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1. Introduction and aim of study 

Its springtime, you are setting by the edge of a river, a nice breeze is hitting your face while 

you were looking through the clear water trying to spot some of the stones that are moving 

down the riverbed. This is a very simple beautiful scene by mother earth, but behind this 

simplicity lies the laws of physics, thermodynamics and fluid mechanics. Now the situation is 

not as simple as it was described before, but its beauty just got very intensify. 

Fluid mechanics controls a big part of our life, we are able to fly with planes based on the lift 

principle by Bernoulli and while our drinking water flows in pipes to modern cities so we can 

drink, blood flows in our vessels so we can enjoy all of the previous. 

In our field which is the petroleum industry, fluid flow is also very essential. From the early 

days of oil discovery, it became very clear that a big part the oil industry is and will be based 

on the science and the principles of fluid mechanics. 

Nowadays and looking into the future, we still possess the need and the passion to gain more 

understanding of the behavior of fluids in motion. This will lead us to more stable and efficient 

operations along with drilling, separation of hydrocarbons and water, transportation of l iquids 

and many more. 

The main aim of this work is to build and assemble a two-phase fluid-loop. This loop will allow 

us and the future students at the university of Stavanger to access a facility which will provides 

direct opportunities to investigate flow of fluids at their different phases with their different 

flow regimes for educational and research purposes. 

This work will also include practical experiments with water as a one phase flow and with air 

and water together as a two-phase flow. 

This work will also include some observation and notes that we thought it was interesting 

enough to be written and shared with the readers. 

 

 

 

 

 

 

 

 

 

 



 

2 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

3 
 

2. Theory 

This chapter includes a quick look to some of the principles that this work was based on. 

Equations 2.3 to 2.35 are taken from “R.W.Time, Two-phase flow in pipelines, Course compendium, UiS, 2017 ” 

2.1. Single phase flow 

The simplest case of a flowing liquid. While in reality the most common case of flow is 

multiphase flow, understanding single phase flow can be a good start for studying multiphase 

flow. 

The velocity of the flow is one of the most important values that we look for in every flow. 

Let’s assume we have a pipe with constant diameter, a single-phase fluid is flowing through it 

from point 1 to point 3 passing point 2 on its way (figure 2.1). let’s focus on the cross-section 

of point 2 and imagine that is moving with the flow, If we know the flowrate value at point 2 

and the cross-sectional area of the flow, the velocity of the flow can be easily calculated using 

equation 2.1 

 

Figure 2.1. single phase flow in a pipe. 

The volumetric flow rate of a liquid flowing through a pipe can be calculated by 

𝑄 = 𝐴 ∗ 𝑈                                        (2.1) 

Sometimes it good to know how much mass is going through the system and that is called the 

mass flowrate which can be calculated by 

𝑚 = 𝑄 ∗  𝜌                                                                (2.2) 

2.2. Multiphase flow 

Now more than one phase is flowing in a pipe, let’s take gas-liquid flow for example. we will 

use the Letter L for liquid and the letter G for Gas, now the situation is more interesting, let’s 

look at Figure 2.2. 
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Figure 2.2. gas-liquid flow in a pipe. 

Now we have a flowrate, a velocity and an area for each phase. If we divide the pipe to several 

cross-sections along the flow, we can see clearly that the area of the phases is changing along 

the pipe. 

The mass flow rates can be calculated as the following  

(2.3) 

(2.4) 

(2.5) 

If we know the volumetric flowrate of each phase and the cross-sectional area of the pipe A 

the following velocities can be calculated, 

 (2.6) 

 

(2.7) 

These are not the real velocities in the flow. we refer to them as the superficial velocities or 

apparent velocities. However, the sum of these velocities is called the mixture velocity and it 

equals the real average velocity in the flow. 

(2.8) 

The real velocities are called the phase velocities. Which are the local velocities at each cross 

section along the pipe, they can also be defined for an average cross-section of the pipe. 

(2.9) 

 

(2.10) 

 

In order to determine the values of the real velocities, the areas AL and AG must be 

determined. These areas correspond to the fraction of each phase in the flow.  

The slip velocity is defined by                                                                                                          (2.11) 
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Where the slip ratio can be expressed as  

 

(2.12) 

When the slip ration equals to one, the situation referred to as “no slip situation”. In this 

situation all the following velocities are equal. 

 

(2.13) 

We have mentioned before that the areas of the phases correspond to the fraction of each 

phase in the flow. Many methods are available to measure these fractions. 

 

Figure 2.3. Techniques for fluid fraction measurements. R.W.Time, Two-phase flow in pipelines, Course compendium, UiS, 

2017. 

“Line averages are measured e.g. with a narrow beam gamma(γ)-densitometer. Area averages we 

obtain with a wide beam gamma-densitometer, or with (electric field) impedance sensors having 

electrodes made into the pipe wall. Volume averages (pipeline average) may be obtained by using quick 

closing valves.” R.W.Time, Two-phase flow in pipelines, Course compendium, UiS, 2017 

Based on the techniques in Figure 2.3, Gas and fluid fraction can be defined as: 

(2.14) 

 

(2.15) 

 

Where V is the volume, A is the Area, and L is length. 
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Sometimes very few information is available about the dynamics in the flow and an accurate 

value of the phase fractions are impossible to calculate. However, it important to obtain an 

estimate value of the fractions which is called the no slip fractions. 

 

(2.16) 

 

(2.17) 

 

If we know the value of the slip ratio, we can determine the true fraction of the phases. 

 

(2.18) 

 

 (2.19) 

 

 

2.3. Fluid properties in two phase flow 

Knowing the density and the viscosity at the single phases and the fluid fraction will allow us 

to calculate the mix density and viscosity. 

The mix density can be calculated simply by: 

(2.20) 

The mix viscosity unlike the mix density depends on many dynamic factors, thus many models 

are existed to calculate it. 

Some of the models are: 

Cichitti model for small gas fraction: 

(2.21) 

 

McAdams model for low liquid fraction: 

 

(2.22) 
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Where X is the dynamical gas fraction X = GG/G. 

Dukler model: 

(2.23) 

 

Viscosity models 

 

Figure 2.4. Viscosity models versus gas fraction. R.W.Time, Two-phase flow in pipelines, Course compendium, UiS, 2017. 

2.4. Flow patterns, flow regimes and the Reynolds number 

In single phase flow, the flow pattern will either be laminar or turbulent, a transition between 

laminar and turbulent can also exist. 

The dimensionless quantity “Reynold number” can allow us to detect the flow pattern in both 

single and multi-phase flow. 

For single phase flow: 

(2.24) 

 

For multiphase flow: 

(2.25) 
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If 

• Re ≤ 2000                                                       The fluid will be laminar. 

• 2000 < Re ≤ 4000                                          Transition flow between laminar and turbulent. 

• Re > 4000                                                       The fluid will be turbulent flow. 

In multiphase flow, we differentiate the flow by its pattern just like in single phase flow but in 

addition flow regimes now exist and we also differentiate the flow according to its regime. 

 

Figure 2.5. Flow regimes map in horizontal two-phase flow. 

R.W.Time, Two-phase flow in pipelines, Course compendium, UiS, 2017. 
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Figure 2.6. Flow regimes in horizontal two-phase flow. R.W.Time, Two-phase flow in pipelines, Course compendium, UiS, 
2017. 

 

2.5. Friction factors and Pressure gradient 

In addition to all the quantities that contribute to the Reynolds number, pressure gradient 

(dP/dx) in pipe flows is also dependent on wall roughness and pipe inclination. 

The pressure gradient in pipes can be composed of three terms: 

 

(2.26) 

 

Where: 

f stands for Frictional pressure gradient 

h stands for Hydrostatic pressure gradient  

a stands for acceleration pressure gradient. 
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2.5.1 Pressure gradient in single phase flow 

2.5.1.1. Frictional pressure gradient: 

 

(2.27) 

 

The flow pattern is the crucial elements of the frictional pressure gradient and that is clearly 

seen in the equations that calculate the friction factor f. 

For laminar flow according to Moody the friction factor equals: 

(2.28) 

 

For turbulent flow according to Drew, Koo and McAdams (1932) Smooth Pipe: 

(2.29) 

For turbulent flow according to Haaland (1983) formula: 

 

(2.30) 

 

Where ɛ is the roughness of the pipe. 

* Glass roughness equals 10^-6 R.W.Time, Two-phase flow in pipelines, Course compendium, UiS, 2017. 

2.5.1.2. Hydrostatic pressure gradient: 

 

(2.31) 

 

Where β is the pipe inclination relative to the vertical direction. 

2.5.1.3. Acceleration pressure gradient: 

 

(2.32) 
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2.5.2 Pressure gradient in two phase flow 

2.5.2.1. Frictional pressure gradient: 

 

(2.33) 

 

Where C = 0.046 and n = 0.2 

2.5.2.2. Hydrostatic pressure gradient: 

 

(2.34) 

 

2.5.2.3. Acceleration pressure gradient: 

 

(2.35) 

2.6. Bernoulli's Equation 

Bernoulli’s equation is simply the conservation of energy inside a fluid 

First let us take a look at the continuity equation for incompressible fluid.  

𝐴1 ∗ 𝑈1 = 𝐴2 ∗ 𝑈2                                        (2.36) 

  

Figure 2.7. The continuity equation. 

The same concept applies to Bernoulli’s equation that can be expressed as: 

                                                                                                                                                                       

(2.37) 

 

 

Where A represent the pressure energy, B represent the potential energy and C represent the 

kinetic energy. 
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2.7. Principle of the electromagnetic flowmeter 

The device creates a magnetic field in the inner pipe of the device (figure2.8. purple color). 

Two electrodes which are perpendicular to the flow direction is fixed on the inner pipe of the 

device as well (figure 2.8. red color). According to Faraday’s law of electromagnetic induction, 

when a conductive fluid pass through a magnetic field, an electrical potential is induced which 

is perpendicular to the axis of the fluid velocity. The potential difference between the two 

electrodes reflects the velocity of the flowing fluid.  (Appendix C, P11) 

 

 

Figure 2.8. Electromagnetic flowmeter principle. 

 

2.8. Hydrostatic pressure of liquid column 

The hydrostatic pressure of a liquid column can in Pascal unit be calculated by  

𝑃 = 𝜌 ∗ 𝑔 ∗ ℎ                                                       (2.38) 

Where:  

𝑔 is the gravitational acceleration = [9.81 m/s2] 

ℎ is the height of the liquid [m] 

𝜌 is the density of the liquid [kg/m3] 
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3. Rig building and instrumentation 

This chapter will include a detailed description with pictures of the components and the work 

that has been done regarding building of the rig and the subsequent works that followed along 

with instrumentation set up, and calibration processes. 

 

3.1. Rig Elements: 

 

Figure 3.1. Original rig design. UiS 

1.2. Separators.  

3.4. Storage tanks  

5. Separator’s table  

6.7. Pumps  

8.9. Safety back lines 

10. Electromagnetic flow meter  

11. Coriolis flow meter.  

12. Mixing unit.  

13. Mixed section pipe 

14. Test section pipe  

15. Coriolis flow meter. 
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Figure 3.2. Elements which were functioning without any modifications. (UiS with modification) 

3.1.1. Loop body: 

In addition to acrylic transparent pipes with 52 mm inner diameter, semi-transparent hoses 

with inner diameter of 50 mm were already used to build the loop body. While the hoses were 

mainly used for flexibility reasons, many hose clamps were used to connect the pipes and the 

hoses together. 

A set of ten valves were already used to connect between the tanks, the pipes and the hoses 

to allow flow stoppage in case maintenance were needed and for more control of the flow 

and damping purposes. An extra valve was added later to the outlet of the separator. 

The loop body and all the instruments were already fixed to several aluminum profiles. These 

profiles were already connected and firmly fixed on four steel columns. All of these together 

play the rule as the rig’s backbone. 

The loop body consisted of many leakage spots that had to be fixed before proceeding. 

(Appendix C P1 - P2) 
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Figure 3.3. Loop early stages. 

 

Figure 3.4. Valves of the loop after Final design. (UiS with modification) 
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3.1.2. Storage tanks: 

Two identical (Werit) plastic tanks each with 800-liter storage capacity were used for storage 

purposes, one was used for oil storage and the other one for water storage purposes. 

The tanks had marks on its walls that marks every 100 liters from the bottom of the tank until 

800 liters at the top. 

The two outlets of the storage tanks were too weak, and they needed to be replaced with 

stronger material. 

One of the tanks was dirty with remains of black grease and had to be washed and scrubbed 

many times with hot water and grease removal solution. 

(Appendix C P3 - P6) 

3.1.3. Pumps:  

Two identical SEW Eurodrive “RF 67 DRE132M4 TF V” helical progressing cavity pump (positive 

displacement pumps) that run with electrical power were already fixed on the floor, one to be 

connected to the oil tank while the other one to be connected with the water tank. 

The pumps had to be connected to frequency regulators with the help of the electrical 

department at the university of Stavanger.     

(Appendix C P7 - P9) 

 

Figure 3.5. The pumps. 
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3.1.4. Flow meters: 

Three flow meters were already been fixed in the loop, two Proline Promass 80F Coriolis 

flowmeters were used to measure the flow of the oil in the oil pipe and the flow of the mixture 

at the end of the test section pipe, while one Tecfluid FLOMID 2FX electromagnetic flowmeter 

was used to measure the water flow rate in the water line pipe. 

While the Coriolis flow meter in the oil line was not in our interest, the other Coriolis flow 

meter in the mixed section pipe wasn’t technically working. therefore, we were mainly 

concerned of the installation of the electromagnetic flow meter. 

               

                          Figure 3.6. FLOMID 2FX flowmeter.                                                 Figure 3.7. Promass 80F Flowmeter. 

The electromagnetic flow meter has an XT5 converter which has three buttons for 

configuration reasons and a screen where the values can be read. 

The screen usually shows two values, one is the current flowrate of the liquid while the other 

one is the cumulative volume that went through the sensor from the beginning of working 

until the time of the measurements. 

In case there was any need for the cumulative volume value to be set back to zero, this can be 

done very easily. 

The devise also gave us the possibility to choose between 9 combinations of units to appear 

on the sensor screen, three units for volume and three units to measure time. 
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Volume Time 

L (Liters) S (Second) 
M3 (cubic meters) M (Minute) 

Ga (US gallons) H (Hour) 

Table 3.1. available flowmeter units. 

Despite our unit choice, the flow meter always showed a flowrate value of zero while the 

accumulating volume by time showed a cumulative value. this problem caused us a lot of delay 

until we finally found out the reason and the solution. 

The solution for this problem had two steps and these steps should have been made in order.  

Step 1 the sensor cutoff: according to the sensor manual, the sensor “has its maximum deviation 

in the low end of its working range. Due to this, a cut off flow rate can be configured, that means, the 

flow rate below which the flow rate indication will be zero.” Tecfluid XT5 / XT5H Converter for Flomid/Flomat 

Sensors Instructions Manual. 

As a result, the cutoff value of the sensor was set to zero, which was half of the solution. 

Step 2 the number of the decimals: while the device has four digits to represent the flowrate 

measurements, the device allows us to have maximum of two decimals in these four digits. 

Obviously, our unit choice for device to indicate flowrate was chosen to be cubic meter per 

second [m3/s] which is the SI unit for flowrate and it’s the unit we will use in our calculations. 

However, the maximum flow rate that our pump can achieve is 0.001975 m3/s which is two 

zeros after the decimal point, since the instrument shows maximum two decimals, our 

flowrate will always show as 00.00 m3/s which was the problem. 

Therefore, we switched our unit choice to cubic meter per hour [m3/h], which was the other 

half of the solution to this problem. 

In the early days of this problem we tried changing the unit, but since the cutoff problem was 

already there, we didn’t see any change, so we went back to [m3/s] and decided that this was 

not a unit problem. 

In another word we did one step at a time not two which made us go far from the solution 

and look somewhere else, this cost us a lot of time and effort, but this is how a man learns, 

isn’t? 

The electromagnetic flowmeter had to be also modified so the converter can obtain correct 

signals from the electrodes. 

In order to obtain that, the converter had to be referenced to the same potential as the 

pumped water. as a result, two earthing rings had to be designed, built and added to the 

system in addition to two more rubber gaskets that were also introduced to the system. 

The two sensor wires of the flow meters were connected and fixed to the earthing rings via 

screws. 
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After all of previous the flow meter was ready to be tested for verification of correct 

measurements and to be calibrated with the pump through the frequency regulators. 

(Appendix C P10 - P13) 

3.1.5. Safety backlines: 

Each of the two lines were connected to 

their own tank to discharge in case of a 

sudden flow. 

These two lines were already built 

before the start of this work only a long 

meterstick was added beside the water 

back line to measure the hydrostatic 

pressure of the water column. 

3.1.6. Mixing unit entry: 

From the early days of this project the 

loop had a problem with the mixing unit 

entry, since water is pumped from the 

water line and nothing has been 

pumped from the oil line. Some of the 

water started to travel back through the 

oil line. This not only will lead to false 

flowrate calculations and pressure 

losses, but it will also be harmful for the 

Coriolis flow meter in the oil line. This 

instrument might store some water 

inside of it which by time will lead to 

rust.  

                                                                                                            Figure 3.8. Safety backlines. 

With that being said, re-designing the mixing unit entry was one of our first priorities, a U joint 

with an arm length of 170 cm had to be designed and introduced vertically into the system in 

order to avoid the reverse flow and to help with the damping. 

Proceeding with experiments we realized that our U joint was successfully able to stop the 

unwanted reverse flow, but it introduced a huge quantity of air into the system, and it created 

sort of a periodic oscillations that affected the flow rate and the pressure in the loop which 

made it impossible to record useful data. (Figure 5.12) 

To solve this problem, we closed the nearest valve in the oil line which limited the amount of 

air in the system but as a final solution, a plastic led were designed and built with 7.6 cm 

diameter and 3 mm wall thickness to close the oil inlet for now and to focus only on the water 

line. 
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This plastic plate had to be replaced with 8 mm wall thickness plate afterwards so it can be 

equipped with a nipple that allowed the injection of air into the system in order to study the 

air water flow. 

At some point during the project a vertical transparent pipe was needed instead of the led to 

study the U effects on the loop. As a result, a vertical transparent pipe was also designed and 

built. 

(Appendix C P14 - P22) 

3.1.7. Mixing Unit: 

The oil pipe (which later was switched to the air pipe) and the water pipe were united together 

using a Y joint that included a thin horizontal plate on the inside that separates the oil (air) 

and the water from the entry point up to 250 mm into the mixed section pipe. 

This thin plate is centered in the middle of the pipe and it cuts the cross sectional area of the 

pipe into two equal half circles and its purpose is to minimize the interfacial mixing at the entry 

point so the oil (air) and water could flow as layers into the mixed section pipe. 

(Appendix C P23) 

 

Figure 3.9. Mixing unit. 
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3.1.8. Mixed section pipe: 

This section is a 520 cm long acrylic pipe with 

52 mm inner diameter and five tiny holes 

equipped with five small nipples for the 

purposes of differential pressure 

measurements.  

The first nipple positioned half meter away 

from the end of the mixing unit. The second 

nipple positioned half meter away from the 

first one. Same applies with the third nipple 

with half meter distance away from the second 

one. The fourth and the fifth nipples were one 

meter and two meters away from the third 

nipple. 

This section wasn’t redesign but it needed to 

be taken down and go through a complete                       Figure 3.10. Mixed section during restoration.                                                      

restoration since all the nipples were leaking fluids.                                                                                             

(Appendix C P24 - P27) 

3.1.9. Test section 

This section comes after the mixed 

section pipe with length 105 cm and 

its mainly for taking pictures of the 

flowing fluids. Due to the round 

shape of pipes, it’s impossible to take 

clear and quality pictures through 

them alone, With this in mind an 

optical box was designed and built to 

be put around the test section pipe 

in order to take good quality pictures 

of the flow regimes. The optical box 

was designed to be movable which is 

very unusual optical box in the lab 

facility and it’s the first of its kind. 

                                                                              Figure 3.11.  Test section pipe. 

A four-sided metal frames which are connected by the help of eight threaded steel rods and 

16 nuts had to be designed to make the box seal around the test section pipe. 

Two nipples with conic threads were introduced one at the base and one at the top surface 

of the box for filling and draining purposes.                       (Appendix C P28 - P35, Appendix D 

F1 - F2)  
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3.1.10. Temperature sensor holder: 

Even though that the effects of temperature change to water 

density and viscosity is not relevant in the loop at this point, 

there was a real need to observe how much heat the pump is 

bringing to the system, especially after facing some problems 

with pump, we decided to design and build a small dead-end 

cylinder with conic threads at the top crowned by a hexagon 

shape which makes it easier to grip and rotate it. this cylinder 

can be sunk into the loop and have a direct connection with the 

fluids from the outside, while a temperature sensor recording 

the temperature change in the inside. 

We made two cylinders with the help of the mechanical staff at 

Uis. A short cylinder will be used when the pipes are full of 

water while the long one will be used when air is injected if we              Figure 3.12. Sensor holder.     

still want the box to touch the liquid. 

An adapter between the brass box and the acrylic pipes was needed, a plastic adapter was 

designed, built and threaded with a special conic NPT thread. 

(Appendix C P36 - P40, Appendix D F3 - F4) 

3.1.11. Separators: 

Even though it was two separators which were planned in the original design, we have decided 

to design and build only one. That was due to the complexity of a well-functioning separator. 

we wanted to start very simple and then add more components along the way for testing 

purposes, to solve separation problems and/or for optimization reasons.  

The separator had to be designed and built. Two lids and a plastic transparent cylinder were 

provided by school. The cylinder has an outer diameter of 50 cm and inner diameter of 48 cm. 

Eight threaded steel rods where used to connect between the two lids with the help of nuts 

from both sides, when the nuts were tightening up the two lids were closing on the separator 

from both ends resulting a sealed separator. 

the two lids had to be drilled around the circumference eight times to allow the rods to pass 

through them. In order to be sure that the rods wont rotates with the nuts, two rods were 

used to connect each hole from one led to its equivalent parallel hole on the other lid. a smart 

connection between each two rods had to be introduced with the help of two nuts around it. 

This connection prohibits any clockwise rotation of the rods and ensure that the sealing 

process will be performed smoothly. 

one of the lids had to be designed to have two holes, one as an inlet for the fluids that are 

coming from the loop and the other one as an outlet to the tanks.  

During the design period of the inlet and the outlet, it became very clear from the beginning 

that we needed a mechanism which allow us to seal around the two holes without the usage 
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of any screws and nuts, due to possible rust problems, extra turbulence around the inlets and 

the outlets along with appearance reasons. 

Two identical pieces were designed and built using a combination of two acrylic pipes, two 

PVC joints, two PVC nuts and two rubber gaskets.  

The inlet and the outlet were connected to the loop and the tank respectively via semi-

transparent plastic hoses with the help of hose clamps. 

After testing the separator and running some experiments an urgency to know the separator 

pressure and its effect on the whole system rose very quickly, two other holes had to be 

introduced one to have a valve on it to close and open the separator to the atmospheric 

pressure and the other hole was to be connected to a pressure sensor to monitor the pressure 

of the separator. 

A valve was added to the outlet of the separator to control the liquid level in it. 

A hose extension was added to the separator outlet valve and was sunk into the water tank 

later on during the experiment phase to prevent bubbles from traveling up the outlet and 

into the separator when a differential pressure existed.   (Appendix C P41 - P47, Appendix D 

F5 – F7) 

 

Figure 3.13. Separator, final stage. 
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3.1.12. Separator table: 

A six-legged table that will carry the two separators was designed and built with aluminum 

profiles. 

These aluminum profiles have square shapes with 4.5 cm side length. on each side of the 

square there is a one-centimeter width path in the middle followed by a two centimeters 

width path underneath it. These paths together have a depth of 1.45 cm and are used for 

fixing the table parts together with the help of screws, nuts and special subs. 

Three legs were designed to stand in one line representing the frontage of the table while the 

other three legs stood by another line which is parallel to the first line representing the 

backend of the table. Two Horizontal aluminum profiles were used to connect between each 

three legs while three profiles were used connect each leg from the frontage with its 

equivalent parallel leg on the backend, these three profiles were called the arms of the table. 

All the six legs had to be threaded from the inside at their ends so they can be equipped with 

a special connection that makes it easier for them to stand on the ground. these connections 

also allowed us to control the elevation of each leg, consequently the elevation of the 

separator and the degree of inclination if needed. these connections were cal led the feet of 

the separator’s table. 

(Appendix C P48 - P53) 

3.1.13. Separator support (cushions) 

During the design of the separator and the separator’s table we were wondering about the 

shape of the body that must stand in between that allow a strong grip to both table and the 

separator. 

Three plastic cuboids with a concave top surface were ordered, their concavity perfectly 

matches the convexity of the separator’s outside diameter. As the separator rested on these 

three cuboids, we started to call them the cushions of the separator. 

evidently the separator’s steel rods had to pass through the cushion’s bodies, therefore two 

paths have been made in each cushion so the rods will move through them smoothly. 

three holes on the base of each cushion were drilled and threaded and three screws were 

slightly modified to go through these holes and to slide into the arms of the separator’s table 

making these cushions a reliable part of the body system.  

(Appendix C P54 - P56 Appendix D F8) 
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Figure 3.14. one of the cushions during building phase 

 

3.2 Subsequent jobs  

Alongside rig construction there were various jobs that had to be performed during this work  

3.2.1. Based on Safety observations  

During the finishing phase of loop building and before the beginning of experiments an urgent 

need for a written start protocol “starting procedures” was obvious. In another word a simple 

guide on what to do before running the pump was needed to be written. 

A simple guide including a figure of the loop and a few written steps was printed and hanged 

beside the on/off switch. 

Following up on this but later in time, during the experiments phase, the control valves in the 

water line had to be open and closed many times which raised a safety concern. 

What if one of the values left closed by the end of the experiment and the person who will 

perform the next one will simply forget to follow the starting safety protocol. 

Our pumps are positive displacement pumps which can build up an enormous pressure in case 

of a closed valve. 

From two safety barriers prospective we can say that the back line which is already in the 

system is our first barrier and the valves that are before the back line is open all the time 

regardless of the type of the experiments that is being run. this is due to the duties of these 
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valves. These valves are mainly to stop the 

flow of the liquid in case of the need to 

change the pump or the tank and they were 

not meant to be used during runs. 

on the other hand, the actual valve of the 

back line can be involved in some 

experiments, which will make our second 

barrier in this case a primary one, enough 

being said a secondary barrier is a must. 

To solve this issue a weak point far away 

from electricity sockets and sensitive 

instruments was created in the system 

where in case of a sudden huge increase of 

pressure, this point will fail not any other 

unexpected element in the loop. 

On a different safety issue, during working 

on one of the early risk assessments reports 

for this project, we have noticed that a high 

voltage circuit is positioned very close to the 

loop outlet and any failure in the outlet hose 

can be catastrophic.                                                                     Figure 3.15. Start protocol. 

 

After discussion we have 

decided to redesign the loop 

outlet and replace the hose 

with a 90-degree PVC fitting 

and the risk of the hazard 

have been reduced to a very 

low stage. 

In this regard but later in 

time before introducing 

pressured air into the 

system, a plastic shield that 

covers the high voltage 

circuit were designed, built 

and introduced to the rig. 

(Appendix C P57 - P59) 

                                                                 Figure 3.16. The weak point with fairly loose hose rings. 
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3.2.2. Instrumentation setup 

The measurement’s instruments had to be chosen and mounted on the rig body. 

3.2.2.1. PASCO 850 universal interface and its sensors. 

This was our main instrument for measurements of pressure in loop, differential pressure 

along the mixing pipe, temperature in the loop and pressure in the separator. 

The instrument included the 850 Universal Interface where the sensors can be mounted 

directly or indirectly through cables. 

The instrument offered a variety of sensors for different measurements. two sensors were 

chosen.  

1. Differential dual pressure sensor was used to measure the pressure in two different 

spots along the mixing pipe and to measure the differential pressure between them.  

This sensor has two inlets for pressure measurements. These labeled with 1 and 2 on 

the sensor’s cover. 

2. Absolute pressure temperature sensor was used to measure the temperature in the 

loop and the pressure in the separator. This sensor has one inlet for pressure 

measurement and one inlet for temperature measurement. 

While the interface was mounted on the desktop table, the sensors had to be mounted on the 

loop body and connected to the 

interface via cables. tapes were 

mainly used for fixing purposes. 

VWR silicone tubing with inner 

diameter of 3mm and outer diameter 

of 5 mm were used to connect 

between the nipples and the PASCO 

pressure sensors. 

A small wired temperature sensor was 

used to connect between the PASCO 

temperature sensor and the place of 

interest.     

                                                                                             Figure 3.17. PASCO 850 universal interface 

The sensors had to be calibrated for both temperature and pressure. This was made to make 

sure that the sensors are working flawlessly.                                 

 (Appendix C P60 - P65) 
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3.2.2.2. Desktop computer 

A desktop computer was needed to record and analyze the instruments signals, a desktop was 

provided by the university. A table for mounting the desktop was already in the lab. 

PASCO Capstone software was needed to be installed on the Desktop in order to use the 

PASCO interface in our project. The PASCO interface was connected to the computer via USB 

cable.  

(Appendix C P66) 

3.2.2.3. Rosemount pressure transmitters 

Four Rosemount 3051 were introduced to the loop. Due to their heavy weight, these devices 

needed a separate strong plate to be mounted on, this plate had to be electrically isolated. An 

aluminum stick has been chosen for that purpose, with small modification on the stick, the 

transmitters were fixed firmly to it, a rubber plate were used to isolate the stick and the 

transmitters from the rig body. 

These devices weren’t used in our project, but their installation was part of making the loop 

ready for future projects. 

(Appendix C P67 - P69) 

      

                        Figure 3.18. Rosemount transmitters.                                       Figure 3.19. Validyne transmitter and transducer. 
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3.2.2.4. P 55 Validyne pressure transmitter and transducer 

These devises were originally mounted on an aluminum plate. the plate was fixed to the rig 

body with the help of heavy-duty zip ties. 

Like the Rosemount pressure transmitters these devices weren’t used in our project, but their 

installation was part of making the loop ready for future projects.  

(Appendix C P70) 

3.2.2.5. Atmospheric pressure and room temperature measurements 

The lab was already equipped with a Rosemount 2088 Gage and absolute Pressure 

Transmitter and the 3144P Rosemount Temperature Transmitter, they showed a direct 

measurement of atmospheric pressure in bar unit and temperature in Celsius in case 

atmospheric pressure and room temperature values were needed (Appendix C P71,P72) 

3.2.3. Air system: 

Later during the project, air had to be pumped into the system. The multiphase lab at the 

university of Stavanger already had a system for compressed air. 

The multiphase lab also had a compressed air dryer, a Swaglok pressure regulator, a crystal 

engineering xp2i digital pressure gauge indicator, and Alicat Scientific MCR gas mass flow 

controller. While the pressure regulator allowed us to open and close the air  flowing, the flow 

controller provided us the flowrate value of the passing air on its screen. 3-way valves were 

used to make sure no water will reach the Air flowmeter incase no air was being injected. 

All the previous instruments were ready to be used. 

A transparent plastic hose with 2mm inner diameter were used to connect the outlet of the 

flowmeter to the air inlet of the loop. (Appendix C P73 - ,P76) 

 

Figure 3.20. Air System 
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3.3 Calibration Processes. 

All of the instruments had to go through calibration processes in order for us to gain full 

understanding of the instruments and to make sure that these instruments work accordingly. 

3.3.1. Flow meter: 

It goes without saying that the aim of this work was to study air-water flow in pipes therefore 

the main concern here was electromagnetic flowmeter. 

In order to make sure that the sensors for electromagnetic flow meter works properly, a 

simple test was made. 

We fill the tank with 100 liters of water, we 

pumped it through into the system, obviously 

through the electromagnetic flowmeter and 

observed the volume reading. At the end of the run 

when all the 100 Liters were pumped into the 

system, we altered the flow by closing valve 

number six. the electromagnetic flow meter 

showed 0.10 m3 volume reading which is exactly a 

hundred liters. Figure 3.21. 

On a different note the pump frequency regulators 

allowed us to run the pump from 0 to 50 Hz per 

second, and by calibrating it through the 

flowmeter, we were able to distinguish our 

possible flowrates and link them to the pump 

frequencies. 

we sat the pump pump frequency regulators to 50 

Hz, and we observed the flowmeter, a record for 

all the readings were documented. Every five minutes                Figure 3.21. Flowmeter after test.                

a 5Hz were taken down from the pump frequency regulators and the readings were 

recorded again. 

As a result, a very handful data was recorded, (see Appendix A) and plotted on (figure 3.22). 

using the least square regression method, we were able to reach equation (3.1) that linked 

our pump frequency regulator to its equal flowrate.  

 

                                                     Q [m3/h] = 0.1436*Freq + 0.0203                                                   (3.1)  
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Figure 3.22 Flow Rate – Pump Frequency 

3.3.2. PASCO Sensors Calibration 

3.3.2.1. Pressure sensors. 

We needed to test the sensors with different known pressures to confirm their accuracy. A 

2.75-meter-long transparent hose was set vertically, opened to the atmosphere and filled with 

water. the first pressure sensor was connected to its end. A pressure measurement was 

recorded and saved. we decreased the water level to 2.50 m and another measurement were 

taken and recorded. we kept decreasing the water level inside of the hose by 0.25 meter each 

measurement until we reached 0 meters which is the atmospheric pressure. 

This process was repeated with all the pressure sensors. The theoretical values of pressure at 

each water height were calculated using equation (2.38.) and then added to the atmospheric 

pressure. 

(see Appendix B)  

Figure 3.23. was made from the data.  

We can note that the tiny difference between the pressures was due to the accuracy of 

measuring the water level in the hose in each run. 
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Figure 3.23 Pasco Pressure sensors calibration 

3.3.2.2. Temperature sensor. 

To confirm the accuracy of the temperature sensor, FLUKE 9102S Dry-Wells device were used, 

this is a temperature calibration device. It has the ability to generate stable known 

temperature degrees. 

The sensor was connected to the fluke device when the fluke device reading was 15 c. a record 

of measurements with time was continuously running. we raised the temperature of the fluke 

device to 35 c and then down to 20 c, up to 30 c, 40 c and finally down to 25 c. 

The measurement record showed a correct value from the temperature sensor with the 

temperature change. 

 

Figure 3.24 PASCO temperature sensor calibration. 
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4.Experiments 

This chapter include a detailed description of the experiments that have been done with the 

loop. 

 

4.1. One-phase experiments (Water) 

Using the PASCO interface and its sensors, we were able to monitor the pressure alongside 

the mixing pipe and the separator using the nipples that were built for this purpose.  

Since the pressure differences between the nipples alongside the mixing pipe are expected to 

be small, we were interested in measuring the differential pressure along the longest available 

distance. on the other hand, we tried to avoid using the first two nipples due to their close 

position to the mixing unit where extra turbulence occurs. Therefore, we used the third nipple 

to be our first pressure point while the fifth nipple was used as a second pressure 

measurement point. 

A differential dual pressure PASCO sensor was fixed on the rig body exactly between the two 

nipples with the help of a tape and then connected to the interface USB via cables. Two 

silicone tubes with same length connected the nipples with the pressure sensors. Plastic 

adapters were used to connect the silicone tubes with the sensor’s inlets. 

The silicone tubes had to be filled of water almost up to the sensor inlet, while a tiny air gap 

was left to be sure that water won’t reach the sensor’s inner circuit. the position of the sensor 

had to be higher than the mixed pipe, for the same reason.  

An absolute pressure temperature sensor was also fixed to the rig body close to the separator 

and the temperature sensor box. 

While an air-filled silicon tube connected the separator to the pressure inlet of the sensor, a 

USB cable connected the sensor to the PASCO interface. 

A small temperature sensor was put in the temperature box and connected to the PASCO 

sensor via a thin electric wire. 

4.1.1. PASCO Capstone software configuration. 

Certain procedures were done using the Pasco Capstone software. We divided these 

procedures into two groups. Procedures that were done at the beginning of every day and 

Procedures that were done at the beginning of every run. 

4.1.1.1. Beginning of everyday procedures  

Through the Capstone software a small calibration process for the pressure sensors were done 

at the beginning of every day. 

We make sure that the pressure sensors are disconnected from the silicon tubes and open to 

the atmosphere. Afterwards we open the Capstone software, go directly to the calibration 

option, and choose pressure. We click next and choose the differential pressure sensor that 
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we wanted to calibrate and then perform a one standard calibration were the real value of 

the atmospheric pressure is taken from the lab barometer. 

Now we are back to the main display menu. we drag one table into our page. The table usually 

contain two columns, at the top of the first column an option for inserting more columns is 

available. after adding three more columns, we select the desired measurements for each of 

the five columns in the table. The desired units for each column are automatically chosen but 

can be changed simply by clicking on the displayed unit. 

First column will be for time, the second column will be for absolute pressure 1, the third 

column will be for absolute pressure 2, the fourth column will be for the differential pressure 

between absolute pressure 1 and absolute pressure 2 and the fifth column will be for the 

absolute pressure 3. 

We click record wait for one second and stop recording. We choose a time step and compare 

the values. While the absolute pressures values must be equal, the differential pressure value 

must be zero. 

Later, we go through the safety start protocol and we run the loop on 50 Hz, wait until it 

stabilized then connect the silicon tubes to the PASCO sensors. 

The third nipple on our mixed pipe must be connected to the first inlet of the PASCO 

differential pressure sensor while the fifth nipple must be connected to the second inlet. The 

separator nipple must be connected to the absolute pressure temperature sensor. 

Next, we stop the loop and wait until it stabilized then measure the differential pressure for 

one more time. The differential pressure must equal zero again. 

This was all done to ensure quality of measurements during the day. 

4.1.1.2. Beginning of every run procedure 

Similar to the previous step we drag tables according to our interest and we select the desired 

measurements and the desired units for each column in the table. We also drag a graph this 

time and select its axes and units in a similar way so we can see a live representation of the 

measured data. 

While an option of one measurement at a time is available on the X axes, the option of adding 

many Y axes is always available by clicking on the black arrow at the top of the graph. 

 

4.1.2. Differential pressure between two nipples, experiment in steps: 

After making sure that the daily procedures have been done in the morning. we do the 

following. 

1. Make sure all the valves are set according to the start protocol. 

2. Make sure that the separator valve is open to the atmosphere. 

3. Turn on the electricity. 

4. Choosing of the initial flowrate by using equation (3.1).  
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We always started with 50 Hz pump frequency. 

5. Push the run button and wait until the loop stabilized. 

6. Open capstone and apply the procedures for the beginning of every run. 

7. Choose the frequency recording rate. We used 20 Hz per second 

8. Click on record and observe the measurements at least for one minute. 

9. Go down with the flow rate according to equation (3.1) 

We decrease the pump frequency with 5Hz at every step. 

10. Observe the measurements at least for one minute not including transition time. 

11. Repeating steps 8 and 9 until we record the 25Hz pump frequency measurement. 

12. Stop the recording. 

13. Save the recoded data in a PASCO file.  

14. Choose between step 15 and step 16. 

15. Choose an initial flowrate and repeat the steps from six to twelve or jump to the 16th 

step. 

16. Go down to zero pump frequency, stop the pump and turn off the electricity. 

17. Copy the data from the PASCO file to an excel sheet and calculate the average 

differential pressure for each flow rate. 

 

4.2. Two-phase experiments (Air-Water) 

After introducing air to the system, we wanted to observe and document the flow regimes 

that we can achieve through the loop. 

We simply connected the air system to the mixed unit entry and opened the pressure 

regulator valve to the max. The 3-way valve had to be turned slowly towards the flow 

controller direction, by doing so we have established an air flow to the loop. 

The flowrate values of the flowing air which were shown on the flow controller screen were 

documented. 

Afterwards we observed the flow regimes in the loop with different water flow rates and 

different air flowrates. 

 

4.3. Other experiments 

There have been some special runs that were performed for specific experimental reasons like 

monitoring the oscillation in the loop and in the separator or runs for identifying noise sources 

and many other reasons. 

The steps for these experiments are quite similar to the 4.1.2 and will be explained through 

the discussion part if needed and not here. 
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5.Discussions and Observations 

This chapter will include a discussion about the experiments and the observations we have 

made during this project. 

 

5.1. One-phase experiments (Water). 

In order to gain more understanding of the loop behavior, many experiments had to be run 

and analyzed. afterwards some elements in the loop had to be redesigned and more 

experiments were made. Interesting observations were noted along the way in order to find 

explanations to their existence. 

5.1.1 Differential pressure between two nipples. 

After stable system was established in the loop, many runs have been made. Then, eight runs 

were chosen to be studied. Their data were compared together with the theoretical 

measurements using two different friction factors. (Table 5.1) 

 

Figure 5.1 Differential pressure measurements, random loop. 

An average value at each pump frequency were calculated and noted in table 5.1 

Zero frequency results weren’t taken into consideration in measurements, but they were 

observed to make sure that the sensors are well calibrated.  
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Figure 5.2. Data from all the runs compared to the theoretical measurements. 

 

Figure 5.3 least square fit for all the runs compared with the theoretical measurements. 
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Table 5.1. Differential pressure results and comparison. 

The data from table 1.5 were plotted in figure 5.2 and 5.3 where we compared between the 

experimental and the theoretical data. 
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Since our pipes are made from acrylic which has a lot of similarities to glass. It is important to 

mention that we have used the glass roughness value during the calculation of the Haaland’s 

friction factor. This made our theoretical measurements for the differential pressure in a 

smooth pipe bigger than the theoretical measurements for the differential pressure of a pipe 

with roughness. 

 

5.2. Two-phase experiments-observations (Air-Water). 

5.2.1 Separator Oscillations. 

Our interest in the possible effects of the separator on the system and the vice versa was quite 

early. There were some oscillations that were happening in the separator and we wanted to 

neutralize these effects in order to gain more accurate results.  

In order to study the separator pressure and the separator oscillations, a valve was added to 

the separator. by opening this valve to the atmosphere, the separator pressure become simply 

constant and equals the atmospheric pressure, a nipple was also added to the separator so it 

can be connected to a pressure sensor to monitor the pressure inside of the separator.   (Check 

3.1.11) 

After observing the separator for many hours, it was obvious that understanding the 

oscillation starts from understanding water level at each flowrate. 

With having no instrument to measure the flow rates of the liquid that is going out of the 

separator and back into the water tank, we were looking for a method to estimate the flow 

rate. 

In theory having a constant liquid level in the separator is an indication that the flow in equals 

the flow out. 

We built a model based on the Bernoulli equation (2.37). the model predicts the water level 

in the separator for each flow rate we are pumping in, the model took into consideration the 

pressure in the separator and the pressure of the outlet, the results were plotted in figure 5.4. 

Studying water level was a challenge, a correct measurement from a visual monitoring of the 

liquid level to compare it with the theoretical data was almost impossible. They were many 

oscillations, waves and bubbles which made the differences in water height from a flow rate 

to another very hard to distinguish. 
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Figure 5.4. Theoretical Water level in the separator, P Sep and P Tank equals P atm. 

A main reason for the existence of bubbles was the water that is flowing into the separator 

from the inlet. The inlet is higher than the water level which created a lot of bubbles due to 

the crash between the falling water and the surface of the liquid in the separator. Figure 5.5. 

 

Figure 5.5. Bubbles in the separator. 
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Figure 5.6. separator valves. 

In order to raise the liquid level in the separator we made sure that the valve to the 

atmosphere was open and then we closed the separator outlet valve. 

We waited until the liquid level was close to the inlet. Afterwards we closed the valve to the 

atmosphere and open the separator valve simultaneously. Doing so allowed us to keep the 

water level constant in the separator. 

 

Figure 5.7. Water level close to the inlet. 

It is obvious that the amount of bubbles has decreased which led to a decrease in the 

oscillations in the separator. 
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We decided to raise the water level more until it covers the entire inlet, figure 5.8. 

 

Figure 5.8. water level higher than the inlet. 

As a result, we have achieved zero bubbles in the separator. now let’s look at what we did 

through the PASCO recordings. 

 

Figure 5.9. Effect of Pressure separator on the system. 

The effect that the separator pressure has on the system is quite clear in figure 5.9 

While in both time periods 1 & 2, the valve to the atmosphere was closed. In period one the 

water level was close to the inlet while in period two the inlet was covered with water. 

It was noted that during the first period the pressure of the separator was decreasing with 

time while it was constant during the second period. 

To understand this more a longer run has been done with different liquid levels and different 

flowrates. Figures 5.10. & 5.11. 
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Figure 5.10. Pressure variation with low liquid level in the separator 

 

Figure 5.11. Pressure variation in the separator with liquid level covers the inlet. 

When the level of water is low in the separator, the water falls from the inlet through the air 

phase to break the water surface and join the water, during this process the falling water grabs 

some of the air molecules down into the water phase. While some of the bubbles go back up 

and rejoin the air phase, others escape the separator through the water outlet. This ongoing 

process leads to the continuous decrease of pressure since there is no source of air to equalize 

the volume of the escaped air. 

However, it was noted that the amount of bubbles that escapes the separator decrease with 

the decrease in the separator pressure. 
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While the decrease in pressure in figure 5.11 reflects the relation between the flowrate and 

the water level in the separator, the decrease in pressure in figure 5.10 reflects the same 

relation but in addition to the escaped air effect. 

On another note, the ongoing process of decreasing flow rate thus pressure in the separator 

led eventually to pressure differences between the separator pressure and the atmospheric 

pressure which is the pressure of the outlet. This difference reached a value that allowed 

bubbles to travel up the outlet and into the separator, these cases can be seen in figure 5.10 

during the 30 Hz period and in figure 5.11. during the 25 Hz period.  

The hydrostatic pressure of the liquid was responsible for delaying this event in figure 5.11. 

As a solution the outlet hose was extended and sunk into the water tank which made it harder 

for the bubbles to travel through the hose up to the outlet. 

5.2.2. U joint effect on the loop. 

After introducing the U joint as it was mentioned earlier in (3.1.6) we started to run so we can 

measure the differential pressure along the mixed section. Our high hopes were immediately 

restrained by periodic oscillations inside of the loop caused by the air that was introduced by 

the U joint. 

These oscillations effected the flow rates and the pressure values along the loop. 

Figure 5.12. shows a differential pressure reading between two nipples along the mixed 

section where it is impossible to get a reliable value of the pressure difference. 

Figure 5.13. illustrate the water movements that we observed after the U joint was 

introduced. The water apparently found an easier path to flow through, after a certain height 

h was established, water goes back to the original flow direction leaving air behind it to fill its 

place. 

The air dragged in the pipe for a certain distance like the third part of the 5.13 figure shows. 

Along that distance, a stratified flow is created in the pipe. Afterwards a number of slugs is 

created and then a reverse flow is happening again in the pipe replacing the air with water by 

pushing the air back into the U joint until the height h is established again in the U joint and 

so on. 
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Figure 5.12 U joint effect on Differential pressure readings with time. 

 

Figure 5.13. Effects of U joint on water flow. 

To get an understanding of this case we had to eliminate factors that made our situation more 

complex. 
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The separator was opened to the atmospheric pressure while the U joint was replaced with a 

vertical transparent pipe that is open to the atmosphere as well.  Figure 5.14. illustrate the 

new system with important pressure points to study. 

 

Figure 5.14. loop after modification. 

We run the loop again on 50 Hz frequency and focus rather on the absolute pressure values 

P1 and P2 instead on the differential pressure between them. 

To make sure we observe all changes in the system, the water back line valve (Valve number 

4 in figure 3.4.) had to be closed. this will prevent any damping action.  

 

Figure 5.15 Absolute pressures P1 and P2 with the U effect 

Figure 5.15 shows that the periodic oscillations happens approximately every 22 seconds. The 

pressure sensors record the maximum pressure values during the end of the reverse flow 

when the water height in the vertical pipe is maximum. While they record the minimum 

pressure values just before the slugs starts to happen.  
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While the lab barometer reads an atmospheric pressure of 100640 Pascal we started to 

record. The water height h was at its maximum, i.e. 0.34 m. at this exact moment the water 

level is constant which means the flow in the upperpart of the mixing unit is zero, P1 reads 

103500 Pascal. 

Our pump frequency is 50 and according to equation 3.1 the equivalent flow rate will be 7.20 

m3/h.  

To measure P4 we add the pressure lost due to friction in the 1.5 m to the value of P1. 

According to equation (2.27) and (2.29), the differential pressure lost is 265 Pascal.  

P4 = 103500+265= 103765 Pascal                                                5.1 

If we ignore the frictional pressure drop in mixing unit, we can also say: 

P4 = P atm + P hydrostatic weight of h. 

P hydrostatic = 9.81*997*0.34 =3325 Pascal (According to equation 2.38) 

P4= 100640 + 3325 = 103965 Pascal                                             5.2 

Comparing 5.1 and 5.2 values together we can argue that the 200 pascal pressure differences 

between them is due to the friction that we ignored in the calculation.  

So, we can say that 5.1 and 5.2 approximately equals each other’s values. 

However, this equilibrium in pressure doesn’t last too long and the oscillations continues. 

If we get a closer look to the mixing unit during the pressure equilibrium, Figure 5.8. two points 

can be defined. 

 

Figure 5.16. mixing unit velocities 

Point a belongs to the static water layer where the velocity of the liquid is Zero and point b 

belongs to the moving water layer where the velocity of the liquid is the velocity of the flow.  

It is most probably due to friction between the two layers, the moving layer drags with it the 

static one along with the air behind it forming a stratified flow in the pipe for a certain 

distance.  

Along this distance the water level is rising gradually and by the end of it, it hits the upper 

surface of the pipe forming numbers of slugs with the dragged air and then forming a reverse 

flow due to pressure difference towards the mix joint and so on. 
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Before going any further, it is important to clarify the point of the maximum distance which 

the stratified flow reach. It is happening half a meter before the last pressure nipple where P2 

measurements are taken and one and a half meter after the third nipple where P1 

measurements are taken. See Figure 5.14 

Now, if we scale all of the axes together in figure 5.15 and zoom into the first period where 

minimum pressure values occur, we will get figure 5.17. where special areas can be identified. 

 

Figure 5.17 Absolute pressures 1 and 2 during slugs and revers flow. 

Area number 1:  

At the eleventh second the water hits the upper surface of the pipe, small slugs start to appear 

and gradually getting bigger, the effects of big slugs can be seen clearly on P2 measurements 

after the twelfth second and up to the eighteenth second. 

Area number 2: 

At the seventeenth second the reverse flow begins. The P2 finish recording the effects of the 

last slug on the eighteenth second. On the second 18.8 the reverse flow reaches P1 and its 

effect is clearly seen on P1 after the second 18.80. We can also clearly see the negative 

pressure difference at the moment the reverse flow is formed. 

It’s was interesting to observe the behavior of the loop under the U effect with different flow 

rates, figure 5.18. shows that. 
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Figure 5.18. Absolute pressures with different flowrates under the U effect 

From figure 5.18. we can note that the periodic oscillations happen only on 45 Hz pump 

frequency and above. we have observed that the liquid level in the vertical pipe at a 45 Hz 

pump frequency is less than its level when the pump frequency is at 50 Hz, but the liquid stays 

longer at a constant level during the 45 Hz Pump frequency. While the brown lines on the 

figure 5.18. confirms the liquid level differences, the green circles show that sometimes the 

liquid spend more time at a constant level during the 45 Hz than during the 50 Hz pump 

frequency. The purple circle shows that partially periodic oscillations (not complete period) 

has happened twice during the 45 Hz pump frequency. 

5.2.3. Different flow regimes in the loop. 

Introducing air to the system enabled us to discover the flow regimes that could happened in 

the loop.  

Using the maximum available flowrates for both air and water we started to run the loop and 

observe the flow. 

We divided the mixed section pipe into two theoretical parts, the first part is the distance d 

which starts from the end of the thin plate in the mixing unit and ends when the stratified flow 

regime ends. While the second part starts at the end of the stratified flow and ends by the end 

of the test section pipe. (figure 5.19) 
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Figure 5.19 the mixed pipe section with two phase, air-water. 
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qL [L/m] qg [L/m] d length [meter] Part 2 length [meter] 

7220 4.76 3.6 1.9 

6520 4.76 3.4 2.1 

5820 4.76 3.1 2.4 

5090 4.76 3 2.5 

4450 4.76 2.8 2.7 

3740 4.76 2.1 3.4 
Table 5.2. length of flow regimes areas where qg is 4.76. 

qL [L/m] qg [L/m] d length meter Part 2 length meter 

7220 1.84 3.6 1.9 

6520 1.84 3.4 2.1 

5820 1.84 3.1 2.4 

5090 1.84 3 2.5 

4450 1.84 2.8 2.7 

3740 1.84 2.1 3.4 
Table 5.3. length of flow regimes areas where qg is 1.84. 

With constant air flowrate injected in the loop, the Loop behaved quite like its behavior under 

the U effect but without the reverse flow. 

While a stratified wavy flow is happening always along the d distance, part 2 distance 

experience slugs flow almost all the time, but with the difference in shapes and the speeds of 

the slugs according to the water flow rate. 

Since the huge difference flow rates between water and air in the loop, the borders of our two 

hypothetical parts d and part 2, didn’t change with the change in the air flowrate, it only 

changes with the water flowrate changes. 

5.3. Noise observations. 

During the usage of the PASCO device, there were noises from different sources that affected 

the quality of the signals, we tried to identify the noise sources. 

5.3.1. Noise caused by the pump: 

It was experienced on many occasions that the pump was unstable on low frequencies which 

made us take a decision to limit the use of the pump to the frequencies between 25 Hz and 

50 Hz only. Figure 5.20 shows how the pump noise increase with decreasing frequency. 
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Figure 5.20 Pump noise with decreasing frequency. 

5.3.2 Noise caused by the separator pressure. 

It was experienced on many occasions that the separator pressure not only effect the pressure 

of the whole system, but it affects the noise level as well. 

 

Figure 5.21. Valve to the atmosphere closed and then opened. 50Hz pump frequency. 
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Figure 5.22. Valve to the atmosphere opened and then closed. 25Hz pump frequency. 

5.3.3 Noise caused by electrical potential and electromagnetic waves. 

We noticed that the rig doesn’t have a proper electrical grounding, this can be a source of 

error for electrical potential reference point. 

Pump frequancy regualtors and the ON/OFF switches are very close to the mesuring  

instruments and can cause an elctromagnatic noise. 
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6. Conclusion and future recommendations 

The main aim of this work was to build a multiphase flow loop and confirm its validity with the 

theory by measuring the frictional pressure drop between two points along the loop. 

In addition, experiments and observation have been made regarding flow oscillations in the 

loop, the instability of the liquid level in the separator along with other observations including 

observations for air water flow. 

6.1. Differential pressure between two nipples 

• Despite the fact that our experimental data is orbiting very close around the 

theoretical ones but very seldomly equal them, we can definitely say that our loop was 

giving us results which are close enough to the theoretical measurements.  

• Stating that confirms that the loop works according to the fluid dynamic principles and 

we can move on with more experiments.  

6.2. Separator Oscillations. 

• The separator pressure affects the pressure in the whole loop. 

• Low liquid level in the separator can create a lot of bubbles and oscillations. 

• Low liquid level in the separator can decrease the separator pressure in case the 

separator was closed. 

• Closed separator creates less noise in the measurements. 

• Low pressure in the separator helps with decreasing the number of bubbles in the 

separator and force the bubbles to join the air phase faster. 

• Big pressure differences between the separator and the outlet can create a vacuum 

pressure in the separator that will help air to travel through the outlet into the 

separator. 

6.3. Flow oscillations in the loop. 

• Open spots in pipes can lead to flow regime changes and possibility for reverse flow 

problems.  

• More analyzing to figure 5.17. combining with proper video recording equipment we 

can measure the initial velocity of the reverse flow. 
• One of the reasons for the reverse flow is difference in pressure. 

6.4. Different flow regimes in the loop. 

• With constant air flowrate injected in the loop, the Loop behaved quite like its behavior 

under the U effect but without the reverse flow. 

• Stratified wavy flow and slug flow can be easily achievable with our loop. 

• Our loop is water flow dominant and while the presence of air flow is important to 
create a two-phase flow in the loop, the changes in the air flowrates doesn’t have a 

huge effect on the flow regimes. 
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6.5. Other conclusions and different recommendations. 

• In order to study the separator more, fixing a flow meter on the out will be very helpful. 
• Our pump is a helical progressing cavity pump which needs lubrications Thus, the 

pumped water should be treated. 
• Due to safety reasons and to avoid probable electromagnetic noise, a box or a closet 

must be built where all of the on/off switches and the frequency regulators can fixed 

inside of it, the box must be fixed away from the loop and must be provided with an 

external main on/off electricity switch in case of an emergency. 
• A box with a hose should be made to cover the weak point in the system. 
• The lighting conditions must be enhanced in order to use the optical box for photos 

and video recordings. 
• A stand should be made so lab workers can stand on it and monitor the flow through 

the optical box. 
• The mixing unit with the thin plate has an unknown effect on the flow. This should be 

studied and mixing units with different designs can be introduced. 
• The loop should be electrically grounded. 
• Using flexible hoses can affect the pressure drop due to acceleration. This can be 

studied 
• In case a better air system was introduced, it can allow us to monitor the changes with 

air flowrate changes. And maybe achieve more flow regimes in the loop. 
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Appendix A 

Pump frequency s Flow Rate m3/h 
Flow Rate 

m3/s 
Velocity m/s 

5 

0.7 0.000194444 0.091558564 

0.71 0.000197222 0.092866543 
0.72 0.0002 0.094174523 

0.73 0.000202778 0.095482502 

10 

1.44 0.0004 0.188349045 

1.45 0.000402778 0.189657025 

1.46 0.000405556 0.190965004 
1.47 0.000408333 0.192272984 

15 

2.17 0.000602778 0.283831547 
2.18 0.000605556 0.285139527 

2.19 0.000608333 0.286447506 
2.2 0.000611111 0.287755486 

20 

2.88 0.0008 0.37669809 

2.89 0.000802778 0.37800607 
2.9 0.000805556 0.379314049 

2.91 0.000808333 0.380622029 

25 

3.6 0.001 0.470872613 

3.61 0.001002778 0.472180592 
3.62 0.001005556 0.473488572 

3.63 0.001008333 0.474796551 

30 

4.32 0.0012 0.565047135 
4.33 0.001202778 0.566355115 

4.34 0.001205556 0.567663094 
4.35 0.001208333 0.568971074 

35 

5.05 0.001402778 0.660529637 
5.06 0.001405556 0.661837617 

5.07 0.001408333 0.663145596 

5.08 0.001411111 0.664453576 

40 

5.77 0.001602778 0.75470416 

5.78 0.001605556 0.756012139 
5.79 0.001608333 0.757320119 

5.8 0.001611111 0.758628098 

45 

6.47 0.001797222 0.846262723 

6.48 0.0018 0.847570703 

6.49 0.001802778 0.848878682 
6.5 0.001805556 0.850186662 

50 

7.15 0.001986111 0.935205328 
7.16 0.001988889 0.936513307 

7.17 0.001991667 0.937821287 
7.18 0.001994444 0.939129266 
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Appendix B 

 

Height of 
column [m] 

Theoretical 
Pressure 

Sensor one  Sensor two Sensor three 

0 101703 101703 101703 101703 

0.25 104148.1425 104058 104199 104139 

0.5 106593.285 106598 106524 106518 

0.75 109038.4275 108940 109089 109261 

1 111483.57 111488 111427 111611 

1.25 113928.7125 113768 113991 113897 

1.5 116373.855 116283 116482 116319 

1.75 118818.9975 118869 118752 118892 

2 121264.14 121199 121255 121176 

2.25 123709.2825 123723 123650 123620 

2.5 126154.425 126979 126833 126046 

2.75 128599.5675 128581 128506 128654 
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Appendix C 

 

Picture 1. Loop body. 
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Picture 2. Loop body. 

 

Picture 3. Tanks. 
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Picture 4. Tanks old outlets. 

 

Picture 5. Tanks new outlets. 
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Picture 6. Dirty Tank. 

 

Picture 7. Pumps. 
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Picture 8. Pumps. 

 

Picture 9. Pumps. 
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Picture 10. Electromagnetic flowmeter. 
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Picture 11. Electromagnetic electrodes. 

 

Picture 12. Earthing rings. 
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Picture 13. Rubber gaskets. 

 

Picture 14. Mixing unit entry. 
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Picture 15. Mixing unit entry U joint. 

 

Picture 16. Mixing unit entry U joint. 
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Picture 17. Plastic plate during construction. 

 

Picture 18. First Plastic plate done. 
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Picture 19. Second Plastic plate. 

 

Picture 20. Second Plastic plate. 
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Picture 21. Second plastic plate. 
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Picture 22. Vertical pipe. 

 

Picture 23. Mixing Unit. 
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Picture 24. Mixed section during repairing. 

 

Picture 25. Mixed section. 
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Picture 26. Mixed section nipple connected to a silicon hose. 

 

Picture 27. Mixed pipe before fixing the nipples. 
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Picture 28. Optical box during construction. 

 

Picture 29. Optical box during construction. 
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Picture 30. Optical box during construction. 

 

Picture 31. Optical box during making. 
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Picture 32. Optical box during construction. 

 

Picture 33. Optical box ready. 
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Picture 34. Optical box frames during construction. 

 

Picture 35. Optical box with frames. 
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Picture 36. Temperature sensor holder during construction. 

 

Picture 37. Temperature sensor holder during construction. 
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Picture 38. Temperature sensor holder ready. 

 

Picture 39. Temperature sensor holder. 
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Picture 40. Temperature sensor holder 

 

Picture 41. Separator. 



 

85 
 

 

Picture 42. Separator. 

 

Picture 43. Separator smart connection. 
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Picture 44. Separator. 

 

Picture 45. Separator. 
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Picture 46. Separator. 

 

Picture 47. Separator outlet valve. 
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Picture 48. Separator table aluminum profiles 

 

Picture 49. Separator table 
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Picture 50. Separator table. 

 

Picture 51. Separator table. 
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Picture 52. Separator table leg threading. 

 

Picture 53. Separator table. 
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Picture 54. Separator support (cushions). 

 

Picture 55. Separator support (cushions). 

 



 

92 
 

 

Picture 56. Separator modified screws. 

 

Picture 57. Safety observations. 
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Picture 58. PVC fitting. 

 

Picture 59. Plastic Shield 
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Picture 60. PASCO interface. 

 

Picture 61. PASCO Absolute Pressure temperature sensor 
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Picture 62. PASCO Dual Pressure sensor. 

 

Picture 63. PASCO sensors. 
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Picture 64. PASCO sensor cables. 

 

Picture 65. PASCO Temperature sensor. 
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Picture 66. Desktop computer. 

 

Picture 67. Aluminum stick for the Rosemounts. 
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Picture 68. Aluminum stick for the Rosemounts. 

 

Picture 69. Rosemount transmitters. 
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Picture 70. Validyne pressure transmitter and transducer  

 

Picture 71. Rosemount 2088 Gage and absolute Pressure Transmitter. 
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Picture 72. 3144P Rosemount Temperature Transmitter 

 

Picture 73. Swaglok pressure regulator and crystal engineering xp2i digital pressure gauge 

indicator 
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Picture 74. 3-way valve. 

 

Picture 75. Air flowmeter 
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Picture 76. Air flowmeter. 
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Appendix D 

 

Figure 1. Optical Box 

 

Figure 2. Optical Box 
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Figure 3. Adapter 

 

Figure 4. Brass Holder 
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Figure 5. Lid General 

 

Figure 6. Inlet and Outlet 
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Figure 7. Led Front 

 

Figure 8. Cushions 

 

 


