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ABSTRACT 

 

During design and planning phase, determination of the accurate rate of penetration (ROP) is 

essential for efficient drilling operations. Optimized ROP predictions improve the drilling 

efficiency in terms of decreasing operation time per drilling depth and hence lowering the 

drilling cost. Thus, the application of the best ROP modelling procedure is crucial.  

 

This thesis work presents a total of four different ROP modelling techniques, which are applied 

and tested on three wells in the Ormen Lange field. The modelling methods are the multiple 

linear regression, mechanical specific energy (MSE) model, d-exponent model and Warren 

model. The modelling approaches used were based on the whole well data and similar 

geologically grouped based data. The applicability of the models was tested only on the near-

by wells, but not on far-away ones from the considered block.    

 

ROP modelling of old well’s drilling data and testing the model on the near-by wells showed 

that the stratigraphic groups-based modelling approach provides the best fit results with the 

field data and predicts the near-by well’s ROP data quite good. Moreover, this thesis work 

developed and illustrated a step-by-step process for ROP optimization in terms of modelling of 

drilled well’s data and its application for the near-by well to be drilled.  
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1 INTRODUCTION 

 

This thesis work presents the ROP modelling and application on the Ormen Lange field 

in block 6305/7 in Norwegian Sea. A total of six modelling approaches were employed 

and their performance are evaluated. The thesis presents an ROP optimization procedure 

to be applied when drilling a new well     

 

1.1 Background  

Rotary drilling operations comprise of rotating, hoisting and circulation systems. Among 

these, drill bits are part of the rotary system. It is connected to the very end of the drill 

string. Upon the application of rotational and axial load, the drill bit crushes the formation 

into pieces and hence allows drilling deeper into the formation.   

There are different types of drill bits available on the market. Among others, roller cone, 

PDC and hybrid (kymira) are the commonly used ones. Their performance and efficiency 

on drilling vary, based on the geology of the well and the handling of the vibrations 

control in the well. During design phases, the choice of the bit with respect to higher ROP 

and minimum bit wear is the key for reducing cost by reducing the undesired number of 

tripping and drilling in shortest period possible. 

Determination of the rock strength or ‘’drillability’’ associated with different geological 

formation is important [1]. There are several methods to quantify or estimate the rock 

strength for instance through mechanical testing of cored rock samples [2], rock cuttings 

[3], Sonic logs derived empirical models [4], and ROP modeling analyses [5]. During 

design phase, the ROP optimization is conducted using software. For instance, drilling 

optimization Simulator (DROPS) software is developed to simulate ROP optimization. 

The basic principle with the design is that first it calculates the apparent rock strength 

logs using drilling parameters obtained from the old well [6-9]. Using the MSE theory, it 

calculates the uniaxial compressive strength (ASRS), which is to estimate the strength of 

the formation for the nearby well. By selecting different drilling parameters and running 

several simulations, the software provides an optimized ROP and bit wear expected for 

drilling the new well.  Moreover, for optimizing drilling operation in the newly planned 

well, it is important to learn the challenges encountered in the previously drilled wells in 
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the same field, investigate the effects of the drilling parameters on the ROP and determine 

which parameters are most sensitive to ROP optimization for when planning to drill the 

new well. It can be investigated through modelling and sensitivity study by computing 

the ROP and total drilling time for a given drilling depth. In this thesis, this approach will 

be implemented by modelling an old well and applying the model on a nearby well in the 

Ormen Lange field in Norwegian Sea. Several modeling techniques will be implemented 

and compared.   

1.2 Problem Formulation 

Among many others, drilling rate optimization is a key factor for reducing drilling cost. 

This is done during planning phases. As mentioned, there are several analytical simulation 

software available in the industry. In this thesis, using drilled wells data, different types 

of modelling techniques will be employed to model ROP for planning to drill new well. 

The issues to be addressed are:  

 

• how reliable are the newly modelling techniques? 

• how reliable are the models when applied for nearby wells?  

• what is the effect of the geological properties on the modelling? 

• how can the literature established models be modified to generate new correlation 

parameters 

1.3 Objective 

The primary objective of this thesis is to answer the issues addressed in section 1.2. The 

main activities include:  

 

• To review the ROP models 

• To model wells located in the Ormen Lange field in block 6305/7 using different 

modelling approaches and the well data for each well 

• To evaluate the performance of the models on the nearby wells in the same field 

• Evaluate the effect of dissecting the well into multiple geological groups 

• To perform and propose an ROP optimization technique. 

• To indicate the best ROP modeling approach 
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2 LITERATURE STUDY  

This chapter will discuss and present the literature around the factors that influence the 

rate of penetration (ROP) as well as multiple ROP models that have been published and 

tested, however not all the models presented in the literature will be tested.  

 

2.1 Drill Bit  

The drill bit is a drilling tool used for drilling a wellbore and is located at the tip of the 

drilling string below the drilling collar. The main role of the bit is cutting and penetrating 

the rocks at the bottom of the well. It usually consists of cutters or “teeth” and nozzles.  

The cutters on the bit head are designed so they are harder than the rock formation they 

are being pushed on and break the rock. The material that is used for these teeth depends 

upon the hardness of the rock and can vary from:  

 

• Steel 

• Tungsten carbon 

• Diamond  

 

The nozzles of the bit are the passage through which the drilling fluid is circulated down 

to the well. The drilling fluid that is pumped down help cooling down the bit during 

drilling operation. It also circulates out the broken-down formation rocks that where 

drilled to the surface through the annulus in the wellbore. The drilling fluid that is pumped 

down the nozzles applies a jet force on the formation. This Jet force improves the 

penetration of the formation. As well as that, the drilling fluid applies a hydrostatic 

overbalance in the well that protects the well from any influx of reservoir fluids.  

As R TEALE described, bits work on the formation by a combination of two actions, as 

shown in Figure 1 [10]: 

• Indentation, where the drill bit is pushed into the rock formation through weight 

on bit (WOB) and this gives the drilling bit a grip on the rock 

• Cutting, where lateral movement is applied to the drilling bit to chip the formation 

rock and break it out.  
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Figure 1. Rotatory drilling using both indentation and cutting [11]. 

 

Drilling bits come in many different forms and shapes depending on the hardness of the 

rock formation and the size of the wellbore. They can be divided into two groups: Roller 

cone bits and fixed cutter bits, where there also exist bits that combine properties from 

both.  

 

2.1.1 Roller Cone Bits  

Roller cone bits are the traditional and most used bits in the E&P industry since 1909 

when it was patented by Howard Hughes. They usually consist of three equally sized 

metal cones that can rotate independently with cutters on them used to crush the rock 

formation located. As well as that, nozzles are located on the bit that direct the mud flow 

through them. The number of nuzzles, their direction and angle all are design based and 

impact the performance of the roller cone bit, where the best drilling performance is seen 

when the nozzles are positioned so they direct the mud flow onto the cones to help with 

the removal of the cuttings. Figure 2 represents a typical roller cone bit. 

 

Roller cone bits can be classified into two sub-categories depending on the structure of 

the cuttings located on the cones [12]:  
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• Steel milled-tooth bits: These are created of steel and are made as parts of the 

cone; they are then coated to protect them from wear. 

•  Insert bits or Tungsten Carbide Inserts (TCI): These are fabricated from tungsten 

carbide and are pressed on the cones through small holes that are made.  

 

The length of the cutters used vary depending on the compressive strength of the 

formation rock, where longer cutters are used on soft rock formations with weak 

compressive strength and shorter cutters are used on hard rock formations with high 

compressive strength. 

 

The design of the roller bit cone, from the materials used, the nozzles and type of cutters 

is to avoid the wear of the bit while maintaining high ROP. This avoids unnecessary trips 

to replace a damaged bit and minimizes non-productive time (NPT).  

 

Figure 2. Roller Cone bit and its components [13]. 

 

2.1.2 Fixed Cutter Bits  

Fixed cutter bits are one of the biggest advances for the drilling tools industry ever since 

their introduction in 1976 and have become as popular as the traditional roller cone bits. 

The whole bit rotates as a single unit and has no components that move independently of 

the bit such as bearings or cones. Instead of crushing and gauging the rock formation as 
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a traditional roller cone bit, the fixed cutter bit will use a shearing motion for formation 

rock excavation. The most prominent type of fixed cutter bit that is used worldwide is the 

polycrystalline diamond bit. [13] The body of the fixed cutter bit is manufactured in two 

different styles: steel-body bit or a matrix-body bit. The two materials have both their 

advantages and disadvantages and the use of one or the other is dependent on the needs 

of application. The matrix is made of a hard, yet brittle, composite material of tungsten 

carbide and an alloy that has higher resistance to abrasion and corrosion and can withstand 

higher compression loads than steel, where steel is softer than the matrix. However, the 

steel-body bit has the advantage over the matrix-body bit when it comes to resisting high 

impact loads.  The cutters that are used in a fixed cutter are permanently located on blades 

on the bit and the first component of the bit that makes contact with the formation rock. 

PDC cutters use polycrystalline diamond that is created by diamond grit and then used in 

the diamond table and is the first thing that makes contact with the formation rock. This 

diamond table is sintered to a tungsten carbide substrate that provides structural support 

to the diamond and a method to withstand brazing [12, 14]. An example of a PDC bit and 

its cutter can be seen in Figures 3 and 4, respectively. 

 

                 

Figure 3. PDC bit and its components [15].           Figure 4. PDC cutter component [16]. 
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2.1.3 Hybrid–Ktymira Bits  

The drilling bit has improved since its introduction to meet higher demands and 

challenges in the oil industry and is still being improved upon to access deep reservoirs 

that have high compressive strength and are under extremely high pressures and 

temperature. This has led to the introduction of new types of drilling bits such as the 

hybrid drilling bits which are a mix of the PDC bits and the roller cone bits. Hybrid bits 

have improved drilling efficiency in terms of drilling at higher speeds and controlling 

stick slip vibrations. An example of such bit is illustrated in Figure 5 

 

 

Figure 5. Baker Hughes Kymera bit [17]. 

 

As shown in Table 1, the hybrid bit drilled with an ROP of 13 ft/hr, achieving 108% 

higher ROP with less cost per foot compared to the previous runs which drilled the same 

formation in the same well. 

 

Type Depth In 
[ft] 

Depth Out 
[ft] 

Int. Ft. Tot.Hr. On Btm Hr ROP [ft/hr] 

Bit A – PDC 10870 11101 231 50.5 44.8 5.16 
Bit B – PDC 11101 11440 339 50 48.6 6.98 
Hybrid 11440 12049 609 51.5 48.6 12.5 
Bit C - PDC 12049 12236 187 35.5 30.2 6.19 

Table 1. Drilling performance comparison between PDC and hybrid bits [18]. 
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2.2 Factors affecting ROP  

2.2.1 Formation Characteristics    

Formation properties such as elasticity, formation strength, porosity and formation 

pressure play a major role in both drilling and completion and can be the deciding factors 

for bit choice, casing design and completion design. During drilling operations, these 

properties will affect the rate of penetration (ROP) during drilling operations and 

determining these properties and using them will impact the drilling efficiency [19].  

 

Out of the properties mentioned above, the formation elasticity and the formation 

strength, traditionally represented by the Unconfined compressive strength (UCS), are the 

biggest factors that determine the rate of penetration and can be seen as the resistance the 

formation rock puts up against the bit that is pushed on them. The unconfined compressive 

strength is the maximum compressive stress that a cylindrical-shaped core can withstand 

before breaking under atmospheric pressure.  

 

Calculation and estimation of the uniaxial compressive strength of rocks has been 

established and standardized by both, The International Society for Rock Mechanics 

(ISRM) and the American Society for Testing and Materials (ASTM). This involves 

laboratory tests using a machine that applies axial to a circular cylindrical specimen that 

represents the formation until it breaks. This test in its nature is destructive and requires 

multiple core samples that are nearly identical to replicate the results and compare them. 

An example of such test can be observed in Figure 6. Other methods have been devised 

to estimate the UCS that avoids destroying the specimen, one of these methods would be 

using P-waves, Schmidt hammer, rebound slake durability index, and shore hardness [20, 

21]. 

 

However, there remains an issue with using the unconfined compression strength of the 

rock. The laboratory environment that the core sample are tested upon are not 

representative of downhole conditions. During operations, clear fluid like the one used 

for the laboratory is substituted by drilling mud that creates a mud filter cake which acts 

as an impermeable membrane, and the formation rock is affected by confined pressure 

that gives an increase in the apparent compressive strength of the formation rock. 
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Figure 6. Unconfined compression test [22]. 

 

This was solved by using the confined compression strength (CCS), which takes into 

account the issues mentioned above, and can be derived from the unconfined compression 

strength, the confining stress, the pore pressure of the formation and the rock internal 

angle of friction, which is between 30° and 40° for most rocks. The equation can be shown 

as followed [23]:  

 

𝐶𝐶𝑆 = 𝑈𝐶𝑆 + 𝐷𝑃 +
2∗𝐷𝑃𝑠𝑖𝑛(𝐹𝐴)

(1−sin⁡(𝐹𝐴)
        (2.1) 

 

Where CCS is the confined compressive strength, UCS is the unconfined compressive 

strength, DP is differential pressure, or the confined stress and FA is the rock internal 

angle of friction.  

 

2.2.2 Drilling Mud Weight and Overbalance  

The drilling mud used in drilling operations has been documented to influence the rate of 

penetration (ROP). The mud used under drilling operations is responsible for cleaning the 

wellbore of any rock debris after drilling and transport them to the surface so the bit can 

make contact with the formation below, and to cool down the rotating bit. The drilling 
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mud’s efficiency in drilling the well depends on the many properties that compose it, such 

as [24, 25]: 

 

• Rheology 

• Mud weight  

• Overbalance  

• Type of mud used (Water-based or oil based)  

• Solid content  

• Plastic viscosity  

 

Mud Weight and Overbalance  

A study in 1985 by Cheatham and Nahm [26] shows that the weight of the drilling mud 

has an inversely relation with the rate of penetration (ROP). This is seen in Figure 7. 

where the higher the density of the drilling mud, the lower the rate of penetration (ROP). 

This is when all the other known factors are kept constant and is regardless of the type of 

drilling fluid used, whether it be water-based mud or oil-based mud.  

 

Figure 7. Rate of Penetration (ROP) vs. drilling mud density (oil-based) [26]. 

 

As well as that, an increase in drilling mud weight would increase the pressure differential 

between the bottomhole pressure and the pore pressure, known as the overbalance. In 
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1974, Bourgoyne and Young observed that this increase in overbalance was met by a 

decrease in the rate of penetration. This can be seen in Figure 8, and the relationship 

between the logarithm of the normalized rate of penetration (ROP), which is the ratio of 

the rate of penetration under overbalance and the rate of penetration with zero 

overbalance, and the overbalance gives a straight line and is thus linear. Thus, the 

following relation can be made between the two: 

 

log
𝑅

𝑅0
=⁡−𝑚(𝑃𝐵ℎ − 𝑃𝑓)                                                                  (2.2)           

                                                       

Where R is the is the rate of penetration, R0 is the rate of penetration under zero 

overbalance, m is the slope of the line, PBh is the bottomhole pressure and Pf is the 

formation-fluid pressure or pore pressure [27].  

 

Bourgoyne and Young decided to express the overbalance term in the equation with a 

term that includes the 𝜌𝑓, the equivalent circulating density (ECD), i.e. the density of the 

mud at bottomhole conditions and the pore pressure gradient 𝑔𝑝. Eq. 2.2 can then be 

written as follows: 

 

log
𝑅

𝑅0
= ⁡0.052𝑚𝐷(𝑔𝑝 − 𝜌𝑓)                         (2.3) 

 

 

Figure 8. Relation between the normalized rate of penetration and overbalance [27]. 

2.2.3 Plastic Viscosity and Solid Content  
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In a study by Abouzar Mirzaei-Paiaman and Mohsen Masihi in 2009 [24] on the effects 

of drilling fluid properties on rate of penetration (ROP), they found that a change in plastic 

viscosity and the solid content of the fluid used for operation impacts the rate of 

penetration.  

 

When keeping all other factors constant and only increasing the plastic viscosity (PV), 

they observed that both the rate of penetration (ROP) and the normalized rate of 

penetration (NROP) decreased. This can be seen in Figure 9.  

 

 

Figure 9. Rate of penetration vs Plastic viscosity, non-normalized to the left and 

normalized to the right [24]. 

An increase in the solid content of the drilling mud, while keeping the plastic viscosity 

constant, proved to give a behavior similar to that of the plastic viscosity. Where an 

increase in the solid content resulted in a lower normalized and non-normalized rate of 

penetration (ROP). This is observed in Figure 10. 

 

 

Figure 10. Rate of penetration (ROP) vs solid content- non-normalized to the left and 

normalized to the right [24]. 
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2.3 Operational Factors  

During drilling operation, the driller has control over two factors that majorly affect the 

rate of penetration (ROP), these are the rotation speed (RPM) and the weight on bit 

(WOB). Many studies have been performed by authors to show the relation between the 

change in one of the two factors mentioned and the rate of penetration (ROP)[28].  

An increase in the weight on bit (WOB) has been documented to respond with an increase 

to the rate of penetration (ROP) until a limit has been reached, this can be seen in Figure 

11. To initiate drilling and get any penetration, a threshold of weight on bit (WOB), point 

“a” on the Figure, needs to be applied. Penetration starts after that and increases gradually, 

yet linearly, from “a” to “b”. This increase becomes more rapidly from “b” to “c”, and 

this is due to the change of the failure-rock mode from scarping to shearing. After that 

slight increases in rate of penetration (WOB) are observed for increasing the weight on 

bit (WOB), “c” to “d”. Increasing the weight on bit (WOB) beyond that has shown in 

some cases to reduce the rate of penetration (ROP), “d” to “e”, this can be referred to as 

bit foundering. The negative results of increasing the weight on bit (WOB) too high are 

usually due to low hole cleaning efficiency. This could be due to the hydraulics for the 

operation not being changed and the rate of cuttings being created has increased or that 

the cutters on the bit are penetrating the formation rock with no clearance to allow proper 

cleaning [29].  

 

Figure 11. Rate of penetration (R) vs. weight on bit (W) (Bourgoyne et al. 1991). 
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The generalized relationship between the rotational speed (RPM) during drilling 

operations and the rate of penetration (RPM) can be seen in Figure 12. Penetration rates 

increase linearly as rotation speed increases, until a value of rotation speed is reached at 

which any further increase will result in diminishing increases in the rate of penetration 

(ROP) [27, 30].  

  

 

Figure 12. Rate of penetration (R) vs. the rotation speed (N) (Bourgoyne et al. 1991). 

2.4 Drilling Bit Optimization  

Drilling bits that are used for a specific well are one of the main factors that decide the 

rate of drilling and the cost of drilling that well.  This can be seen in Eq. 2.4, which shows 

the calculation of the drilling cost [31]. 

 

𝐶𝑑 =
(𝑡𝑐+𝑡𝑑+𝑡𝑡)𝐶𝑟+𝐶𝑚𝑡𝑑+𝐶𝑏

∆𝐷
                                 (2.4) 

 

Where tc, td, and tt are the connection time, the drilling time and the trip time in [hrs] 

respectively. ∆𝐷 is the drilling length in [ft] and Cd, Cr, Cm and Cb are the drilling cost, 

the drilling rig cost, the drilling motor cost and the bit cost in [USD/ft] respectively.  
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The design and type of drilling bit used have a big impact on the drilling cost, where 

optimization of the drilling bit will lead to decreased drilling time due to increased rate 

of penetration, less trip time to change the bit since bit wear is reduced under optimization.  

The decision of what type bit to use along with its performance depend the type of 

formation that is going to be drilled, the models used to determine the optimal bit and the 

experience and prior performance of previous bits. Many design factors of the drilling bit 

will decide the bit’s performance such as size, weight, type of the bit, either roller cone 

bit or fixed cutter bit, number of nozzles and their positioning, the material used for the 

cutters and the body of the bit and wear resistance. All of these will have an impact on 

how the bit will perform.  

 

As well as the bit factors mentioned above, many drilling operational factors impact the 

performance of the bit. These can be the compressive strength of the rock formation, 

weight on the bit, RPM, hydraulics and the mud properties used [32]. 
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3 THEORY   

 

Modelling the ROP has been done and documented on several occasions by multiple 

authors. This is because of the impact of the rate of penetration on the drilling expenses 

and the need to optimize it. The exacts factors that affect the ROP are extremely complex 

and have partially been understood, with more research needed. Nevertheless, multiple 

researchers and academics have tried to model the ROP using factors such as the WOB, 

RPM and the strength of the formation rock. This is done through multiple experiments 

and using drill data from multiple wells. The usage of such models has been noted by 

many to reduce the drilling operation expenses. These models that were derived by 

multiple academics, what they can do to optimize the ROP and how they do it will be 

presented and discussed in the next chapters. [27, 30] 

 

3.1 Bourgoyne and Young ROP model 

Bourgoyne and young developed a simplified model in 1974 that can predict the ROP for 

roller cone bits using previously gathered drilling data. Since the model they used was 

linear, multiple regression method is used to determine the coefficients needed from the 

gathered data. This model has been the dominant method to estimate the ROP in the oil 

and gas industry [33]. The Bourgoyne and Young model estimates that the ROP is a 

function of 8 individual parameters that are multiplied with each other and that include a 

coefficient that is locally dependent [33]. The Bourgoyne and Young is a function of eight 

parameters and given as:  

 

The parameters are: formation drill ability, formation strength and bit type, compaction 

on drilling penetration, overbalance on drilling rate, undercompaction found in 

abnormally pressured formations, weight on bit, rotary speed, tooth wear and the bit 

hydraulics. The model parameters are defined in the Appendix I. Due to the limitations 

of data to be used in the eight parameters, in this thesis work the model was not used for 

modelling of the field data.   

 

𝑅𝑂𝑃 = 𝑓1𝑥𝑓2𝑥𝑓3𝑥𝑓4𝑥𝑓5𝑥𝑓6𝑥𝑓7𝑥𝑓8   

 

(3.1) 
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3.2 Warren ROP model 

In 1981, Warren devised a model to predict the rate of penetration (ROP) for soft-

formation roller cone bits that would reflect their characteristics and would take into 

account the adequate cleaning of the borehole and the cuttings removal. The models 

presented at the time for soft-formation bits failed under certain circumstances, such as 

the one proposed by Galle and Woods which could not be applied without breaking its 

assumptions. The same goes for the “perfect cleaning” model published by Maurer, where 

it is not applicable for most soft-formation drilling scenarios. Another model presented 

by Cunningham failed to match experimental data [34]. 

Warren’s model attempts to reflect on the shortcomings of the previous ones and to take 

into account what they did not. Due to the complexity and the number of factors that 

affect the penetration of the bit and its rate, the model that warren proposed is one that 

uses tests and data from research drilling rigs and takes into account the weight on bit 

(WOB), the rotary speed, hydraulic capacity and torque. 

 

According to Warren, the model does not explain the drilling process but rather quantifies 

the parameters that affect it and can be changed during drilling operations [35].  

 

3.2.1 Perfect-Cleaning Model 

The perfect cleaning model developed by Warren in 1981 was a starting point for 

developing a model for imperfect cleaning. This model assumes steady-state drilling 

operations where the rate of the removal of the cuttings is equal to the rate at which new 

cuttings is being made. Thus, the rate of penetration (ROP) is determined by the cuttings 

generation process, the cuttings removal process or a combination of both and the cuttings 

removal does not affect the rate of penetration (ROP) [34]. The model is similar, but not 

identical, to a dimensionless model developed by Wardlaw which was modified to fit 

better with experimental data from laboratory tests. The resulting model was [35]: 

 

 

𝑅𝑂𝑃 = (
𝑎𝑆2𝑑𝑏

3

𝑁𝑏𝑊𝑂𝐵2
+

𝑐

𝑁𝑑𝑏
)

−1

 
 

(3.2) 
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Where a, b and c are dimensionless bit constants, S is the rock strength, db is the bit 

diameter, N is the bit rotary speed and WOB is the weight on bit.  

The first term in the model, aS2 d3
b/N

bWOB2, describes the maximum rate at which the 

formation rock is broken down into cuttings assuming that the WOB is assisted by a 

constant number of teeth on the bit, independent of the penetration depth of the tooth. The 

second term in the model, c/Ndb, changes the modelled ROP to account for the 

distribution of the applied WOB to more teeth on the bit as the WOB is increased and the 

teeth penetrate deeper into the formation rock. It also serves as an upper limit for the 

modelled ROP for a constant rotary speed. At low values for the WOB, the ROP increases 

at an increasing rate when the WOB is increased. This continues until the ROP hits an 

inflection point and after that increases at a decreasing rate. This happens because  the 

first term of the Eq. 3.2, aS2 d3
b/N

bWOB2 , is predominant for low ROP values, whereas 

the second term, c/Ndb , is predominant for higher ROP values [35].  

 

3.2.2 Imperfect-Cleaning Model 

The perfect-cleaning model published by Warren was devised to predict the ROP without 

the presence of the complication cutting-removal effects. This was to be a start point to 

devise a more complex model that included these effects to reflect real world drilling 

conditions. Thereby, Warren published in 1987 his imperfect-cleaning model after 

modifying the previous perfect-cleaning model.  

Unlike the perfect-cleaning model, this model does not assume steady-state drilling 

operations and the rate at which cuttings is being produced does not have to equal the rate 

at which they are removed. Warren used dimensional analysis to isolate a group of 

variables consisting of the modified impact force (Fjm) and the mud properties used during 

drilling. Warren incorporated these variables into the perfect-cleaning model to account 

for the cutting-removal until an equation that satisfied the experimental data was found. 

The results of this was the imperfect-cleaning model:  

 

Where “a”,”b” and “c” are bit coefficients that are constant for the model, 𝛾𝑓 is the fluid 

specific gravity, 𝜇 is the plastic viscosity. The modified impact force is presented as:  

𝑅𝑂𝑃 = (
𝑎𝑆2𝑑𝑏

3

𝑁𝑊𝑂𝐵2
+

𝑏

𝑁𝑑𝑏
+
𝑐𝑑𝑏𝛾𝑓𝜇

𝐹𝑗𝑚
)

−1

 
 

(3.3) 
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Where the theoretical measured impact force (Fj) and the ratio of jet velocity to return 

velocity (Av) are presented as: 

 

 

 

Where q is the flow rate, ρ for the fluid density, vn for the nozzle, vf is the return fluid 

velocity and dn is the nozzle diameter.  

 

3.3 Modified Warren ROP model  

The modelling of a complete ROP model that takes into account all the factors that affect 

the ROP is a demanding task, since we still do not have a complete understanding of these 

parameters. In the Warren model presented above, Warren did not include two important 

factors that affect the ROP. These are the “chip hold down effect” and the “bit wear 

effect”. Thus, Hareland and Hoberock modified Warren’s model in 1993 to include both 

effects [8, 36]. 

 

Chip hold down effect  

The chip hold down effect has a significance impact on the ROP and Hareland and 

Hoberock addresses it and implanted it in the modified warren through data from 

laboratory full scale drilling experiments. During these tests, the bottomhole pressure was 

set as a variable while everything else was constant. The resultant equation that described 

chip hold down effect was:  

 

 

𝐹𝑗𝑚 = (1 − 𝐴𝑣
−0.122)𝐹𝑗 (3.4) 

𝐹𝑗 = 0.000516𝜌𝑞𝑣𝑛 (3.5) 

𝐴𝑣 =
𝑣𝑛
𝑣𝑓

=
0.15𝑑𝑏

2

3𝑑𝑛2
 (3.6) 

𝑓𝑐(𝑃𝑒) = 𝑐𝑐 +⁡𝑎𝑐(𝑃𝑒 − 120)𝑏𝑐 (3.7) 
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Where 𝑃𝑒 is the differential pressure, ( 𝑎𝑐, 𝑏𝑐 and 𝑐𝑐) are the lithology dependent constants 

and 𝑓𝑐(𝑃𝑒) is the “chip hold down function”. The coefficients where made so that the chip 

hold down function would be dimensionless [8]. Eq. 3.3 can thus be modified to include 

the chip hold down function as follows:  

 

 

Bit wear effect  

Bit wear has a significant effect on the performance of the drilling bit during operations. 

The higher the bit wear the lower the ROP. This effect was not addressed in the original 

Warren Model and thus Hareland and Hoberock included it in the modifield Warren 

model. They did this by introducing a bit wear function 𝑊𝑓 into the model. The model 

thus becomes:  

 

Where ∆𝐵𝐺 is the change in the bit tooth wear which is a function of WOB, ROP, 

Confined rock strength and relative rock abrasiveness. ∆𝐵𝐺 is given as:  

Where 𝑆𝑖⁡𝑎𝑛𝑑⁡𝑆0 are unconfined and confined rock strength respectively and (𝑎𝑠⁡𝑎𝑛𝑑⁡𝑏𝑠) 

are coefficients that depend on the formation permeability 

 

𝑅𝑂𝑃 =⁡ [𝑓𝑐(𝑃𝑒) (
𝑎𝑆2𝑑𝑏

3

𝑁𝑊𝑂𝐵2
+

𝑏

𝑁𝑑𝑏
) +

𝑐𝑑𝑏𝛾𝑓𝜇

𝐹𝑗𝑚
]

−1

 
 

(3.8) 

𝑅𝑂𝑃 =⁡𝑊𝑓 [𝑓𝑐(𝑃𝑒) (
𝑎𝑆2𝑑𝑏

3

𝑁𝑊𝑂𝐵2
+

𝑏

𝑁𝑑𝑏
) +

𝑐𝑑𝑏𝛾𝑓𝜇

𝐹𝑗𝑚
]

−1

 

 

 

(3.9) 

𝑊𝑓 = 1 −⁡
∆𝐵𝐺

8
 

 

 

(3.10) 

 
∆𝐵𝐺 = ⁡∑𝑊𝑂𝐵𝑖

𝑛

𝑖=1

. 𝑅𝑃𝑀𝑖 . 𝐴𝑟𝑎𝑏𝑟𝑖 . 𝑆𝑖 
 

(3.11) 

 

𝑆𝑖 = 𝑆0(1 + 𝑎𝑠𝑃𝑒
𝑏𝑠) (3.12) 
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3.4 Mechanical Specific Energy vs ROP   

As mentioned before, R. Teale described the drilling process as one that mechanically 

crushes and breaks the formation rock using a bit rather than one that cuts the formation 

rock. Therefore, the relationship between the “specific energy” used to crush the rock and 

the volume it excavates is of importance. Teale described the amount of energy needed 

to excavate one volume of formation rock as the MSE [37]. This can also be described as 

a relationship between the input energy and the ROP 

 

 

In rotatory drilling, the energy the system uses is represented by a number of factors. 

According to Teale’s MSE, these are the thrust, the torque, the rotational speed, the area 

of the hole being drilled, and the penetration rate (F, T, N, A and u respectively). The 

work done in one minute can be described by the term (𝐹𝑢 + 2𝜋𝑁𝑇) and the volume of 

formation rock crushed in one minute is (𝐴𝑢). Using these two terms, the specific energy 

can be translated in equation 3.13:  

 

 

 

The 𝑒𝑡 term describes the thrust component of the specific energy and is equivalent to the 

mean pressure done by the thrust on the cross-sectional area of the bottomhole. The 𝑒𝑟 

term describes the rotary component of the specific energy. Thus, Eq. 3.14 can be 

translated into: 

 

𝑀𝑆𝐸 ≈
𝐼𝑛𝑝𝑢𝑡⁡𝐸𝑛𝑒𝑟𝑔𝑦

𝑂𝑢𝑡𝑝𝑢𝑡⁡𝑅𝑂𝑃
 

 

(3.13) 

 
𝑒 = (

𝐹

𝐴
) + (

2𝜋

𝐴
) (

𝑁𝑇

𝑢
)⁡ 

(3.14) 

  

𝑒𝑡 = (
𝐹

𝐴
) 

(3.15) 

𝑒𝑟 = (
2𝜋

𝐴
) (

𝑁𝑇

𝑢
)⁡ 

(3.16) 
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Theoretical perfect efficiency would indicate that the MSE is equal to the rock 

compressive strength. However, drilling bits are around 30-40% efficient at best 

performance, as seen in Figure 13. Due to this, the MSE value needs to be around three 

times the compressive strength of the rock and a new term representing the mechanical 

efficiency (𝐸𝐹𝐹𝑀) is introduced [38], adjusting equation 2.15 to 

 

 

 

Figure 13. Mechanical efficiency vs. the depth of cut. Bits are between 30-40% efficient. 

 

Eq. 3.19 includes torque (T) as a variable for the MSE. However, during drilling 

operations, the majority of field data that is produced are in the form of WOB, N and 

ROP. Thereby, R.C. Pessier and M.J. Fear introduced in 1992 the bit coefficient of sliding 

friction (𝜇) as a means to represent torque as a function of WOB and the bit diameter [39]. 

This relationship, the new MSE term and the ROP that can be extracted are represented 

below:  

 

𝑀𝑆𝐸 =
480 ∗ 𝑇 ∗ 𝑁

𝑑𝑏
2 ∗ 𝑅𝑂𝑃

+
4 ∗ 𝑊𝑂𝐵

𝑑𝑏
2 ∗ 𝜋

⁡ 
(3.17) 

  

 𝑀𝑆𝐸𝑎𝑑𝑗 = 𝐸𝐹𝐹𝑀 ∗ 𝑀𝑆𝐸⁡ (3.18) 

 
𝑀𝑆𝐸𝑎𝑑𝑗 = 𝐸𝐹𝐹𝑀 ∗ (

480 ∗ 𝑇 ∗ 𝑁

𝑑𝑏
2 ∗ 𝑅𝑂𝑃

+
4 ∗ 𝑊𝑂𝐵

𝑑𝑏
2 ∗ 𝜋

)⁡ 
(3.19) 
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3.5 D-Exponent vs ROP 

Formation pressure is of major importance during drilling operations and locating 

overpressured formations is knowledge drillers need to consider in order to optimize the 

ROP and prevent any incidents from occurring. Laboratory experiments have shown that 

the differential pressure, i.e. the difference in pressure between the mud column and the 

formation pressure, have a relationship with the ROP, where the higher the mud column 

the lower the ROP. However, the research also showed that no relationship was found 

between the overburden pressure and the ROP [40]. The detection of the differential 

pressure through drilling data is a goal that helps in quick detection of overpressured 

formations and allows for quick reactions to such cases. However, the complexity of the 

drilling bottomhole environment and the multiple factors that affect the ROP has 

presented to a difficulty in achieving such a goal. Normalizing the ROP proved to be a 

method to negate this hurdle. This was referred to as the d-exponent. [40, 41] 

The D-exponent was devised by Bingham in 1964 as a means to detect overpressued 

formations from drilling and data and the model that was developed is as follows [42]:  

 

 

Where “𝐸” is the rotary speed exponent, “𝐴𝑀” is the rock matrix strength constant. This 

model holds true for variations in the factors that it includes if all other factors remain 

constant and some ideal constants are held. In 1966, Jorden and Shirley simplified the 

𝑇 = 𝜇 ∗
𝑑𝑏 ∗ 𝑊𝑂𝐵

36
⁡ 

(3.20) 

𝑀𝑆𝐸𝑎𝑑𝑗 = 𝐸𝐹𝐹𝑀 ∗ 𝑊𝑂𝐵 ∗ (
13.33 ∗ 𝜇 ∗ 𝑁

𝑑𝑏 ∗ 𝑅𝑂𝑃
+

4

𝑑𝑏
2 ∗ 𝜋

) 
 

(3.21) 

𝑅𝑂𝑃 =
13.33 ∗ 𝜇 ∗ 𝑁

𝑑𝑏 ∗ (
𝑀𝑆𝐸𝑎𝑑𝑗

𝐸𝐹𝐹𝑀 ∗ 𝑊𝑂𝐵
−

4

𝑑𝑏
2 ∗ 𝜋

)

 
 

(3.22) 

𝑅𝑂𝑃 =⁡𝐴𝑀𝑁
𝐸 (

𝑊𝑂𝐵

𝑑𝑏
)
𝑑𝑒𝑥𝑝

⁡ 
 

(3.23) 
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model presented by Bingham using the assumptions that (𝐴𝑀 = 1) and that (𝐸 = 1). 

Using these and rearranging the model, gives the d-exponent as:  

 

 

For the calculation of the d-exponent, it is desirable to keep the mud density functions 

constant, so the resulting d-exponent only reflects the formation pressure and the 

differential pressure. This was done by Rehm And McClendon in 1971 by using an 

empirical basis. This gives the following expression [43]:  

 

 

Where “𝑑𝑐” is the corrected d-exponent, “𝑁𝑀𝑊” is the normal mud weight of the area 

and “𝐸𝐶𝐷” is the equivalent circulating density.  

 

3.6 Drag Bit Model  

The models presented before, have mostly been to the application of roller cone bits and 

with the ever-increasing usage of drag bits in drilling operations, a new model was 

required. In 1994, Hareland and Rampersad developed an ROP model for drag bits such 

as Natural diamond bits, PDC bits or any Geoset bit. The model assumes conservation of 

mass where the ROP is equivalent to the rate of cuttings removal. The model takes into 

consideration the bit geometry, cutter geometry, bit wear and UCS. Further elaboration 

on the model is included in Appendix I [44]. 

 

3.8 Maurer Model 

In 1962, Maurer developed his “perfect-cleaning theory” of rotary drilling for predicting 

the ROP when using roller con bits. This model assumes perfect cleaning during drilling, 

i.e., condition where all the drilling cuttings are removed between tooth impacts. The 

model developed my Maurer is based on two observations [45]: 

𝑑𝑒𝑥𝑝 =
𝑙𝑜𝑔 (

𝑅𝑂𝑃
60𝑁)

𝑙𝑜𝑔 (
120𝑊𝑂𝐵
106𝑑𝑏

)
⁡ 

 

(3.24) 

𝑑𝑐 = 𝑑𝑒𝑥𝑝 (
𝑁𝑀𝑊

𝐸𝐶𝐷
) 

(3.25) 
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• The crater volume (𝑉𝑐) is proportional to the square of the depth of penetration 

(𝑋)  for craters made by wedge-shaped chisels: 𝑉𝑐 ∝ 𝑋2 

• The depth of penetration (𝑋) is inversely proportional to the drillability strength 

of the rock (𝑆) if constant force is applied on the tooth: 𝑋 ∝ 1/𝑆 

 

The model will be further elaborated in Appendix I. 

 

3.7 Bingham Model  

In 1965, Bingham developed a simplistic model to estimate the value of ROP. This model 

is a simplistic modified version of the model developed by Maurer. This model is 

applicable for low values of WOB and N. It neglects the drilling depth and thus has low 

real-world reliability [46]. Further explanation of the model will be found in Appendix I 
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4 ORMEN LANGE FIELD DATA MODELLING AND 

WORKFLOW  

 

The modelling in this thesis is done through multiple databases in order to find a 

relationship between the ROP and the various factors that affect it while drilling. In order 

to do so, access to large databases of recorded values of the ROP and the factors that 

affect it is required. 

 

The Norwegian Petroleum Directorate (NPD) has drilling reports for the vast majority of 

the wells drilled on the Norwegian continental shelf (NCS) and records all the ROP data 

in them. Having access to such data from a well and a model for ROP, helps predicting 

the ROP for a new well. 

 

This thesis revolves around modelling ROP and testing the models on nearby wells to 

validate and improve the model. The modelled ROP will be compared to the filtered one 

for these wells and the model will be evaluated. The ROP modelling will be done with 

regression of the datasets and will be tested against well-established methods such as the 

MSE, warren and the d-exponent. Worth mentioning is that Morten Adamsen Husvæg 

and Malik Alsenwar previously used similar modelling methods.  

 

4.1 Ormen Lange field description   

Drilling data represented in drilling logs and mud reports that where enquired from the 

NPD were exported to a spreadsheet in Excel where it was filtered before being modelled.  

 

The field of application in this thesis is the Ormen Lange field, located in block 6305 and 

around 120 Km northwest off Kristiansund. The field is a natural gas field with water 

depths ranging from around 800 m to 1100 m. The field was discovered in 1997 and 

started producing natural gas in 2007 and is still producing until today with a declining 

productivity from the well due to reduction in reservoir pressure [47]. The location of the 

field and the wells can be observed in Figures 14 and 15, respectively. The ROP model 
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coefficients are derived from data from wells 6305/7-D-1 H, 6305/7-D-2 H and 6305/7-

D-3 H. Each of the three models is tested by modelling the ROP of the other two wells. 

 

The more the model is tested, the more valid and robust it becomes. The modelling 

method using linear regression, the warren model, MSE model and the d-exponent will 

be further discussed in this chapter. 

 

 

Figure 14. Location of the Ormen Lange field on the NCS [48]. 
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Figure 15. Location of the three wells used in the modelling in block 6305/7 [48]. 

 

4.2 Drilling data filtration   

Filtering was done to refine the ROP and its parameters and to remove any outliers and 

counter any noise present in the data creating a more solid representative model. More 

details about the filtering method will be discussed later in the chapter.  

 

4.2.1 Moving Average Filter  

The moving average filter is one of the simplest yet most effective low pass filters in 

Digital signal processing (DSP). Despite being one of the simplest filters, the moving 

average filter is optimal for reducing any noise present in a signal while retaining any 

sharp step response. The moving average filter takes the average of a number of points 

from the input signal to calculate one point of the output signal, this is seen in equation 

4.1 [49]:  
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Where "𝑦⁡[𝑖]" is the outcome signal of the filter, “𝑀” is the number of points in the 

moving average filter. The smoothening of the signal or data is dependent on the value of 

"𝑀" where the larger the number of points we average, the smoother the signal or data 

gets. However, a too high value of "𝑀" will cause the signal to lose the sharpness at the 

edges. All of this can be seen in Figure 16 below [50]. 

 

In this thesis, moving average filter was used on both the drilling parameters and the 

actual ROP prior to regression. This was done to smooth down, reduce the noise and 

eliminate any offsets in the data provided because linear regression provides better 

models when the noise and offsets are removed.  Thus, for ROP, Eq. 4.1 becomes: 

 

 

Where 𝑅𝑂𝑃𝑓𝑖𝑙𝑡 is the filtered value of the ROP. The same is done for all the parameters 

that are being used for the modelling. This is done in Microsoft Excel. Figure 16 shows 

an example of moving average calculated for window =5. Application of this filtering 

method is shown in Appendix II.  

 

𝑦⁡[𝑖] =
1

𝑀
∑ 𝑥⁡[𝑖 + 𝑗]

𝑀−1

𝑖=0

⁡ 
 

 (4.1) 

𝑅𝑂𝑃𝑓𝑖𝑙𝑡⁡[𝑖] =
1

𝑀
∑ 𝑅𝑂𝑃⁡[𝑖 + 𝑗]

𝑀−1

𝑖=0

⁡ 
 

 (4.2) 
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Figure 16. Example of moving average. 

 

4.2.2 Exponential Smoothing 

An exponential smoothing technique was also employed to filter drilling data.  The 

principle of forecasting is based on using weighted averages where the weights 

exponentially decrease. It can also be written as [51]:  

𝛼 is the smoothing parameter and is between 0 and 1.  

Here the two weighted moving average with two weights: α and 1−α. The previous 

expected ŷ t−1 value is multiplied by 1−α and makes the expression recursive.  

The forecast at time t+1 is equal to a weighted average between the most recent 

observation yt and the most recent forecast ŷ t|t−1. 

 

Figure 17 shows an example of exponential smoothing applied on the field measured ROP 

data. The examples displayed are for smoothing parameters (alpha = 0.9 and alpha = 

0.75). As shown, the smoothing parameter alfa =0.9 reduced the spikes as compared with 

the alfa =0.75.  

 

0

50

100

150

200

250

300

350
R

O
P,

 f
t/

h
r

ROP (ft/hr) Moving avarage (window =5)

𝑆𝑡 = 𝛼 ∗ 𝑦𝑡−1 + (1 − 𝛼)𝑆𝑡−1 
(4.3) 
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Figure 17. Example of exponential smoothing for alfa = 0.9 and 0.75. 

 

4.3 ROP modelling techniques  

4.3.1 Multiple Linear Regression  

The modelling of the ROP consists of more than one independent variable, due to this, 

multiple linear regression is used with the assumptions that the factors share a linear 

relationship with the ROP. Regression is a method to find a quantitative relationship 

between an outcome and multiple independent variables or regressors, while taking into 

account any independent or simultaneous change in the variables. This modelling does 

not care nor know of the underlying physics and mechanics behind the values introduced 

and attempts to best fit the regressors using coefficients to result in the outcome. Thus, 

the model from the regression will be more of a quantitative analysis of the variables that 

uses logical reasoning than a logical model. The equation that represents such modelling 

is given by: [52] 

 

 

Where “y” is the dependent outcome, "𝛽0−𝑛” are the regression coefficients, “𝛽0” is the 

intercept and “𝑋1−𝑛” are the regressors.  

 

Prior to the modelling workflow, filtering of the data was applied, and the model uses the 

filtered RPM, torque, WOB, formation pressure, mud weight, the flowrate and the UCS 
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𝑦⁡ = ⁡𝛽0 ⁡+⁡𝛽1𝑋1 ⁡+ ⁡𝛽2𝑋2 ⁡+ ⁡𝛽3𝑋3 ⁡+⁡⋯⁡+⁡𝛽𝑛𝑋𝑛⁡ (4.4) 
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as the regressors with the observed and filtered ROP as the outcome of the model. The 

UCS for the various depths is not presented in the drilling reports and is calculated from 

the MSE. This is more explained in chapter 3.4. 

 

After the modelling is completed and coefficients are determined, the model will be tested 

on other wells using the filtered data of that well. Throughout the thesis, the filtering must 

be consistent and done in a manner that all the data are filtered using the same number of 

points in the moving average filter as illustrated in section 4.2.1. 

 

Thus, the ROP is the “𝑦” in Eq. 4.4 and all the other parameters are represented in the 

different “𝑋” values. Thus, Eq. 4.4 can be written as:  

 

 

Well deviation is not considered as part of the variables in this modelling. This can be a 

major parameter that affects the ROP due to the changing formation strength when 

changing from vertical to deviated. The wells used from the field are correlated for the 

same geological sections and are modelled accordantly. The coefficients from the 

regression are applied on the same geological sections of the wells. The data from wells 

6305/7-D-1 H, 6305/7-D-2 H and 6305/7-D-3 H are filtered in Excel and after that, 

modelled using the data analysis package. A workflow representation can be seen in 

Figure 18. More details on the Excel workflow will be presented in Appendix II.  

 

𝑅𝑂𝑃⁡ = ⁡𝛽0 ⁡+ ⁡𝛽1𝑊𝑂𝐵⁡ +⁡𝛽2𝑇𝑜𝑟𝑞𝑢𝑒⁡ +⁡𝛽3𝑅𝑃𝑀⁡ +⁡𝛽4𝐹𝑙𝑜𝑤⁡𝑟𝑎𝑡𝑒 +⁡𝛽5𝐹𝑃 

+⁡𝛽6𝑀𝑊 +⁡𝛽7𝑈𝐶𝑆⁡⁡⁡⁡⁡ 

(4.5) 
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Figure 18. Multiple linear regression workflow [21]. 

4.3.2 D-exponent 

The drillability exponent, d-exponent, is a normalized value that represents the drillability 

of a formation using drill data such as the WOB, ROP, RPM and the bit diameter; as 

shown in Eq. 3.24. This equation was further corrected by Rehm et. Al to include the 

effect of the ECD while drilling. This is established in Eq. 3.25. In the thesis, the d-

exponents from the reference well are used for modelling the ROP for the close-by wells. 

Due to lacking data on the ECD, the corrected d-exponent cannot be used for modelling 

and thus Eq. 3.25 is not used. The values of the d-exponent for one well are computed 

using Eq. 3.24. These values are then implemented in Eq. 4.6, which is a modified version 

of Eq. 3.24 that gives ROP as an output. The workflow for this application is represented 

in Figure 19. 

Multiple Linear 
regression workflow

Data Analysis →

Regression 

Input Y Range: Filtered ROP 

Input X Range: Filtered 
Drilling data 

compute 
regression 

coefficients 

implement regression 
model with the coefficients 

on nearby well 

Calculate modelled ROP for 
nearby well 
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Figure 19. D-exponent Workflow. 

 

4.3.3 MSE – Mechanical Specific Energy  

The MSE describes the energy needed to excavate one volume of the formation rock. This 

model was developed by Teale and has been used as a method to estimate the formation 

strength in the oil and gas industry. MSE is used in this thesis work to model the ROP. 

This is done by calculating the MSE values using data from the reference well and Eq. 

3.17. These values are then implemented into Eq. 4.7 to compute the ROP values for a 

different well. This assumes that the MSE value for same depth is correlative between the 

different wells. The Workflow of such a procedure is shown in Figure 20. 

 

D-exponent Workflow 

Calculate D-exponent 
from reference well 

Implement D-exponent 
on another well 

Use model in Eq. 4.6 to 
calculate ROP 

Eq. 3.24 → 𝑙𝑜𝑔 (
𝑅𝑂𝑃

60𝑁
) = 𝑑 ∗ log⁡(

12𝑊𝑂𝐵

106𝑑𝑏
)   

→  log 𝑅𝑂𝑃 = 𝑑 ∗ 𝑙𝑜𝑔 (
12𝑊𝑂𝐵

1000𝑑𝐵
) + log(60𝑁)   

→   𝑅𝑂𝑃 = 10
𝑑∗log(

12𝑊𝑂𝐵

106𝑑𝑏
)+log⁡(60𝑁)

 

 

 

(4.6) 
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Figure 20. MSE Workflow 

 

 

4.3.4 Warren Model  

The Warren model presented in 1981 for roller cone soft formation bits aims at relating 

the ROP to multiple drilling parameters such as the WOB, 𝑑𝑏, the modified impact force 

(𝐹𝑗𝑚), formation strength, 𝑁, fluid specific gravity (𝛾𝑓) and the plastic viscosity (𝜇). This 

model was established through laboratory testing using real life drilling data. The Warren 

model was established first as the “perfect-cleaning” model that assumes perfect cleaning 

under the drilling bit and equal return of the drilling fluid and the “imperfect-cleaning” 

model which is a modified version of the prior one that does not consider perfect cleaning.  

MSE Worflow 

Calculate MSE values from reference well 

Implement MSE values on another well 

Use model in Eq. 4.7 to calculate ROP 

Eq. 3.17 →⁡𝑀𝑆𝐸 ∗ 1000⁡𝑑𝑏
2 = ⁡

4⁡𝑊𝑂𝐵

𝜋
+

480⁡𝑅𝑃𝑀⁡𝑇

𝑅𝑂𝑃
 

→      
480⁡𝑅𝑃𝑀⁡𝑇

𝑅𝑂𝑃
 = 𝑀𝑆𝐸⁡1000⁡𝑑𝑏

2  −
4⁡𝑊𝑂𝐵

𝜋
     

→      
1

𝑅𝑂𝑃
=

𝑀𝑆𝐸⁡1000⁡𝑑𝑏
2−

4⁡𝑊𝑂𝐵

𝜋

480⁡𝑅𝑃𝑀⁡𝑇
         

→    ⁡𝑅𝑂𝑃   = [
𝑀𝑆𝐸⁡1000⁡𝑑𝑏

2−
4⁡𝑊𝑂𝐵

𝜋

480⁡𝑅𝑃𝑀⁡𝑇
]

−1

 

 

 

 

 

(4.7) 
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In order to calculate the ROP using this model, data for these parameters needs to be 

available. Unfortunately, rock strength is not provided in the drilling reports. In order to 

tackle that, Teale’s definition of the MSE is used to estimate the rock strength. Teale 

assumes that the MSE is equal to the UCS of the rock. Thus, the value of the rock strength 

can be replaced by the MSE.  

 

The “imperfect-cleaning” model will be used to model ROP for the selected fields. This 

will be done by expressing Eq. 3.3 as follows: 

 

The terms (
𝑆2𝑑𝑏

3𝑅𝑂𝑃

𝑁𝑊𝑂𝐵2
), (

𝑅𝑂𝑃

𝑁𝑑𝑏
) and (

𝑑𝑏𝛾𝑓𝜇𝑅𝑂𝑃

𝐹𝑗𝑚
) are calculated for all the datapoints in the 

Microsoft Excel sheet for the reference well . Eq. 4.8 can be expressed as a matrix in the 

form of:  

 

 

Where x, y and z are the three terms in Eq. 4.8 respectively. The matrix is then solved in 

Matlab to calculate the values of “a”,” b” and “c”. These values are then applied to Eq. 

3.3. A representation of the workflow is shown in Figure 21 and the detailed work will 

be further discussed in Appendix II.  

 

𝑅𝑂𝑃 = (
𝑎𝑆2𝑑𝑏

3

𝑁𝑊𝑂𝐵2
+

𝑏

𝑁𝑑𝑏
+
𝑐𝑑𝑏𝛾𝑓𝜇

𝐹𝑗𝑚
)

−1

 

 

→⁡
1

𝑅𝑂𝑃
=

𝑎𝑆2𝑑𝑏
3

𝑁𝑊𝑂𝐵2
+

𝑏

𝑁𝑑𝑏
+
𝑐𝑑𝑏𝛾𝑓𝜇

𝐹𝑗𝑚
 

 

→ ⁡𝑎 (
𝑆2𝑑𝑏

3𝑅𝑂𝑃

𝑁𝑊𝑂𝐵2
) + 𝑏 (

𝑅𝑂𝑃

𝑁𝑑𝑏
) + 𝑐 (

𝑑𝑏𝛾𝑓𝜇𝑅𝑂𝑃

𝐹𝑗𝑚
) = 1 

 

 

 

 

(4.8) 

[

𝑥1 𝑦1 𝑧1
⋮ ⋮ ⋮
𝑥𝑛 𝑦𝑛 𝑧𝑛

] [
𝑎
𝑏
𝑐
] = [

1
⋮
1
] 

 

(4.9) 
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Figure 21. Warren Model Workflow 
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5 RESULTS 

 

This chapter will present the results of the ROP modelling techniques shown in chapter 

4. Previous work by Malik and Morten has shown that ROP modelling for far away fields 

yields poor results. Thus, the main focus in this thesis work is to improve the reliability 

and accuracy of the ROP modelling in nearby wells in the same field. This will result in 

better predictions of the ROP when drilling a well close to an already drilled one and 

having the drilling results of the old one.  

 

The results of the modelling are presented in graphs that show both the actual filtered 

ROP and the modelled ROP in ft/hr. In the graphs, the blue line always represents the 

actual filtered ROP for the well, while the orange line indicates the modelled ROP using 

the technique being discussed. The x-axis for the graphs will represent the true depth of 

the fields in ft. 

 

The field that is chosen for this thesis is the Ormen Lange field, using wells 6305/7-D-1 

H, 6305/7-D-2 H and 6305/7-D-3 H. All the techniques previously mentioned will be 

applied to all 3 wells and the results for each well be tested on the other two. By using 

multiple wells in the same field and multiple techniques, the validity of the modelling 

techniques will be verified and assured.  

 

The modelling in the thesis, will be done using two techniques:  

 

• Modelling using data from the whole well  

• Modelling using data from the different geological groups in the well  

 

This is done to test the old method of modelling the whole well and applying it on nearby 

wells and compare it to a new approach.  
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5.1 Multiple Regression  

This modelling technique was presented in chapter 4.3.1 and the workflow used for the 

achieving the results was presented in Figure 18. Both modelling techniques will be used 

to calculate the ROP 

 

5.1.1 Total Well Data Modelling  

This subchapter will present the modelling of the wells using data from the whole well. 

The modelling will be done first on the wells using the coefficients extracted from them, 

then on the other two near-by wells. The resultant coefficients of the modelling from the 

three wells is presented in tables 2, 3 and 4.  

 

Table 2. Regression coefficients from well 6305/7-D-1 H. 

6305/7-D-1 H  Coefficients 

Intercept -256,095 

X Variable 1 -0,00102 

X Variable 2 0,013662 

X Variable 3 -0,20776 

X Variable 4 0,095136 

X Variable 5 25,2423 

X Variable 6 3,951088 

X Variable 7 -2,41145 

 

Table 3. Regression coefficients from well 6305/7-D-2 H. 

6305/7-D-2 H  Coefficients 

Intercept 233,6515 

X Variable 1 -7,1E-05 

X Variable 2 0,004147 

X Variable 3 0,848821 

X Variable 4 0,019269 

X Variable 5 -16,8295 

X Variable 6 -68,5821 

X Variable 7 -0,75308 
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Table 4. Regression coefficients from well 6305/7-D-3 H. 

6305/7-D-3 H  Coefficients 

Intercept 354,93 

X Variable 1 0,001585 

X Variable 2 -0,00073 

X Variable 3 1,232096 

X Variable 4 -0,35803 

X Variable 5 -14,1769 

X Variable 6 186,4217 

X Variable 7 -2,22376 

 

Testing the models on the fields they were derived from  

The multiple regression model using the coefficients in the tables 2, 3 and 4 is tested on 

wells 6305/7-D-1 H, 6305/7-D-2 H and 6305/7-D-3 H. The resultant ROP is presented in 

Figures 22, 23 and 24 respectively.  

 

 

Figure 22. Multiple regression using whole field data from 6305/7-D-1 H on itself. 
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Figure 23. Multiple regression using whole field data from 6305/7-D-2 H on itself. 

 

 

Figure 24. Multiple regression using whole field data from 6305/7-D-3 H on itself. 

 

There is good correlation overall when testing the model on the wells, this was done to 

indicate that the model was good and to go further into the modelling section later. The 

model showed good results in the lower sections of the wells towards the Rogaland group, 

as well as the middle sections, where the Hordaland group is present. Wells 6305/7-D-1 

H and 6305/7-D-2 H showed some deviation at depths 5331 ft to 5881 ft and 5600 ft to 

6200 ft. This is most likely due to geological properties at those depths.  
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Testing the model with coefficients from well 6305/7-D-1 H 

The coefficients derived from well 6305/7-D-1 H presented in table 2 are used in the 

multiple regression model to predict the ROP for wells 6305/7-D-2 H and 6305/7-D-3 H. 

The results are shown in Figures 25 and 26 respectively.  

 

 

Figure 25. Multiple regression using whole field data from 6305/7-D-1 H on 6305/7-D-

2 H. 

 

 

Figure 26. Multiple regression using whole field data from 6305/7-D-1 H on 6305/7-D-

3 H. 
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The modelled ROP values from well 6305/7-D-2 H in Figure 25 show good correlation 

with the filtered ROP values from well 6305/7-D-1 H. This is an indication of similarities 

in the geological environment of the two wells. Using well coefficients from well 6305/7-

D-3 H to model the ROP gave worse correlation that that of well 6305/7-D-2 H, where it 

showed correlation with the filtered ROP for most of the well except that the amplitudes 

where lower towards the start and higher during the middle of the well. However, towards 

the end of the field, after 9800 ft, the correlation fell off. 

 

Testing the model with coefficients from 6305/7-D-H 2 

The coefficients from well 6305/7-D-H 2 presented in table 3 are applied in the model to 

model the ROP for wells 6305/7-D-H 1 and 6305/7-D-H 3. The results of this is presented 

in Figures 27 and 28.  

 

 

Figure 27. Multiple regression using whole field data from 6305/7-D-2 H on 6305/7-D-

1 H. 
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Figure 28. Multiple regression using whole field data from 6305/7-D-2 H on 6305/7-D-

3 H. 

 

Using well 6305/7-D-1 H to model the ROP of 6305/7-D-1 H gave fairly good results, 

especially towards the end. The filtered ROP is seen to have a lot of bouncing up and 

down of the values which can be most likely attributed to bit bouncing. The results 

became excellent towards the Rogaland formation at the end of the field. The model 

applied on well 6305/7-D-3 H gave good correlation towards the start of the field in the 

Nordland group and towards the end in the Rogaland group. However, the model 

overestimated the ROP in the interval (6430 ft to 7700 ft) and underestimated the ROP in 

the intervals (5200 ft to 6300 ft) and (7800 ft to 8960 ft). This is most likely due to 

geological differences between the wells at those depths and the inclination of the well at 

those depths.   

 

Testing the model with coefficients from 6305/7-D-3 H 

The model is lastly tested on wells 6305/7-D-1 H and 6305/7-D-2 H using the coefficients 

from well 6305/7-D-3 H located in table 3. The results of this modelling are presented in 

Figures 29 and 30.  
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Figure 29. Multiple regression using whole field data from 6305/7-D-3 H on 6305/7-D-

1 H. 

 

 

Figure 30. Multiple regression using whole field data from 6305/7-D-3 H on 6305/7-D-

2 H. 
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correlation with the modelled ROP values at the start, being shifted to the left until 5250 

ft and started giving good correlation after 8000 ft towards the Rogaland formation. This 

can be due to a difference in the depth of the geological formations between the two wells 

at the measured depth. Well 6305/7-D-2 H gave underestimated values of the ROP from 

the start until 6700 ft and overestimated values from then until 9400 ft. This was then 

followed by excellent correlation with the filtered ROP values. It is worth mentioning 

that, though the values where higher or lower than the filtered ROP, the shape of the lines 

was very similar between the modelled ROP and the filtered one.    

    

5.1.2 Geological Well data modelling  

Using the drilling reports for the wells being modelled. The depth interval of the multiple 

geological groups was established and each of the groups was modelled using the drilling 

data for those depths. The main focus of this thesis will be the Nordland, Hordaland and 

Rogaland groups that three wells share. The coefficients for the model of a group was 

then taken to another well, to be modelled on the depth interval of the same geological 

group and not the same depth interval. The results of the multiple models at the different 

depths are then set together and compared to the filtered ROP of the well. This was done 

to minimize any effect of the geological environment on the modelling. The following 

subchapter will present and discuss the results of this technique; first presenting the result 

of the modelling on the wells the coefficients were extracted from, followed by the results 

of using the model on the other two nearby wells.  

 

For the three wells, the depths at which the different geological formations where 

located are presented in the tables 5,6 and 7. 

 

Table 5. Geological groups and their depths for well 6305/7-D-1 H. 

Total Depth (ft) Geological group 

5265 to 5735 Nordland 

5736 to 8448  Hordaland 

8448 to 10990  Rogaland 
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Table 6. Geological groups and their depths for well 6305/7-D-2 H. 

Total Depth (ft) Geological group 

4960 to 5557.7 Nordland 

5558 to 8448  Hordaland 

8448 to 12660 Rogaland 

 

Table 7. Geological groups and their depths for well 6305/7-D-3 H. 

True Depth (ft) Geological group 

5164 to 5603  Nordland 

5604 to 8667.9 Hordaland 

8668 to 11522 Rogaland 

 

 

The regression coefficients that were derived from the wells for the three different 

geological groups are presented in the following tables.      

 

Well 6305/7-D-1 H:  

 

Table 8. Regression Coefficients for the Nordland group from well 6305/7-D-1 H. 

Nordland  Group Coefficients 

Intercept -1282,4178 

X Variable 1 0,00100507 

X Variable 2 0,04323143 

X Variable 3 0,55129937 

X Variable 4 1,2699148 

X Variable 5 -6,7957517 

X Variable 6 -307,71777 

X Variable 7 -11,67909 
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Table 9. Regression Coefficients for the Hordaland group from well 6305/7-D-1 H. 

Hordaland Group Coefficients 

Intercept -840,4591402 

X Variable 1 0,00134773 

X Variable 2 -0,006655235 

X Variable 3 0,756484313 

X Variable 4 -0,121865015 

X Variable 5 41,23263227 

X Variable 6 602,3079495 

X Variable 7 -4,921434062 

 

 

Table 10. Regression Coefficients for the Rogaland group from well 6305/7-D-1 H. 

Rogaland group  Coefficients 

Intercept 335,5733314 

X Variable 1 0,000624926 

X Variable 2 -0,005130162 

X Variable 3 0,935142244 

X Variable 4 -0,203348922 

X Variable 5 5,407532883 

X Variable 6 22,24859395 

X Variable 7 -2,30457278 
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Well 6305/7-D-2 H: 

 

Table 11. Regression Coefficients for the Nordland group from well 6305/7-D-2 H. 

Nordland Group  Coefficients 

Intercept -2528,3687 

X Variable 1 -0,0049897 

X Variable 2 0,02735047 

X Variable 3 0,37624936 

X Variable 4 0,62766009 

X Variable 5 -33,038602 

X Variable 6 1742,10626 

X Variable 7 -18,428776 

 

 

Table 12. Regression Coefficients for the Hordaland group from well 6305/7-D-2 H. 

Hordaland group  Coefficients 

Intercept 213,9518225 

X Variable 1 0,000656666 

X Variable 2 -0,001875314 

X Variable 3 0,303233038 

X Variable 4 -0,316254321 

X Variable 5 11,53332675 

X Variable 6 259,2394217 

X Variable 7 -6,230105632 

 

 

Table 13. Regression Coefficients for the Rogaland group from well 6305/7-D-2 H. 

Rogaland Group  Coefficients 

Intercept 39,4557011 

X Variable 1 0,00068047 

X Variable 2 -0,0023738 

X Variable 3 1,83471135 

X Variable 4 -0,485557 

X Variable 5 0,77095859 

X Variable 6 275,183786 

X Variable 7 -0,7506833 
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Well 6305/7-D-3 H: 

 

Table 14. Regression Coefficients for the Nordland group from well 6305/7-D-3 H. 

Nordland group  Coefficients 

Intercept 1149,25302 

X Variable 1 0,00849489 

X Variable 2 -0,0042855 

X Variable 3 0 

X Variable 4 0,15770134 

X Variable 5 -8,4993114 

X Variable 6 -972,90026 

X Variable 7 -2,9643069 

 

 

Table 15. Regression Coefficients for the Hordaland group from well 6305/7-D-3 H. 

Hordaland group  Coefficients 

Intercept 762,8720289 

X Variable 1 0,001768878 

X Variable 2 -0,003741035 

X Variable 3 0 

X Variable 4 -0,538295434 

X Variable 5 1,791043548 

X Variable 6 133,461745 

X Variable 7 -6,58277937 

 

 

Table 16. Regression Coefficients for the Rogaland group from well 6305/7-D-3 H. 

Rogaland group  Coefficients 

Intercept -12049,238 

X Variable 1 0,00092087 

X Variable 2 0,03030958 

X Variable 3 0 

X Variable 4 -3,5615349 

X Variable 5 13,0681548 

X Variable 6 11202,0481 

X Variable 7 -1,106502 
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Using the coefficients in the tables above, the ROP was calculated for each well using 

its own data. This is represented in the Figures 31, 32 and 33. 

 

 

Figure 31. Multiple Regression (using geological sections) of well 6305/7-D-1 H on itself. 

 

 

Figure 32. Multiple Regression (using geological sections) of well 6305/7-D-2 H on itself. 
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Figure 33. Multiple Regression (using geological sections) of well 6305/7-D-3 H on itself. 

 

When modelling by geological groups, the results showed excellent correlation with the 

filtered ROP, with small to no deviations from the filtered ROP. The results are an 

improvement over using the whole well as shown in Figures 22, 23 and 24. This indicates 

that the model used for the multiple linear regression is good.  

 

Testing the model with coefficients from 6305/7-D-1 H 

The coefficients from well 6305/7-D-1 H presented in tables 8, 9 and 10 for the Nordland, 

Hordaland and Rogaland groups respectively are used to model the ROP for wells 6305/7-

D-2 H and 6305/7-D-3 H in those three geological groups. The resultant ROP and the 

filtered ROP are then plotted against each other and presented in Figures 34 and 35.  
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Figure 34. Multiple regression using geological group data from 6305/7-D-1 H on 

6305/7-D-2 H. 

 

 

Figure 35. Multiple regression using geological group data from 6305/7-D-1 H on 

6305/7-D-3 H. 
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6305/7-D-3 H. The modelled ROP compared to the filtered ROP can be seen in Figures 

36 and 37.  

 

 

Figure 36. Multiple regression using geological group data from 6305/7-D-2 H on 

6305/7-D-1 H. 

 

 

Figure 37. Multiple regression using geological group data from 6305/7-D-2 H on 

6305/7-D-3 H. 
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mostly eliminated as seen in Figures 36 and 37, where the modelled ROP and the filtered 

ROP values are near each other and follow the same pattern.  

 

Testing the model with coefficients from 6305/7-D-3 H 

The coefficients from well 6305/7-D-3 H presented in tables 14,15 and 16 are used to 

model the ROP of wells 6305/7-D-1 H and 6305/7-D-2 H. The resultant modelled ROP 

and the filtered ROP then are presented in Figures 38 and 39 respectively.   

 

 

Figure 38. Multiple regression using geological group data from 6305/7-D-3 H on 

6305/7-D-1 H. 

 

 

Figure 39. Multiple regression using geological group data from 6305/7-D-3 H on 

6305/7-D-2 H. 

 

0

100

200

300

400

5
,0

2
0

5
,2

1
7

5
,4

1
3

5
,6

1
0

5
,8

2
3

6
,0

2
0

6
,2

1
7

6
,4

1
4

6
,6

1
1

6
,8

0
8

7
,0

0
5

7
,2

0
1

7
,3

9
8

7
,5

9
5

7
,7

9
2

7
,9

8
9

8
,1

8
6

8
,3

8
3

8
,5

7
9

8
,7

7
6

8
,9

7
3

9
,1

7
0

9
,3

6
7

9
,5

6
4

9
,7

6
0

9
,9

5
7

1
0

,1
5

4

1
0

,3
5

1

1
0

,5
4

8

1
0

,7
4

5

1
0

,9
4

2

R
O

P,
 f

t/
h

r

Depth, ft

6305/7-D-1 H (using coefficients from 6305/7-D-3 H)

filtered rop modelled ROP (using coefficients from 6305/7-D-3 H)

0

50

100

150

200

250

5
,2

6
6

5
,4

6
3

5
,6

5
9

5
,8

5
6

6
,0

5
3

6
,2

5
0

6
,4

4
7

6
,6

4
4

6
,8

4
1

7
,0

3
7

7
,2

3
4

7
,4

3
1

7
,6

2
8

7
,8

2
5

8
,0

2
2

8
,2

1
9

8
,4

1
5

8
,6

2
9

8
,8

2
5

9
,0

2
2

9
,2

1
9

9
,4

1
6

9
,6

1
3

9
,8

2
6

1
0

,0
3

9
1

0
,2

3
6

1
0

,4
4

9
1

0
,6

7
9

1
0

,8
7

6
1

1
,0

7
3

1
1

,2
7

0
1

1
,4

6
7

R
O

P,
 f

t/
h

r

Depth, ft

6305/7-D-2 H (using coefficients from 6305/7-D-3 H)

filtered rop modelled ROP (using coefficients from 6305/7-D-3 H)



Ormen Lange well data based ROP modelling and application 

MSc Thesis, 2019  56 

 

The modelled ROP for wells 6305/7-D-1 H and 6305/7-D-2 H using the coefficients from 

6305/7-D-3 H gave a good result, where the modelled ROP followed the pattern of the 

filtered ROP in both Figures. However, we can observe towards the end of the field after 

entering the Rogaland formation that the model deviates and overestimates the values of 

the ROP. This could be due to the difference of the inclination and total depth of the wells. 

The results show a better overall correlation opposed to modelling the whole well, as 

shown in Figures 29 and 30.  

 

It is worth mentioning that modelling using the geological groups gave exceptionally 

good patterns for the modelled ROP that were almost identical to the filtered ROP for all 

cases, this indicates a good correlation between the modelling technique and the actual 

dataset.  

 

5.2 MSE  

The concept of MSE proposed by Teale in 1965 generates a physical model that describes 

the relationship between the energy to excavate one volume of formation rock, the drilling 

parameters such as the WOB, drill bit, the ROP, etc. Using this relationship to model the 

ROP, assumes that the MSE between different wells for the same depth is correlative or 

equal. This can create inaccuracies since the geology between wells and the formation 

strength can differ greatly, especially for wells that are far away. The model is adequate 

for wells that are nearby and will be tested in this thesis work using the workflow 

described in Figure 20.  

 

This section presents the ROP modelling using MSE and the results. 

 

MSE values for the three wells: 

The MSE values for all three wells are calculated using Eq. 3.17. The resultant MSE 

values are presented in Figure 40 against the total depth of the three wells.  
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Figure 40. Calculated MSE for wells 6305/7-D-1 H, 6305/7-D-2 H and 6305/7-D-3 H vs. 

total depth. 

 

The results show good correlation between the three wells when it comes to the MSE. 

This indicates that the formation strength and the formation pressure for the three wells 

are close to each other at the depths presented in the Figure. This is true until we reach a 

total depth of 10563 ft where the MSE of well 6305/7-D-3 H increases rapidly compared 

to the other two wells.  

 

Testing the model using MSE values from 6305/7-D-1 H: 

The MSE model is tested using the calculated MSE values from well 6305/7-D-1 H. 

The modelled ROP are presented in Figures 41 and 42.  
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Figure 41. Modelled ROP (using MSE values from 6305/7-D-1 H). 

 

 

Figure 42. Modelled ROP (using MSE values from 6305/7-D-1 H). 
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where overestimated. This indicates that well 6305/7-D-1 H has lower formation strength 

at the top formations while drilling compared to the other two wells.  

 

Testing the model using MSE values from 6305/7-D-2 H: 

The MSE values extracted from 6305/7-D-2 H are used in the ROP model to calculate 

the ROP for the two other wells. The resultant ROP curves are shown in Figures 43 and 

44.  

 

 

Figure 43. Modelled ROP (using MSE values from 6305/7-D-1 H). 
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Figure 44. Modelled ROP (using MSE values from 6305/7-D-2 H). 

 

The model shows correlation between the filtered ROP and the modelled ROP using data 

from 6305/7-D-2 H. However, as seen when we used the MSE values from 6305/7-D-1 

H, the difference in the MSE values between the wells results in either an overestimation 

of the ROP in the cases where the MSE is lower, or an underestimation of the ROP when 

the MSE is higher. This behavior is observed again when we model the ROP for 6305/7-

D-1 H and 6305/7-D-2 H using MSE values from 6305/7-D-3 H and can be seen in 

Figures 45 and 46.  

 

The MSE changes between the wells for the same total depth are results of multiple 

differences between the wells for the same total depth. These could be the formation 

located at those depths, the deviation of the well at that depth, the hole size. These 

differences will affect the energy needed to drill a volume of formation rock.  

 

Testing the model using MSE values from 6305/7-D-3 H: 

The resultant ROP curves for wells 6305/7-D-1 H and 6305/7-D-2 H when using the MSE 

values from 6305/7-D-3 H are presented in Figures 45 and 46. 
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Figure 45. Modelled ROP (using MSE values from 6305/7-D-3 H). 

 

 

Figure 46. Modelled ROP (using MSE values from 6305/7-D-3 H). 
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ROP. The d-exponent is proportional to the formation strength and increases linearly with 

depth for formations that are normally pressurized. ROP can be modelled as long as the 

d-exponent between wells is assumed to be correlative or equal for the same depths. This 

creates uncertainties in the modelled ROP where they drill ability of the formations for 

different depths are bound to be different due to geological differences between the 

different wells. The workflow presented in Figure 19 is used to model the ROP along 

with Eq. 4.6. 

 

This chapter will present and discus the results of the D-exponent modelling 

 

D-exponent values for the wells: 

The calculated D-exponent from the 3 wells is presented in Figure 47. This was done 

using Eq. 3.24 and the drilling data along with the filtered ROP.  It is observed that the 

calculated D-exponent for the same depths are very close between the wells, indicating a 

good correlation of the drill ability of the 3 wells. 

 

 

Figure 47. Calculated d-exponent for 6305/7-D-1 H, 6305/7-D-2 H and 6305/7-D-3 H. 
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Testing the model using d-exponent values from 6305/7-D-1 H: 

The d-exponent values computed from the drilling data of well 6305/7-D-1 H are used in 

Eq. 4.6, along with the bit diameter, WOB and surface rotary speed, to predict the ROP 

for wells 6305/7-D-2 H and 6305/7-D-3 H. The results of this modelling are illustrated in 

Figures 48 and 49.  

 

 

Figure 48. Modelled ROP (using d-exponent from 6305/7-D-1 H). 

 

 

Figure 49. Modelled ROP (using d-exponent from 6305/7-D-1 H). 
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The results’ pattern correlates well with the filtered ROP. However, some peaks in the 

data are noticeable. This is due to a difference in the D-exponent between the multiple 

wells for the same depth. ROP has an exponential relationship with the d-exponent and 

thus any small increase in the d-exponent will result in huge increases for the ROP. This 

is the reason for the huge peaks seen in the Figures.  

 

Testing the model using d-exponent values from 6305/7-D-2 H: 

The model is tested using d-exponent values from 6305/7-D 2 H and implemented to 

calculate the ROP for wells 6305/7-D-1 H and 6305/7-D-3 H. The resultant ROP values 

for the two wells are plotted and illustrated in figures 50 and 51. 

 

 

Figure 50. Modelled ROP (using d-exponent from 6305/7-D-2 H). 
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Figure 51. Modelled ROP (using d-exponent from 6305/7-D-2 H) 

 

The results show good correlation but with the same peaks as we saw when using the d-

exponent values from 6305/7-D-1 H. This is also seen when using the d-exponent values 

from 6305/7-D-3 H on wells 6305/7-D-2 H and 6305/7-D-3 H in Figures 52 and 53. 

  

Testing the model using d-exponent values from 6305/7-D-3 H:  

 

 

Figure 52. Modelled ROP (using d-exponent from 6305/7-D-3 H). 
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Figure 53. Modelled ROP (using d-exponent from 6305/7-D-3 H). 

 

5.4 Warren Model  

The Warren model estimates the ROP based on multiple drilling parameters. This model 

takes into account the cleaning of the hole and the flow of the fluids in the well. The 

model used in the thesis is the “imperfect-cleaning” model that assumes that the rate of 

cuttings generations does not equal the rate of cuttings removal. This model has three 

coefficients “a”, “b” and “c” that are field specific and can be derived if all the data in the 

model is available. The workflow in this thesis is presented in Figure 21 and Eq. 4.8 is 

used to calculate the modelled ROP.  

 

This thesis will attempt to model the ROP based on the Warren model using two methods: 

 

• Modelling the whole well  

• Modelling sections based on geological groups  

 

The results of both these techniques are presented below. 
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5.4.1 Modelling with data from the whole well  

For this part, the coefficients are derived from all of the well data and then used to model 

the ROP for a nearby well. The coefficients “a”, “b” and “c” are calculated for each well 

using Matlab. The calculated coefficients for each of the three wells are presented in 

tables 17, 18 and 19:  

 

Table 17. Warren coefficients for 6305/7-D-1 H (using data from the whole well). 

6305/7-D-1 H Warren coefficients  

a 2,1062E-08 

b 4,62 

c 6,8354E-08 

 

 

Table 18. Warren coefficients for 6305/7-D-2 H (using data from the whole well). 

6305/7-D-2 H Warren coefficients  

a 6,3431E-06 

b 11,00 

c 2,4683E-08 

 

 

Table 19. Warren coefficients for 6305/7-D-3 H (using data from the whole well). 

6305/7-D-3 H Warren coefficients  

a 6,9160E-05 

b 8,67 

c 5,1891E-09 
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Testing the Warren coefficients on the wells they were extracted from:  

Using the Warren coefficients located in tables 17, 18 and 19, The modelled ROP for 

wells 6305/7-D-1 H, 6305/7-D-2 H and 6305/7-D-3 H, respectively. These modelled ROP 

values are then compared to the filtered ROP for the wells. This is seen in Figures 54, 55 

and 56 

  

 

Figure 54. Warren ROP for 6305/7-D-1 H (using coefficients for the same well). 

 

 

Figure 55. Warren ROP for 6305/7-D-2 H (using coefficients for the same well).  
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Figure 56. Warren ROP for 6305/7-D-3 H (using coefficients for the same well). 

 

The model follows the filtered ROP, however most of the time it tries to average the ROP 

values to give a flat line instead of the jumps that the ROP experiences, that might be due 

to multiple factors such as bit bounces or different lithology in a formation. 
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the ROP for the other two wells. The modelled ROP is found in Figures 57, 58. 
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Figure 57. Warren ROP for 6305/7-D-2 H (using coefficients from 6305/7-D-1 H). 

 

 

Figure 58. Warren ROP for 6305/7-D-3 H (using coefficients from 6305/7-D-1 H). 
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gave a better fit overall than the graph of 6305/7-D-3 H.  
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Using Warren coefficients from 6305/7-D-2 H: 

The calculated Warren coefficients from 6305/7-D-2 H are used to model the ROP for 

the wells 6305/7-D-1 H and 6305/7-D-3 H. The resultant Warren ROPs are presented in 

Figures 59 and 60. 

   

 

Figure 59. Warren ROP for 6305/7-D-1 H (using coefficients from 6305/7-D-2 H). 
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Figure 60. Warren ROP for 6305/7-D-3 H (using coefficients from 6305/7-D-2 H). 

  

The modelled ROP for well 6305/7-D-1 H gave better fit than that of 6305/7-D-3 H. This 

observation and that of Figure 57, is an indication that the geological environment of 

these two wells is similar to some extent with 6305/7-D-3 H being the different one. The 

modelled ROP for 6305/7-D-3 H shows the flat lines with overestimations and 

underestimations of the filtered ROP.  
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Figure 61. Warren ROP for 6305/7-D-1 H (using coefficients from 6305/7-D-3 H). 

 

 

Figure 62. Warren ROP for 6305/7-D-3 H (using coefficients from 6305/7-D-2 H). 

 

The modelled ROP in both curves follows the ROP and correlates fairly well with a bit 

of overestimation and underestimation. The model here seems to be very good and thus 
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5.4.2 Modelling with data from geological groups  

For this part, the well is dissected into three sections based on the geological groups of 

the wells. These groups are the Nordland group, the Hordaland group and the Rogaland 

group. Their depth for each well is presented in tables 5,6 and 7. Each one of these groups 

is then modelled to extract the Warren coefficients in Matlab and then implemented in 

the model to calculate the ROP for the other wells in the same sections. The derived 

coefficients for the sections for each well are located in tables 20→28.  

 

Well 6305/7-D-1 H: 

 

Table 20. Warren coefficients for 6305/7-D-1 H (Nordland group). 

Nordland Warren coeffcients 

a -1,368E-05 

b 7,6630594 

c 4,176E-08 

 

Table 21. Warren coefficients for 6305/7-D-1 H (Hordaland group). 

Hordaland Warren coeffcients 

a 1,98E-08 

b 8,4217543 

c 3,585E-08 

 

Table 22. Warren coefficients for 6305/7-D-1 H (Rogaland group). 

Rogaland Warren coeffcients 

a 3,79E-05 

b 9,0099139 

c 1,109E-08 
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Well 6305/7-D-2 H: 

 

Table 23. Warren coefficients for 6305/7-D-2 H (Nordland group). 

Nordland warren coeffcients 

a 0,00120932 

b 13,70520782 

c -8,59327E-08 

 

 

Table 24. Warren coefficients for 6305/7-D-2 H (Hordaland group). 

Hordaland warren coeffcients 

a 1,41038E-05 

b 16,46613309 

c -3,4005E-08 

 

Table 25. Warren coefficients for 6305/7-D-2 H (Rogaland group). 

Rogaland warren coeffcients 

a 5,17683E-06 

b 19,57852892 

c -4,25508E-08 

 

Well 6305/7-D-3:  

 

Table 26. Warren coefficients for 6305/7-D-3 H (Nordland group). 

Nordland warren coeffcients 

a 0,000807196 

b 1,794284605 

c 1,27182E-07 
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Table 27. Warren coefficients for 6305/7-D-3 H (Hordaland group). 

Hordaland warren coeffcients 

a 0,000120838 

b 62,3132419 

c -5,86563E-07 

 

 

Table 28. Warren coefficients for 6305/7-D-3 H (Rogaland group). 

Rogaland warren coeffcients 

a 0,000184203 

b 42,29251281 

c -3,64301E-07 

 

Testing the models on the fields they were derived from  

The coefficients that where derived from the three wells are applied, using the model, 

on the wells they were extracted from to evaluate the model. The results of this is seen 

in Figures 63, 64 and 65. 

 

 

Figure 63. Warren ROP for 6305/7-D-1 H (using coefficients from the geological groups 

for the same well). 
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Figure 64. Warren ROP for 6305/7-D-2 H (using coefficients from the geological 

groups for the same well). 

 

 

Figure 65. Warren ROP for 6305/7-D-3 H (using coefficients from the geological 

groups for the same well). 

 

The resultant Warren ROP curves show good correlation with the filtered ROP and further 

validates the model, indicating that the model has a solid start. This can be seen when 

comparing Figures 63, 64 and 65 with Figures 54, 55 and 56, respectively.  
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Using coefficients from 6305/7-D-1 H: 

The coefficients extracted from well 6305/7-D-1 H located in tables 20, 21 and 22 are 

used to model the Nordland, Hordaland and Rogaland groups in the respective geological 

groups. The results of this modeling are seen as graphs that compare the modelled Warren 

ROP and the filtered ROP in Figures 66 and 67. 

 

 

Figure 66. Warren ROP for 6305/7-D-2 H (using coefficients from the geological 

groups from 6305/7-D-1 H). 

 

 

Figure 67. Warren ROP for 6305/7-D-3 H (using coefficients from the geological groups 

from 6305/7-D-1 H). 
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The results presented in Figures 66 and 67 show a smoother and better correlated 

modelled ROP than what was presented when the modelling was done for the whole well. 

This serves to prove that the geological group correlation improves the accuracy of ROP 

modelling and can serve to give more accurate values.  

 

 

Using coefficients from 6305/7-D-2 H: 

The coefficients extracted from well 6305/7-D-2 H found in tables 23, 24 and 25 are used 

to model the ROP for the three geological groups and then be compared to the filtered 

ROP of the wells 6305/7-D-1 H and 6305/7-D-2 H. The results of such modelling is 

illustrated in Figures 68 and 69 

  

 

Figure 68. Warren ROP for 6305/7-D-1 H (using coefficients from the geological groups 

from 6305/7-D-2 H). 

 

0

50

100

150

200

250

300

350

5
,0

2
0

5
,2

0
0

5
,3

8
1

5
,5

6
1

5
,7

4
1

5
,9

3
8

6
,1

1
9

6
,2

9
9

6
,4

8
0

6
,6

6
0

6
,8

4
1

7
,0

2
1

7
,2

0
1

7
,3

8
2

7
,5

6
2

7
,7

4
3

7
,9

2
3

8
,1

0
4

8
,2

8
4

8
,4

6
5

8
,6

4
5

8
,8

2
5

9
,0

0
6

9
,1

8
6

9
,3

6
7

9
,5

4
7

9
,7

2
8

9
,9

0
8

1
0

,0
8

9
1

0
,2

6
9

1
0

,4
4

9
1

0
,6

3
0

1
0

,8
1

0

R
O

P,
 f

t/
h

r

Depth, ft

6305/7-D-1 H (using Warren coefficients from 6305/7-D-2 H)

filtered ROP modelled ROP (using Warren coefficients from 6305/7-D-2 H)



Ormen Lange well data based ROP modelling and application 

MSc Thesis, 2019  80 

 

 

Figure 69. Warren ROP for 6305/7-D-3 H (using coefficients from the geological groups 

from 6305/7-D-2 H). 

 

The results here again show smoother flow with the filtered ROP for both curves, where 

the modelled Warren ROP tries to match the filtered ROP even more than when we 

modelled the whole well. However, the results still show flat lines for well 6305/7-D-3 H 

and overestimation and underestimation in both cases above.   
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6 SUMMARY AND DISCUSSION  
 

This chapter will analyze the results of the modelling presented in chapter 5 and review 

the rigidity of each modelling technique. This will be done through multiple methods to 

test how accurate the modelled ROP values are to the filtered ROP values. The methods 

used for the evaluation in the thesis work will be presented in this chapter.   

 

6.1 Plot comparisons 

As with all data-based modellings, achieving 100 % accuracy to the actual data is highly 

unlikely. However, to assess any model, a degree of accuracy needs to be made for the 

different data points. This is the goal of this subchapter and will done by testing if the 

modelled ROP values stay within a specific margin of the filtered ROP values. For this, 

two margins are used in this thesis and the multiple modelling techniques are tested. 

 

The margins used in this thesis work are 5 % and 10 % deviations from the filtered ROP 

values. If the modelled ROP values stay within a margin of 5 %, then they share very 

strong correlation with the data and the difference can be considered insignificant 

statistically. The modelled ROP values that are within a -5 % to a +5 % deviation of the 

filtered ROP values will be included there. 

 

 The 10 % margin indicates a good correlation but not a perfect one, where the values 

might not be completely identical but are still close to the filtered ROP. The modelled 

ROP values that are within a -10 % to 10 % deviation of the filtered ROP will be included 

in this margin. Figure 70 gives an overview of how such deviations will look for a set of 

ROP values.  
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Figure 70. ROP deviations plot vs total depth. 

 

In order to evaluate how much of the modelled values are inside the margins, the equation 

developed by Morten Husvæg [53], shown in Eq. 6.1, is used. This equation is applied 

for all the modelled ROP values using the multiple modelling methods. It returns “1” if 

the values are within the margins or “0” if they are not. The resultant “1” and “0” are then 

averaged and multiplied by 100 to give the percentage of modelled ROP values that are 

within the margins. Figures 71 and 72 give a demonstration of this model is used in Excel. 
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𝐼𝐹((𝑅𝑂𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) = 𝑀𝐸𝐷𝐼𝐴𝑁((𝑅𝑂𝑃−𝑋%): (𝑅𝑂𝑃+𝑋%)); 1; 0⁡ 

 

 (6.1) 
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Figure 71. Application of the “IF” model. 

 

 

Figure 72. Calculation of the percentage deviation of the modelled ROP. 

 

The model demonstrated in the Figures is applied for all the modelling techniques and the 

resultant percentage deviations are presented in tables 29 and 30. 

 

Table 29. percentage of data that are within a 5 % margin using all the modelling 

methods. 

5 % margin   Well 

Modelling method applied 6305/7-D-1 H 6305/7-D-2 H 6305/7-D-3 H 

multiple regressions (whole well) 

using coefficients from the well 
31,26 % 21,04 % 11,27 % 

multiple regressions (whole well) 

using coefficients from 6305/7-D-1 H 
 8,5 % 7,37 % 
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multiple regressions (whole well) 

using coefficients from 6305/7-D-2 H 
6,63 %  10,57 % 

multiple regressions (whole well) 

using coefficients from 6305/7-D-3 H 
13,26 % 4,70 %  

multiple regressions (geo groups) 

using coefficients from the well 
53,04 % 41,53 % 29,18 % 

multiple regressions (geo groups) 

using coefficients from 6305/7-D-1 H 
 12,66 % 9,73 % 

multiple regressions (geo groups) 

using coefficients from 6305/7-D-2 H 
12,16 %  12,54 % 

multiple regressions (geo groups) 

using coefficients from 6305/7-D-3 H 
19,60 % 10,56 %  

MSE (coefficients from 6305/7-D-1 

H) 
 9,97 % 5,72 % 

MSE (coefficients from 6305/7-D-2 

H) 
10,17 %  4,66 % 

MSE (coefficients from 6305/7-D-3 

H) 
5,96 % 3,93 %  

D-exponent (coefficients from 6305/7-

D-1 H) 
 6,78 % 5,71 % 

D-exponent (coefficients from 6305/7-

D-2 H) 
7,44 %  7,11 % 

D-exponent (coefficients from 6305/7-

D-3 H) 
5,71 % 7,11 %  

Warren model (whole well) using 

coefficients from the well 
15,14 % 21,81 % 4,93 % 

Warren model (whole well) using 

coefficients from 6305/7-D-1 H 
 8,64 % 6,90 % 

Warren model (whole well) using 

coefficients from 6305/7-D-2 H 
11,60 %  9,36 % 
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Warren model (whole well) using 

coefficients from 6305/7-D-3 H 
10,70 % 8,93 %  

Warren model (geo groups) using 

coefficients from the well 
12,15 % 28,18 % 14,25 % 

Warren model (geo groups) using 

coefficients from 6305/7-D-1 H 
 14,09 % 13,56 % 

Warren model (geo groups) using 

coefficients from 6305/7-D-2 H 
13,40 %  12,75 % 

 

 

Table 30. percentage of data that are within a 10 % margin using all the modelling 

methods. 

10 % margin   Well 

Modelling method applied 6305/7-D-1 H 6305/7-D-2 H 6305/7-D-3 H 

multiple regressions (whole well) 

using coefficients from the well 
54,59 % 38,61 % 23,53 % 

multiple regressions (whole well) 

using coefficients from 6305/7-D-1 H 
 22,75 % 18,67 % 

multiple regressions (whole well) 

using coefficients from 6305/7-D-2 H 
19,06 %  19,90 % 

multiple regressions (whole well) 

using coefficients from 6305/7-D-3 H 
24,59 % 10,44 %  

multiple regressions (geo groups) 

using coefficients from the well 
73,20 % 69,84 % 55,81 % 

multiple regressions (geo groups) 

using coefficients from 6305/7-D-1 H 
 31,27 % 18,29 % 

multiple regressions (geo groups) 

using coefficients from 6305/7-D-2 H 
28,54 %  24,50 % 

multiple regressions (geo groups) 

using coefficients from 6305/7-D-3 H 
36,48 % 19,90 %  
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MSE (coefficients from 6305/7-D-1 

H) 
 19,18 % 10,70 % 

MSE (coefficients from 6305/7-D-2 

H) 
19,35 %  9,07 % 

MSE (coefficients from 6305/7-D-3 

H) 
11,41 % 7,86 %  

D-exponent (coefficients from 6305/7-

D-1 H) 
 13,07 % 11,66 % 

D-exponent (coefficients from 6305/7-

D-2 H) 
13,65 %  14,22 % 

D-exponent (coefficients from 6305/7-

D-3 H) 
11,17 % 14,22 %  

Warren model (whole well) using 

coefficients from the well 
27,30 % 40,60 % 8,62 % 

Warren model (whole well) using 

coefficients from 6305/7-D-1 H 
 18,79 % 13,79 % 

Warren model (whole well) using 

coefficients from 6305/7-D-2 H 
23,76 %  15,02 % 

Warren model (whole well) using 

coefficients from 6305/7-D-3 H 
20,65 % 22,66 %  

Warren model (geo groups) using 

coefficients from the well 
27,07 % 46,42 % 33,05 % 

Warren model (geo groups) using 

coefficients from 6305/7-D-1 H 
 28,87 % 12,54 % 

Warren model (geo groups) using 

coefficients from 6305/7-D-2 H 
24,81 %  9,97 % 

 

The results of this analysis show an improvement in the accuracy of the models when 

geologically-grouped well data. This is observed when we compare the percentages of 

the ROP models that are within the 5 % and 10 % margins for the modelled ROP values 
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using the geological groups and for the ones using the whole well. This pattern is again 

observed when using the Warren model. 

 

The multiple regression method using the geological groups and the model described in 

4.3.1 gave good results, followed by the Warren’s model using the geological groups as 

well. These where followed by the same models, however using the whole well data to 

model the ROP.  

 

The d-exponent and MSE both came worst and close to each other when it comes to the 

number of ROP values that are within the 5 % and 10 % margins. This is mostly because 

they both assume identical geological correlation for the same depths between the 

multiple wells. This inaccurate assumption is most likely the reason for the errors in the 

modelled ROP values.   

 

6.2 Mean absolute percentage error (MAPE)    

The mean absolute percentage error (MAPE) is a method used to compute the accuracy 

of a forecast based on a model. This gives a percentage value that shows the average 

deviation the modelled dataset has from the actual dataset. The lower the MAPE value, 

the more accurate the forecast is to the actual dataset and a MAPE value of 0 indicates no 

deviation at all. This statistical technique is used in this thesis work to analyze the 

modelled ROP values for each modelling technique and observe how much the average 

modelled ROP value deviates from the filtered one. The technique is applied using Eq. 

6.2 for all the modelled ROP values and is illustrated in Figures 73 and 74. 

 

Where “n” is the number of datapoints, ROPmod is the modelled ROP and ROP is the 

filtered ROP.   

 

 

𝑀𝐴𝑃𝐸 =⁡
100⁡%

𝑛
⁡∑|

(𝑅𝑂𝑃𝑚𝑜𝑑)𝑖 − 𝑅𝑂𝑃𝑖
𝑅𝑂𝑃𝑖

|

𝑛

𝑖=1

 

 

  

(6.2) 
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Figure 73. calculating the MAPE for each datapoint 

 

 

Figure 74. Calculating the MAPE for the modelling technique 

 

The resultant MAPE values are presented in table 31.  

 

Table 31. MAPE values for the multiple modelling methods. 

MAPE values Well 

Modelling method applied 6305/7-D-1 H 6305/7-D-2 H 6305/7-D-3 H 

multiple regressions (whole well) 

using coefficients from the well 
20,25 % 15,82 % 29,77 % 

multiple regressions (whole well) 

using coefficients from 6305/7-D-1 H 
 23,98 % 61,70 % 

multiple regressions (whole well) 

using coefficients from 6305/7-D-2 H 
23,85 %  37,33 % 

multiple regressions (whole well) 

using coefficients from 6305/7-D-3 H 
42,20 % 33,53 %  

multiple regressions (geo groups) 

using coefficients from the well 
7,944 % 8,75 % 13,76 % 
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multiple regressions (geo groups) 

using coefficients from 6305/7-D-1 H 
 17,84 % 40,77 % 

multiple regressions (geo groups) 

using coefficients from 6305/7-D-2 H 
27,19 %  27,05 % 

multiple regressions (geo groups) 

using coefficients from 6305/7-D-3 H 
24,29 % 37,33 %  

MSE (coefficients from 6305/7-D-1 

H) 
 62,63 % 49,41 % 

MSE (coefficients from 6305/7-D-2 

H) 
32,80 %  40,86 % 

MSE (coefficients from 6305/7-D-3 

H) 
42,53 % 78,26 %  

D-exponent (coefficients from 6305/7-

D-1 H) 
 103,38 % 111,73 % 

D-exponent (coefficients from 6305/7-

D-2 H) 
52,87 %  76,76 % 

D-exponent (coefficients from 6305/7-

D-3 H) 
48,06 % 57,60 %  

Warren model (whole well) using 

coefficients from the well 
4,17 % 27,54 % 76,23 % 

Warren model (whole well) using 

coefficients from 6305/7-D-1 H 
 52,18 % 97,99 % 

Warren model (whole well) using 

coefficients from 6305/7-D-2 H 
27,03 %  63,01 % 

Warren model (whole well) using 

coefficients from 6305/7-D-3 H 
49,69 % 41,09 %  

Warren model (geo groups) using 

coefficients from the well 
26,96 % 22,94 % 25,74 % 

Warren model (geo groups) using 

coefficients from 6305/7-D-1 H 
 28,45 % 61,72 % 
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Warren model (geo groups) using 

coefficients from 6305/7-D-2 H 
37,37 %  50,81 % 

 

The MAPE analysis gave results that further confirm the finding in the plot comparisons 

in the subchapter above. The multiple regression modelling, using the geological groups, 

gave the least MAPE values, indicating that it had the least deviation from the filtered 

ROP. This was then followed by using the Warren model, using the geological groups, 

which gave some deviation. 

 

The multiple regression model using data from the whole well and the MSE model both 

gave decent MAPE values, this indicates a somewhat good correlation between the 

modelled values and the filtered ROP values. 

 

The Warren model, using well data from the whole well, and the d-exponent modelling 

gave the worst results with the average modelled ROP values being furthest away from 

the average filtered ROP value.         

 

6.3 Time analysis    

Time analysis is applied on the resultant ROP values from the different models to evaluate 

results of real-life application of the models and how late or soon the drilling will be 

completed for the wells if the model was used to predict the ROP. This analysis procedure 

allows models that had fluctuation in their data to still predict a good drilling time for the 

whole well. Eq. 6.3 represents the method to calculate the drilling time for each well, 

assuming no nonproductive time and the whole well is drilled in one go.  

 

Where td is the drilling time, depthdrilled is the drilling depth and ROP is the average rate 

of penetration for the depth drilled.  

 

 

𝑡𝑑 =
𝑑𝑒𝑝𝑡ℎ𝑑𝑟𝑖𝑙𝑙𝑒𝑑

𝑅𝑂𝑃
⁡ 

 

 (6.3) 
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Considering that we have all the depth intervals for the wells and the start and finish ROP 

for these intervals, calculating the drilling time for each interval is possible. Thus, the 

well is dissected into multiple depth intervals and the time to drill each section is 

calculated. This is then summed up to calculate the drilling time for the whole well. This 

is presented in Eq. 6.4 and Figure 75. 

 

 

Figure 75. calculating drilling time for interval. 

 

The calculated drilling time of the modelled ROP from the multiple techniques is then 

compared to the drilling time of filtered ROP. Thus, the time deviation from using the 

modelling techniques can be calculated. The lower the time deviation percentage, the 

more accurate the model. This is presented in table 31. 

 

Table 32. Drilling time deviation for the different models. 

Time deviation (%) Well 

Modelling method applied 6305/7-D-1 H 6305/7-D-2 

H 

6305/7-D-3 H 

multiple regressions (whole well) using 

coefficients from the well 
-0,25 % -0,28 % +3,45E-13 % 

multiple regressions (whole well) using 

coefficients from 6305/7-D-1 H 
 +10,91 % +22,07 % 

multiple regressions (whole well) using 

coefficients from 6305/7-D-2 H 
-13,16 %  -9,48 % 

 

𝑡𝑑 =∑
2((𝑑𝑒𝑝𝑡ℎ𝑑𝑟𝑖𝑙𝑙𝑒𝑑)𝑖+1 − (𝑑𝑒𝑝𝑡ℎ𝑑𝑟𝑖𝑙𝑙𝑒𝑑)𝑖)

𝑅𝑂𝑃𝑖+1 + 𝑅𝑂𝑃𝑖

𝑛

𝑖=1

⁡ 

 

 (6.4) 
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multiple regressions (whole well) using 

coefficients from 6305/7-D-3 H 
+18,71 % -1,89 %  

multiple regressions (geo groups) using 

coefficients from the well 
+7,41E-13 % -0,13 % +9,48E-12 % 

multiple regressions (geo groups) using 

coefficients from 6305/7-D-1 H 
 +0,82 % -2,71 % 

multiple regressions (geo groups) using 

coefficients from 6305/7-D-2 H 
+0,46 %  +7,30 % 

multiple regressions (geo groups) using 

coefficients from 6305/7-D-3 H 
-3,33 % -9,48 %  

MSE (coefficients from 6305/7-D-1 H)  +54,23 % -0,85 % 

MSE (coefficients from 6305/7-D-2 H) -29,48 %  -34,15 % 

MSE (coefficients from 6305/7-D-3 H) +7,33 % +69,93 %  

D-exponent (coefficients from 6305/7-

D-1 H) 
 +59,47 % +65,54 % 

D-exponent (coefficients from 6305/7-

D-2 H) 
-9,24 %  +23,53 % 

D-exponent (coefficients from 6305/7-

D-3 H) 
-24,90 % +2,18 %  

Warren model (whole well) using 

coefficients from the well 
+15,87 % +8,05 % +34,18 % 

Warren model (whole well) using 

coefficients from 6305/7-D-1 H 
 +34,03 % +36,61 % 

Warren model (whole well) using 

coefficients from 6305/7-D-2 H 
-9,31 %  +4,37 % 
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Warren model (whole well) using 

coefficients from 6305/7-D-3 H 
+10,94 % +17,55 %  

Warren model (geo groups) using 

coefficients from the well 
+10,26 % +6,58 % +5,88 % 

Warren model (geo groups) using 

coefficients from 6305/7-D-1 H 
 +13,22 % +20,11 % 

Warren model (geo groups) using 

coefficients from 6305/7-D-2 H 
-9,49 %  +0,67 % 

 

The results in the time deviation give the models a better usability in operations, where 

the deviations that where seen for the modelled ROP values gets minimized in this 

analysis and the models give more accurate prediction of the drilling time.  

 

The best fit model at predicting the drilling time is the multiple linear regressions, using 

the geological model. This model gave extremely good results that might be considered 

within margins of error. This reinforces the observations that this model has been, 

consistently, the best model at predicting the ROP.  

 

The Warren model by geological groups and the regression model, using whole well data, 

follow at predicting the drilling time, where both show small deviation from the 

calculated drilling time. This is then followed by the Warren model, using the whole well 

data and trailing just behind. The MSE and d-exponent modelling both gave similar 

deviations from the drilling time and where worst at predicting the drilling time. 

 

6.4 Parametric sensitivity study  

The aim of a parametric sensitivity study is to analyze which of the operational parameters 

are the ones that affect the ROP the most. By doing so, these parameters can be optimized 

and changed to control the ROP and achieve the ROP values desired. This gives the 

operators a better understanding for when they plan to drill a well nearby to an already 

drilled one.  
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In order to do the sensitivity study, the operational parameters used in the modelling 

process are increased and decreased by 10% and then the new ROP is modelled and 

compared to the old one. When doing so for each parameter independently, we can see 

which one is the most dominant in the model and what combination of increases or 

decreases will promote the highest ROP. The operational parameters that will be tested 

in this thesis are the WOB, Torque, RPM and the flow rate.  

 

After the parametric study is done and the parameters are deduced. The drilling time using 

the new ROP will be calculated and compared with the old ROP values to observe how 

much time and money could be saved by such an analysis.  

 

The parametric analysis will be applied on well 6305/7-D-1 H using the geological 

model that was applied in chapter 5 for the well on itself. The results will be presented 

in Figures 76 to 79.  

 

Figure 76. The effect of increasing or decreasing WOB by 10% on the modelled ROP. 
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Figure 77. The effect of increasing or decreasing torque by 10% on the modelled ROP. 

 

 
 

Figure 78. The effect of increasing or decreasing RPM by 10% on the modelled ROP. 
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Figure 79. The effect of increasing or decreasing flow rate by 10% on the modelled ROP. 
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parameter. The most dominant parameters that can be seen in both the Figures and the 
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Figure 80. Average of the modelled ROP (using 10% deviations from the filtered 

operational parameters). 
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Figure 81. Sensitivity analysis – modelled ROP for 305/7-D-2 H after increasing RPM 

by 10 % and decreasing torque by 10 % vs. modelled ROP (using coefficients from 

6305/7-D-1 H). 

 

 

 Figure 82. Sensitivity analysis – modelled ROP for 305/7-D-3 H after increasing RPM 

by 10 % and decreasing torque by 10 % vs. modelled ROP (using coefficients from 

6305/7-D-1 H). 

 

0

50

100

150

200

250
4

,6
5

9

5
,4

4
6

5
,6

4
3

5
,8

4
0

6
,0

3
7

6
,2

3
4

6
,4

3
0

6
,6

2
7

6
,8

2
4

7
,0

2
1

7
,2

1
8

7
,4

1
5

7
,6

1
2

7
,8

0
8

8
,0

0
5

8
,2

0
2

8
,3

9
9

8
,6

1
2

8
,8

0
9

9
,0

0
6

9
,2

0
3

9
,4

0
0

9
,5

9
6

9
,8

1
0

1
0

,0
2

3

1
0

,2
2

0

1
0

,4
3

3

1
0

,6
6

3

1
0

,8
6

0

1
1

,0
5

6

1
1

,2
5

3

1
1

,4
5

0

1
1

,7
1

3

1
1

,9
0

9

R
O

P,
 f

t/
h

r

Depth, ft

6305/7-D-2 H (using coefficients from 6305/7-D-1 H)

ROP modelled (with +10% RPM and -10% torque) ROP modelled

0

50

100

150

200

250

300

5
,1

5
1

5
,3

4
8

5
,5

1
2

5
,6

7
6

5
,8

4
0

6
,0

0
4

6
,1

6
8

6
,3

3
2

6
,4

9
6

6
,6

6
0

6
,8

2
4

6
,9

8
8

7
,1

5
2

7
,3

1
6

7
,4

8
0

7
,6

4
4

7
,8

0
8

7
,9

7
2

8
,1

3
6

8
,3

0
1

8
,4

6
5

8
,6

2
9

8
,7

9
3

8
,9

5
7

9
,1

2
1

9
,2

8
5

9
,4

4
9

9
,6

1
3

9
,7

7
7

9
,9

4
1

1
0

,1
2

1

1
0

,3
1

8

1
0

,4
8

2

1
0

,6
4

6

R
O

P,
 f

t/
h

r

Depth, ft

6305/7-D-3 H (using coefficients from 6305/7-D-1 H)

modelled ROP (using +10% RPM and -10% torque) modelled ROP



Ormen Lange well data based ROP modelling and application 

MSc Thesis, 2019  99 

 

Both wells saw an increase in the modelled ROP, this increase in ROP will lead to a 

decrease in drilling time and the drilling expenses. The new drilling time is calculated in 

the same manner as in the time analysis and compared to the drilling time for the well 

without any changes in the parameters. This is shown in Figure 83 below, where both 

wells 6305/7-D-2 H and 6305/7-D-3 H had a reduction between 10.49 % and 12.49 % in 

their drilling time and since the drilling time is proportional to the drilling cost, this will 

lower the drilling cost by the same percentages.  

 

 

Figure 83. percentage decrease in drilling time for wells 6305/7-D-2 H and 6305/7-D-3 

H when using +10% RPM and -10% torque. 

 

6.5 Analysis summary  

In order to achieve good modelling of the ROP, multiple modelling techniques need to 

be evaluated in order to decide which of the methods results in the best fit model for the 

datasets. This subchapter will evaluate the results of the analysis performed on the 

multiple modelling techniques in chapter 6 and discuss the feasibility of the modelling 

techniques used in this thesis. 
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well to another. The aim was to improve on the modelling techniques for the regression 

method. The analysis results can be expressed in Table 33. 

 

 

Table 33. Analysis of the modelling techniques. 

Method 
Analysis of modelling techniques 

Plot comparison MAPE Time analysis 

Linear regression 

(whole well) 

Good correlation 

with the filtered ROP 

values with some 

deviation 

Low deviation of the 

average ROP value 

from the average 

filtered ROP value 

Good prediction of 

the drilling time with 

little deviation from 

the actual one 

Linear regression 

(geological groups) 

Excellent correlation 

with the filtered ROP 

values 

Deviations are small 

enough to be 

considered 

statistically 

insignificant 

The expected drilling 

time using this 

modelling is almost 

identical 

MSE 

Bad correlation with 

the ROP values when 

compared to the 

other models 

Higher deviations of 

the average modelled 

ROP compared to the 

other models 

Worse drilling time 

prediction when 

compared to the other 

modelling techniques 

d-exponent 

Bad correlation with 

the ROP values when 

compared to the 

other models 

Higher deviations of 

the average modelled 

ROP compared to the 

other models 

Worse drilling time 

prediction when 

compared to the other 

modelling techniques 

Warren model 

(whole well) 

Good correlation 

with the filtered ROP 

values with some 

deviation 

Low deviation of the 

average ROP value 

from the average 

filtered ROP value 

Good prediction of 

the drilling time with 

little deviation from 

the actual one 

Warren model 

(geological groups) 

Excellent correlation 

with the filtered ROP 

values 

Deviations are small 

enough to be 

considered 

statistically 

insignificant 

Good prediction of 

the drilling time with 

little deviation from 

the actual one 
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6.6 Optimization methods for the field application    

ROP optimization has been the focus of this thesis, and the method devised that resulted 

in the highest prediction of ROP for a nearby well are: 

 

1. Step 1 For the application of the modelling, the best approach is first to identify 

the stratigraphic section of the old drilled well and the well to be drilled at nearby. 

 

2. Step 2 The data from the old well is filtered to remove any data outliers using a 

moving average filter.  

 

3. Step 3 The Linear regression coefficients and Warren coefficients for each 

stratigraphic section are derived (depending on the section that is to be drilled and 

the geology in it) 

 

4. Step 4 Model can be tested on pre-drilled wells to be verified.  

 

5. Step 5 The modelled ROP values from the pre-drilled wells are checked against 

the filtered ones using plot comparisons, MAPE and time analysis. 

 

6. Step 6 Based on the correlation coefficient, do a parameter sensitivity analysis 

with a certain +/- increment, to calculate the ROP and the time to drill out the 

section. The operational parameters with the highest impact on the ROP to not be 

changed during application for the nearby well. 

 

7. Step 7 Time analysis is applied on the resultant ROP values from the different 

models to evaluate results of real-life application of the models and how late or 

soon the drilling will be completed for the wells if the model was used to predict 

the ROP.  

 

8. Step 8 The sensitivity study can be redone as many times as needed until the best 

realistic combination of the parameters that give the lowest drilling time is 

decided.  
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7 CONCLUSIONS   
 

Drilling operations are still at the age of optimizing their operations, with a lot of 

headroom ahead and more to improve upon. One such thing for drilling operations is the 

rate of penetration, where more research is still needed to devise a physical model that 

describes it. The primary goal of this thesis is to improve the drilling ROP modelling and 

increase its efficiency.  

 

Based on previous work on the subject, the modelling was applied to nearby wells and 

the focus was improving the ROP models used. This was done by dissecting the well into 

stratigraphic or geological sections and modelling each of the sections to extract 

coefficients for them. The extracted coefficients were used to model the other wells and 

the resultant ROP values were then compared to the filtered ROP values. This was done 

for the Ormen Lange field using wells 6305/7-D-1 H, 6305/7-D-2 H and 6305/7-D-3 H.  

 

The results of applying the different models show that that the regression based on 

geological groups gave the best fit values for the filtered ROP values. The approach of 

dissecting the well into geological sections before modelling also improved the accuracy 

of well-established models such as the Warren model. This was validated by the analysis 

done in chapter 6. This analysis was applied to all the modelling techniques to evaluate 

their efficiency and accuracy in predicting the ROP. This validates the power of 

modelling as a method of estimating the ROP when drilling a nearby well.  

 

The model devised in this thesis does not consider the deviation of the wells. This is a 

factor that affects the ROP that was not considered and could be one of the factors that 

caused some deviation and mispredictions of the ROP values.  

 

The modelled ROP for a well can be then optimized as shown in chapter 6.6 by the usage 

of a parametric sensitivity analysis. This is done to observe what operational parameters 

matter most and which changes will increase the ROP most to decrease both drilling time 

and drilling cost. 
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APPENDIX I:  More Reviewed ROP Models  

 

Bourgoyne and Young model 

As mentioned in chapter 3.1, the model devised by Bourgoyne and Young aims at 

defining the ROP as a function of 8 different parameters under drilling operations. The 

parameters are assumed to be the ones that mostly affect the ROP and are as follows: 

formation drill ability, formation strength and bit type, compaction on drilling 

penetration, overbalance on drilling rate, undercompaction found in abnormally pressured 

formations, weight on bit, rotary speed, tooth wear and the bit hydraulics. The model that 

they devised can be written as follows [33]: 

 

Where functions 1 to 8 represent the parameters mentioned above and have coefficients 

(a1 to a8) are model constants that are determined experimentally and are specific for the 

well being drilled.  

 

Term 𝑓1 represents the formation strength the formation drill ability and can be 

expressed as follows [27]: 

 

The term 𝑓2 represents the effect of the compaction on the ROP and can be expressed as: 

 

Where D is the depth in feet. The term 𝑓3 models the undercompaction that is found in 

abnormally pressured formations and is expressed as: 

 

𝑅𝑂𝑃 = 𝑓1𝑥𝑓2𝑥𝑓3𝑥𝑓4𝑥𝑓5𝑥𝑓6𝑥𝑓7𝑥𝑓8 

 

(A.1) 

 

𝑓1 = 𝑒2.303𝑎1 

 

(A.2) 

 

𝑓2 = 𝑒2.303𝑎2(10,000−𝐷) 

 

(A.3) 

 

𝑓3 = 𝑒2.303𝑎3𝐷
0.69(𝑔𝑝−9.0) 

 

(A.4) 
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Where 𝑔𝑝is the pore pressure gradient in pounds per gallon equivalent. The fourth term 

𝑓4 represents the effect of the overpressure on the ROP and is represented by the following 

model: 

 

Where 𝜌𝑐 is the mud weight in pound per gallon. The fifth term describes the effect of the 

weight on bit on the ROP. This can be described as: 

 

Where  (
𝑊𝑂𝐵

𝑑𝑏
)
𝑡
 represents the threshold weight on bit and can usually be neglected since 

its value is low. It can be estimated from drillof tests done at very low weight on bit. The 

sixth term represents the effect of rotary speed (N) on the ROP. This can be represented 

as: 

 

The term 𝑓7 expresses the effect of bit wear on the ROP. This model can be expressed as: 

 

Where h represents the fractional height of the worn away tooth and is expressed as 

following: 

 

𝑓4 = 𝑒2.303𝑎4𝐷(𝑔𝑝−𝜌𝑐) 

 

(A.5) 

 

𝑓5 =⁡ [

(
𝑊𝑂𝐵
𝑑𝑏

) − (
𝑊𝑂𝐵
𝑑𝑏

)
𝑡

4.0 − (
𝑊𝑂𝐵
𝑑𝑏

)
𝑡

]

𝑎5

 

 

 

(A.6) 

 

𝑓6 = (
𝑁

60
)
𝑎6

 

 

(A.7) 

 

𝑓7 = 𝑒−𝑎7ℎ 

 

(A.8) 

 

ℎ =
𝐷𝑔

8
∗
𝐷𝑒𝑝𝑡ℎ𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝐷𝑒𝑝𝑡ℎ𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝐷𝑒𝑝𝑡ℎ𝑐𝑜𝑢𝑡 − 𝐷𝑒𝑝𝑡ℎ𝑖𝑛𝑖𝑡𝑖𝑎𝑙

 

 

(A.9) 
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Where Dg is the dull bit grade (IADC) for the bit when it is pulled out of the whole. The 

last term describes the effect of bit hydraulics on the ROP. This can be modelled as 

follows: 

 

Where 𝐹𝑗 represents the hydraulic jet impact force that the bit applies on the formation. 

 

Drag Bit Model 

The Drag bit model developed by Hareland and Rampersad assumes perfect wellbore 

cleaning under drilling operations using drag bits. The model devised by them can be 

described as [44]: 

 

Where 𝛾 is the RPM exponent and 𝛼 is the WOB exponent. 𝑊𝑓 represents the wear 

function and G is the ROP model constant that is dependent on the bit geometry. 

 

Maurer Model 

The Maurer model was developed with the assumption that the cleaning of the whole 

under drilling is perfect and that all cutting produced by the teeth are removed before the 

bit makes contact with the formation again. The model developed by Maurer can be 

expressed as following:  

 

Where K is constant of proportionality and  (
𝑊𝑂𝐵

𝑑𝑏
)
𝑡
 is the threshold WOB.  

 

𝑓8 = (
𝐹𝑗

1000
)
𝑎8

 

 

(A.10) 

 

𝑅𝑂𝑃 = 𝑊𝑓 (
𝐺 ∗ 𝑅𝑃𝑀𝛾 ∗ 𝑊𝑂𝐵𝛼

𝑑𝑏 ∗ 𝑈𝐶𝑆
) 

 

(A.11) 

 

𝑅𝑂𝑃 =
𝐾

𝑆2
[
𝑊𝑂𝐵

𝑑𝑏
− (

𝑊𝑂𝐵

𝑑𝑏
)
𝑡

]

2

𝑁 

 

 

(A.12) 
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Bingham Model 

The Bingham model discussed in chapter 3.7 is a simplified version of the Maurer model 

that is only applicable for low values of WOB and rotary speed. This model assumes that 

the threshold WOB in the Maurer model is negligible and thus removed. The model is 

expressed as:  

 

Where K is the constant of proportionality and 𝑎5 is the WOB exponent and can be 

determined experimentally. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

𝑅𝑂𝑃 = 𝐾 (
𝑊𝑂𝐵

𝑑𝑏
)
𝑎5

𝑁 

 

(A.13) 
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APPENDIX II:  Modelling Application   

 

Moving Average 

The data used for the modelling in this thesis is filtered before application in order to 

remove any outliers in the dataset. Filtering data before applying multiple linear 

regression, increases the accuracy and reliability of a model. This is done in Excel using 

the Data Analysis package and the procedure can be seen in Figures 84 and 85. 

 

 

Figure 84. Moving Average filter using the data analysis package 

 

 

Figure 85. Moving average equation applied in Excel by the package 
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Multiple Linear Regression  

Regressions is applied using the data analysis tool in Excel. The coefficients extracted 

(𝛽0−7) are extracted with 𝛽0 being the intercept for the model and 𝛽1−7 being the 

regression coefficients that are multiplied to the used regressors in the model. These are 

represented in Excel in cells Z17 to Z24 and are donated by a $ sign to keep them constant 

while the model is applied for all the dataset. For the modelling technique applied in this 

thesis, the regressors are the filtered values of the WOB, torque, RPM, flow rate, flow 

rate, mud weight and the UCS. These are represented in columns O to U respectively.   

 

This is represented in Figure 86 and the model in Excel can be represented as:  

 

 

Figure 86. Multiple rinear regression application 

 

  

 

𝑀𝑜𝑑𝑒𝑙𝑙𝑒𝑑⁡𝑅𝑂𝑃 = $𝑍$17 + $𝑍$18 ∗ 𝑂2 + $𝑍$19 ∗ 𝑃2 + $𝑍$20 ∗ 𝑄2 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡+$𝑍$21 ∗ 𝑅2 + $𝑍$22 ∗ 𝑆2 + $𝑍$23 ∗ 𝑇2 + $𝑍$24 ∗ 𝑈2 

 

(A.14) 
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Warren Model 

The Warren model presented in 4.3.4 describes ROP as a function of three terms 

(
𝑆2𝑑𝑏

3𝑅𝑂𝑃

𝑁𝑊𝑂𝐵2
), (

𝑅𝑂𝑃

𝑁𝑑𝑏
) and (

𝑑𝑏𝛾𝑓𝜇𝑅𝑂𝑃

𝐹𝑗𝑚
). These terms are calculated in Excel for each well using 

the already filtered datasets. The rock strength used for the calculations is derived from 

the calculated MSE for each datapoint in the well. The calculation of these terms can be 

seen in Figures 87, 88 and 89. 

 

 

Figure 87. Calculating the first Warren Term in Excel 

 

 

Figure 88. Calculating the second Warren Term in Excel 

 

 

Figure 89. Calculating the third Warren Term in Excel 

 

This is then followed by extracting the Warren coefficients “a”,” b” and “c” using 

MATLAB software. Application of this can be seen in Figure 90  
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Figure 90. Calculation of Warren coefficients in Matlab 

 

Once the coefficients have been extracted, the Warren ROP can be calculated using Eq. 

3.6 as shown in Figure 91. 

  

 

Figure 91. Warren ROP calculating in Excel 


