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A B S T R A C T   

Short-term predictions of wind and wave properties with a duration of 1–3 days are vital for decision-making 
during the execution of marine operations. One-step-ahead weather conditions can be accurately predicted via 
various methods. However, prediction over long horizons is challenging since multi-step-ahead prediction is 
typically faced with growing uncertainties. In this study, a hybrid method for predicting multi-step-ahead wind 
and wave conditions is proposed, which combines a decomposition technique and the adaptive-network-based 
fuzzy inference system (ANFIS). First, the decomposition technique is applied to obtain stationary time series. 
Then, multi-step-ahead forecasting is conducted using ANFIS, in which three multi-step-ahead models (the M-1, 
M-N and M-1 slope models) are employed. To quantify the forecast uncertainty, the mean value and standard 
deviation of the error factor are calculated. The proposed method is evaluated by multi-step-ahead predictions 
within 24 h of wind and wave conditions at the North Sea center utilizing hourly time series of the mean wind 
speed Uw, the significant wave height Hs and the spectral peak period Tp. The results demonstrate that the 
forecast uncertainty increases with the prediction horizon, and a prediction range determined by the error factor 
provides a basic reference for the use of predicted environmental conditions for marine operations.   

1. Introduction 

According to the definition in Det Norske Veritas (2011), marine 
operations are non-routine operations of limited duration for handling 
objects and vessels in the marine environment during temporary phases, 
such as the transport of large offshore oil & gas platforms or topside 
structures, the installation of offshore platforms and offshore wind tur
bines, and the installation of subsea templates or structures. Such op
erations can only be performed within sea state limits. Weather statistics 
are used for planning operations while weather forecasts are required for 
deciding on when to start the operations. As a result, the accuracy of 
wind and wave condition forecasting is a critical factor in the planning 
of an operation during the execution phase. If the forecasted weather 
conditions are unsuitable for a marine operation, the operation will not 
be executed until the weather becomes suitable. However, if the actual 

future weather is within the safe limit, the opportunity for executing the 
marine operation will be wasted and the duration of the operation will 
be extended. By contrast, if the forecasted weather conditions are suit
able for operation while the actual weather conditions are unsuitable 
during the operation window, the execution of the operation may lead to 
accidents such as injuries of personnel and damage to equipment. 

However, in the prediction of weather conditions, several challenges 
are encountered, such as the random and unsteady characteristics of 
wind and waves. To predict environmental conditions accurately, 
various methods have been proposed by researchers, which can be 
classified into three main types: physical methods, statistical methods 
and machine learning methods. The physical methods consider meteo
rological parameters and physical laws in establishing physical models 
for weather condition forecasting. Among them, the use of empirical- 
based models in wave and wind forecasting is widespread. In 
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empirical-based models, the generation of waves is assumed to be 
described by a function of meteorological parameters such as the fetch 
length and wind speed (Kazeminezhad et al., 2005). The most popular of 
such models are SMB (Bretschneider, 1970), Wilson (1965), JONSWAP 
(Hasselmann et al., 1973) and Donelan (1980). Although the 
empirical-based models are fast and accurate, they can only be applied 
in limited cases (Bishop, 1983; Kamranzad et al., 2011). With the rapid 
developments in computer technology, during the last two decades, 
several types of numerical models have been employed to forecast wave 
and wind characteristics. To predict wind characteristics such as the 
wind speed, numerical weather prediction (NWP) has been widely 
adopted (Cassola and Burlando, 2012; Landberg, 1999; Watson et al., 
1994). The NWP model describes the physical processes of the atmo
sphere via conservation equations. By numerically solving the equations 
in terms of weather data such as the temperatures, pressure, surface 
roughness and obstacles, the wind speed can be predicted. Corre
spondingly, NWP requires abundant physical background knowledge 
and relatively long computation time (Foley et al., 2012; Landberg et al., 
2003; Wang et al., 2016). In addition, various problems are encoun
tered, such as lack of sufficient understanding for representing many 
physical processes in equation format and uncertainties in the surface 
characteristics, lateral boundary conditions and initial state (Al-Yahyai 
et al., 2010), which limit its practical application. For wave character
istic prediction, the most popular models are WAM (Group, 1988), Wave 
Watch III (Tolman, 1991) and SWAN (Booij et al., 1999). These models 
represent the sea state and predict the evolution of the wave spectrum 
based on the energy balance equation in space and time via numerical 
techniques. These techniques generally require expertise in their 
implementation (Browne et al., 2007; Mahjoobi et al., 2008). 

In addition, data-driven approaches have been developed in recent 
years. Instead of considering physical phenomena in the environment, 
the data-driven approaches are purely mathematical and can predict 
wave and wind conditions based on only historical data. These ap
proaches can be divided into two main categories: statistical methods 
and machine learning methods. The statistical methods express the 
future data as a linear or non-linear function of the historical data. The 
most popular and widely known statistical methods that are applied in 
wave and wind forecasting are the autoregressive model (AR) (Poggi 
et al., 2003; Schlink and Tetzlaff, 1998), the autoregressive moving 
average (ARMA) (Erdem and Shi, 2011; Lydia et al., 2016; Torres et al., 
2005), the autoregressive integrated moving average (ARIMA) (Kamal 
and Jafri, 1997; Kavasseri and Seetharaman, 2009), and Kalman filter 
methods (Zuluaga et al., 2015). However, these methods typically 
cannot deal with non-linear patterns (Qin et al., 2017). By contrast, 
machine learning models consider a network that represents the rela
tionship between inputs and outputs based on various algorithms and 
utilize this network to perform wave and wind forecasting. Models of 
this type can be applied to systems in which the interrelations are not 
clear. They can identify the relationship between the inputs and the 
outputs by learning from a large amount of data without relying on 
physical phenomena (such as diffraction, reflection, and wave breaking 
for computing wave reflection and diffraction or the wave spectrum and 
energy balance equation). Because of this advantage, representative 
machine learning techniques have been used for weather forecasting, 
such as support vector machine (SVM) (Berbi�c et al., 2017; Kamranzad 
et al., 2011; Mahjoobi and Mosabbeb, 2009), artificial neural networks 
(ANNs) (Agrawal and Deo, 2002; Chang et al., 2017; Deo et al., 2001; 
Jain and Deo, 2007; Mandal et al., 2005) and the fuzzy inference system 
(FIS) (Kazeminezhad et al., 2005; €Ozger and Şen, 2007). The 
adaptive-network-based fuzzy inference system (ANFIS), which is a 
hybrid intelligent system (a combination of ANN and FIS), has been 
employed recently. €Ozger and Şen (2007) and Akpınar et al. (2014) 
applied ANFIS to predict wave parameters and compared the 
auto-regressive moving average results with the results of the exogenous 
input (ARMAX), Wilson, Shore Protection Manual (SPM), JONSWAP, 
and Coastal Engineering Manual (CEM) methods. Kazeminezhad et al. 

(2007) compared wave predictions that were obtained via ANFIS with 
those of other methods, such as the CEM, ANN and FIS methods. In 
addition, the efficiencies of ANFIS, support vector machines (SVMs), 
Bayesian networks (BNs), and ANNs in wave height prediction were 
investigated by Malekmohamadi et al. (2011). In most of the above 
studies, historical data were used directly to train ANFIS model; thus, 
the non-stationarity of the data was ignored. Stefanakos and Schinas 
(2015) and Duru and Yoshida (2012) conducted a series of studies and 
proved that non-stationarity is inherent in time series of wind and wave 
parameters due to the seasonal effect. Therefore, prior to forecasting, the 
non-stationarity should be removed from the initial time series. Based on 
this strategy, Stefanakos (Stefanakos, 2016a, b; Stefanakos and Vanem, 
2018) developed an ANFIS model via non-stationary modelling for the 
prediction of wind and wave parameters at the North Atlantic and the 
Pacific Ocean, and more accurate forecasts were obtained. 

These studies consider only one-step-ahead prediction; approaches 
for generating multi-step-ahead forecasts have rarely been studied 
because compared to one-step-ahead forecasting, multi-step-ahead 
prediction is more difficult (Taieb and Bontempi, 2011) since growing 
uncertainties due to, e.g., lack of information and accumulation of 
prediction errors, must be considered. However, an advantage of 
multi-step-ahead wind and wave forecasting is that it can provide more 
information about the future, which is important for marine operations 
as weather variations in the future are a critical factor in 
decision-making during the execution of marine operations. Deo and 
Naidu (1998) used neural networks to predict ocean wave heights in real 
time. In that study, one-to two-step-ahead predictions were obtained 
based on the current observations and according to the simulations, the 
forecasting accuracy decreased as the forecasting lead time increased. 
Basu et al. (2005) developed a nonlinear technique that was based on 
the genetic algorithm (GA) for significant wave height prediction. In that 
work, daily time series of the surface wind speed and the significant 
wave height in the Arabian Sea and the Bay of Bengal were used to 
develop the technique and three-step-ahead prediction was conducted. 
Ahmed and Khalid (2017) presented a nonlinear autoregressive neural 
network (NARNN) for predicting wind speed up to six hours ahead. Niu 
et al. (2018) proposed a hybrid approach for 1-step-, 3-step- and 6-ste
p-ahead wind speed forecasting that utilized optimal feature selection 
and an ANN. All results demonstrated that the forecast error increased 
significantly with each step-ahead forecast. 

Although the above studies consider the application of multi-step- 
ahead prediction models, they focus on forecasting up to six steps in 
the future; few studies have considered prediction with more steps 
ahead. Such forecasting is much more important in practice, especially 
for marine operations because some operations must be viewed as 
continuous events. Hence, once the first operation has been performed, 
the operation cannot be interrupted and the duration of the entire pro
cess will be more than just a few hours. Under this circumstance, multi- 
step-ahead prediction with larger numbers of steps ahead can effectively 
capture the dynamic behavior of future wave and wind conditions 
during the execution process, which is crucial for improving the security 
of entire marine operations. Based on this background, the main 
objective of this work is the development of a multi-step-ahead model 
for weather condition forecasting with a long forecast horizon. 

Considering the data used (hourly time series of mean wind speed 
(Uw), significant wave height (Hs) and spectral peak period (Tp) from 
2001 to 2010 at the North Sea center) and the timetable for marine 
operations, this work intends to predict wind and wave conditions in one 
day ahead, namely, twenty-four steps ahead. To realize multi-step-ahead 
predictions, a hybrid method consisting decomposition technique and 
ANFIS is developed. Firstly, the training and testing data are pre- 
processed by the decomposition technique. Then, the ANFIS combined 
with a multi-step ahead model (M-1, M-N or M-1 slope) is built based on 
the training data. The M-1 model applies a one-step prediction model 
iteratively, where the forecasted data are utilized as the input for the 
prediction of the following time step. The M-1 slope model also adopts 
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forecasted data but includes slope information when selecting the 
training dataset. Instead of using forecasted data, the M-N model only 
applies the actual data and redevelops a new model for each time step. 
Furthermore, the forecast performance of the prediction model is eval
uated on the testing data by an uncertainty quantification analysis of the 
forecast errors at each lead time. Finally, a method of applying the 
confidence interval for the predicted conditions is proposed, to utilize 
the long-horizon forecasts. 

The remainder of this paper is organized as follows: Section 2 pre
sents a brief description of the study site and the considered 

environmental data. In Section 3, the details of the methodology are 
introduced. The decomposition technique, ANFIS, multi-step-ahead 
forecasting models, uncertainty quantification analysis and the whole 
process are described in this section. Then, the short-term prediction of 
wind and wave conditions at the center of the North Sea is conducted in 
Section 4. Section 4.1 investigates the weather forecasting performance 
of the decomposition-ANFIS method in terms of the one-step-ahead 
prediction results. Section 4.2 selects the optimal multi-step-ahead 
models and performs a comparative analysis with the proposed 
models. Finally, the main conclusions of this study are summarized in 

Fig. 1. North Sea area and the site locations.  

Fig. 2. Two-month time series of Uw, Hs and Tp for winter (2001.01.01–2001.02.28).  
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Section 5. 

2. Offshore site and environmental data 

In the application of the weather conditions to marine operations, 
the environmental variables that typically must be forecasted are the 
mean wind speed Uw, the significant wave height Hs and the peak 
spectral wave period Tp. In this study, the North Sea is considered and 18 
sites in this area are illustrated in Fig. 1. The dataset in each site is 
comprised of hindcast data that are based on a high-resolution regional 
atmospheric model (SKIRON) and an ocean wave model (WAM). To 
generate the hindcast data, the mean wind speed at a height of 10 m 
above the mean sea level is produced by the atmospheric model. Then, it 
will be used as the input for the wave model to obtain wave properties. 
Based on these properties, three-hourly time series of the mean wind 
speed Uw and hourly time series of the significant wave height Hs and the 
peak spectral wave period Tp are obtained. The covered period is from 
January 2001 to December 2010. For additional details, see Li et al. 
(2013). Although these data are hindcast data, we consider them as 
actual data that will be used to generate the ANFIS model for prediction 
and for testing. 

The North Sea Center (site 15, Fig. 1) is selected as the study site in 
this paper. Many marine operations such as the monopile installation 
(Acero et al., 2016) and blade installation (Jiang et al., 2018) of an 
offshore wind turbine have been designed and analyzed in this region. 
This site is a shallow shelf sea with a mean water depth of 29 m and a 
distance to shore of 300 km. During the specified period, the 50-year 
return period wind speed and the significant wave height are 27.2 m/s 
and 8.66 m, respectively, and the mean value of the peak spectral wave 
period is 6.93 s. 

As an overview of the environment at this site, time series Uw, Hs and 
Tp of two months of winter from 2001.01.01 to 2001.02.28 (1416 hourly 
points) and those of summer from 2001.07.01 to 2001.08.31 (1488 
hourly points) are presented in Figs. 2 and 3, respectively. High vari
ability is observed in all three series in summer and winter. Therefore, it 
is necessary to predict environmental conditions prior to executing 
marine operations. However, in modelling multi-step-ahead prediction, 
significant challenges are encountered due to the randomness and non- 
stationarity of the time series. In such cases, to obtain predictions via 
forecasting methods, sufficient data must be used to train the model. 
Accordingly, in the ten-year hourly time series of Uw, Hs and Tp, the data 
for the first nine years (78888 data points) are selected as the training 

data and the data for the tenth year (8760 data points) are selected as the 
testing data, which is sufficiently long for investigating the behavior of 
forecast uncertainty in models with a possibility of covering most of the 
typical sea states. 

3. Methodology 

3.1. Decomposition technique 

A long-term time series of wave or wind data can be considered as a 
nonlinear, non-stationary and seasonal time series. For data of this type, 
the monthly mean value and the standard deviation of the series can be 
used to extract the non-stationarity (Athanassoulis and Stefanakos, 
1995). The object is extended to a multi-variate time series and the 
decomposition model (Stefanakos and Schinas, 2014) can be expressed 
as follows Eq. (1): 

YðtÞ ¼ MðtÞ þ
P
ðtÞ WðtÞ

ðN � 1Þ ðN � 1Þ ðN � NÞ ðN � 1Þ
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where the number of time series is N. 
In Eq. (2), Y(t) represents the initial time series and it can be 

expressed as 
8
<

:
Ynðj; m; τkÞ;

j ¼ 1;⋯J
m ¼ 1;⋯; 12
k ¼ 1;⋯;Km

9
=

;
; n ¼ 1;⋯N (3)  

where j is the year index, m is the month index and τk is the kth obser
vation in the mth month. The number of observations in the mth month 

Fig. 3. Two-month time series of Uw, Hs and Tp for summer (2001.07.01–2001.08.31).  
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is Km. 
The seasonal patterns are characterized by M (t) and Σ(t), which are 

the monthly mean value vector and the covariance matrix with period of 
one year, respectively. These two terms can be estimated by averaging 
the time series of monthly mean values M3,n(j,m) and the covariance 
matrix S3,nl(j,m) over J years (Stefanakos et al., 2006): 

~M3;nðmÞ¼
1
J

XJ

j¼1
M3;nðj;mÞ ¼

1
J

XJ

j¼1

1
Km

XKm

k¼1
Ynðj; m; τkÞ (4)    

with m ¼ 1, 2, …, 12. The subscript ‘3’ denotes that these two terms are 
statistics with respect to the third index in Yn(j,m,τk). 

Apart from the seasonal patterns, the residue part, namely, W(t), is 
the corresponding stationary time series of Y(t). 

In this study, there are three initial joint long-term time series of 
wind and wave parameters (the mean wind speed Uw, the significant 
wave height Hs and the peak spectral wave period Tp), namely, N equals 
3 in Eq. (3). Via Eqs. (4)-(5), the deterministic seasonal patterns, namely, 
[M(t), Σ(t)], can be easily estimated from the data. After that, the cor
responding stationary time series, namely, W(t), can be calculated via 

Fig. 4. Decomposed time series of Uw, Hs and Tp for winter (2001.01.01–2001.02.28).  

Fig. 5. Decomposed time series of Uw, Hs and Tp for summer (2001.07.01–2001.08.31).  
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Eq. (2). To demonstrate this clearly, the decomposed time series that 
correspond to the series in Figs. 2 and 3 are plotted in Figs. 4 and 5. The 
time series after decomposition are zero-mean stochastic processes and 
the seasonal effects in the data are significantly reduced. 

3.2. ANFIS 

The adaptive-network-based fuzzy inference system (ANFIS) (Jang 
et al., 1996) is a hybrid intelligent system that is a combination of a 
fuzzy inference system (FIS) and an adaptive neural network (ANN). 
First, the FIS is presented. A fuzzy inference system (FIS) is a nonlinear 
method for mapping inputs to output that is based on fuzzy logic theory. 
In fuzzy logic theory, the focus is on understanding the concept of a 
fuzzy set. In a class set, an element is either a member of the set or not 
and the corresponding result is 1 or 0. By contrast, a fuzzy set is a set that 
lacks a clearly defined boundary. A fuzzy set is an extension of a classical 
set whose elements can belong to more than one set and the membership 
degree, which is between 0 and 1, is used to quantify the grade of 
membership of the element to each set. The degree of membership of a 
set is defined by a membership function (MF), which provides a measure 

of the similarity of the element to a fuzzy set. For example, if X is a 
universe of discourse (such as Hs) and x is an element of X, then a fuzzy 
set O (such as ‘High’) on X can be described as Eq. (6): 

O ¼ fðx; μOðxÞÞ; x2Xg (6)  

where μO(x) is the membership function that is associated with x in 
fuzzy set O and expresses the degree to which a value of Hs belongs to set 
‘High’. The most common types of MFs are triangular, Gaussian, and 
sigmoid. 

In a FIS, the mapping of input variables to an output is characterized 
by a list of fuzzy statements, which are called IF-THEN rules. IF-THEN 
rules are expressions of the form ‘If x is A, then y is B’ and are used to 
infer a fuzzy output based on fuzzy inputs, where A and B are linguistic 
labels of fuzzy sets characterized by MFs. The structure of a FIS is 
illustrated in Fig. 6 that consists of four functional blocks. 

There are two important types of fuzzy inference methods: the 
Mamdani (1974) and Takagi-Sugeno (Takagi and Sugeno, 1993) fuzzy 
inference methods. They differ in terms of their defuzzification schemes 
and the latter is used in this study. In the TS method, the outcome of each 
IF-THEN fuzzy rule is a scalar value rather than a fuzzy set for the output 

Fig. 6. Fuzzy inference system architecture.  

1. Fuzzifier. It performs the fuzzification of the input variables into fuzzy inputs using the MFs that are stored in the fuzzy knowledge base.  
2. Fuzzy knowledge base. It is composed of the data base and the rule base, which contain the MFs of the fuzzy sets and the IF-THEN rules, respectively.  
3. Inference engine. It maps the set of fuzzy inputs to fuzzy outputs according to the IF-THEN rules.  
4. Defuzzifier. It defuzzifies the fuzzy outputs into a crisp output. 

Fig. 7. ANFIS architecture.  
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variable of the form Eq. (7): 

IF x1 is Sð1Þr ; x2 is Sð2Þr ; ⋯; xn is SðnÞr  

THEN y¼ prx1 þ qrx2 þ⋯þ trxn (7)  

where xi and y are the inputs and output, respectively. Sr
(i) is a linguistic 

value (such as ‘low’ or ‘high’ for Hs), which is represented by a fuzzy set, 
and pr, qr, and tr are parameters that must be determined. The IF part is 
called the premise, which contains the MFs’ parameters that describe the 
shapes of the MFs, and the THEN part is called the consequent, which 
contains parameters that describe the linear relationship of the inputs. 

When using FIS, the main challenge is the selection of the parameters 
in the fuzzy knowledge base. Traditionally, the parameters are deter
mined based on the experience of experts or past available data of the 
system. For selecting the parameters, an adaptive neural network is 
combined with the FIS to optimize the premise and consequent pa
rameters based on the available datasets using a hybrid learning algo
rithm. This strategy was proposed by Jang (1993) and the method in 
which an adaptive neural network and FIS are combined is called the 
adaptive-network-based fuzzy inference system (ANFIS). In practice, the 
structure of ANFIS is similar to that of a multi-layer neural network. 
ANFIS has an input layer, an output layer and three hidden layers that 
are related to MFs and IF-THEN rules. To illustrate the procedure, the 
structure of a simple ANFIS that consists of two inputs, namely, x1 and 
x2, and one output, namely, y, is presented in Fig. 7. 

In this ANFIS structure, the first layer is the input layer, which 
contains crisp inputs x1 and x2. The second layer is the fuzzifying layer, 
in which the inputs xi are fuzzified into the membership values μAj(xi) 
based on the MFs of linguistic labels Aj, as expressed in Eq. (8). This layer 
can be considered an adaptive layer since the outputs depend on the 
parameters in the MFs. In this example, the MFs, which are denoted as 
μAj, are Gaussian-type functions. 

Oi;j ¼ μAj
ðxiÞ; for i; j ¼ 1; 2 (8)  

If the number of crisp inputs exceeds one, the weight of each rule must 
be determined by using fuzzy operators. The third layer contains two 
operators and is divided into two layers, which are called the implication 
and normalizing layers. In these two layers, the firing strength wi,j for 
each rule and the normalized firing strength wi;j are calculated via Eqs. 
(9)-(10). 

wi;j ¼ μAi
ðx1Þ � μAj

ðx2Þ; for i; j ¼ 1; 2 (9)  

wi;j ¼
wi;j
P

wi;j
; for i; j ¼ 1; 2 (10)  

Then, the outcome Oi,j of each rule can be calculated in the defuzzifying 
layer using the corresponding IF-THEN rule and the obtained rule’s 
weight, as expressed in Eq. (11). Similarly, this layer is also an adaptive 
layer because parameters pi, qi and ri in the IF-THEN rules should be 
determined. 

Oi;j ¼wi;j⋅yi;j ¼ wi;j⋅ðpkx1 þ qkx2 þ rkÞ; for i; j ¼ 1; 2; k ¼ 1;…; i�j (11)  

Based on the sum of all outcomes Oi,j (the weighted average of all IF- 
THEN rules’ results), the overall output y can be estimated via Eq. (12). 

y ¼
X

Oi;j (12)  

In this process, an adaptive neural network is applied to determine the 
parameters in the two adaptive layers, which is represented by the red 
cycle in Fig. 7. According to the fixed values of the premise parameters 
in the IF part, the information is propagated forward to identify the 
consequent parameters via the least-square method. In addition, by 
fixing the consequent parameters in the THEN part, the error is propa
gated back to the fuzzifying layer and the premise parameters are 

modified. Then, the optimal values can be tracked. By performing this 
procedure based on the training data, the optimal ANFIS can be iden
tified. Overall, the only information that must be specified by the user is 
the number and the types of MFs for each input variable. 

In this study, the ANFIS is utilized for both one- and multi-step-ahead 
predictions. For one-step-ahead prediction, three simplest ANFISs for 
the mean wind speed Uw, the significant wave height Hs and the spectral 
peak period Tp are developed, which are expressed in Eqs. (13)-(15), 
respectively. The basic idea is to use the training dataset to derive 
functional relationships between the parameters at the current time and 
at the next time step so that one-step-ahead prediction can be made. 
However, multi-step-ahead prediction requires more complex ANFIS 
models, which will be presented and discussed in Section 3.3. (a) Mean 
wind speed Uw: 

Uwðt þ 1Þ¼ f1ðUwðtÞÞ (13)    

(b) Significant wave height Hs: 

Hsðt þ 1Þ¼ f2ðUwðtÞ;HsðtÞÞ (14)    

(c) Peak spectral wave period Tp: 

Tpðt þ 1Þ¼ f3ðUwðtÞ;HsðtÞ;TpðtÞ
�

(15)  

where function f in each system represents the prediction model. The 
number of rules depends on the fuzzy sets for each input variable. 

3.3. Multi-step-ahead forecasting models 

For one-step-ahead prediction, only data at the current time are used 
as input to predict the next-step data, as expressed in Eqs. (13)-(15). 
However, due to the complexity of the prediction, applying the same 
model to multi-step-ahead forecasting will result in a significant 
reduction in accuracy. Therefore, several alternatives have been pro
posed for building multi-step-ahead prediction models. In Sections 
3.3.1-3.3.3, three models for realizing multi-step-ahead forecasting are 
discussed in detail. 

Every forecasting model requires more than one input. To maintain 
the consistency of the variables, data at any time t are represented by X 
(t). X(t þ N) denotes the N-step-ahead data, which are unknown output, 
and (X(t), X(t-1), …, X(t-Mþ1)) represents the input set, which contains 
the previous M data. In addition, f denotes the prediction model between 
the inputs and the output. 

3.3.1. M-1 model 
The M-1 model requires only the training of a one-step-ahead pre

diction model f based on the training data, which is expressed as Eq. 
(16): 

Xðtþ 1Þ¼ f ðXðtÞ; Xðt � 1Þ;Xðt � 2Þ;…; Xðt � Mþ 1ÞÞ (16)  

To forecast N steps ahead, the above model is applied iteratively. 
However, in the input set, the predicted value of the previous step is 
used instead of the actual data. Considering prediction of significant 
wave height Hs as an example, after establishing the one-step-ahead 
prediction model, one-step-ahead value Hs(tþ1) is predicted Eq. (17): 

bHsðtþ 1Þ¼ f ðHsðtÞ; Hsðt � 1Þ; Hsðt � 2Þ; …; Hsðt � Mþ 1ÞÞ (17)  

Then, the forecasted value, namely, bHsðtþ 1Þ; is considered as part of 
the input set for predicting the next-step value, namely, bHsðtþ 2Þ, based 
on the same one-step-ahead model f Eq. (18): 

M. Wu et al.                                                                                                                                                                                                                                     



Ocean Engineering 188 (2019) 106300

8

bHsðtþ 2Þ¼ f ðbHsðtþ 1Þ;HsðtÞ; Hsðt � 1Þ; Hsðt � 2Þ; …; Hsðt � Mþ 2ÞÞ
(18)  

Then, for the N-step-ahead prediction, this procedure is repeated and 
bHsðtþ 3Þ to bHsðtþ NÞ are predicted iteratively. The iteration process 
may lead to accumulated errors since after one-step prediction, the input 
set is composed of forecasted values rather than actual data. Especially 
when N exceeds M, namely, after M-step-ahead prediction, the input set 
does not contain any actual data, but only forecasted values. In such 
cases, the forecasts may suffer from low performance. However, the 
main advantage of the M-1 model is that only one training process is 
required for obtaining the prediction model and this model does not 
change between steps. Therefore, the forecasting time is significantly 
reduced and the computational efficiency is increased. 

To illustrate the application of the M-1 model in this study, the 

architectures of both the training and testing processes are plotted in 
Fig. 8. In Fig. 8, it is assumed that the training and testing sets contain L 
and K points, respectively. To determine the optimal function, which is 
expressed in Eq. (16), L-M samples are used to train the relationship 
between the inputs and the output. The inputs and output are repre
sented by blue and red boxes, respectively, in Fig. 8. Then, in the testing 
data set, for a specified input vector, the following N-step-ahead fore
casts can be predicted directly via iteration under the established pre
diction model. The boxes that are highlighted in yellow represent the 
predicted data and as the number of steps increases, the number of 
predictions that are used as inputs to obtain the next-step forecast value 
also increases. A complete simulation of obtaining N-step-ahead pre
dictions is considered one case. To evaluate the M-1 model, the pre
diction process is repeated over the testing period to obtain many 
forecast cases ((K-M)/N cases in this example). Then, the forecast un
certainty of the model at step one to step N can be evaluated via 

Fig. 8. Architecture of the M-1 multi-step-ahead prediction method.  

Fig. 9. Architecture of the M-N multi-step-ahead prediction method.  
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uncertainty quantification analysis, which is described in Section 3.4. 

3.3.2. M-N model 
In the M-N model, a separate training process and the corresponding 

prediction model fN are required at each step N. The prediction model 
can be represented as Eq. (19) 

XðtþNÞ¼ fNðXðtÞ; Xðt � 1Þ;Xðt � 2Þ;…; Xðt � Mþ 1ÞÞ (19)  

where fN denotes the prediction model at step N. 
In the M-N model, the input set always consists of the last M data in 

the time series that are known. Therefore, in contrast to the M-1 model, 
the M-N model does not use any predicted value and, thus, prevents 
accumulated errors. However, this model is time-consuming since N 
models must be trained independently when forecasting N steps ahead. 
Furthermore, the correlation between inputs and output weakens as N 
increases, thereby increasing the difficulty of capturing their 
relationship. 

The architecture of the M-N model that is applied in this study is 
illustrated in Fig. 9. In the training process, N-step-ahead prediction 
models are established separately for each N. To display them clearly, 
Fig. 9 shows them according to the color of the output. After establishing 
N-step-ahead prediction models, for a specified input vector, N-step- 
ahead values are predicted according to the corresponding model. For 
example, in the testing time series, the first M data are selected as inputs 
for predicting the data for the subsequent N steps. First, the first-step- 
ahead data, namely, the Mþ1 data, are predicted based on the one- 
step-ahead model, whose outputs are both displayed in red. Then, the 
second-step-ahead data, namely, the Mþ2 data (green), are predicted 
according to the same input vector by the green model (the second-step- 
ahead prediction model). This procedure is repeated until at the last step 
N, the M þ N data (purple) are predicted according to the purple model, 
which is the N-step-ahead prediction model. This is one complete case of 
M-N multi-step prediction. Via repeated prediction in the testing period, 
the uncertainty for each step can be quantified, as in the M-1 model. 

3.3.3. M-1 slope model 
Since the incoming weather conditions are closely related to the 

trend of the last several observations, the slope information between the 
last few data can be induced for prediction. The model in this study is 
called ‘M-1 slope model’. The M-1 slope model is similar to the M-1 
model, which is also based on a recursive process. However, there are 
several differences between these two models in the selection of training 
data. In the M-1 model, all data during the training period are included 
in the training dataset. In contrast, in the M-1 slope model, only data 
that have similar properties to the current data can be selected as 
training data. This means that for weather forecasting, to predict the 
future weather variations, it is necessary to find historical data that are 
similar to the current weather conditions and utilize them to predict the 
future weather. The selection criteria are the values and slopes of the 
current and previous data. The prediction procedure is as follows: 

3.3.3.1. Selection of the training dataset. Assume the current time is t 

and denote the data by X(t). Find historical data X(t) during the training 
period that satisfy the following conditions:  

a. |X(t)-X(t) | < an allowable error;  
b. The symbols of the slopes at X(t) and X(t) are the same;  
c. | slope at X(t) – slope at X(t) | < an allowable error;  
d. The symbols of the slopes at X (t-1) and X(t-1) are the same;  
e. | slope at X (t-1) – slope at X(t-1) | < an allowable error 

Then, data X(t) can be selected. The corresponding input set (X(t- 
Mþ1), …, X(t-1), X(t)) and output X(tþ1) can be selected as one training 
sample. After all the data that satisfy the above requirements have been 
selected, the prediction model can be established according to the cor
responding training samples. In this method, allowable errors are 
determined based on the bivariate histogram of the parameter and its 
slope. 

3.3.3.2. Prediction. After establishing the prediction model, (X(t-Mþ1), 
…, X(t-1), X(t)) is supplied to this model as input and one-step-ahead 
prediction bXðtþ 1Þ can be obtained. 

3.3.3.3. Iteration. Next, the prediction bXðtþ 1Þ is utilized as the input 
and the input vector becomes (X(t-Mþ2), …, X(t), bXðtþ 1Þ). Then, the 
training dataset is selected according to bXðtþ 1Þ and X(t). The selection 
process is the same as in 1). The prediction model based on the new 
training data is applied to obtain the two-step-ahead prediction bXðtþ 2Þ. 
When no training data are available, the prediction process stops. 
Otherwise, the process is iterated until an N-step-ahead prediction, 
namely, bXðtþ NÞ, is obtained. 

If all values from X(tþ1) to X(t þ N) must be predicted, N models 
must be constructed, similar to the M-N model. However, this model 
only applies historical data that have the same values and slopes as the 
current data to establish the prediction model, which could improve the 
prediction efficiency. In addition, compared with the M-1 model, the M- 
1 slope model may accumulate less error since the prediction model will 
be updated at each step ahead. 

To illustrate the architecture of the M-1 slope model, the selection 
process of the training data in the M-1 slope model is sketched in Fig. 10. 
According to Fig. 10, a long-term time series of data is divided into 
training data and testing data. Instead of building a prediction model 
based on all training data, the first step is to select a suitable training 
data set in terms of the values and slopes of the testing data at points M 
and M-1. Here, the input vector consists of the first M data during testing 
period. Limited by the figure display, only the information of the point M 
is plotted in the figure. By taking advantage of this value and slope by 
adding an allowable error, a series of points within the yellow range can 
be identified in the training period (shown as red circles). The corre
sponding input-output pairs of these points can be selected as training 
data for predicting the next-step data. Then, using the value and slope of 
the predicted data X(Mþ1), another training data set can be identified 
for establishing a new prediction model and the second-step-ahead value 

Fig. 10. Architecture of the M-1 slope multi-step-ahead prediction method.  
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X(Mþ2) can be forecasted. Via this recursive process, the predicted time 
series (shown as the blue dashed line) can be obtained. To illustrate the 
process more clearly, a magnified image of the difference between the 
forecasted and the actual time series is plotted and the eight-step-ahead 
prediction procedure is also shown (the red circle within the purple 
range). After obtaining the forecasted time series, the same uncertainty 
quantification analysis can be conducted as described above. 

In contrast to the previous two models, the M-1 slope model con
siders the slope of the data. Hence, the historical data cannot be 
considered when the slope is opposite that of the current data, even if the 
values are nearly the same. Via this approach, many irrelevant sea 
conditions can be removed, thereby significantly reducing the compu
tation time compared to the M-N model. Furthermore, this method is 
essentially a recursive method that can preserve the complex de
pendencies among the forecasted data. 

3.4. Uncertainty quantification 

Traditionally, various error statistics have been used to measure the 
forecast accuracy, such as the mean absolute error (MAE), the root- 
mean-squared error (RMSE), and the mean absolute percentage error 
(MAPE). Most of these statistics are non-negative and the direction of the 
errors is not considered. However, in weather forecasting, the directions 
of forecast errors in various sea states are of great importance. Ignoring 
the directions of the errors would increase the risk of decision-making 
during the execution of marine operations. In addition, to account for 
the uncertainty in the forecasts, DNV (JIP, 2007) introduced a safety 
factor into the allowable limits of sea states that are used for marine 
operations. However, this alpha-factor approach has several limitations. 
For instance, the alpha-factor for significant wave height, depending on 
the prediction horizon is explicitly given in the DNV Offshore Standard, 
while this factor for other weather parameters (such as spectral peak 
period) has not been given yet. Meanwhile, the alpha-factor which is 
tabulated in the DNV Offshore Standard is only developed for the North 
and Norwegian Seas and is also dependent on the weather forecast 

techniques. In this section, an uncertainty quantification method is 
presented for improving the knowledge and understanding of a fore
casting model for the short-term prediction of wind and wave 
conditions. 

The accuracy of a forecasting model is evaluated by comparing the 
forecasts to corresponding actual values. To quantify environmental 
variables, the error must be normalized. For this purpose, a forecast 
error factor, which is denoted as ϵM(t), is introduced, which is utilized as 
an estimate of the forecast accuracy. This error factor is defined as the 
difference between the forecasted and actual values at the same time 
instant, normalized by the corresponding actual value: 

εMðtÞ ¼
f ðtÞ � aðtÞ

aðtÞ
(20)  

where f(t) and a(t) are the forecasted and actual values, respectively, at 
time t. 

According to the above equation, a perfect weather forecast would 
yield a forecast error factor of 0. To assess the performance of a fore
casting model under various sea states, all values of ϵM during the testing 
period must be calculated. Based on the series of ϵM values, the forecast 
uncertainty is quantified by the statistics (mean and standard deviation) 
and their distributions. For example, the methodology for estimating the 
uncertainty in a one-step-ahead prediction model is illustrated in 
Fig. 11. For multi-step-ahead forecasts, uncertainty quantification 
analysis is performed for each forecast time step. In addition, the 
quantified uncertainties can be utilized to provide a prediction range 
that is based on the multi-step-ahead predictions; the details are pro
vided in Section 5. 

3.5. Summary 

This section describes the main procedures of the proposed method 
for predicting short-term weather conditions and assessing the fore
casting performance. The whole prediction process is illustrated in 
Fig. 12 and the main steps are listed below. 

Fig. 11. Flowchart of uncertainty quantification analysis.  

1. One-step-ahead prediction is performed by applying decomposition-ANIFS in the testing period. To obtain a continuous time series of predicted values, the selected 
input and corresponding output in the prediction model are illustrated in Fig. 11. In Fig. 11, square and circle marks represent the actual and forecasted data, 
respectively. For instance, actual data a(t1) is used to obtain predicted data f(t2); then, actual data a(t2) is used to obtain predicted data f(t3), and so on.  

2. After prediction, forecast error factors are calculated via Eq. (20) using actual and forecasted data at the same time instant. For a testing time series, ϵM(t) is a 
random variable.  

3. By statistically analyzing the realization of ϵM(t), its mean value and standard deviation can be calculated. In addition, a proper probability distribution of the 
forecast error factor can be fitted. 
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4. Results and discussion 

Referring to the execution time of the typical marine operation, the 
prediction period is expected to be more than one day; hence, N is 
selected as 24 in this study. Adopting the proposed prediction models, 
the ‘24 steps’ case is conducted to predict Uw, Hs and Tp at the North Sea 
Center. Based on the results, a comparative analysis of the 
decomposition-ANFIS method with three multi-step-ahead forecasting 
models is performed. In the following parts, to demonstrate the fore
casting performance of the decomposition-ANFIS method, the one-step- 

ahead prediction results are presented in Section 4.1 and the results of 
multi-step-ahead prediction are summarized in Section 4.2. 

4.1. One-step-ahead prediction results 

In this part, one-step-ahead models for predicting wave and wind 
conditions are developed. Three simple FIS models are represented by 
Eqs. (13)-(15), and the structure of the models are summarized in 
Table 1. 

In each model, all input variables are partitioned into two fuzzy sets: 

Fig. 12. Flowchart of the proposed method. 

Step 1- Decomposition procedure: The objective of this step is to generate stationary time series. The long-term time series of environmental variables at a specified 
site is divided into two parts: The first part (most of the data) is called historical data (in this case study, it consists of the data of years 2001–2009) and can be 
decomposed into a stationary time series (referred to as stationary time series A here) and seasonal patterns (the monthly mean value vector and covariance matrix) 
via the decomposition technique that is described in Section 3.1. Meanwhile, the second part (a smaller portion of the data) is called study data (the data of year 
2010 in this case study). This initial time series can be decomposed by using seasonal patterns that have been estimated from the first group to obtain the cor
responding stationary time series (referred to as stationary time series B here). In this step, stationary times series for the first nine years and the tenth year can be 
determined for establishing and testing the prediction models in the next step. 
Step 2- ANFIS prediction: In ANFIS prediction, the structure of the model depends on the number of prediction steps. If performing one-step-ahead prediction, the 
structure of the model can be established as in Eq. (13)-(15). For multi-step-ahead prediction, the model structure can correspond to the M-1, M-N or M-1 slope 
model. After determining the structure of the ANFIS, stationary time series A is selected as training data, which are utilized for the estimation of the optimal 
parameters of the model. This process is described in Section 3.2 in detail. Then, stationary time series B is referred to as the testing data, which are employed to 
evaluate the performance of the forecasting model. After prediction, the forecasted data S that correspond to stationary time series B can be obtained. 
Step 3- Performance assessment: To assess the forecast performance of the prediction model, it is necessary to reconstruct the forecasted data I based on the forecasted 
data S along with seasonal patterns that were estimated from the first nine years. After that, the forecast error factor series can be calculated via Eq. (20) and the 
forecast uncertainty in the prediction model can be quantified using the statistics and distribution of this series. 
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‘Low’ and ‘High’. Gaussian-type MFs are selected for inputs and linear- 
type for the output. As a result, the total numbers of IF-THEN rules in the 
Uw, Hs and Tp prediction models are 2, 4 and 8, respectively. For 
instance, one of the rules of Tp prediction can be expressed as follows:  

IF Uw(t) is low, Hs(t) is high, and Tp(t) is high                                             

THEN Tp(t þ 1) ¼ p1Uw(t)þq1Hs(t)þr1Tp(t)                                               

where p1, q1 and r1 are the unknown parameters that must be deter
mined from the training data. 

After determining the structure of the FIS model, the training data 
are utilized to train this model and to optimize the parameters of FIS 
using neural networks. As an example, the MFs of Hs that are used in Tp 
prediction before and after training are plotted in Fig. 13. There are 
considerable changes in the shapes of the membership functions after 
training. It should be noted that the initial shape of MFs only depends on 
the type of MFs and the range of training data, which would enhance the 
reproducibility of this method. 

After establishing the optimal ANFIS, testing data are used to eval
uate the accuracy of the prediction method. The forecasted Uw, Hs and Tp 
and the corresponding actual data are plotted in Fig. 14(a), (b) and (c), 
respectively. In each subfigure, the blue lines are obtained using the 
actual data at the current time to predict the one-step-ahead environ
mental conditions. All the predicted data are presented in the figures and 
compared with the actual data. 

According to Fig. 14, the forecasted data are close to the actual data 
in both wind and wave conditions throughout the entire testing period, 
which can also be observed in the distributions of the forecast error 
factors, as shown in Fig. 15. All three distributions of the forecast error 
factors of Uw, Hs and Tp predictions are concentrated around zero. In 
addition, the range of errors that are within one standard deviation of 
the mean (e.g., the range for Uw prediction, which is shown as red dash 
lines) is narrow; hence, the one-step-ahead prediction model has lower 
forecast uncertainty under various sea states. Therefore, the prediction 

method that combines the decomposition technique and ANFIS has high 
application potential for predicting environmental conditions. The 
detailed statistical results of the forecast error factor are included in the 
multi-step-ahead prediction results in Section 4.2. 

4.2. Multi-step-ahead prediction results 

4.2.1. Selection of the optimal model 
In the multi-step-ahead forecasting models, the size of input set ‘M’ 

must be specified in advance. In practice, a suitable value for M is not 
easy to determine. Typically, if a larger amount of input data is avail
able, more historical information can be utilized and, thus, predictions 
are expected to be more accurate. However, the computation time of a 
prediction model would increase dramatically with the number of in
puts, especially if optimization techniques are required during the 
training phase. In this study, M is determined by comparing the forecast 
performances of multi-step-ahead prediction models under various 
values of M, starting from M ¼ 1. The optimal value of M is the value that 
corresponds to the minimum statistics of forecast error factors for the 
predictions. In the M-1 model, the optimal value of M is selected by 
comparing the forecast uncertainties of all 24 steps because the 
computational burden is low. By contrast, in the M-N model, only the 
forecast uncertainties at a few steps are considered as criteria because 
this model demands a large computational effort compared to the M-1 
model. In addition, the M-N model only uses actual data as inputs; 
hence, it is possible to apply many variables that are related to the 
predicted parameter for prediction. For example, historical wind con
ditions (such as wind speed and wind direction) can be applied to predict 
the future significant wave height. In addition, the structure of the M-N 
model may be more complicated and the corresponding computation 
time is longer. Therefore, the optimal M for the M-N model is selected by 
only comparing the forecast uncertainties at several specified steps. 

4.2.1.1. M-1 model. In the following Uw, Hs and Tp predictions, M is 
varied from 1 to 5 to modify the structure of the prediction model. After 
establishing the model with a specified M, 24-step-ahead values are 
predicted iteratively. By repeatedly making 24-step-ahead predictions 
within the testing period, the statistical results of forecast error factors at 
each step N for various values of M are calculated and plotted in Fig. 16, 
where (a), (b) and (c) are the results of Uw, Hs and Tp, respectively. In 
each subfigure, the mean values and standard deviations of forecast 
error factors are represented by solid lines and dashed lines as functions 
of the number of steps N, individually. As illustrated in Fig. 16(a), the 
blue line, which corresponds to M ¼ 2, is the optimal result since the 
mean values and the standard deviations for all steps are less than 0.2 
and 0.8, respectively. In Fig. 16(b) and (c), M ¼ 2 is a more suitable 
choice for Hs and Tp predictions in terms of both the forecast 

Table 1 
Structures of the one-step-ahead FIS models.  

No. of 
model 

Output Input 

Variable MF 
type 

Variable Fuzzy set MF 
number 

MF type 

1 Uw(t þ
1) 

linear Uw (t) ‘low’,‘high’ 2 Gaussian 

2 Hs(t þ
1) 

linear Uw(t) ‘low’,‘high’ 2 Gaussian 
linear Hs(t) ‘low’,‘high’ 2 Gaussian 

3 Tp(t þ
1) 

linear Uw(t) ‘low’,‘high’ 2 Gaussian 
linear Hs(t) ‘low’,‘high’ 2 Gaussian 
linear Tp(t) ‘low’,‘high’ 2 Gaussian  

Fig. 13. Shapes of membership functions.  
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Fig. 14. One-step-ahead prediction results.  

Fig. 15. Distributions of the forecast error factor (one-step-ahead prediction model).  
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performance and the computation time. 
In summary, the optimal M-1 models for multi-step-ahead Uw, Hs and 

Tp predictions (with M ¼ 2) are listed below Eqs. (22) and (23): 

Uwðtþ 1Þ¼ f ðUwðtÞ;Uwðt � 3ÞÞ (21)  

Hsðtþ 1Þ ¼ f ðHsðtÞ;Hsðt � 1ÞÞ (22)  

Tpðtþ 1Þ¼ f
�
TpðtÞ;Tpðt � 1Þ

�
(23) 

In Eq. (21), the input terms are Uw(t) and Uw(t-3) instead of Uw(t) and 

Fig. 16. Comparison of forecast uncertainties for various values of M (M-1 model).  

Fig. 17. Forecast uncertainties in Uw prediction using various models.  
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Uw(t-1) because the wind speed data are three-hourly data. 

4.2.1.2. M-N model. To evaluate the influence of the value of M on the 
M-N model, prediction of the wind speed, the significant wave height 
and the peak spectral wave period will be discussed. In wind speed 
prediction, the historical data of wind direction (Dir) and wind speed 
(Uw) can be considered as input variables. The wind direction must be 
transformed to range between 0 and 1 (Sylaios et al., 2009), which is 
expressed as Eq. (24). Uw M-N models for various combinations of M and 
variables are listed in Table A.1 in the appendix. In the Tp and Hs M-N 
prediction models, as waves are influenced by the strength of the wind, 
models that consider wind variables such as the wind direction (Dir) and 
the wind speed (Uw) are also induced in an attempt to capture this de
pendency. The possible models of Hs and Tp are summarized in the ap
pendix and described in Tables A.2 and A.3. Since the calculation time 
sharply increases with the size of the input set, only models with 6 or 
fewer items are considered. 

Dir ¼

8
>><

>>:

1 �
� θ

180

�
; if 0� � θ � 180�

ðθ � 180Þ
180

; if 180� � θ � 360�
(24)  

After determining the structure of the prediction models, several (1st, 
5th, 15th and 24th) step-ahead predictions are made for each variable. 
After prediction, the statistics of forecast error factors for the 

corresponding models are summarized and plotted in Figs. 17–19. 
As displayed in Fig. 17, there is not much difference in the prediction 

accuracy among models. However, the models (models 4–8) that include 
both Uw and Dir yield more accurate prediction results compared with 
the models (models 1–3) that are only based on Uw. A similar phe
nomenon can also be observed in Figs. 18 and 19. By considering both 
the computation time and the forecast uncertainty, the optimal Uw, Hs 
and Tp M-N prediction models are models 7, 9 and 6 in Tables A.1- A.3, 
respectively, which are listed below Eqs. 25, 26 and 27: 

UwðtþNÞ¼ f ðUwðtÞ; DirðtÞ;Uwðt � 3Þ;Uwðt � 6Þ;Uwðt � 9ÞÞ (25)  

Hsðtþ NÞ ¼ f ðHsðtÞ;UwðtÞ;DirðtÞ;Hsðt � 1Þ;Uwðt � 1ÞÞ (26)  

TpðtþNÞ ¼ f
�
TpðtÞ;HsðtÞ;UwðtÞ

�
(27)  

The accuracy of the M-N model appears to be only slightly sensitive to 
the value of M. With the selected ANFIS configuration and data, there is 
no clear benefit in increasing M. However, due to heavy computational 
demand of running the ANFIS simulations, only relatively simple models 
with small M values are developed in this study. Since the use of more 
complex ANFIS models may improve the forecast accuracy, an effort can 
be considered to simulate ANFIS with more inputs in future researches. 
By contrast, the types of variables that are included in the prediction 
model have a strong impact on the accuracy for wind and waves. The 
more variables that are associated with the predicted value, the more 
accurate the obtained prediction. Thus, to decrease the forecast 

Fig. 18. Forecast uncertainties in Hs prediction using various models.  

Fig. 19. Forecast uncertainties in Tp prediction using various models.  
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uncertainty in multi-step-ahead predictions, the variables that are 
related to the predicted parameter should be included if possible. 

For the M-1 slope model, since it is essentially an iterative model, M 
is selected as 2 for all Uw, Hs and Tp prediction models by referring to the 
above sensitivity analysis results of the M-1 model. 

4.2.2. Comparison of the forecasting models 
This section presents a comparative analysis among the three multi- 

step-ahead forecasting models. At the beginning, three models of multi- 
step-ahead prediction, namely, the M-1, M-N and M-1 slope models, 
which use decomposition-ANFIS, are developed based on the training 
data. The input size M for each model is the optimal value that was 
determined in Section 4.2.1 and the forecast horizon is the following 
24 h. Then, many twenty-four-step-ahead predictions can be obtained 
during the testing period on basis of the corresponding obtained pre
diction model. Finally, an uncertainty quantification analysis of the 
forecast error is conducted to assess the forecasting performances of the 
models. 

The prediction results of Uw, Hs and Tp and the corresponding actual 
series are plotted in Fig. B.1, B.2 and B.3 in the appendix, in which the 
actual and forecasted data are represented by black and red lines. Sub
figures (a) and (b) in each figure depict the results that are based on the 
M-1 and M-1 slope models and (c) depicts the results that are based on 
the M-N model. The predicted time series that were obtained iteratively 
and separately by applying the M-1 and M-N models consist of a few 

consecutive 24-step predictions, which correspond to the architectures 
in Figs. 8 and 9. By contrast, for the M-1 slope model, it may not be 
possible to predict 24 steps for all cases. To present the characteristics of 
the prediction models clearly, considering the Hs prediction as an 
example, several cases of prediction results that are based on the three 
models are extracted from Fig. B2 and shown in Fig. 20. 

In each subfigure, the black lines depict actual time series and the 
predicted time series are represented by red lines. In addition, the green 
points correspond to the beginning of each 24-step prediction case, 
which correspond to one-step-ahead forecasted data. Similarly, the blue 
points represent the 24-step-ahead forecasted data. According to Fig. 20 
(b), the M-1 slope model cannot perform the 24-step prediction in all 
cases, especially near the peaks of high sea states. However, compared to 
the results in Fig. 20(a) and (c), the M-1 slope model can capture the 
data variation, although the positions of peaks/troughs may not be 
captured exactly. 

Overall, from the predicted time series in Fig. B1-B.3, it is concluded 
that the proposed models can predict the environmental conditions to a 
certain extent. However, due to the randomness in the occurrence of 
waves and wind, it is difficult to realize high accuracy in forecasting all 
points, especially for high sea states. In addition, only observing the 
long-term forecasted time series renders it difficult to compare the 
proposed three prediction models. Therefore, the uncertainty quantifi
cation analysis must be used to evaluate and compare the accuracies of 
the three multi-step-ahead prediction methods. 

Fig. 20. Several cases of Hs prediction by the three models.  
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Fig. 21 presents the results of multi-step-ahead forecasting models in 
predicting Uw, Hs and Tp at various steps N. In each subfigure, black, red 
and blue lines represent statistics of the corresponding forecast error 
factors ϵM that are based on the M-1 model, the M-N model and the M-1 
slope model, respectively. To distinguish the statistics, the mean values 
are represented by circle marks and the asterisks correspond to the 
standard deviations. 

The forecast uncertainty varies with the step N in both wind and 
wave condition predictions. The forecast error of the M-N model exhibits 
monotonic behavior with respect to the prediction step, whereas the 
forecast errors of the other two models exhibit variations because pre
dicted values are used in the other two models. Fig. 21(a) compares the 
models in terms of forecast performance for the wind speed Uw. Among 
the three proposed multi-step-ahead forecasting models, the M-1 and M- 
1 slope models outperform the M-N model. As N increases, the forecast 
uncertainty of the M-N model significantly increases, which is reflected 
in the mean value and the standard deviation of the 24th step, which 
reach 0.33 and 1, respectively. This increase in uncertainty may be 
because the wind speed time series is so random that there is little 
correlation between the current data and the data for the following few 
hours. In the comparative analysis of the M-1 and M-1 slope models, 
when N is large, the mean values of the forecast error factors are positive 
and negative, respectively. As a result, the M-1 model can be considered 
the best performing model for Uw prediction since its prediction is 
relatively conservative. 

Fig. 21(b) shows the Hs prediction. All three models yield almost 

identical results at the first step. At this step, the forecast uncertainties 
from the three models are low, as reflected in the near-zero mean values 
and standard deviations. With the increase of the forecast horizon, the 
M-1 slope model shows lower forecast uncertainty compared with the 
other two methods. By inspecting Fig. 21(b), although the standard 
deviation of the forecast error factors from the three models are similar, 
the mean values of the errors from the M-1 slope model are lower. For 
example, for N ¼ 24, the mean values of the forecast error factors that 
are obtained using the M-1 model and the M-N model are 0.14 and 0.22, 
respectively, compared to only 0.004 for the M-1 slope model; hence, the 
M-1 slope model outperforms the others. 

In Fig. 21(c), the Tp forecast performances for the three multi-step- 
ahead prediction models are displayed. The level of uncertainty is 
lower than in Hs and Uw predictions. All three models yield satisfactory 
results since the mean values and standard deviations of the forecast 
error factor for all steps are less than 0.1 and 0.28, respectively. 
Comparing the statistical results, the M-N method can provide more 
stable multi-step-ahead predictions at any step. This can be observed in 
the lower fluctuation of the forecast performance as functions of the 
forecast lead time. Thus, the M-N model performs the best in predicting 
multi-step Tp. 

According to Fig. 21, as the lead time increases, the forecast uncer
tainty increases for all multi-step-ahead forecasting methods. To display 
it clearly, a probability distribution of the forecast error factor is used to 
describe forecast uncertainty at each step. For example, Fig. 22 shows 
forecast error distributions in Tp prediction for various values of N. In 

Fig. 21. Statistics of ϵM for N steps ahead.  
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Fig. 22a), the distributions are more concentrated around the mean 
value in the cases with small N; hence, there is a lower forecast uncer
tainty for lead times from 1 to 8 h ahead. However, as N increases, the 
distributions become increasingly wide; hence, the uncertainty in the 
forecasts increases. Most of the forecast errors prior to the 8th step are 
concentrated between � 0.3 and 0.3, while those after the 8th step are in 
the range of � 0.6 to 0.6. 

As illustrated above, the forecast horizon has an important effect on 
the performances of the multi-step-ahead forecasting models in pre
dicting both wind and wave conditions. By applying the combination of 
the decomposition technique and ANFIS, the environmental conditions 
one to five steps ahead can be predicted accurately. However, due to the 
error accumulation problem of the M-1 and M-1 slope models and the 
uncorrelated input-output sample in the M-N model, the performances 

Fig. 22. Distributions of ϵMT (M-N model).  

Fig. 23. Uw prediction ranges.  
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of all three multi-step-ahead prediction models deteriorate as N 
increases. 

Under the circumstances, for a specified-step prediction, the mean 
value and the standard deviation of the errors can be utilized to provide 
a prediction range, instead of a single forecasted point. Based on the 
central limit theorem, the distribution of the forecast error factor can be 
approximated by a normal distribution. According to the properties of 
the normal distribution, 68% of the error is contained within one stan
dard deviation of the mean, namely, within [m-σ, mþσ]. Applying this 
error range to the predicted value f(t), a prediction range Ra(t) is 
calculated via Eq. (20). This range can be expressed as Eq. (28), where it 
is expected to cover the future actual weather conditions. 

RaðtÞ ¼
f ðtÞ

1þ m� std
(28)  

where m and std are the mean value and the standard deviation of the 
forecast error factor and f(t) is the forecasted data at time t. 

Through the above process, the future data at a specified step ahead 
can be represented by a range Ra(t) rather than a separate prediction 
point f(t). Via this approach, the high-uncertainty prediction can be used 
in practice. To evaluate the proposed method, two typical examples are 
selected for each environmental parameter and the prediction ranges for 
the following 24 h are identified from the fitted error curves. The cor
responding prediction ranges of Uw, Hs and Tp are shown in Figs. 23–25, 
respectively. Each subfigure depicts one example, including the pre
dicted and actual data and the prediction range. 

According to all three figures, although the red and blue lines differ, 
which demonstrates that the forecasts may not be accurate for all 24 

steps ahead, the prediction ranges (grey areas) always contain the actual 
data. Hence, if the accuracy of a large-step-ahead prediction is too un
certain to be adopted, the prediction range can provide guidance for the 
variation of the future sea state. Therefore, it is concluded that the 
proposed method is effective in capturing the future weather conditions 
in practice. 

In addition, in Fig. 23(b), as the number of prediction steps increases, 
the prediction range does not always widen because the M-1 model uses 
forecasted data for prediction, which will lead to error accumulation. 
This situation is not realistic, especially if the number of forecast steps is 
further increased. As a result, the M-N model may be considered the 
most appropriate model for applying the prediction range for a long 
forecast horizon. 

5. Conclusions 

Predicting short-term wind and wave conditions is an important part 
of decision-making during the execution of marine operations. This 
work proposes a hybrid multi-step-ahead prediction model for predict
ing wind and wave conditions and investigates the forecast uncertainties 
in the suggested model over various seasons and sea states. 

A hybrid method that combines a decomposition technique and 
ANFIS is introduced. In this method, the decomposition technique is 
applied to convert the original series to the corresponding stationary 
series to improve the overall forecasting accuracy. Then, the ANFIS is 
established, in which the input-output pairs are determined by three 
multi-step-ahead models: the M-1, M-N and M-1 slope models. Finally, 
by utilizing the three multi-step-ahead forecasting models, twenty-four- 
step-ahead predictions can be obtained recursively or directly. To 

Fig. 24. Hs prediction ranges.  

Fig. 25. Tp prediction ranges.  
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evaluate the efficiency of the proposed method, hourly time series of the 
mean wind speed (Uw), the significant wave height (Hs) and the peak 
spectral wave period (Tp) at the North Sea center are utilized. The results 
demonstrate that the proposed decomposition-ANFIS method performs 
well in one-step-ahead wave and wind forecasting. By contrast, the 
multi-step-ahead prediction models are more complex and the forecast 
accuracy decreases as the forecast horizon increases. 

To quantify the forecast performance of the proposed method and to 
compare it with various multi-step-ahead models, an uncertainty 
quantification analysis is proposed. In the analysis, the forecast uncer
tainty for each model is assessed in terms of the forecast error factor. For 
a specified multi-step-ahead prediction model, by statistically analyzing 
a set of the forecast error factors that were obtained during the testing 
period, the forecast performance at each forecast step can be evaluated. 
Based on the quantification results, the optimal values of M of three 
multi-step-ahead models can be determined. In addition, three optimal 
multi-step-ahead models are also compared on both wind and wave 
predictions. The results demonstrate that the prediction model perfor
mance strongly depends on the properties of the variable. For Uw, Hs and 
Tp predictions, the best performing model is M-1, followed by M-1 slope 
and M-N. Typically, the proposed methods can effectively obtain exact 
predictions for the first five steps ahead due to the lower level of 

uncertainty. However, the uncertainty of forecasts will increase with the 
forecast horizon. Fitted equations of the mean and standard deviation of 
the forecast errors can be utilized to provide a prediction range instead 
of prediction points. Case studies demonstrate that this is an effective 
approach for utilizing the multi-step-ahead predictions in practice. 

Overall, the proposed decomposition-ANFIS multi-step-ahead fore
casting methods can be applied for the short-term prediction of wave 
and wind conditions and have application potential in marine opera
tions. However, the randomness and unsteadiness of wind and waves 
render forecasting highly difficult for longer forecast horizons. The 
forecast uncertainty quantification method can overcome this problem; 
however, additional efforts to improve the accuracy of the proposed 
hybrid prediction models are necessary. 
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Appendix A. List of possible M-N models 

Table A.1 
Uw M-N prediction models  

No. of model Considered variables M Number of items Model 

1 Uw 2 2 Uwðt þ NÞ ¼ fðUwðtÞ; Uwðt � 3ÞÞ
2 Uw 3 3 Uwðt þ NÞ ¼ fðUwðtÞ; Uwðt � 3Þ; Uwðt � 6ÞÞ
3 Uw 4 4 Uwðt þ NÞ ¼ fðUwðtÞ; Uwðt � 3Þ; Uwðt � 6Þ; Uwðt � 9ÞÞ
4 Uw, Dir 2 3 Uwðt þ NÞ ¼ fðUwðtÞ; DirðtÞ;Uwðt � 3ÞÞ
5 Uw, Dir 2 4 Uwðt þ NÞ ¼ fðUwðtÞ; DirðtÞ;Uwðt � 3Þ; Dirðt � 3ÞÞ
6 Uw, Dir 3 4 Uwðt þ NÞ ¼ fðUwðtÞ; DirðtÞ;Uwðt � 3Þ;Uwðt � 6ÞÞ
7 Uw, Dir 4 5 Uwðt þ NÞ ¼ fðUwðtÞ; DirðtÞ;Uwðt � 3Þ;Uwðt � 6Þ;Uwðt � 9ÞÞ
8 Uw, Dir 5 6 Uwðt þ NÞ ¼ fðUwðtÞ; DirðtÞ;Uwðt � 3Þ;Uwðt � 6Þ;Uwðt � 9Þ;Uwðt � 12ÞÞ

Table A.2 
Hs M-N prediction models  

No. of model Considered variables M Number of items Model 

1 Hs 1 1 Hsðt þ NÞ ¼ fðHsðtÞÞ
2 Hs 2 2 Hsðt þ NÞ ¼ fðHsðtÞ;Hsðt � 1ÞÞ
3 Hs 3 3 Hsðt þ NÞ ¼ fðHsðtÞ;Hsðt � 1Þ;Hsðt � 2ÞÞ
4 Hs, Uw 1 2 Hsðt þ NÞ ¼ fðHsðtÞ;UwðtÞÞ
5 Hs, Uw 2 4 Hsðtþ NÞ ¼ fðHsðtÞ;UwðtÞ;Hsðt � 1Þ;Uwðt � 1ÞÞ
6 Hs, Uw 2 3 Hsðtþ NÞ ¼ fðHsðtÞ;UwðtÞ;Hsðt � 1ÞÞ
7 Hs, Uw 1 3 Hsðtþ NÞ ¼ fðHsðtÞ;UwðtÞ;DirðtÞÞ
8 Hs, Uw, Dir 2 4 Hsðtþ NÞ ¼ fðHsðtÞ;UwðtÞ;DirðtÞ;Hsðt � 1ÞÞ
9 Hs, Uw, Dir 2 5 Hsðtþ NÞ ¼ fðHsðtÞ;UwðtÞ;DirðtÞ;Hsðt � 1Þ;Uwðt � 1ÞÞ
10 Hs, Uw, Dir 2 6 Hsðtþ NÞ ¼ fðHsðtÞ;UwðtÞ;DirðtÞ;Hsðt � 1Þ;Uwðt � 1Þ;Dirðt � 1ÞÞ

Table A.3 
Tp M-N prediction models  

No. of model Considered variables M Number of items Model 

1 Tp 1 1 Tpðt þ NÞ ¼ fðTpðtÞÞ
2 Tp 2 2 Tpðt þ NÞ ¼ fðTpðtÞ; Tpðt � 1ÞÞ
3 Tp 3 3 Tpðt þ NÞ ¼ fðTpðtÞ; Tpðt � 1Þ; Tpðt � 2ÞÞ
4 Tp, Hs 1 2 Tpðt þ NÞ ¼ fðTpðtÞ;HsðtÞÞ
5 Tp, Hs 2 4 Tpðt þ NÞ ¼ fðTpðtÞ;HsðtÞ;Tpðt � 1Þ;Hsðt � 1ÞÞ
6 Tp, Hs, Uw 1 3 Tpðt þ NÞ ¼ fðTpðtÞ;HsðtÞ;UwðtÞÞ
7 Tp, Hs, Uw 2 4 Tpðt þ NÞ ¼ fðTpðtÞ;HsðtÞ;UwðtÞ; Tpðt � 1ÞÞ
8 Tp, Hs, Uw 3 5 Tpðt þ NÞ ¼ fðTpðtÞ;HsðtÞ;UwðtÞ; Tpðt � 1Þ; Tpðt � 2ÞÞ

(continued on next page) 
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Table A.3 (continued ) 

No. of model Considered variables M Number of items Model 

9 Tp, Hs, Uw 2 5 Tpðt þ NÞ ¼ fðTpðtÞ;HsðtÞ;UwðtÞ; Tpðt � 1Þ; Hsðt � 1ÞÞ
10 Tp, Hs, Uw 2 6 Tpðt þ NÞ ¼ fðTpðtÞ;HsðtÞ;UwðtÞ; Tpðt � 1Þ; Hsðt � 1Þ; Uwðt � 1ÞÞ
11 Tp, Hs, Uw, Dir 1 4 Tpðt þ NÞ ¼ fðTpðtÞ;HsðtÞ;UwðtÞ;DirðtÞÞ

Appendix B. Forecasted and actual time series in the testing phase

Figure B.1. Predicted time series of Uw.  
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Figure B.2. Predicted time series of Hs.2  
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Figure B.3. Predicted time series of Tp.3  

Appendix C. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.oceaneng.2019.106300. 
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