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Abstract 
There exists a considerable body of research literature investigating the connectedness between 

crude oil markets and other financial markets. However, connectedness within the crude oil 

market has received little attention. With this in mind, the current thesis aims to highlight the 

research gap in literature regarding volatility spillover effects within the crude oil market. For 

this purpose, using daily spot prices from May 1996 to January 2019 for a set of 17 crude oils, 

we utilize the generalized spillover index developed in Diebold and Yilmaz (2009; 2012) to 

explore the connectedness within the crude oil market in terms of volatility spillovers. The 

generalized spillover index allows identifying the strength, as well as direction of the volatility 

spillovers across time. In general, our results suggest that the volatility spillover is time-varying, 

both in terms of strength and direction. The results further indicate that the Dubai benchmark 

is the most significant contributor to uncertainty in the global crude oil market, and this is 

especially the case after the initiation of the Arab Spring. In addition, our results suggest that 

the Brent benchmark behaves as a volatility buffer, reducing the uncertainty in the 

geographically closest regional crudes. The Dubai benchmark appears to be most affected by 

Middle Eastern crudes. However, our results suggest that after the Tokyo Commodity Exchange 

changed to Dubai as their sole underlying asset in their Crude futures contracts, the 

connectedness between Dubai and Asian/Australian crudes increased. As opposed to Brent, the 

WTI benchmark is less affected by its geographically closest crudes. These findings add 

important information to hedgers and speculators concerning the interdependence within the 

crude oil market. Further, we identify strength and direction of volatility spillover by utilizing 

the generalized spillover index developed in Diebold and Yilmaz (2009; 2012), and our findings 

are supported by market events which confirm that the methodology is well suited for this kind 

of analysis.   
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1 Introduction 
Crude oil is often thought of as a single uniform commodity. However, the global crude oil 

market contains several crude oils produced at numerous locations and with different quality 

and characteristics. Due to this diversity, major benchmarks such as Brent, WTI and Dubai are 

used to provide a standard for regional crudes with similar characteristics and quality as their 

closest benchmark. With this in mind, density, sulfur content as well as acidity are important 

characteristics for buyers of crudes, and when considered in conjunction with transportation 

cost, they provide helpful guidelines for pricing the diverse commodity. 

The crude oil market is well-known to be complex, and the oil price is affected by several 

uncertain determinants such as global oil supply and demand, inventories, OPEC decisions, 

financial crises, national elections and geopolitical unrest (Wei et al., 2017). As one of the 

biggest commodity markets in the world, historical oil prices are characterized by high 

fluctuations, occasional jumps exceeding the normal fluctuations, and a tendency to revert to a 

long-term mean (Begg and Smit, 2007). A common method to analyze the degree of uncertainty 

in crude oil prices is to utilize the concept of volatility. In general terms, volatility is a measure 

of the size of the fluctuations in a time series.  

Crude oil prices are experiencing high levels of volatility (Pindyck, 2004b), and this brings 

more risk to the decision-making process for investors, speculators, hedgers and policy makers 

that are depending on crude oil prices (Zavadska et al., 2018). For instance, crude oil 

benchmarks are often studied in conjunction with other financial assets such as equities, 

commodities, bonds and currencies. As the crude oil markets play a vital role in the world 

economy, a significant amount of research studies have been conducted to analyze the 

interactions between the crude oil market and other financial markets (e.g. Kilian and Park, 

2009; Pindyck, 2004b; Breitenfellner and Cuaresma, 2008; Ciner et al., 2013).  

Across time, the volatility within a market may be affected by volatilities of other financial 

markets, and such cross-market volatilities are commonly referred to as volatility spillovers (Ke 

et al., 2010). The volatility spillover between markets may be time-varying in terms of intensity 

and direction, and it can provide early signals of potential crises (Diebold and Yilmaz, 2012). 

There exists a considerable body of literature analyzing the interdependence between the crude 

oil market and other financial markets in terms of volatility spillovers. For instance, Arouri et 

al. (2011), Awartani and Maghyereh (2013) and Malik and Hammoudeh (2007) explore the 

volatility spillovers between crude oil and equity markets, and they conclude that significant 
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spillover exists between crude oil and equity markets. Furthermore, Du et al. (2011), Baruník 

et al. (2015) and Nazlioglu et al. (2013) find significant spillover between crude oil and 

commodity markets such as corn, wheat, soybean, heating oil and gasoline. Finally, the 

volatility spillover between crude oil markets, bonds and currencies are reviewed by e.g. Baek 

and Seo (2015) and Singh et al. (2019), and they find significant volatility spillover for crude 

oil against bond and currency markets, respectively. 

Previous research has primarily focused on the spillover between crude oil markets and other 

markets. Despite the amount of research on this area, a lack of insight related to volatility 

spillover within the crude oil market exists. This research gap forms the point of departure for 

this thesis. To shed light on this research gap, we perform an analysis of the volatility spillover 

within the crude oil market by utilizing the generalized spillover index developed in Diebold 

and Yilmaz (2009; 2012). According to Kang et al. (2017), this is the only method allowing for 

estimation of directional and net spillover in addition to total spillover. This is advantageous as 

it allows for identification of both main transmitters and receivers of price uncertainty in the 

global crude oil market. Thus, Diebold and Yilmaz´s generalized spillover index has proven 

beneficial in previous discussions on volatility spillovers (e.g. Zhang, 2017; Ji et al., 2018; 

Husain et al., 2019). Therefore: 

The objective of the current thesis is to explore volatility spillover between a set 

of crude oil prices by means of the generalized spillover index developed by 

Diebold and Yilmaz. 

With this objective as a specified course of action, the work of this thesis aims to add new 

knowledge about interdependence within the crude oil market. First, we consider the 

connectedness between the three major benchmarks Brent, Dubai and WTI. Second, we 

perform separate analyses of the connectedness for each major benchmark against minor 

regional crudes based on their geographic distance to their closest benchmark. As already 

described, the oil market is complex. Thus, we will interpret the results in light of typical 

determinants affecting crude oil prices over time, such as global oil supply and demand, 

inventories, OPEC decisions, financial crises, national elections and geopolitical unrest. 

The thesis is organized as follows. Chapter 2 gives a brief introduction to the structure of the 

crude oil market, including information about the importance of the crude oil market, pricing 

systems, general structure, classification of crude oils, benchmark crudes, transportation costs, 

transactions and the concept of storage. Chapter 3 explains the theoretical background of the 
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methodology utilized in this thesis. The chapter introduces general time series analysis as well 

as vector autoregressions. More specifically, basics about the construction of a vector 

autoregressive model and forecast error variance decomposition are explained. Lastly, the 

chapter includes a description to the concept of volatility and volatility spillover, as well as 

information about descriptive statistical tests for normality, autocorrelation and stationarity. 

This chapter, in conjunction with chapter 2, will give a firm understanding of the following 

chapters. Chapter 4 introduces the data for the benchmark and regional crude oil prices, as well 

as the methodology utilized in this thesis to estimate the volatility spillover between the crude 

oil markets. Chapter 5 presents the empirical results and discussion of the analyses, and finally, 

chapter 6 provides the conclusion of the analyses.  
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2 Crude Oil Market 
This chapter gives a brief introduction to the crude oil market, starting with a short description 

of the importance of the crude oil market to the global economy and activity. In order to 

understand the current pricing system, a brief introduction to historical pricing systems is given 

as well as information about the general market structure of the petroleum industry. As crude 

oil is a heterogenous commodity, the many crude oils of the world are sold at different prices. 

Therefore, information about crude oil classification, benchmark crudes and transportation cost 

are provided in this chapter. Finally, the current pricing system is described in terms of three 

different platforms (spot market, futures contracts and contract transactions) and storage 

including its strategic value. 

2.1 Importance of the Crude Oil Market 
The crude oil market plays a vital role in the world economy and is often blamed for causing 

excess volatility in several asset classes such as equities, other commodities, bonds and 

currencies (Singh et al., 2019). Following a study by Kilian and Park (2009), the underlying 

supply and demand shocks causing oil price fluctuations account for about 20% of the long-

term variation in the United States (U.S.) stock returns. Historical oil crises have shown ripple 

effects across industries, in particular such crises caused concerns about both price and 

availability of energy resulting in postponement of investment decisions (Hamilton, 1996). A 

study by Phan et al. (2018) on the relationship between oil price uncertainty and corporate 

investments concludes that there exists a negative relationship, and that this effect is more 

comprehensive in oil producing countries and companies. Furthermore, a study on the 

relationship between oil price shocks and unemployment rate in Europe conducted by Cuestas 

and Gil-Alana (2018) concludes that the oil price and unemployment rate move in the opposite 

direction. The authors further specify that the magnitude of the effect is greater for negative 

price shocks, than for positive.  

Crude oil interests have caused severe events such as financial crises, and geopolitical unrest 

such as civil wars and regime falls throughout history. For example, a study by Hamilton (1983) 

reveals a significant relationship between dramatic crude oil price increases and subsequent 

U.S. recessions. However, according to Kilian and Vigfusson (2017) not all dramatic crude oil 

price increases were followed by a recession in the U.S. Another study shows that the initiation 

of civil wars seems to be linked to the country’s level of oil dependence (Ross, 2004), especially 

for oil exporting countries with onshore production (Basedau and Richter, 2014). For instance, 

oil played a direct role in the initiation of civil wars in Angola, Indonesia, Iran and Nigeria (Le 
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Billon, 2001; Rustad and Binningsbø, 2012). It is also speculated that the collapse of Saddam 

Hussein’s regime was partly initiated by U.S. oil interests in Iraq (Jhaveri, 2004). Furthermore, 

the trienio government in Venezuela, and the Mossadegh regime in Iran have both been subject 

to military coups directly related to oil conflicts (Karl, 1997; Kinzer, 2008). 

On the other hand, financial crises and geopolitical events have also caused increased 

uncertainty in the crude oil market. For instance, Hamilton (2011) suggests that the financial 

stress during the East Asian crisis of 1997-98 caused a drop in oil price because the oil 

consumption in these countries decreased. Furthermore, Hamilton (2003) states that the East 

Asian crisis of 1997-98 was associated with a 50% drop in oil price. In terms of geopolitical 

unrest, Bhar et al. (2008) conclude that the volatility in benchmark crudes such as Brent, Dubai 

and WTI increases during times of geopolitical unrest in the Middle East. Moreover, 

Baumeister and Kilian (2016a) state that geopolitical unrest such as during the Arab Spring 

causes uncertainty about future scarcity of oil. This increased uncertainty may cause the oil 

price to shift. 

2.2 Historical Crude Oil Pricing Systems 
In order to understand the current pricing system in the market, it is crucial to have a firm 

understanding of the previous pricing systems and their corresponding price concept. Until the 

late 1950s, the oil industry was primarily dominated by a few large multinational oil companies, 

commonly referred to as the Seven Sisters1. The governments controlling the petroleum 

resources did not participate in production, nor pricing, of the crude oils. Until the mid-1970s, 

the pricing system was based on the concept of posted price. The posted price acted as a 

parameter to calculate the income tax accruing to host governments for selling oil concessions. 

However, the Seven Sisters experienced increased competition from independent oil companies 

during the 1960s. This, and the fact that OPEC (Organization of the Petroleum Exporting 

Countries) countries stopped granting new concessions, as well as claiming equity participation 

in the current concessions, gave rise to new pricing concepts such as official selling price (OSP) 

and government selling price (GSP). Due to increased equity participation from the 

multinational oil companies, OPEC countries were given a share of the oil production in which 

they sold to third party buyers at OSP and GSP. This oil was often sold back to the oil companies 

that held the concessions at a buyback price. Hence, in the early 1970s, the oil pricing system 

                                                 
1 The Seven Sisters comprise of the following multinational oil companies; Standard Oil of New Jersey (ESSO), 
Standard Oil Company of New York (Socony), Standard Oil of California (Socal), Gulf Oil, Texaco, Royal Dutch 
Shell and Anglo-Persian Oil Company (Hilyard, 2012). These oil companies controlled 85% of the global crude 
oil production outside USA, China, Russia and Canada (Fattouh, 2011). 
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was based on (1) the posted price, (2) the OSP and GSP and (3) the buyback price. Due to its 

complexity, this pricing system lasted no longer than to 1975.  The new pricing system that 

emerged after the buyback system, was entirely based on price determination by OPEC. The 

concept was based on benchmark pricing, meaning that OSP and GSP were set at either a 

discount or a premium relative to the chosen benchmark. During the mid-1980s, the OPEC 

driven pricing system collapsed with the increase of oil produced by non-OPEC countries and 

the current market related pricing system emerged in 1986.  In other words, the price 

determination power changed from OPEC to the global market (Fattouh, 2011; Fattouh, 2006). 

However, OPEC still plays a significant role in the current pricing system. A study conducted 

by Kaufmann et al. (2004) indicates that OPEC has a substantial effect on the oil price through 

their decision activities concerning quotas, production level and operable capacity. 

Furthermore, Schmidbauer and Rösch (2012) suggest that OPEC decisions are associated with 

changes in oil price volatility. The authors further state that the extent of the volatility changes 

associated with OPEC decisions are depending on the type of decision, and that decisions to 

cut or maintain current production level have a greater impact compared to a decision to 

increase the production level.  

2.3 General Structure of the Petroleum Industry 
In general terms, the oil and gas industry is divided into three segments; (1) upstream 

(exploration and production (E&P)), (2) midstream (transportation and trading) and (3) 

downstream (refining and marketing) (Inkpen and Moffett, 2011). Oil companies that desire 

more control throughout the value chain are integrating themselves into one additional segment 

or all market segments. If an oil company is operating in upstream, midstream and downstream, 

it is said to be a fully integrated oil company (Chima and Hills, 2007). Examples of such 

companies include Equinor (Equinor, 2019), BP (BP, 2019), Shell (Shell, 2019), Chevron 

(Chevron, 2019) and Total (Total, 2019).  

2.4 Crude Oil Classification 
As the crude oil market contains several crudes, the petroleum industry often classifies the 

different crudes according to three main parameters; (1) geographic location, (2) API gravity 

and (3) sulfur content. The first parameter, geographic location, refers to the location in which 

the crude oil is produced. It is a crucial parameter as it affects the cost of transportation from 

site to a petroleum refinery (Hilyard, 2012). The second parameter, API gravity, is the preferred 

property for measuring crude oil density. The API gravity is calculated directly from the 
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specific gravity of the crude oil, which is the density of the crude oil relative to pure water 

(Speight, 2017). 

𝐴𝑃𝐼 =
141.5

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑔𝑟𝑎𝑣𝑖𝑡𝑦
− 131.5 (2.1) 

Fahim et al. (2009) present a scheme for classification of crudes according to API gravity (Table 

1): 

Table 1: Classification of crude oil based on API gravity (Based on Fahim et al., 2009).

 Crude category API gravity 

Light API > 38 

Medium 29 < API < 38 

Heavy 8.5 < API < 29 

Very heavy API < 8.5 

It is important to keep in mind that API gravity alone does not classify the crude oil adequately 

(Speight, 2017). As seen in equation (2.1) the API gravity is inverse proportional to the crude 

oil density. This means that the lighter the crude oil, the higher the API gravity. The refinery 

process of a light crude oil will generally yield products such as gasoline, jet fuel and diesel. 

These are products with increasing demand. Heavy crude oils can be processed into heavier 

products such as industrial fuels and asphalt, or they can be further processed into smaller 

compounds to yield other fuels (Demirbas et al., 2015). Due to the refinery process, light crudes 

are more valuable than heavy crudes because they yield more valuable products (McKinsey, 

2019). The third parameter for classifying crudes, sulfur content, is the most important factor 

for crude oil refineries. This is mainly because it is poisonous and can cause corrosion of the 

refinery equipment. The sulfur content is commonly measured as the weight percentage of 

sulfur in the crude (Demirbas et al., 2015). A crude oil is called sweet when it contains low 

levels of sulfur, and sour when it contains high levels of sulfur (Hilyard, 2012). When crudes 

with high sulfur content are burned, high levels of sulfur-dioxide are produced and this 

consequently leads to acidic depositions (Speight, 2015). Thus, a sweet crude does in general 

trade at a premium compared to a sour crude (Inkpen and Moffett, 2011).  

Bacon and Tordo (2005) suggest including another parameter for classifying crudes, namely 

total acid number (TAN). TAN is a measure of the acidity of the crudes. The industry shows a 

growing interest for this parameter because the production of high acid crudes is increasing. 

Similar to negative features of high sulfur content, a high acidic crude will cause corrosion of 
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refinery equipment (Speight, 2015). TAN is measured as the amount of potassium hydroxide 

needed to neutralize one gram of the sampled crude oil, mg KOH/g. TAN works as an accepted 

measure of the crude oils potential corrosive abilities (Bacon and Tordo, 2005).  

2.5 Benchmark Crudes 
As discussed in subchapter 2.4, crudes vary significantly in quality. When a commodity, such 

as crude oil, is heterogenous it is often useful to establish benchmarks (Van Vactor, 2010). 

Benchmark crudes are oil produced from an area where its molecular characteristics have been 

determined in order to be used as a pricing reference in the global crude oil market (Hilyard, 

2012). This is advantageous to global buyers and sellers as they can price the regional crudes 

at either a discount or a premium relative to a particular benchmark crude (Fattouh, 2010). The 

price differentials are mainly determined by the difference in transportation cost, quality, as 

well as taxes for the crudes that are compared. Some common benchmark crudes include Brent, 

Dubai and West Texas Intermediate (WTI). Brent is a light sweet crude oil and is made up of 

15 crudes mainly from the North Sea. Brent is used as a benchmark for oil production in Europe 

and Africa, as well as oil imports from the Middle East flowing to the west (Hilyard, 2012). 

Dubai is a medium sour crude oil, and is used as a benchmark for Middle East crudes flowing 

to the Asian-Pacific market (Fattouh, 2006). WTI is a light sweet crude oil of high quality 

(Hilyard, 2012), and is the main benchmark used for pricing oil produced in, and imported to, 

the U.S. (Fattouh, 2006). Table 2 summarizes the API gravity, sulfur content and TAN for the 

abovementioned benchmark crudes: 

Table 2: Characteristics of benchmark crudes. 
  

Field location API gravity Sulfur content Total acid number 

Brent UK 37.5° 0.40% 0.03 

Dubai UAE 31.4° 1.96% 0.25 

WTI US 40.6° 0.22% 0.10 

2.6 Transportation Cost 
The transportation costs in the petroleum industry are associated with the shipment of oil from 

one party to another, often transported by tanker ships, pipelines, railroads or tank trucks. Some 

major E&P companies own transportation equipment themselves, and some acquire these 

services from independent transportation operators (Hilyard, 2012). In terms of barrels-per-

kilometer, tanker ships are cheapest, with pipelines second, railroads third and tank trucks being 

the most expensive (Abdel-Aal and Alsahlawi, 2013). The location of production is of great 
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importance, because the closer the production site is to major refinery markets, the cheaper the 

transportation cost. Therefore, oil produced near refineries will trade at a premium relative to 

oil produced far from refineries (Bacon and Tordo, 2005). A key thing to remember is that the 

transportation cost is affected by the characteristics of the crude itself. A crude with a TAN 

greater than 1 is considered corrosive by the petroleum industry, and those crudes will trade at 

a discount relative to others, partly because it requires more robust transportation equipment 

(Abdel-Aal and Alsahlawi, 2013; Bacon and Tordo, 2005). Similarly, a sour crude (crude with 

high sulfur content) will cause sulfur corrosion on the transportation equipment (Wang et al., 

2003), and hence increase the maintenance and operation costs (Meriem-Benziane et al., 2017).  

2.6.1 Tanker Ships 

Tanker ships are the most important transportation method, and accounts for nearly 40% of the 

global fleet. This is due to the fact that the world’s main oil producers do not have any land 

connections in terms of rigid transportation equipment (such as pipelines), and are far away 

from their natural market (Abdel-Aal and Alsahlawi, 2013).  

2.6.2 Pipelines 

Transporting crudes via pipeline systems are more complex than tanker ships, for the reason 

that it is a rigid system only transporting through a limited number of routes. Pipelines introduce 

excess uncertainty to the oil price as they cross national borders and are therefore subject to 

strategic and political problems. For instance, countries can choose to change transit fees or 

even cut off the entire supply. For example, in 2009 Russia decided to cut off the gas supply to 

Europe in an attempt to change the entire pricing system of petroleum supply to Europe (Abdel-

Aal and Alsahlawi, 2013). Heavy crudes (low API) are more difficult to transport via pipelines 

as conventional pipeline technology are mainly developed for light crudes (high API). 

Transporting heavy crudes requires either a high-pressure pipeline system, or decreasing the 

viscosity of the crude by solvents, both in which are expensive (Martínez-Palou et al., 2011). 

According to Meriem-Benziane et al. (2017), high sulfur content leads to corrosion of the inner 

wall of the pipeline system which again increases maintenance cost. In general, sour crudes 

trade at a discount relative to sweet crudes, and this is partly because of the corrosive effect on 

transportation equipment and other equipment in the value chain (Fattouh, 2011).  

2.6.3 Railroads 

Before the pipeline systems were introduced to the global petroleum transportation system, 

railroads were the most important method. Railroads are important in today’s market as it 

provides a cheaper alternative than tank trucks when transporting on land. This is mainly 
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because railroad tanks can transport a greater amount of petroleum per vehicle (Abdel-Aal and 

Alsahlawi, 2013). However, railroads are not capable of transporting the same amount of oil as 

pipelines (Kilian, 2016) 

2.6.4 Tank Truck 

Tank trucks prove useful in today’s market for local transportation as it is a more flexible 

method than the other land-based transportation methods. Furthermore, tank trucks are used 

when the cost of implementing a pipeline system cannot be justified. This often occurs for small 

facilities, where small amounts of crudes are produced (Abdel-Aal and Alsahlawi, 2013).  

2.7 Crude Oil Transactions 
The crude oil transactions occur on three different platforms, namely (1) spot market, (2) futures 

contracts and (3) contract transactions (Inkpen and Moffett, 2011).  

2.7.1 Spot Market 

Generally, a spot market is a market where products are sold and delivered simultaneously. 

Moreover, for crudes a spot transaction is an agreement to sell or buy a shipment of crude oil 

at an agreed upon price. Due to the nature of the crude oil market, spot contracts often include 

delivery within a month. For both producers and refiners of crudes, the spot market has a 

balancing effect of supply and demand (Inkpen and Moffett, 2011). For instance, if a company 

currently has a greater supply than needed it can sell the excess crudes on the spot market to 

the highest bidder willing to take delivery of the shipment (Hilyard, 2012). To that end, the 

prices of the crudes in the spot market reflect the current balance between supply and demand. 

For example, an upward trending spot price indicates that an increase in supply is needed, and 

a downward trending spot price indicates the opposite. The price of crudes in the spot market 

is subject to events such as natural disasters, political turbulence, severe weather, as well as 

changes in supply and demand (Hilyard, 2012).  

Spot prices are reported for transactions in many different regional markets, including North-

West Europe, New York Harbor and South East Asia (Inkpen and Moffett, 2011). Fattouh 

(2006) suggests that the spot market for benchmark crudes is flawed. The author highlights 

three reasons, (1) less trading of the benchmarks occurs, (2) the characteristics of an average 

barrel sold are no longer close to the benchmark specifications and (3) Fattouh argues that the 

spot market for Brent no longer exists.  
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Figure 1 illustrates the historical oil price from May 1996 to January 2019 for the three 

benchmarks Brent, Dubai and WTI. Prices are extracted from Thomson Reuters Eikon2.  

 
Figure 1: Historical benchmark prices from 1996 to 2019. 

It is evident from Figure 1 that oil prices are volatile, and the recognized instability of crude oil 

prices has led to the development of a futures market for crude oils (Albinali and Dahl, 2014). 

According to Baumeister and Peersman (2013), the price inelasticity of crude oil supply and 

demand cause high volatility in the crude oil market. The authors further state that even small 

disturbances on either the supply or demand side of the crude oil market may cause large shifts 

in the oil price. For instance, the rapid increase in U.S. oil production at the beginning of the 

U.S. shale oil revolution caused downward pressure on the WTI benchmark due to excess 

supply in the market (Kilian, 2016).  

The relatively steep oil price increase lasting from 2003 until 2008 was primarily caused by 

rising global demand for industrial commodities due to an unexpected growth in the global 

economy. In particular, growth in emerging economies such as China, Russia and Japan were 

unexpected by the markets (Kilian and Hicks, 2013). The price shock that occurred during the 

last quarter of 2007 until the end of first half of 2008 is one of the largest oil price shocks 

experienced throughout history (Hamilton, 2008). Hamilton (2009) highlights three factors 

causing this price shock. First, the author points out the growing global crude oil demand, 

especially in China. Notably, from 2005 to 2007 the Chinese daily consumption of oil increased 

                                                 
2 Thomson Reuters Eikon is an analysis and trading software that distributes a wide variety of market data including 
commodity prices, equities pricing data etc. 
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by 870,000 barrels. Second, the oil supply failed to increase during the same period, and it 

stagnated. Increasing global demand coupled with stagnated oil supply caused a significant 

increase in oil price to sufficiently reduce the global oil consumption. Third, the rapid oil price 

increase was further exacerbated by speculators. With the increasing oil price, the pressure on 

the long side of the futures contracts increased, which again resulted in an increasing futures 

price. Consequently, the oil price in the spot market followed and this further resulted in a 

speculative bubble. The bubble popped in mid-2008 causing a subsequent oil price collapse 

(Hamilton, 2009).  

2.7.2 Futures Contracts 

A futures contract is a promise to deliver or receive a standardized quantity and quality of a 

commodity, or financial instrument, at a specified location, price and time in the future 

(Schwager and Etzkorn, 2017). The futures market consists of both hedgers and speculators. 

Hedgers want to reduce price risk (risk associated with unexpected changes in price) via the 

activity of hedging, whereas speculators want to bear price risk in expectation of earning a 

profit. Hence, a futures contract provides a mechanism for hedging against spot price volatility. 

However, the activity of hedging not only reduces price risk, but it can also be profitable for 

the hedger if the contracted price exceeds the corresponding costs. Futures contracts are traded 

on a futures exchange. The futures exchange finds a party willing to sell a futures contract, as 

well as a party willing to buy the same contract. These parties are obliged to make, and take 

delivery of the contracted crude, respectively (Tomek and Kaiser, 2014). However, the main 

purpose of a futures contract is not to provide a mechanism for actual delivery, but rather 

allowing market participants to spread risks to those willing to bear it (Fattouh, 2006). 

According to Pindyck (2001), most of the futures contracts are rolled over and never result in 

actual delivery.   

The futures prices include information about the market’s expectations about future 

intersections of demand and supply, and hence they reflect the expected future spot price. The 

concept of futures term-structure reveals important information about the market’s expectation 

about future crude prices. The term-structure is obtained by plotting the current spot price 𝑃𝑡 

along with futures prices in order of increasing maturity, 𝐹𝑡|𝑡+1, 𝐹𝑡|𝑡+2,… , 𝐹𝑡|𝑇. Figure 2 

illustrates two scenarios, (1) contango and (2) backwardation. Contango is when the market 

expects future spot prices to increase relative to the current spot price, while backwardation is 

the opposite (Øglend, 2018). 
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Figure 2: Illustration of futures term-structure, contango and backwardation. 

The pricing of futures contracts is based on benchmark pricing, which again is based on the 

spot price. The benchmark oil prices are determined at the end of each business day based on 

information from (1) oil trade journals assessing spot prices among other factors and (2) the 

exchanges. Important exchanges for trading crude oil futures include New York Mercantile 

Exchange (NYMEX), the Intercontinental Exchange (ICE) and Tokyo Commodity Exchange 

(TOCOM). The WTI futures contracts have been traded on NYMEX since 1983 and the 

standardized contract is an agreement to deliver 1000 barrels of WTI at Cushing, Oklahoma. 

Similarly, the ICE Brent futures contract is traded on ICE (Fattouh, 2006). The price of a futures 

contract is built on an underlying asset, which for the crude oil market often is a benchmark 

crude. The strategy for hedgers that want to eliminate price risk, is then to find a futures contract 

with an underlying asset that closely correlates with the spot price of the asset in question. A 

low correlation between the underlying asset in the futures contract and the asset the hedger 

holds, will reduce the effectiveness of the hedging activity (Øglend, 2018).  

Whilst a futures contract protects a producer from both upside and downside risk, producers 

can buy option contracts to avoid downside risk and still retain upside risk. However, an option 

contract is not free to enter like a futures contract. Buying an option contract gives the buyer 

the right to either sell, or buy a futures contract at a specified futures price, commonly referred 

to as the strike price (Tomek and Kaiser, 2014). A popular approach to determine the price of 

an option contract is to use the Black-Scholes method (Rad et al., 2018). This method requires 

the following five input parameters; the asset price, the strike price, the exercise date, the risk-

free rate and the volatility. Note that the only parameter that needs to be estimated is the 

volatility, all the other parameters are observable in the market (Berk and DeMarzo, 2007). As 
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stated in Poon and Granger (2005) the most important parameter in determining the option price 

with the Black-Scholes model is the volatility. The authors further state that by observing the 

option prices traded in the market, it is possible to infer how the market view the future volatility 

(Poon and Granger, 2005).  

Finally, if delivery of the contracted crude is necessary, Cushing, Oklahoma, acts as a delivery 

point for the futures contracts traded on NYMEX. This delivery point is commonly referred to 

as a hub. Hubs are the point where oil transporting pipelines come together and are often 

referred to as gathering stations. Much of the crude oil price discovery is associated with hubs. 

Important hub locations worldwide for price discovery include Cushing, ARA (Amsterdam, 

Rotterdam and Antwerp) and the Arab Gulf (Hilyard, 2012). 

2.7.3 Contract Transactions 

Oil E&P companies must find customers willing to buy their produced oil, and crude oil is 

usually sold and delivered via contract transactions (Inkpen and Moffett, 2011). These 

contractual arrangements involve buyer and seller agreements concerning type of product to be 

delivered, location of delivery, quantity, quality and price (Van Vactor, 2010).  As opposed to 

futures contracts, contract transactions actually result in a customer taking delivery of the 

produced crude oil. The main customer taking delivery of the oil produced by E&P companies 

are refineries, who further process the crudes into more commercial products. Both the spot 

market and futures contracts provide crucial pricing information for such contractual 

agreements for crude oil transactions. Crude oil trading is often conducted by the E&P company 

itself, but also by specialist firms (Inkpen and Moffett, 2011). 

2.7.4 Summary of Crude Oil Transactions 

The crude oil transactions occur on three different platforms, (1) spot market, (2) futures 

contracts and (3) contract transactions. Firstly, the spot market yields information about current 

supply and demand. Secondly, the futures contracts reflect the markets expectations about 

future crude oil prices. Finally, contract transactions are arrangements where the oil is actually 

sold and delivered (Inkpen and Moffett, 2011).  

2.8 Storage 
In a competitive commodity market with high volatility on both the supply and demand side, 

the features of storage prove useful for both produces and consumers, as well as for speculators. 

For instance, producers can hold inventories in order to reduce costs associated with variations 

in production over time. Producers can choose to sell out inventory in periods of high demand, 
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whilst refilling the inventories during periods of low demand. This mechanism means that the 

production in each period does not necessarily need to equal the consumption, as oil inventories 

can be carried through time (Pindyck, 2001). This feature of carrying inventories tends to 

smooth production over time (Pindyck, 1990).  

According to the theory of storage, the relationship between spot- and futures prices reveal 

important information for decision makers in the oil and gas market. For example, when oil 

prices are in contango it may be profitable to store oil and enter into a futures contract instead 

of selling the oil in the spot market (Jafarizadeh and Bratvold, 2013). As the example suggests, 

storage has the ability of carrying crude oil into the future, making crude oil a capital asset 

which gives the option of storing it now to create future income. The fundamental intertemporal 

pricing condition aids decision makers on whether to store crude oil for the future, or sell in the 

spot market today: 

𝐸𝑡(𝑃𝑡+1) − 𝑃𝑡 = 𝑟𝑃𝑡 + (1 + 𝑟)𝑀. (2.2) 

Equation (2.2) suggests that in equilibrium the expected price increase of one unit, 𝐸𝑡(𝑃𝑡+1) −

𝑃𝑡, must compensate for both lost interest for not selling today, 𝑟𝑃𝑡, and the marginal cost of 

storage, (1 + 𝑟)𝑀, often referred to as the cost-of-carry. Where (1 + 𝑟) indicates the loss of 

interest for paying storage fees rather than investing in something else, and M is the cost of 

storing one extra unit. When the interest rate or the marginal cost of storage increases, the 

expected price increase must be greater for decision makers to store. Importantly, a key feature 

of storage is that it has the ability to reduce the price volatility of the market in question. For 

instance, if information suggesting a future rise in demand reaches the market, decision makers 

will increase their expected future price. Hence, more commodities will be stored and 

consequently the current price will increase in anticipation of a future change in demand and 

supply (Tomek and Kaiser, 2014). According to Du et al. (2011), the volatility reducing effect 

of storage appears to be true for the crude oil market as well. Thus, an increase in oil price 

volatility will lead to crude inventory build-ups, and a subsequent oil price increase in the short-

run. Consequently, increasing demand for storage will increase the marginal cost of storing one 

more unit of crude oil (Pindyck, 2004a). 

The inventory levels are of great importance, as they represent both the supply and demand 

conditions of the crude oil market. However, a study by Bu (2014) reveals that it is the 

unexpected changes in inventory levels rather than actual changes that affect the crude oil price. 
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Bu further states that the unexpected changes may contain new information about demand and 

supply in the market, and hence causes a price shift. 

Figure 3 illustrates the U.S. historical crude oil inventory from October 1982 until February 

2019. The inventory data are collected from EIA (2019)3, and they are reported on a weekly 

basis. A study conducted by Geman and Ohana (2009), concludes that there exists a significant 

negative relationship between the U.S. inventory of crude oil and the price volatility in the crude 

oil spot market. This indicates that a decreasing inventory level will increase the price volatility 

and hence the uncertainty of the future oil price. 

 
Figure 3: Weekly U.S. Ending Inventory of Crude Oil (Million Barrels) (EIA, 2019). 

  

                                                 
3 EIA is the U.S. Energy Information Administration. 

500

600

700

800

900

1000

1100

1200

1300

M
ill

io
n 

B
ar

re
ls



17 
 

3 Theoretical Background 
As previously mentioned, the generalized spillover index developed in Diebold and Yilmaz 

(2009; 2012) is utilized in the current thesis to assess the volatility spillover between a set of 

crude oil prices. In order to obtain a firm understanding of this method, the following chapter 

describes theory in which the methodology is based upon. For this purpose, the first part of this 

chapter introduces the basics of time series analysis. Furthermore, the second part introduces 

the concept of vector autoregression as well as forecast error variance decomposition and 

volatility spillover. Lastly, a brief description of statistical tests for normality, autocorrelation 

and stationarity is given. 

3.1 Basics of Time Series Analysis 
The generalized spillover index developed in Diebold and Yilmaz (2009; 2012) is a measure 

within the field of time series analysis that is extensively utilized in literature to assess the 

volatility spillover across financial markets (e.g. Arouri et al., 2011; Malik and Hammoudeh, 

2007; Du et al., 2011; Singh et al., 2019). In general terms, the generalized spillover index is 

based on a regression model obtained by utilizing time series data and time series regressions.  

3.1.1 Time Series Data 

A time series dataset consists of a sequence of observations on one, or several, variables over a 

finite period. The data can be collected at different frequencies, for instance daily, weekly, 

monthly, quarterly or annually. A key feature that distinguishes time series data from cross-

sectional data is temporal ordering, hence precautions must be taken as the past can affect the 

future. Consequently, observations are often dependent across time, and time series data are 

therefore difficult to analyze (Wooldridge, 2015). Time series analysis is a technique for 

drawing inferences concerning time series data. In order to do this, a set of models to represent 

the data in question is needed (Brockwell et al., 2002). The constructed models have many 

applications, and they can be categorized as (1) description-, (2) explanation-, (3) prediction- 

and (4) control models (Chatfield, 2016). 

3.1.2 Time Series Regression 

There exist several methods for estimating regression models using time series data. Methods 

include, for instance, ordinary least squares (OLS) and maximum likelihood estimation (MLE) 

(Walpole et al., 2016). This thesis will focus on the former. OLS is a method for estimating the 

parameters of a regression model, with the purpose of constructing a model that analyzes the 
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causal relationship between variables of interest. For illustrational purpose, consider the case 

of a simple regression model: 

𝑦𝑡 =  𝛽0 + 𝛽1𝑥𝑡 + 𝑢𝑡. (3.1) 

Equation (3.1) is assumed to hold for the entire population of interest and illustrates a model 

that explains the dependent variable yt in terms of the independent variable xt.  The error term 

ut, contains all other factors than xt that affect yt, and this feature allows capturing the ceteris 

paribus effect of xt on yt. To put it another way, 𝛽1 is the effect of xt on yt holding all other 

factors fixed. However, this does not hold unless an assumption restricting the relationship 

between xt and ut are made.  

𝐸(𝑢𝑡|𝑥𝑡) = 𝐸(𝑢𝑡) (3.2) 

  

𝐸(𝑢𝑡) = 0 (3.3) 

Assumption (3.2) states that the average error term, given the value of xt, is constant throughout 

the entire population and (3.3) states that the average error term of the population is zero. By 

combining assumption (3.2) and (3.3) we get the zero conditional mean assumption, 

𝐸(𝑢𝑡|𝑥𝑡) = 0, as well as 𝐶𝑜𝑣(𝑥𝑡, 𝑢𝑡) = 0. 

𝐶𝑜𝑣(𝑥𝑡, 𝑢𝑡) = 𝐸(𝑥𝑡𝑢𝑡) = 0 (3.4) 

If assumption (3.2) holds, 𝛽1 in equation (3.1) is an estimate of the ceteris paribus effect of xt 

on yt. 

In order to estimate the intercept and slope parameters of the population regression model (3.1), 

𝛽0 and 𝛽1, sample data of the population is required. Equation (3.3) and (3.4) can be rewritten 

in terms of the dependent variable yt, the independent variable xt, and the parameters 𝛽0 and 𝛽1: 

𝐸(𝑦𝑡 − 𝛽0 − 𝛽1𝑥𝑡) = 0, (3.5) 

  

𝐸[𝑥𝑡(𝑦𝑡 − 𝛽0 − 𝛽1𝑥𝑡)] = 0. (3.6) 

These equations imply two restrictions on the joint probability distribution of xt and yt in the 

population. In order to find the sample counterparts of equations (3.5) and (3.6), estimated 

parameters of the interception and slope parameters, 𝛽̂0 and 𝛽̂1, are introduced. 
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1
𝑛
∑(𝑦𝑡 − 𝛽̂0 − 𝛽̂1𝑥𝑡) = 0
𝑛

𝑡=1

 (3.7) 

  

1
𝑛
∑𝑥𝑡(𝑦𝑡 − 𝛽̂0 − 𝛽̂1𝑥𝑡) = 0
𝑛

𝑡=1

 (3.8) 

By applying the basic properties of the summation operator on equation (3.7), the expression 

can be simplified to: 

𝛽̂0 = 𝑦̅ − 𝛽̂1𝑥̅, (3.9) 

where 𝑦̅ = 1
𝑛
∑ 𝑦𝑡𝑛
𝑡=1  is the sample average of the yt and similarly for 𝑥̅. Equation (3.9) is an 

estimate of the intercept 𝛽̂0, and can be calculated once the slope 𝛽̂1 is known. An estimate of 

𝛽̂1 can be found by combining equation (3.8) and (3.9): 

𝛽̂1 =
∑ (𝑥𝑡 − 𝑥̅)(𝑦𝑡𝑖 − 𝑦̅)𝑛
𝑡=1
∑ (𝑥𝑡 − 𝑥̅)2𝑛
𝑡=1

=
𝐶𝑜𝑣(𝑥𝑡, 𝑦𝑡)
𝑉𝑎𝑟(𝑥𝑡)

.  (3.10) 

From equation (3.9) and (3.10), 𝛽̂0 and 𝛽̂1 are the ordinary least squares (OLS) estimates of 

𝛽0 and 𝛽1. Furthermore, the OLS estimates of the parameters are used to construct a sample 

counterpart of (3.1), which is a fitted linear model for yt:  

𝑦̂𝑡 = 𝛽̂0 + 𝛽̂1𝑥𝑡. (3.11) 

Given an observation xt in the sample, equation (3.11) gives a fitted value for yt. The difference 

between the actual value of yt and the fitted value 𝑦̂𝑡 is commonly referred to as the residual for 

the observation at time t: 

𝑢̂𝑡 = 𝑦𝑡 − 𝑦̂𝑡 = 𝑦𝑡 − 𝛽̂0 + 𝛽̂1𝑥𝑡. (3.12) 

One of the important aspects of the OLS estimates, is that the parameters 𝛽̂0 and 𝛽̂1 is chosen 

to minimize the sum of squared residuals (SSR):  

∑𝑢̂𝑡2
𝑛

𝑡=1

=∑(𝑦𝑡 − 𝛽̂0 + 𝛽̂1𝑥𝑡)
2

𝑛

𝑡=1

. (3.13) 

By using the 𝛽̂0 and 𝛽̂1that minimizes the SSR, the OLS regression line can be defined as: 

𝑦̂𝑡 = 𝛽̂0 + 𝛽̂1𝑥𝑡, (3.14) 
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which predicts the value of yt by using the observations xt in the sample. It is important to 

remember that these predictions are estimates (Wooldridge, 2015). 

According to Wooldridge (2015), the fundamental assumption in the simple regression model 

stating that all other factors affecting yt is uncorrelated with xt is unrealistic. Therefore, drawing 

ceteris paribus conclusions from simple regression models are often very difficult. If one 

suspect that several factors simultaneously affect yt, multiple regression analysis is more 

suitable as it allows to explicitly control for many factors. The multiple regression model: 

𝑦𝑡 =  𝛽0 + 𝛽1𝑥𝑡1 + 𝛽2𝑥𝑡2 + 𝛽3𝑥𝑡3 + ⋯+ 𝛽𝑘𝑥𝑡𝑘 + 𝑢𝑡 (3.15) 

is an extension of the simple regression model (3.1), where 𝛽1,… , 𝛽𝑘 are slope parameters and 

𝛽0 is the intercept parameter. The error term ut, contains all other factors than 𝑥𝑡1, … , 𝑥𝑡𝑘 

affecting yt. Similar to simple regression, sample data of the population is needed in order to 

estimate the parameters of the multiple regression model: 

𝑦̂𝑡 = 𝛽̂0 + 𝛽̂1𝑥𝑡1 + 𝛽̂2𝑥𝑡2 + 𝛽̂3𝑥𝑡3 + ⋯+ 𝛽̂𝑘𝑥𝑡𝑘. (3.16) 

The OLS estimates of the parameters 𝛽̂0, 𝛽̂1, … , 𝛽̂𝑘 are obtained by the same approach as the 

simple regression case. For multiple regression models the parameters are simultaneously 

chosen to make the SSR as small as possible: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 [∑(𝑦𝑡 − 𝛽̂0 − 𝛽̂1𝑥𝑡1 − 𝛽̂2𝑥𝑡2 − 𝛽̂3𝑥𝑡3 − ⋯− 𝛽̂𝑘𝑥𝑡𝑘)
2

𝑛

𝑡=1

]. (3.17) 

Equation (3.17) can be solved by applying linear algebra, which extends the equation to a matrix 

of 𝑘 + 1 linear equations and 𝑘 + 1 unknow parameters (Wooldridge, 2015). 

3.1.3 Assumptions  

Several assumptions must be stated in order to justify OLS estimates for time series regression 

in general terms. The first assumption (TS.1) states that the stochastic process between the 

dependent variable yt, and the independent variables xti is described by the linear model: 

𝑦𝑡 =  𝛽0 + 𝛽1𝑥𝑡1 + 𝛽2𝑥𝑡2 + 𝛽3𝑥𝑡3 + ⋯+ 𝛽𝑘𝑥𝑡𝑘 + 𝑢𝑡, (TS.1) 

and that the stochastic process is assumed to be stationary and weakly dependent for all time 

points t. Weakly dependence implies that the law of large numbers (LLN) and the central limit 

theorem (CLT) are applicable. (TS.1) also implies that lags of both dependent and independent 

variables can be included. Further, it is assumed no perfect collinearity (TS.2). This means that 

none of the independent variables are constant nor exhibit a perfect linear combination of the 
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other independent variables. Similar to assumption (3.2), large sample time series analysis 

assumes that the independent variables xti are contemporaneously exogenous: 

𝐸(𝑢𝑡|𝑥𝑡) = 0. (TS.3) 

This means that the independent variables are uncorrelated with the error term of the same time 

period. However, the independent variables can be correlated with the error term of other 

periods. Under assumption (TS.1) through (TS.3), the OLS estimators are consistent, meaning:  

plim
𝑛→∞

𝛽̂𝑗 = 𝛽𝑗, 𝑗 = 0, 1, … , 𝑘.  

Moreover, assuming the error terms are contemporaneously homoscedastic4: 

𝑉𝑎𝑟(𝑢𝑡|𝑥𝑡) = 𝜎2, (TS.4) 

and that no autocorrelation between the error terms exist: 

𝐸(𝑢𝑡𝑢𝑠|𝑥𝑡, 𝑥𝑠) = 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≠ 𝑠, (TS.5) 

the OLS estimators for the parameters are asymptotically normally distributed. This means that 

the OLS estimators are approximately normal distributed for large samples. Given assumption 

(TS.1) through (TS.5), the usual inference procedures are approximately valid for large samples 

(Wooldridge, 2015). 

3.1.4 Stationarity and non-stationarity 

When utilizing the generalized spillover index developed in Diebold and Yilmaz (2009; 2012), 

the input data has to satisfy the criteria of stationarity. In general terms, stationarity means that 

the probability distribution of the time series process is independent of time. That is to say, the 

following criteria must be satisfied: 

1. Constant expected value, 𝐸(𝑋𝑡) = 𝜇 

2. Constant variance, 𝑉𝑎𝑟(𝑋𝑡) = 𝜎2 

3. Covariance of 𝑥𝑡 and 𝑥𝑡+ℎ, for all t and ℎ ≥ 1 is independent of time, 𝐶𝑜𝑣(𝑋𝑡, 𝑋𝑡+ℎ) =

𝑔(ℎ) ≠ 𝑓(𝑡) 

A process is said to be covariance stationary if the above criteria are satisfied, and the second 

moment is finite. In other words, this means that 𝐸(𝑋𝑡2) < ∞ (Bårdsen and Nymoen, 2014). An 

example of a non-stationary process is a process that exhibit trend. Trend is when a time series 

                                                 
4 Homoscedasticity is when the variance of the error terms of a regression model is constant, and hence does not 
vary across time (Wooldridge, 2015).  
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tends to increase, or decrease, over time and fluctuate around its trend. At a minimum, a 

trending time series violate the first criterion, 𝐸(𝑋𝑡) = 𝜇(𝑡), as the mean will be time dependent 

(Wooldridge, 2015). A trending series can be trend-stationary, and it can be transformed into a 

stationary series by removing the trend (Enders, 2015). 

3.2 Vector Autoregression 
The regression model in which the generalized spillover index developed in Diebold and 

Yilmaz (2009; 2012) is based upon, is a vector autoregression model. Vector autoregression is 

an extension of an autoregression model, where lags of several variables in the same model can 

be included. The number of lags to include can be determined by a set of criteria, including the 

Schwarz criterion, Akaike`s information criterion, Hannan-Quinn criterion and the final 

prediction error. A vector autoregression can also be represented as a moving average or in 

companion form. Vector autoregression forms the basis of forecast error variance 

decomposition, which then is used to obtain the volatility spillovers.  

3.2.1 The Autoregression Model 

An autoregression model (AR) relates a time series variable to its own lagged values through 

OLS regression. For illustrational purposes, consider the population’s 1st-order autoregressive 

model, AR(1): 

𝑌𝑡 = 𝛽0 + 𝛽1𝑌𝑡−1 + 𝑢𝑡. (3.18) 

Equation (3.18) is a 1st-order autoregressive model because it only includes one lag as 

independent variable to forecast the dependent variable. In equation (3.18) the intercept and 

slop parameter, 𝛽0 and 𝛽1, are in practice unknown. To that end, by using historical sample 

data for the variable of interest OLS estimators of the parameters, 𝛽̂0 and 𝛽̂1, can be found:  

𝑌̂𝑇+1|𝑇 = 𝛽̂0 + 𝛽̂1𝑌𝑇, (3.19) 

where the subscript 𝑌̂𝑇+1|𝑇 is the forecasted value of 𝑌𝑇+1 using information up until time T. 

The difference between 𝑌̂𝑇+1|𝑇 and the realization 𝑌𝑇+1 is the forecast error:  

𝑒𝑇+1|𝑇 = 𝑌𝑇+1 − 𝑌̂𝑇+1|𝑇. (3.20) 

A common measure of the forecast error is the root mean squared forecast error (RMSFE): 

𝑅𝑀𝑆𝐹𝐸 = √𝐸(𝑌𝑇+1 − 𝑌̂𝑇+1|𝑇)
2
. (3.21) 



23 
 

RMSFE measures the magnitude of a typical mistake made by the AR model, which originates 

from the fact that the error term ut is a random variable with unknown future values, as well as 

the estimation errors concerning the parameters 𝛽0 and 𝛽1. The AR(1) model forecasts future 

values based on just one lagged value. The model simply ignores information from periods 

further back in time which may contain useful information. Therefore, the general case of a pth-

order autoregressive model proves useful: 

𝑌𝑡 = 𝛽0 + 𝛽1𝑌𝑡−1 + 𝛽2𝑌𝑡−2 + ⋯+ 𝛽𝑝𝑌𝑡−𝑝 + 𝑢𝑡. (3.22) 

The AR(p) model from equation (3.22) represents 𝑌𝑡 as a function of its p lagged values,  

𝑌𝑡−1, 𝑌𝑡−2, … , 𝑌𝑡−𝑝, and an intercept (Stock and Watson, 2012). 

3.2.2 The Vector Autoregression Model 

A vector autoregression model (VAR) is an extension of the univariate AR model in the sense 

that it is an autoregression to a vector of time series variables. A VAR model is a set of N time 

series regressions, where the independent variables are the lagged values of all N time series. 

Similar to AR models, a VAR model is referred to as a VAR(p) model where the number of 

lags is equal to p (Stock and Watson, 2012). For simplicity, consider the 2-variable VAR(1) 

model: 

𝑌1,𝑡 = 𝛽10 + 𝛽11𝑌1,𝑡−1 + 𝛽12𝑌2,𝑡−1 + 𝑢1,𝑡,  

 (3.23) 

𝑌2,𝑡 = 𝛽20 + 𝛽21𝑌1,𝑡−1 + 𝛽22𝑌2,𝑡−1 + 𝑢2,𝑡.  

The equations illustrated in (3.23) consist of two time series variables. In the prior equation, 

𝑌1,𝑡 is the dependent variable, while 𝑌2,𝑡 is the dependent variable of the latter. The independent 

variables of both equations are lagged values of the two variables. This set of equations can be 

expressed in matrix form: 

𝒀𝒕 = 𝑣 + 𝜙1𝒀𝒕−𝟏 + 𝑢𝑡, (3.24) 

where 𝒀𝒕 = [
𝑌1,𝑡
𝑌2,𝑡
] , 𝑣 = [𝛽10𝛽20

] , 𝜙1 = [
𝛽11 𝛽12
𝛽21 𝛽22

] , 𝑎𝑛𝑑 𝑢𝑡 = [
𝑢1,𝑡
𝑢2,𝑡]. The general case of 

equation (3.24), N-variable VAR(p) model, are illustrated in equation (3.25): 

𝒀𝒕 = 𝑣 +∑ 𝜙𝑖𝒀𝒕−𝒊
𝑝

𝑖=1
+ 𝑢𝑡, (3.25) 
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where 𝒀𝒕 is an 𝑁 × 1 vector of dependent variables, 𝑣 is an 𝑁 × 1 vector of intercept terms,  𝜙𝑖 

is an 𝑁 × 𝑁 matrix of coefficients and 𝑢𝑡 is an 𝑁 × 1 vector of error terms. The error terms are 

independently and identically distributed (i.i.d.) with zero expected value and covariance matrix 

𝛴. The coefficients of the VAR model are estimated by using OLS estimates as described in 

subchapter 3.1.2. Equation (3.25) constructs a VAR model consisting of N equations as it 

includes N variables (Lütkepohl, 2005).  

3.2.3 VAR model selection 

VAR model selection is about finding the best model for the sample data. The estimation error 

of a VAR model increases when the number of variables increases. Hence, it is advantageous 

to construct a model with as few variables as reasonably possible, because it decreases the 

number of coefficients to be estimated. The number of coefficients is a function of number of 

variables and lags included in the model, 𝑁 +𝑁2𝑝 (Stock and Watson, 2012). A sequence of 

tests can be performed to determine the appropriate number of lags to include in a VAR model. 

Tests include, for instance, Schwarz criterion, Akaike’s information criterion, Hannan-Quin 

criterion, and final prediction error criterion (Lütkepohl, 2005). It is crucial to keep in mind the 

parsimonious principle when constructing a VAR model. According to the parsimonious 

principle, one should prefer the model with the least variables if several models are adequate 

(Davidson and MacKinnon, 2004). 

3.2.3.1 Schwarz criterion 

The Schwarz criterion (SC), also called Bayesian information criterion (BIC), is a method for 

determining the appropriate order of a VAR model.  

𝐵𝐼𝐶(𝑝) = 𝑙𝑛[𝑑𝑒𝑡(∑̂𝑢)] + (𝑁 + 𝑁2𝑝)
𝑙𝑛(𝑆)
𝑆
, (3.26) 

where det(∑̂𝑢) is the determinant of the covariance matrix constructed by the OLS residuals 

𝑢̂𝑡, S is the sample size, N is the number of variables and p is the order of the VAR model. The 

BIC estimator of the appropriate order of the VAR, 𝑝̂, is the value that minimizes the BIC(p). 

Hence, the BIC(p) must be calculated for several orders, e. g. 𝑝 = 0, 1, 2, … , 𝑝𝑚𝑎𝑥, and the VAR 

model with the lowest BIC value is the most appropriate. As the coefficients of the VAR model 

are estimated by OLS the SSR will never increase when adding another variable to the equation. 

Hence, the first term of equation (3.26) will decrease, or remain unchanged, with an additional 

variable. However, the second term of equation (3.26) will increase when additional variables 

are added to the model (Lütkepohl, 2005).  
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3.2.3.2 Akaike’s information criterion 

Akaike’s information criterion (AIC) and BIC are based on the same intuition, and the only 

difference among them is that AIC substitute the term 𝑙𝑛(𝑆) with 2. 

𝐴𝐼𝐶(𝑝) = 𝑙𝑛[𝑑𝑒𝑡(∑̂𝑢)] + (𝑁 + 𝑁2𝑝)
2
𝑆

 (3.27) 

In general, a smaller decrease in SSR is needed to justify inclusion of an additional variable 

compared to the BIC test. Keeping in mind the parsimonious principle, the AIC estimate of p 

is not consistent as it tends to overestimate p and include to many variables (Stock and Watson, 

2012).  

3.2.3.3 Hannan-Quinn criterion 

Hannan-Quinn criterion (HQ) is similar in shape, as well as interpretation, as BIC and AIC. 

The procedure is equal, in terms of calculating the HQ(p) value for several p’s and choosing 

the VAR model that minimizes HQ(p):  

𝐻𝑄(𝑝) = 𝑙𝑛[𝑑𝑒𝑡(∑̃𝑢)] + (𝑁 + 𝑁2𝑝)
2ln (𝑙𝑛(𝑆))

𝑆
. (3.28) 

Note that ∑̃𝑢 is obtained from MLE estimation. For small samples HQ tends to estimate a VAR 

order smaller than AIC, but greater than BIC (Lütkepohl, 2005).  

3.2.3.4 Final prediction error 

The final prediction error (FPE) criterion is based on minimizing the mean squared forecast 

error (MSFE). The FPE test for selection of VAR order utilizes the approximate 1-step-ahead 

MSFE: 

∑𝑦̂(1) =
𝑇 + 𝑁𝑝 + 1

𝑆
∑𝑢. (3.29) 

To be able to determine the VAR order based on equation (3.29), the covariance matrix ∑𝑢 

must be replaced with the OLS estimator ∑̂𝑢:  

∑̂𝑢(𝑝) =
𝑆

𝑆 − 𝑁𝑝 − 1
∑̃𝑢(𝑝), (3.30) 

where ∑̃𝑢(𝑝) is the MLE of ∑𝑢 obtained by fitting a VAR(p) model. Finally, we arrive at the 

FPE criterion: 
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𝐹𝑃𝐸(𝑝) = [
𝑆 + 𝑁𝑝 + 1
𝑆 − 𝑁𝑝 − 1

]
𝑁

det(∑̃𝑢(𝑝)). (3.31) 

Equation (3.31) is used to compute the values of the FPE(p) for several VAR models of order 

𝑝 = 0, 1, … , 𝑝𝑚𝑎𝑥. After computing the FPE values for several p values, the order that 

minimizes the FPE criterion is the estimated p value (Lütkepohl, 2005).  

3.2.4 Other VAR Representations 

The general N-variable VAR(p) model from equation (3.25) can be represented as a moving 

average (MA) if the model is stationary (Buigut and Valev, 2005), or the model can be 

represented in companion form representation (Engler and Nielsen, 2009). 

3.2.4.1 Moving average representation 

To show how a VAR(p) model can be represented as a MA model, consider the bivariate 

VAR(1) from equation (3.24): 

𝒀𝒕 = 𝑣 + 𝜙1𝒀𝒕−𝟏 + 𝑢𝑡.  

This equation follows the pattern 𝒀𝒕 = 𝜙1𝒀𝒕−𝟏 = 𝜙12𝒀𝒕−𝟐 = ⋯ = 𝜙1
𝑗+1𝒀𝒕−𝒋−𝟏, and equation 

(3.24) can be transformed to:  

𝒀𝒕 = 𝑣(𝐼𝑁 + 𝜙1 +⋯+ 𝜙1
𝑗) + 𝜙1

𝑗+1𝒀𝒕−𝒋−𝟏 +∑ 𝜙1𝑖𝑢𝑡−𝑖,
𝑗

𝑖=0
 (3.32) 

where 𝐼𝑁 is an 𝑁 × 𝑁 identity matrix. One of the properties of 𝜙1
𝑗, is that it converges to zero 

as j increases, which cancels out the second term in equation (3.32) as j goes to infinity. This 

feature simplifies the first term of equation (3.32) to: 

𝑣(𝐼𝑁 + 𝜙1 +⋯+ 𝜙1
𝑗)
𝑗→∞
→  𝑣(𝐼𝑁 − 𝜙1)−1. (3.33) 

Using this, the VAR(1) process can be expressed as:  

𝒀𝒕 = 𝜇 +∑ 𝜙1𝑖𝑢𝑡−𝑖,
∞

𝑖=0
 (3.34) 

where, 𝜇 = 𝑣(𝐼𝑁 − 𝜙1)−1. This can also be shown for the general case of a N-variable VAR(p) 

model: 

𝒀𝒕 = 𝜇 +∑ 𝜙𝑖𝑢𝑡−𝑖,
∞

𝑖=0
 (3.35) 
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where 𝜙 =

[
 
 
 
 
𝜙1 𝜙2 ⋯ 𝜙𝑝−1 𝜙𝑝
𝐼𝑁 0 … 0 0
0 𝐼𝑁  0 0
⋮  ⋱ ⋮ ⋮
0 0 … 𝐼𝑁 0 ]

 
 
 
 

 is a 𝑁𝑝 × 𝑁𝑝 matrix.  

The MA representation can be obtained by multiplying (3.35) by matrix 𝐽: = [𝐼𝑁: 0:… : 0], 

which have dimensions 𝑁 ×𝑁𝑝:  

𝑦𝑡 = 𝐽𝒀𝒕 = 𝐽𝜇 +∑ 𝐽𝜙𝑖𝐽′ 𝐽𝑢𝑡−𝑖
∞

𝑖=0
= 𝜇 +∑ 𝐴𝑖𝑢𝑡−𝑖,

∞

𝑖=0
 (3.36) 

where Ai follows the recursion 𝐴𝑖 = 𝜙1𝐴𝑖−1 + 𝜙2𝐴𝑖−2 + ⋯+ 𝜙𝑝𝐴𝑖−𝑝, and 𝐴0 is an  

𝑁 × 𝑁 identity matrix. 𝐴𝑖 = 0 𝑓𝑜𝑟 𝑖 < 0. The MA representation of a VAR(p) model is useful 

to realize the variables’ forecast variances (Lütkepohl, 2005).  

3.2.4.2 Companion form representation 

The companion form representation rewrites a VAR(p) model to a VAR(1), and it can be 

interpreted as a large scale VAR(1) model. This means that any VAR model with order p, can 

be rewritten in terms of a VAR(1) model:  

𝒀𝒕 = 𝜙𝒀𝒕−𝟏 + 𝑢𝑡, (3.37) 

where 𝒀𝒕 = [

𝑦𝑡
𝑦𝑡−1
⋮

𝑦𝑡−𝑝+1

], 𝑢𝑡 = [
𝑢𝑡
0
⋮
] and 𝜙 =

[
 
 
 
 
𝜙1 𝜙2 ⋯ 𝜙𝑝−1 𝜙𝑝
𝐼𝑁 0 … 0 0
0 𝐼𝑁  0 0
⋮  ⋱ ⋮ ⋮
0 0 … 𝐼𝑁 0 ]

 
 
 
 

. 𝐼𝑁 is an 𝑁 × 𝑁 identity 

matrix, and 𝑢𝑡~(0, Σ𝑢) (Canova, 2015). For illustrational purposes, consider the 2-variable 

VAR(2) model where the VAR will be: 

[
𝑌1,𝑡
𝑌2,𝑡
] = [𝛽11

1 𝛽121

𝛽211 𝛽221
] × [

𝑌1,𝑡−1
𝑌2,𝑡−1

] + [𝛽11
2 𝛽122

𝛽212 𝛽222
] × [

𝑌1,𝑡−2
𝑌2,𝑡−2

] + [
𝑢1,𝑡
𝑢2,𝑡]. (3.38) 

Note that the intercept coefficients are not included in this example. The companion form 

representation of the VAR model in equation (3.38) will be: 

[
 
 
 
𝑌1,𝑡
𝑌2,𝑡
𝑌1,𝑡−1
𝑌2,𝑡−1]

 
 
 
= [

𝛽111 𝛽121 𝛽112 𝛽122

𝛽211 𝛽221 𝛽212 𝛽222
1 0 0 0
0 1 0 0

] ×

[
 
 
 
𝑌1,𝑡−1
𝑌2,𝑡−1
𝑌1,𝑡−2
𝑌2,𝑡−2]

 
 
 
+ [

𝑢1,𝑡
𝑢2,𝑡
0
0

]. (3.39) 

The companion form representation proves useful when, for instance, calculating moment and 

in deriving parameter estimates (Gambetti, 2017). 
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3.2.5 Forecast Error Variance Decomposition 

Forecast error variance decomposition (FEVD) is a tool for interpreting VAR models. 

Lütkepohl (2005) argues that forecasting is one of the main objectives of time series analysis. 

In terms of VAR models, forecasting future values of 𝑌1,𝑡, 𝑌2,𝑡, … , 𝑌𝑁,𝑡 is based on all 

information available at time T, Ω𝑇. This information may for example include both past and 

present values of the variables in question. Time T is commonly referred to as the forecast 

origin, and the number of periods to forecast into the future is the forecast horizon. H denotes 

the periods ahead to predict, and therefore referred to as an H-step predictor. The FEVD gives 

information about the contribution to the error terms in variable i from the H-step-ahead forecast 

of variable j (Lütkepohl, 2005). In other words, the FEVD tells us what fraction of the H-step-

ahead error variance when forecasting 𝑌𝑖 is due to 𝑌𝑗 for all 𝑗 including 𝑗 = 𝑖 (Diebold and 

Yilmaz, 2009).  

3.3 Descriptive Statistical Tests 
In order to give a description and justification of the time series data utilized in the current 

thesis, descriptive statistical tests will be conducted. To give a short description of the 

distribution of the time series data, a Jarque-Bera (JB) test for normality is presented. To justify 

the adequacy of the OLS regression in terms of assumption (TS.1), a Portmanteau (PM) test for 

autocorrelation is presented. Finally, as the generalized spillover index strictly requires 

stationarity, three tests for stationarity will be presented in the current subchapter; (1) 

Augmented Dickey-Fuller (ADF), (2) Phillips-Perron (PP) and (3) Dickey-Fuller Generalized 

Least Squares (DF-GLS). 

3.3.1 Normality 

Testing for normality is of great importance as the usual inference procedures does not hold 

unless the error terms are normally distributed (Heij et al., 2004). The JB test for normality 

jointly compares skewness and excess kurtosis of the sample with skewness and excess kurtosis 

of a normal distribution. As the properties of a normal distribution includes both excess kurtosis 

and skewness equal to zero, the null hypothesis of the JB test equals these to parameters to zero:  

𝐻0: 𝛾1 = 0 𝑎𝑛𝑑 𝛾2 − 3 = 0, (3.40) 

where 𝛾1is the skewness and 𝛾2 is the kurtosis of the sample (Kennedy, 2003). The JB statistics 

are based on these two characteristics of the underlying distribution: 
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𝐽𝐵 =  
𝑆
6
(𝛾12 +

(𝛾2 − 3)2

4
) ≈ 𝜒22, (3.41) 

where S is the sample size. The JB statistic is asymptotically chi-squared distributed with 

2 degrees of freedom, and the null hypothesis is rejected if test statistics exceed the chi-squared 

critical value (Heij et al., 2004). 

3.3.2 Autocorrelation 

Assumption (TS.5) states that there should exist no autocorrelation between the error 

terms 𝐸(𝑢𝑡𝑢𝑠|𝑥𝑡, 𝑥𝑠) = 0, for all 𝑡 ≠ 𝑠. Autocorrelation in a variable can be tested by a PM 

test. By using an approximately asymptotically 𝜒2-distributed VAR model, similar to the one 

in equation (3.25), the PM test compares test statistics with the appropriate 𝜒2-critical value to 

either reject or keep the null. For large samples and large number of lags, h, the PM test statistic 

is given by: 

𝑄ℎ ≈  𝜒2(𝑁2(ℎ − 𝑝)). (3.42) 

The null hypothesis, 𝐻0, of the test states that there is no autocorrelation in the residuals. In 

other words, the residuals are white noise. If the null is rejected, the alternative hypothesis 𝐻1 

will conclude with significant autocorrelation (Lütkepohl, 2005). 

3.3.3 Stationarity 

To ensure that the time series are independent of time, several tests can be conducted. For the 

stationarity tests to be valid, the error terms are assumed to be normally distributed white noise 

(Heij et al., 2004). A time series is said to be stationary if the time series do not have a unit root. 

A unit root means that the slope parameter is equal to one. The most common way to test for 

unit roots is to base the hypothesis testing on the first difference of a AR(1) model (3.18): 

∆𝑌𝑡 = 𝛽0 + 𝜌𝑌𝑡−1 + 𝑢𝑡, (3.43) 

where 𝜌 = 𝛽1 − 1 and ∆𝑌𝑡 is the first difference of 𝑌𝑡. The null and alternative hypothesis are: 

𝐻0: 𝜌 = 0,  
(3.44) 

𝐻1: 𝜌 < 0. 

This test is commonly referred to as a Dickey-Fuller test (DF). If the null is true the time series 

has a unit root, similarly if the null is rejected the time series is stationary. As the independent 

variable, 𝑌𝑡−1, from (3.43) is a first difference, regular t-statistics are not applicable for the DF 

test. This is because the CLT is no longer valid when first differences are used in the model. 
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However, the DF test utilizes an asymptotic distribution of the t-statistics with corresponding 

critical values. Hence, the regular t-statistics for 𝜌̂ can be used, but in conjunction with the 

asymptotic critical values. The null of the DF test from (3.44) is rejected in favor of the 

alternative if 𝑡𝜌̂ < 𝑐, where c is the asymptotic critical values (Wooldridge, 2015).  

3.3.3.1 Augmented Dickey-Fuller Test  

The difference between the DF test and the ADF test is that the latter uses lagged differences 

∆𝑦𝑡−ℎ as independent variables to improve the regression. Including lagged differences further 

improves the regression as it tries to remove autocorrelation in ∆𝑦𝑡. The procedure is still the 

same as for the DF test with the same hypothesis test as well as the same critical values and 

rejection rules (Wooldridge, 2015). 

3.3.3.2 Phillips-Perron Test 

The PP test for unit roots also originates from the DF test. It is different from the DF test as it 

uses the Newey-West standard error of 𝜌 to deal with autocorrelation in the residuals. 

Furthermore, by application of the Newey-West standard error the PP test corrects for both 

autocorrelation and heteroskedasticity of the error terms (Heij et al., 2004). Hence, the PP test 

can be viewed as an autocorrelation and heteroskedastic robust DF test (Hudson, 2013). 

3.3.3.3 Dickey-Fuller General Least Squares 

The DF-GLS is another version of the DF test for unit root. The DF-GLS test transforms the 

time series by application of a generalized least squares (GLS) regression (Elliott et al., 1996; 

Stock, 1994). This makes the test more robust than the DF test. This is because the GLS is more 

efficient relative to OLS when the errors are heteroskedastic or correlated across observations 

(Stock and Watson, 2012). The null and alternative hypothesis are similar to the DF and ADF 

test (Stock, 1994; Elliott et al., 1996). 

3.4 Volatility 
According to Rakkestad (2002) volatility is most commonly referred to as an unobserved 

parameter measuring the size of the fluctuations of a time series. There exist several methods 

for estimation of the volatility parameter, however the chosen method must be appropriate for 

the specific case. The methods are often based on either standard deviation or variance of the 

variables in question. Volatility is a measure of an asset’s associated risk, and therefore a 

parameter of great importance for, for instance, portfolio management (Shu and Zhang, 2006). 

Crude oil prices are experiencing high levels of volatility. Hence, there exists a considerable 
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body of research literature investigating the volatility in crude oil prices (e.g. Pindyck, 1990; 

Pindyck, 2004b; Narayan and Narayan, 2007; Kang et al., 2009). 

3.4.1 Historical Volatility 

Historical volatility is traditionally computed as the standard deviation of daily returns within 

a certain period of time (Shu and Zhang, 2006). In order to create a time series of estimated 

volatilities, the volatility is calculated for each point as a rolling-window standard deviation of 

daily returns. The historical data included in the rolling-window will be equally weighted, 

consequently extreme values will impact the estimated volatilities independent of how far away 

they occurred. When plotting historical volatilities, a large rolling-window size will yield a 

smooth curved graph that is less sensitive to fluctuations in the underlying time series. A small 

window analysis will be more sensitive to fluctuations, and hence be less smooth (Rakkestad, 

2002).   

3.4.2 Squared log-returns  

A common method used to estimate the volatility parameter is to use the squared returns or the 

squared log-returns (Patton, 2011). The squared log-returns is a model-free and unbiased 

estimator of the volatility, and hence an easy employable and valid estimator (Andersen et al., 

2001; Patton, 2011). This volatility estimator is known to provide sufficient in-sample 

information of the volatility, but when it comes to forecasting the volatility, the estimator is 

rather noisy and inefficient (Andersen and Bollerslev, 1998). This may lead to unreliable 

inference of the true volatility (Andersen et al., 2001). 

3.4.3 Intraday Volatility 

The intraday volatility is calculated based on intraday data. Garman and Klass (1980) introduces 

two different volatility estimators that utilizes intraday data to extract information from the 

underlying time series. The first volatility estimator utilizes the maximum and minimum price 

for the relevant day, while the other estimator utilizes the opening and closing price. Moreover, 

a combination of the two previously mentioned estimators, using the max, min, open and close 

price has been used to compute a more efficient estimator of the price volatility (Diebold and 

Yilmaz, 2009).  

3.4.4 Volatility Spillover 

Chang et al. (2018) define volatility spillover as the effect of shocks in one variable to the 

subsequent shock in volatility in another variable. Diebold and Yilmaz (2009) construct a 

measurement of volatility spillover based on VAR models, primarily the FEVD of the VAR 
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models. The measure is called the spillover index. For illustrational purposes consider the 

bivariate VAR(1) model (𝑌1,𝑡, 𝑌2,𝑡), with corresponding error vector: 

𝑒𝑇+1|𝑇 = 𝒀𝑻+𝟏 − 𝒀̂𝑻+𝟏|𝑻 = 𝛼0𝑢𝑇+1 = [
𝑎0,11 𝑎0,12
𝑎0,21 𝑎0,22] [

𝑢1,𝑇+1
𝑢2,𝑇+1], (3.45) 

and the covariance matrix of the error vector is: 

𝐸(𝑒𝑇+1|𝑇, 𝑒𝑇+1|𝑇′ ) = 𝛼0𝛼0′ . (3.46) 

From equation (3.45), the variance of the 1-step-ahead error in forecasting 𝑌1,𝑡 is 𝑎0,112 + 𝑎0,122 , 

and similarly for 𝑌2,𝑡, 𝑎0,212 + 𝑎0,222 . In the case of a bivariate VAR(1) model there exist two 

possible spillovers, shock in 𝑌1,𝑡 affecting 𝑌2,𝑡, and vice versa. In 𝛼0, these spillovers are 𝑎0,212  

and 𝑎0,122 , respectively. Hence, the total spillover in this case will be the sum of these two, 

𝑎0,122 + 𝑎0,212 . The total spillover index is expressed as a ratio, where the total spillover is 

divided by the total forecast error variance: 

𝑆 =
𝑎0,122 + 𝑎0,212

𝑎0,112 + 𝑎0,122 + 𝑎0,212 + 𝑎0,222 × 100 =
𝑎0,122 + 𝑎0,212

𝑡𝑟𝑎𝑐𝑒(𝛼0𝛼0′ )
× 100. (3.47) 

Remember that (3.47) is for a bivariate VAR(1) model, and the general case of a N-variable 

VAR(p) is: 

𝑆 =

∑ ∑ 𝑎ℎ,𝑖𝑗2𝑁
𝑖,𝑗=1
𝑖≠𝑗

 𝐻−1
ℎ=0

∑ 𝑡𝑟𝑎𝑐𝑒(𝛼0𝛼0′ )𝐻−1
ℎ=0

× 100. (3.48) 

In equation (3.48) the numerator is the sum of the off-diagonal elements, while the denominator 

is the sum of all elements. The FEVD utilized in Diebold and Yilmaz (2009) are based on 

Cholesky factorization, which essentially means that the variance decompositions depends on 

the ordering of the variables (Diebold and Yilmaz, 2012). 
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4 Data and Methodology 
This chapter describes both the oil price data and methodology in which the analysis of this 

thesis is based upon. More specifically, this chapter includes a classification, as well as 

descriptive statistics for daily prices, returns and volatilities of all crude oils included in the 

analysis of the current thesis. Furthermore, this chapter describes the generalized spillover index 

developed in Diebold and Yilmaz (2009; 2012), as well as a description of how to perform the 

analysis in the programming software R.  

4.1 Data 
The data considered in this thesis are daily spot prices for a set of 17 crude oils from May 1996 

until January 2019, providing a total of 5480 observations per price series. The considered daily 

spot prices are closing prices, which is the final price a crude has been traded for at each trading 

day. The dataset is extracted from Thomson Reuters Eikon, and includes the three major 

benchmarks (Brent, Dubai and WTI) as well as 14 other regional crudes covering African 

(Bonny and Forcados), European (Urals), North Sea (Ekofisk and Oseberg), Asian (Tapis, 

Minas, Duri and North West Australian), Middle Eastern (Murban and Oman) and American 

(Louisiana Light Sweet, West Texas Sour and Alaskan) crude oils. For simplicity, North West 

Australian, Louisiana Light Sweet and West Texas Sour will be abbreviated to NWA, LLS and 

WTS, respectively, for the remainder of this thesis. When price data is missing for one or more 

price series due to a holiday, price data for all crudes are excluded for this day. 

Table 3 provides a summary of the field location and crude oil quality in terms of API gravity, 

sulfur content and TAN of the crude oil considered in the current thesis. These characteristics 

are described in subchapter 2.4, and it is further mentioned in the same subchapter that a high-

quality crude oil is characterized by a high API gravity, low sulfur content as well as low TAN. 

As an example, it appears from Table 3 that the NWA crude is of higher quality than the Duri 

crude. The crudes are sorted by its closest benchmark in terms of field location. 
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Table 3: Field location, API gravity, sulfur content and total acid number for benchmark and regional crudes. 
  Field 

location 
API 

gravity 
Sulfur 
content 

Total acid 
number 

Brent UK 37.5° 0.40% 0.03 
Ekofisk Norway 38.9° 0.21% 0.10 
Oseberg Norway 39.6° 0.20% 0.12 
Urals Russia 31.8° 1.24% 0.05 
Bonny Nigeria 35.1° 0.15% 0.25 
Forcados Nigeria 31.5° 0.22% 0.33 

Dubai UAE 31.4° 1.96% 0.25 
Murban UAE 40.5° 0.74% 0.05 
Tapis Malaysia 42.7° 0.04% 0.22 
Minas Indonesia 34.5° 0.08% 0.40 
Duri Indonesia 21.1° 0.20% 1.00 
Oman Oman 31.3° 1.41% 0.64 
North West Australian Australia 63.0° 0.00% 0.02 

WTI US 40.6° 0.22% 0.10 
Louisiana Light Sweet US 38.5° 0.40% 0.25 
West Texas Sour US 34.7° 0.81% 0.11 
Alaskan US 32.0° 0.96% 0.17 

Table 4 provides an overview of the descriptive statistics for all the price series. It can be 

observed from the descriptive statistics that the crude oil market is relatively homogenous, 

where both the price ranges and measures of central tendency are close to equal for all price 

series. Moreover, the standard deviation is also close to equal for all the price series indicating 

a similar distribution around the mean of the price series. The correlation between regional 

markets and their closest benchmark in terms of field location are for all price series close to 

perfect. These observations in conjunction with Figure 1 of historical benchmark prices indicate 

an efficient market (Ross et al., 2018). This is in line with other researchers findings that the 

global crude oil market is highly integrated (Bachmeier and Griffin, 2006). 
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Table 4: Descriptive statistics of price data. Regional crude oils per closest benchmark in terms of geographical location, and 
correlation is estimated between regional and closest benchmark.

 Min Mean Median Max Std.dev Correlation 

Brent 9.14 56.91 52.09 145.36 33.14 1 
Ekofisk 9.19 57.39 52.32 146.30 33.65 0.9996 
Oseberg 9.35 57.68 52.70 147.43 33.71 0.9996 
Urals 8.48 55.20 50.16 139.88 33.03 0.9989 
Bonny 9.10 58.01 52.86 148.60 33.99 0.9996 
Forcados 9.13 58.09 52.92 148.60 34.36 0.9996 

Dubai 9.36 54.53 50.41 140.80 32.34 1 
Murban 10.10 57.11 53.02 146.54 33.29 0.9990 
Tapis 10.53 60.15 55.34 152.38 35.03 0.9971 
Minas 9.55 58.20 55.11 152.83 34.64 0.9951 
Duri 8.55 54.52 51.17 135.03 33.10 0.9891 
Oman 9.28 55.09 50.89 139.89 32.57 0.9994 
North West Australian 10.53 56.98 51.97 140.16 32.72 0.9888 

WTI 10.82 55.00 50.59 145.31 29.28 1 
Louisiana Light Sweet 10.64 58.30 53.13 149.42 32.84 0.9910 
West Texas Sour 9.31 52.10 48.63 142.64 28.44 0.9959 
Alaskan 8.72 56.47 51.14 144.72 33.04 0.9888 

Table 5 reviews the descriptive statistics for the daily log-returns of the price series5. Keep in 

mind that the log-returns are measured in percentages. As seen from Table 5, the daily returns 

from the crude oil markets are typically ranging between +/-20%. On the other hand, both the 

mean and median log-return for all the crude oils are close to zero. The relatively high standard 

deviations indicate that the log-returns are experiencing high levels of volatility. As noted from 

Table 4, the price series are close to perfectly correlated, however, the log-returns series 

experience a lower correlation. These correlations provide the first comparison between the 

regional crudes and their closest benchmark. Notably, the Asian crudes (Tapis, Minas, Duri and 

NWA) seem to experience the lowest correlation to their closest benchmark (around 0.5), and 

Brent with its corresponding regional crudes experience relatively high correlation (around 0.7). 

The extreme correlation between WTI and the American crude oils may be partially due to the 

export ban lasting from 1975 to 2015. The export ban created an artificial price differential 

between the American crudes, in particular depressing the sweet crude relative to the sour crude 

                                                 
5 Daily log-returns are calculated by taking the natural logarithm of the price at time t divided by the price at t-1: 
𝑅 = ln ( 𝑃𝑡

𝑃𝑡−1
). 
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(Putnam and Brusstar, 2015). A JB test does reject the null for kurtosis and skewness 

significantly different for that of a normal distribution for all the price series.  

Table 5: Descriptive statistics of daily log-returns (%). Regional crude oils per closest benchmark in terms of geographical 
location, and correlation is estimated between regional and closest benchmark 

 Min Mean Median Max Std.dev Corr. Kurtosis Skewness 

Brent -18.72 0.02 0.05 16.26 2.41 1 6.677 -0.172 

Ekofisk -20.11 0.02 0.05 18.01 2.35 0.722 7.835 -0.109 

Oseberg -30.49 0.02 0.05 26.94 2.38 0.702 14.723 -0.202 

Urals -20.62 0.02 0.07 18.63 2.48 0.713 7.961 -0.159 

Bonny -19.75 0.02 0.05 17.29 2.28 0.726 7.680 -0.087 

Forcados -19.83 0.02 0.05 16.98 2.29 0.729 7.689 -0.061 

Dubai -18.03 0.02 0.04 19.04 2.37 1 7.557 -0.036 

Murban -16.29 0.02 0.03 14.29 2.28 0.709 7.146 -0.232 

Tapis -14.07 0.02 0.00 14.14 2.11 0.624 6.802 -0.145 

Minas -39.47 0.02 0.00 38.02 2.40 0.508 35.835 -0.554 

Duri -35.36 0.02 0.00 34.09 2.71 0.499 27.166 -0.032 

Oman -19.53 0.02 0.04 15.05 2.43 0.704 7.880 -0.246 

North West Australian -34.13 0.02 0.00 78.49 2.86 0.457 127.930 3.571 

WTI -21.59 0.02 0.08 19.14 2.50 1 8.621 -0.168 

Louisiana Light Sweet -18.94 0.02 0.08 13.77 2.44 0.921 6.633 -0.203 

West Texas Sour -15.91 0.01 0.05 17.70 2.78 0.901 6.120 -0.046 

Alaskan -21.39 0.02 0.08 20.86 2.63 0.911 9.987 -0.197 

Note that the NWA crude oil has extreme log-returns, these extreme observations occurred 

between a period ranging from June 2008 to January 2009. During this period, a major gas 

production facility on the Varanus Islands (NWA) experienced a series of explosions followed 

by fires causing close to a third of Western Australia’s gas supply to be lost (Hurley et al., 

2008). This gas crisis may have led to the extreme price movements during this period for the 

NWA crude oil.  

Table 6 provides a summary of the daily volatilities of all the price series. Due to lack of 

intraday data, the volatility series are calculated by application of the squared log-returns 

method. Note that the measures are in percentages. From Table 6 it is evident that the volatilities 

for the crude oil prices are typically ranging from 0 to 4%. Due to the mathematical properties 

of the squared log-returns method, negative values will never occur. The extreme volatilities 

for the NWA crude might be due to the Varanus Islands gas explosions in late 2008. Most crude 

oil prices considered seem to experience an average volatility close to 0.06 and a standard 

deviation close to 0.15. Finally, compared to the price series and the daily log-returns, the 

correlation between the volatility of regional crudes and their closest benchmark are smaller. In 
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particular, the Dubai benchmark and the Asian regional crudes volatilities experience a low 

correlation of about 0.1.  

Table 6: Descriptive statistics of daily volatility (%). Regional crude oils per closest benchmark in terms of geographical 
location, and correlation is estimated between regional and closest benchmark.

  Min Mean Median Max Std.dev Corr. Kurtosis Skewness 

Brent 0.000 0.058 0.000 3.506 0.139 1 136.974 8.848 
Ekofisk 0.000 0.055 0.000 4.045 0.144 0.661 229.606 11.820 
Oseberg 0.000 0.057 0.000 9.294 0.210 0.432 979.971 26.323 
Urals 0.000 0.061 0.000 4.250 0.162 0.627 230.236 12.038 
Bonny 0.000 0.052 0.000 3.901 0.135 0.670 246.423 12.212 
Forcados 0.000 0.052 0.000 3.932 0.136 0.677 239.913 12.030 

Dubai 0.000 0.056 0.000 3.623 0.143 1 179.727 10.346 
Murban 0.000 0.052 0.000 2.653 0.129 0.711 100.617 8.094 
Tapis 0.000 0.045 0.000 2.000 0.107 0.514 91.730 7.627 
Minas 0.000 0.058 0.000 15.582 0.339 0.129 1424.301 33.859 
Duri 0.000 0.073 0.000 12.506 0.375 0.180 566.236 21.087 
Oman 0.000 0.059 0.000 3.813 0.155 0.669 133.882 9.193 
North West Australian 0.000 0.082 0.000 61.611 0.921 0.090 3661.849 56.252 

WTI 0.000 0.063 0.000 4.661 0.173 1 187.824 10.781 
Louisiana Light Sweet 0.000 0.059 0.000 3.586 0.141 0.784 135.971 8.766 
West Texas Sour 0.000 0.077 0.000 3.134 0.175 0.771 65.388 6.508 
Alaskan 0.000 0.069 0.000 4.577 0.207 0.828 182.624 11.223 

 

Table 7 provides a summary of the descriptive statistical tests for the volatility series. These 

tests are explained in subchapter 3.3. The JB test rejects the null of normality for all the volatility 

series, and the PM test rejects the null of zero autocorrelation. All the stationarity tests, ADF, 

PP and DF-GLS, conclude that the volatility series are stationary. Note that all tests are 

statistically significant at 0.01% level. To summarize, the tests performed on the volatility series 

conclude that they experience non-normal distribution, autocorrelation and stationarity. 
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Table 7: Descriptive statistical tests for the daily volatilities of the price series. All tests are statistically significant at 0.01% 
level. 

  JB PM ADF PP DF-GLS 
Brent - 144.43 -42.74 -62.73 -42.45 

Ekofisk - 61.17 -45.92 -66.53 -39.58 
Oseberg - 10.23 -37.25 -70.85 -34.51 
Urals - 35.29 -46.67 -68.27 -40.13 
Bonny - 46.90 -46.53 -67.43 -39.89 
Forcados - 45.91 -46.54 -67.49 -39.90 

Dubai - 347.11 -41.89 -57.08 -38.16 
Murban - 261.45 -42.43 -59.15 -41.89 
Tapis - 147.13 -43.04 -62.64 -41.55 
Minas - 824.44 -41.26 -49.18 -41.15 
Duri - 639.02 -42.59 -51.86 -42.59 
Oman - 231.10 -38.97 -59.87 -38.63 
North West Australian - 68.53 -48.35 -66.13 -48.33 

WTI - 186.38 -41.93 -61.29 -41.81 
Louisiana Light Sweet - 219.70 -40.30 -60.23 -33.35 
West Texas Sour - 192.35 -41.99 -61.10 -41.92 
Alaskan - 235.51 -43.15 -59.87 -41.61 

4.2 Methodology 
To evaluate the volatility spillover between crude oil markets, the present study utilizes the 

generalized version of the spillover index developed in Diebold and Yilmaz (2009; 2012). The 

generalized spillover index developed in these papers can be calculated in the programming 

software R. 

4.2.1 Generalized Spillover Index 

Whilst the spillover index developed in Diebold and Yilmaz (2009) explained in subchapter 

3.4.4 is order dependent and solely focus on total spillover, the generalized version utilized in 

this thesis allows for identification of directional spillovers, net spillovers and net pairwise 

spillovers in a non-order dependent framework. This is because the method utilizes the 

generalized VAR framework developed in Koop et al. (1996) and Pesaran and Shin (1998) 

rather than Cholesky factorization to obtain the FEVD (Diebold and Yilmaz, 2012). This 

framework will hereafter be referred to as KPPS (Koop, Potter, Pesaran and Shin). The 

generalized spillover index can identify the volatility spillover across time and between several 

markets, as well as the spillover direction from one market to another (Kang et al., 2017). The 

methodology allows identification of both main receivers and transmitters of volatility across 

several markets (Dahl and Jonsson, 2018). The generalized spillover index can be used to 

perform both full-sample and rolling-window analysis. A full-sample analysis captures the 
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average connectedness over the sample data, whilst a rolling-window analysis captures the 

time-varying connectedness (Diebold and Yilmaz, 2012). 

4.2.2 Deriving the Generalized Spillover Index 

In order to derive the generalized spillover index, consider the general case of a covariance 

stationary N-variable VAR(p) model as described in chapter 3:  

𝒀𝒕 = 𝑣 +∑ 𝜙𝑖𝒀𝒕−𝒊
𝑝

𝑖=1
+ 𝑢𝑡, (4.1) 

where 𝒀𝒕 is an 𝑁 × 1 vector of dependent variables, 𝑣 is an 𝑁 × 1 vector of intercept terms,  𝜙𝑖 

are 𝑁 × 𝑁 matrices of autoregressive coefficients and 𝑢𝑡 is an 𝑁 × 1 vector of error terms. The 

error terms are assumed to be i.i.d. with expectation zero and covariance matrix 𝛴, 𝑢 ⁓ (0, 𝛴). 

In order to obtain the FEVD for equation (4.1), a transformation into MA representation is 

required:  

𝒀𝒕 = 𝜇 +∑ 𝑨𝒊𝑢𝑡−𝑖.
∞

𝑖=0
 (4.2) 

Importantly, the moving average coefficients from equation (4.2) are the fundamental key to 

understand the dynamics of the system in question (Diebold and Yilmaz, 2012). Given market 

shocks to the system, it is possible to identify the FEVD from each variable via the MA 

coefficients (Dahl and Jonsson, 2018). That is to say, the FEVD enables the possibility of 

measuring the fraction of the H-step-ahead error variance from forecasting 𝑦𝑖 that is due to 

market shocks to 𝑦𝑗 for all 𝑗 = 1, 2, … ,𝑁 (Diebold and Yilmaz, 2012).   

4.2.2.1 Forecast error variance decomposition 

In order to understand the practical intuition of FEVD, it is important to understand the concept 

of own-variance shares and cross-variance shares. Diebold and Yilmaz (2012) define own-

variance shares as the fraction of the H-step-ahead error variance from forecasting 𝑦𝑖 that is due 

to market shocks to 𝑦𝑖 for all N variables. Further, the authors define cross-variance shares as 

the fraction of the H-step-ahead error variance from forecasting 𝑦𝑖 that is due to market shocks 

to 𝑦𝑗 for all 𝑗 ≠ 𝑖. Cross-variance shares are also referred to as spillovers. Equation (4.3) yields 

the H-step-ahead FEVD based on the KPPS framework where 𝜃𝑖𝑗
𝑔 denotes the fraction of the 

H-step-ahead forecast error variance from forecasting 𝑦𝑖 that is due to market shocks to 𝑦𝑗. This 

equation is applicable for calculation of both own-variance shares and cross-variance shares:  
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𝜃𝑖𝑗
𝑔(𝐻) =

𝜎𝑗𝑗−1 ∑ (𝑒𝑖′𝐴ℎ∑𝑒𝑗)
2𝐻−1

ℎ=0

∑ (𝑒𝑖′𝐴ℎ∑𝐴ℎ′ 𝑒𝑖)𝐻−1
ℎ=0

, (4.3) 

where ∑ is the covariance matrix for the error term vector 𝑢𝑡. The standard deviation of the 

error term for the j-th equation is given by 𝜎𝑗𝑗, and 𝑒𝑖 is a selection vector with all elements 

equal to zero, except the i-th element, which is set to one. The resulting FEVD from equation 

(4.3) can be tabulated as in Table 8 for 𝑖, 𝑗 = 1, 2, … , 𝑁. 

Table 8: Illustration of a FEVD table. 
 From 
To 1 2 … N 

1 𝜃11
𝑔  𝜃12

𝑔  … 𝜃1𝑁
𝑔  

2 𝜃21
𝑔  𝜃22

𝑔  … 𝜃2𝑁
𝑔  

⋮ ⋮ ⋮ ⋱ ⋮ 

N 𝜃𝑁1
𝑔  𝜃𝑁2

𝑔  … 𝜃𝑁𝑁
𝑔  

According to Diebold and Yilmaz (2012; 2015) the row sum of Table 8 is not always equal to 

one, this can be solved by normalizing each element, 𝜃𝑖𝑗
𝑔, by dividing by the row sum in the 

following way: 

𝜃̃𝑖𝑗
𝑔(𝐻) =

𝜃𝑖𝑗
𝑔(𝐻)

∑ 𝜃𝑖𝑗
𝑔(𝐻)𝑁

𝑗=1
. (4.4) 

The normalized version of Table 8 is obtained by substituting each element with the output 

from  equation (4.4), and this forces the row sums to unity (Diebold and Yilmaz, 2012). 

4.2.2.2 Generalized total spillover index 

The generalized total spillover index is obtained by dividing the sum of the off-diagonal 

elements of the normalized FEVD table by the sum of all table elements. The off-diagonal 

elements are the cross-variance shares, or spillovers. 

𝑆𝑔(𝐻) =

∑ 𝜃̃𝑖𝑗
𝑔(𝐻)𝑁

𝑖,𝑗=1
𝑖≠𝑗

∑ 𝜃̃𝑖𝑗
𝑔(𝐻)𝑁

𝑖,𝑗=1
× 100 (4.5) 

Equation (4.5) represents the KPPS total spillover index analogous to the total spillover index 

derived in subchapter 3.4.4. In general terms, the total spillover index is the relative contribution 

of spillovers compared to the total forecast error variance (Diebold and Yilmaz, 2012). 
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4.2.2.3 Generalized directional spillovers and net spillovers 

One of the main advantageous of the generalized spillover method developed in Diebold and 

Yilmaz (2009; 2012) relative to other methods for calculating spillover is that it enables the 

possibility of directional spillovers between markets to be identified (Kang et al., 2017). The 

directional spillover received by market i from all other markets j is obtained by dividing the 

row sum of cross-variance shares for market i by the sum of all FEVD normalized elements: 

𝑆𝑖.
𝑔(𝐻) =

∑ 𝜃̃𝑖𝑗
𝑔(𝐻)𝑁

𝑗=1
𝑗≠𝑖

∑ 𝜃̃𝑖𝑗
𝑔(𝐻)𝑁

𝑖,𝑗=1
× 100. (4.6) 

Equation (4.6) yields the volatility spillover received by market i. Similarly, the volatility 

transmitted from market i to all markets j can be calculated with the following equation: 

𝑆.𝑖
𝑔(𝐻) =

∑ 𝜃̃𝑗𝑖
𝑔(𝐻)𝑁

𝑗=1
𝑗≠𝑖

∑ 𝜃̃𝑖𝑗
𝑔(𝐻)𝑁

𝑖,𝑗=1
× 100. (4.7) 

The numerator of equation (4.7) is the column sum of the cross-variance shares for market i, 

and the denominator is again the sum of all FEVD normalized elements (Diebold and Yilmaz, 

2012). The net volatility spillover from market i to all market j is the difference between the 

volatility transmitted and received by market i:  

𝑆𝑖
𝑔(𝐻) = 𝑆.𝑖

𝑔(𝐻) − 𝑆𝑖.
𝑔(𝐻). (4.8) 

4.2.2.4 Generalized net pairwise spillovers 

While equation (4.8) yields information about net volatility spillover from market i to all 

markets j, the net pairwise volatility spillovers are the difference between the gross volatility 

transmitted from market i to another market j as well as those transmitted from market j to 

market i (Diebold and Yilmaz, 2012). According to the authors, the net pairwise volatility 

spillovers can be defined as in equation (4.9): 

𝑆𝑖𝑗
𝑔(𝐻) = (

𝜃̃𝑗𝑖
𝑔(𝐻)

∑ 𝜃̃𝑖𝑘
𝑔 (𝐻)𝑁

𝑖,𝑘=1
−

𝜃̃𝑖𝑗
𝑔(𝐻)

∑ 𝜃̃𝑗𝑘
𝑔 (𝐻)𝑁

𝑗,𝑘=1
) × 100. (4.9) 

4.2.3 The Generalized Spillover Index in R 

In the current thesis, R is utilized to obtain the generalized spillover index. R is a programming 

language and -software that facilitates data manipulation, calculation and graphical displays. It 

is possible to extend R by installing packages developed by R and via the CRAN, which is the 
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Comprehensive R Archive Network (R-Project, 2019). In order to compute the generalized 

spillover index, it is necessary to install the package “frequencyConnectedness” from CRAN. 

In general, the methodology in R can be divided into three parts; (1) construction of a VAR 

model, (2) computing the FEVD table and (3) calculate the various spillovers. 

4.2.3.1 Construction of a VAR model 

The following function can be applied to construct a VAR(p) model in R: 

VAR(y, p = 1, type = c("const", "trend", "both", "none")), 

where y is the dependent variables to include in the VAR(p) model, and p is the number of lags 

included. The number of lags included is by default set to 𝑝 = 1. The type argument determines 

which deterministic regressors to include, and the options are to include a constant, trend, both 

or none of them. As described in the theoretical background chapter, the number of lags to 

include in the VAR(p) model can be determined by minimizing a set of information criteria 

(SC, AIC, HQ and FPE). This process can be conducted in R with the following function: 

VARselect(y, lag.max = 10, type = c("const", "trend", "both", "none")). 

It is the same arguments in the VARselect function as in the VAR function described above, and 

the additional lag.max argument specifies the maximum number of lags to test for. This 

argument is by default set to 10. The output from this function suggests how many lags to 

include according to all four information criteria (Pfaff and Stigler, 2018).  

4.2.3.2 Computing the forecast error variance decomposition table 

In order to create and store the normalized FEVD table for further spillover analysis, the 

following function is required: 

spilloverDY12(est, n.ahead = H, no.corr = F/T). 

In the case of computing spillovers, the est argument refers to the VAR(p) model constructed 

by the VAR function described above. How many steps ahead the FEVD should be predicted for 

is determined by the n.ahead argument. As an example, if n.ahead = H the H-step-ahead FEVD 

will be computed. In general, H should be set high enough so that the elements of the FEVD 

table do not change with a unit increase in H. The no.corr argument determines whether the 

off-diagonal elements of the covariance matrix, Σ, should be set to zero (T) or not (F) (Krehlik, 

2018). The spilloverDY12 function computes the normalized FEVD table based on the entire 

dataset defined in the VAR function, and this is the basis for a full-sample analysis (Diebold and 

Yilmaz, 2009; Krehlik, 2018). A full-sample analysis yields a single fixed-parameter for the 
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volatility spillovers by capturing the average spillover behavior over the entire sample period 

(Diebold and Yilmaz, 2009).  

A rolling-window analysis can be conducted to capture potentially time-varying spillover 

behavior instead of just the average spillover behavior over the sampled data (Diebold and 

Yilmaz, 2012). This is beneficial because the volatility of commodity prices are known to be 

varying across time (Pindyck, 2001). The rolling-sample analog to the spilloverDY12 function 

described above is: 

spilloverRollingDY12(y, n.ahead = H, no.corr, func_est, params_est, window). 

The arguments y, n.ahead and no.corr are the same as previously described. The func_est 

argument defines which model to estimate, and it can be set to either VAR or BigVAR. The 

params_est defines which parameters to include in the estimation of the model. The window 

argument defines the length of the rolling-window (Krehlik, 2018), and the size of the window 

will determine the resolution of the analysis. A larger window will result in a smoother curve, 

whilst a smaller window will increase the resolution of the resulting graphs (Diebold and 

Yilmaz, 2009).  

4.2.3.3 Full-sample analysis and rolling-window analysis 

In a full-sample analysis, it is possible to capture the total, directional, net, and net pairwise 

volatility spillovers on an average basis (Diebold and Yilmaz, 2012). After generating the 

FEVD table by using either the spilloverDY12 function for full-sample analysis, or 

spilloverRollingDY12 for rolling-window analysis, the total volatility spillover can be calculated 

using the function: 

overall(spillover_table). 

For directional, net, and net pairwise volatility spillover the following functions can be applied, 

respectively: 

to(spillover_table), 

from(spillover_table), 

net(spillover_table), and 

pairwise(spillover_table). 

 
The spillover_table argument refers to the FEVD table generated by the functions mentioned 

above. For directional spillovers, the to function computes the spillover transmitted from market 

i to all markets j. The from function computes the spillover received by market i from all market 
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j. The net function subtracts the received from the transmitted volatility spillover to give the net 

volatility spillover as output. The net pairwise volatility spillover between market i and market 

j is computed by using the pairwise function (Krehlik, 2018). These functions generate a single 

fixed-parameter in a full-sample analysis, and for a rolling-window analysis they generate a 

time series revealing time varying information about the volatility spillovers.  

  



45 
 

5 Empirical results 
In this chapter, we utilize the generalized spillover index developed in Diebold and Yilmaz 

(2009; 2012) to explore volatility spillover within the crude oil market. For this purpose, we 

perform both full-sample and rolling-window analyses of volatility spillovers between (1) crude 

oil benchmarks (Brent, Dubai and WTI), (2) Brent and regionals (Ekofisk, Oseberg, Urals, 

Bonny and Forcados), (3) Dubai and regionals (Murban, Tapis, Minas, Duri, Oman and NWA), 

and (4) WTI and regionals (LLS, WTS and Alaskan). Both the full-sample and rolling-window 

analyses are conducted in the programming software R as described in chapter 4. Furthermore, 

we will interpret the results in light of typical determinants affecting crude oil prices over time, 

such as global oil supply and demand, inventories, OPEC decisions, financial crises, national 

elections and geopolitical unrest. 

When utilizing the generalized spillover index to perform both full-sample and rolling-window 

analysis of the volatility spillovers within the crude oil market, a covariance stationary N-

variable VAR(p) model as described in equation (3.25) is required. The variables included in 

the abovementioned analyses (1, 2, 3 and 4) are a set of daily volatilities for each crude oil, 

hence the number of variables in each analysis is equal to the number of crudes included. For 

instance, the analysis of the benchmark crudes includes three variables corresponding to the 

daily volatilities of Brent, Dubai and WTI. As previously mentioned, the variables included in 

the analysis must satisfy the criteria of stationarity. As observed in Table 7, the daily volatility 

series for all 17 crude oils are stationary according to the ADF, PP and DF-GLS tests.  

In order to determine the number of lags to include in the VAR(p) model for each analysis (1, 

2, 3 and 4), a sequence of tests is performed. These tests are described in subchapter 3.2.3, and 

include minimizing the information criteria SC, AIC, HQ and FPE. In the current thesis, 𝑝𝑚𝑎𝑥 

has been set to 10 lags, and the results of the tests are presented in Table 9. For illustrational 

purposes, values for only lags of 1 and 10 are included in the table. According to the information 

criteria from Table 9, in conjunction with the parsimonious principle, the number of lags 

included in the VAR(p) model for all analyses is set to 1. This is because of the marginal 

difference in the information criteria values for lags of 1 and 10. 
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Table 9: VAR model selection; SC, AIC, HQ and FPE for all analyses. 

Analysis (1) (2) (3) (4) 

Lags 1 10 1 10 1 10 1 10 

SC -39.6 -39.7 -89.5 -89.7 -89.7 -90.3 -54.4 -54.4 
AIC -39.7 -39.8 -89.6 -90.2 -89.8 -90.9 -54.4 -54.6 
HQ -39.7 -39.7 -89.6 -90.0 -89.7 -90.7 -54.4 -54.4 
FPE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

As mentioned in the methodology chapter, the H-step predictor should be set high enough so 

that the elements of the FEVD table do not change with a unit increase in H. The FEVD table 

remained unchanged in all four cases approximately at 𝐻 = 10, which is equivalent to two 

business weeks. To summarize, the analyzes of volatility spillovers within crude oil markets 

are based on covariance stationary 3-, 6-, 7-, and 4-variable VAR(1) model for each analysis, 

respectively, and the H-step predictor is set to 10 for all analyses.  

5.1 Analysis of Crude Oil Benchmarks 
This part includes the empirical results from both the full-sample and rolling-window analysis 

of volatility spillover between the benchmark crudes Brent, Dubai and WTI. These specific 

benchmarks are chosen as they cover the vast majority of global crudes, where Brent covers 

Europe and Africa, Dubai covers the Middle East and WTI covers America.  

5.1.1 Full-Sample Analysis of Volatility Spillover 

In this part, a full-sample analysis of the volatility spillover between benchmark crudes is 

conducted, and the results are tabulated in Table 10. This table is often referred to as a volatility 

spillover table. A volatility spillover table is simply a summary of all the spillovers (total, 

directional and net) in addition to the normalized FEVD table explained in the methodology 

subchapter. Keep in mind that the elements on the diagonal of the FEVD table are the own-

variance shares, and the off-diagonal elements are the spillovers (or cross-variance shares). The 

table elements are presented as percentages, and as the FEVD table elements are normalized 

according to equation (4.4), the row sum is forced to equal 100%. Note that the “directional to 

others” and “directional from others” elements are the volatility spillover transmitted and 

received by each market i, respectively. 
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Table 10: Volatility spillover table for all benchmarks (Brent, Dubai and WTI). Note: diagonal elements show own-variance 
shares, and off-diagonal elements show cross-variance shares. Directional FROM and TO others are estimated by equation 
(4.6) and (4.7), respectively. Total spillover index and net spillover are estimated by equation (4.5) and (4.8), respectively. 

  
Brent Dubai WTI 

Directional FROM 
others 

Brent 68.34 11.22 20.43 31.65 
Dubai 5.06 91.64 3.30 8.36 
WTI 21.48 8.10 70.42 29.58 

Directional TO 
others 

26.55 19.32 23.73 Total spillover 
index: 

Directional 
including own 

94.89 110.96 94.15 23.20% 

Net spillover -5.11 10.96 -5.85   

It is evident from the full-sample analysis that the volatility spillover between the benchmarks 

accounts for 23.20% of the volatility in the respective markets, indicating a moderate 

connectedness between the benchmark crudes. The own-variance shares explain most of the 

volatility for all three benchmarks, indicating that most of the volatility in each individual 

market comes from within the market itself. In particular, the own-variance share for Dubai is 

very high, suggesting that it does not receive much volatility from the two other benchmarks. 

For directional volatility spillovers, the average behavior between the benchmarks is that Brent 

and WTI are net receivers, while Dubai is a net transmitter of volatility. As seen in Table 10, 

almost one-third of the volatility in the Brent and WTI benchmarks are received from the two 

other markets. 

To further emphasize the direction of the spillover, Table 11 presents the net pairwise spillover 

between the benchmarks, and the results reveal that Brent is a net receiver from Dubai, and a 

net transmitter to WTI. Further, WTI is a net receiver from both markets, whilst Dubai is a net 

transmitter to both Brent and WTI. These findings suggest that, on average, Dubai is the most 

significant contributor to uncertainty in the global crude oil market. 

Table 11: Net pairwise spillover table for all benchmarks (Brent, Dubai and WTI). The net pairwise spillovers are estimated 
by equation (4.9).  

Net pairwise spillover 

  Brent Dubai WTI 
Brent 0 6.16 -1.05 
Dubai -6.16 0 -4.80 

WTI 1.05 4.80 0 
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Remember that the full-sample analysis only captures the average behavior of volatility 

spillover over the sample data, and to capture the time-varying dynamics of the volatility 

spillover, a rolling-window analysis is conducted. However, the full-sample analysis provides 

a great starting point for further analysis of the volatility spillover behavior.  

5.1.2 Rolling-Window Analysis of Volatility Spillover 

In this part, a rolling-window analysis of the volatility spillover is conducted, and both windows 

of 100 and 250 days are utilized. Note that 250 days are the equivalent of a business year. The 

analysis starts off by assessing the total volatility spillover index as calculated by equation (4.5), 

and the results are plotted in Figure 4. The upper panel illustrates the total volatility spillover 

index for a rolling-window of 100 days, while the lower panel is for a rolling-window of 250 

days. At first glance, the two plots are very similar. However, a key distinction is that the plot 

for a rolling-window of 250 days tends to smooth out fluctuations. Because the resolution of 

the plot for a rolling-window of 100 days is higher, the analysis will mainly focus on the upper 

panel.  

Both the volatility spillover index in the upper and lower panel are typically ranging between 

10 and 40%, with an average volatility of about 25%. This is consistent with the findings from 

the full-sample analysis. Furthermore, it is apparent from Figure 4 that the total volatility 

spillover index does not exhibit any clear trend over the sample period, and that the volatility 

spillover is indeed time-varying. These findings are in line with Pindyck (2001).  
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Figure 4: Total volatility spillover index for crude oil benchmarks. 

As previously mentioned, the vast majority of the spillovers are ranging between 10 and 40%. 

However, several peaks above 50% are identified over the sample (March 1998, May 1999, 

September 2011, February 2013, November 2014, July 2016 and December 2016).  

The first two peaks in connectedness may have been related to the East Asian Crisis. As 

described in subchapter 2.1, the East Asian crisis was associated with a 50% drop in oil price. 

In a period preceding 1997, emerging economies in East Asia experienced a substantial 

economic growth accompanied with industrialization and increasing oil consumption. 

However, in 1997-98 the financial system of East Asian countries experienced severe stress, 

causing doubt in the market about future growth in these countries. Nevertheless, the East Asian 

crisis appeared to be short-termed, and the volatility spillover spike in May 1999 may have been 

related to the resumed growth in the emerging economies of East Asia (Hamilton, 2011). 

Furthermore, the increase in connectedness during these periods may have be further 

exacerbated by OPEC-meetings. Firstly, a study by Plante (2019) reveals that the oil price 

experienced increased volatility associated with an OPEC-meeting in March 1998 where they 

decided to cut production despite agreeing to increase production at the November 1997-

meeting. Secondly, OPEC decided to further decrease production in an early 1999-meeting as 
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an attempt to increase the oil price (Barsky and Kilian, 2004; Fattouh, 2007). These OPEC 

decisions, in conjunction with the East Asian crisis may have caused the two first peaks in 

connectedness. 

As mentioned and described in subchapter 2.7.1, the period from 2003 until 2008 was 

characterized by a relatively steep increase in oil price due to, for instance, rising demand of 

crude oil from emerging economies in East Asia. According to Kilian and Hicks (2013), the 

economic growth during this period was not solely for emerging economies, but also the case 

for industrialized economies. The total volatility spillover index for the benchmark crudes is 

also stable during this period of increasing oil prices and strong economic growth globally. This 

observation is apparent from both panels in Figure 4.  

The rapid increase in connectedness starting in December 2010 and climaxing with a spike in 

September 2011 and February 2013 may be associated with the unrest caused by the Arab 

Spring. Notably, political unrest and wars in the Middle East may cause severe changes in the 

oil price due to shifts in supply (Barsky and Kilian, 2004). As mentioned in subchapter 2.1, 

geopolitical unrest such as the Arab Spring may cause uncertainty about future scarcity of oil, 

and hence an increase in oil price volatility. The Arab Spring started with a rebellion in Tunisia 

late 2010, causing a domino effect across North-Africa and the Middle East resulting in, among 

others, regime changes in Tunisia, Egypt, and Libya as well as civil wars in Yemen and Syria 

(Leraand, 2017). During the Arab Spring, several oil fields and refineries were attacked in Libya 

(Bahgat, 2012), and Yemen and Syria struggled to maintain their current production levels 

(Stevens, 2012). Such events may have caused increased uncertainty about future supply of oil, 

and therefore increased connectedness between the benchmark crudes.  

As mentioned in subchapter 2.7.1, disturbances on the supply and demand side have caused 

large fluctuations in the oil price throughout history. Therefore, the high connectedness between 

the benchmark crudes in December 2010, September 2011 and February 2013 may have been 

further exacerbated by the U.S. shale oil revolution which caused an excess supply of light 

sweet crudes in the U.S. market due to lack of appropriate infrastructure to manage the increased 

production (Kilian, 2016). Figure 5 illustrates estimates of U.S. oil production per region. Note 

the rapid increase starting in 2011. The U.S. refineries did not have the required equipment to 

deal with the increased supply of light sweet crude, and the lack of refinery demand caused oil 

abundance in Cushing, Oklahoma. Further, this caused a price fall of WTI relative to Brent 

(Kilian, 2016), which may have caused excess spillover in the global crude oil market. On the 

other hand, Baumeister and Kilian (2016b) provide evidence that the Brent benchmark 
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underperformed by $10 from 2011 to mid-2014 due to the U.S. fracking boom. Significantly, 

the authors further state that the fracking boom had severe consequences for Saudi Arabia’s 

financial reserves, both in terms of lost oil revenues and reduction of their foreign exchange 

reserves. Thus, the spikes in December 2010, September 2011 and February 2013 may have 

been related to both geopolitical unrest during the Arab Spring and the U.S. fracking boom. 

 
Figure 5: EIA estimates of U.S. oil production per region (Sieminski, 2014). 

In November 2014 the connectedness jumps from 7 to 66%, making it the biggest jump over 

the sampled data. As explained in subchapter 2.2, OPEC decisions to maintain current 

production level have a significant effect on oil price volatility. Hence, the spike in 

connectedness may be related to the fact that OPEC announced to maintain their current 

production levels, despite the increasing production levels in non-OPEC countries. Importantly, 

Russia and the U.S. both contributed by increasing their daily production in the second half of 

2014 by 2 and 4%, respectively. During the same period, the total increase in production from 

non-OPEC countries was close to 400,000 barrels per day (Baumeister and Kilian, 2016b). 

Despite the increasing oil production in Russia, they suffered several sanctions on their 

petroleum sector from the European Union and the U.S. due to their military interventions in 

Crimea, Ukraine (Fjaertoft and Overland, 2015). These sanctions in conjunction with Russian 
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troops entering Ukraine in November and the OPEC decision to maintain production might 

have had an impact on the jump in connectedness in November 2014  (BBC, 2014).  

The last two peaks in connectedness may be related to the 2016 U.S. presidential election, where 

Donald Trump represented the Republicans and Hillary Clinton the Democrats. As the world-

leading oil producer, the U.S. presidential election may have caused turbulence in the global 

crude oil market because of the candidates’ opposing views on unconventional oil extraction 

via hydraulic fracturing. Whilst Donald Trump favored further development of the U.S. shale 

production, Hillary Clinton wanted to put strict regulations on hydraulic fracturing (Evensen, 

2016). According to the American election polls from RealClearPolitics (2016) preceding the 

2016 U.S. presidential election, Hillary Clinton was leading the entire time except for a short 

period in July which coincides with the July 2016 peak of benchmark connectedness. Despite 

the polls indicating in favor of Democratic victory, Donald Trump won the election. The 2016 

election shock may have caused the December 2016 spike, which coincides with the 

announcement of the election results. 

Thus far, the rolling-window analysis has only focused on the total volatility spillover, and 

hence no information about the directional spillover has been provided. Figure 6 presents 

information about how the directional spillover between each benchmark varies over time. Each 

line represents the net pairwise spillover between two benchmarks. A positive value indicates 

that the first mentioned benchmark in the legend is a net receiver, while a negative value 

indicate that the second benchmark is a net receiver.  

 
Figure 6: Net pairwise volatility spillovers between benchmark crudes. 

The results presented in Figure 6 are in line with the findings from the full-sample analysis. In 

particular, it provides compelling evidence that Brent and WTI are net receivers from Dubai 

across the entire sample. This finding may signify the importance of paying attention to the 
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Middle East when assessing the uncertainty in the global crude oil market. For instance, a study 

by Bhar et al. (2008) concludes that Dubai is the most sensitive benchmark in terms of major 

geopolitical events in Iran, Nigeria, Venezuela and the Middle East. Henceforth, this 

strengthens the findings that the geopolitical unrest during the Arab Spring increased the 

connectedness between the global benchmarks from December 2010 to February 2013. This 

can also be observed from Figure 6, where the net volatility spillover from Dubai to WTI and 

Dubai to Brent is between 15 and 25% during the same period. 

While the net spillover between Dubai and the other two benchmarks appears to be one-

directional across the entire sample, the net spillover between Brent and WTI ranges between 

+/-5% and is frequently changing direction. The fact that it is fluctuating around zero indicates 

that both markets transmit equal amount of volatility to each other. 

In order to further investigate the importance of the Dubai benchmark in terms of volatility in 

the global crude oil market, it is interesting to analyze the amount transmitted from each 

benchmark to the others over the entire sample period. The volatility transmitted from each 

benchmark crude is illustrated in Figure 7. 

 
Figure 7: Volatility spillover from benchmark crudes TO others. 

As seen from Figure 7, the Dubai benchmark is generally transmitting more than both Brent 

and WTI throughout the entire period. Dubai often exceeds the other benchmarks by more than 

25 percentage points, but the Dubai crude also has minor periods where it transmits far less 

volatility than the other crudes.  

It is interesting to note the behavior of volatility transmitted from Dubai before and after the 

initiation of the Arab Spring in 2011. Dubai and the other benchmarks are transmitting similar 

amount of volatility before the Arab Spring, whilst after the initiation Dubai is transmitting far 
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more volatility than the other two benchmarks. This observation in conjunction with the 

findings in Bhar et al. (2008) suggests that Dubai not only is the most sensitive benchmark to 

geopolitical unrest, but it also transmits the increased volatility to the other global markets.  

5.2 Analysis of Brent and Regionals 
This part includes the empirical results from both the full-sample and rolling-window analysis 

of volatility spillover between Brent and regionals. The crudes included in this analysis are the 

benchmark Brent, and the regional crudes Ekofisk, Oseberg, Urals, Bonny and Forcados. Both 

Ekofisk and Oseberg are Norwegian crudes (North Sea), Urals is a Russian crude, and Bonny 

and Forcados are both Nigerian crudes. The European crudes are included in this analysis due 

to their geographic vicinity to Brent, while Bonny and Forcados are included due to their 

chemical similarities to Brent.  

5.2.1 Full-Sample Analysis of Volatility Spillover 

The results from the full-sample analysis of volatility spillover between Brent and regionals are 

presented in Table 12. As mentioned previously, a volatility spillover table includes total, 

directional and net spillover for all variables included in the VAR(p) model.  

Table 12: Volatility spillover table for Brent and regionals. Note: diagonal elements show own-variance shares, and off-
diagonal elements show cross-variance shares. Directional FROM and TO others are estimated by equation (4.6) and (4.7), 

respectively. Total spillover index and net spillover are estimated by equation (4.5) and (4.8), respectively. 

 Brent Ekofisk Oseberg Urals Bonny Forcados Directional 
FROM others 

Brent 33.18 15.19 6.31 13.96 15.53 15.83 66.82 
Ekofisk 9.68 21.35 8.77 19.28 20.49 20.42 78.64 
Oseberg 6.82 14.74 35.38 13.83 14.64 14.59 64.62 
Urals 9.02 19.90 8.49 21.98 20.29 20.32 78.02 
Bonny 9.80 20.27 8.62 19.46 21.03 20.81 78.96 
Forcados 9.95 20.17 8.57 19.47 20.80 21.03 78.96 

Directional TO 
others 45.27 90.27 40.76 86.00 91.75 91.97 Total spillover 

index: 
Directional 
including own 

78.45 111.62 76.14 107.98 112.78 113.00 74.30 % 

Net Spillover -21.55 11.63 -23.86 7.98 12.79 13.01  

The total spillover index in the lower right corner of Table 12 suggests a high connectedness 

on average between Brent and its corresponding regional crudes. The average behavior over the 

sample is that a total of 74.30% of the volatility in all six crudes originate from spillover effects. 

Similar to the analysis of the benchmark crudes, the own-variance shares are the main 

contributor to the volatility in each crude. Despite the geographical location of Bonny and 
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Forcados (Nigeria) compared to the others (Europe), it is interesting to note the amount 

transmitted from these crudes to the others (around 92%). On the other hand, this may be due 

to their chemical similarities in terms of API gravity, sulfur content and TAN compared to the 

European crudes. From the spillover table, it is evident that Brent and Oseberg are net receivers, 

whilst Ekofisk, Urals, Bonny and Forcados are net transmitters of volatility.  

Table 13 presents the net pairwise volatility spillover for Brent and the regional crudes.  

Table 13: Net pairwise spillover table for Brent and regionals. The net pairwise spillovers are estimated by equation (4.9). 

Net pairwise spillover 
  Brent Ekofisk Oseberg Urals Bonny Forcados 
Brent 0 5.51 -0.51 4.94 5.73 5.88 
Ekofisk -5.51 0 -5.97 -0.62 0.22 0.25 
Oseberg 0.51 5.97 0 5.34 6.02 6.02 
Urals -4.94 0.62 -5.34 0 0.83 0.85 
Bonny -5.73 -0.22 -6.02 -0.83 0 0.01 
Forcados -5.88 -0.25 -6.02 -0.85 -0.01 0 

On average, it appears that all regional crudes except Oseberg are net transmitters of volatility 

to their geographically closest benchmark, Brent. This finding suggests that the Brent 

benchmark behaves as a volatility buffer for the regional crudes. This implies that the Brent 

benchmark reduces the uncertainty in the regional crudes by receiving volatility. Moreover, 

from Table 12 it can be seen that the regional crudes account for a total of 66.82% to the 

volatility in Brent on average over the entire sample.  

5.2.2 Rolling-Window Analysis of Volatility Spillover 

The rolling-window analysis of volatility spillover between Brent and regionals starts by 

assessing the total volatility spillover index illustrated in Figure 8. In general, the crudes are 

experiencing high connectedness across the entire sample, typically ranging between 70 and 

80%. It is apparent from both the upper and lower panel (window of 100 and 250 days, 

respectively) that the connectedness is relatively stable within this range. However, both panels 

indicate a drop from 82 to 66% in March 1998. This drop may be related to the East Asian 

crisis. Figure 6 provides compelling evidence for this hypothesis as it can be seen from this 

figure that the Dubai benchmark accounts for about 10% of the volatility in Brent in March 

1998. Meaning that the connectedness between Brent and its regionals reduces because they 

receive volatility from the Asian market due to the East Asian crisis.  
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Figure 8: Total volatility spillover index for Brent and regionals. 

As suggested in the full-sample analysis, the Brent benchmark appears to behave as a volatility 

buffer for the regional crudes on average over the sample. To further investigate this hypothesis, 

it is interesting to analyze the net pairwise spillover between Brent and its regionals across time. 

The results from this analysis are illustrated in Figure 9. A positive value indicate that Brent is 

a net receiver of volatility, whilst a negative value indicates the opposite.  
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Panel A: From Ekofisk to Brent Panel B: From Oseberg to Brent 

  

Panel C: From Urals to Brent Panel D: From Bonny to Brent 

 

Panel E: From Forcados to Brent 

Figure 9: Net pairwise volatility spillovers between Brent and regionals. 

As seen from Figure 9, only with a few rare exceptions, Brent is a net receiver of volatility from 

all the regional crudes over the entire sample. The net volatility spillover received by Brent is 

relatively stable between 5 and 10% from all the regional crudes over the entire sample period. 

These observations further strengthen the hypothesis of Brent behaving as a volatility buffer for 

the regional crudes. Interestingly, Brent does not only behave as a volatility buffer for the crudes 

in the immediate vicinity, but also for the crudes further away from the North Sea. This may be 

due to their similarities in chemical and physical properties to the Brent benchmark (ref. Table 

3).  
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5.3 Analysis of Dubai and Regionals 
This part includes the empirical results from both the full-sample and rolling-window analysis 

of volatility spillover between Dubai and regionals. The crudes included in this analysis are the 

benchmark Dubai, and the regional crudes Murban, Tapis, Minas, Duri, Oman and NWA. These 

crudes are chosen as they cover the Middle East (Dubai, Murban and Oman), and the Asian-

Pacific market (Tapis, Minas and Duri) as well as Australia (NWA). Remember from 

subchapter 2.5 that Dubai is used as a benchmark for crude oils flowing east from the Middle 

East. 

5.3.1 Full-Sample Analysis of Volatility Spillover 

The results of the full-sample analysis (including total, directional and net spillovers) of the 

Dubai crude and its regional crudes are presented in Table 14. Over the full sample period, the 

total spillover index implies a relatively high connectedness between Dubai and its regional 

crudes. The total spillover index reveals that, on average, less than half of the volatility in the 

seven crudes is due to spillover effects (48.81%). Once again, the own-variance shares are the 

main contributor of volatility in each crude. In particular, the NWA crude has a very high own-

variance share (81.21%) compared to the other six crudes in this sample, indicating a low 

connectedness between NWA and the other crudes of this analysis. This may be because of its 

geographical location, the fact that it is of a different quality than the other crudes, or a 

combination. 

Table 14: Volatility spillover table for Dubai and regionals. Note: diagonal elements show own-variance shares, and off-
diagonal elements show cross-variance shares. Directional FROM and TO others are estimated by equation (4.6) and (4.7), 

respectively. Total spillover index and net spillover are estimated by equation (4.5) and (4.8), respectively. 

  Dubai Murban Tapis Minas Duri Oman NWA Directional 
FROM others 

Dubai 43.81 22.51 11.36 0.70 1.44 20.07 0.11 56.19 
Murban 18.04 35.49 13.30 0.72 1.28 30.85 0.32 64.51 
Tapis 12.14 17.86 46.56 2.59 3.52 16.76 0.56 53.43 
Minas 1.27 0.97 2.88 59.46 34.23 1.15 0.04 40.54 
Duri 1.78 1.86 3.78 33.45 55.62 2.91 0.59 44.37 
Oman 16.19 31.74 12.80 0.78 1.96 36.19 0.35 63.82 
NWA 1.21 3.00 6.36 0.67 4.62 2.93 81.21 18.79 

Directional TO 
others 50.63 77.94 50.48 38.91 47.05 74.67 1.97 Total spillover 

index: 
Directional 
including own 94.44 113.43 97.04 98.37 102.67 110.86 83.18 48.81 % 

Net spillover -5.56 13.43 -2.95 -1.63 2.68 10.85 -16.82  

The results show that most of the crudes are transmitting about 50% volatility to the other crudes 

in this sample. Interestingly, the NWA crude is very different compared to the other crudes of 
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this analysis, and this may once again be due to its geographical location. However, if the 

volatility moving between Minas and Duri is excluded, both crudes are very close to NWA in 

terms of volatility transmitted. This may follow the same argument as for NWA, because both 

Minas and Duri are Indonesian crudes, and the highest contribution to volatility transmitted 

from the two crudes are between themselves. Interestingly, this is not the case for the Malaysian 

crude Tapis. Tapis appears to transmit more volatility to Dubai relative to the other Asian 

crudes, and this may be due to its chemical similarities to the Middle Eastern crudes.  

The regional crudes account for a total of 56.19% of the volatility in their geographically closest 

benchmark, Dubai, on average. The amount received from the regional crudes seems to be 

highly dependent on the geographic proximity relative to Dubai. In particular, the Middle 

Eastern crudes Murban and Oman transmit about 20% each to Dubai, whilst the Malaysian 

crude Tapis transmits 11.36% and the Indonesian and Australian crudes transmit about 1% each 

to Dubai. 

The net pairwise spillover table presented in Table 15 reveals that Dubai is on average a net 

receiver of volatility from both the Middle Eastern crudes Murban and Oman, while it is a net 

transmitter to Tapis, Minas, Duri and NWA. This once again signifies the importance of 

geographical location in this analysis.  

Table 15: Net pairwise spillover table for Dubai and regionals. The net pairwise spillovers are estimated by equation (4.9). 

Net pairwise spillover 

  Dubai Murban Tapis Minas Duri Oman NWA 
Dubai 0 4.47 -0.78 -0.57 -0.34 3.88 -1.10 
Murban -4.47 0 -4.56 -0.25 -0.58 -0.89 -2.68 
Tapis 0.78 4.56 0 -0.29 -0.26 3.96 -5.80 
Minas 0.57 0.25 0.29 0 0.78 0.37 -0.63 
Duri 0.34 0.58 0.26 -0.78 0 0.95 -4.03 
Oman -3.88 0.89 -3.96 -0.37 -0.95 0 -2.58 
NWA 1.10 2.68 5.80 0.63 4.03 2.58 0 

5.3.2 Rolling-Window Analysis of Volatility Spillover 

In order to analyze the time-varying spillover effects between Dubai and its regional crudes, a 

rolling-window analysis is conducted. The results from the rolling-window analysis of the total 

volatility spillover index are plotted in Figure 10 (for both windows of 100 and 250 days). At 

first glance, it seems that the total volatility spillover index for Dubai and its regional crudes 

experiences immense fluctuations around the mean of approximately 65%. The total spillover 

ranges from a minimum of 24% to a maximum of 86% over the sample period. These extreme 
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values provide points of interest in terms of market connectedness, and they occur in September 

1997 and November 2014, respectively. These two points of interest are the most prominent 

points from both panels in Figure 10. As indicated in the benchmark analysis, Dubai plays a 

vital role in the global crude oil market in terms of volatility spillover. With this in mind, the 

low connectedness observed in September 1997 between Dubai and regionals can also be found 

in the total volatility spillover plot from the benchmark analysis (ref. Figure 4). This illustrates 

the influence Dubai has on the volatility in the global crude oil market. This hypothesis is further 

strengthened by the low amount transmitted from Dubai to the other benchmarks from Figure 

7. The September 1997 drop in connectedness may be related to the East Asian crisis. 

 
Figure 10: Total volatility spillover index for Dubai and regionals. 

Similar to the observation in September 1997, the connectedness in November 2014 from both 

Figure 4 and Figure 10 experience a joint movement, except this time it is spiking. Again, in 

terms of volatility, this illustrates the influence Dubai has on the global oil market. The supply-

shock mentioned in the benchmark analysis might be the explanation of the rapid increase in 

connectedness between Dubai and its regionals in November 2014.  

To further investigate the relationship between Dubai and its regional crudes it is interesting to 

analyze the net pairwise spillover for Dubai against the other crudes. Figure 11 is plotted to 

illustrate the aggregated net volatility spillovers between Dubai and the regional crudes. In 

general, up until 2013 the Dubai benchmark was switching between being a net receiver and 

net transmitter of volatility for all regional crudes considered in this analysis. After 2013, a 
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regime shift occurred in terms of spillover effects. From 2013 until 2019, Dubai was a net 

receiver of about 14% throughout the entire period from all the regional crudes aggregated. 

This period is characterized by unrest related to the Arab Spring, and the observations from 

Figure 11 may suggest that the Dubai benchmark behaved as a volatility buffer throughout this 

period of geopolitical unrest in the Middle East.  

 
Figure 11: Aggregated net pairwise volatility spillovers between Dubai and regionals. 

Moreover, in 2015 the TOCOM Crude futures changed to the Dubai benchmark as their sole 

underlying asset. This may have made the Dubai benchmark more closely knit to the Asian and 

Australian crudes through the activity of for instance hedgers and speculators utilizing the 

TOCOM Crude futures. In addition, the trade volume of TOCOM Crude futures significantly 

increased in 2015 due to for instance geopolitical unrest in the Middle East and global 

oversupply (TOCOM, 2016). The introduction of the Dubai benchmark as sole underlying asset 

to the TOCOM Crude futures may be the explanation of the rapid increase in net volatility 

spillover to Dubai from the regional crudes in 2015.  

5.4 Analysis of WTI and Regionals 
This part includes the empirical results from both the full-sample and rolling-window analysis 

of volatility spillover between WTI and regionals. The crudes included in this analysis are the 

benchmark WTI, and the regional crudes LLS, WTS and Alaskan. The regional crudes of this 

analysis are chosen to analyze the interaction between the U.S. domestic crudes as well as their 

effect on WTI in terms of volatility spillover. Both LLS and WTS cover the great oil producing 

regions in the south, while Alaskan covers the northern territory of the U.S.  

5.4.1 Full-Sample Analysis of Volatility Spillover 

The resulting total, directional and net spillovers from the full-sample analysis of volatility 

spillover between WTI and regionals are presented in Table 16. These results indicate that 

spillover effects account for about 65% of the volatility in each crude, i.e. high connectedness. 
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As observed from the diagonal elements, the own-variance share accounts for the majority of 

the volatility (around 35%) in the respective crudes. Both the volatility transmitted and received 

by all crude markets in this analysis is relatively equal for all the crudes (around 65%), and this 

may be due to the U.S. export ban which was active over the vast majority of the sample period. 

This may indicate that the export ban adequately served its purpose of isolating the U.S. market 

from global price volatility and the strategic pricing from OPEC (Langer et al., 2016).  

Table 16: Volatility spillover table for WTI and regionals. Note: diagonal elements show own-variance shares, and off-
diagonal elements show cross-variance shares. Directional FROM and TO others are estimated by equation (4.6) and (4.7), 

respectively. Total spillover index and net spillover are estimated by equation (4.5) and (4.8), respectively. 

 WTI LLS WTS Alaskan Directional FROM 
others 

WTI 34.32 21.51 20.54 23.63 65.68 
LLS 21.71 36.27 22.26 19.76 63.73 
WTS 21.23 22.86 36.45 19.45 63.54 
Alaskan 24.97 19.92 19.27 35.84 64.16 

Directional TO 
others 67.91 64.29 62.07 62.84 Total spillover 

index: 
Directional 
including own 

102.23 100.56 98.52 98.68 64.28 % 

Net spillover 2.23 0.56 -1.47 -1.32  

As all markets both transmit and receive approximately equal amounts of volatility, the net 

spillover for all markets are relatively small. However, the net pairwise spillover table presented 

in Table 17 reveals information about the net direction of the spillovers. The results show that 

the benchmark WTI is a net transmitter of volatility to all the regional crudes included in this 

analysis. In contrast to the Brent benchmark, this observation may indicate that the WTI 

benchmark is relatively unaffected by its regional crudes.  

Table 17: Net pairwise spillover table for WTI and regionals. The net pairwise spillovers are estimated by equation (4.9). 

Net pairwise spillover 

  WTI LLS WTS Alaskan 
WTI 0 -0.20 -0.69 -1.34 
LLS 0.20 0 -0.60 -0.16 
WTS 0.69 0.60 0 0.18 
Alaskan 1.34 0.16 -0.18 0 

5.4.2 Rolling-Window Analysis of Volatility Spillover 

In order to analyze the time-varying spillover effects, a rolling-window analysis of volatility 

spillover is conducted. The total volatility spillover index for WTI and its regionals is presented 

in Figure 12, and both a window of 100 and 250 days is utilized. As indicated in the results 
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from the full-sample analysis, the total volatility spillover index appears to be relatively stable 

around 60 and 70% across the entire sample. However, it is apparent from both panels that the 

connectedness experienced a severe drop from November 2012 to January 2015. This period 

was characterized by high and stable oil prices, as well as increasing U.S. oil production due to 

the fracking boom (ref. Figure 5).  

 
Figure 12: Total volatility spillover index for WTI and regionals. 

In other words, the drop may be related to the U.S. shale oil revolution which is briefly 

described in terms of volatility spillover between benchmarks in subchapter 5.1.2. With this in 

mind, it is now necessary to take a closer look at how the U.S. shale oil revolution affected the 

American crude market internally. For starters, the U.S. refining industry was not well prepared 

for the rapid increase in domestic shale oil production. Before the fracking boom, the U.S. 

industry expected that the supply of light crudes would be increasingly scarce. In anticipation 

of this shift, the refineries located at the Gulf Coast and in Texas began restructuring to focus 

mainly on processing heavy crudes. At the same time, light crude refineries at the East Coast 

reduced their capacity. With the fracking boom, increasing quantities of light crudes were 

shipped to the market hub in Cushing, Oklahoma. Hence, the need for refining light crudes 

increased, but the restructuring process decreased the U.S. refining industry’s capacity to refine 

such crudes. As already mentioned, the refineries capable of refining light crudes were located 

at the East Coast. However, adequate transportation infrastructure (pipelines) was not in place 

to ship oil from Cushing to the East Coast, nor to Texas. The alternative transportation 

mechanism was railroads, and as mentioned in subchapter 2.6.3, railroads are not capable of 
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moving the same amount of oil as pipelines. The lack of adequate transportation infrastructure 

in conjunction with the refinery restructuring process created a supply glut of light crudes in 

Cushing (Kilian, 2016).  

According to Melek and Ojeda (2017), the supply glut in Cushing heavily penalized the WTI 

benchmark. For instance, WTI traded at a discount relative to LLS from 2011 to 2014 because 

LLS was not affected by the lack of adequate transportation infrastructure. The price spread 

between WTI and LLS during the U.S. shale oil revolution period is presented in Figure 13. 

The price spread between WTI and LLS is close to $20 during the entire period with a peak 

spread close to $30. 

 
Figure 13: Price spread between WTI and LLS during the U.S. shale oil revolution. 

A key thing to remember is that the U.S. crude oil export ban was active during this period, and  

not lifted until December 2015. The export ban exacerbated the domestic turmoil in the U.S. 

crude oil industry as the producers were unable to export the excess crude internationally 

(Melek and Ojeda, 2017). The U.S. transporting infrastructure began to improve in mid-2013 

(Kilian, 2016), and finally when the export ban was lifted in 2015 both the price spread between 

WTI and LLS, and the drop in connectedness returned to normal conditions. All things 

considered, the drop in connectedness from November 2012 to January 2015 appears to be a 

series of unfortunate events occurring simultaneously, including the supply glut, lack of refining 

capacity, inadequate transportation infrastructure as well as the export ban.  

To further understand the time-varying dynamics within the American crude oil market, it is 

interesting to analyze how the WTI benchmark interacts with the other American crude oils. In 

order to do so, the rolling net pairwise spillovers between WTI and its regionals are presented 

in Figure 14.  
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Panel A: From LLS to WTI Panel B: From WTS to WTI 

 

 

Panel C: From Alaskan to WTI  

Figure 14: Net pairwise volatility spillovers between WTI and regionals. 

As seen from the panels of Figure 14, there are small fluctuations in the net pairwise volatility 

spillovers between WTI and its regional crudes. It typically ranges between -2 and 0%, 

indicating that WTI is a marginal net transmitter of volatility to all the regional crudes over the 

entire sample period.  

The behavior of the spillover between WTI and its regionals, both before and after the fracking 

boom started in 2011, is of particular interest. Up until 2011, when the fracking boom started, 

WTI was switching frequently between being net transmitter and net receiver of volatility. 

However, in the period after the fracking boom was initiated, WTI was almost exclusively a net 

transmitter to all American crudes considered in this thesis. Interestingly, this effect seems to 

be most significant for the Alaskan crude. 

Above all, the findings from the rolling-window analysis further strengthens the hypothesis 

presented in the full-sample analysis that WTI is relatively unaffected by its regional crudes. 

As opposed to the Brent benchmark who receives volatility from its regional crudes, WTI is 

transmitting volatility to its regional crudes. 
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6 Conclusion 
In this thesis, we have used daily spot prices for a set of 17 crude oils from May 1996 to January 

2019 to analyze the volatility spillover between the three major benchmarks Brent, Dubai and 

WTI. Further, we have studied volatility spillover between each benchmark and its regional 

crudes. The regional crudes for each benchmark are chosen based on geographic vicinity and 

chemical similarities. In order to analyze the spillovers, we have utilized the generalized 

spillover index developed in Diebold and Yilmaz (2009; 2012). In general, our analyses suggest 

that the volatility spillover is time-varying, both in terms of strength and direction. In addition, 

we suggest that the time-varying uncertainty in the global crude oil market may be related to 

for instance global oil supply and demand, OPEC decisions, financial crises, national elections 

and geopolitical unrest.  

Firstly, the results from the analysis of the benchmark crudes suggest moderate connectedness, 

where volatility spillover accounts for nearly a quarter of the volatility on average. The results 

further indicate that Dubai is the most significant contributor to uncertainty in the global crude 

oil market, and this is especially the case after the initiation of the Arab Spring. Furthermore, 

the spillover is time-varying and several peaks in connectedness can be identified throughout 

our sample period. Notably, we identified short-term spikes in connectedness which may have 

been related to the East Asian crisis, OPEC meetings, the Arab Spring, the U.S. fracking boom 

and the 2016 U.S. presidential election.  

From the analysis of Brent and its regionals we find that almost three quarters of the volatility 

within the market is due to spillover effects. Our results further indicate that the connectedness 

is relatively stable within a range of 70 and 80%. However, the crudes experience a substantial 

drop in connectedness in 1998 which may have been related to the East Asian crisis. 

Furthermore, the results indicate that Brent is a net receiver of volatility from all the regional 

crudes. These findings suggest that the Brent benchmark behaves as a volatility buffer for the 

regional crudes. Interestingly, this is not only the case for the North Sea crudes, but also for the 

Russian and African crudes. This may be due to the chemical similarities of the Russian and 

African crudes compared to the benchmark. 

Our analysis of Dubai and its regional crudes comprises a complex dataset, however we find a 

relatively high connectedness of about 50% between the crudes. Moreover, it seems to be a 

distinction between the Middle Eastern crudes and the Asian/Australian crudes in terms of their 

volatility spillover interactions with Dubai. The Middle Eastern crudes have the most 
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significant effect on Dubai in terms of uncertainty, furthermore we find that the effect appears 

to be decreasing, and changing direction, with geographical distance to Dubai. Our results also 

suggest that the Dubai benchmark became more connected to the Asian/Australian crudes after 

TOCOM changed to Dubai as their sole underlying asset in their Crude futures contracts.  

We find that there is a high connectedness, about 65%, between WTI and its regional crudes. 

Further, we find that all crudes both transmit and receive equal amounts of uncertainty which 

may suggest that the U.S. export ban adequately served its purpose of isolating the U.S. market 

from global price volatility and the strategic pricing from OPEC. Moreover, it appears that most 

of the volatility spillover across our sample period may be primarily caused by a combination 

of imbalance in transportation and refining capacity, shale oil entry to the U.S. market, import 

and export of crudes. It appears that WTI experience opposite direction of the net volatility 

spillover to regional crudes compared to Brent. More specifically, our findings suggest that 

WTI is less affected by the pricing of its regional crudes compared to Brent. 

Our study contributes to the discussion on market connectedness and volatility spillovers in 

crude oil markets. Furthermore, this thesis explores the volatility spillover dynamics between 

major crude oil benchmarks, and unlike most previous research in this area we also analyze the 

interdependence between major benchmarks and minor regional crudes as well as how these 

interrelationships vary across time. Understanding how crude oil markets are interrelated 

reveals important information to hedgers and speculators in the crude oil futures markets. Such 

knowledge is believed to be important, especially when developing hedging strategies and 

portfolio optimization through diversification. Further, we identify strength and direction of 

volatility spillover by utilizing the generalized spillover index developed in Diebold and Yilmaz 

(2009; 2012), and our findings are supported by market events which confirm that the 

methodology is well suited for this kind of analysis. 

Finally, a key limitation of the current analysis is that the potential consequences of structural 

breaks in the underlying volatility series have not been taken into account. According to Jung 

and Maderitsch (2014), ignoring the importance of structural breaks may cause significant 

overestimation of volatility spillovers. The authors further state that after controlling for 

structural breaks, the volatility spillovers may be much weaker, or even disappear. To control 

for structural breaks, models such as the Markov switching model may be utilized. This 

methodology allows regime changes to occur in the underlying volatility series, and the results 

will therefore be robust to structural breaks (Lam, 2004). It would therefore be useful for future 

studies to utilize such models in the analysis.   
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