alternative in the bottom most level. 

Table	2	-	Analytic	Hierarchy	Process	(AHP),	rational	decision-making	technique	(Saaty,	T.	L.,	2008) 

2.4.1.2. Weaknesses of rational decision making 

As early as in 1955, criticism om the rational approach arose. Herbert Simon wrote in his paper 

(Simon, H. A, 1955) on whether rational decision making was a description of how a decision 

is made in general or if the approach was simply a guide for how decisions should be made. 

The main argumentation was related to the human rationality and how this rationality is 

restricted by the traceability and the limitations this would impose on the decision problem 

itself. The inherent complexity of making a decision would largely be impacted by the available 

time to make the decision, as well as limitations in human cognitive capacity.  
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Humans have proven to cope poorly under time pressure, and the stressful environment around 

making quick decisions could lead to so called “tunnel vision”, were the bigger picture would 

be left out by the human brain, resulting in decisions being made without the use of all available 

information, thus having a bad impact on the risks. The restrictions this imposes result in a 

subjective and incomplete representation of the context and nature of the problem, in which the 

decision maker seeks to rationalize (Falk, K et. al, 2018). This principle was named “the 

principle of bounded rationality”.  

As a basis for these limitations humans tend to find a satisfactory choice, and not an optimal 

one, when it comes to the human decision-making process (Simon, H. A, 1959). Newer research 

from 1982 build upon the discovery and further reveal that humans tend to seek various biases 

and heuristics when making a decision. It is here discovered that factors such as availability, 

representativeness and framing effects all contribute to guide the decision maker into make the 

choice itself sees fit. In essence this boils down to the human minds capability to process 

information that is available to him/her and make a judgement call based on this input 

information, but will struggle to make any rational decision based on this input.  

Another example of non-rational aspects of human decision making is linked to The Moving 

Basis Heuristics, where it is stated that the human brain is subjected to parsimony, reliability 

and decidability. Parsimony is linked to what has mentioned earlier, that the human brain under 

stressful situation only is capable of making decisions with partial use of all available 

information. Reliability in the context of non-rational decision making aims at the fact that the 

information considered to be sufficiently relevant for the decision maker, is considered the 

justification background for making that decision. Finally, decidability is an aspect were the 

information that is to be applied in a decision making context is not static. Information will in 

theory change depending on the person that is going to make the decision, and also the on the 

decision to be made itself (Barthelemy, J.P., 1986). 

2.4.1.3. Situational Awareness 

In complex sociotechnical systems, it has been identified that an important concept that 

influences the offshore operator’s decision making can be linked to Situational Awareness 

(SA). In the last two decades, a majority of accidents have occurred in large-scale technological 

systems that have led to serious consequences, that have been proven to be the result of human 

error. Human input has (in these accidents) not been identified as the sole reason for the 

accidents, but have inherited the problems and difficulties they faced during the heat of the 
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moment as a result of having to deal with complex systems designed by engineers. The offshore 

operator has to deal with several information inputs at the same time, with data that happens in 

real time. On top of this, the operator has to make the decisions quickly and act on these 

decisions to allow for the operational units to return back to their normal state, thus preventing 

an accident. As for situations involving gangway bridges or walk-2-work (W2W) bridges, the 

operator has to act quickly to prevent an escalation of the problem at hand. Workloads will rise 

quickly, and mental workloads that are too high for the personnel to handle will increase the 

rate of error (Naderpour et. al 2014).  

Situational awareness is considered one of the most important cognitive human features when 

it comes to decision-making, and is defined as a perception of the information elements in the 

dynamic environment, comprehensive of their meaning, and projection of their future status 

(Endsley, M. R., 1995). The following figure illustrates the three levels of situational awareness 

that is consistent with the above definition: 

	

Figure	9	-	Endsley`s	model	of	situational	awareness	(Øvergård	et.	al.,	2015)	

Here three levels are mentioned, relating to level 1, level 2 and level 3, that takes into account 

the different states the human brain enters when making a decision. In the above figure it refers 

to offshore operators and is suitable for the situation involving offshore gangway bridges. There 

is an underlying assumption regarding situational awareness that it´s formed by a sequential 

process progressing from perception to comprehension and finally to projection (Chiappe, 

Strybel and Vu, 2012).  

Stanton et al. (2010) argue that a three-level model is flawed in the sense that it is counter-

intuitive. For the operator of a gangway bridge at the flotel the levels mean that first, in level 1 
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situational awareness, the operator must identify that the gangway bridge is reaching its limits 

regarding safe operation and that the sway and significant wave height (weather) is above the 

LSOG limits. Level 2 of Endsley`s situational awareness model implies that the operator has to 

identify that the forces of the weather conditions causes the flotel to drift off its optimal position. 

The identification process would typically involve looking at GPS instrumentation and also a 

visual inspection were the operator would notice a new angle in contradiction to normal relative 

angle to the stationary offshore installation. What Stanton then questions, is the likelihood that 

elements of the evolving situation will be properly analyzed and corrective action taken to 

achieve this appropriate situational awareness.  

The situational awareness of the operator is the basis for how the operator will act in the given 

moment and the also the decision-making process the operator runs through. Whether or not 

the gangway should be disconnected form the offshore installation is according to the 

situational awareness principle will not only boil down to the LSOG or computer system and 

its warning outputs, but also relies heavily on the operator’s ability to operate the dynamic 

position system, seamanship, experience, training and attention. A theory on the above 

mentioned point is related to mental models and experience. The more experience an individual 

has, the more evolved the mental models he or she possesses will be, thus resulting in an easier 

generated situational awareness, which again will change the levels for when one sees fit to 

disconnect the gangway. 

2.4.2. The decision-making process for computers 

The human brain compared to computational power is quite different. Where the human brain 

has a slow evolution, computer`s processing power, memory, storage and data transfer has 

skyrocketed in a short period of two decades.  

During the NASA moon landing project, the computational power in the Apollo 11 equates to 

a performance less than 1300 times lower than the power that exist in an iPhone 5s from 2013. 

All that in a period of roughly 50 years. In later years the advancement of artificial intelligence 

(AI) and machine learning has proven to be a successful technological marvel. Especially in the 

field of decision making. 

 The modern computer has proven to be a valuable asset when it comes to advising humans in 

making decisions. Computers or more specifically computer programs designed to support 

decision making is normally referred to as expert systems (ES), and are able to receive input 
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from humans (their expertise) in terms of task-specific knowledge and provide the decision 

maker with valuable information. 

2.4.2.1. Expert systems 

Expert systems (ES) were developed during the mid-1960s as a branch of applied artificial 

intelligence (AI). The idea of an ES is simple and involves converting human expertise, which 

is considered to be the main body behind task-specific knowledge, over to computers. The 

knowledge would then be saved on a computer and for example an offshore operator could 

summon upon the computer processed information when advice was needed (Liao, S., 2005).  

The computer acts like any human consultant by providing information and belonging 

explanations based of the conclusions it would draw from its input (Turban & Aronson, 2001). 

Problems that are considered hard to deal with for humans has a major advantage from utilizing 

expert systems. There are several forms of expert systems that are developed such as Rule-

based systems, Knowledge-based systems, Neural networks, Fuzzy expert systems, Object-

oriented methodology, Case-based reasoning, System architecture, Intelligent agents and 

Ontology.  

2.4.2.1.1. Rule-based systems 

Rule-based expert systems are systems that contain information that has been collected from 

experts. It presents the gathered information in form of rules, similar to many computer 

programs, such as IF-THAN or AND-OR. The rules help guide the computer software to 

perform operations on a dataset to inference in order to reach a conclusion judged suitable. 

Inferences is in theory a computer program that provides a reasoning through the use of a 

structured methodology about the existing information in the rule base or knowledge base. 

2.4.2.1.2. Knowledge-based systems 

Knowledge-based systems are centered around humans but have their roots in the field of 

artificial intelligence. They are an attempt at understanding and initiating human knowledge or 

expertise into computer systems (Wiig, 1993) and consist of four main components: 

1) A knowledge base as a starting point, normally from a group of experts or historical 
data. 

2) An inference engine  
3) A knowledge engineer tool 
4) And finally, a specific user interface. 
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This type of expert system is normally utilized on an organizational level, where information 

technology applications help manage the knowledge assets of a business, through the use of 

expert systems like rule-based systems, groupware and database management systems, but can 

be used for more detailed levels as well, with less accuracy.  

2.4.2.1.3. Neural networks 

When one mentions neural networks the first thing to come to mind is the human brain. And 

one would be correct to assume this, as artificial neural networks (ANN) are models that 

emulate the biological neural network. Software simulations are implemented into a concept 

that involves processing several different elements that are interconnected in a network-like 

architecture (Chollet, 2018). 

Artificial neurons receive data input from sensors similar to how the electrochemical impulses 

in the brain react to pain, if one is to for example touch a hot stove. Here, the fingers act as 

sensors, and the nervous system carried the data input to the neural network, or the brain. 

Artificial neural networks that are developed today use a concept were a system is trained 

without any use of human data or human supervision, but only learning from self-repetition 

from totally random actions (Edwards, 2018) 

The artificial neural networks are of course “guided” towards a purpose, and parent nodes that 

seem promising are selected out of thousands of samples to produce the next generation of data 

models. This process is repeated until (and hopefully) a successful model have been 

constructed. 

2.4.2.1.4. Fuzzy expert systems 

Fuzzy expert systems follow its name. They use fuzzy logic, meaning they deal with 

uncertainty. The technique follows a mathematical theory about fuzzy sets, that simulate the 

process of how humans reason by allowing the computer to behave less accurate and logically 

than conventional computer software’s. The process is used in the real world solely because 

decision-making is not always straight forward, true or false, as there are several grey areas in 

the subject of decision-making. Creative decision-making processes can be characterized as 

unstructured, playful, contentious, and rambling (Jamshidi et. al., 1997). 
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2.4.2.2. Negative aspects with computers as decision makers 

Artificial intelligence has a promising future, as proven by the Alpha Go Zero project, but it is 

a known fact from previous research that computers have their issues when it comes to acting 

as decision makers. With the old technology that the gangway model is based, it has proven to 

be a potential for many safety related issues when automation is involved. Examples of this 

date back to the 1980s and 1990s with the airline industry and the many crashes that occurred 

at that time. Computer systems that were designed to keep the airplane flying did the opposite.  

A modern example of the same issue is related to the Boeing 737-8/9 Max airplanes. The 

preliminary (yet not official) cause for the crash of Indonesian Airlines and Ethiopian Airlines 

was related to a computer program relying on sensory information to act on behalf of the pilot 

if it noticed an abnormal speed vs. pitch attitude. An un-healthy relationship with low airspeed 

and a high nose pitch of the airplane would result in a stall, and a system called MCAS was 

introduces in the planes to help pitch the nose of the plain forward (thus eliminating the stall 

situation) if the sensors noticed this undesired relationship. What happened instead with the 

above mentioned incidents were that the sensor data was wrong, and the computer acted on its 

automation to trim the nose of the plain down, so far that it resulted in a situation where the 

pilots no longer could control the plain and a crash was inevitable.  

Similar cases are possible when computers act as decision making support tools, like with the 

gangway model, were sensory data might be corrupted and an auto-disconnect of the gangway 

bridge might occur. With the misleading information from the computational decision support 

system, the operator might also act on behalf of the system before the auto-disconnect engages, 

believing that the actions taken were the right ones because it was supported by the computer. 

This claim is supported by the above mentioned functionality of how humans make decisions 

during stressful environments. The overall result of computer misinformation would be severe 

consequences for personnel on the gangway bridge during the misinterpreted gangway bridge 

disconnect. It is important that these aspects are properly taken into account when managing 

the risk of walk-2-work operations. 

In addition, there are five different phenomena that reduce the quality of computer-based 

decision-making, summarized by Falk, K. et. al (2018): 
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Phenomenon	 Description	

Brittleness 
Modern socio-technical systems may be so complex that it is almost 
impossible to define all relevant functions and alternatives, as well as the 
scope of system limits and relevant interfaces with other systems. 

Opacity Technology systems have limited capability to express and explain what it is 
doing, and what it is planning to do next, to the human operator. 

Literalism 
Automata stick to the rules and instructions given by their programmers or 
operators (the process), even if they may lead to obviously undesired 
outcomes (lack of goal orientation). 

Clumsiness 
The system has little understanding of the work situation of the operator, 
and thus does not aid when needed or call for attention when operator 
workload is very high. 

Data overload 

Producing large amounts of information, of which only a small part is 
useful for the operator. The situation may also be opposite: that the system 
does not produce information that obviously would be helpful from the 
perspective of the operator. 

Table	3	-	Challenges	with	computers	as	decision-makers	(Onken	&	Schulte,	2010)	

Onken and Schulte (2010) elaborate further on four of the phenomena: 

Brittleness describes the flaws of conventional use of automation and computational decision-

support as a result of it being close too impossible to verify that everything is working in an 

acceptable manner in all possibly encountered situations during the development process of 

highly complex functions. In other words, brittleness refers to conventional automation and 

decision-support in regards to its characteristics and its ability to work well; according to set 

specifications and operational limits. These limitations of proper operation will normally not 

be known for the human operator, as there always will be situations where “n+1” will be hard 

to predict.  

Opacity is the surprising element to the operator when the outcome or action of the computer 

differs to what is expected i.e. when there are no obvious errors available, but there is still an 

error message displayed. The human operator simply cannot know all about the complex 

functions he is trying to use, and has little to no chance of understanding what is going on. 

Typical questions the operator might ask him/her-self during a stressful situation in relation to 

opacity would be; “What is it doing?”, “Why is it doing that?” and “What´s it going to do 

next?” (Weiner, 1989). Even though these questions are directed towards more automated 

systems rather than decision-support systems, they are still relevant and can be translated into 

“What is the information its providing?”, “Why is it telling me this?” and “What will it inform 

of next?”. 
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Literalism relates to the programming of computers, and that they normally do what they simply 

are made to do. They do not deviate from their programmed purpose, and do as the operator 

and programmer have told it to do. In other words, literalism states that computer programs 

follow their given instructions strictly no matter if what the program does is right or wrong. 

Conventional automation and computational decision-support tools do not question or check 

control operations concerning their ability to make sense in the given context. 

Clumsiness, the final challenge in computational decision-making relates to the issue of the 

computer software producing too much information were very few parts of the information is 

useful. The overall result of this issue is related to the operator becoming confused and having 

to de-bug/decipher all the information and come to a conclusion as to which information is the 

one to act upon. This is very time consuming and not fortunate, especially in situations where 

time is scarce.  
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3. METHODOLOGY 
3.1. Research method 

Research methodology has two approaches that are normally used. A quantitative or qualitative 

approach. Quantitative research utilizes numerical data or data that can be transformed into 

statistics and uses measurable data to formulate facts and uncover data patterns. Qualitative 

research on the other hand is a type of scientific research that attempts to seek answers to a 

question, systematically predefine a set of procedures to answer the question, collects evidence 

and produces findings that are not determined in advance (Kothari, 2004). 

The thesis studies the use of an algorithmic decision-support model and how the use of such a 

model impacts risk management in the offshore petroleum sector. Qualitative research was 

preferred over quantitative as the information available from the model analyzed were only 

theoretical with no numerical data available, and because qualitative research is quite effective 

at obtaining information about behavior of humans, and decision-making in general. 

Further focusing on the qualitative method, it was chosen to use a case study approach to answer 

the problem statement. A case study approach should be considered when: a) the focus of the 

study is to answer “how” and “why” questions; b) you cannot manipulate the behavior of those 

involved in the study; c) you want to cover contextual conditions because you believe they are 

relevant to the phenomenon under study; or d) the boundaries are not clear between the 

phenomenon and the context (Yin, 2003). For the problem statement in this thesis the goal is to 

answer how the analyzed algorithmic model impacts risk management and how the use of 

algorithms impact risk management in general, thus supporting claim a). Also point c), stating 

that contextual conditions relevant to the phenomenon under study, proves to be appropriate as 

the contextual condition in this case is based on the identification and analysis of the model at 

hand. 

 

3.2. Data collection 
Data collection start when the outline of the thesis and its research question is defined. To be 

able to take a deep dive into the selected model and answer the research question adequate 

information is necessary to be able to arrive at results that can be backed up by proven scientific 

research and theory. As the model studied has not till this date been implemented for use at an 

offshore installation questionnaires and interviews are not considered necessary for answering 
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the problem statement, but it is justified that only focusing on content analysis that utilizes deep 

studying of the subject matter will be sufficient. 

 

3.2.1. Content analysis 
Content analysis is a method that consist of analyzing the content of documents such as books, 

magazines, newspapers and scientific paper (Kothari, 2004). Data collection was done using 

existing data, specifically aiming at the paper “Risk-Based Decision Support Model for 

Offshore Installations”. This data was collected as the paper was the most promising 

considering the thesis` set criteria for containing a safety system using algorithms as its 

foundation, was applicable in a real world scenario, was within the date range (2016-2018), was 

risk-based, and was utilized in the offshore petroleum sector. 

Additional data collected were theoretical reviews of existing information including topics 

regarding risk, human/computational decision-making, algorithms, machine learning and safety 

models. The paper that forms the main research analysis was produced in 2018 in collaboration 

with SINTEF, Statoil (now Equinor) and Oilfield Technology Group and the aim was to 

develop a decision-support tool using algorithms to guide decision-making for a gangway 

bridge installed on a flotel. 
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4. RESULTS 
The model that will be evaluated is a computerized model that supports decisions to be made 

based on operational safety risk on an offshore installation. The model is based on, and 

developed using the software DEXi and its main task is to automatically provide a decision 

advice based on 28 different input parameters (Erdogan, G et. al. 2017).  

4.1. An Algorithm to Support Risk-Based Decisions for Offshore Installations 
The focus of the model is related to major offshore maintenance projects where flotels are used 

to accommodate the workers. Flotels are vessels that provide sleeping and recreational quarters 

for the workers and is the work flotel is derived from its purpose, namely a floating hotel. The 

main problem with adopting a flotel as main quarters for the personnel is related to the flotel 

needing to be in a close and limited area to the installation that maintenance work is being 

conducted on. It maintains this close and limited position using several thrusters mounted on 

the bottom of the vessel that is supported by a Dynamic Positioning system (DP), thruster 

assisted mooring or more simple mooring systems.  

Dynamic Positioning implies using a computer-controlled system that keeps the flotel`s 

position automatically by using the above-mentioned thrusters. However, maintaining this safe 

position in rough conditions as one could encounter in the North Sea is proven to be highly 

challenging. The risks related to the use of the gangway are weather associated as unfavorable 

conditions provides a decision alternative for the offshore operatives on whether one should lift 

(disconnect) the gangway from the offshore installation or not. If the gangway remains 

connected during these weather conditions, there is a risk that an uncontrolled disconnect occurs 

as the integrated maximum safety level is exceeded as a result of too strong winds and/or too 

high significant wave height makes it physically impossible to stay connected. This 

uncontrolled lift can cause harm to personnel and important equipment on the offshore 

installation, gangway or flotel. 
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Figure	10	-	Gangway	connection	from	flotel	to	installation	(Erdogan,	G	et.	al,	2018) 

The decision to disconnect can be difficult to make as there are several factors that affect the 

risk. In particular there are enormous costs related to lifting the gangway during operation as 

the workers will be prevented from performing their assigned tasks, impacting both schedule 

and budget. The decision to lift the gangway is prior to the model based upon paper-based 

Location Specific Operational Guidelines (LSOG) and other sources of information such as the 

prevailing weather conditions that the offshore operator’s cross reference the current weather 

conditions with. As this decision carries such a heavy burden on the offshore operators, an 

algorithmic computer assisted model that acts as a decision-support tool is provided, in an 

attempt to minimize the risk exposure by releasing the offshore operators from taking decisions 

that they normally would refrain from doing (Erdogan, G et. al., 2017). 

	

Figure	11	-	Vision	for	overall	decision	support	solution	(Erdogan,	G	et.	al	2017)		

Figure 11 displays the solution for how the tool supports decision making for the offshore 

operator. The data (such as weather forecasts) for the input parameters are collected in the Input 

Collector phase, and the Decision Support Model sorts these data to make a computational aided 

advice. The advice gets portrayed for the offshore operator in the End User Interface and is 

tailored for the specific needs the operator might have. The model is according to Erdogan et. 

al. built up of four success criteria: 
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C1: The model should provide advice that correspond with expert expectations. 

C2: The model should capture all aspects that are important for the assessment. 

C3: The model should be comprehensible for domain experts. 

C4: The expected benefit should justify the effort required to develop the model.	
	

4.2. DEXi 
DEXi is a qualitative decision support methodology software for the evaluation and analysis of 

decision alternatives. The methodology used in DEXi was conceived more than 30 years ago 

and has a long history of scientific, technical and practical contributions for the real world. It 

uses an approach of combining “classical” numerical multi-criteria decision modeling with 

rule-based expert systems, that lead to the development of new algorithms and techniques for 

acquiring and representing decision knowledge and evaluating/analyzing decision alternatives. 

DEXi is still very much alive today despite its age and is actively used in international projects. 

(Bohanec, M., Znidarsic, M., 2013) 

 

4.2.1. Principles of DEXi 

DEXi and its basic principles are intentionally kept simple by the developer. The analyst is 

asked to define a qualitative multi-attribute model with belonging decision alternatives that are 

evaluated and analyzed. The model, in principle, represents a decomposition of decision 

problems into smaller and less complicated sub-problems and is represented by a hierarchy of 

attributes. The DEXi model contains: 

• Attributes: variables that represent basic features and assessed values of decision 

alternatives. 

• Scales of attributes: these are qualitative and consist of a set of words, such as 

“excellent”, “acceptable”, “inappropriate”, etc. Usually, scales are ordered 

preferentially, i.e., from bad to good values. 

• Hierarchy of attributes: represents the decomposition of the decision problem and 

relations between attributes; higher-level attributes depend on lower-level ones. 

• Decision rules: tabular representation of a mapping from lower-level attributes to 

higher-level ones. In principle, a table should specify a value of the higher-level attribute 

for all combinations of values of its lower-level attributes. 

(Bohanec, M., Znidarsic, M, 2013) 
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Bohanec 2013 illustrates these above points in a model for evaluating cars.  

	

Figure	12	-	DEXi	model	example	for	evaluating	cars	(Bohanec,	2013)  

	

Figure	13	-	Decision	rules	for	an	evaluating	function	(Bohanec,	2013) 

	

Figure	14	-	Evaluation	of	three	cars	(Bohanec,	2013)	

The final stage of the DEXi model typically involves using various alternatives for analysis. 

Such analysis might be structured “what-if” analysis and sensitivity analyses. A normal analysis 

used with a combination of the DEXi model is a “plus-minus-1” analysis, that investigates the 

effects of change that results from altering each input variable by one step down (-1) or one 

step up (+1) in the attribute scale. From figure 15 we can see that even a small step up or down 

in the given example results in changes from outputs that have previously been rated as “good” 

to something that is either considered “excellent” or “unacceptable”. This gives a better weight 



	

	 31	

to the decision-support information as it also considers worse/best case as used in cost-benefit 

analyses. 

	

Figure	15	-	DEXi	Plus-minus-1	analysis	(Bohanec,	2013)	

4.2.2. Important concepts 
DEXi is in theory a combination of 2 approaches: Expert systems and multi-criteria decision 

analysis (MCDA). DEXi borrows the idea of evaluating and analyzing decision alternatives 

using hierarchically structured models but departs from using numerical variables and weight-

based utility functions, by introducing concepts from expert systems: qualitative (symbolic, 

linguistic) variables, if-then rules, dealing with uncertainty, high emphasis on transparency of 

models and explanation of evaluation results (Figueira et al., 2005). 

The most important concepts and principles adopted by the DEXi model are: 

Acquisition of decision rules: Direct definitions of tables is tedious and error-prone, and 

computer-based assistance is vital in particular when there are large rule sets. DEXi has adapted 

these rules by implementing certain simple, predetermined definitions: “direct”, “use scale 

orders”, and “use weights” (Bohanec et. Al., 2013). 

Validating rules: DEXi rules are simple and restricted by the scales of the corresponding 

attributes, compared with common expert systems. This makes them suitable for validation of 

completeness and consistency. This is said to help improve the overall quality of the models it 

produces. 

“The user is always right” principle: DEXi gives precedence to information provided by the 

user, rather than looking for errors. Thus, any decision rule is taken literally and is never 

modified by the software, and instead the software only provides an error label. 

Dynamic aspects of model creation: The model provided as an example above in fig 12 is 

considered static. But in reality, the model is constantly changing and improving. Parts of the 

model are created, extended, moved or deleted. These operations must be supported by 
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appropriate algorithms so that the information already contained in the model is retained as 

much as possible and handled within the decision rules. 

Bridging the gap between qualitative and quantitative MCDA: Traditional MCDA relies 

heavily on weights to define the importance of attributes. There are no weights in decision rules, 

however it turns out that it is practically important to deal with weights, so these are included 

into the DEXi model as well. Partial transformation is possible to achieve in two ways: 1) 

weights are estimated from defined rules by linear approximation, and 2) the values of 

undefined decision rules are determined on the basis of already defined rules and user-specified 

weights. 

Handling uncertainty in alternatives and rules: An expert system must, by definition, be able 

to deal with incomplete and uncertain knowledge. This is done by using probabilistic 

distribution rules in decision-making as supported by the work of Znidarsic et al. (2008). 

Transparency and explanation: It is essential that DEXi models appear transparent and 

comprehensible to the user. DEXi provides mechanisms for presenting decision rules from a 

ID3-based decision tree learning algorithm.  

Analyses of alternatives: As mentioned in chapter 4.2, evaluation of alternatives is an important 

part of DEXi. The decision support methodology has to provide advanced tools for the analysis 

of alternatives, including methods like “what-if” analysis, “plus-minus-1” analysis and 

“selective explanation” (Bohanec, M et al, 2012). 

4.3. The Gangway Decision Support Model 
Figure 16 is extracted from Erdogan et. Al`s (2018) DEXi tool and presents the layout and 

attributes that are included in the algorithmic model. Each attribute is assigned a name, with 

respective sub attributes. The main model that receives all the input data is called “Gangway 

operational risk” and is feed by 4 attribute categories: 

1) Flotel criticality state 

2) Gangway criticality state 

3) Weather 

4) Installation criticality state 

The above main categories receive different input from several sub attributes included in the 

categories, that feed information to the hierarchy category (the model). The totality of the 



	

	 33	

information received is then processed and the model gives four different scales for which state 

the gangway should be in. 

Value Description 

3. Abandon operation 
There are very strong reasons for disconnecting the gangway; 
an auto lift or other incidents are likely. 

2. Prepare to abandon 
operation 

There are strong reasons for disconnecting the gangway. 
Preparations for disconnection should be considered. 

1. Advisory state 
If already disconnected, the gangway should remain so. If it is 
currently connected, it may remain connected. 

0. Normal state The gangway may safely be (or remain) connected. 
Table	4	-	Scale	for	top	attribute	Gangway	operational	risk	(Erdogan	et.	al.	2018) 

The four values in table 4 represent all the possible advice states that the model can produce. 

Risk is presented in decreasing order meaning that “Abandon operation” is the least desirable 

state, while “Normal state” is the best possible scenario for the gangway operation.  

	

Figure	16	-	DEXi	model	structure	(Erdogan	G,	et.	al,	2018)	
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The first main category is “Flotel criticality state” which solely capture the factors that 

influence the flotel. DP class status refers to the dynamic positioning system and is dependent 

of DP class compliance and Operation mode. DP class compliance is an attribute that logs the 

degree to which the redundancy of sensors, actuators and controllers follow the necessary 

requirements. A loss of redundancy will lead to a higher risk of not being able to control the 

flotel`s position thus increasing the probability of a collision or collapse of the gangway bridge.  

The attribute referred to as Operation mode records whether the flotel is kept in position using 

only the DP system, thruster assisted mooring (which is a combination of the DP system and 

standard mooring) or only mooring lines. The DP class status attribute ranks over the attributes 

DP class compliance and Operation mode as the importance of fulfilling the DP system 

redundancy requirements depends on to which degree the DP system is currently used to keep 

the flotel in position.  

The sub attribute Station keeping performance gathers its input data from the position the flotel 

is in in real time, and its ability to remain within the preferred/safe position and heading in 

relation to the offshore installation. Finally, the last input for the Flotel criticality state we find 

the Drift-off collision risk sub attribute. This attribute represents the risk imposed by the flotel 

drifting too far out from its desired position, resulting in a collision with the offshore 

installation. The risk is dependent on the thrusters and their ability to withstand the forces 

exerted on them from any given direction, meaning that the thrusters should be able to 

counteract the forces that waves, winds, etc. produce. The DP system then records these force 

inputs and adjusts for this in the DP force/thrust direction and DP force/thrust amplitude sub 

attributes. 

“Gangway criticality state” is the second 

main category and captures factors that are 

relative between the flotel and the 

offshore installation. Stroke and elevation 

of the gangway bridge are essential 

features that need to be recorded by 

sensors. These numbers need to stay 

within the fixed limits that are considered safe, or it could result in a catastrophic failure and 

loss of the gangway. 

Figure	17	-	Stroke	&	Elevation	cylinders	for	gangway	bride	
(Ampelmann,	2019) 
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These factors are recorded in the sub attribute categories Real-time gangway stroke and Real-

time gangway elevation. Present heading deviation from recommended heading (weather 

dependent) relates to the flotel remaining in a heading (degrees) relative to the offshore 

installation that is within safe limits. It also must be emphasized that these heading limits are 

weather dependent, meaning the recommended limits are dynamic. The number of times the 

stroke of the gangway has exceeded its fixed limit during a 10-minute period is captured in the 

Gangway stroke statistics sub attribute and is a crucial indicator for situations that could lead 

to an involuntary gangway disconnect. The last attribute is Gangway stroke forecast in six hours 

which gets its data from a stroke prediction system used to forecast the expected deviation from 

the recommended heading in the next six hours. 

The third main category is Weather. This is again spilt into two sub attributes; Measured 

Weather and Forecasted Weather. Measured weather records and measures the real-time 

weather at the location, with appropriate sensors and measuring equipment (wind, waves, etc.) 

and feeds the model and operation room this data. Forecasted weather captures data from 

several forecasts (as there are deviations in the accuracy of predicting future weather) in the 

immediate future. These two sub attributes are used as a form of elementary redundancy for 

each other. By looking at forecasted weather one can estimate when there is a safe time space 

to performing the work tasks as demanded. 

The final main category is “Installation criticality state”. This category involves aspects that 

affect the offshore installation as it is connected to the flotel via the gangway bridge. This 

category is split into 5 sub attributes that focus on operational, safety and managerial input data. 

Operational activity state records input data from what type of activity or operation that is being 

conducted at the offshore installation. The activity could range from maintenance work to 

production, which each carry with them different levels of risk depending of what activity is 

currently ongoing. Drilling and well activity carry with it the same as for Operational activity 

state, with the fact that the risk picture is alternating depending on what activity/sub-activity 

that is being carried out.  

POB (Personnel on Board) focuses on the demand for lifeboats when there are more 

maintenance crew from the flotel on the offshore installation than what the installation is 

designed for, regarding lifeboats. If there are more personnel onboard than there are available 

lifeboats the gangway has to either remain down to ensure a safe evacuation, or the personnel 

has to be retracted back to the flotel in good time before the tolerable limits are close to being 

succeeded. Exhaust exposure is an attribute which looks at the issue regarding exhaust produced 
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by the offshore installation that exceeds the safe level, causing personnel to vacate the 

installation. Finally, Visiting vessel is taken into the equation, to factor for those cases where 

for example a supply vessel is in the vicinity and could cause an increased collision risk. 

4.4. The algorithmic framework of the model 
The model is designed as an expert system that uses rule-based algorithms supported by the 

ID3 decision tree. As the model is built up on rule-based algorithms for decision-making using 

expert knowledge, there has been identified advantages and disadvantages related to utilizing 

this method for developing a model for making risk-based decisions to aid as decision-support. 

4.4.1. Natural knowledge representation 
Rule-based expert systems like the gangway model, are good tools for representing natural 

human knowledge that experts might have obtained throughout years of experience, were the 

goal is to guide the model by giving strict commands to the algorithm based on IF-THEN 

statements.  

An example would be for the “Installation criticality state” where an expert would state that in 

a situation where: are there personnel onboard the offshore installation exceeding the lifeboat 

capacity? This would be the IF in a rule-based expert system. The output of this IF rule would 

then either be “Yes” or “No” depending on the LSOG data the experts have chosen as their 

acceptable figure. This is where THEN in the rule-based system would occur, telling the system 

to either do one action dependent on the state of the personnel onboard versus the number of 

available lifeboats present, and the knowledge is all determined by the expert in advance, and 

programmed into the computational ID3 algorithm that the software DEXi is built upon.  

Natural knowledge representation is evaluated to be one of the main advantages of using a rule-

based expert system for decision-making, as it is a uniform structure. Each rule is represented 

as an independent piece of knowledge that can be self-documented, meaning that the produced 

rules have a uniform IF-THEN structure that it is easy to categorize, identify and follow up. 

4.4.2. Knowledge separation 

In expert systems, and especially rule-based ones, knowledge is separated from the processing. 

What this essentially means is that the interference engine, the DEXi software, and the 

knowledge base that forms the underlying input information from the experts are split up into 

separate structures. This is very different from conventional computer software were knowledge 

and control structures are mixed together.  
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Knowledge separation allows for easy manipulation and alteration of the built model, as one 

simply can add new rules to the model that directly impacts the knowledge without having to 

redesign the model based on new knowledge input. 

4.4.3. Managing incomplete and uncertain knowledge 

Rule-based expert system algorithms are in general quite capable of dealing with incomplete 

and uncertain knowledge. This is considered as a positive attribute for the gangway model, as 

there have been identified scenarios were the data is incomplete, outdated or irrelevant, so the 

need to being able to handle this incomplete data is crucial for the integrity of the model and 

the application in risk management. This is explained in more detail in chapter 4.5.1.1 Input 

Data. 

4.4.4. Inability to learn 
Being able to learn is a crucial success factor from any task in general. And when one considers 

risk management, the ability to learn has proven even more crucial towards the path to success. 

This is where the model struggles the most by utilizing a rule-based algorithm as part of its 

framework, as it is incapable of learning by itself, but is rather dependent on being programmed 

every time there is a change in experience and knowledge. 

Human experts when faced with change in knowledge know how and when to break the given 

“rules” for the situation they are dealing with. Rule-based algorithms on the other hand are 

incapable of automatically modifying its knowledge base, or adjusting existing rules as well as 

adding new rules. 

4.5. Impact on Risk Management 
After analyzing decision-making principles, the gangway decision-support model, expert 

systems in general and the use of an algorithmic framework for supporting gangway bridge 

decisions, the use of a rule-based algorithm as a theoretical backbone will be analyzed in regards 

to the broad topic of risk management. Several factors such as risk aversion, the expected utility 

theory, the sociotechnical perspective and the cautionary principle all play a vital role in factors 

that fall under the category referred to as algorithmic risk in models. 

4.5.1. Algorithmic risks 
Algorithmic risk is a phenomenon that arises when one uses cognitive technology-based 

algorithms in software and in data analytics for semi-automated decision-making scenarios. 

(Deloitte, 2019). “Risk-Based Decision Support Model for Offshore Installations” is a model 
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that fits that description perfectly as it aims at guiding a decision-maker (the operator) into 

making a decision that minimizes risk with the use of an algorithmic framework.  

With the use of algorithms in the context of decision-making several factors are vulnerable to 

algorithmic risk, as illustrated by figure 17: 

	

Figure	18	-	Framework	for	understanding	algorithmic	risk,	adopted	from	(Deloitte,	2019)	

4.5.1.1. Input data 

Input data is the information that gets fed into the model. The data comes from multiple sources, 

a total of 28 sub nodes, that uses both predicted and real time measurements. Risks related to 

data inputs are discovered to be incomplete, outdated and/or irrelevant data, and mismatching 

between data used and actual data input. There are several risks related to these nodes and their 

belonging data: 

• The Weather attribute could suffer from irrelevant, incomplete and outdated data: 

o Incomplete: Some factors to the forecasted weather might not be available for 

a given date. 

o Outdated: The forecasted weather might have changed dramatically due to 

some weather phenomenon, resulting in data inputs that are way off relative to 

what was the data basis to start off with as an input 

o Irrelevant: Wind direction forecast, Sea current direction, Wind direction and 

Wave period are all examples of input data that has been included in the model, 

but are found to have no impact on the actual output decision, and is only 

included for completeness. This could lead to the risk of data clutter and 

confusion while implementing the model. 

• Installation criticality state attribute suffers from: 

o Mismatch between data used and actual data input: Exhaust exposure is a 

sub-attribute that uses a subjective opinion on whether there is a too high 
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exposure of exhaust on the offshore installation and is an attribute that does not 

work well with the model quantifiably. 

In addition to the above identified input data risks, insufficiently large and/or diverse sample 

sizes; and inappropriate data collection techniques are other input data risk factors that have not 

been identified in the model, but are weaknesses worth pointing out with regards to algorithmic 

risk. 

4.5.1.2. Algorithmic design 

Algorithmic design is for the gangway model the framework on which the model is based on. 

Risks related to algorithmic design are normally linked to biased logic, misguided assumptions 

or judgements, and inappropriate modeling techniques.  

Inappropriate modeling techniques is a risk that is quite present in the gangway model. Utilizing 

a rule-based algorithm for use in applications such as decision-support has proven un-fruitful 

or even not beneficial as stated by Tiwari et. al. 2017 and further elaborated on in chapter 4.4. 

There are 5 additional challenges with using a rule-based algorithm for decision-support and it 

is connected to the following aspects: brittleness, opacity, literalism, clumsiness and data 

overload, which are denoted as challenges related to using computers as decision-making tools. 

A rule-based algorithm struggles to verify that every sensory data input it receives are functional 

in an acceptable manner, thus suffers from brittleness. The consequence of this issue is that the 

computational support tool is unable to provide verification to the gangway operator at the flotel 

on whether the tool is producing decision-support outputs that are made on false or missing 

sensory data inputs. If for example the gangway elevation attribute and its sensory data is 

corrupt, the decision-support tool will simply ignore the whole attribute, rendering it as a state 

0 or “normal operation” state. The implications of this is severe, as the gangway bridge has 

maximum and minimum elevation limitations between -16 to 24 degrees (Erdogan et. al. 2018). 

If this elevation is exceeded the gangway bridge will disconnect, but the operator would have 

no output from the computer recommending or warning about the imminent disconnect 

situation, which again could result in undesirable events and potential injury. If this factor is 

ignored when the tool is implemented from a risk management perspective, it could result in a 

miss-informative risk management process (Onken and Schulte, 2010). 

Opacity, one challenge related to computers as decision makers, states that rule-based 

algorithms have limited capabilities for expressing and explain what it is doing, and what it is 

planning to do next, to the human operator. Linking this to the utilitarian theory, the theory that 
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human decision-makers tend to choose the most “attractive” alternative, it becomes clear that 

opacity and this theory is contradicting each other. It becomes hard to pick the most promising 

alternative when the outputted information from the model is confusing, and hard to interpret. 

Computational decision-support tools with a rule-based algorithm as its backbone do not 

question nor check control operations concerning their ability to make sense in a given context, 

and is referred to as literalism. The algorithm does not deviate from its programmed purpose, 

simply following what it is programmed to do. The most prominent disadvantage related to this 

issue in terms of decision-support is that out of the 28 nodes that form the decision-support 

model, several of them have the potential to learn and adapt from the data input it receives. An 

example is the forecasted weather attribute were forecasted weather does not always directly 

relate to measured weather at the specific location. This is discussed further in appendix A, 

where a machine learning approach to the model is proposed. 

Clumsiness is the issue of the model producing too much information, where several sources 

of information is considered useless. The overall effect is that the gangway operator would have 

to de-bug/decipher all the incoming information and determine which piece of information 

he/she should make the decision-basis on. This is not necessarily identified as a problem with 

the current model, as it is not clear how the authors plan to portray the information to the 

operator. It is included as a point however, as the potential for computational clumsiness is 

present when one deals with data from 28 independent source nodes. 

4.5.1.3. Output decisions 
Output decisions is the final attribute for understanding the framework behind algorithmic risk 

that effects the gangway bridge decision-support model. Risks related to the output decisions 

are: incorrect interpretation of the output, inappropriate use of the output, and disregard of the 

underlying assumptions. 

4.5.1.4. Underlying factors 
Risks mentioned above can be caused by multiple underlying factors, as shown by figure 17. 

There has not been identified any underlying factors that directly influence the model and its 

associated risks, but they are worth mentioning (Deloitte, 2019): 

• Human biases: 

o Cognitive biases of model developers or users can result in flawed output. Also, 

lack of governance and misalignment between the organization’s value and 

individual employee’s behavior can yield unintended outcomes 
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• Technical flaws: 

o Technical rigor or conceptual soundness missing in the development of the 

algorithm, failures in testing, training and validation of the algorithm, that could 

potentially lead to incorrect data output. 

• Usage flaws: 

o When the algorithms get implemented into either a model, or a model containing 

algorithms gets implemented into a system, there could be faults in the process. 

Also, the how the end user uses the output could be inappropriate in regards to 

decision-making 

• Security flaws: 

o The potential for internal or external threat is there. Acts of misuse or 

manipulation is a possibility, that could potentially harm the decision outputted 

from the algorithm. Also, developers could deliberately introduce flawed 

outcomes. 

	

4.5.2. Expected Utility 

The gangway model analyzed does not capture any uncertainty for its attributes (Erdogan et. al. 

2018). When one studies what data input it bases its decision on, it is clear that there definitely 

is uncertainty present in the parameters it makes its decision on. The most obvious example is 

for forecasted weather, and it is stated by Erdogan et. al. that there is an assessment of the 

uncertainty for this attribute but that it is ignored by the model. It is argued that incorporating 

uncertainty in the model will be to complex and that LSOG data does not include uncertainty 

in its guidelines. 

However, as it is a fact that there is uncertainty present in the attributes contributing to the 

outputted computational advice, it should be incorporated into the model (Onken & Schulte, 

2010). This would also allow the model to avoid one of the most common pitfalls for decision-

support systems; confusing likelihood with importance. Importance is derived from the 

expected utility theory and maximizing this expected utility. Combining the utility theory with 

the available probabilities pave ways for the decision-support system to make rational decision 

advice based on both what the system believes and what it wants. This will make sure the model 

stays in line with the basic principle of decision theory, the maximization of expected utility. 
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The problem, however, with using EUT for a rule-based (algorithmic) decision support tool like 

the gangway model is that for several attributes, it is difficult to assign a probability that it can 

compare its utility to. In other words, when the system has to handle attributes that involve 

uncertainty, it becomes difficult to give weight to the EUT and more weight has to be given to 

the cautionary principle. From an operational/personnel perspective, EUT will not be 

considered beneficial, as the personnel value decisions that are motivated by safety over 

decisions that are motivated by economic gain. 

 

4.5.3. The Cautionary Principle 
Previously it has been elaborated that the gangway bridge model does not incorporate 

uncertainty for any of its attributes. But as explained in chapter 4.5.2 about the expected utility 

theory, the uncertainty is certainly present. Also, determining the probability for several of the 

attributes in the model has proven to be difficult, as their nature is based on arbitrary values. 

As a result, the cautionary principle has to be implemented as there is at the current time no 

way for handling the uncertainty. The cautionary principle states that in face of uncertainty, 

caution should be the ruling principle (Aven & Vinnem, 2007). This means for the sake of 

implementing the model that the determined risk picture should be viewed as risk averse. Even 

though the likelihood of the model producing recommendations that are wrong as a result of 

uncertainty values that are not incorporated, one should still evaluate the recommendation 

output with caution and thus not follow the information blindly.  

To elaborate, caution could be used in this context with relation to situational awareness 

(Chiappe, Strybel & Vu, 2012). Situational awareness is, when handling complex systems, 

viewed as a contributor for accidents occurring (Naderpour, 2014). This is because the operator 

has to deal with several problems and difficulties when faced with making a decision in the heat 

of the moment for these complex systems. What the model has provided, however, is a way for 

simplifying the rather complex system involved in making a decision on whether to maintain 

the gangway in a connected state or if it should be disconnected. Now the operator has input 

from the algorithmic model, that should be viewed according to the cautionary principle, on 

which decision that is recommended based on all attributes which again removes a lot of stress 

and information input for the operator, resulting in improved situational awareness. And as 

situational awareness is considered one of the most important cognitive human features when 

it comes to decision-making, the collaboration of the implemented model, cautionary principle, 
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and human situational awareness, could help improve the overall risk picture related to gangway 

bridge operability and help streamline risk management for the period uncertainty is not 

properly incorporated into the model. 

To conclude, as the cautionary principle is recommended for managing the uncertainty until 

improvements to the model is made, risk aversion should be the ruling view for how to manage 

risk related to implementation of the model. 

 

4.5.4. The Sociotechnical Perspective 
One of the issues of using computational and algorithmic models to govern the decisions to be 

made on an offshore installation is related to the sociotechnical perspective. Aven (2018) 

clarifies that for regular risk assessments the main objective is to use linear models (like event 

trees and fault trees) to provide a system understanding. After this understanding has been met, 

one then wants to quantify the risk and compare it do criteria that are predetermined and use 

this to guide the decision-maker in the decision-making process.  

When one studies the sociotechnical perspective, that argues that complex systems like nuclear 

power plants and offshore installations are complex systems where safety is not properly taken 

into account when using the linear risk assessment models, an issue arises. When dealing with 

complex systems it can be argued that when predicting system performance and estimating the 

risk, it cannot be done accurately. When one regards the knowledge and expertise that is applied 

to a model, one can be certain that there will always be surprises and unexpected events that go 

along with it (Black swans). The definition of a sociotechnical system is: 

“The concept of sociotechnical system was established to stress the reciprocal interrelationship 

between humans and machines and to foster the program of shaping both the technical and 

social conditions of work, in such a way that efficiency and humanity would not contradict each 

other” (Ropohl, G., 1999, Kleiner, BM et al., 2015). 

Kleiner, BM et al (2015) go on to say that sociotechnical perspectives include 5 dimensions: 1) 

two or more persons, interaction with some form of 2) technology, 3) and internal work 

environment (both physical and cultural), 4) external environment (can include political and 

cultural, economic, educational and cultural sub-environments), 5) an organizational design and 

management subsystems. Meaning that sociotechnical thinking involves micro-, meso- and 

macro elements and that they have interconnections. In other word, the sociotechnical 
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perspective captures the interconnection between society and technology and how interlinked 

the complexity of human and technological interaction really is. 

Looking at the gangway model it can be argued that in a sociotechnical perspective, the model 

does not capture nor implement the very complexity of the system itself and the interactions it 

has with the personnel handling the information output from the model. The model is built up 

of several sensory data inputs that are quite complex, and in a risk management perspective it 

becomes clear according to the sociotechnical perspective that the prediction of system 

performance might be considered too far towards the safer side than what it is in reality. A 

suggestion would be to conduct a robustness- and resilience analysis of the model and all its 

aspects before it gets concluded whether or not risk is increased or decreased by applying the 

model to an operational gangway bridge 

 

4.5.5. Risk and Decisions 

Risk and decisions in relation to algorithms prove to a complex issue in regards to risk 

management. When making the decision to either maintain the gangway bridge connected or 

disconnect without the support of a decision support tool, there are three stakeholders involved: 

The decision-maker, the risk-taker and the benefit receiver (Holmgren & Thedéen, 2010).  

These three stakeholders share a common interest in the decision being made, and all have an 

impact and/or a risk perception of this decision. The decision-maker for a gangway bridge 

would be the gangway operator; the person sitting in the control room. The risk-taker can be 

either the personnel walking over the gangway bridge, or the field operator, depending on which 

perspective one views the risk from. The personnel would be directly exposed to the risk as the 

potential of a disconnect could result in personal injury. For the field operator this would boil 

down to the fact that an un-wanted disconnect could result in increased costs and schedule, loss 

of personnel and equipment, and reduced reputation. The benefit receiver would be the field 

operator and the personnel, if the risk is managed well, as the operator would maintain schedule 

and budget, and the personnel would be able to continue working. The decision being made 

therefore should have a potential benefit for all three stakeholders involved, and is a common 

practice when viewing risk in relation to shareholders in regards to decision-making. 

When the introduction of an algorithmic decision-support model is introduced, however, the 

risk picture and its belonging stakeholders change. A proposed 4th stakeholder dimension 

emerges when risk and decisions are involved, show in figure 18. A major stakeholder when an 
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algorithmic decision-support model is introduced is in fact the computational decision-support 

model itself(Yong & Yunlong, 2012).  

	

Figure	19	-	Proposed	framework	for	involved	stakeholders	in	making	a	decision	when	guided	by	a	computational	decision-
support	tool	(Author`s	work) 

As the model shows, each stakeholder can either be independent or overlapping. This implies 

that the risk that emerges from the decision the operator makes has a unity with all other 

stakeholders, and that the decision-support model has an equally large stake in the decision 

being made. Therefore, it becomes crucial to manage the algorithmic risk that is present within 

the decision-support model on the same level as risk is managed through more traditional 

stakeholders that regard risks and decisions when conducting a risk analysis of an entire system. 

Risk management related to the decision-maker, risk-taker and the benefit receiver are areas 

that have a strong theoretical background within risk management, and thus deviates greatly 

compared to the theoretical background of managing algorithmic risk. 

 

4.5.6. Managing algorithmic risk 
Managing algorithmic risks for the offshore petroleum industry does have many similarities to 

traditional risk management. What differentiates traditional risk management from algorithmic 

risk management however, boils down to two main points: 

• Algorithms are possessive: 

o Proprietary data, models and techniques are normally what algorithms are based 

on. Many developed algorithms are trade secrets that are protected from insight 

due to competitive advantages by having the most effective algorithms. This 

could result in offshore operators utilizing algorithms that they have little to no 
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knowledge about and make it difficult for regulatory agencies, let alone the risk 

management team, to manage and monitor the risks that accompany their use. 

 

• Algorithms are unpredictable, complex and difficult to explain: 

o The inherent complexity of algorithms is a problem, even if the developer of an 

algorithms chooses to share detailed information about it (Deloitte, 2019). 

Experts are needed to decipher the true meaning and how the algorithm actually 

works. In addition, the future of algorithms is based on machine learning, 

making it even more complex than more traditional algorithms like ID3 and rule-

based ones (Chollet, 2018). And to make matters worse, machine learning 

algorithms have tendencies to produce their own language (especially for 

unsupervised machine learning), resulting in algorithmic communication 

between each other, that is close too impossible to decode by humans. This 

communication could lead to unknown risks (Deloitte, 2019). 

This implies that when managing safety models containing algorithms, more weight has to be 

given to actual framework of the safety model, and the algorithms they are made up of in 

particular. Failure to get an understanding of the elemental building blocks of any model can 

lead to a misinformed risk management process (Burns & Anderson, 2011). So the overall 

impact that algorithms have on risk management for the offshore petroleum industry boils down 

to: 

• The operator of any specific field that wishes to utilize an algorithm incorporated into its 

safety model should ensure that access to insight information about the algorithm is granted. 

This will allow for better understanding of the model itself, and thus result in a more 

accurate risk management process. 

• Ensure that the inherent complexity of an algorithm does not justify excluding the belonging 

uncertainty of the safety model. Relying solely on the precautionary/cautionary principle is 

not a long term solution when it comes to safety models and algorithms. 

• Field operators that is willing to utilize algorithms should be aware that it exists several 

types of technological algorithms. As an example from the gangway model, a rule-based 

algorithmic approach is not considered the best for a decision-support model. Research has 

to be done in advance to ensure that the most suitable algorithm is chosen and incorporated 

into the safety models, so that it suits its demand. This simple step alone will increase the 
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likelihood of a positive impact on risk management when utilizing algorithms in safety 

models. 

5. DISCUSSION AND FUTURE RESEARCH 
5.1. Discussion 

The reviewed model had four success criteria that the model should meet to be successful, 

according to Erdogan et.al (2018) and as mentioned in chapter 4.1. Only three of them can be 

reviewed in terms of risk management, as C4 relates to the expected benefits and how they 

should justify the effort in developing the decision support model, which is beyond the scope 

of this thesis. 

With regards to C1, the model does provide advice that correspond with expert expectations 

from a gangway operational point of view. Here, the model provides advice for the gangway 

operator based on a total of 144 attributes that collectively form the basis for the decision-

support (Erdogan et. al. 2018). And as the attributes are built up of expert knowledge and the 

LSOG data, the output can be considered useful in a strictly operational point of view (Turban 

& Aronson, 2001). There should however be made a strength of knowledge assessment of the 

data attributes, to further back up the claim.  

C2 however, stating that “The decision support model should capture all aspects that are 

important for the assessment”, have issues when it comes to uncertainty, especially in terms of 

risk management. As stated in chapter 4.5.2 Expected Utility, there is no way for the model to 

incorporate the expected utility of the decision being made, resulting in the decision being made 

only on the premises it is programmed to do, and having to rely heavily on the cautionary 

principle and by being risk averse (Abrahamsen, 2010). In chapter 4.5.6, it is made clear that 

the complexity of the algorithmic framework should not be a pillar that stands in the way for 

incorporating uncertainty into the decision-making process, but rather be a pillar that forms the 

foundation of the model (Chollet, 2018). Incorporating the uncertainty into the algorithm itself 

could prove to give a better basis for the decision-making process and potentially highlight 

unknown scenarios for the gangway operator. 

C3 (The decision support model should be comprehensible for domain experts) is a success 

criterion that is to a certain extent not met. The basis for the output of the model is the DEXi 

software (Erdogan et. al. 2018). It is made clear that the output it produces is comprehensible 

for the gangway operators, as they have an understanding of what state it recommends and have 

knowledge of the attributes that are incorporated in the decision-making framework of the 
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model. However, the backbone of the model, which is a rule-based algorithm, there is little 

knowledge about. Chapter 4.4 elaborate on the issues of using a rule-based algorithm as a 

framework for a decision-support tool, and this rises doubt on whether all aspects of the decision 

support model are comprehensible for domain experts. Rather on relying on a rule-based 

algorithm, a supervised machine learning algorithm that incorporates the underlying uncertainty 

is recommended for this specific task (Chollet, 2018). This will in turn provide a better and 

more comprehensible risk management process.	

The use of algorithms in a context of risk management has potential. But it is worth noting that 

using algorithms carry with them risks themselves. As explained in chapter 4, algorithmic risk 

is a phenomenon that arises when one uses cognitive technology-based algorithms in software 

and in data analytics for decision-making scenarios (Deloitte, 2019). There were four 

algorithmic risks identified in the model related to input data: Incomplete data in the forecasted 

weather attribute, relating to weather data not being available when needed or not available at 

all. Also for the forecasted weather, the risk of the input data being outdated was identified 

(Erdogan et. al. 2018). Here, forecasted weather acting as input data could change dramatically 

due to some weather phenomenon’s, resulting in the data coming into the model being 

misguiding relative to the actual forecasted weather. The model also incorporated input data 

that was considered irrelevant. Irrelevant data could lead to a model that is too complex, and 

lead to risks related to wrongful development. For the attribute Installation criticality state, the 

risk of mismatching between data used and actual data input was discovered. This could 

potentially lead to risk of data clutters and confusion while developing and implementing the 

model. 

As the use of algorithms most probably will grow exponentially throughout the next couple of 

years, as the digital revolution is here, the need for risk management of algorithms is becoming 

urgent. Algorithms are complex, and often combined with advanced systems that make them 

difficult to analyze, let alone understand. It is therefore important to note that conventional risk 

management approaches may not be effective for dealing with the current issue. 

The risk management community need to rethink and reengineer some of the existing risk 

management frameworks to be able to cope with algorithms effectively, due to the inherent 

nature of algorithms and how they are used within safety and decision-making processes in the 

offshore industry. For instance, algorithms operate and are develop in such a high pace that just 

monitoring the algorithms could prove to be an issue, and the only way to manage risks related 
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to algorithms might only be possible though the use of other algorithms. This leaves us with a 

paradox. 

5.2. Future research 
As the thesis has indicated, using human expertise under a rule-based algorithm as a basis for 

decision-making support has proven to carry with it some difficulties. The most prominent 

problem is the fact that the model is unable to learn. As discussed in chapter 4.4.4, the ability 

to learn has proven crucial towards the search of a successful decision, and the framework of a 

rule-based algorithm simply does not allow for learning to be incorporated. A suggested 

approach would be to use the existing attributes and the key idea of the gangway model, but 

utilizing a machine learning algorithm instead. Using a supervised classification algorithm in 

collaboration with an artificial neural network will potentially allow for the model to improve 

on its category orientation and learn. The most promising attributes in the model when it comes 

to learning is judged to be: forecasted weather vs. measured weather. Here, the neural network 

could be able to produce rules where the forecasted weather functions as an input, and the 

measured weather as an output. The advantage with this approach is concluded to be the fact 

that forecasted weather has the ability to give a better decision-support basis, with a timeline 

factored into the decision-support provided to the gangway operator. This, in combination with 

neural networks implemented into the attributes Flotel criticality state and Gangway criticality 

state will eliminate the need for solely relying on expert knowledge and LSOG guidelines. 

Finally, more work has to be done with incorporating uncertainty into the model. This is the 

only way an algorithmic decision-support model can be considered useful in a risk management 

perspective, unless one applies the cautionary principle. While keeping the new perspective on 

risk in mind, leaving out the uncertainty can be considered to be a too weak of a model, not 

suitable for implementation in regards to risk management. 
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6. CONCLUSION 
	

Algorithms and their use will grow in the future. The amount of data being produced today is 

so vast that the only way to manage them is by utilizing algorithms. However, the correct 

algorithms have to be applied in different situations, as using the wrong algorithmic framework 

can lead to misguiding results. In the context of safety model in the offshore petroleum industry 

the use has large potential. Using machine learning algorithms to promote self-learning by the 

models could lead to a basis for improved safety levels and reduced accident frequencies.  

It is important to manage these algorithms in the right way, especially in terms of risk 

management. Incorporating uncertainty into the algorithmic framework is crucial to get an 

output from the models that is in line with the new risk perspective. The gangway model does 

not utilize the uncertainties for each of its attributes, and therefore has to rely heavily on the 

cautionary principle to give a sound basis for risk management. Without having uncertainty to 

guide the model and risk management in general, one cannot get aid from the expected utility 

theory and the decision-support tool has to be viewed in a risk averse context. 

Understanding and getting access to the often protected detailed information of the algorithm 

to be used within an offshore safety model is crucial for the integrity of the risk management 

process, and will allow for better handling of all aspects within this subject. Also, it can be 

argued that the future of managing risks related to the use of algorithms, will require specific 

risk managerial algorithms themselves. 

Thus, further research and comprehensive studies have to be conducted to ensure that a sound 

risk management framework is in place, and that the risks related to the use of algorithms are 

properly accounted for. 
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